WorldWideScience

Sample records for scalable flexible-order model

  1. Toward a scalable flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.

    For marine and coastal applications, current work are directed toward the development of a scalable numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included...... for flexibility in the description of structures by the use of curvilinear boundary-fitted meshes. The mathematical equations for potential waves in the physical domain is transformed through $\\sigma$-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution...... strategy on a time-invariant mesh. The 3D numerical model is based on a finite difference method as in the original works \\cite{LiFleming1997,BinghamZhang2007}. Full details and other aspects of an improved 3D solution can be found in \\cite{EBL08}. The new and improved approach for three...

  2. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  3. Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications

    Science.gov (United States)

    Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.

    2017-10-01

    Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.

  4. An extended systematic mapping study about the scalability of i* Models

    Directory of Open Access Journals (Sweden)

    Paulo Lima

    2016-12-01

    Full Text Available i* models have been used for requirements specification in many domains, such as healthcare, telecommunication, and air traffic control. Managing the scalability and the complexity of such models is an important challenge in Requirements Engineering (RE. Scalability is also one of the most intractable issues in the design of visual notations in general: a well-known problem with visual representations is that they do not scale well. This issue has led us to investigate scalability in i* models and its variants by means of a systematic mapping study. This paper is an extended version of a previous paper on the scalability of i* including papers indicated by specialists. Moreover, we also discuss the challenges and open issues regarding scalability of i* models and its variants. A total of 126 papers were analyzed in order to understand: how the RE community perceives scalability; and which proposals have considered this topic. We found that scalability issues are indeed perceived as relevant and that further work is still required, even though many potential solutions have already been proposed. This study can be a starting point for researchers aiming to further advance the treatment of scalability in i* models.

  5. Flexible implementation of the Ensemble Model with arbitrary order of moments

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, W. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D 64289 Darmstadt (Germany)]. E-mail: ackermann@temf.tu-darmstadt.de; Weiland, T. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D 64289 Darmstadt (Germany)]. E-mail: thomas.weiland@temf.tu-darmstadt.de

    2006-03-01

    The Ensemble Model takes advantage of an approach to express the phase space particle distribution function in terms of the first, second and higher order moments instead of considering individual particles. Based on a new flexible implementation, an arbitrary number of orders can be processed and automatically converted into proper update equations for the simulation program V-Code. In this paper the influence of the introduction of higher order moments on the beam dynamics simulation is investigated. The achievable accuracy and the numerical efforts are compared with the ones obtained from the lower order calculations.

  6. Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density.

    Science.gov (United States)

    Yao, Lei; Wu, Qin; Zhang, Peixin; Zhang, Junmin; Wang, Dongrui; Li, Yongliang; Ren, Xiangzhong; Mi, Hongwei; Deng, Libo; Zheng, Zijian

    2018-03-01

    2D carbon nanomaterials such as graphene and its derivatives, have gained tremendous research interests in energy storage because of their high capacitance and chemical stability. However, scalable synthesis of ultrathin carbon nanosheets with well-defined pore architectures remains a great challenge. Herein, the first synthesis of 2D hierarchical porous carbon nanosheets (2D-HPCs) with rich nitrogen dopants is reported, which is prepared with high scalability through a rapid polymerization of a nitrogen-containing thermoset and a subsequent one-step pyrolysis and activation into 2D porous nanosheets. 2D-HPCs, which are typically 1.5 nm thick and 1-3 µm wide, show a high surface area (2406 m 2 g -1 ) and with hierarchical micro-, meso-, and macropores. This 2D and hierarchical porous structure leads to robust flexibility and good energy-storage capability, being 139 Wh kg -1 for a symmetric supercapacitor. Flexible supercapacitor devices fabricated by these 2D-HPCs also present an ultrahigh volumetric energy density of 8.4 mWh cm -3 at a power density of 24.9 mW cm -3 , which is retained at 80% even when the power density is increased by 20-fold. The devices show very high electrochemical life (96% retention after 10000 charge/discharge cycles) and excellent mechanical flexibility. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    Science.gov (United States)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2018-02-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  8. An efficient flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal......, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental...

  9. Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor.

    Science.gov (United States)

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-03-23

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm(-1)), light weight (1 mg cm(-2)) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.

  10. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor

    Science.gov (United States)

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-03-01

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm-1), light weight (1 mg cm-2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.

  11. An organizational model to support the flexible workflow based on ontology

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Zhang Xiankun

    2012-01-01

    Based on ontology theory, the paper addresses an organizational model for flexible workflow. Firstly, the paper describes the conceptual model of the organizational model on ontology chart, which provides a consistent semantic framework of organization. Secondly, the paper gives the formalization of the model and describes the six key ontology elements of the mode in detail. Finally, the paper discusses deeply how the model supports the flexible workflow and indicates that the model has the advantages of cross-area, cross-organization and cross-domain, multi-process support and scalability. Especially, because the model is represented by ontology, the paper produces the conclusion that the model has covered the defect of unshared feature in traditional models, at the same time, it is more capable and flexible. (authors)

  12. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    Science.gov (United States)

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  13. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor

    OpenAIRE

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-01-01

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a c...

  14. Responsive, Flexible and Scalable Broader Impacts (Invited)

    Science.gov (United States)

    Decharon, A.; Companion, C.; Steinman, M.

    2010-12-01

    In many educator professional development workshops, scientists present content in a slideshow-type format and field questions afterwards. Drawbacks of this approach include: inability to begin the lecture with content that is responsive to audience needs; lack of flexible access to specific material within the linear presentation; and “Q&A” sessions are not easily scalable to broader audiences. Often this type of traditional interaction provides little direct benefit to the scientists. The Centers for Ocean Sciences Education Excellence - Ocean Systems (COSEE-OS) applies the technique of concept mapping with demonstrated effectiveness in helping scientists and educators “get on the same page” (deCharon et al., 2009). A key aspect is scientist professional development geared towards improving face-to-face and online communication with non-scientists. COSEE-OS promotes scientist-educator collaboration, tests the application of scientist-educator maps in new contexts through webinars, and is piloting the expansion of maps as long-lived resources for the broader community. Collaboration - COSEE-OS has developed and tested a workshop model bringing scientists and educators together in a peer-oriented process, often clarifying common misconceptions. Scientist-educator teams develop online concept maps that are hyperlinked to “assets” (i.e., images, videos, news) and are responsive to the needs of non-scientist audiences. In workshop evaluations, 91% of educators said that the process of concept mapping helped them think through science topics and 89% said that concept mapping helped build a bridge of communication with scientists (n=53). Application - After developing a concept map, with COSEE-OS staff assistance, scientists are invited to give webinar presentations that include live “Q&A” sessions. The webinars extend the reach of scientist-created concept maps to new contexts, both geographically and topically (e.g., oil spill), with a relatively small

  15. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  16. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong; Peumans, Peter; Cui, Yi

    2010-01-01

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  17. An efficient flexible-order model for coastal and ocean water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

    Current work are directed toward the development of an improved numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included for flexibility in the description...... as in the original works \\cite{LiFleming1997,BinghamZhang2007}. The new and improved approach employs a GMRES solver with multigrid preconditioning to achieve optimal scaling of the overall solution effort, i.e., directly with $n$ the total number of grid points. A robust method is achieved through a special...

  18. The Concept of Business Model Scalability

    DEFF Research Database (Denmark)

    Lund, Morten; Nielsen, Christian

    2018-01-01

    -term pro table business. However, the main message of this article is that while providing a good value proposition may help the rm ‘get by’, the really successful businesses of today are those able to reach the sweet-spot of business model scalability. Design/Methodology/Approach: The article is based...... on a ve-year longitudinal action research project of over 90 companies that participated in the International Center for Innovation project aimed at building 10 global network-based business models. Findings: This article introduces and discusses the term scalability from a company-level perspective......Purpose: The purpose of the article is to de ne what scalable business models are. Central to the contemporary understanding of business models is the value proposition towards the customer and the hypotheses generated about delivering value to the customer which become a good foundation for a long...

  19. Genetic Algorithm-Guided, Adaptive Model Order Reduction of Flexible Aircrafts

    Science.gov (United States)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter; Brenner, Martin J.

    2017-01-01

    This paper presents a methodology for automated model order reduction (MOR) of flexible aircrafts to construct linear parameter-varying (LPV) reduced order models (ROM) for aeroservoelasticity (ASE) analysis and control synthesis in broad flight parameter space. The novelty includes utilization of genetic algorithms (GAs) to automatically determine the states for reduction while minimizing the trial-and-error process and heuristics requirement to perform MOR; balanced truncation for unstable systems to achieve locally optimal realization of the full model; congruence transformation for "weak" fulfillment of state consistency across the entire flight parameter space; and ROM interpolation based on adaptive grid refinement to generate a globally functional LPV ASE ROM. The methodology is applied to the X-56A MUTT model currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that X-56A ROM with less than one-seventh the number of states relative to the original model is able to accurately predict system response among all input-output channels for pitch, roll, and ASE control at various flight conditions. The GA-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The adaptive refinement allows selective addition of the grid points in the parameter space where flight dynamics varies dramatically to enhance interpolation accuracy without over-burdening controller synthesis and onboard memory efforts downstream. The present MOR framework can be used by control engineers for robust ASE controller synthesis and novel vehicle design.

  20. Durango: Scalable Synthetic Workload Generation for Extreme-Scale Application Performance Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, Christopher D. [Rensselaer Polytechnic Institute (RPI); Meredith, Jeremy S. [ORNL; Blanco, Marc [Rensselaer Polytechnic Institute (RPI); Vetter, Jeffrey S. [ORNL; Mubarak, Misbah [Argonne National Laboratory; LaPre, Justin [Rensselaer Polytechnic Institute (RPI); Moore, Shirley V. [ORNL

    2017-05-01

    Performance modeling of extreme-scale applications on accurate representations of potential architectures is critical for designing next generation supercomputing systems because it is impractical to construct prototype systems at scale with new network hardware in order to explore designs and policies. However, these simulations often rely on static application traces that can be difficult to work with because of their size and lack of flexibility to extend or scale up without rerunning the original application. To address this problem, we have created a new technique for generating scalable, flexible workloads from real applications, we have implemented a prototype, called Durango, that combines a proven analytical performance modeling language, Aspen, with the massively parallel HPC network modeling capabilities of the CODES framework.Our models are compact, parameterized and representative of real applications with computation events. They are not resource intensive to create and are portable across simulator environments. We demonstrate the utility of Durango by simulating the LULESH application in the CODES simulation environment on several topologies and show that Durango is practical to use for simulation without loss of fidelity, as quantified by simulation metrics. During our validation of Durango's generated communication model of LULESH, we found that the original LULESH miniapp code had a latent bug where the MPI_Waitall operation was used incorrectly. This finding underscores the potential need for a tool such as Durango, beyond its benefits for flexible workload generation and modeling.Additionally, we demonstrate the efficacy of Durango's direct integration approach, which links Aspen into CODES as part of the running network simulation model. Here, Aspen generates the application-level computation timing events, which in turn drive the start of a network communication phase. Results show that Durango's performance scales well when

  1. From Digital Disruption to Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Thomsen, Peter Poulsen

    2017-01-01

    This article discusses the terms disruption, digital disruption, business models and business model scalability. It illustrates how managers should be using these terms for the benefit of their business by developing business models capable of achieving exponentially increasing returns to scale...... will seldom lead to business model scalability capable of competing with digital disruption(s)....... as a response to digital disruption. A series of case studies illustrate that besides frequent existing messages in the business literature relating to the importance of creating agile businesses, both in growing and declining economies, as well as hard to copy value propositions or value propositions that take...

  2. Evaluating Nonclinical Performance of the Academic Pathologist: A Comprehensive, Scalable, and Flexible System for Leadership Use.

    Science.gov (United States)

    Wiles, Austin Blackburn; Idowu, Michael O; Clevenger, Charles V; Powers, Celeste N

    2018-01-01

    Academic pathologists perform clinical duties, as well as valuable nonclinical activities. Nonclinical activities may consist of research, teaching, and administrative management among many other important tasks. While clinical duties have many clear metrics to measure productivity, like the relative value units of Medicare reimbursement, nonclinical performance is often difficult to measure. Despite the difficulty of evaluating nonclinical activities, nonclinical productivity is used to determine promotion, funding, and inform professional evaluations of performance. In order to better evaluate the important nonclinical performance of academic pathologists, we present an evaluation system for leadership use. This system uses a Microsoft Excel workbook to provide academic pathologist respondents and reviewing leadership a transparent, easy-to-complete system that is both flexible and scalable. This system provides real-time feedback to academic pathologist respondents and a clear executive summary that allows for focused guidance of the respondent. This system may be adapted to fit practices of varying size, measure performance differently based on years of experience, and can work with many different institutional values.

  3. Scalable Approach To Construct Free-Standing and Flexible Carbon Networks for Lithium–Sulfur Battery

    KAUST Repository

    Li, Mengliu

    2017-02-21

    Reconstructing carbon nanomaterials (e.g., fullerene, carbon nanotubes (CNTs), and graphene) to multidimensional networks with hierarchical structure is a critical step in exploring their applications. Herein, a sacrificial template method by casting strategy is developed to prepare highly flexible and free-standing carbon film consisting of CNTs, graphene, or both. The scalable size, ultralight and binder-free characteristics, as well as the tunable process/property are promising for their large-scale applications, such as utilizing as interlayers in lithium-sulfur battery. The capability of holding polysulfides (i.e., suppressing the sulfur diffusion) for the networks made from CNTs, graphene, or their mixture is pronounced, among which CNTs are the best. The diffusion process of polysulfides can be visualized in a specially designed glass tube battery. X-ray photoelectron spectroscopy analysis of discharged electrodes was performed to characterize the species in electrodes. A detailed analysis of lithium diffusion constant, electrochemical impedance, and elementary distribution of sulfur in electrodes has been performed to further illustrate the differences of different carbon interlayers for Li-S batteries. The proposed simple and enlargeable production of carbon-based networks may facilitate their applications in battery industry even as a flexible cathode directly. The versatile and reconstructive strategy is extendable to prepare other flexible films and/or membranes for wider applications.

  4. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage

    Science.gov (United States)

    El-Kady, Maher F.; Kaner, Richard B.

    2013-02-01

    The rapid development of miniaturized electronic devices has increased the demand for compact on-chip energy storage. Microscale supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. However, conventional micro-fabrication techniques have proven to be cumbersome in building cost-effective micro-devices, thus limiting their widespread application. Here we demonstrate a scalable fabrication of graphene micro-supercapacitors over large areas by direct laser writing on graphite oxide films using a standard LightScribe DVD burner. More than 100 micro-supercapacitors can be produced on a single disc in 30 min or less. The devices are built on flexible substrates for flexible electronics and on-chip uses that can be integrated with MEMS or CMOS in a single chip. Remarkably, miniaturizing the devices to the microscale results in enhanced charge-storage capacity and rate capability. These micro-supercapacitors demonstrate a power density of ~200 W cm-3, which is among the highest values achieved for any supercapacitor.

  5. Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells.

    Science.gov (United States)

    Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong

    2017-09-01

    Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.

  6. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors.

    Science.gov (United States)

    McAlpine, Michael C; Ahmad, Habib; Wang, Dunwei; Heath, James R

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a 'nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  7. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

    Science.gov (United States)

    McAlpine, Michael C.; Ahmad, Habib; Wang, Dunwei; Heath, James R.

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a `nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  8. Scalability of Sustainable Business Models in Hybrid Organizations

    Directory of Open Access Journals (Sweden)

    Adam Jabłoński

    2016-02-01

    Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed

  9. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction.

    Science.gov (United States)

    Soleimani, Hossein; Hensman, James; Saria, Suchi

    2017-08-21

    Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.

  10. An efficient flexible-order model for 3D nonlinear water waves

    Science.gov (United States)

    Engsig-Karup, A. P.; Bingham, H. B.; Lindberg, O.

    2009-04-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature.

  11. An efficient flexible-order model for 3D nonlinear water waves

    International Nuclear Information System (INIS)

    Engsig-Karup, A.P.; Bingham, H.B.; Lindberg, O.

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature

  12. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  13. HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.

    Science.gov (United States)

    Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee

    2017-08-01

    Epilepsy forecasting has been extensively studied using high-order time series obtained from scalp-recorded electroencephalography (EEG). An accurate seizure prediction system would not only help significantly improve patients' quality of life, but would also facilitate new therapeutic strategies to manage epilepsy. This paper thus proposes an improved Kalman Filter (KF) algorithm to mine seizure forecasts from neural activity by modeling three properties in the high-order EEG time series: noise, temporal smoothness, and tensor structure. The proposed High-Order Kalman Filter (HOKF) is an extension of the standard Kalman filter, for which higher-order modeling is limited. The efficient dynamic of HOKF system preserves the tensor structure of the observations and latent states. As such, the proposed method offers two main advantages: (i) effectiveness with HOKF results in hidden variables that capture major evolving trends suitable to predict neural activity, even in the presence of missing values; and (ii) scalability in that the wall clock time of the HOKF is linear with respect to the number of time-slices of the sequence. The HOKF algorithm is examined in terms of its effectiveness and scalability by conducting forecasting and scalability experiments with a real epilepsy EEG dataset. The results of the simulation demonstrate the superiority of the proposed method over the original Kalman Filter and other existing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  15. New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xuchu Wang

    2014-01-01

    that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.

  16. Work station learning activities: a flexible and scalable instrument for integrating across basic subjects in biomedical education.

    Science.gov (United States)

    González-Soltero, Rocío; Learte, Ana Isabel R; Sánchez, Ana Mª; Gal, Beatriz

    2017-11-29

    Establishing innovative teaching programs in biomedical education involves dealing with several national and supra-national (i.e. European) regulations as well as with new pedagogical and demographic demands. We aimed to develop and validate a suitable instrument to integrate activities across preclinical years in all Health Science Degrees while meeting requirements of national quality agencies. The new approach was conceived at two different levels: first, we identified potentially integrative units from different fields according to national learning goals established for each preclinical year (national quality agency regulations). Secondly, we implemented a new instrument that combines active methodologies in Work Station Learning Activities (WSLA), using clinical scenarios as a guiding common thread to instruct students from an integrated perspective. We evaluated students' perception through a Likert-type survey of a total of 118 students enrolled in the first year of the Bachelor's Degree in Medicine. Our model of integrated activities through WSLA is feasible, scalable and manageable with large groups of students and a minimum number of instructors, two major limitations in many medical schools. Students' perception of WSLA was positive in overall terms. Seventy nine percent of participants stated that WSLA sessions were more useful than non-integrated activities. Eighty three percent confirmed that the WSLA methodology was effective at integrating concepts covered by different subjects. The WSLA approach is a flexible and scalable instrument for moving towards integrated curricula, and it can be successfully adapted to teach basic subjects in preclinical years of Health Science degrees. WSLA can be applied to large groups of students in a variety of contexts or environments using clinical cases as connecting threads.

  17. A scalable approach to modeling groundwater flow on massively parallel computers

    International Nuclear Information System (INIS)

    Ashby, S.F.; Falgout, R.D.; Tompson, A.F.B.

    1995-12-01

    We describe a fully scalable approach to the simulation of groundwater flow on a hierarchy of computing platforms, ranging from workstations to massively parallel computers. Specifically, we advocate the use of scalable conceptual models in which the subsurface model is defined independently of the computational grid on which the simulation takes place. We also describe a scalable multigrid algorithm for computing the groundwater flow velocities. We axe thus able to leverage both the engineer's time spent developing the conceptual model and the computing resources used in the numerical simulation. We have successfully employed this approach at the LLNL site, where we have run simulations ranging in size from just a few thousand spatial zones (on workstations) to more than eight million spatial zones (on the CRAY T3D)-all using the same conceptual model

  18. Modeling of Flexible Beams for Robotic Manipulators

    International Nuclear Information System (INIS)

    Martins, Jorge; Ayala Botto, Miguel; Costa, Jose sa da

    2002-01-01

    This work treats the problem of modeling robotic manipulators with structural flexibility. A mathematical model of a planar manipulator with a single flexible link is developed. This model is capable of reproducing nonlinear dynamic effects, such as the beam stiffening due to the centrifugal forces induced by the rotation of the joints, giving it the capability to predict reliable dynamic behaviors for a wide range of applications. On the other hand, the model complexity is reduced, in order to keep it amenable for analysis and controller design. The models found in current literature for control design of flexible manipulator arms present dynamic limitations for the sake of real time implementation in a control scheme. These limitations are the result of premature linearization in the formulation of the dynamics equations. In this paper, this common linearization is presented and their dynamic limitations uncovered. An alternative reliable model is then presented. The model is founded on two basic assumptions: inextensibility of the neutral fiber and moderate rotations of the cross sections in order to account for the foreshortening of the beam due to bending. Simulation and experimental results show that the proposed model has the closest dynamic behavior to the real beam

  19. Order picker routing with product returns and interaction delays

    NARCIS (Netherlands)

    Schrotenboer, Albert H.; Wruck, Susanne; Roodbergen, Kees Jan; Veenstra, Marjolein; Dijkstra, Arjan

    2017-01-01

    E-commerce companies often use manual order-picking systems in their warehouses since these systems can provide the required flexibility and scalability. Manual systems have been widely studied, but the operating policies may require significant changes for e-commerce settings. First, to maintain

  20. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    International Nuclear Information System (INIS)

    Caballero, J; Hover, J; Love, P; Stewart, G A

    2012-01-01

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment's computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ‘pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to pick-up a real payload to execute. The first generation of pilot factories were usually specific to a single Virtual Organization (VO), and were bound to the particular architecture of that VO's distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new and improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is highly configurable. It is able to send different types of pilots to sites and exploit different submission mechanisms and queue characteristics. It is tightly integrated with the PanDA job submission framework, coupling pilot flow to the amount of work the site has to run. It gathers information from many sources in order to correctly configure itself for a site and its decision logic can easily be updated. Integrated into AutoPyFactory is a flexible system for delivering both generic and specific job wrappers which can perform many useful actions before starting to run end-user scientific applications, e.g., validation of the middleware, node profiling and diagnostics, and monitoring. AutoPyFactory also has a robust monitoring system that has been invaluable in establishing a reliable pilot factory service for ATLAS.

  1. Investigation of the blockchain systems’ scalability features using the agent based modelling

    OpenAIRE

    Šulnius, Aleksas

    2017-01-01

    Investigation of the BlockChain Systems’ Scalability Features using the Agent Based Modelling. BlockChain currently is in the spotlight of all the FinTech industry. This technology is being called revolutionary, ground breaking, disruptive and even the WEB 3.0. On the other hand it is widely agreed that the BlockChain is in its early stages of development. In its current state BlockChain is in similar position that the Internet was in the early nineties. In order for this technology to gain m...

  2. PROSPECTS OF DESIGNING FLEXIBLE BUSINESS MODEL IN TURBULENT TIMES

    Directory of Open Access Journals (Sweden)

    Amalia DUTU

    2014-06-01

    Full Text Available The present study aims to analyze the current global context to capture the characteristics of the new type of volatile and turbulent business environment in which companies must operate nowdays and to bring some propositions in order to guide managers in designing or redesigning business models to achieve flexibility. The central message of this paper, that is a point of view one, is that, nowdays but also in the future, business models that are based on strategic, organizational and operational flexibility and on reaction speed will be those who will provide the greatest capacity to respond to change. Even if the international theory provides a multiple perspective analysis of business model concept, still how it can be achieved such flexibility remains an open issue in the academic debate, but also in the practice of companies. Thus, the paper contains some propositions in order to guide managers in the process of designing or redesigning the business model.

  3. Resource-aware complexity scalability for mobile MPEG encoding

    NARCIS (Netherlands)

    Mietens, S.O.; With, de P.H.N.; Hentschel, C.; Panchanatan, S.; Vasudev, B.

    2004-01-01

    Complexity scalability attempts to scale the required resources of an algorithm with the chose quality settings, in order to broaden the application range. In this paper, we present complexity-scalable MPEG encoding of which the core processing modules are modified for scalability. Scalability is

  4. A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Liu, D F; Xiang, Y J; Liao, Q; Zhang, J P; Wu, X C; Zhang, Z X; Liu, L F; Ma, W J; Shen, J; Zhou, W Y; Xie, S S

    2007-01-01

    ZnO nanorod arrays with perfect order and uniformity were prepared using a simple, low-cost, commonly available and scalable nanosphere lithography for patterning gold catalyst particles and a successive bottom-up growth technique in a tube furnace chemical vapor deposition system. Each rod in the arrays had perfect surface facets, sharp edges and uniform size. For all of the rods, their sides were oriented the same. This bottom-up assembly method may accelerate the use of ZnO nanorods in real device applications

  5. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  6. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    Thomas André

    2007-03-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  7. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    André Thomas

    2007-01-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  8. A scalable variational inequality approach for flow through porous media models with pressure-dependent viscosity

    Science.gov (United States)

    Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.

    2018-04-01

    Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select

  9. Higher order coupling between rigid-body and elastic motion in flexible mechanisms

    International Nuclear Information System (INIS)

    Esat, I.I.; Ianakiev, A.

    1995-01-01

    The paper presents an investigation of the influence of the higher order coupling terms between the rigid-body and elastic motion into flexible mechanism dynamics. The configuration of the mechanical system is obtained by using the so called hybrid coordinates. The kinematic description of the mechanism was obtained using the D-H 4 x 4 transformation matrices. The elastic deformation of each point of the mechanism is described by the finite element modeling (FEM) type interpolation scheme. The dynamic model of the flexible mechanism consists due to the hybrid coordinates of two groups of differential equations. The first group describes the manipulator transport motion and the second group describes the vibration. In this paper the authors evaluated the contribution of the coupling terms between the two groups of differential equations and selected only those with high contribution

  10. Dynamics modeling for a rigid-flexible coupling system with nonlinear deformation field

    International Nuclear Information System (INIS)

    Deng Fengyan; He Xingsuo; Li Liang; Zhang Juan

    2007-01-01

    In this paper, a moving flexible beam, which incorporates the effect of the geometrically nonlinear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transverse deflections, the exact nonlinear strain-displacement relations for a beam element are described. The shear strains formulated by the present modeling method in this paper are zero, so it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange's equations are employed for deriving the coupling dynamical formulations. The complete expression of the stiffness matrix and all coupling terms are included in the formulations. A model consisting of a rotating planar flexible beam is presented. Then the frequency and dynamical response are studied, and the differences among the zero-order model, first-order coupling model and the new present model are discussed. Numerical examples demonstrate that a 'stiffening beam' can be obtained, when more coupling terms of deformation are added to the longitudinal and transverse deformation field. It is shown that the traditional zero-order and first-order coupling models may not provide an exact dynamic model in some cases

  11. Flexible building stock modelling with array-programming

    DEFF Research Database (Denmark)

    Brøgger, Morten; Wittchen, Kim Bjarne

    2017-01-01

    Many building stock models employ archetype-buildings in order to capture the essential characteristics of a diverse building stock. However, these models often require multiple archetypes, which make them inflexible. This paper proposes an array-programming based model, which calculates the heat...... tend to overestimate potential energy-savings, if we do not consider these discrepancies. The proposed model makes it possible to compute and visualize potential energy-savings in a flexible and transparent way....

  12. A generalized quarter car modelling approach with frame flexibility ...

    Indian Academy of Sciences (India)

    HUSAIN KANCHWALA

    Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India e-mail: ... Quarter-car model; laplace domain; other wheel effects; reduced order; wheel hop; frame flexibility. ..... simply involve adding some internal modelling details. ... scale simulation, analysis and control design, and has been.

  13. Model Reduction of a Flexible-Joint Robot: A Port-Hamitonian Approach

    NARCIS (Netherlands)

    Jardón Kojakhmetov, Hildeberto; Muñoz Arias, Mauricio; Scherpen, Jacquelien M.A.

    2016-01-01

    In this paper we explore the methodology of model order reduction based on singular perturbations for a flexible-joint robot within the port-Hamiltonian framework. We show that a flexible-joint robot has a port-Hamiltonian representation which is also a singularly perturbed ordinary differential

  14. Semantic Models for Scalable Search in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Dennis Pfisterer

    2013-03-01

    Full Text Available The Internet of Things is anticipated to connect billions of embedded devices equipped with sensors to perceive their surroundings. Thereby, the state of the real world will be available online and in real-time and can be combined with other data and services in the Internet to realize novel applications such as Smart Cities, Smart Grids, or Smart Healthcare. This requires an open representation of sensor data and scalable search over data from diverse sources including sensors. In this paper we show how the Semantic Web technologies RDF (an open semantic data format and SPARQL (a query language for RDF-encoded data can be used to address those challenges. In particular, we describe how prediction models can be employed for scalable sensor search, how these prediction models can be encoded as RDF, and how the models can be queried by means of SPARQL.

  15. Containment Domains: A Scalable, Efficient and Flexible Resilience Scheme for Exascale Systems

    Directory of Open Access Journals (Sweden)

    Jinsuk Chung

    2013-01-01

    Full Text Available This paper describes and evaluates a scalable and efficient resilience scheme based on the concept of containment domains. Containment domains are a programming construct that enable applications to express resilience needs and to interact with the system to tune and specialize error detection, state preservation and restoration, and recovery schemes. Containment domains have weak transactional semantics and are nested to take advantage of the machine and application hierarchies and to enable hierarchical state preservation, restoration and recovery. We evaluate the scalability and efficiency of containment domains using generalized trace-driven simulation and analytical analysis and show that containment domains are superior to both checkpoint restart and redundant execution approaches.

  16. The Concept of Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten

    2015-01-01

    The power of business models lies in their ability to visualize and clarify how firms’ may configure their value creation processes. Among the key aspects of business model thinking are a focus on what the customer values, how this value is best delivered to the customer and how strategic partners...... are leveraged in this value creation, delivery and realization exercise. Central to the mainstream understanding of business models is the value proposition towards the customer and the hypothesis generated is that if the firm delivers to the customer what he/she requires, then there is a good foundation...... for a long-term profitable business. However, the message conveyed in this article is that while providing a good value proposition may help the firm ‘get by’, the really successful businesses of today are those able to reach the sweet-spot of business model scalability. This article introduces and discusses...

  17. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    Science.gov (United States)

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  18. ALADDIN - enhancing applicability and scalability

    International Nuclear Information System (INIS)

    Roverso, Davide

    2001-02-01

    The ALADDIN project aims at the study and development of flexible, accurate, and reliable techniques and principles for computerised event classification and fault diagnosis for complex machinery and industrial processes. The main focus of the project is on advanced numerical techniques, such as wavelets, and empirical modelling with neural networks. This document reports on recent important advancements, which significantly widen the practical applicability of the developed principles, both in terms of flexibility of use, and in terms of scalability to large problem domains. In particular, two novel techniques are here described. The first, which we call Wavelet On- Line Pre-processing (WOLP), is aimed at extracting, on-line, relevant dynamic features from the process data streams. This technique allows a system a greater flexibility in detecting and processing transients at a range of different time scales. The second technique, which we call Autonomous Recursive Task Decomposition (ARTD), is aimed at tackling the problem of constructing a classifier able to discriminate among a large number of different event/fault classes, which is often the case when the application domain is a complex industrial process. ARTD also allows for incremental application development (i.e. the incremental addition of new classes to an existing classifier, without the need of retraining the entire system), and for simplified application maintenance. The description of these novel techniques is complemented by reports of quantitative experiments that show in practice the extent of these improvements. (Author)

  19. Scalable Motion Estimation Processor Core for Multimedia System-on-Chip Applications

    Science.gov (United States)

    Lai, Yeong-Kang; Hsieh, Tian-En; Chen, Lien-Fei

    2007-04-01

    In this paper, we describe a high-throughput and scalable motion estimation processor architecture for multimedia system-on-chip applications. The number of processing elements (PEs) is scalable according to the variable algorithm parameters and the performance required for different applications. Using the PE rings efficiently and an intelligent memory-interleaving organization, the efficiency of the architecture can be increased. Moreover, using efficient on-chip memories and a data management technique can effectively decrease the power consumption and memory bandwidth. Techniques for reducing the number of interconnections and external memory accesses are also presented. Our results demonstrate that the proposed scalable PE-ringed architecture is a flexible and high-performance processor core in multimedia system-on-chip applications.

  20. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  1. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  2. Scalable Optical-Fiber Communication Networks

    Science.gov (United States)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  3. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    Science.gov (United States)

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A system-level multiprocessor system-on-chip modeling framework

    DEFF Research Database (Denmark)

    Virk, Kashif Munir; Madsen, Jan

    2004-01-01

    We present a system-level modeling framework to model system-on-chips (SoC) consisting of heterogeneous multiprocessors and network-on-chip communication structures in order to enable the developers of today's SoC designs to take advantage of the flexibility and scalability of network-on-chip and...... SoC design. We show how a hand-held multimedia terminal, consisting of JPEG, MP3 and GSM applications, can be modeled as a multiprocessor SoC in our framework....

  5. Flexible Multibody Systems Models Using Composite Materials Components

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambr'osio, Jorge A. C.; Leal, Rog'erio Pereira

    2004-01-01

    The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method

  6. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    Science.gov (United States)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  7. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    Science.gov (United States)

    Sastry, Kumara Narasimha

    2007-03-01

    building blocks in organic chemistry---indicate that MOGAs produce High-quality semiempirical methods that (1) are stable to small perturbations, (2) yield accurate configuration energies on untested and critical excited states, and (3) yield ab initio quality excited-state dynamics. The proposed method enables simulations of more complex systems to realistic, multi-picosecond timescales, well beyond previous attempts or expectation of human experts, and 2--3 orders-of-magnitude reduction in computational cost. While the two applications use simple evolutionary operators, in order to tackle more complex systems, their scalability and limitations have to be investigated. The second part of the thesis addresses some of the challenges involved with a successful design of genetic algorithms and genetic programming for multiscale modeling. The first issue addressed is the scalability of genetic programming, where facetwise models are built to assess the population size required by GP to ensure adequate supply of raw building blocks and also to ensure accurate decision-making between competing building blocks. This study also presents a design of competent genetic programming, where traditional fixed recombination operators are replaced by building and sampling probabilistic models of promising candidate programs. The proposed scalable GP, called extended compact GP (eCGP), combines the ideas from extended compact genetic algorithm (eCGA) and probabilistic incremental program evolution (PIPE) and adaptively identifies, propagates and exchanges important subsolutions of a search problem. Results show that eCGP scales cubically with problem size on both GP-easy and GP-hard problems. Finally, facetwise models are developed to explore limitations of scalability of MOGAs, where the scalability of multiobjective algorithms in reliably maintaining Pareto-optimal solutions is addressed. The results show that even when the building blocks are accurately identified, massive multimodality

  8. A Scalable Heuristic for Viral Marketing Under the Tipping Model

    Science.gov (United States)

    2013-09-01

    Flixster is a social media website that allows users to share reviews and other information about cinema . [35] It was extracted in Dec. 2010. – FourSquare...work of Reichman were developed independently . We also note that Reichman performs no experimental evaluation of the algorithm. A Scalable Heuristic...other dif- fusion models, such as the independent cascade model [21] and evolutionary graph theory [25] as well as probabilistic variants of the

  9. Reduced-Order Computational Model for Low-Frequency Dynamics of Automobiles

    Directory of Open Access Journals (Sweden)

    A. Arnoux

    2013-01-01

    Full Text Available A reduced-order model is constructed to predict, for the low-frequency range, the dynamical responses in the stiff parts of an automobile constituted of stiff and flexible parts. The vehicle has then many elastic modes in this range due to the presence of many flexible parts and equipment. A nonusual reduced-order model is introduced. The family of the elastic modes is not used and is replaced by an adapted vector basis of the admissible space of global displacements. Such a construction requires a decomposition of the domain of the structure in subdomains in order to control the spatial wave length of the global displacements. The fast marching method is used to carry out the subdomain decomposition. A probabilistic model of uncertainties is introduced. The parameters controlling the level of uncertainties are estimated solving a statistical inverse problem. The methodology is validated with a large computational model of an automobile.

  10. Scalable Fabrication Framework of Implantable Ultrathin and Flexible Probes with Biodegradable Sacrificial Layers.

    Science.gov (United States)

    Jiao, Xiangbing; Wang, Yuan; Qing, Quan

    2017-12-13

    For long-term biocompatibility and performance, implanted probes need to further reduce their size and mechanical stiffness to match that of the surrounding cells, which, however, makes accurate and minimally invasive insertion operations difficult due to lack of rigidity and brings additional complications in assembling and surgery. Here, we report a scalable fabrication framework of implantable probes utilizing biodegradable sacrificial layers to address this challenge. Briefly, the integrated biodegradable sacrificial layer can dissolve in physiological fluids shortly after implantation, which allows the in situ formation of functional ultrathin film structures off of the initial small and rigid supporting backbone. We show that the dissolution of this layer does not affect the viability and excitability of neuron cells in vitro. We have demonstrated two types of probes that can be used out of the box, including (1) a compact probe that spontaneously forms three-dimensional bend-up devices only after implantation and (2) an ultraflexible probe as thin as 2 μm attached to a small silicon shaft that can be accurately delivered into the tissue and then get fully released in situ without altering its shape and position because the support is fully retracted. We have obtained a >93% yield of the bend-up structure, and its geometry and stiffness can be systematically tuned. The robustness of the ultraflexible probe has been tested in tissue-mimicking agarose gels with <1% fluctuation in the test resistance. Our work provides a general strategy to prepare ultrasmall and flexible implantable probes that allow high insertion accuracy and minimal surgical damages with the best biocompatibility.

  11. Scalable and Flexible Multiview MAX-VAR Canonical Correlation Analysis

    Science.gov (United States)

    Fu, Xiao; Huang, Kejun; Hong, Mingyi; Sidiropoulos, Nicholas D.; So, Anthony Man-Cho

    2017-08-01

    Generalized canonical correlation analysis (GCCA) aims at finding latent low-dimensional common structure from multiple views (feature vectors in different domains) of the same entities. Unlike principal component analysis (PCA) that handles a single view, (G)CCA is able to integrate information from different feature spaces. Here we focus on MAX-VAR GCCA, a popular formulation which has recently gained renewed interest in multilingual processing and speech modeling. The classic MAX-VAR GCCA problem can be solved optimally via eigen-decomposition of a matrix that compounds the (whitened) correlation matrices of the views; but this solution has serious scalability issues, and is not directly amenable to incorporating pertinent structural constraints such as non-negativity and sparsity on the canonical components. We posit regularized MAX-VAR GCCA as a non-convex optimization problem and propose an alternating optimization (AO)-based algorithm to handle it. Our algorithm alternates between {\\em inexact} solutions of a regularized least squares subproblem and a manifold-constrained non-convex subproblem, thereby achieving substantial memory and computational savings. An important benefit of our design is that it can easily handle structure-promoting regularization. We show that the algorithm globally converges to a critical point at a sublinear rate, and approaches a global optimal solution at a linear rate when no regularization is considered. Judiciously designed simulations and large-scale word embedding tasks are employed to showcase the effectiveness of the proposed algorithm.

  12. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin

    2017-12-08

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.

  13. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    Science.gov (United States)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  14. Dynamic Model of a Rotating Flexible Arm-Flexible Root Mechanism Driven by a Shaft Flexible in Torsion

    Directory of Open Access Journals (Sweden)

    S.Z. Ismail

    2006-01-01

    Full Text Available This paper presents a dynamic model of a rotating flexible beam carrying a payload at its tip. The model accounts for the driving shaft and the arm root flexibilities. The finite element method and the Lagrangian dynamics are used in deriving the equations of motion with the small deformation theory assumptions and the Euler-Bernoulli beam theory. The obtained model is a nonlinear-coupled system of differential equations. The model is simulated for different combinations of shaft and root flexibilities and arm properties. The simulation results showed that the root flexibility is an important factor that should be considered in association with the arm and shaft flexibilities, as its dynamics influence the motor motion. Moreover, the effect of system non-linearity on the dynamic behavior is investigated by simulating the equivalent linearized system and it was found to be an important factor that should be considered, particularly when designing a control strategy for practical implementation.

  15. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad; Elsawy, Hesham; Bader, Ahmed; Alouini, Mohamed-Slim

    2017-01-01

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  16. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad

    2017-05-02

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  17. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2013-01-01

    of high-order linear time invariant (LTI) models. Firstly, the high-order LTI models are locally approximated using modal and balanced truncation and residualization. Then, an appropriate coordinate transformation is applied to allow interpolation of the model matrices between points on the parameter...

  18. Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report

    International Nuclear Information System (INIS)

    Cai, Xiao-Chuan; Yang, Chao; Pernice, Michael

    2014-01-01

    The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementation since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.

  19. Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression.

    Science.gov (United States)

    Milchev, Andrey; Binder, Kurt

    2014-06-07

    Using a coarse-grained bead-spring model for semi-flexible macromolecules which form a polymer brush, the structure and dynamics of the polymers were investigated, varying the chain stiffness and the grafting density. The anchoring conditions for the grafted chains were chosen such that their first bonds were oriented along the normal to the substrate plane. The compression of such a semi-flexible brush by a planar piston was observed to be a two-stage process: for a small compression the chains were shown to contract by "buckling" deformation whereas for a larger compression the chains exhibited a collective (almost uniform) bending deformation. Thus, the stiff polymer brush underwent a 2nd order phase transition of collective bond reorientation. The pressure, required to keep the stiff brush at a given degree of compression, was thereby significantly smaller than for an otherwise identical brush made of entirely flexible polymer chains! While both the brush height and the chain linear dimensions in the z-direction perpendicular to the substrate increased monotonically with an increase in the chain stiffness, the lateral (xy) chain linear dimensions exhibited a maximum at an intermediate chain stiffness. Increasing the grafting density led to a strong decrease of these lateral dimensions which is compatible with an exponential decay. Also the recovery kinetics after removal of the compressing piston were studied, and were found to follow a power-law/exponential decay with time. A simple mean-field theoretical consideration, accounting for the buckling/bending behavior of semi-flexible polymer brushes under compression was suggested.

  20. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    International Nuclear Information System (INIS)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V.; Khokhlov, Alexei R.

    2016-01-01

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

  1. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  2. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    International Nuclear Information System (INIS)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad

    2015-01-01

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  3. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  4. Directed walk models of adsorbing semi-flexible polymers subject to an elongational force

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, G K [Department of Mathematics and Statistics, University of Melbourne, Parkville (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G [Department of Chemistry, University of Toronto, Toronto (Canada)

    2010-08-06

    We consider several directed path models of semi-flexible polymers. In each model we associate an energy parameter for every pair of adjacent collinear steps, allowing for a model of a polymer with tunable stiffness. We introduce weightings for vertices or edges in a distinguished plane to model the interaction of a semi-flexible polymer with an impenetrable surface. We also investigate the desorption of such a polymer under the influence of an elongational force and study the order of the associated phase transitions. Using a simple low-temperature theory, we approximate and study the ground state behaviour of the models.

  5. A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model

    Directory of Open Access Journals (Sweden)

    Thomas E. Rosmond

    2000-01-01

    Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.

  6. Building Flexible Manufacturing Systems Based on Peer-Its

    Directory of Open Access Journals (Sweden)

    M. Hechinger

    2008-02-01

    Full Text Available Peer-to-peer computing principles have started to pervade into mechanical control systems, inducing a paradigm shift from centralized to autonomic control. We have developed a self-contained, miniaturized, universal and scalable peer-to-peer based hardware-software system, the peer-it platform, to serve as a stick-on computer solution to raise real-world artefacts like, for example, machines, tools, or appliances towards technology-rich, autonomous, self-induced, and context-aware peers, operating as spontaneously interacting ensembles. The peer-it platform integrates sensor, actuator, and wireless communication facilities on the hardware level, with an object-oriented, component-based coordination framework at the software level, thus providing a generic platform for sensing, computing, controlling, and communication on a large scale. The physical appearance of a peer-it supports pinning it to real-world artefacts, while at the same time integrating those artefacts into a mobile ad hoc network of peers. Peer-it networks thus represent ensembles of coordinated artefacts, exhibiting features of autonomy like self-management at the node level and self-organization at the network level. We demonstrate how the peer-it system implements the desired flexibility in automated manufacturing systems to react in the case of changes, whether intended or unexpectedly occuring. The peer-it system enables machine flexibility in that it adapts production facilities to produce new types of products, or change the order of operation executed on parts instantaneously. Secondly, it enables routing flexibility, that is, the ability to use multiple machines to spontaneously perform the same operation on one part alternatively (to implement autonomic fault tolerance or to absorb large-scale changes in volume, capacity, or capability (to implement autonomic scalability.

  7. geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling

    Science.gov (United States)

    Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.

    2015-12-01

    The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from

  8. Developmental Constraints on Learning Artificial Grammars with Fixed, Flexible and Free Word Order

    Directory of Open Access Journals (Sweden)

    Iga Nowak

    2017-10-01

    Full Text Available Human learning, although highly flexible and efficient, is constrained in ways that facilitate or impede the acquisition of certain systems of information. Some such constraints, active during infancy and childhood, have been proposed to account for the apparent ease with which typically developing children acquire language. In a series of experiments, we investigated the role of developmental constraints on learning artificial grammars with a distinction between shorter and relatively frequent words (‘function words,’ F-words and longer and less frequent words (‘content words,’ C-words. We constructed 4 finite-state grammars, in which the order of F-words, relative to C-words, was either fixed (F-words always occupied the same positions in a string, flexible (every F-word always followed a C-word, or free. We exposed adults (N = 84 and kindergarten children (N = 100 to strings from each of these artificial grammars, and we assessed their ability to recognize strings with the same structure, but a different vocabulary. Adults were better at recognizing strings when regularities were available (i.e., fixed and flexible order grammars, while children were better at recognizing strings from the grammars consistent with the attested distribution of function and content words in natural languages (i.e., flexible and free order grammars. These results provide evidence for a link between developmental constraints on learning and linguistic typology.

  9. PM2006: a highly scalable urban planning management information system--Case study: Suzhou Urban Planning Bureau

    Science.gov (United States)

    Jing, Changfeng; Liang, Song; Ruan, Yong; Huang, Jie

    2008-10-01

    During the urbanization process, when facing complex requirements of city development, ever-growing urban data, rapid development of planning business and increasing planning complexity, a scalable, extensible urban planning management information system is needed urgently. PM2006 is such a system that can deal with these problems. In response to the status and problems in urban planning, the scalability and extensibility of PM2006 are introduced which can be seen as business-oriented workflow extensibility, scalability of DLL-based architecture, flexibility on platforms of GIS and database, scalability of data updating and maintenance and so on. It is verified that PM2006 system has good extensibility and scalability which can meet the requirements of all levels of administrative divisions and can adapt to ever-growing changes in urban planning business. At the end of this paper, the application of PM2006 in Urban Planning Bureau of Suzhou city is described.

  10. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    2010-11-01

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  11. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-04-01

    This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.

  12. Scalability Modeling for Optimal Provisioning of Data Centers in Telenor: A better balance between under- and over-provisioning

    OpenAIRE

    Rygg, Knut Helge

    2012-01-01

    The scalability of an information system describes the relationship between system ca-pacity and system size. This report studies the scalability of Microsoft Lync Server 2010 in order to provide guidelines for provisioning hardware resources. Optimal pro-visioning is required to reduce both deployment and operational costs, while keeping an acceptable service quality.All Lync servers in the test setup are virtualizedusingVMware ESXi 5.0 and the system runs on a Cisco Unified Computing System...

  13. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    Science.gov (United States)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  14. Electrohydrodynamic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate

    Directory of Open Access Journals (Sweden)

    Jiang-Yi Zheng

    2014-01-01

    Full Text Available AC pulse-modulated electrohydrodynamic direct-writing (EDW was utilized to direct-write orderly micro/nanofibrous structure on the flexible insulating polyethylene terephthalate (PET substrate. During the EDW process, AC electrical field induced charges to reciprocate along the jet and decreased the charge repulsive force that applied on charged jet. Thanks to the smaller charge repulsive force, stable straight jet can be built up to direct-write orderly micro/nanofibrous structures on the insulating substrate. The minimum motion velocity required to direct-write straight line fibrous structure on insulating PET substrate was 700 mm/s. Moreover, the influences of AC voltage amplitude, frequency, and duty cycle ratio on the line width of fibrous structures were investigated. This work proposes a novel solution to overcome the inherent charge repulsion emerging on the insulating substrate, and promotes the application of EDW technology on the flexible electronics.

  15. LoRa Scalability: A Simulation Model Based on Interference Measurements.

    Science.gov (United States)

    Haxhibeqiri, Jetmir; Van den Abeele, Floris; Moerman, Ingrid; Hoebeke, Jeroen

    2017-05-23

    LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data.

  16. Business Models for Power System Flexibility

    DEFF Research Database (Denmark)

    Boscan, Luis; Poudineh, Rahmatallah

    2016-01-01

    As intermittent, renewable resources gain more share in the generation mix, the need for power system flexibility increases more than ever. Parallel to this, technological change and the emergence of new players bringing about innovative solutions are boosting the development of flexibility...... business models will play an important role in ensuring sufficiency and efficiency of flexibility services....

  17. Monte Carlo tests of the Rasch model based on scalability coefficients

    DEFF Research Database (Denmark)

    Christensen, Karl Bang; Kreiner, Svend

    2010-01-01

    that summarizes the number of Guttman errors in the data matrix. These coefficients are shown to yield efficient tests of the Rasch model using p-values computed using Markov chain Monte Carlo methods. The power of the tests of unequal item discrimination, and their ability to distinguish between local dependence......For item responses fitting the Rasch model, the assumptions underlying the Mokken model of double monotonicity are met. This makes non-parametric item response theory a natural starting-point for Rasch item analysis. This paper studies scalability coefficients based on Loevinger's H coefficient...

  18. Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage

    Science.gov (United States)

    Tiliakos, Athanasios; Trefilov, Alexandra M. I.; Tanasǎ, Eugenia; Balan, Adriana; Stamatin, Ioan

    2018-04-01

    Revamping ground-breaking ideas from fractal geometry, we propose an alternative micro-supercapacitor configuration realized by laser-induced graphene (LIG) foams produced via laser pyrolysis of inexpensive commercial polymers. The Space-Filling Supercapacitor Carpet (SFSC) architecture introduces the concept of nested electrodes based on the pre-fractal Peano space-filling curve, arranged in a symmetrical equilateral setup that incorporates multiple parallel capacitor cells sharing common electrodes for maximum efficiency and optimal length-to-area distribution. We elucidate on the theoretical foundations of the SFSC architecture, and we introduce innovations (high-resolution vector-mode printing) in the LIG method that allow for the realization of flexible and scalable devices based on low iterations of the Peano algorithm. SFSCs exhibit distributed capacitance properties, leading to capacitance, energy, and power ratings proportional to the number of nested electrodes (up to 4.3 mF, 0.4 μWh, and 0.2 mW for the largest tested model of low iteration using aqueous electrolytes), with competitively high energy and power densities. This can pave the road for full scalability in energy storage, reaching beyond the scale of micro-supercapacitors for incorporating into larger and more demanding applications.

  19. BAMSI: a multi-cloud service for scalable distributed filtering of massive genome data.

    Science.gov (United States)

    Ausmees, Kristiina; John, Aji; Toor, Salman Z; Hellander, Andreas; Nettelblad, Carl

    2018-06-26

    The advent of next-generation sequencing (NGS) has made whole-genome sequencing of cohorts of individuals a reality. Primary datasets of raw or aligned reads of this sort can get very large. For scientific questions where curated called variants are not sufficient, the sheer size of the datasets makes analysis prohibitively expensive. In order to make re-analysis of such data feasible without the need to have access to a large-scale computing facility, we have developed a highly scalable, storage-agnostic framework, an associated API and an easy-to-use web user interface to execute custom filters on large genomic datasets. We present BAMSI, a Software as-a Service (SaaS) solution for filtering of the 1000 Genomes phase 3 set of aligned reads, with the possibility of extension and customization to other sets of files. Unique to our solution is the capability of simultaneously utilizing many different mirrors of the data to increase the speed of the analysis. In particular, if the data is available in private or public clouds - an increasingly common scenario for both academic and commercial cloud providers - our framework allows for seamless deployment of filtering workers close to data. We show results indicating that such a setup improves the horizontal scalability of the system, and present a possible use case of the framework by performing an analysis of structural variation in the 1000 Genomes data set. BAMSI constitutes a framework for efficient filtering of large genomic data sets that is flexible in the use of compute as well as storage resources. The data resulting from the filter is assumed to be greatly reduced in size, and can easily be downloaded or routed into e.g. a Hadoop cluster for subsequent interactive analysis using Hive, Spark or similar tools. In this respect, our framework also suggests a general model for making very large datasets of high scientific value more accessible by offering the possibility for organizations to share the cost of

  20. Modelling Flexible Pavement Response and Performance

    DEFF Research Database (Denmark)

    Ullidtz, Per

    This textbook is primarily concerned with models for predicting the future condition of flexible pavements, as a function of traffic loading, climate, materials, etc., using analytical-empirical methods.......This textbook is primarily concerned with models for predicting the future condition of flexible pavements, as a function of traffic loading, climate, materials, etc., using analytical-empirical methods....

  1. Building Flexible Manufacturing Systems Based on Peer-Its

    Directory of Open Access Journals (Sweden)

    dos Santos Rocha M

    2008-01-01

    Full Text Available Abstract Peer-to-peer computing principles have started to pervade into mechanical control systems, inducing a paradigm shift from centralized to autonomic control. We have developed a self-contained, miniaturized, universal and scalable peer-to-peer based hardware-software system, the peer-it platform, to serve as a stick-on computer solution to raise real-world artefacts like, for example, machines, tools, or appliances towards technology-rich, autonomous, self-induced, and context-aware peers, operating as spontaneously interacting ensembles. The peer-it platform integrates sensor, actuator, and wireless communication facilities on the hardware level, with an object-oriented, component-based coordination framework at the software level, thus providing a generic platform for sensing, computing, controlling, and communication on a large scale. The physical appearance of a peer-it supports pinning it to real-world artefacts, while at the same time integrating those artefacts into a mobile ad hoc network of peers. Peer-it networks thus represent ensembles of coordinated artefacts, exhibiting features of autonomy like self-management at the node level and self-organization at the network level. We demonstrate how the peer-it system implements the desired flexibility in automated manufacturing systems to react in the case of changes, whether intended or unexpectedly occuring. The peer-it system enables machine flexibility in that it adapts production facilities to produce new types of products, or change the order of operation executed on parts instantaneously. Secondly, it enables routing flexibility, that is, the ability to use multiple machines to spontaneously perform the same operation on one part alternatively (to implement autonomic fault tolerance or to absorb large-scale changes in volume, capacity, or capability (to implement autonomic scalability.

  2. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    CERN Document Server

    Caballero, J; The ATLAS collaboration; Love, P; Stewart, G

    2012-01-01

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment’s computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ’pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to retrieve a real payload to execute. The first generation of pilot factories were usually specific to a single VO, and were bound to the particular architecture of that VO’s distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new or improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is hig...

  3. Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components

    Science.gov (United States)

    Dong, Z. H.; Ye, X.; Yang, F.

    2018-05-01

    Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.

  4. Towards Bandwidth Scalable Transceiver Technology for Optical Metro-Access Networks

    DEFF Research Database (Denmark)

    Spolitis, Sandis; Bobrovs, Vjaceslavs; Wagner, Christoph

    2015-01-01

    sliceable transceiver for 1 Gbit/s non-return to zero (NRZ) signal sliced into two slices is presented. Digital signal processing (DSP) power consumption and latency values for proposed sliceable transceiver technique are also discussed. In this research post FEC with 7% overhead error free transmission has......Massive fiber-to-the-home network deployment is creating a challenge for telecommunications network operators: exponential increase of the power consumption at the central offices and a never ending quest for equipment upgrades operating at higher bandwidth. In this paper, we report on flexible...... signal slicing technique, which allows transmission of high-bandwidth signals via low bandwidth electrical and optoelectrical equipment. The presented signal slicing technique is highly scalable in terms of bandwidth which is determined by the number of slices used. In this paper performance of scalable...

  5. LoRa Scalability: A Simulation Model Based on Interference Measurements

    Directory of Open Access Journals (Sweden)

    Jetmir Haxhibeqiri

    2017-05-01

    Full Text Available LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data.

  6. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  7. An Analytical Tire Model with Flexible Carcass for Combined Slips

    Directory of Open Access Journals (Sweden)

    Nan Xu

    2014-01-01

    Full Text Available The tire mechanical characteristics under combined cornering and braking/driving situations have significant effects on vehicle directional controls. The objective of this paper is to present an analytical tire model with flexible carcass for combined slip situations, which can describe tire behavior well and can also be used for studying vehicle dynamics. The tire forces and moments come mainly from the shear stress and sliding friction at the tread-road interface. In order to describe complicated tire characteristics and tire-road friction, some key factors are considered in this model: arbitrary pressure distribution; translational, bending, and twisting compliance of the carcass; dynamic friction coefficient; anisotropic stiffness properties. The analytical tire model can describe tire forces and moments accurately under combined slip conditions. Some important properties induced by flexible carcass can also be reflected. The structural parameters of a tire can be identified from tire measurements and the computational results using the analytical model show good agreement with test data.

  8. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  9. Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Brandon C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Becker, Andrew C. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Sobolewska, Malgosia [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716, Warsaw (Poland); Siemiginowska, Aneta [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Uttley, Phil [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2014-06-10

    We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placing them on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation.

  10. Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets

    International Nuclear Information System (INIS)

    Kelly, Brandon C.; Becker, Andrew C.; Sobolewska, Malgosia; Siemiginowska, Aneta; Uttley, Phil

    2014-01-01

    We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placing them on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation.

  11. Parametric Analysis of Flexible Logic Control Model

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2013-01-01

    Full Text Available Based on deep analysis about the essential relation between two input variables of normal two-dimensional fuzzy controller, we used universal combinatorial operation model to describe the logic relationship and gave a flexible logic control method to realize the effective control for complex system. In practical control application, how to determine the general correlation coefficient of flexible logic control model is a problem for further studies. First, the conventional universal combinatorial operation model has been limited in the interval [0,1]. Consequently, this paper studies a kind of universal combinatorial operation model based on the interval [a,b]. And some important theorems are given and proved, which provide a foundation for the flexible logic control method. For dealing reasonably with the complex relations of every factor in complex system, a kind of universal combinatorial operation model with unequal weights is put forward. Then, this paper has carried out the parametric analysis of flexible logic control model. And some research results have been given, which have important directive to determine the values of the general correlation coefficients in practical control application.

  12. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric; Alhabeb, Mohamed; Van Aken, Katherine L.; Kurra, Narendra; Gomes, Luisa; Navarro-Suá rez, Adriana M.; Anasori, Babak; Alshareef, Husam N.; Gogotsi, Yury

    2017-01-01

    -collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced

  13. A framework for scalable parameter estimation of gene circuit models using structural information

    KAUST Repository

    Kuwahara, Hiroyuki

    2013-06-21

    Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.

  14. A framework for scalable parameter estimation of gene circuit models using structural information

    KAUST Repository

    Kuwahara, Hiroyuki; Fan, Ming; Wang, Suojin; Gao, Xin

    2013-01-01

    Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.

  15. Scalable modulation technology and the tradeoff of reach, spectral efficiency, and complexity

    Science.gov (United States)

    Bosco, Gabriella; Pilori, Dario; Poggiolini, Pierluigi; Carena, Andrea; Guiomar, Fernando

    2017-01-01

    Bandwidth and capacity demand in metro, regional, and long-haul networks is increasing at several tens of percent per year, driven by video streaming, cloud computing, social media and mobile applications. To sustain this traffic growth, an upgrade of the widely deployed 100-Gbit/s long-haul optical systems, based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) modulation format associated with coherent detection and digital signal processing (DSP), is mandatory. In fact, optical transport techniques enabling a per-channel bit rate beyond 100 Gbit/s have recently been the object of intensive R and D activities, aimed at both improving the spectral efficiency and lowering the cost per bit in fiber transmission systems. In this invited contribution, we review the different available options to scale the per-channel bit-rate to 400 Gbit/s and beyond, i.e. symbol-rate increase, use of higher-order quadrature amplitude modulation (QAM) modulation formats and use of super-channels with DSP-enabled spectral shaping and advanced multiplexing technologies. In this analysis, trade-offs of system reach, spectral efficiency and transceiver complexity are addressed. Besides scalability, next generation optical networks will require a high degree of flexibility in the transponders, which should be able to dynamically adapt the transmission rate and bandwidth occupancy to the light path characteristics. In order to increase the flexibility of these transponders (often referred to as "flexponders"), several advanced modulation techniques have recently been proposed, among which sub-carrier multiplexing, hybrid formats (over time, frequency and polarization), and constellation shaping. We review these techniques, highlighting their limits and potential in terms of performance, complexity and flexibility.

  16. Nuclear reactor power control system based on flexibility model

    International Nuclear Information System (INIS)

    Li Gang; Zhao Fuyu; Li Chong; Tai Yun

    2011-01-01

    Design the nuclear reactor power control system in this paper to cater to a nonlinear nuclear reactor. First, calculate linear power models at five power levels of the reactor as five local models and design controllers of the local models as local controllers. Every local controller consists of an optimal controller contrived by the toolbox of Optimal Controller Designer (OCD) and a proportion-integration-differentiation (PID) controller devised via Genetic Algorithm (GA) to set parameters of the PID controller. According to the local models and controllers, apply the principle of flexibility model developed in the paper to obtain the flexibility model and the flexibility controller at every power level. Second, the flexibility model and the flexibility controller at a level structure the power control system of this level. The set of the whole power control systems corresponding to global power levels is to approximately carry out the power control of the reactor. Finally, the nuclear reactor power control system is simulated. The simulation result shows that the idea of flexibility model is feasible and the nuclear reactor power control system is effective. (author)

  17. Modeling and control of flexible space structures

    Science.gov (United States)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  18. GPU-based Scalable Volumetric Reconstruction for Multi-view Stereo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Duchaineau, M; Max, N

    2011-09-21

    We present a new scalable volumetric reconstruction algorithm for multi-view stereo using a graphics processing unit (GPU). It is an effectively parallelized GPU algorithm that simultaneously uses a large number of GPU threads, each of which performs voxel carving, in order to integrate depth maps with images from multiple views. Each depth map, triangulated from pair-wise semi-dense correspondences, represents a view-dependent surface of the scene. This algorithm also provides scalability for large-scale scene reconstruction in a high resolution voxel grid by utilizing streaming and parallel computation. The output is a photo-realistic 3D scene model in a volumetric or point-based representation. We demonstrate the effectiveness and the speed of our algorithm with a synthetic scene and real urban/outdoor scenes. Our method can also be integrated with existing multi-view stereo algorithms such as PMVS2 to fill holes or gaps in textureless regions.

  19. Content-Aware Scalability-Type Selection for Rate Adaptation of Scalable Video

    Directory of Open Access Journals (Sweden)

    Tekalp A Murat

    2007-01-01

    Full Text Available Scalable video coders provide different scaling options, such as temporal, spatial, and SNR scalabilities, where rate reduction by discarding enhancement layers of different scalability-type results in different kinds and/or levels of visual distortion depend on the content and bitrate. This dependency between scalability type, video content, and bitrate is not well investigated in the literature. To this effect, we first propose an objective function that quantifies flatness, blockiness, blurriness, and temporal jerkiness artifacts caused by rate reduction by spatial size, frame rate, and quantization parameter scaling. Next, the weights of this objective function are determined for different content (shot types and different bitrates using a training procedure with subjective evaluation. Finally, a method is proposed for choosing the best scaling type for each temporal segment that results in minimum visual distortion according to this objective function given the content type of temporal segments. Two subjective tests have been performed to validate the proposed procedure for content-aware selection of the best scalability type on soccer videos. Soccer videos scaled from 600 kbps to 100 kbps by the proposed content-aware selection of scalability type have been found visually superior to those that are scaled using a single scalability option over the whole sequence.

  20. Scalable and Media Aware Adaptive Video Streaming over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Béatrice Pesquet-Popescu

    2008-07-01

    Full Text Available This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.

  1. On Scalability and Replicability of Smart Grid Projects—A Case Study

    Directory of Open Access Journals (Sweden)

    Lukas Sigrist

    2016-03-01

    Full Text Available This paper studies the scalability and replicability of smart grid projects. Currently, most smart grid projects are still in the R&D or demonstration phases. The full roll-out of the tested solutions requires a suitable degree of scalability and replicability to prevent project demonstrators from remaining local experimental exercises. Scalability and replicability are the preliminary requisites to perform scaling-up and replication successfully; therefore, scalability and replicability allow for or at least reduce barriers for the growth and reuse of the results of project demonstrators. The paper proposes factors that influence and condition a project’s scalability and replicability. These factors involve technical, economic, regulatory and stakeholder acceptance related aspects, and they describe requirements for scalability and replicability. In order to assess and evaluate the identified scalability and replicability factors, data has been collected from European and national smart grid projects by means of a survey, reflecting the projects’ view and results. The evaluation of the factors allows quantifying the status quo of on-going projects with respect to the scalability and replicability, i.e., they provide a feedback on to what extent projects take into account these factors and on whether the projects’ results and solutions are actually scalable and replicable.

  2. A flexible modelling software for data acquisition

    International Nuclear Information System (INIS)

    Shu Yantai; Chen Yanhui; Yang Songqi; Liu Genchen

    1992-03-01

    A flexible modelling software for data acquisition is based on an event-driven simulator. It can be used to simulate a wide variety of systems which can be modelled as open queuing networks. The main feature of the software is its flexibility to evaluate the performance of various data acquisition system, whether pulsed or not. The flexible features of this software as follow: The user can choose the number of processors in the model and the route which every job takes to move the model. the service rate of a processor is automatically adapted. The simulator has a pipe-line mechanism. A job can be divided into several segments and a processor may be used as a compression component etc. Some modelling techniques and applications of this software in plasma physics laboratories are also presented

  3. On the Scalability of Time-predictable Chip-Multiprocessing

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Schoeberl, Martin

    2012-01-01

    Real-time systems need a time-predictable execution platform to be able to determine the worst-case execution time statically. In order to be time-predictable, several advanced processor features, such as out-of-order execution and other forms of speculation, have to be avoided. However, just using...... simple processors is not an option for embedded systems with high demands on computing power. In order to provide high performance and predictability we argue to use multiprocessor systems with a time-predictable memory interface. In this paper we present the scalability of a Java chip......-multiprocessor system that is designed to be time-predictable. Adding time-predictable caches is mandatory to achieve scalability with a shared memory multi-processor system. As Java bytecode retains information about the nature of memory accesses, it is possible to implement a memory hierarchy that takes...

  4. A volume flexible inventory model with trapezoidal demand under inflation

    Directory of Open Access Journals (Sweden)

    kapil mehrotra

    2014-02-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Abstract   This article experiment. Further, the effects of different parameters are analysed by performing sensitivity analyses on the optimal policy. explores an economic production quantity model (EPQ model for deteriorating items with time-dependent demand following trapezoidal pattern taking the volume flexibility into account. We have also considered the inflation and time value of money. The solution of the model aims at determining the optimal production run-time in order to maximize the profit. The model is also illustrated by means of numerical

  5. Scalable Pressure Sensor Based on Electrothermally Operated Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Alcheikh, Nouha; Younis, Mohammad I.

    2017-01-01

    We experimentally demonstrate a new pressure sensor that offers the flexibility of being scalable to small sizes up to the nano regime. Unlike conventional pressure sensors that rely on large diaphragms and big-surface structures, the principle of operation here relies on convective cooling of the air surrounding an electrothermally heated resonant structure, which can be a beam or a bridge. This concept is demonstrated using an electrothermally tuned and electrostatically driven MEMS resonator, which is designed to be deliberately curved. We show that the variation of pressure can be tracked accurately by monitoring the change in the resonance frequency of the resonator at a constant electrothermal voltage. We show that the range of the sensed pressure and the sensitivity of detection are controllable by the amount of the applied electrothermal voltage. Theoretically, we verify the device concept using a multi-physics nonlinear finite element model. The proposed pressure sensor is simple in principle and design and offers the possibility of further miniaturization to the nanoscale.

  6. Scalable Pressure Sensor Based on Electrothermally Operated Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-11-03

    We experimentally demonstrate a new pressure sensor that offers the flexibility of being scalable to small sizes up to the nano regime. Unlike conventional pressure sensors that rely on large diaphragms and big-surface structures, the principle of operation here relies on convective cooling of the air surrounding an electrothermally heated resonant structure, which can be a beam or a bridge. This concept is demonstrated using an electrothermally tuned and electrostatically driven MEMS resonator, which is designed to be deliberately curved. We show that the variation of pressure can be tracked accurately by monitoring the change in the resonance frequency of the resonator at a constant electrothermal voltage. We show that the range of the sensed pressure and the sensitivity of detection are controllable by the amount of the applied electrothermal voltage. Theoretically, we verify the device concept using a multi-physics nonlinear finite element model. The proposed pressure sensor is simple in principle and design and offers the possibility of further miniaturization to the nanoscale.

  7. Design and simulation of CONWIP in the complex flexible job shop of a Make-To-Order manufacturing firm ,

    Directory of Open Access Journals (Sweden)

    Giovanni Romagnoli

    2015-01-01

    Full Text Available This paper presents a methodology for the design and integration of CONWIP in a make-to-order firm. The approach proposed was applied directly to the flexible job shop of a real manufacturing firm in order to assess the validity of the methodology. After the description of the whole plant layout, attention was focused on a section of the shop floor (21 workstations. The CONWIP system deals with multiple-product families and is characterized by path-type cards and a pull-from-the-bottleneck scheme. The cards release strategy and a customized dispatching rule were created to meet the firm’s specific needs. After the simulation model of the present state was built and validated, the future state to be implemented was created and simulated (i.e. the CONWIP system. The comparison between the two systems achieved excellent results, and showed that CONWIP is a very interesting tool for planning and controlling a complex flexible job shop.

  8. A framework for scalable parameter estimation of gene circuit models using structural information.

    Science.gov (United States)

    Kuwahara, Hiroyuki; Fan, Ming; Wang, Suojin; Gao, Xin

    2013-07-01

    Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. http://sfb.kaust.edu.sa/Pages/Software.aspx. Supplementary data are available at Bioinformatics online.

  9. Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors

    Science.gov (United States)

    Kang, Dae Y.; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P.

    2015-01-01

    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach. PMID:26389915

  10. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements

  11. Improving Delay-Margin of Noncollocated Vibration Control of Piezo-Actuated Flexible Beams via a Fractional-Order Controller

    Directory of Open Access Journals (Sweden)

    Teerawat Sangpet

    2014-01-01

    Full Text Available Noncollocated control of flexible structures results in nonminimum-phase systems because the separation between the actuator and the sensor creates an input-output delay. The delay can deteriorate stability of closed-loop systems. This paper presents a simple approach to improve the delay-margin of the noncollocated vibration control of piezo-actuated flexible beams using a fractional-order controller. Results of real life experiments illustrate efficiency of the controller and show that the fractional-order controller has better stability robustness than the integer-order controller.

  12. Scalability Dilemma and Statistic Multiplexed Computing — A Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Justin Yuan Shi

    2017-08-01

    Full Text Available The For the last three decades, end-to-end computing paradigms, such as MPI (Message Passing Interface, RPC (Remote Procedure Call and RMI (Remote Method Invocation, have been the de facto paradigms for distributed and parallel programming. Despite of the successes, applications built using these paradigms suffer due to the proportionality factor of crash in the application with its size. Checkpoint/restore and backup/recovery are the only means to save otherwise lost critical information. The scalability dilemma is such a practical challenge that the probability of the data losses increases as the application scales in size. The theoretical significance of this practical challenge is that it undermines the fundamental structure of the scientific discovery process and mission critical services in production today. In 1997, the direct use of end-to-end reference model in distributed programming was recognized as a fallacy. The scalability dilemma was predicted. However, this voice was overrun by the passage of time. Today, the rapidly growing digitized data demands solving the increasingly critical scalability challenges. Computing architecture scalability, although loosely defined, is now the front and center of large-scale computing efforts. Constrained only by the economic law of diminishing returns, this paper proposes a narrow definition of a Scalable Computing Service (SCS. Three scalability tests are also proposed in order to distinguish service architecture flaws from poor application programming. Scalable data intensive service requires additional treatments. Thus, the data storage is assumed reliable in this paper. A single-sided Statistic Multiplexed Computing (SMC paradigm is proposed. A UVR (Unidirectional Virtual Ring SMC architecture is examined under SCS tests. SMC was designed to circumvent the well-known impossibility of end-to-end paradigms. It relies on the proven statistic multiplexing principle to deliver reliable service

  13. Modeling and Analysis of an Air-Breathing Flexible Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Xi-bin Zhang

    2014-01-01

    Full Text Available By using light-weighted material in hypersonic vehicle, the vehicle body can be easily deformed. The mutual couplings in aerodynamics, flexible structure, and propulsion system will bring great challenges for vehicle modeling. In this work, engineering estimated method is used to calculate the aerodynamic forces, moments, and flexible modes to get the physics-based model of an air-breathing flexible hypersonic vehicle. The model, which contains flexible effects and viscous effects, can capture the physical characteristics of high-speed flight. To overcome the analytical intractability of the model, a simplified control-oriented model of the hypersonic vehicle is presented with curve fitting approximations. The control-oriented model can not only reduce the complexity of the model, but also retain aero-flexible structure-propulsion interactions of the physics-based model and can be applied for nonlinear control.

  14. SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics for Scientific Data and Analysis

    Data.gov (United States)

    National Aeronautics and Space Administration — We will construct SciSpark, a scalable system for interactive model evaluation and for the rapid development of climate metrics and analyses. SciSpark directly...

  15. Graphene-cellulose paper flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Zhe; Su, Yang; Li, Feng; Du, Jinhong; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang, Da-Wei [ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Qld 4072 (Australia)

    2011-10-15

    A simple and scalable method to fabricate graphene-cellulose paper (GCP) membranes is reported; these membranes exhibit great advantages as freestanding and binder-free electrodes for flexible supercapacitors. The GCP electrode consists of a unique three-dimensional interwoven structure of graphene nanosheets and cellulose fibers and has excellent mechanical flexibility, good specific capacitance and power performance, and excellent cyclic stability. The electrical conductivity of the GCP membrane shows high stability with a decrease of only 6% after being bent 1000 times. This flexible GCP electrode has a high capacitance per geometric area of 81 mF cm{sup -2}, which is equivalent to a gravimetric capacitance of 120 F g{sup -1} of graphene, and retains >99% capacitance over 5000 cycles. Several types of flexible GCP-based polymer supercapacitors with various architectures are assembled to meet the power-energy requirements of typical flexible or printable electronics. Under highly flexible conditions, the supercapacitors show a high capacitance per geometric area of 46 mF cm{sup -2} for the complete devices. All the results demonstrate that polymer supercapacitors made using GCP membranes are versatile and may be used for flexible and portable micropower devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Flexible Programmes in Higher Professional Education: Expert Validation of a Flexible Educational Model

    Science.gov (United States)

    Schellekens, Ad; Paas, Fred; Verbraeck, Alexander; van Merrienboer, Jeroen J. G.

    2010-01-01

    In a preceding case study, a process-focused demand-driven approach for organising flexible educational programmes in higher professional education (HPE) was developed. Operations management and instructional design contributed to designing a flexible educational model by means of discrete-event simulation. Educational experts validated the model…

  17. A comparative study on effective dynamic modeling methods for flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ho; Hong, Sup; Kim, Hyung Woo [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of); Kim, Sung Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-07-15

    In this paper, in order to select a suitable method that is applicable to the large deflection with a small strain problem of pipe systems in the deep seabed mining system, the finite difference method with lumped mass from the field of cable dynamics and the substructure method from the field of flexible multibody dynamics were compared. Due to the difficulty of obtaining experimental results from an actual pipe system in the deep seabed mining system, a thin cantilever beam model with experimental results was employed for the comparative study. Accuracy of the methods was investigated by comparing the experimental results and simulation results from the cantilever beam model with different numbers of elements. Efficiency of the methods was also examined by comparing the operational counts required for solving equations of motion. Finally, this cantilever beam model with comparative study results can be promoted to be a benchmark problem for the flexible multibody dynamics.

  18. Model-Based Evaluation Of System Scalability: Bandwidth Analysis For Smartphone-Based Biosensing Applications

    DEFF Research Database (Denmark)

    Patou, François; Madsen, Jan; Dimaki, Maria

    2016-01-01

    Scalability is a design principle often valued for the engineering of complex systems. Scalability is the ability of a system to change the current value of one of its specification parameters. Although targeted frameworks are available for the evaluation of scalability for specific digital systems...... re-engineering of 5 independent system modules, from the replacement of a wireless Bluetooth interface, to the revision of the ADC sample-and-hold operation could help increase system bandwidth....

  19. Greedy Sampling and Incremental Surrogate Model-Based Tailoring of Aeroservoelastic Model Database for Flexible Aircraft

    Science.gov (United States)

    Wang, Yi; Pant, Kapil; Brenner, Martin J.; Ouellette, Jeffrey A.

    2018-01-01

    This paper presents a data analysis and modeling framework to tailor and develop linear parameter-varying (LPV) aeroservoelastic (ASE) model database for flexible aircrafts in broad 2D flight parameter space. The Kriging surrogate model is constructed using ASE models at a fraction of grid points within the original model database, and then the ASE model at any flight condition can be obtained simply through surrogate model interpolation. The greedy sampling algorithm is developed to select the next sample point that carries the worst relative error between the surrogate model prediction and the benchmark model in the frequency domain among all input-output channels. The process is iterated to incrementally improve surrogate model accuracy till a pre-determined tolerance or iteration budget is met. The methodology is applied to the ASE model database of a flexible aircraft currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that the proposed method can reduce the number of models in the original database by 67%. Even so the ASE models obtained through Kriging interpolation match the model in the original database constructed directly from the physics-based tool with the worst relative error far below 1%. The interpolated ASE model exhibits continuously-varying gains along a set of prescribed flight conditions. More importantly, the selected grid points are distributed non-uniformly in the parameter space, a) capturing the distinctly different dynamic behavior and its dependence on flight parameters, and b) reiterating the need and utility for adaptive space sampling techniques for ASE model database compaction. The present framework is directly extendible to high-dimensional flight parameter space, and can be used to guide the ASE model development, model order reduction, robust control synthesis and novel vehicle design of flexible aircraft.

  20. Design issues for numerical libraries on scalable multicore architectures

    International Nuclear Information System (INIS)

    Heroux, M A

    2008-01-01

    Future generations of scalable computers will rely on multicore nodes for a significant portion of overall system performance. At present, most applications and libraries cannot exploit multiple cores beyond running addition MPI processes per node. In this paper we discuss important multicore architecture issues, programming models, algorithms requirements and software design related to effective use of scalable multicore computers. In particular, we focus on important issues for library research and development, making recommendations for how to effectively develop libraries for future scalable computer systems

  1. Enhancing Scalability of Sparse Direct Methods

    International Nuclear Information System (INIS)

    Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia, Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan

    2007-01-01

    TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers

  2. Mechanistic modelling of weak interlayers in flexible and semi-flexible road pavements: Part 2

    CSIR Research Space (South Africa)

    De Beer, Morris

    2012-04-01

    Full Text Available This paper (Part 2 of a two-part set of papers) discusses models and illustrates the adverse effects of weak layers, interlayers, laminations and/or weak interfaces in flexible and semi-flexible pavements, also incorporating lightly cemented layers...

  3. Numerical Modeling and Mechanical Analysis of Flexible Risers

    OpenAIRE

    Li, J. Y.; Qiu, Z. X.; Ju, J. S.

    2015-01-01

    ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact ...

  4. A new architecture and MAC protocol for fully flexible hybrid WDM/TDM PON

    NARCIS (Netherlands)

    Das, G.; Lannoo, B.; Jung, H.D.; Koonen, A.M.J.; Colle, D.; Pickavet, M.; Demeester, P.

    2009-01-01

    In this paper we propose a novel architecture and MAC protocol for a scalable, cost effective WDM / TDM PON providing fully flexible dynamic bandwidth allocation for upstream and downstream data transmission.

  5. Scalable and balanced dynamic hybrid data assimilation

    Science.gov (United States)

    Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa

    2017-04-01

    Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them

  6. First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Pi Ting; Zhang Yunqing; Chen Liping

    2012-01-01

    Design sensitivity analysis of flexible multibody systems is important in optimizing the performance of mechanical systems. The choice of coordinates to describe the motion of multibody systems has a great influence on the efficiency and accuracy of both the dynamic and sensitivity analysis. In the flexible multibody system dynamics, both the floating frame of reference formulation (FFRF) and absolute nodal coordinate formulation (ANCF) are frequently utilized to describe flexibility, however, only the former has been used in design sensitivity analysis. In this article, ANCF, which has been recently developed and focuses on modeling of beams and plates in large deformation problems, is extended into design sensitivity analysis of flexible multibody systems. The Motion equations of a constrained flexible multibody system are expressed as a set of index-3 differential algebraic equations (DAEs), in which the element elastic forces are defined using nonlinear strain-displacement relations. Both the direct differentiation method and adjoint variable method are performed to do sensitivity analysis and the related dynamic and sensitivity equations are integrated with HHT-I3 algorithm. In this paper, a new method to deduce system sensitivity equations is proposed. With this approach, the system sensitivity equations are constructed by assembling the element sensitivity equations with the help of invariant matrices, which results in the advantage that the complex symbolic differentiation of the dynamic equations is avoided when the flexible multibody system model is changed. Besides that, the dynamic and sensitivity equations formed with the proposed method can be efficiently integrated using HHT-I3 method, which makes the efficiency of the direct differentiation method comparable to that of the adjoint variable method when the number of design variables is not extremely large. All these improvements greatly enhance the application value of the direct differentiation

  7. Graphene screen-printed radio-frequency identification devices on flexible substrates

    NARCIS (Netherlands)

    Arapov, K.; Jaakkola, K.; Ermolov, V.; Bex, G.; Rubingh, E.; Haque, S.; Sandberg, H.; Abbel, R.; de With, G.; Friedrich, H.

    2016-01-01

    Despite the great promise of printed flexible electronics from 2D crystals, and especially graphene, few scalable applications have been reported so far that can be termed roll-to-roll compatible. Here we combine screen printed graphene with photonic annealing to realize radio-frequency

  8. Scalable Simulation of Electromagnetic Hybrid Codes

    International Nuclear Information System (INIS)

    Perumalla, Kalyan S.; Fujimoto, Richard; Karimabadi, Dr. Homa

    2006-01-01

    New discrete-event formulations of physics simulation models are emerging that can outperform models based on traditional time-stepped techniques. Detailed simulation of the Earth's magnetosphere, for example, requires execution of sub-models that are at widely differing timescales. In contrast to time-stepped simulation which requires tightly coupled updates to entire system state at regular time intervals, the new discrete event simulation (DES) approaches help evolve the states of sub-models on relatively independent timescales. However, parallel execution of DES-based models raises challenges with respect to their scalability and performance. One of the key challenges is to improve the computation granularity to offset synchronization and communication overheads within and across processors. Our previous work was limited in scalability and runtime performance due to the parallelization challenges. Here we report on optimizations we performed on DES-based plasma simulation models to improve parallel performance. The net result is the capability to simulate hybrid particle-in-cell (PIC) models with over 2 billion ion particles using 512 processors on supercomputing platforms

  9. Scalability of Several Asynchronous Many-Task Models for In Situ Statistical Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Pebay, Philippe Pierre [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kolla, Hemanth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Borghesi, Giulio [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-05-01

    This report is a sequel to [PB16], in which we provided a first progress report on research and development towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system. This earlier work included a prototype implementation of a proposed solution, using a proxy mini-application as a surrogate for a full-scale scientific simulation code. The first scalability studies were conducted with the above on modestly-sized experimental clusters. In contrast, in the current work we have integrated our in situ analysis engines with a full-size scientific application (S3D, using the Legion-SPMD model), and have conducted nu- merical tests on the largest computational platform currently available for DOE science ap- plications. We also provide details regarding the design and development of a light-weight asynchronous collectives library. We describe how this library is utilized within our SPMD- Legion S3D workflow, and compare the data aggregation technique deployed herein to the approach taken within our previous work.

  10. Scalable Database Design of End-Game Model with Decoupled Countermeasure and Threat Information

    Science.gov (United States)

    2017-11-01

    the Army Modular Active Protection System (MAPS) program to provide end-to-end APS modeling and simulation capabilities. The SSES simulation features...research project of scalable database design was initiated in support of SSES modularization efforts with respect to 4 major software components...Iron Curtain KE kinetic energy MAPS Modular Active Protective System OLE DB object linking and embedding database RDB relational database RPG

  11. Scalable and Resilient Middleware to Handle Information Exchange during Environment Crisis

    Science.gov (United States)

    Tao, R.; Poslad, S.; Moßgraber, J.; Middleton, S.; Hammitzsch, M.

    2012-04-01

    The EU FP7 TRIDEC project focuses on enabling real-time, intelligent, information management of collaborative, complex, critical decision processes for earth management. A key challenge is to promote a communication infrastructure to facilitate interoperable environment information services during environment events and crises such as tsunamis and drilling, during which increasing volumes and dimensionality of disparate information sources, including sensor-based and human-based ones, can result, and need to be managed. Such a system needs to support: scalable, distributed messaging; asynchronous messaging; open messaging to handling changing clients such as new and retired automated system and human information sources becoming online or offline; flexible data filtering, and heterogeneous access networks (e.g., GSM, WLAN and LAN). In addition, the system needs to be resilient to handle the ICT system failures, e.g. failure, degradation and overloads, during environment events. There are several system middleware choices for TRIDEC based upon a Service-oriented-architecture (SOA), Event-driven-Architecture (EDA), Cloud Computing, and Enterprise Service Bus (ESB). In an SOA, everything is a service (e.g. data access, processing and exchange); clients can request on demand or subscribe to services registered by providers; more often interaction is synchronous. In an EDA system, events that represent significant changes in state can be processed simply, or as streams or more complexly. Cloud computing is a virtualization, interoperable and elastic resource allocation model. An ESB, a fundamental component for enterprise messaging, supports synchronous and asynchronous message exchange models and has inbuilt resilience against ICT failure. Our middleware proposal is an ESB based hybrid architecture model: an SOA extension supports more synchronous workflows; EDA assists the ESB to handle more complex event processing; Cloud computing can be used to increase and

  12. A scalable infrastructure model for carbon capture and storage: SimCCS

    International Nuclear Information System (INIS)

    Middleton, Richard S.; Bielicki, Jeffrey M.

    2009-01-01

    In the carbon capture and storage (CCS) process, CO 2 sources and geologic reservoirs may be widely spatially dispersed and need to be connected through a dedicated CO 2 pipeline network. We introduce a scalable infrastructure model for CCS (simCCS) that generates a fully integrated, cost-minimizing CCS system. SimCCS determines where and how much CO 2 to capture and store, and where to build and connect pipelines of different sizes, in order to minimize the combined annualized costs of sequestering a given amount of CO 2 . SimCCS is able to aggregate CO 2 flows between sources and reservoirs into trunk pipelines that take advantage of economies of scale. Pipeline construction costs take into account factors including topography and social impacts. SimCCS can be used to calculate the scale of CCS deployment (local, regional, national). SimCCS' deployment of a realistic, capacitated pipeline network is a major advancement for planning CCS infrastructure. We demonstrate simCCS using a set of 37 CO 2 sources and 14 reservoirs for California. The results highlight the importance of systematic planning for CCS infrastructure by examining the sensitivity of CCS infrastructure, as optimized by simCCS, to varying CO 2 targets. We finish by identifying critical future research areas for CCS infrastructure

  13. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  14. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2017-09-01

    Full Text Available By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  15. Salvus: A scalable software suite for full-waveform modelling & inversion

    Science.gov (United States)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.

    2017-12-01

    Full-waveform inversion (FWI), whether at the lab, exploration, or planetary scale, requires the cooperation of five principal components. (1) The geometry of the domain needs to be properly discretized and an initial guess of the model parameters must be projected onto it; (2) Large volumes of recorded waveform data must be collected, organized, and processed; (3) Synthetic waveform data must be efficiently and accurately computed through complex domains; (4) Suitable misfit functions and optimization techniques must be used to relate discrepancies in data space to perturbations in the model; and (5) Some form of workflow management must be employed to schedule and run (1) - (4) in the correct order. Each one of these components can represent a formidable technical challenge which redirects energy from the true task at hand: using FWI to extract new information about some underlying continuum.In this presentation we give an overview of the current status of the Salvus software suite, which was introduced to address the challenges listed above. Specifically, we touch on (1) salvus_mesher, which eases the discretization of complex Earth models into hexahedral meshes; (2) salvus_seismo, which integrates with LASIF and ObsPy to streamline the processing and preparation of seismic data; (3) salvus_wave, a high-performance and scalable spectral-element solver capable of simulating waveforms through general unstructured 2- and 3-D domains, and (4) salvus_opt, an optimization toolbox specifically designed for full-waveform inverse problems. Tying everything together, we also discuss (5) salvus_flow: a workflow package designed to orchestrate and manage the rest of the suite. It is our hope that these developments represent a step towards the automation of large-scale seismic waveform inversion, while also lowering the barrier of entry for new applications. We include several examples of Salvus' use in (extra-) planetary seismology, non-destructive testing, and medical

  16. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  17. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s......A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin...... on long range lateral order, including fabrication of substrates for catalysis, solar cells, sensors, ultrafiltration membranes and templating of semiconductors or metals....

  18. Integration of an intelligent systems behavior simulator and a scalable soldier-machine interface

    Science.gov (United States)

    Johnson, Tony; Manteuffel, Chris; Brewster, Benjamin; Tierney, Terry

    2007-04-01

    As the Army's Future Combat Systems (FCS) introduce emerging technologies and new force structures to the battlefield, soldiers will increasingly face new challenges in workload management. The next generation warfighter will be responsible for effectively managing robotic assets in addition to performing other missions. Studies of future battlefield operational scenarios involving the use of automation, including the specification of existing and proposed technologies, will provide significant insight into potential problem areas regarding soldier workload. The US Army Tank Automotive Research, Development, and Engineering Center (TARDEC) is currently executing an Army technology objective program to analyze and evaluate the effect of automated technologies and their associated control devices with respect to soldier workload. The Human-Robotic Interface (HRI) Intelligent Systems Behavior Simulator (ISBS) is a human performance measurement simulation system that allows modelers to develop constructive simulations of military scenarios with various deployments of interface technologies in order to evaluate operator effectiveness. One such interface is TARDEC's Scalable Soldier-Machine Interface (SMI). The scalable SMI provides a configurable machine interface application that is capable of adapting to several hardware platforms by recognizing the physical space limitations of the display device. This paper describes the integration of the ISBS and Scalable SMI applications, which will ultimately benefit both systems. The ISBS will be able to use the Scalable SMI to visualize the behaviors of virtual soldiers performing HRI tasks, such as route planning, and the scalable SMI will benefit from stimuli provided by the ISBS simulation environment. The paper describes the background of each system and details of the system integration approach.

  19. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, R; Gallagher, B; Neville, J; Henderson, K

    2011-11-11

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.

  20. FlexibleSUSY-A spectrum generator generator for supersymmetric models

    Science.gov (United States)

    Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander

    2015-05-01

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  1. Scalable DeNoise-and-Forward in Bidirectional Relay Networks

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Krigslund, Rasmus; Popovski, Petar

    2010-01-01

    In this paper a scalable relaying scheme is proposed based on an existing concept called DeNoise-and-Forward, DNF. We call it Scalable DNF, S-DNF, and it targets the scenario with multiple communication flows through a single common relay. The idea of the scheme is to combine packets at the relay...... in order to save transmissions. To ensure decodability at the end-nodes, a priori information about the content of the combined packets must be available. This is gathered during the initial transmissions to the relay. The trade-off between decodability and number of necessary transmissions is analysed...

  2. Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics

    Science.gov (United States)

    Mates, Joseph E.; Bayer, Ilker S.; Palumbo, John M.; Carroll, Patrick J.; Megaridis, Constantine M.

    2015-11-01

    Rapid advances in modern electronics place ever-accelerating demands on innovation towards more robust and versatile functional components. In the flexible electronics domain, novel material solutions often involve creative uses of common materials to reduce cost, while maintaining uncompromised performance. Here we combine a commercially available paraffin wax-polyolefin thermoplastic blend (elastomer matrix binder) with bulk-produced carbon nanofibres (charge percolation network for electron transport, and for imparting nanoscale roughness) to fabricate adherent thin-film composite electrodes. The simple wet-based process produces composite films capable of sustained ultra-high strain (500%) with resilient electrical performance (resistances of the order of 101-102 Ω sq-1). The composites are also designed to be superhydrophobic for long-term corrosion protection, even maintaining extreme liquid repellency at severe strain. Comprised of inexpensive common materials applied in a single step, the present scalable approach eliminates manufacturing obstacles for commercially viable wearable electronics, flexible power storage devices and corrosion-resistant circuits.

  3. Procedural Optimization Models for Multiobjective Flexible JSSP

    Directory of Open Access Journals (Sweden)

    Elena Simona NICOARA

    2013-01-01

    Full Text Available The most challenging issues related to manufacturing efficiency occur if the jobs to be sched-uled are structurally different, if these jobs allow flexible routings on the equipments and mul-tiple objectives are required. This framework, called Multi-objective Flexible Job Shop Scheduling Problems (MOFJSSP, applicable to many real processes, has been less reported in the literature than the JSSP framework, which has been extensively formalized, modeled and analyzed from many perspectives. The MOFJSSP lie, as many other NP-hard problems, in a tedious place where the vast optimization theory meets the real world context. The paper brings to discussion the most optimization models suited to MOFJSSP and analyzes in detail the genetic algorithms and agent-based models as the most appropriate procedural models.

  4. A Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation using First-Order Logic

    Energy Technology Data Exchange (ETDEWEB)

    Andrzejewski, D; Zhu, X; Craven, M; Recht, B

    2011-01-18

    Topic models have been used successfully for a variety of problems, often in the form of application-specific extensions of the basic Latent Dirichlet Allocation (LDA) model. Because deriving these new models in order to encode domain knowledge can be difficult and time-consuming, we propose the Fold-all model, which allows the user to specify general domain knowledge in First-Order Logic (FOL). However, combining topic modeling with FOL can result in inference problems beyond the capabilities of existing techniques. We have therefore developed a scalable inference technique using stochastic gradient descent which may also be useful to the Markov Logic Network (MLN) research community. Experiments demonstrate the expressive power of Fold-all, as well as the scalability of our proposed inference method.

  5. A tactical supply chain planning model with multiple flexibility options

    DEFF Research Database (Denmark)

    Esmaeilikia, Masoud; Fahimnia, Behnam; Sarkis, Joeseph

    2016-01-01

    Supply chain flexibility is widely recognized as an approach to manage uncertainty. Uncertainty in the supply chain may arise from a number of sources such as demand and supply interruptions and lead time variability. A tactical supply chain planning model with multiple flexibility options...... incorporated in sourcing, manufacturing and logistics functions can be used for the analysis of flexibility adjustment in an existing supply chain. This paper develops such a tactical supply chain planning model incorporating a realistic range of flexibility options. A novel solution method is designed...

  6. Scalable Nanomanufacturing—A Review

    Directory of Open Access Journals (Sweden)

    Khershed Cooper

    2017-01-01

    Full Text Available This article describes the field of scalable nanomanufacturing, its importance and need, its research activities and achievements. The National Science Foundation is taking a leading role in fostering basic research in scalable nanomanufacturing (SNM. From this effort several novel nanomanufacturing approaches have been proposed, studied and demonstrated, including scalable nanopatterning. This paper will discuss SNM research areas in materials, processes and applications, scale-up methods with project examples, and manufacturing challenges that need to be addressed to move nanotechnology discoveries closer to the marketplace.

  7. Accounting Fundamentals and the Variation of Stock Price: Factoring in the Investment Scalability

    Directory of Open Access Journals (Sweden)

    Sumiyana Sumiyana

    2010-05-01

    Full Text Available This study develops a new return model with respect to accounting fundamentals. The new return model is based on Chen and Zhang (2007. This study takes into account theinvestment scalability information. Specifically, this study splitsthe scale of firm’s operations into short-run and long-runinvestment scalabilities. We document that five accounting fun-damentals explain the variation of annual stock return. Thefactors, comprised book value, earnings yield, short-run andlong-run investment scalabilities, and growth opportunities, co associate positively with stock price. The remaining factor,which is the pure interest rate, is negatively related to annualstock return. This study finds that inducing short-run and long-run investment scalabilities into the model could improve the degree of association. In other words, they have value rel-evance. Finally, this study suggests that basic trading strategieswill improve if investors revert to the accounting fundamentals. Keywords: accounting fundamentals; book value; earnings yield; growth opportuni­ties; short­run and long­run investment scalabilities; trading strategy;value relevance

  8. Final Report: Center for Programming Models for Scalable Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [William Marsh Rice University

    2011-09-13

    As part of the Center for Programming Models for Scalable Parallel Computing, Rice University collaborated with project partners in the design, development and deployment of language, compiler, and runtime support for parallel programming models to support application development for the “leadership-class” computer systems at DOE national laboratories. Work over the course of this project has focused on the design, implementation, and evaluation of a second-generation version of Coarray Fortran. Research and development efforts of the project have focused on the CAF 2.0 language, compiler, runtime system, and supporting infrastructure. This has involved working with the teams that provide infrastructure for CAF that we rely on, implementing new language and runtime features, producing an open source compiler that enabled us to evaluate our ideas, and evaluating our design and implementation through the use of benchmarks. The report details the research, development, findings, and conclusions from this work.

  9. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  10. Rapid synthesis of flexible conductive polymer nanocomposite films

    International Nuclear Information System (INIS)

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-01-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10 4 S cm −1 ), even during repetitive bending. (paper)

  11. More scalability, less pain: A simple programming model and its implementation for extreme computing

    International Nuclear Information System (INIS)

    Lusk, E.L.; Pieper, S.C.; Butler, R.M.

    2010-01-01

    This is the story of a simple programming model, its implementation for extreme computing, and a breakthrough in nuclear physics. A critical issue for the future of high-performance computing is the programming model to use on next-generation architectures. Described here is a promising approach: program very large machines by combining a simplified programming model with a scalable library implementation. The presentation takes the form of a case study in nuclear physics. The chosen application addresses fundamental issues in the origins of our Universe, while the library developed to enable this application on the largest computers may have applications beyond this one.

  12. Flexible services for the support of research.

    Science.gov (United States)

    Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John

    2013-01-28

    Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.

  13. ELASTO-KINEMATIC COMPUTATIONAL MODEL OF SUSPENSION WITH FLEXIBLE SUPPORTING ELEMENTS

    Directory of Open Access Journals (Sweden)

    Tomáš Vrána

    2016-04-01

    Full Text Available This paper analyzes the impact of flexibility of individual supporting elements of independent suspension on its elasto-kinematic characteristics. The toe and camber angle are the geometric parameters of the suspension, which waveforms and their changes under the action of vertical, longitudinal and transverse forces affect the stability of the vehicle. To study these dependencies, the computational multibody system (MBS model of axle suspension in the system HyperWorks is created. There are implemented Finite-Element-Method (FEM models reflecting the flexibility of the main supporting elements. These are subframe, the longitudinal arms, transverse arms and knuckle. Flexible models are developed using Component Mode Synthesis (CMS by Craig-Bampton. The model further comprises force elements, such as helical springs, shock absorbers with a stop of the wheel and the anti-roll bar. Rubber-metal bushings are modeled flexibly, using nonlinear deformation characteristics. Simulation results are validated by experimental measurements of geometric parameters of real suspension.

  14. Palacios and Kitten : high performance operating systems for scalable virtualized and native supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Widener, Patrick (University of New Mexico); Jaconette, Steven (Northwestern University); Bridges, Patrick G. (University of New Mexico); Xia, Lei (Northwestern University); Dinda, Peter (Northwestern University); Cui, Zheng.; Lange, John (Northwestern University); Hudson, Trammell B.; Levenhagen, Michael J.; Pedretti, Kevin Thomas Tauke; Brightwell, Ronald Brian

    2009-09-01

    Palacios and Kitten are new open source tools that enable applications, whether ported or not, to achieve scalable high performance on large machines. They provide a thin layer over the hardware to support both full-featured virtualized environments and native code bases. Kitten is an OS under development at Sandia that implements a lightweight kernel architecture to provide predictable behavior and increased flexibility on large machines, while also providing Linux binary compatibility. Palacios is a VMM that is under development at Northwestern University and the University of New Mexico. Palacios, which can be embedded into Kitten and other OSes, supports existing, unmodified applications and operating systems by using virtualization that leverages hardware technologies. We describe the design and implementation of both Kitten and Palacios. Our benchmarks show that they provide near native, scalable performance. Palacios and Kitten provide an incremental path to using supercomputer resources that is not performance-compromised.

  15. GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith; Nagarkar, Soonil; Ravi, Santosh; Raghavendra, Cauligi; Prasanna, Viktor

    2014-08-25

    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.

  16. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  17. Scalability of Semi-Implicit Time Integrators for Nonhydrostatic Galerkin-based Atmospheric Models on Large Scale Cluster

    Science.gov (United States)

    2011-01-01

    present performance statistics to explain the scalability behavior. Keywords-atmospheric models, time intergrators , MPI, scal- ability, performance; I...across inter-element bound- aries. Basis functions are constructed as tensor products of Lagrange polynomials ψi (x) = hα(ξ) ⊗ hβ(η) ⊗ hγ(ζ)., where hα

  18. A simple and flexible route to large-area conductive transparent graphene thin-films

    NARCIS (Netherlands)

    Arapov, K.; Goryachev, A.; With, de G.; Friedrich, H.

    2015-01-01

    Solution-processed conductive, flexible and transparent graphene thin films continue drawing attention from science and technology due to their potential for many electrical applications. Here, an up-scalable method for the solution processing of graphite to graphene and further to self-assembled

  19. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    International Nuclear Information System (INIS)

    Desai, Ajit; Pettit, Chris; Poirel, Dominique; Sarkar, Abhijit

    2017-01-01

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolution in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.

  20. Declarative and Scalable Selection for Map Visualizations

    DEFF Research Database (Denmark)

    Kefaloukos, Pimin Konstantin Balic

    and is itself a source and cause of prolific data creation. This calls for scalable map processing techniques that can handle the data volume and which play well with the predominant data models on the Web. (4) Maps are now consumed around the clock by a global audience. While historical maps were singleuser......-defined constraints as well as custom objectives. The purpose of the language is to derive a target multi-scale database from a source database according to holistic specifications. (b) The Glossy SQL compiler allows Glossy SQL to be scalably executed in a spatial analytics system, such as a spatial relational......, there are indications that the method is scalable for databases that contain millions of records, especially if the target language of the compiler is substituted by a cluster-ready variant of SQL. While several realistic use cases for maps have been implemented in CVL, additional non-geographic data visualization uses...

  1. Likelihood Inference of Nonlinear Models Based on a Class of Flexible Skewed Distributions

    Directory of Open Access Journals (Sweden)

    Xuedong Chen

    2014-01-01

    Full Text Available This paper deals with the issue of the likelihood inference for nonlinear models with a flexible skew-t-normal (FSTN distribution, which is proposed within a general framework of flexible skew-symmetric (FSS distributions by combining with skew-t-normal (STN distribution. In comparison with the common skewed distributions such as skew normal (SN, and skew-t (ST as well as scale mixtures of skew normal (SMSN, the FSTN distribution can accommodate more flexibility and robustness in the presence of skewed, heavy-tailed, especially multimodal outcomes. However, for this distribution, a usual approach of maximum likelihood estimates based on EM algorithm becomes unavailable and an alternative way is to return to the original Newton-Raphson type method. In order to improve the estimation as well as the way for confidence estimation and hypothesis test for the parameters of interest, a modified Newton-Raphson iterative algorithm is presented in this paper, based on profile likelihood for nonlinear regression models with FSTN distribution, and, then, the confidence interval and hypothesis test are also developed. Furthermore, a real example and simulation are conducted to demonstrate the usefulness and the superiority of our approach.

  2. A semi-analytical bearing model considering outer race flexibility for model based bearing load monitoring

    Science.gov (United States)

    Kerst, Stijn; Shyrokau, Barys; Holweg, Edward

    2018-05-01

    This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.

  3. An ODMG-compatible testbed architecture for scalable management and analysis of physics data

    International Nuclear Information System (INIS)

    Malon, D.M.; May, E.N.

    1997-01-01

    This paper describes a testbed architecture for the investigation and development of scalable approaches to the management and analysis of massive amounts of high energy physics data. The architecture has two components: an interface layer that is compliant with a substantial subset of the ODMG-93 Version 1.2 specification, and a lightweight object persistence manager that provides flexible storage and retrieval services on a variety of single- and multi-level storage architectures, and on a range of parallel and distributed computing platforms

  4. Towards an Empirical-Relational Model of Supply Chain Flexibility

    OpenAIRE

    Santanu Mandal

    2015-01-01

    Supply chains are prone to disruptions and associated risks. To develop capabilities for risk mitigation, supply chains need to be flexible. A flexible supply chain can respond better to environmental contingencies. Based on the theoretical tenets of resource-based view, relational view and dynamic capabilities theory, the current study develops a relational model of supply chain flexibility comprising trust, commitment, communication, co-operation, adaptation and interdependence. Subsequentl...

  5. Flexible Environmental Modeling with Python and Open - GIS

    Science.gov (United States)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We

  6. Rate control scheme for consistent video quality in scalable video codec.

    Science.gov (United States)

    Seo, Chan-Won; Han, Jong-Ki; Nguyen, Truong Q

    2011-08-01

    Multimedia data delivered to mobile devices over wireless channels or the Internet are complicated by bandwidth fluctuation and the variety of mobile devices. Scalable video coding has been developed as an extension of H.264/AVC to solve this problem. Since scalable video codec provides various scalabilities to adapt the bitstream for the channel conditions and terminal types, scalable codec is one of the useful codecs for wired or wireless multimedia communication systems, such as IPTV and streaming services. In such scalable multimedia communication systems, video quality fluctuation degrades the visual perception significantly. It is important to efficiently use the target bits in order to maintain a consistent video quality or achieve a small distortion variation throughout the whole video sequence. The scheme proposed in this paper provides a useful function to control video quality in applications supporting scalability, whereas conventional schemes have been proposed to control video quality in the H.264 and MPEG-4 systems. The proposed algorithm decides the quantization parameter of the enhancement layer to maintain a consistent video quality throughout the entire sequence. The video quality of the enhancement layer is controlled based on a closed-form formula which utilizes the residual data and quantization error of the base layer. The simulation results show that the proposed algorithm controls the frame quality of the enhancement layer in a simple operation, where the parameter decision algorithm is applied to each frame.

  7. Comparative performance of high-fidelity training models for flexible ureteroscopy: Are all models effective?

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra

    2011-01-01

    Full Text Available Objective: We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS. Our objective was to determine whether high-fidelity non-virtual reality (VR models are as effective as the VR model in teaching flexible URS skills. Materials and Methods: Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer TM ; Endo-Urologie-Modell TM and a high-fidelity VR model (URO Mentor TM . The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS. The participants rated a face validity questionnaire at the end of each session. Results: The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3. Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05. The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. Conclusions: All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.

  8. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo

    2018-01-04

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  9. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A.; Wee, Andrew T. S.; Qiu, Cheng-Wei; Yang, Joel K.W.

    2018-01-01

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  10. Scalable Production of Graphene-Based Wearable E-Textiles.

    Science.gov (United States)

    Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S

    2017-12-26

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.

  11. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  12. Distributed Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus Fogtmann; Vandenberghe, Lieven; Poulsen, Niels Kjølstad

    2016-01-01

    Integration of a large number of flexible consumers in a smart grid requires a scalable power balancing strategy. We formulate the control problem as an optimization problem to be solved repeatedly by the aggregator in a model predictive control framework. To solve the large-scale control problem...

  13. Scalability of DL_POLY on High Performance Computing Platform

    Directory of Open Access Journals (Sweden)

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  14. On the scalability of uncoordinated multiple access for the Internet of Things

    KAUST Repository

    Chisci, Giovanni

    2017-11-16

    The Internet of things (IoT) will entail massive number of wireless connections with sporadic traffic patterns. To support the IoT traffic, several technologies are evolving to support low power wide area (LPWA) wireless communications. However, LPWA networks rely on variations of uncoordinated spectrum access, either for data transmissions or scheduling requests, thus imposing a scalability problem to the IoT. This paper presents a novel spatiotemporal model to study the scalability of the ALOHA medium access. In particular, the developed mathematical model relies on stochastic geometry and queueing theory to account for spatial and temporal attributes of the IoT. To this end, the scalability of the ALOHA is characterized by the percentile of IoT devices that can be served while keeping their queues stable. The results highlight the scalability problem of ALOHA and quantify the extend to which ALOHA can support in terms of number of devices, traffic requirement, and transmission rate.

  15. Estimates of the Sampling Distribution of Scalability Coefficient H

    Science.gov (United States)

    Van Onna, Marieke J. H.

    2004-01-01

    Coefficient "H" is used as an index of scalability in nonparametric item response theory (NIRT). It indicates the degree to which a set of items rank orders examinees. Theoretical sampling distributions, however, have only been derived asymptotically and only under restrictive conditions. Bootstrap methods offer an alternative possibility to…

  16. Methods for fabrication of flexible hybrid electronics

    Science.gov (United States)

    Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos

    2017-08-01

    Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.

  17. Temporal Scalability of Dynamic Volume Data using Mesh Compensated Wavelet Lifting.

    Science.gov (United States)

    Schnurrer, Wolfgang; Pallast, Niklas; Richter, Thomas; Kaup, Andre

    2017-10-12

    Due to their high resolution, dynamic medical 2D+t and 3D+t volumes from computed tomography (CT) and magnetic resonance tomography (MR) reach a size which makes them very unhandy for teleradiologic applications. A lossless scalable representation offers the advantage of a down-scaled version which can be used for orientation or previewing, while the remaining information for reconstructing the full resolution is transmitted on demand. The wavelet transform offers the desired scalability. A very high quality of the lowpass sub-band is crucial in order to use it as a down-scaled representation. We propose an approach based on compensated wavelet lifting for obtaining a scalable representation of dynamic CT and MR volumes with very high quality. The mesh compensation is feasible to model the displacement in dynamic volumes which is mainly given by expansion and contraction of tissue over time. To achieve this, we propose an optimized estimation of the mesh compensation parameters to optimally fit for dynamic volumes. Within the lifting structure, the inversion of the motion compensation is crucial in the update step. We propose to take this inversion directly into account during the estimation step and can improve the quality of the lowpass sub-band by 0.63 dB and 0.43 dB on average for our tested dynamic CT and MR volumes at the cost of an increase of the rate by 2.4% and 1.2% on average.

  18. A Model of Socioemotional Flexibility at Three Time Scales

    NARCIS (Netherlands)

    Hollenstein, T.P.; Lichtwarck-Aschoff, A.; Potworowski, G.

    2013-01-01

    The construct of flexibility has been a focus for research and theory for over 100 years. However, flexibility has not been consistently or adequately defined, leading to obstacles in the interpretation of past research and progress toward enhanced theory. We present a model of socioemotional

  19. A Model for Flexibly Editing CSCL Scripts

    Science.gov (United States)

    Sobreira, Pericles; Tchounikine, Pierre

    2012-01-01

    This article presents a model whose primary concern and design rationale is to offer users (teachers) with basic ICT skills an intuitive, easy, and flexible way of editing scripts. The proposal is based on relating an end-user representation as a table and a machine model as a tree. The table-tree model introduces structural expressiveness and…

  20. Modelling, simulation and experiment of the spherical flexible joint stiffness

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available The spherical flexible joint is extensively used in engineering. It is designed to provide flexibility in rotation while bearing vertical compression load. The linear rotational stiffness of the flexible joint is formulated. The rotational stiffness of the bonded rubber layer is related to inner radius, thickness and two edge angles. FEM is used to verify the analytical solution and analyze the stiffness. The Mooney–Rivlin, Neo Hooke and Yeoh constitutive models are used in the simulation. The experiment is taken to obtain the material coefficient and validate the analytical and FEM results. The Yeoh model can reflect the deformation trend more accurately, but the error in the nearly linear district is bigger than the Mooney–Rivlin model. The Mooney–Rivlin model can fit the test result very well and the analytical solution can also be used when the rubber deformation in the flexible joint is small. The increase of Poisson's ratio of the rubber layers will enhance the vertical compression stiffness but barely have effect on the rotational stiffness.

  1. A Proposal for a Flexible Trend Specification in DSGE Models

    Directory of Open Access Journals (Sweden)

    Slanicay Martin

    2016-06-01

    Full Text Available In this paper I propose a flexible trend specification for estimating DSGE models on log differences. I demonstrate this flexible trend specification on a New Keynesian DSGE model of two economies, which I consequently estimate on data from the Czech economy and the euro area, using Bayesian techniques. The advantage of the trend specification proposed is that the trend component and the cyclical component are modelled jointly in a single model. The proposed trend specification is flexible in the sense that smoothness of the trend can be easily modified by different calibration of some of the trend parameters. The results suggest that this method is capable of finding a very reasonable trend in the data. Moreover, comparison of forecast performance reveals that the proposed specification offers more reliable forecasts than the original variant of the model.

  2. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design.

    Science.gov (United States)

    Lin, Yuanjing; Gao, Yuan; Fan, Zhiyong

    2017-11-01

    Planar supercapacitors with high flexibility, desirable operation safety, and high performance are considered as attractive candidates to serve as energy-storage devices for portable and wearable electronics. Here, a scalable and printable technique is adopted to construct novel and unique hierarchical nanocoral structures as the interdigitated electrodes on flexible substrates. The as-fabricated flexible all-solid-state planar supercapacitors with nanocoral structures achieve areal capacitance up to 52.9 mF cm -2 , which is 2.5 times that of devices without nanocoral structures, and this figure-of-merit is among the highest in the literature for the same category of devices. More interestingly, due to utilization of the inkjet-printing technique, excellent versatility on electrode-pattern artistic design is achieved. Particularly, working supercapacitors with artistically designed patterns are demonstrated. Meanwhile, the high scalability of such a printable method is also demonstrated by fabrication of large-sized artistic supercapacitors serving as energy-storage devices in a wearable self-powered system as a proof of concept. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    Science.gov (United States)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  4. Reduced-Order Models for Load Management in the Power Grid

    Science.gov (United States)

    Alizadeh, Mahnoosh

    In recent years, considerable research efforts have been directed towards designing control schemes that can leverage the inherent flexibility of electricity demand that is not tapped into in today's electricity markets. It is expected that these control schemes will be carried out by for-profit entities referred to as aggregators that operate at the edge of the power grid network. While the aggregator control problem is receiving much attention, more high-level questions of how these aggregators should plan their market participation, interact with the main grid and with each other, remain rather understudied. Answering these questions requires a large-scale model for the aggregate flexibility that can be harnessed from the a population of customers, particularly for residences and small businesses. The contribution of this thesis towards this goal is divided into three parts: In Chapter 3, a reduced-order model for a large population of heterogeneous appliances is provided by clustering load profiles that share similar degrees of freedom together. The use of such reduced-order model for system planning and optimal market decision making requires a foresighted approximation of the number of appliances that will join each cluster. Thus, Chapter 4 provides a systematic framework to generate such forecasts for the case of Electric Vehicles, based on real-world battery charging data. While these two chapters set aside the economic side that is naturally involved with participation in demand response programs and mainly focus on the control problem, Chapter 5 is dedicated to the study of optimal pricing mechanisms in order to recruit heterogeneous customers in a demand response program in which an aggregator can directly manage their appliances' load under their specified preferences. Prices are proportional to the wholesale market savings that can result from each recruitment event.

  5. Scalable photoreactor for hydrogen production

    KAUST Repository

    Takanabe, Kazuhiro; Shinagawa, Tatsuya

    2017-01-01

    Provided herein are scalable photoreactors that can include a membrane-free water- splitting electrolyzer and systems that can include a plurality of membrane-free water- splitting electrolyzers. Also provided herein are methods of using the scalable photoreactors provided herein.

  6. Scalable photoreactor for hydrogen production

    KAUST Repository

    Takanabe, Kazuhiro

    2017-04-06

    Provided herein are scalable photoreactors that can include a membrane-free water- splitting electrolyzer and systems that can include a plurality of membrane-free water- splitting electrolyzers. Also provided herein are methods of using the scalable photoreactors provided herein.

  7. Developing a scalable modeling architecture for studying survivability technologies

    Science.gov (United States)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  8. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells.

    Science.gov (United States)

    Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; Huang, Jing-Shun; Sfeir, Matthew Y; Reed, Mark A; Jung, Yeonwoong; Taylor, André D

    2017-12-01

    Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p-n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Port-based modeling of a flexible link

    NARCIS (Netherlands)

    Macchelli, A.; Macchelli, A.; Hirohika, A.; Lynch, K.; Melchiorri, C.; Park, F.C.; Stramigioli, Stefano; Parker, L.E.

    In this paper, a simple way to model flexible robotic links is presented. This is different from classical approaches and from the Euler–Bernoulli or Timoshenko theory, in that the proposed model is able to describe large deflections in 3-D space and does not rely on any finite-dimensional

  10. Domain decomposition method of stochastic PDEs: a two-level scalable preconditioner

    International Nuclear Information System (INIS)

    Subber, Waad; Sarkar, Abhijit

    2012-01-01

    For uncertainty quantification in many practical engineering problems, the stochastic finite element method (SFEM) may be computationally challenging. In SFEM, the size of the algebraic linear system grows rapidly with the spatial mesh resolution and the order of the stochastic dimension. In this paper, we describe a non-overlapping domain decomposition method, namely the iterative substructuring method to tackle the large-scale linear system arising in the SFEM. The SFEM is based on domain decomposition in the geometric space and a polynomial chaos expansion in the probabilistic space. In particular, a two-level scalable preconditioner is proposed for the iterative solver of the interface problem for the stochastic systems. The preconditioner is equipped with a coarse problem which globally connects the subdomains both in the geometric and probabilistic spaces via their corner nodes. This coarse problem propagates the information quickly across the subdomains leading to a scalable preconditioner. For numerical illustrations, a two-dimensional stochastic elliptic partial differential equation (SPDE) with spatially varying non-Gaussian random coefficients is considered. The numerical scalability of the the preconditioner is investigated with respect to the mesh size, subdomain size, fixed problem size per subdomain and order of polynomial chaos expansion. The numerical experiments are performed on a Linux cluster using MPI and PETSc parallel libraries.

  11. Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States

    Science.gov (United States)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.

    2017-01-01

    This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.

  12. Center for Programming Models for Scalable Parallel Computing - Towards Enhancing OpenMP for Manycore and Heterogeneous Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Chapman

    2012-02-01

    OpenMP was not well recognized at the beginning of the project, around year 2003, because of its limited use in DoE production applications and the inmature hardware support for an efficient implementation. Yet in the recent years, it has been graduately adopted both in HPC applications, mostly in the form of MPI+OpenMP hybrid code, and in mid-scale desktop applications for scientific and experimental studies. We have observed this trend and worked deligiently to improve our OpenMP compiler and runtimes, as well as to work with the OpenMP standard organization to make sure OpenMP are evolved in the direction close to DoE missions. In the Center for Programming Models for Scalable Parallel Computing project, the HPCTools team at the University of Houston (UH), directed by Dr. Barbara Chapman, has been working with project partners, external collaborators and hardware vendors to increase the scalability and applicability of OpenMP for multi-core (and future manycore) platforms and for distributed memory systems by exploring different programming models, language extensions, compiler optimizations, as well as runtime library support.

  13. Distributed Flexibility Characterization and Resource Allocation Strategies for Multi-zone Commercial Buildings in the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He; Lian, Jianming; Kalsi, Karanjit; Stoustrup, Jakob

    2015-12-15

    The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power) flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.

  14. Scalable Video Coding with Interlayer Signal Decorrelation Techniques

    Directory of Open Access Journals (Sweden)

    Yang Wenxian

    2007-01-01

    Full Text Available Scalability is one of the essential requirements in the compression of visual data for present-day multimedia communications and storage. The basic building block for providing the spatial scalability in the scalable video coding (SVC standard is the well-known Laplacian pyramid (LP. An LP achieves the multiscale representation of the video as a base-layer signal at lower resolution together with several enhancement-layer signals at successive higher resolutions. In this paper, we propose to improve the coding performance of the enhancement layers through efficient interlayer decorrelation techniques. We first show that, with nonbiorthogonal upsampling and downsampling filters, the base layer and the enhancement layers are correlated. We investigate two structures to reduce this correlation. The first structure updates the base-layer signal by subtracting from it the low-frequency component of the enhancement layer signal. The second structure modifies the prediction in order that the low-frequency component in the new enhancement layer is diminished. The second structure is integrated in the JSVM 4.0 codec with suitable modifications in the prediction modes. Experimental results with some standard test sequences demonstrate coding gains up to 1 dB for I pictures and up to 0.7 dB for both I and P pictures.

  15. Scalable Open Source Smart Grid Simulator (SGSim)

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Jacobsen, Rune Hylsberg; Stefanni, Francesco

    2017-01-01

    . This paper presents an open source smart grid simulator (SGSim). The simulator is based on open source SystemC Network Simulation Library (SCNSL) and aims to model scalable smart grid applications. SGSim has been tested under different smart grid scenarios that contain hundreds of thousands of households...

  16. Hydrogel core flexible matrix composite (H-FMC) actuators: theory and preliminary modelling

    International Nuclear Information System (INIS)

    Dicker, M P M; Weaver, P M; Bond, I P; Rossiter, J M

    2014-01-01

    The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FMC) that minimizes the hydrogel's volume expansion while swelling. This constraint serves to maximize the fixed charge density and resulting osmotic pressure, the driving force behind actuation. In addition, for certain FMC fibre orientations the Poisson's ratio of the anisotropic FMC laminate converts previously unused hydrogel swelling in the radial and circumferential directions into useful axial strains. The potential benefit of the H-FMC concept to hydrogel actuator performance is shown through comparison of force–stroke curves and evaluation of improvements in useful actuation work. The model used to achieve this couples chemical and electrical components, represented with the Nernst–Plank and Poisson equations, as well as a linear elastic mechanical material model, encompassing limited geometric nonlinearities. It is found that improvements in useful actuation work in the order of 1500% over bare hydrogel performance are achieved by the H-FMC concept. A parametric study is also undertaken to determine the effect of various FMC design parameters on actuator free strain and blocking stress. A comparison to other actuator concepts is also included. (paper)

  17. FEMME, a flexible environment for mathematically modelling the environment

    NARCIS (Netherlands)

    Soetaert, K.E.R.; DeClippele, V.; Herman, P.M.J.

    2002-01-01

    A new, FORTRAN-based, simulation environment called FEMME (Flexible Environment for Mathematically Modelling the Environment), designed for implementing, solving and analysing mathematical models in ecology is presented. Three separate phases in ecological modelling are distinguished: (1) the model

  18. A scalable quantum computer with ions in an array of microtraps

    Science.gov (United States)

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  19. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.

    Science.gov (United States)

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).

  20. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks

    Science.gov (United States)

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113

  1. Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework

    International Nuclear Information System (INIS)

    Fletcher, Rachel E.; Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Sartbaeva, Asel

    2015-01-01

    Framework materials possess intrinsic flexibility which can be investigated using geometric simulation. We review framework flexibility properties in energy materials and present novel results on the flexibility window of the EMT zeolite framework containing 18-crown-6 ether as a structure directing agent (SDA). Framework materials have structures containing strongly bonded polyhedral groups of atoms connected through their vertices. Typically the energy cost for variations of the inter-polyhedral geometry is much less than the cost of distortions of the polyhedra themselves – as in the case of silicates, where the geometry of the SiO 4 tetrahedral group is much more strongly constrained than the Si—O—Si bridging angle. As a result, framework materials frequently display intrinsic flexibility, and their dynamic and static properties are strongly influenced by low-energy collective motions of the polyhedra. Insight into these motions can be obtained in reciprocal space through the ‘rigid unit mode’ (RUM) model, and in real-space through template-based geometric simulations. We briefly review the framework flexibility phenomena in energy-relevant materials, including ionic conductors, perovskites and zeolites. In particular we examine the ‘flexibility window’ phenomenon in zeolites and present novel results on the flexibility window of the EMT framework, which shed light on the role of structure-directing agents. Our key finding is that the crown ether, despite its steric bulk, does not limit the geometric flexibility of the framework

  2. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Emulating a flexible space structure: Modeling

    Science.gov (United States)

    Waites, H. B.; Rice, S. C.; Jones, V. L.

    1988-01-01

    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.

  4. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    International Nuclear Information System (INIS)

    Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S.

    2016-01-01

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

  5. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y., E-mail: ybao@sjtu.edu.cn [Department of Civil Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai (China); Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Palacios, R., E-mail: r.palacios@imperial.ac.uk [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Graham, M., E-mail: m.graham@imperial.ac.uk [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Sherwin, S., E-mail: s.sherwin@imperial.ac.uk [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom)

    2016-09-15

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

  6. The Modelling of Axially Translating Flexible Beams

    Science.gov (United States)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  7. A model based message passing approach for flexible and scalable home automation controllers

    Energy Technology Data Exchange (ETDEWEB)

    Bienhaus, D. [INNIAS GmbH und Co. KG, Frankenberg (Germany); David, K.; Klein, N.; Kroll, D. [ComTec Kassel Univ., SE Kassel Univ. (Germany); Heerdegen, F.; Jubeh, R.; Zuendorf, A. [Kassel Univ. (Germany). FG Software Engineering; Hofmann, J. [BSC Computer GmbH, Allendorf (Germany)

    2012-07-01

    There is a large variety of home automation systems that are largely proprietary systems from different vendors. In addition, the configuration and administration of home automation systems is frequently a very complex task especially, if more complex functionality shall be achieved. Therefore, an open model for home automation was developed that is especially designed for easy integration of various home automation systems. This solution also provides a simple modeling approach that is inspired by typical home automation components like switches, timers, etc. In addition, a model based technology to achieve rich functionality and usability was implemented. (orig.)

  8. Accounting Fundamentals and the Variation of Stock Price: Factoring in the Investment Scalability

    OpenAIRE

    Sumiyana, Sumiyana; Baridwan, Zaki; Sugiri, Slamet; Hartono, Jogiyanto

    2010-01-01

    This study develops a new return model with respect to accounting fundamentals. The new return model is based on Chen and Zhang (2007). This study takes into account theinvestment scalability information. Specifically, this study splitsthe scale of firm’s operations into short-run and long-runinvestment scalabilities. We document that five accounting fun-damentals explain the variation of annual stock return. Thefactors, comprised book value, earnings yield, short-run andlong-run investment s...

  9. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  10. Adaptive format conversion for scalable video coding

    Science.gov (United States)

    Wan, Wade K.; Lim, Jae S.

    2001-12-01

    The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.

  11. Modelling the Implications of Quality Management Elements on Strategic Flexibility

    Directory of Open Access Journals (Sweden)

    Ana Belén Escrig-Tena

    2011-01-01

    Full Text Available This paper presents a theoretical and empirical analysis of the implications of a quality management (QM initiative on strategic flexibility. Our study defines flexibility from a strategic approach and examines the extent to which, why, and how the triggering factors of strategic flexibility are related to QM elements. The hypotheses put forward are tested in an empirical study carried out on a sample of Spanish firms, using structural equation models. The results demonstrate the positive effect of adopting an integral QM initiative on enhancing strategic flexibility. QM enhances strategic flexibility more effectively when it is introduced comprehensively rather than in a piecemeal fashion. A series of practices linked to the application of a QM initiative are outlined, which managers can use to improve strategic flexibility. The approach used in the study can be applied to analyse other antecedents of flexibility and to propose possible studies that consider QM as an antecedent of other organisational variables.

  12. Scalable power selection method for wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available This paper addresses the problem of a scalable dynamic power control (SDPC) for wireless mesh networks (WMNs) based on IEEE 802.11 standards. An SDPC model that accounts for architectural complexities witnessed in multiple radios and hops...

  13. A conclusive scalable model for the complete actuation response for IPMC transducers

    International Nuclear Information System (INIS)

    McDaid, A J; Aw, K C; Haemmerle, E; Xie, S Q

    2010-01-01

    This paper proposes a conclusive scalable model for the complete actuation response for ionic polymer metal composites (IPMC). This single model is proven to be able to accurately predict the free displacement/velocity and force actuation at varying displacements, with up to 3 V inputs. An accurate dynamic relationship between the force and displacement has been established which can be used to predict the complete actuation response of the IPMC transducer. The model is accurate at large displacements and can also predict the response when interacting with external mechanical systems and loads. This model equips engineers with a useful design tool which enables simple mechanical design, simulation and optimization when integrating IPMC actuators into an application. The response of the IPMC is modelled in three stages: (i) a nonlinear equivalent electrical circuit to predict the current drawn, (ii) an electromechanical coupling term and (iii) a segmented mechanical beam model which includes an electrically induced torque for the polymer. Model parameters are obtained using the dynamic time response and results are presented demonstrating the correspondence between the model and experimental results over a large operating range. This newly developed model is a large step forward, aiding in the progression of IPMCs towards wide acceptance as replacements to traditional actuators

  14. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    Science.gov (United States)

    Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  15. Impact of multiplexed reading scheme on nanocrossbar memristor memory's scalability

    International Nuclear Information System (INIS)

    Zhu Xuan; Tang Yu-Hua; Wu Jun-Jie; Yi Xun; Wu Chun-Qing

    2014-01-01

    Nanocrossbar is a potential memory architecture to integrate memristor to achieve large scale and high density memory. However, based on the currently widely-adopted parallel reading scheme, scalability of the nanocrossbar memory is limited, since the overhead of the reading circuits is in proportion with the size of the nanocrossbar component. In this paper, a multiplexed reading scheme is adopted as the foundation of the discussion. Through HSPICE simulation, we reanalyze scalability of the nanocrossbar memristor memory by investigating the impact of various circuit parameters on the output voltage swing as the memory scales to larger size. We find that multiplexed reading maintains sufficient noise margin in large size nanocrossbar memristor memory. In order to improve the scalability of the memory, memristors with nonlinear I—V characteristics and high LRS (low resistive state) resistance should be adopted. (interdisciplinary physics and related areas of science and technology)

  16. Using Count Data and Ordered Models in National Forest Recreation Demand Analysis

    Science.gov (United States)

    Simões, Paula; Barata, Eduardo; Cruz, Luis

    2013-11-01

    This research addresses the need to improve our knowledge on the demand for national forests for recreation and offers an in-depth data analysis supported by the complementary use of count data and ordered models. From a policy-making perspective, while count data models enable the estimation of monetary welfare measures, ordered models allow for the wider use of the database and provide a more flexible analysis of data. The main purpose of this article is to analyse the individual forest recreation demand and to derive a measure of its current use value. To allow a more complete analysis of the forest recreation demand structure the econometric approach supplements the use of count data models with ordered category models using data obtained by means of an on-site survey in the Bussaco National Forest (Portugal). Overall, both models reveal that travel cost and substitute prices are important explanatory variables, visits are a normal good and demographic variables seem to have no influence on demand. In particular, estimated price and income elasticities of demand are quite low. Accordingly, it is possible to argue that travel cost (price) in isolation may be expected to have a low impact on visitation levels.

  17. Timing-based business models for flexibility creation in the electric power sector

    International Nuclear Information System (INIS)

    Helms, Thorsten; Loock, Moritz; Bohnsack, René

    2016-01-01

    Energy policies in many countries push for an increase in the generation of wind and solar power. Along these developments, the balance between supply and demand becomes more challenging as the generation of wind and solar power is volatile, and flexibility of supply and demand becomes valuable. As a consequence, companies in the electric power sector develop new business models that create flexibility through activities of timing supply and demand. Based on an extensive qualitative analysis of interviews and industry research in the energy industry, the paper at hand explores the role of timing-based business models in the power sector and sheds light on the mechanisms of flexibility creation through timing. In particular we distill four ideal-type business models of flexibility creation with timing and reveal how they can be classified along two dimensions, namely costs of multiplicity and intervention costs. We put forward that these business models offer ‘coupled services’, combining resource-centered and service-centered perspectives. This complementary character has important implications for energy policy. - Highlights: •Explores timing-based business models providing flexibility in the energy industry. •Timing-based business models can be classified on two dimensions. •Timing-based business models offer ‘coupled services’. • ‘Coupled services’ couple timing as a service with supply- or demand side valuables. •Policy and managerial implications for energy market design.

  18. Scalable Density-Based Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    For knowledge discovery in high dimensional databases, subspace clustering detects clusters in arbitrary subspace projections. Scalability is a crucial issue, as the number of possible projections is exponential in the number of dimensions. We propose a scalable density-based subspace clustering...... method that steers mining to few selected subspace clusters. Our novel steering technique reduces subspace processing by identifying and clustering promising subspaces and their combinations directly. Thereby, it narrows down the search space while maintaining accuracy. Thorough experiments on real...... and synthetic databases show that steering is efficient and scalable, with high quality results. For future work, our steering paradigm for density-based subspace clustering opens research potential for speeding up other subspace clustering approaches as well....

  19. Scalable devices

    KAUST Repository

    Krü ger, Jens J.; Hadwiger, Markus

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales

  20. Dynamic Analysis of Planar 3-RRR Flexible Parallel Robots with Dynamic Stiffening

    Directory of Open Access Journals (Sweden)

    Qinghua Zhang

    2014-01-01

    Full Text Available In consideration of the second-order coupling quantity of the axial displacement caused by the transverse displacement of flexible beam, the first-order approximation coupling model of planar 3-RRR flexible parallel robots is presented, in which the rigid body motion constraints, elastic deformation motion constraints, and dynamic constraints of the moving platform are considered. Based on the different speed of the moving platform, numerical simulation results using the conventional zero-order approximation coupling model and the proposed firstorder approximation coupling model show that the effect of “dynamic stiffening” term on dynamic characteristics of the system is insignificant and can be neglected, and the zero-order approximation coupling model is enough precisely for catching essentially dynamic characteristics of the system. Then, the commercial software ANSYS 13.0 is used to confirm the validity of the zero-order approximation coupling model.

  1. A modeling method for hybrid energy behaviors in flexible machining systems

    International Nuclear Information System (INIS)

    Li, Yufeng; He, Yan; Wang, Yan; Wang, Yulin; Yan, Ping; Lin, Shenlong

    2015-01-01

    Increasingly environmental and economic pressures have led to great concerns regarding the energy consumption of machining systems. Understanding energy behaviors of flexible machining systems is a prerequisite for improving energy efficiency of these systems. This paper proposes a modeling method to predict energy behaviors in flexible machining systems. The hybrid energy behaviors not only depend on the technical specification related of machine tools and workpieces, but are significantly affected by individual production scenarios. In the method, hybrid energy behaviors are decomposed into Structure-related energy behaviors, State-related energy behaviors, Process-related energy behaviors and Assignment-related energy behaviors. The modeling method for the hybrid energy behaviors is proposed based on Colored Timed Object-oriented Petri Net (CTOPN). The former two types of energy behaviors are modeled by constructing the structure of CTOPN, whist the latter two types of behaviors are simulated by applying colored tokens and associated attributes. Machining on two workpieces in the experimental workshop were undertaken to verify the proposed modeling method. The results showed that the method can provide multi-perspective transparency on energy consumption related to machine tools, workpieces as well as production management, and is particularly suitable for flexible manufacturing system when frequent changes in machining systems are often encountered. - Highlights: • Energy behaviors in flexible machining systems are modeled in this paper. • Hybrid characteristics of energy behaviors are examined from multiple viewpoints. • Flexible modeling method CTOPN is used to predict the hybrid energy behaviors. • This work offers a multi-perspective transparency on energy consumption

  2. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    Science.gov (United States)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  3. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  4. Development of flexible process-centric web applications: An integrated model driven approach

    NARCIS (Netherlands)

    Bernardi, M.L.; Cimitile, M.; Di Lucca, G.A.; Maggi, F.M.

    2012-01-01

    In recent years, Model Driven Engineering (MDE) approaches have been proposed and used to develop and evolve WAs. However, the definition of appropriate MDE approaches for the development of flexible process-centric WAs is still limited. In particular, (flexible) workflow models have never been

  5. Active vibration control of spatial flexible multibody systems

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambrósio, Jorge A. C.; Roseiro, Luis M.; Amaro, A.; Vasques, C. M. A.

    2013-01-01

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  6. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  7. Cooperative Scalable Moving Continuous Query Processing

    DEFF Research Database (Denmark)

    Li, Xiaohui; Karras, Panagiotis; Jensen, Christian S.

    2012-01-01

    of the global view and handle the majority of the workload. Meanwhile, moving clients, having basic memory and computation resources, handle small portions of the workload. This model is further enhanced by dynamic region allocation and grid size adjustment mechanisms that reduce the communication...... and computation cost for both servers and clients. An experimental study demonstrates that our approaches offer better scalability than competitors...

  8. A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony

    2013-02-13

    The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the development of the CESM1 atmospheric chemistry component was substantially funded by this award, as was the development of the significantly improved coupler component. The CESM1 allows new climate change science in areas such as future air quality in very large cities, the effects of recovery of the southern hemisphere ozone hole, and effects of runoff from ice melt in the Greenland and Antarctic ice sheets. Results from a whole series of future climate projections using the CESM1 are also freely available via the web from the CMIP5 archive at the Lawrence Livermore National Laboratory. Many research papers using these results have now been published, and will form part of the 5th Assessment Report of the United Nations Intergovernmental Panel on Climate Change, which is to be published late in 2013.

  9. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures

    Directory of Open Access Journals (Sweden)

    Piero Colli Franzone

    2018-04-01

    Full Text Available We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1 the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2 the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3 the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4 the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.

  10. The fractional and nonlinear magneto-flexible rod

    International Nuclear Information System (INIS)

    David, S A; Balthazar, J M; Julio, B H S; Oliveira, C

    2012-01-01

    This paper deals with a system involving a flexible rod subjected to magnetic forces that can bend it while simultaneously subjected to external excitations produces complex and nonlinear dynamic behavior, which may present different types of solutions for its different movement-related responses. This fact motivated us to analyze such a mechanical system based on modeling and numerical simulation involving both, integer order calculus (IOC) and fractional order calculus (FOC) approaches. The time responses, pseudo phase portraits and Fourier spectra have been presented. The results obtained can be used as a source for conduct experiments in order to obtain more realistic and more accurate results about fractional-order models when compared to the integer-order models.

  11. Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model

    Science.gov (United States)

    Wang, Jianhong; Qin, Datong; Ding, Yi

    A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.

  12. Numerical Modeling and Mechanical Analysis of Flexible Risers

    Directory of Open Access Journals (Sweden)

    J. Y. Li

    2015-01-01

    Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.

  13. I(Re2-WiNoC: Exploring scalable wireless on-chip micronetworks for heterogeneous embedded many-core SoCs

    Directory of Open Access Journals (Sweden)

    Dan Zhao

    2015-02-01

    In this work, an irregular and reconfigurable WiNoC platform is proposed to tackle ever increasing complexity, density and heterogeneity challenges. A flexible RF infrastructure is established where RF nodes are properly distributed and IP cores are clustered. Consequently, a performance-cost effective topology is formed. A region-aided routing scheme is further deigned and implemented to realize loop-free, minimum path cost and high scalability for irregular WiNoC infrastructure. To implement the data transmission protocol, the RF microarchitecture of WiNoC is developed where the RF nodes are designed to fulfill the functions of distributed table routing, multi-channel arbitration, virtual output queuing, and distributed flow control. Our simulation studies based on synthetic traffics demonstrate the network efficiency and scalability of WiNoC.

  14. Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long, E-mail: L.Wu-1@tudelft.nl [Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering (Netherlands); Tiso, Paolo, E-mail: ptiso@ethz.ch [ETH Zürich, Institute for Mechanical Systems (Switzerland)

    2016-04-15

    An effective reduction technique is presented for flexible multibody systems, for which the elastic deflection could not be considered small. We consider here the planar beam systems undergoing large elastic rotations, in the floating frame description. The proposed method enriches the classical linear reduction basis with modal derivatives stemming from the derivative of the eigenvalue problem. Furthermore, the Craig–Bampton method is applied to couple the different reduced components. Based on the linear projection, the configuration-dependent internal force can be expressed as cubic polynomials in the reduced coordinates. Coefficients of these polynomials can be precomputed for efficient runtime evaluation. The numerical results show that the modal derivatives are essential for the correct approximation of the nonlinear elastic deflection with respect to the body reference. The proposed reduction method constitutes a natural and effective extension of the classical linear modal reduction in the floating frame.

  15. Smart Material-Actuated Flexible Tendon-Based Snake Robot

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ahmed

    2016-05-01

    Full Text Available A flexible snake robot has better navigation ability compare with the existing electrical motor-based rigid snake robot, due to its excellent bending capability during navigation inside a narrow maze. This paper discusses the modelling, simulation and experiment of a flexible snake robot. The modelling consists of the kinematic analysis and the dynamic analysis of the snake robot. A platform based on the Incompletely Restrained Positioning Mechanism (IRPM is proposed, which uses the external force provided by a compliant flexible beam in each of the actuators. The compliant central column allows the configuration to achieve three degrees of freedom (3DOFs with three tendons. The proposed flexible snake robot has been built using smart material, such as electroactive polymers (EAPs, which can be activated by applying power to it. Finally, the physical prototype of the snake robot has been built. An experiment has been performed in order to justify the proposed model.

  16. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  17. Scalable creation of gold nanostructures on high performance engineering polymeric substrate

    Science.gov (United States)

    Jia, Kun; Wang, Pan; Wei, Shiliang; Huang, Yumin; Liu, Xiaobo

    2017-12-01

    The article reveals a facile protocol for scalable production of gold nanostructures on a high performance engineering thermoplastic substrate made of polyarylene ether nitrile (PEN) for the first time. Firstly, gold thin films with different thicknesses of 2 nm, 4 nm and 6 nm were evaporated on a spin-coated PEN substrate on glass slide in vacuum. Next, the as-evaporated samples were thermally annealed around the glass transition temperature of the PEN substrate, on which gold nanostructures with island-like morphology were created. Moreover, it was found that the initial gold evaporation thickness and annealing atmosphere played an important role in determining the morphology and plasmonic properties of the formulated Au NPs. Interestingly, we discovered that isotropic Au NPs can be easily fabricated on the freestanding PEN substrate, which was fabricated by a cost-effective polymer solution casting method. More specifically, monodispersed Au nanospheres with an average size of ∼60 nm were obtained after annealing a 4 nm gold film covered PEN casting substrate at 220 °C for 2 h in oxygen. Therefore, the scalable production of Au NPs with controlled morphology on PEN substrate would open the way for development of robust flexible nanosensors and optical devices using high performance engineering polyarylene ethers.

  18. Scalable multi-grid preconditioning techniques for the even-parity S_N solver in UNIC

    International Nuclear Information System (INIS)

    Mahadevan, Vijay S.; Smith, Michael A.

    2011-01-01

    The Even-parity neutron transport equation with FE-S_N discretization is solved traditionally using SOR preconditioned CG method at the lowest level of iterations in order to compute the criticality in reactor analysis problems. The use of high order isoparametric finite elements prohibits the formation of the discrete operator explicitly due to memory constraints in peta scale architectures. Hence, a h-p multi-grid preconditioner based on linear tessellation of the higher order mesh is introduced here for the space-angle system and compared against SOR and Algebraic MG black-box solvers. The performance and scalability of the multi-grid scheme was determined for two test problems and found to be competitive in terms of both computational time and memory requirements. The implementation of this preconditioner in an even-parity solver like UNIC from ANL can further enable high fidelity calculations in a scalable manner on peta flop machines. (author)

  19. Developmental constraints on behavioural flexibility.

    Science.gov (United States)

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  20. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    Science.gov (United States)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  1. Scalable algorithms for contact problems

    CERN Document Server

    Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít

    2016-01-01

    This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...

  2. Efficient Delivery of Scalable Video Using a Streaming Class Model

    Directory of Open Access Journals (Sweden)

    Jason J. Quinlan

    2018-03-01

    Full Text Available When we couple the rise in video streaming with the growing number of portable devices (smart phones, tablets, laptops, we see an ever-increasing demand for high-definition video online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide a graceful changes in video quality, all while respecting viewing satisfaction. In this context, the use of well-known scalable/layered media streaming techniques, commonly known as scalable video coding (SVC, is an attractive solution. SVC encodes a number of video quality levels within a single media stream. This has been shown to be an especially effective and efficient solution, but it fares badly in the presence of datagram losses. While multiple description coding (MDC can reduce the effects of packet loss on scalable video delivery, the increased delivery cost is counterproductive for constrained networks. This situation is accentuated in cases where only the lower quality level is required. In this paper, we assess these issues and propose a new approach called Streaming Classes (SC through which we can define a key set of quality levels, each of which can be delivered in a self-contained manner. This facilitates efficient delivery, yielding reduced transmission byte-cost for devices requiring lower quality, relative to MDC and Adaptive Layer Distribution (ALD (42% and 76% respective reduction for layer 2, while also maintaining high levels of consistent quality. We also illustrate how selective packetisation technique can further reduce the effects of packet loss on viewable quality by

  3. The business model impact of flexible spectrum management and cognitive networks

    NARCIS (Netherlands)

    Delaere, S.; Ballon, P.

    2007-01-01

    Purpose - This paper aims to give a short overview of European Union policy trends towards more flexible forms of spectrum management. Design/methodology/approach - The paper presents a business modelling analysis, scenario construction, policy analysis and roadmapping. It argues that both flexible

  4. Scalable graphene production: perspectives and challenges of plasma applications

    Science.gov (United States)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  5. Scalable graphene production: perspectives and challenges of plasma applications.

    Science.gov (United States)

    Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth

    2016-05-19

    various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  6. A Massively Scalable Architecture for Instant Messaging & Presence

    NARCIS (Netherlands)

    Schippers, Jorrit; Remke, Anne Katharina Ingrid; Punt, Henk; Wegdam, M.; Haverkort, Boudewijn R.H.M.; Thomas, N.; Bradley, J.; Knottenbelt, W.; Dingle, N.; Harder, U.

    2010-01-01

    This paper analyzes the scalability of Instant Messaging & Presence (IM&P) architectures. We take a queueing-based modelling and analysis approach to ��?nd the bottlenecks of the current IM&P architecture at the Dutch social network Hyves, as well as of alternative architectures. We use the

  7. MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems.

    Science.gov (United States)

    Ding, Bo; Wang, Huaimin; Fan, Zedong; Zhang, Pengfei; Liu, Hui

    A primary requirement in distributed robotic software systems is the dissemination of data to all interested collaborative entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this aspect. This paper presents a novel robot software infrastructure, micROS-drt, which supports real-time and scalable data distribution. The solution is based on a loosely coupled data publish-subscribe model with the ability to support various time-related constraints. And to realize this model, a mature data distribution standard, the data distribution service for real-time systems (DDS), is adopted as the foundation of the transport layer of this software infrastructure. By elaborately adapting and encapsulating the capability of the underlying DDS middleware, micROS-drt can meet the requirement of real-time and scalable data distribution in distributed robotic systems. Evaluation results in terms of scalability, latency jitter and transport priority as well as the experiment on real robots validate the effectiveness of this work.

  8. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  9. Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks

    Directory of Open Access Journals (Sweden)

    M. Cacace

    2017-09-01

    Full Text Available Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture–solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton–Raphson or by free Jacobian inexact Newton–Krylow schemes on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres and temporal scales (from minutes to hundreds of years.

  10. All dispenser printed flexible 3D structured thermoelectric generators

    Science.gov (United States)

    Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.

    2015-12-01

    This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.

  11. Molecular model for solubility of gases in flexible polymers

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole; Szabo, Peter

    1999-01-01

    We propose a model for a priori prediction of the solubility of gases in flexible polymers. The model is based on the concept of ideal solubility of gases in liquids. According to this concept, the mole fraction of gases in liquids is given by Raoult's law with the total pressure and the vapor...... pressure of the gas, where the latter may have to be extrapolated. However, instead of considering each polymer molecule as a rigid structure, we estimate the effective number of degrees of freedom from an equivalent freely jointed bead-rod model for the flexible polymer. In this model, we associate...... the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly...

  12. Joint source/channel coding of scalable video over noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, G.; Zakhor, A. [Department of Electrical Engineering and Computer Sciences University of California Berkeley, California94720 (United States)

    1997-01-01

    We propose an optimal bit allocation strategy for a joint source/channel video codec over noisy channel when the channel state is assumed to be known. Our approach is to partition source and channel coding bits in such a way that the expected distortion is minimized. The particular source coding algorithm we use is rate scalable and is based on 3D subband coding with multi-rate quantization. We show that using this strategy, transmission of video over very noisy channels still renders acceptable visual quality, and outperforms schemes that use equal error protection only. The flexibility of the algorithm also permits the bit allocation to be selected optimally when the channel state is in the form of a probability distribution instead of a deterministic state. {copyright} {ital 1997 American Institute of Physics.}

  13. Direct writing of half-meter long CNT based fiber for flexible electronics.

    Science.gov (United States)

    Huang, Sihan; Zhao, Chunsong; Pan, Wei; Cui, Yi; Wu, Hui

    2015-03-11

    Rapid construction of flexible circuits has attracted increasing attention according to its important applications in future smart electronic devices. Herein, we introduce a convenient and efficient "writing" approach to fabricate and assemble ultralong functional fibers as fundamental building blocks for flexible electronic devices. We demonstrated that, by a simple hand-writing process, carbon nanotubes (CNTs) can be aligned inside a continuous and uniform polymer fiber with length of more than 50 cm and diameters ranging from 300 nm to several micrometers. The as-prepared continuous fibers exhibit high electrical conductivity as well as superior mechanical flexibility (no obvious conductance increase after 1000 bending cycles to 4 mm diameter). Such functional fibers can be easily configured into designed patterns with high precision according to the easy "writing" process. The easy construction and assembly of functional fiber shown here holds potential for convenient and scalable fabrication of flexible circuits in future smart devices like wearable electronics and three-dimensional (3D) electronic devices.

  14. A novel numerical model for estimating the collapse pressure of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Victor P.P.; Antoun Netto, Theodoro [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia], e-mail: victor@lts.coppe.ufrj.br

    2009-07-01

    As the worldwide oil and gas industry operational environments move to ultra-deep waters, failure mechanisms in flexible pipes such as instability of the armor layers under compression and hydrostatic collapse are more likely to occur. Therefore, it is important to develop reliable numerical tools to reproduce the failure mechanisms that may occur in flexible pipes. This work presents a representative finite element model of flexible pipe capable to reproduce its pre and post-collapse behavior under hydrostatic pressure. The model, developed in the scope of this work, uses beam elements and includes nonlinear kinematics and material behavior influences. The dependability of the numerical results is assessed in light of experimental tests on flexible pipes with 4 inches and 8 inches nominal diameter available in the literature (Souza, 2002). The applied methodology provided coherent values regarding the estimation of the collapse pressures and results have shown that the proposed model is capable to reproduce experimental results. (author)

  15. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    Science.gov (United States)

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  16. Automated Object-Oriented Simulation Framework for Modelling of Superconducting Magnets at CERN

    CERN Document Server

    Maciejewski, Michał; Bartoszewicz, Andrzej

    The thesis aims at designing a flexible, extensible, user-friendly interface to model electro thermal transients occurring in superconducting magnets. Simulations are a fundamental tool for assessing the performance of a magnet and its protection system against the effects of a quench. The application is created using scalable and modular architecture based on object-oriented programming paradigm which opens an easy way for future extensions. What is more, each model composed of thousands of blocks is automatically created in MATLAB/Simulink. Additionally, the user is able to automatically run sets of simulations with varying parameters. Due to its scalability and modularity the framework can be easily used to simulate wide range of materials and magnet configurations.

  17. Flexible Wi-Fi Communication among Mobile Robots in Indoor Industrial Environments

    Directory of Open Access Journals (Sweden)

    Jetmir Haxhibeqiri

    2018-01-01

    Full Text Available In order to speed up industrial processes and to improve logistics, mobile robots are getting important in industry. In this paper, we propose a flexible and configurable architecture for the mobile node that is able to operate in different network topology scenarios. The proposed solution is able to operate in presence of network infrastructure, in ad hoc mode only, or to use both possibilities. In case of mixed architecture, mesh capabilities will enable coverage problem detection and overcoming. The solution is based on real requirements from an automated guided vehicle producer. First, we evaluate the overhead introduced by our solution. Since the mobile robot communication relies in broadcast traffic, the broadcast scalability in mesh network is evaluated too. Finally, through experiments on a wireless testbed for a variety of scenarios, we analyze the impact of roaming, mobility and traffic separation, and demonstrate the advantage of our approach in handling coverage problems.

  18. Modeling of flexible reciprocating compressor considering the crosshead subsidence

    Science.gov (United States)

    Xue, Xiaogang; Liu, Shulin; Sun, Xin

    2018-01-01

    Crank-slider mechanisms are important parts of heavy duty machines, including reciprocating compressors, combustion motors. This paper targets on the dynamic response of the crosshead in a reciprocating compressor, taking into consideration the crosshead deviation from the original level. The traditional model of the compressor is usually a slider-mechanism system without considering the deflection of the crosshead, thus neglecting the influence of the piston rod, which has some flexible features. In this paper, a rigid-flexible model of slider-crank is described theoretically, using the commercial software MATLAB, where the crank, connecting rod and crosshead are treated as rigid bodies, while the piston rod connected to the crosshead is considered as a flexible body. The dynamic response of the mechanism with the crosshead subsidence is discussed detailedly in this paper. After calculated theoretically, the MATLAB simulation showed that the dynamic response of the crosshead will be greatly influenced if the crosshead subsided from the original level. Also, the influence of the crosshead subsidence was also investigated, and some extra vibration of the crosshead arises.

  19. New Complexity Scalable MPEG Encoding Techniques for Mobile Applications

    Directory of Open Access Journals (Sweden)

    Stephan Mietens

    2004-03-01

    Full Text Available Complexity scalability offers the advantage of one-time design of video applications for a large product family, including mobile devices, without the need of redesigning the applications on the algorithmic level to meet the requirements of the different products. In this paper, we present complexity scalable MPEG encoding having core modules with modifications for scalability. The interdependencies of the scalable modules and the system performance are evaluated. Experimental results show scalability giving a smooth change in complexity and corresponding video quality. Scalability is basically achieved by varying the number of computed DCT coefficients and the number of evaluated motion vectors but other modules are designed such they scale with the previous parameters. In the experiments using the “Stefan” sequence, the elapsed execution time of the scalable encoder, reflecting the computational complexity, can be gradually reduced to roughly 50% of its original execution time. The video quality scales between 20 dB and 48 dB PSNR with unity quantizer setting, and between 21.5 dB and 38.5 dB PSNR for different sequences targeting 1500 kbps. The implemented encoder and the scalability techniques can be successfully applied in mobile systems based on MPEG video compression.

  20. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions

    Science.gov (United States)

    Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping

    2017-11-01

    A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.

  1. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises

    Science.gov (United States)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  2. The intergroup protocols: Scalable group communication for the internet

    Energy Technology Data Exchange (ETDEWEB)

    Berket, Karlo [Univ. of California, Santa Barbara, CA (United States)

    2000-12-04

    Reliable group ordered delivery of multicast messages in a distributed system is a useful service that simplifies the programming of distributed applications. Such a service helps to maintain the consistency of replicated information and to coordinate the activities of the various processes. With the increasing popularity of the Internet, there is an increasing interest in scaling the protocols that provide this service to the environment of the Internet. The InterGroup protocol suite, described in this dissertation, provides such a service, and is intended for the environment of the Internet with scalability to large numbers of nodes and high latency links. The InterGroup protocols approach the scalability problem from various directions. They redefine the meaning of group membership, allow voluntary membership changes, add a receiver-oriented selection of delivery guarantees that permits heterogeneity of the receiver set, and provide a scalable reliability service. The InterGroup system comprises several components, executing at various sites within the system. Each component provides part of the services necessary to implement a group communication system for the wide-area. The components can be categorized as: (1) control hierarchy, (2) reliable multicast, (3) message distribution and delivery, and (4) process group membership. We have implemented a prototype of the InterGroup protocols in Java, and have tested the system performance in both local-area and wide-area networks.

  3. The building and application of a flexible CAD model for the DTU ECOCAR

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    A flexible surface model is required for CFD-optimization of the DTU ECOCAR. The report exemplifies the creation of such a model using the 3D CAD system Creo 3.0 Parametric.......A flexible surface model is required for CFD-optimization of the DTU ECOCAR. The report exemplifies the creation of such a model using the 3D CAD system Creo 3.0 Parametric....

  4. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Hou, Chengyi

    2016-01-01

    ) disclosed AuNPs coated uniformly by a 5 nm thick PB layer. Au@PB NPs were attached to single-layer graphene oxide (GO) to form Au@PB decorated GO sheets. The resulting hybrid material was filtered layer-by-layer into flexible and freestanding GO paper, which was further converted into conductive reduced GO...... (RGO)/Au@PB paper via hydrazine vapour reduction. High-resolution TEM images suggested that RGO papers are multiply sandwich-like structures functionalized with core-shell NPs. Resulting sandwich functionalized graphene papers have high conductivity, sufficient flexibility, and robust mechanical...... response range (1-30 μM), the detection limit (100 nM), and the high amperometric sensitivity (5 A cm-2 M-1). With the advantages of low cost and scalable production capacity, such graphene supported functional papers are of particular interest in the use as flexible disposable sensors....

  5. A Flexible Statechart-to-Model-Checker Translator

    Science.gov (United States)

    Rouquette, Nicolas; Dunphy, Julia; Feather, Martin S.

    2000-01-01

    Many current-day software design tools offer some variant of statechart notation for system specification. We, like others, have built an automatic translator from (a subset of) statecharts to a model checker, for use to validate behavioral requirements. Our translator is designed to be flexible. This allows us to quickly adjust the translator to variants of statechart semantics, including problem-specific notational conventions that designers employ. Our system demonstration will be of interest to the following two communities: (1) Potential end-users: Our demonstration will show translation from statecharts created in a commercial UML tool (Rational Rose) to Promela, the input language of Holzmann's model checker SPIN. The translation is accomplished automatically. To accommodate the major variants of statechart semantics, our tool offers user-selectable choices among semantic alternatives. Options for customized semantic variants are also made available. The net result is an easy-to-use tool that operates on a wide range of statechart diagrams to automate the pathway to model-checking input. (2) Other researchers: Our translator embodies, in one tool, ideas and approaches drawn from several sources. Solutions to the major challenges of statechart-to-model-checker translation (e.g., determining which transition(s) will fire, handling of concurrent activities) are retired in a uniform, fully mechanized, setting. The way in which the underlying architecture of the translator itself facilitates flexible and customizable translation will also be evident.

  6. NYU3T: teaching, technology, teamwork: a model for interprofessional education scalability and sustainability.

    Science.gov (United States)

    Djukic, Maja; Fulmer, Terry; Adams, Jennifer G; Lee, Sabrina; Triola, Marc M

    2012-09-01

    Interprofessional education is a critical precursor to effective teamwork and the collaboration of health care professionals in clinical settings. Numerous barriers have been identified that preclude scalable and sustainable interprofessional education (IPE) efforts. This article describes NYU3T: Teaching, Technology, Teamwork, a model that uses novel technologies such as Web-based learning, virtual patients, and high-fidelity simulation to overcome some of the common barriers and drive implementation of evidence-based teamwork curricula. It outlines the program's curricular components, implementation strategy, evaluation methods, and lessons learned from the first year of delivery and describes implications for future large-scale IPE initiatives. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu

    2015-01-01

    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  8. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    Science.gov (United States)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  9. Algorithmic psychometrics and the scalable subject.

    Science.gov (United States)

    Stark, Luke

    2018-04-01

    Recent public controversies, ranging from the 2014 Facebook 'emotional contagion' study to psychographic data profiling by Cambridge Analytica in the 2016 American presidential election, Brexit referendum and elsewhere, signal watershed moments in which the intersecting trajectories of psychology and computer science have become matters of public concern. The entangled history of these two fields grounds the application of applied psychological techniques to digital technologies, and an investment in applying calculability to human subjectivity. Today, a quantifiable psychological subject position has been translated, via 'big data' sets and algorithmic analysis, into a model subject amenable to classification through digital media platforms. I term this position the 'scalable subject', arguing it has been shaped and made legible by algorithmic psychometrics - a broad set of affordances in digital platforms shaped by psychology and the behavioral sciences. In describing the contours of this 'scalable subject', this paper highlights the urgent need for renewed attention from STS scholars on the psy sciences, and on a computational politics attentive to psychology, emotional expression, and sociality via digital media.

  10. Adaptive Neuro-Fuzzy Inference System Models for Force Prediction of a Mechatronic Flexible Structure

    DEFF Research Database (Denmark)

    Achiche, S.; Shlechtingen, M.; Raison, M.

    2016-01-01

    This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped...... obtained from applying a random excitation force on the flexible structure. The performance of the developed models is evaluated by analyzing the prediction capabilities based on a normalized prediction error. The frequency domain is considered to analyze the similarity of the frequencies in the predicted...... of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that ANFIS models can be used to set up reliable force predictors for dynamical loaded flexible structures, when a certain degree of inaccuracy is accepted. Furthermore, the comparison...

  11. Optimized bit extraction using distortion modeling in the scalable extension of H.264/AVC.

    Science.gov (United States)

    Maani, Ehsan; Katsaggelos, Aggelos K

    2009-09-01

    The newly adopted scalable extension of H.264/AVC video coding standard (SVC) demonstrates significant improvements in coding efficiency in addition to an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. Due to the complicated hierarchical prediction structure of the SVC and the concept of key pictures, content-aware rate adaptation of SVC bit streams to intermediate bit rates is a nontrivial task. The concept of quality layers has been introduced in the design of the SVC to allow for fast content-aware prioritized rate adaptation. However, existing quality layer assignment methods are suboptimal and do not consider all network abstraction layer (NAL) units from different layers for the optimization. In this paper, we first propose a technique to accurately and efficiently estimate the quality degradation resulting from discarding an arbitrary number of NAL units from multiple layers of a bitstream by properly taking drift into account. Then, we utilize this distortion estimation technique to assign quality layers to NAL units for a more efficient extraction. Experimental results show that a significant gain can be achieved by the proposed scheme.

  12. A Frank mixture copula family for modeling higher-order correlations of neural spike counts

    International Nuclear Information System (INIS)

    Onken, Arno; Obermayer, Klaus

    2009-01-01

    In order to evaluate the importance of higher-order correlations in neural spike count codes, flexible statistical models of dependent multivariate spike counts are required. Copula families, parametric multivariate distributions that represent dependencies, can be applied to construct such models. We introduce the Frank mixture family as a new copula family that has separate parameters for all pairwise and higher-order correlations. In contrast to the Farlie-Gumbel-Morgenstern copula family that shares this property, the Frank mixture copula can model strong correlations. We apply spike count models based on the Frank mixture copula to data generated by a network of leaky integrate-and-fire neurons and compare the goodness of fit to distributions based on the Farlie-Gumbel-Morgenstern family. Finally, we evaluate the importance of using proper single neuron spike count distributions on the Shannon information. We find notable deviations in the entropy that increase with decreasing firing rates. Moreover, we find that the Frank mixture family increases the log likelihood of the fit significantly compared to the Farlie-Gumbel-Morgenstern family. This shows that the Frank mixture copula is a useful tool to assess the importance of higher-order correlations in spike count codes.

  13. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  14. Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control

    International Nuclear Information System (INIS)

    Schröck, Johannes; Meurer, Thomas; Kugi, Andreas

    2011-01-01

    This paper considers a systematic approach for motion planning and feedforward control design for a flexible cantilever actuated by piezoelectric macro-fiber composite (MFC) patches. For accurate feedforward tracking control, special attention has to be paid to the inherent nonlinear hysteresis and creep behavior of these actuators. In order to account for these effects an appropriate compensator is applied which allows us to perform the tracking controller design on the basis of a linear infinite-dimensional model. A detailed analysis of the nonlinear actuator behavior as well as the compensator design and the overall experimental validation is presented in the companion paper (Schröck et al 2011 Smart Mater. Struct. 20 015016). The governing equations of motion of the hysteresis and creep compensated cantilever are determined by means of the extended Hamilton's principle. This allows us to consider the influence of the bonded patch actuators on the mechanical properties of the underlying beam structure in a straightforward manner and results in a model with spatially varying system parameters. For the solution of the motion planning and feedforward control problem a flatness-based methodology is proposed. In a first step, the infinite-dimensional system of the MFC-actuated flexible cantilever is approximated by a finite-dimensional model, where all system variables, i.e. the states, input and output, can be parameterized in terms of a so-called flat output. In a second step, it is shown by numerical simulations that these parameterizations converge with increasing system order of the finite-dimensional model such that the feedforward control input can be directly calculated in order to realize prescribed output trajectories

  15. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    Science.gov (United States)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  16. Quantifying the Flexibility of Residential Electricity Demand in 2050: a Bottom-Up Approach

    OpenAIRE

    van Stiphout, Arne; Engels, Jonas; Guldentops, Dries; Deconinck, Geert

    2015-01-01

    This work presents a new method to quantify the flexibility of automatic demand response applied to residential electricity demand using price elasticities. A stochastic bottom-up model of flexible electricity demand in 2050 is presented. Three types of flexible devices are implemented: electrical heating, electric vehicles and wet appliances. Each house schedules its flexible demand w.r.t. a varying price signal, in order to minimize electricity cost. Own- and cross-price elasticities are ob...

  17. Tactical supply chain planning models with inherent flexibility

    DEFF Research Database (Denmark)

    Esmaeilikia, Masoud; Fahimnia, Behnam; Sarkis, Joeseph

    2016-01-01

    Supply chains (SCs) can be managed at many levels. The use of tactical SC planning models with multiple flexibility options can help manage the usual operations efficiently and effectively, whilst improve the SC resiliency in response to inherent environmental uncertainties. This paper defines ta...

  18. fastBMA: scalable network inference and transitive reduction.

    Science.gov (United States)

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  19. Service-oriented workflow to efficiently and automatically fulfill products in a highly individualized web and mobile environment

    Science.gov (United States)

    Qiao, Mu

    2015-03-01

    Service Oriented Architecture1 (SOA) is widely used in building flexible and scalable web sites and services. In most of the web or mobile photo book and gifting business space, the products ordered are highly variable without a standard template that one can substitute texts or images from similar to that of commercial variable data printing. In this paper, the author describes a SOA workflow in a multi-sites, multi-product lines fulfillment system where three major challenges are addressed: utilization of hardware and equipment, highly automation with fault recovery, and highly scalable and flexible with order volume fluctuation.

  20. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    International Nuclear Information System (INIS)

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  1. Utilization of Flexible Airspace Structure in Flight Efficiency Optimization

    Directory of Open Access Journals (Sweden)

    Tomislav Mihetec

    2013-04-01

    Full Text Available With increasing air traffic demand in the Pan-European airspace there is a need for optimizing the use of the airspace structure (civilian and military in a manner that would satisfy the requirements of civil and military users. In the area of Europe with the highest levels of air traffic (Core area 32% of the volume of airspace above FL 195 is shared by both civil and military users. Until the introduction of the concept of flexible use of airspace, flexible airspace structures were 24 hours per day unavailable for commercial air transport. Flexible use of airspace concept provides a substantial level of dynamic airspace management by the usage of conditional routes. This paper analyses underutilization of resources, flexible airspace structures in the Pan-European airspace, especially in the south-eastern part of the traffic flows (East South Axis, reducing the efficiency of flight operations, as result of delegating the flexible structures to military users. Based on previous analysis, utilization model for flexible use of airspace is developed (scenarios with defined airspace structure. The model is based on the temporal, vertical, and modular airspace sectorisation parameters in order to optimize flight efficiency. The presented model brings significant improvement in flight efficiency (in terms of reduced flight distance for air carriers that planned to fly through the selected flexible airspace structure (LI_RST-49.

  2. Can flexibility help you float?

    Science.gov (United States)

    Burton, L. J.; Bush, J. W. M.

    2012-10-01

    We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.

  3. Scalable UWB photonic generator based on the combination of doublet pulses.

    Science.gov (United States)

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2014-06-30

    We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

  4. Mathematical Modeling of a Moving Planar Payload Pendulum on Flexible Portal Framework

    Directory of Open Access Journals (Sweden)

    Edwar Yazid

    2012-03-01

    Full Text Available Mathematical modeling of a moving planar payload pendulum on elastic portal framework is presented in this paper. The equations of motion of such a system are obtained by modeling the portal frame using finite element in conjunction with moving finite element method and moving planar payload pendulum by using Lagrange’s equations. The generated equations indicate the presence of nonlinear coupling between dynamics of portal framework and the payload pendulum. The combinational direct numerical integration technique, namely Newmarkand fourth-order Runge-Kutta method, is then proposed to solve the coupled equations of motion. Several numerical simulations are performed and the results are verified with several benchmarks. The results indicate that the amplitude and frequency of the payload pendulum swing angle are greatly affected by flexibility of structure and the cable in term of carriage speed. 

  5. Scalability and efficiency of genetic algorithms for geometrical applications

    NARCIS (Netherlands)

    Dijk, van S.F.; Thierens, D.; Berg, de M.; Schoenauer, M.

    2000-01-01

    We study the scalability and efficiency of a GA that we developed earlier to solve the practical cartographic problem of labeling a map with point features. We argue that the special characteristics of our GA make that it fits in well with theoretical models predicting the optimal population size

  6. Scalable Frequent Subgraph Mining

    KAUST Repository

    Abdelhamid, Ehab

    2017-06-19

    A graph is a data structure that contains a set of nodes and a set of edges connecting these nodes. Nodes represent objects while edges model relationships among these objects. Graphs are used in various domains due to their ability to model complex relations among several objects. Given an input graph, the Frequent Subgraph Mining (FSM) task finds all subgraphs with frequencies exceeding a given threshold. FSM is crucial for graph analysis, and it is an essential building block in a variety of applications, such as graph clustering and indexing. FSM is computationally expensive, and its existing solutions are extremely slow. Consequently, these solutions are incapable of mining modern large graphs. This slowness is caused by the underlying approaches of these solutions which require finding and storing an excessive amount of subgraph matches. This dissertation proposes a scalable solution for FSM that avoids the limitations of previous work. This solution is composed of four components. The first component is a single-threaded technique which, for each candidate subgraph, needs to find only a minimal number of matches. The second component is a scalable parallel FSM technique that utilizes a novel two-phase approach. The first phase quickly builds an approximate search space, which is then used by the second phase to optimize and balance the workload of the FSM task. The third component focuses on accelerating frequency evaluation, which is a critical step in FSM. To do so, a machine learning model is employed to predict the type of each graph node, and accordingly, an optimized method is selected to evaluate that node. The fourth component focuses on mining dynamic graphs, such as social networks. To this end, an incremental index is maintained during the dynamic updates. Only this index is processed and updated for the majority of graph updates. Consequently, search space is significantly pruned and efficiency is improved. The empirical evaluation shows that the

  7. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  8. Basic performance tests on vibration of support structure with flexible plates for ITER tokamak device

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Shibanuma, Kiyoshi

    2005-01-01

    The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results obtained by the hammering and frequency sweep tests were agreed each other, so that the experimental method is found to be reliable. In addition, the experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Using this adequate model, the stiffness of the support structure with flexible plates for the ITER major components can be calculated precisely in order to estimate the dynamic behaviors such as eigen modes and amplitude of deformation of the major components of the ITER tokamak device. (author)

  9. Modelling of data acquisition systems

    International Nuclear Information System (INIS)

    Buono, S.; Gaponenko, I.; Jones, R.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Spiwoks, R.; Skiadelli, M.; Ambrosini, G.

    1994-01-01

    The RD13 project was approved in April 1991 for the development of a scalable data taking system suitable to host various LHC studies. One of its goals is to use simulations as a tool for understanding, evaluating, and constructing different configurations of such data acquisition (DAQ) systems. The RD13 project has developed a modelling framework for this purpose. It is based on MODSIM II, an object-oriented, discrete-event simulation language. A library of DAQ components allows to describe a variety of DAQ architectures and different hardware options in a modular and scalable way. A graphical user interface (GUI) is used to do easy configuration, initialization and on-line monitoring of the simulation program. A tracing facility is used to do flexible off-line analysis of a trace file written at run-time

  10. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    Science.gov (United States)

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  11. Scalability of the muscular action in a parametric 3D model of the index finger.

    Science.gov (United States)

    Sancho-Bru, Joaquín L; Vergara, Margarita; Rodríguez-Cervantes, Pablo-Jesús; Giurintano, David J; Pérez-González, Antonio

    2008-01-01

    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the physiological cross-sectional area (PCSA) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analyzed and used for scaling the PCSA of each muscle. A linear relationship between the normalized PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm(-2), with the length and breadth of the hand expressed in centimeters. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled posture.

  12. Detailed Modeling and Evaluation of a Scalable Multilevel Checkpointing System

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, Greg [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); de Supinski, Bronis R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-01

    High-performance computing (HPC) systems are growing more powerful by utilizing more components. As the system mean time before failure correspondingly drops, applications must checkpoint frequently to make progress. But, at scale, the cost of checkpointing becomes prohibitive. A solution to this problem is multilevel checkpointing, which employs multiple types of checkpoints in a single run. Moreover, lightweight checkpoints can handle the most common failure modes, while more expensive checkpoints can handle severe failures. We designed a multilevel checkpointing library, the Scalable Checkpoint/Restart (SCR) library, that writes lightweight checkpoints to node-local storage in addition to the parallel file system. We present probabilistic Markov models of SCR's performance. We show that on future large-scale systems, SCR can lead to a gain in machine efficiency of up to 35 percent, and reduce the load on the parallel file system by a factor of two. In addition, we predict that checkpoint scavenging, or only writing checkpoints to the parallel file system on application termination, can reduce the load on the parallel file system by 20 × on today's systems and still maintain high application efficiency.

  13. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.

    2016-06-02

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme with a linearized right-hand side operator. It was applied in solving the Cahn-Hilliard parabolic equation with a nonlinear, fourth-order elliptic part. The second order of the approximation along the time variable was proven. Moreover, the good scalability of the software based on this scheme was confirmed during simulations. We verify the proposed time integration scheme by monitoring the Ginzburg-Landau free energy. The numerical simulations are performed by using a parallel multi-frontal direct solver executed over STAMPEDE Linux cluster. Its scalability was compared to the results of the three direct solvers, including MUMPS, SuperLU and PaSTiX.

  14. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    Science.gov (United States)

    Nogar, Stephen Michael

    importance of considering coupled aeroelastic and actuator dynamics in closed-loop control of flapping wings. A controller is developed that decouples the normal form of the vehicle dynamics, which accounts for coupling of the forces and moments acting on the vehicle and enables enhanced tuning capabilities. This controller, using the same control design model as the baseline controller, stabilizes the system despite the uncertainty between the control design and evaluation models. The controller is able to stabilize cases with significant wing flexibility and limited actuator capabilities, despite a reduction in control effectiveness. Additionally, to achieve a minimally actuated vehicle, the wing bias mechanism is removed. Using the same control design methodology, increased performance is observed compared to the baseline controller. However, due to the dependence on the split-cycle mechanism to generate a pitching moment instead of wing bias, the controller is more susceptible to instability from wing flexibility and limited actuator capacity. This work highlights the importance of coupled dynamics in the design and control of flapping wing micro air vehicles. Future enhancements to this work should focus on the reduced order structural and aerodynamics models. Applications include using the developed dynamics model to evaluate other kinematics and control schemes, ultimately enabling improved vehicle and control design.

  15. Scalable approximate policies for Markov decision process models of hospital elective admissions.

    Science.gov (United States)

    Zhu, George; Lizotte, Dan; Hoey, Jesse

    2014-05-01

    To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Weak Memory Models: Balancing Definitional Simplicity and Implementation Flexibility

    OpenAIRE

    Zhang, Sizhuo; Vijayaraghavan, Muralidaran; Arvind

    2017-01-01

    The memory model for RISC-V, a newly developed open source ISA, has not been finalized yet and thus, offers an opportunity to evaluate existing memory models. We believe RISC-V should not adopt the memory models of POWER or ARM, because their axiomatic and operational definitions are too complicated. We propose two new weak memory models: WMM and WMM-S, which balance definitional simplicity and implementation flexibility differently. Both allow all instruction reorderings except overtaking of...

  17. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Atul K. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  18. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    Science.gov (United States)

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance.

  19. Oracle database performance and scalability a quantitative approach

    CERN Document Server

    Liu, Henry H

    2011-01-01

    A data-driven, fact-based, quantitative text on Oracle performance and scalability With database concepts and theories clearly explained in Oracle's context, readers quickly learn how to fully leverage Oracle's performance and scalability capabilities at every stage of designing and developing an Oracle-based enterprise application. The book is based on the author's more than ten years of experience working with Oracle, and is filled with dependable, tested, and proven performance optimization techniques. Oracle Database Performance and Scalability is divided into four parts that enable reader

  20. PKI Scalability Issues

    OpenAIRE

    Slagell, Adam J; Bonilla, Rafael

    2004-01-01

    This report surveys different PKI technologies such as PKIX and SPKI and the issues of PKI that affect scalability. Much focus is spent on certificate revocation methodologies and status verification systems such as CRLs, Delta-CRLs, CRS, Certificate Revocation Trees, Windowed Certificate Revocation, OCSP, SCVP and DVCS.

  1. Scalable Fabrication of Efficient NiCo2S4 Counter Electrodes for Dye-sensitized Solar Cells Using a Facile Solution Approach

    International Nuclear Information System (INIS)

    Su, An-Lin; Lu, Man-Ning; Chang, Chin-Yu; Wei, Tzu-Chien; Lin, Jeng-Yu

    2016-01-01

    Exploiting highly electrocatalytic and cost-effectiveness counter electrodes (CEs) in dye-sensitized solar cells (DSCs) has been regarded as a persistent objective. In this work, we proposed a facile low-cost solution approach for scalable fabrication of NiCo 2 S 4 (NCS) CEs in Pt-free DSCs. Firstly, NCS particles were synthesized by means of a solvothermal method. Afterwards, the NCS particles were successfully immobilized on fluorine-doped tin oxide (FTO) glass substrate and indium doped tin oxide polyethylene naphthalate (ITO/PEN) flexible substrate as NCS CE and flexible NCS CE, respectively, by using series of dip-coating processes. On the basis of extensive electrochemical characterizations, the NCS CEs displayed Pt-like electrocatalytic activity for I 3 − reduction. The DSC based on the NCS CE achieved an impressive cell efficiency of 8.94%, which was higher than that of the cell with the conventional Pt CE (8.51%). More interesting, the DSC using the flexible NCS CE still demonstrated an acceptable cell performance of 8.62% (or 8.57% with the bended flexible NCS CE).

  2. Silicon nanophotonics for scalable quantum coherent feedback networks

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Brif, Constantin; Soh, Daniel B.S.; Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul

    2016-01-01

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  3. Silicon nanophotonics for scalable quantum coherent feedback networks

    Energy Technology Data Exchange (ETDEWEB)

    Sarovar, Mohan; Brif, Constantin [Sandia National Laboratories, Livermore, CA (United States); Soh, Daniel B.S. [Sandia National Laboratories, Livermore, CA (United States); Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul [Sandia National Laboratories, Albuquerque, NM (United States)

    2016-12-15

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  4. Implementation of the Timepix ASIC in the Scalable Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Lupberger, M., E-mail: lupberger@physik.uni-bonn.de; Desch, K.; Kaminski, J.

    2016-09-11

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  5. Scalable-to-lossless transform domain distributed video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Ukhanova, Ann; Veselov, Anton

    2010-01-01

    Distributed video coding (DVC) is a novel approach providing new features as low complexity encoding by mainly exploiting the source statistics at the decoder based on the availability of decoder side information. In this paper, scalable-tolossless DVC is presented based on extending a lossy Tran...... codec provides frame by frame encoding. Comparing the lossless coding efficiency, the proposed scalable-to-lossless TDWZ video codec can save up to 5%-13% bits compared to JPEG LS and H.264 Intra frame lossless coding and do so as a scalable-to-lossless coding....

  6. A massively parallel GPU-accelerated model for analysis of fully nonlinear free surface waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Madsen, Morten G.; Glimberg, Stefan Lemvig

    2011-01-01

    -storage flexible-order accurate finite difference method that is known to be efficient and scalable on a CPU core (single thread). To achieve parallel performance of the relatively complex numerical model, we investigate a new trend in high-performance computing where many-core GPUs are utilized as high......-throughput co-processors to the CPU. We describe and demonstrate how this approach makes it possible to do fast desktop computations for large nonlinear wave problems in numerical wave tanks (NWTs) with close to 50/100 million total grid points in double/ single precision with 4 GB global device memory...... available. A new code base has been developed in C++ and compute unified device architecture C and is found to improve the runtime more than an order in magnitude in double precision arithmetic for the same accuracy over an existing CPU (single thread) Fortran 90 code when executed on a single modern GPU...

  7. Flexibility and trackability of laser cut coronary stent systems.

    Science.gov (United States)

    Szabadíts, Péter; Puskás, Zsolt; Dobránszky, János

    2009-01-01

    Coronary stents are the most important supports in present day cardiology. Flexibility and trackability are two basic features of stents. In this paper, four different balloon-expandable coronary stent systems were investigated mechanically in order to compare their suitability. The coronary stent systems were assessed by measurements of stent flexibility as well as by comparison of forces during simulated stenting in a self-investigated coronary vessel model. The stents were cut by laser from a single tube of 316L stainless steel or L-605 (CoCr) cobalt chromium alloy. The one-and four-point bending tests were carried out to evaluate the stent flexibility E x I (Nmm(2)), under displacement control in crimped and expanded configurations. The flexibility of stents would be rather dependent on the design than on raw material. In general a more flexible stent needs lower tracking force during the implantation. The L-605 raw material stents need lower track force to pass through in the vessel model than the 316L raw material stents. The sort and long stents passed through the curved vessel model in different ways. The long stents nestled to the vessel wall at the outer arc and bent, while the short stents did not bend in the curve, only the delivery systems bent.

  8. Comparison and Implementation of a Rigid and a Flexible Multibody Planetary Gearbox Model

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    We propose algorithms for developing (1) a rigid (constrained) and (2) a flexible planetary gearbox model. The two methods are compared against each other and advantages/disadvantages of each method are discussed. The rigid model (1) has gear tooth reaction forces expressed by Lagrange multipliers...... between one and two gear teeth in mesh. The final results are from modelling the planetary gearbox in a 500 kW wind turbine which we also described in Jørgensen et al. (2013)........ The flexible approach (2) is being compared with the gear tooth forces from the rigid approach, first without damping and second the influence of damping is examined. Variable stiffness as a function of base circle arc length is implemented in the flexible approach such that it handles the realistic switch...

  9. An inventory model with a new credit drift: Flexible trade credit policy

    Directory of Open Access Journals (Sweden)

    Ankit Prakash Tyagi

    2016-01-01

    Full Text Available In most of the published articles dealing with optimal order quantity model under permissible delay in payments, it is assumed that the supplier only put forwards fully permissible delay in payments if retailer ordered a bulky sufficient quantity otherwise permissible delay in payments would not be permitted. Practically, in competitive market environments and recession phases of business, every supplier wants to attract more retailers by the help of providing good facilities for trading. Necessity of order quantity may put a negative pressure on supplier’s demand. So, within the economic order quantity (EOQ framework the main purpose of this paper is to broaden this extreme case by introducing a new credit policy, Flexible Trade Credit Policy (FTCP, for supplier which can help him provide more free space of trading to retailers. This policy, after adopting by suppliers, not only provides attractive trading environments for retailers but also enhances the demand of supplier due to the large number of new retailers. Here in, under this policy, an inventory system is investigated as a cost minimization problem to establish the retailer’s optimal inventory cycle time and optimal order quantity. Three theorems are established to describe and to lighten optimal replenishment policies for the retailer. Finally, numerical examples are considered to illustrate all these theorems and managerial insights are given based on considered numerical examples.

  10. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    Science.gov (United States)

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  11. Scalable total synthesis and comprehensive structure-activity relationship studies of the phytotoxin coronatine.

    Science.gov (United States)

    Littleson, Mairi M; Baker, Christopher M; Dalençon, Anne J; Frye, Elizabeth C; Jamieson, Craig; Kennedy, Alan R; Ling, Kenneth B; McLachlan, Matthew M; Montgomery, Mark G; Russell, Claire J; Watson, Allan J B

    2018-03-16

    Natural phytotoxins are valuable starting points for agrochemical design. Acting as a jasmonate agonist, coronatine represents an attractive herbicidal lead with novel mode of action, and has been an important synthetic target for agrochemical development. However, both restricted access to quantities of coronatine and a lack of a suitably scalable and flexible synthetic approach to its constituent natural product components, coronafacic and coronamic acids, has frustrated development of this target. Here, we report gram-scale production of coronafacic acid that allows a comprehensive structure-activity relationship study of this target. Biological assessment of a >120 member library combined with computational studies have revealed the key determinants of potency, rationalising hypotheses held for decades, and allowing future rational design of new herbicidal leads based on this template.

  12. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    Science.gov (United States)

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  13. Affordable and Scalable Manufacturing of Wearable Multi-Functional Sensory “Skin” for Internet of Everything Applications

    KAUST Repository

    Nassar, Joanna M.

    2017-10-01

    Demand for wearable electronics is expected to at least triple by 2020, embracing all sorts of Internet of Everything (IoE) applications, such as activity tracking, environmental mapping, and advanced healthcare monitoring, in the purpose of enhancing the quality of life. This entails the wide availability of free-form multifunctional sensory systems (i.e “skin” platforms) that can conform to the variety of uneven surfaces, providing intimate contact and adhesion with the skin, necessary for localized and enhanced sensing capabilities. However, current wearable devices appear to be bulky, rigid and not convenient for continuous wear in everyday life, hindering their implementation into advanced and unexplored applications beyond fitness tracking. Besides, they retail at high price tags which limits their availability to at least half of the World’s population. Hence, form factor (physical flexibility and/or stretchability), cost, and accessibility become the key drivers for further developments. To support this need in affordable and adaptive wearables and drive academic developments in “skin” platforms into practical and functional consumer devices, compatibility and integration into a high performance yet low power system is crucial to sustain the high data rates and large data management driven by IoE. Likewise, scalability becomes essential for batch fabrication and precision. Therefore, I propose to develop three distinct but necessary “skin” platforms using scalable and cost effective manufacturing techniques. My first approach is the fabrication of a CMOS-compatible “silicon skin”, crucial for any truly autonomous and conformal wearable device, where monolithic integration between heterogeneous material-based sensory platform and system components is a challenge yet to be addressed. My second approach displays an even more affordable and accessible “paper skin”, using recyclable and off-the-shelf materials, targeting environmental

  14. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    Science.gov (United States)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  15. Scalable Transactions for Web Applications in the Cloud

    NARCIS (Netherlands)

    Zhou, W.; Pierre, G.E.O.; Chi, C.-H.

    2009-01-01

    Cloud Computing platforms provide scalability and high availability properties for web applications but they sacrifice data consistency at the same time. However, many applications cannot afford any data inconsistency. We present a scalable transaction manager for NoSQL cloud database services to

  16. NPTool: Towards Scalability and Reliability of Business Process Management

    Science.gov (United States)

    Braghetto, Kelly Rosa; Ferreira, João Eduardo; Pu, Calton

    Currently one important challenge in business process management is provide at the same time scalability and reliability of business process executions. This difficulty becomes more accentuated when the execution control assumes complex countless business processes. This work presents NavigationPlanTool (NPTool), a tool to control the execution of business processes. NPTool is supported by Navigation Plan Definition Language (NPDL), a language for business processes specification that uses process algebra as formal foundation. NPTool implements the NPDL language as a SQL extension. The main contribution of this paper is a description of the NPTool showing how the process algebra features combined with a relational database model can be used to provide a scalable and reliable control in the execution of business processes. The next steps of NPTool include reuse of control-flow patterns and support to data flow management.

  17. Requirements for Scalable Access Control and Security Management Architectures

    National Research Council Canada - National Science Library

    Keromytis, Angelos D; Smith, Jonathan M

    2005-01-01

    Maximizing local autonomy has led to a scalable Internet. Scalability and the capacity for distributed control have unfortunately not extended well to resource access control policies and mechanisms...

  18. Flexibility and leadership advantages in a model with uncertain demand

    OpenAIRE

    Ferreira, Fernanda A.; Ferreira, Flávio; Pinto, Alberto A.

    2007-01-01

    We consider a differentiated Stackelberg model with demand uncertainty only for the first mover. We study the advantages of flexibility over leadership as the degree of the differentiation of the goods changes.

  19. Scalable cloud without dedicated storage

    Science.gov (United States)

    Batkovich, D. V.; Kompaniets, M. V.; Zarochentsev, A. K.

    2015-05-01

    We present a prototype of a scalable computing cloud. It is intended to be deployed on the basis of a cluster without the separate dedicated storage. The dedicated storage is replaced by the distributed software storage. In addition, all cluster nodes are used both as computing nodes and as storage nodes. This solution increases utilization of the cluster resources as well as improves fault tolerance and performance of the distributed storage. Another advantage of this solution is high scalability with a relatively low initial and maintenance cost. The solution is built on the basis of the open source components like OpenStack, CEPH, etc.

  20. The advantage of flexible neuronal tunings in neural network models for motor learning

    Directory of Open Access Journals (Sweden)

    Ellisha N Marongelli

    2013-07-01

    Full Text Available Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the breadths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR, which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field sizes. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model with a flexible structure, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies.

  1. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric

    2017-11-27

    Current microfabrication of micro-supercapacitors often involves multistep processing and delicate lithography protocols. In this study, simple fabrication of an asymmetric MXene-based micro-supercapacitor that is flexible, binder-free, and current-collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced graphene oxide (rGO), which are both 2D layered materials that contribute to the fast ion diffusion in the interdigitated electrode architecture. This MXene-based asymmetric micro-supercapacitor operates at a 1 V voltage window, while retaining 97% of the initial capacitance after ten thousand cycles, and exhibits an energy density of 8.6 mW h cm−3 at a power density of 0.2 W cm−3. Further, these micro-supercapacitors show a high level of flexibility during mechanical bending. Utilizing the ability of Ti3C2Tx-MXene electrodes to operate at negative potentials in aqueous electrolytes, it is shown that using Ti3C2Tx as a negative electrode and rGO as a positive one in asymmetric architectures is a promising strategy for increasing both energy and power densities of micro-supercapacitors.

  2. Most promising flexible generators for the wind dominated market

    International Nuclear Information System (INIS)

    Vorushylo, I.; Keatley, P.; Hewitt, NJ

    2016-01-01

    The intermittent nature of wind power and other forms of variable renewable energy requires complementary dispatchable flexible generators in order to guarantee the efficient, reliable and secure operation of electricity systems. The most popular solution to date has been peaking plant, usually in the form of open-cycle-gas- turbines (OCGT). Energy storage technologies have so far been considered too expensive, however technology development, as well as challenging renewable targets could potentially make storage economically viable. Although new advanced flexible combined-cycle gas turbines (CCGT) have been developed by some manufacturers, they have not yet been investigated in electricity market models. This paper describes a techno-economic assessment of the most suitable flexible technologies for the wind-dominated all Ireland electricity market (the Single Electricity Market (SEM)). The analysis is conducted by considering the impact of a series of policy scenarios which are compared in an electricity market model. The comparison is quantified using three primary metrics: technical benefits to the system, economic advantages to the consumer and investment viability. Modelling results suggest that advanced CCGT and energy storage solutions are the most advantageous, however they need strong governmental support to attract potential investors and guarantee deployment in the market. - Highlights: •Future efficiency and stability of the wind dominated require flexible generators. •Energy storage systems are the most technically advantageous flexible generators. •The advanced flexible CCGT is the most efficient solution from an economic point of view. •Traditional peaking plants (OCGT) is the least advantageous flexible generator. •The governments will play a key role in integration of the flexible technologies.

  3. Piezoelectric ribbons printed onto rubber for flexible energy conversion.

    Science.gov (United States)

    Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C

    2010-02-10

    The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

  4. New business model of flexible housing

    NARCIS (Netherlands)

    Zairul, Z.; Geraedts, R.P.

    2015-01-01

    The Open Building (OB) and the concept of flexible housing has alwaysassociated with user’s ability to respond to changing demand. It is necessary that housing can adap to changing market conditions and different users’ requirements. Flexibility makes a crucial concept that one cannot ignore.

  5. Flexible automated manufacturing for SMEs

    DEFF Research Database (Denmark)

    Grube Hansen, David; Bilberg, Arne; Madsen, Erik Skov

    2017-01-01

    SMEs are in general highly flexible and agile in order to accommodate the customer demands in the paradigm of High Mix-Low Volume manufacturing. The flexibility and agility have mainly been enabled by manual labor, but as we are entering the technology and data driven fourth industrial revolution......, where augmented operators and machines work in cooperation in a highly flexible and productive manufacturing system both an opportunity and a need has raised for developing highly flexible and efficient automation....

  6. Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2014-01-01

    Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.

  7. Global Sourcing Flexibility

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2013-01-01

    the higher costs (but decreased risk for value chain disruption) embedded in a more flexible global sourcing model that allows the firm to replicate and/or relocate activities across multiple locations. We develop a model and propositions on facilitating and constraining conditions of global sourcing...... sourcing flexibility. Here we draw on prior research in the fields of organizational flexibility, international business and global sourcing as well as case examples and secondary studies. In the second part of the paper, we discuss the implications of global sourcing flexibility for firm strategy...... and operations against the backdrop of the theory-based definition of the construct. We discuss in particular the importance of global sourcing flexibility for operational performance stability, and the trade-off between specialization benefits, emerging from location and service provider specialization, versus...

  8. sensitivity analysis on flexible road pavement life cycle cost model

    African Journals Online (AJOL)

    user

    of sensitivity analysis on a developed flexible pavement life cycle cost model using varying discount rate. The study .... organizations and specific projects needs based. Life-cycle ... developed and completed urban road infrastructure corridor ...

  9. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    Science.gov (United States)

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  11. Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Pedersen, Emil Bøje Lind

    2015-01-01

    one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use......The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added...

  12. Flexible histone tails in a new mesoscopic oligonucleosome model.

    Science.gov (United States)

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  13. Conscientiousness at the workplace: Applying mixture IRT to investigate scalability and predictive validity

    NARCIS (Netherlands)

    Egberink, I.J.L.; Meijer, R.R.; Veldkamp, Bernard P.

    2010-01-01

    Mixture item response theory (IRT) models have been used to assess multidimensionality of the construct being measured and to detect different response styles for different groups. In this study a mixture version of the graded response model was applied to investigate scalability and predictive

  14. Conscientiousness in the workplace : Applying mixture IRT to investigate scalability and predictive validity

    NARCIS (Netherlands)

    Egberink, I.J.L.; Meijer, R.R.; Veldkamp, B.P.

    Mixture item response theory (IRT) models have been used to assess multidimensionality of the construct being measured and to detect different response styles for different groups. In this study a mixture version of the graded response model was applied to investigate scalability and predictive

  15. Propulsive performance of pitching foils with variable chordwise flexibility

    Science.gov (United States)

    Zeyghami, Samane; Moored, Keith; Lehigh University Team

    2017-11-01

    Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.

  16. Modeling and Simulation of Variable Mass, Flexible Structures

    Science.gov (United States)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the

  17. Access is mainly a second-order process: SDT models whether phenomenally (first-order) conscious states are accessed by reflectively (second-order) conscious processes.

    Science.gov (United States)

    Snodgrass, Michael; Kalaida, Natasha; Winer, E Samuel

    2009-06-01

    Access can either be first-order or second-order. First order access concerns whether contents achieve representation in phenomenal consciousness at all; second-order access concerns whether phenomenally conscious contents are selected for metacognitive, higher order processing by reflective consciousness. When the optional and flexible nature of second-order access is kept in mind, there remain strong reasons to believe that exclusion failure can indeed isolate phenomenally conscious stimuli that are not so accessed. Irvine's [Irvine, E. (2009). Signal detection theory, the exclusion failure paradigm and weak consciousness-Evidence for the access/phenomenal distinction? Consciousness and Cognition.] partial access argument fails because exclusion failure is indeed due to lack of second-order access, not insufficient phenomenally conscious information. Further, the enable account conforms with both qualitative differences and subjective report, and is simpler than the endow account. Finally, although first-order access may be a distinct and important process, second-order access arguably reflects the core meaning of access generally.

  18. Model of Formation of the Enterprise Business Portfolio in the Context of Ensuring Strategic Flexibility

    Directory of Open Access Journals (Sweden)

    Shatilova Olena V.

    2014-01-01

    Full Text Available The article considers urgent problems of enterprise management under conditions of external environment instability, studies problems of the enterprise strategic flexibility management. It shows that one of the efficient mechanisms of ensuring strategic flexibility is restructuring of the enterprise business portfolio in accordance with the change of the situation in the target market of enterprise functioning. The goal of the article is development of a model of formation of enterprise business portfolio in the context of ensuring strategic flexibility. The main method of optimisation of the enterprise business portfolio in the context of ensuring strategic flexibility is the use of modification of the Markowitz model of investment portfolio formation. The offered model of the enterprise business portfolio formation allows taking into account changes of external and internal environments and conducting portfolio restructuring in the event of the change of the enterprise target market situation. Prospects of further studies in this direction are detailed elaboration and formalisation of the organisational and economic mechanism of realisation of strategic flexibility at an enterprise.

  19. Effects of structural flexibility of wings in flapping flight of butterfly.

    Science.gov (United States)

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto

    2012-06-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.

  20. Effects of structural flexibility of wings in flapping flight of butterfly

    International Nuclear Information System (INIS)

    Senda, Kei; Yokoyama, Naoto; Obara, Takuya; Kitamura, Masahiko; Hirai, Norio; Iima, Makoto

    2012-01-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability. (paper)

  1. Fusion Control of Flexible Logic Control and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2014-01-01

    Full Text Available Based on the basic physical meaning of error E and error variety EC, this paper analyzes the logical relationship between them and uses Universal Combinatorial Operation Model in Universal Logic to describe it. Accordingly, a flexible logic control method is put forward to realize effective control on multivariable nonlinear system. In order to implement fusion control with artificial neural network, this paper proposes a new neuron model of Zero-level Universal Combinatorial Operation in Universal Logic. And the artificial neural network of flexible logic control model is implemented based on the proposed neuron model. Finally, stability control, anti-interference control of double inverted-pendulum system, and free walking of cart pendulum system on a level track are realized, showing experimentally the feasibility and validity of this method.

  2. SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores.

    Science.gov (United States)

    Meng, Jintao; Wang, Bingqiang; Wei, Yanjie; Feng, Shengzhong; Balaji, Pavan

    2014-01-01

    There is a widening gap between the throughput of massive parallel sequencing machines and the ability to analyze these sequencing data. Traditional assembly methods requiring long execution time and large amount of memory on a single workstation limit their use on these massive data. This paper presents a highly scalable assembler named as SWAP-Assembler for processing massive sequencing data using thousands of cores, where SWAP is an acronym for Small World Asynchronous Parallel model. In the paper, a mathematical description of multi-step bi-directed graph (MSG) is provided to resolve the computational interdependence on merging edges, and a highly scalable computational framework for SWAP is developed to automatically preform the parallel computation of all operations. Graph cleaning and contig extension are also included for generating contigs with high quality. Experimental results show that SWAP-Assembler scales up to 2048 cores on Yanhuang dataset using only 26 minutes, which is better than several other parallel assemblers, such as ABySS, Ray, and PASHA. Results also show that SWAP-Assembler can generate high quality contigs with good N50 size and low error rate, especially it generated the longest N50 contig sizes for Fish and Yanhuang datasets. In this paper, we presented a highly scalable and efficient genome assembly software, SWAP-Assembler. Compared with several other assemblers, it showed very good performance in terms of scalability and contig quality. This software is available at: https://sourceforge.net/projects/swapassembler.

  3. Development of a scalable generic platform for adaptive optics real time control

    Science.gov (United States)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  4. Modeling Fetal Weight for Gestational Age: A Comparison of a Flexible Multi-level Spline-based Model with Other Approaches

    Science.gov (United States)

    Villandré, Luc; Hutcheon, Jennifer A; Perez Trejo, Maria Esther; Abenhaim, Haim; Jacobsen, Geir; Platt, Robert W

    2011-01-01

    We present a model for longitudinal measures of fetal weight as a function of gestational age. We use a linear mixed model, with a Box-Cox transformation of fetal weight values, and restricted cubic splines, in order to flexibly but parsimoniously model median fetal weight. We systematically compare our model to other proposed approaches. All proposed methods are shown to yield similar median estimates, as evidenced by overlapping pointwise confidence bands, except after 40 completed weeks, where our method seems to produce estimates more consistent with observed data. Sex-based stratification affects the estimates of the random effects variance-covariance structure, without significantly changing sex-specific fitted median values. We illustrate the benefits of including sex-gestational age interaction terms in the model over stratification. The comparison leads to the conclusion that the selection of a model for fetal weight for gestational age can be based on the specific goals and configuration of a given study without affecting the precision or value of median estimates for most gestational ages of interest. PMID:21931571

  5. Modular Universal Scalable Ion-trap Quantum Computer

    Science.gov (United States)

    2016-06-02

    SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11

  6. Flexible Overoxidized Polypyrrole Films with Orderly Structure as High-Performance Anodes for Li- and Na-Ion Batteries.

    Science.gov (United States)

    Yuan, Tao; Ruan, Jiafeng; Zhang, Weimin; Tan, Zhuopeng; Yang, Junhe; Ma, Zi-Feng; Zheng, Shiyou

    2016-12-28

    Flexible polypyrrole (PPy) films with highly ordered structures were fabricated by a novel vapor phase polymerization (VPP) process and used as the anode material in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The PPy films demonstrate excellent rate performance and cycling stability. At a charge/discharge rate of 1 C, the reversible capacities of the PPy film anode reach 284.9 and 177.4 mAh g -1 in LIBs and SIBs, respectively. Even at a charge/discharge rate of 20 C, the reversible capacity of the PPy film anode retains 54.0% and 52.9% of the capacity of 1 C in LIBs and SIBs, respectively. After 1000 electrochemical cycles at a rate of 10 C, there is no obvious capacity fading. The molecular structure and electrochemical behaviors of Li- and Na-ion doping and dedoping in the PPy films are investigated by XPS and ex situ XRD. It is believed that the PPy film electrodes in the overoxidized state can be reversibly charged and discharged through the doping and dedoping of lithium or sodium ions. Because of the self-adaptation of the doped ions, the ordered pyrrolic chain structure can realize a fast charge/discharge process. This result may substantially contribute to the progress of research into flexible polymer electrodes in various types of batteries.

  7. A flexible software architecture for scalable real-time image and video processing applications

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2012-06-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility because they are normally oriented towards particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse and inefficient execution on multicore processors. This paper presents a novel software architecture for real-time image and video processing applications which addresses these issues. The architecture is divided into three layers: the platform abstraction layer, the messaging layer, and the application layer. The platform abstraction layer provides a high level application programming interface for the rest of the architecture. The messaging layer provides a message passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of messages. The application layer provides a repository for reusable application modules designed for real-time image and video processing applications. These modules, which include acquisition, visualization, communication, user interface and data processing modules, take advantage of the power of other well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, we present different prototypes and applications to show the possibilities of the proposed architecture.

  8. A flexible architecture for advanced process control solutions

    Science.gov (United States)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  9. The advantage of flexible neuronal tunings in neural network models for motor learning

    Science.gov (United States)

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141

  10. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  11. Molecular dynamics simulation study on the phase behavior of the Gay-Berne model with a terminal dipole and a flexible tail

    International Nuclear Information System (INIS)

    Fukunaga, Hiroo; Takimoto, Jun-ichi; Doi, Masao

    2004-01-01

    To study the effect of the alkyl tail and the terminal dipole on the stability of the liquid crystalline phase of mesogens, we have carried out molecular dynamics simulations for 1CB(4-methyl-4 ' -cyanobiphenyl) and 5CB(4-n-pentyl-4 ' -cyanobiphenyl) by using a coarse-grained model. In the coarse-grained model, a 5CB molecule is divided into the rigid part of 1CB moiety, which is represented by an ellipsoid, and the remaining flexible part which is represented by a chain of united atoms. The nonbonded potential between coarse-grained segments is represented by the generalized Gay-Berne (GB) potential and the potential parameters are determined by directly comparing the GB potential with the atomistic potentials averaged over the rotation of the mesogen around its axis. In addition, a dipole moment is placed at one end of the ellipsoid opposite to the flexible tail. The ordered state obtained in the polar 5CB model was assigned as the nematic phase, and the experimental static and dynamical properties were reproduced well by using this coarse-grained model. Both the dipole-dipole interactions and the thermal fluctuation of the flexible tail increase the positional disorder in the director direction, and stabilize the nematic phase. Thus, the nematic phase in the polar 5CB is induced by a cooperative effect of the flexible tail and the terminal dipole. It is noted that a local bilayer structure with head-to-head association is formed in the nematic phase, as experimentally observed by x-ray diffraction measurements

  12. Static aeroelastic analysis including geometric nonlinearities based on reduced order model

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-04-01

    Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.

  13. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  14. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  15. Application of the random coil index to studying protein flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark V.; Wishart, David S. [University of Alberta, Department of Computing Science (Canada)], E-mail: david.wishart@ualberta.ca

    2008-01-15

    Protein flexibility lies at the heart of many protein-ligand binding events and enzymatic activities. However, the experimental measurement of protein motions is often difficult, tedious and error-prone. As a result, there is a considerable interest in developing simpler and faster ways of quantifying protein flexibility. Recently, we described a method, called Random Coil Index (RCI), which appears to be able to quantitatively estimate model-free order parameters and flexibility in protein structural ensembles using only backbone chemical shifts. Because of its potential utility, we have undertaken a more detailed investigation of the RCI method in an attempt to ascertain its underlying principles, its general utility, its sensitivity to chemical shift errors, its sensitivity to data completeness, its applicability to other proteins, and its general strengths and weaknesses. Overall, we find that the RCI method is very robust and that it represents a useful addition to traditional methods of studying protein flexibility. We have implemented many of the findings and refinements reported here into a web server that allows facile, automated predictions of model-free order parameters, MD RMSF and NMR RMSD values directly from backbone {sup 1}H, {sup 13}C and {sup 15}N chemical shift assignments. The server is available at http: //wishart.biology.ualberta.ca/rcihttp://wishart.biology.ualberta.ca/rci.

  16. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  17. Customer Order Decoupling Point Selection Model in Mass Customization Based on MAS

    Institute of Scientific and Technical Information of China (English)

    XU Xuanguo; LI Xiangyang

    2006-01-01

    Mass customization relates to the ability of providing individually designed products or services to customer with high process flexibility or integration. Literatures on mass customization have been focused on mechanism of MC, but little on customer order decoupling point selection. The aim of this paper is to present a model for customer order decoupling point selection of domain knowledge interactions between enterprises and customers in mass customization. Based on the analysis of other researchers' achievements combining the demand problems of customer and enterprise, a model of group decision for customer order decoupling point selection is constructed based on quality function deployment and multi-agent system. Considering relatively the decision makers of independent functional departments as independent decision agents, a decision agent set is added as the third dimensionality to house of quality, the cubic quality function deployment is formed. The decision-making can be consisted of two procedures: the first one is to build each plane house of quality in various functional departments to express each opinions; the other is to evaluate and gather the foregoing sub-decisions by a new plane quality function deployment. Thus, department decision-making can well use its domain knowledge by ontology, and total decision-making can keep simple by avoiding too many customer requirements.

  18. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  19. A flexible framework for secure and efficient program obfuscation.

    Energy Technology Data Exchange (ETDEWEB)

    Solis, John Hector

    2013-03-01

    In this paper, we present a modular framework for constructing a secure and efficient program obfuscation scheme. Our approach, inspired by the obfuscation with respect to oracle machines model of [4], retains an interactive online protocol with an oracle, but relaxes the original computational and storage restrictions. We argue this is reasonable given the computational resources of modern personal devices. Furthermore, we relax the information-theoretic security requirement for computational security to utilize established cryptographic primitives. With this additional flexibility we are free to explore different cryptographic buildingblocks. Our approach combines authenticated encryption with private information retrieval to construct a secure program obfuscation framework. We give a formal specification of our framework, based on desired functionality and security properties, and provide an example instantiation. In particular, we implement AES in Galois/Counter Mode for authenticated encryption and the Gentry-Ramzan [13]constant communication-rate private information retrieval scheme. We present our implementation results and show that non-trivial sized programs can be realized, but scalability is quickly limited by computational overhead. Finally, we include a discussion on security considerations when instantiating specific modules.

  20. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  1. Development of Improved Mechanistic Deterioration Models for Flexible Pavements

    DEFF Research Database (Denmark)

    Ullidtz, Per; Ertman, Hans Larsen

    1998-01-01

    The paper describes a pilot study in Denmark with the main objective of developing improved mechanistic deterioration models for flexible pavements based on an accelerated full scale test on an instrumented pavement in the Danish Road Tessting Machine. The study was the first in "International...... Pavement Subgrade Performance Study" sponsored by the Federal Highway Administration (FHWA), USA. The paper describes in detail the data analysis and the resulting models for rutting, roughness, and a model for the plastic strain in the subgrade.The reader will get an understanding of the work needed...

  2. Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series

    Science.gov (United States)

    Foreman-Mackey, Daniel; Agol, Eric; Ambikasaran, Sivaram; Angus, Ruth

    2017-12-01

    The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators—providing a physical motivation for and interpretation of this choice—but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.

  3. Approaches for scalable modeling and emulation of cyber systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.; Rudish, Don W.

    2009-09-01

    The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminary theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.

  4. Coalescent: an open-source and scalable framework for exact calculations in coalescent theory

    Science.gov (United States)

    2012-01-01

    Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach. PMID:23033878

  5. Coalescent: an open-source and scalable framework for exact calculations in coalescent theory

    Directory of Open Access Journals (Sweden)

    Tewari Susanta

    2012-10-01

    Full Text Available Abstract Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach.

  6. Cloud flexibility using DIRAC interware

    Science.gov (United States)

    Fernandez Albor, Víctor; Seco Miguelez, Marcos; Fernandez Pena, Tomas; Mendez Muñoz, Victor; Saborido Silva, Juan Jose; Graciani Diaz, Ricardo

    2014-06-01

    Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for several

  7. Cloud flexibility using DIRAC interware

    International Nuclear Information System (INIS)

    Albor, Víctor Fernandez; Miguelez, Marcos Seco; Silva, Juan Jose Saborido; Pena, Tomas Fernandez; Muñoz, Victor Mendez; Diaz, Ricardo Graciani

    2014-01-01

    Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for

  8. Scalability of optical networks : crosstalk limitations

    NARCIS (Netherlands)

    Tafur Monroy, I.

    2000-01-01

    Optical networks represent a promising solution for the future high capacity and flexible transport network. This paper presents a model for the performance evaluation of optical networks with respect to linear crosstalk and accumulated spontaneous emission noise. The proposed model is intended for

  9. Scuba: scalable kernel-based gene prioritization.

    Science.gov (United States)

    Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio

    2018-01-25

    The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .

  10. Building scalable apps with Redis and Node.js

    CERN Document Server

    Johanan, Joshua

    2014-01-01

    If the phrase scalability sounds alien to you, then this is an ideal book for you. You will not need much Node.js experience as each framework is demonstrated in a way that requires no previous knowledge of the framework. You will be building scalable Node.js applications in no time! Knowledge of JavaScript is required.

  11. Scalable shared-memory multiprocessing

    CERN Document Server

    Lenoski, Daniel E

    1995-01-01

    Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.

  12. Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods

    International Nuclear Information System (INIS)

    Shen, Vincent K.; Siderius, Daniel W.

    2014-01-01

    Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents

  13. On nonlinear reduced order modeling

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.

    2011-01-01

    When applied to a model that receives n input parameters and predicts m output responses, a reduced order model estimates the variations in the m outputs of the original model resulting from variations in its n inputs. While direct execution of the forward model could provide these variations, reduced order modeling plays an indispensable role for most real-world complex models. This follows because the solutions of complex models are expensive in terms of required computational overhead, thus rendering their repeated execution computationally infeasible. To overcome this problem, reduced order modeling determines a relationship (often referred to as a surrogate model) between the input and output variations that is much cheaper to evaluate than the original model. While it is desirable to seek highly accurate surrogates, the computational overhead becomes quickly intractable especially for high dimensional model, n ≫ 10. In this manuscript, we demonstrate a novel reduced order modeling method for building a surrogate model that employs only 'local first-order' derivatives and a new tensor-free expansion to efficiently identify all the important features of the original model to reach a predetermined level of accuracy. This is achieved via a hybrid approach in which local first-order derivatives (i.e., gradient) of a pseudo response (a pseudo response represents a random linear combination of original model’s responses) are randomly sampled utilizing a tensor-free expansion around some reference point, with the resulting gradient information aggregated in a subspace (denoted by the active subspace) of dimension much less than the dimension of the input parameters space. The active subspace is then sampled employing the state-of-the-art techniques for global sampling methods. The proposed method hybridizes the use of global sampling methods for uncertainty quantification and local variational methods for sensitivity analysis. In a similar manner to

  14. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.

    Science.gov (United States)

    Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya

    2014-02-07

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.

  15. Working towards a scalable model of problem-based learning instruction in undergraduate engineering education

    Science.gov (United States)

    Mantri, Archana

    2014-05-01

    The intent of the study presented in this paper is to show that the model of problem-based learning (PBL) can be made scalable by designing curriculum around a set of open-ended problems (OEPs). The detailed statistical analysis of the data collected to measure the effects of traditional and PBL instructions for three courses in Electronics and Communication Engineering, namely Analog Electronics, Digital Electronics and Pulse, Digital & Switching Circuits is presented here. It measures the effects of pedagogy, gender and cognitive styles on the knowledge, skill and attitude of the students. The study was conducted two times with content designed around same set of OEPs but with two different trained facilitators for all the three courses. The repeatability of results for effects of the independent parameters on dependent parameters is studied and inferences are drawn.

  16. A comparative study of velocity increment generation between the rigid body and flexible models of MMET

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Norilmi Amilia, E-mail: aenorilmi@usm.my [School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2016-02-01

    The motorized momentum exchange tether (MMET) is capable of generating useful velocity increments through spin–orbit coupling. This study presents a comparative study of the velocity increments between the rigid body and flexible models of MMET. The equations of motions of both models in the time domain are transformed into a function of true anomaly. The equations of motion are integrated, and the responses in terms of the velocity increment of the rigid body and flexible models are compared and analysed. Results show that the initial conditions, eccentricity, and flexibility of the tether have significant effects on the velocity increments of the tether.

  17. Incident Duration Modeling Using Flexible Parametric Hazard-Based Models

    Directory of Open Access Journals (Sweden)

    Ruimin Li

    2014-01-01

    Full Text Available Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time.

  18. All-solid state, flexible, high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi2S4 nanosheets.

    Science.gov (United States)

    Moosavifard, Seyyed Ebrahim; Shamsi, Javad; Altafi, Mohammad Kazem; Moosavifard, Zeinab Sadat

    2016-11-18

    3D LSG/CoNi 2 S 4 //LSG interdigitated microelectrodes have been firstly developed by a facile, scalable and low cost process for all-solid-state, flexible integrated asymmetric micro-supercapacitors. These devices can achieve energy densities of up to 49 W h l -1 which is comparable to those of lead acid batteries.

  19. A scalable healthcare information system based on a service-oriented architecture.

    Science.gov (United States)

    Yang, Tzu-Hsiang; Sun, Yeali S; Lai, Feipei

    2011-06-01

    Many existing healthcare information systems are composed of a number of heterogeneous systems and face the important issue of system scalability. This paper first describes the comprehensive healthcare information systems used in National Taiwan University Hospital (NTUH) and then presents a service-oriented architecture (SOA)-based healthcare information system (HIS) based on the service standard HL7. The proposed architecture focuses on system scalability, in terms of both hardware and software. Moreover, we describe how scalability is implemented in rightsizing, service groups, databases, and hardware scalability. Although SOA-based systems sometimes display poor performance, through a performance evaluation of our HIS based on SOA, the average response time for outpatient, inpatient, and emergency HL7Central systems are 0.035, 0.04, and 0.036 s, respectively. The outpatient, inpatient, and emergency WebUI average response times are 0.79, 1.25, and 0.82 s. The scalability of the rightsizing project and our evaluation results show that the SOA HIS we propose provides evidence that SOA can provide system scalability and sustainability in a highly demanding healthcare information system.

  20. Flexible competing risks regression modeling and goodness-of-fit

    DEFF Research Database (Denmark)

    Scheike, Thomas; Zhang, Mei-Jie

    2008-01-01

    In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause...... models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy...... of the flexible regression models to analyze competing risks data when non-proportionality is present in the data....

  1. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  2. Using self-similarity compensation for improving inter-layer prediction in scalable 3D holoscopic video coding

    Science.gov (United States)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2013-09-01

    Holoscopic imaging, also known as integral imaging, has been recently attracting the attention of the research community, as a promising glassless 3D technology due to its ability to create a more realistic depth illusion than the current stereoscopic or multiview solutions. However, in order to gradually introduce this technology into the consumer market and to efficiently deliver 3D holoscopic content to end-users, backward compatibility with legacy displays is essential. Consequently, to enable 3D holoscopic content to be delivered and presented on legacy displays, a display scalable 3D holoscopic coding approach is required. Hence, this paper presents a display scalable architecture for 3D holoscopic video coding with a three-layer approach, where each layer represents a different level of display scalability: Layer 0 - a single 2D view; Layer 1 - 3D stereo or multiview; and Layer 2 - the full 3D holoscopic content. In this context, a prediction method is proposed, which combines inter-layer prediction, aiming to exploit the existing redundancy between the multiview and the 3D holoscopic layers, with self-similarity compensated prediction (previously proposed by the authors for non-scalable 3D holoscopic video coding), aiming to exploit the spatial redundancy inherent to the 3D holoscopic enhancement layer. Experimental results show that the proposed combined prediction can improve significantly the rate-distortion performance of scalable 3D holoscopic video coding with respect to the authors' previously proposed solutions, where only inter-layer or only self-similarity prediction is used.

  3. Flexible AC transmission systems modelling and control

    CERN Document Server

    Zhang, Xiao-Ping; Pal, Bikash

    2012-01-01

    The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and

  4. The behaviour of flexible riser tensile armour in the region of an end fitting

    OpenAIRE

    Martindale, H. G. A.

    2006-01-01

    This is a study of axial and transverse slip in helically wound armour wires on flexible pipe under the influence of end restraint. Analysis of steel strip layers in order to find the effect of end restraint prompted the development of a new model to describe their behaviour. This avoids the shortfalls of adapting previous models designed either for similar but different structures or for application away from any end fitting restraint. Previous analytical solutions concerning flexible pipe t...

  5. Scalable group level probabilistic sparse factor analysis

    DEFF Research Database (Denmark)

    Hinrich, Jesper Løve; Nielsen, Søren Føns Vind; Riis, Nicolai Andre Brogaard

    2017-01-01

    Many data-driven approaches exist to extract neural representations of functional magnetic resonance imaging (fMRI) data, but most of them lack a proper probabilistic formulation. We propose a scalable group level probabilistic sparse factor analysis (psFA) allowing spatially sparse maps, component...... pruning using automatic relevance determination (ARD) and subject specific heteroscedastic spatial noise modeling. For task-based and resting state fMRI, we show that the sparsity constraint gives rise to components similar to those obtained by group independent component analysis. The noise modeling...... shows that noise is reduced in areas typically associated with activation by the experimental design. The psFA model identifies sparse components and the probabilistic setting provides a natural way to handle parameter uncertainties. The variational Bayesian framework easily extends to more complex...

  6. Flexible session management in a distributed environment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Zach; /Wisconsin U., Madison; Bradley, Dan; /Wisconsin U., Madison; Tannenbaum, Todd; /Wisconsin U., Madison; Sfiligoi, Igor; /Fermilab

    2010-01-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  7. Flexible session management in a distributed environment

    International Nuclear Information System (INIS)

    Miller, Zach; Bradley, Dan; Tannenbaum, Todd; Sfiligoi, Igor

    2010-01-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  8. Flexible session management in a distributed environment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Zach; Bradley, Dan; Tannenbaum, Todd [University of Wisconsin, Madison, WI (United States); Sfiligoi, Igor, E-mail: zmiller@cs.wisc.ed [Fermi National Acceleartor Laboratory, Batavia, IL (United States)

    2010-04-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  9. Flexible session management in a distributed environment

    Science.gov (United States)

    Miller, Zach; Bradley, Dan; Tannenbaum, Todd; Sfiligoi, Igor

    2010-04-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  10. Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Johann C. Dauer

    2014-05-01

    Full Text Available Unmanned aircraft (UA applications impose a variety of computing tasks on the on-board computer system. From a research perspective, it is often more convenient to evaluate algorithms on bigger aircraft as they are capable of lifting heavier loads and thus more powerful computational units. On the other hand, smaller systems are often less expensive and operation is less restricted in many countries. This paper thus presents a conceptual design for flight software that can be evaluated on the UA of convenient size. The integration effort required to transfer the algorithm to different sized UA is significantly reduced. This scalability is achieved by using exchangeable payload modules and a flexible process distribution on different processing units. The presented approach is discussed using the example of the flight software of a 14 kg unmanned helicopter and an equivalent of 1.5 kg. The proof of concept is shown by means of flight performance in a hardware-in-the-loop simulation.

  11. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    Science.gov (United States)

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  12. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  13. Automation Hooks Architecture for Flexible Test Orchestration - Concept Development and Validation

    Science.gov (United States)

    Lansdowne, C. A.; Maclean, John R.; Winton, Chris; McCartney, Pat

    2011-01-01

    The Automation Hooks Architecture Trade Study for Flexible Test Orchestration sought a standardized data-driven alternative to conventional automated test programming interfaces. The study recommended composing the interface using multicast DNS (mDNS/SD) service discovery, Representational State Transfer (Restful) Web Services, and Automatic Test Markup Language (ATML). We describe additional efforts to rapidly mature the Automation Hooks Architecture candidate interface definition by validating it in a broad spectrum of applications. These activities have allowed us to further refine our concepts and provide observations directed toward objectives of economy, scalability, versatility, performance, severability, maintainability, scriptability and others.

  14. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.

    Science.gov (United States)

    Merolla, Paul A; Arthur, John V; Alvarez-Icaza, Rodrigo; Cassidy, Andrew S; Sawada, Jun; Akopyan, Filipp; Jackson, Bryan L; Imam, Nabil; Guo, Chen; Nakamura, Yutaka; Brezzo, Bernard; Vo, Ivan; Esser, Steven K; Appuswamy, Rathinakumar; Taba, Brian; Amir, Arnon; Flickner, Myron D; Risk, William P; Manohar, Rajit; Modha, Dharmendra S

    2014-08-08

    Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts. Copyright © 2014, American Association for the Advancement of Science.

  15. Load and Flexibility Models for Distribution Grid Management

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos

    to advanced metering and control infrastructure investments. These investments will transform distribution networks into smarter" grids which will facilitate flexible load/generation control in return for financial and reliability benefits to electricity consumers. The theoretical idea of modernising the grid...... involve lack of generic load forecasts, need for flexible load/generation estimation techniques from smart meter measurements, deficiencies in online load distribution observability, and, finally, energy market compatible control algorithms which treat consumer flexibility in a fair manner. These modules...... congestions, is proposed. In the first step, a central controller manages flexibility proactively, whereas in the second step a decentralised control scheme deals with flexibility reactively. Both controllers are designed in such a way, that compatibility with contemporary markets is assured, while special...

  16. What can we learn from learning models about sensitivity to letter-order in visual word recognition?

    Science.gov (United States)

    Lerner, Itamar; Armstrong, Blair C.; Frost, Ram

    2014-01-01

    Recent research on the effects of letter transposition in Indo-European Languages has shown that readers are surprisingly tolerant of these manipulations in a range of tasks. This evidence has motivated the development of new computational models of reading that regard flexibility in positional coding to be a core and universal principle of the reading process. Here we argue that such approach does not capture cross-linguistic differences in transposed-letter effects, nor do they explain them. To address this issue, we investigated how a simple domain-general connectionist architecture performs in tasks such as letter-transposition and letter substitution when it had learned to process words in the context of different linguistic environments. The results show that in spite of of the neurobiological noise involved in registering letter-position in all languages, flexibility and inflexibility in coding letter order is also shaped by the statistical orthographic properties of words in a language, such as the relative prevalence of anagrams. Our learning model also generated novel predictions for targeted empirical research, demonstrating a clear advantage of learning models for studying visual word recognition. PMID:25431521

  17. Ordering dynamics of microscopic models with nonconserved order parameter of continuous symmetry

    DEFF Research Database (Denmark)

    Zhang, Z.; Mouritsen, Ole G.; Zuckermann, Martin J.

    1993-01-01

    crystals. For both models, which have a nonconserved order parameter, it is found that the linear scale, R(t), of the evolving order, following quenches to below the transition temperature, grows at late times in an effectively algebraic fashion, R(t)∼tn, with exponent values which are strongly temperature......Numerical Monte Carlo temperature-quenching experiments have been performed on two three-dimensional classical lattice models with continuous ordering symmetry: the Lebwohl-Lasher model [Phys. Rev. A 6, 426 (1972)] and the ferromagnetic isotropic Heisenberg model. Both models describe a transition...... from a disordered phase to an orientationally ordered phase of continuous symmetry. The Lebwohl-Lasher model accounts for the orientational ordering properties of the nematic-isotropic transition in liquid crystals and the Heisenberg model for the ferromagnetic-paramagnetic transition in magnetic...

  18. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  19. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  20. A Taxonomy for Modeling Flexibility and a Computationally Efficient Algorithm for Dispatch in Smart Grids

    DEFF Research Database (Denmark)

    Petersen, Mette Højgaard; Edlund, Kristian; Hansen, Lars Henrik

    2013-01-01

    The word flexibility is central to Smart Grid literature, but still a formal definition of flexibility is pending. This paper present a taxonomy for flexibility modeling denoted Buckets, Batteries and Bakeries. We consider a direct control Virtual Power Plant (VPP), which is given the task...... of servicing a portfolio of flexible consumers by use of a fluctuating power supply. Based on the developed taxonomy we first prove that no causal optimal dispatch strategies exist for the considered problem. We then present two heuristic algorithms for solving the balancing task: Predictive Balancing...

  1. Architectures and Applications for Scalable Quantum Information Systems

    Science.gov (United States)

    2007-01-01

    Gershenfeld and I. Chuang. Quantum computing with molecules. Scientific American, June 1998. [16] A. Globus, D. Bailey, J. Han, R. Jaffe, C. Levit , R...AFRL-IF-RS-TR-2007-12 Final Technical Report January 2007 ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS...NUMBER 5b. GRANT NUMBER FA8750-01-2-0521 4. TITLE AND SUBTITLE ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS 5c

  2. A~Scalable~Data~Taking~System at~a~Test~Beam~for~LHC

    CERN Multimedia

    2002-01-01

    % RD-13 A Scalable Data Taking System at a Test Beam for LHC \\\\ \\\\We have installed a test beam read-out facility for the simultaneous test of LHC detectors, trigger and read-out electronics, together with the development of the supporting architecture in a multiprocessor environment. The aim of the project is to build a system which incorporates all the functionality of a complete read-out chain. Emphasis is put on a highly modular design, such that new hardware and software developments can be conveniently introduced. Exploiting this modularity, the set-up will evolve driven by progress in technologies and new software developments. \\\\ \\\\One of the main thrusts of the project is modelling and integration of different read-out architectures to provide a valuable training ground for new techniques. To address these aspects in a realistic manner, we collaborate with detector R\\&D projects in order to test higher level trigger systems, event building and high rate data transfers, once the techniques involve...

  3. Extending JPEG-LS for low-complexity scalable video coding

    DEFF Research Database (Denmark)

    Ukhanova, Anna; Sergeev, Anton; Forchhammer, Søren

    2011-01-01

    JPEG-LS, the well-known international standard for lossless and near-lossless image compression, was originally designed for non-scalable applications. In this paper we propose a scalable modification of JPEG-LS and compare it with the leading image and video coding standards JPEG2000 and H.264/SVC...

  4. Flexible Macroblock Ordering for Context-Aware Ultrasound Video Transmission over Mobile WiMAX

    Science.gov (United States)

    Martini, Maria G.; Hewage, Chaminda T. E. R.

    2010-01-01

    The most recent network technologies are enabling a variety of new applications, thanks to the provision of increased bandwidth and better management of Quality of Service. Nevertheless, telemedical services involving multimedia data are still lagging behind, due to the concern of the end users, that is, clinicians and also patients, about the low quality provided. Indeed, emerging network technologies should be appropriately exploited by designing the transmission strategy focusing on quality provision for end users. Stemming from this principle, we propose here a context-aware transmission strategy for medical video transmission over WiMAX systems. Context, in terms of regions of interest (ROI) in a specific session, is taken into account for the identification of multiple regions of interest, and compression/transmission strategies are tailored to such context information. We present a methodology based on H.264 medical video compression and Flexible Macroblock Ordering (FMO) for ROI identification. Two different unequal error protection methodologies, providing higher protection to the most diagnostically relevant data, are presented. PMID:20827292

  5. Efficient dynamic simulation of flexible link manipulators with PID control

    NARCIS (Netherlands)

    Aarts, Ronald G.K.M.; Jonker, Jan B.; Mook, D.T.; Balachandran, B.

    2001-01-01

    For accurate simulations of the dynamic behavior of flexible manipulators the combination of a perturbation method and modal analysis is proposed. First, the vibrational motion is modeled as a first-order perturbation of a nominal rigid link motion. The vibrational motion is then described by a set

  6. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film.

    Science.gov (United States)

    Gao, Pingqi; Zhang, Qing

    2014-02-14

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

  7. Traffic and Quality Characterization of the H.264/AVC Scalable Video Coding Extension

    Directory of Open Access Journals (Sweden)

    Geert Van der Auwera

    2008-01-01

    Full Text Available The recent scalable video coding (SVC extension to the H.264/AVC video coding standard has unprecedented compression efficiency while supporting a wide range of scalability modes, including temporal, spatial, and quality (SNR scalability, as well as combined spatiotemporal SNR scalability. The traffic characteristics, especially the bit rate variabilities, of the individual layer streams critically affect their network transport. We study the SVC traffic statistics, including the bit rate distortion and bit rate variability distortion, with long CIF resolution video sequences and compare them with the corresponding MPEG-4 Part 2 traffic statistics. We consider (i temporal scalability with three temporal layers, (ii spatial scalability with a QCIF base layer and a CIF enhancement layer, as well as (iii quality scalability modes FGS and MGS. We find that the significant improvement in RD efficiency of SVC is accompanied by substantially higher traffic variabilities as compared to the equivalent MPEG-4 Part 2 streams. We find that separately analyzing the traffic of temporal-scalability only encodings gives reasonable estimates of the traffic statistics of the temporal layers embedded in combined spatiotemporal encodings and in the base layer of combined FGS-temporal encodings. Overall, we find that SVC achieves significantly higher compression ratios than MPEG-4 Part 2, but produces unprecedented levels of traffic variability, thus presenting new challenges for the network transport of scalable video.

  8. Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sided

    Directory of Open Access Journals (Sweden)

    Robert Gerstenberger

    2014-01-01

    Full Text Available Modern interconnects offer remote direct memory access (RDMA features. Yet, most applications rely on explicit message passing for communications albeit their unwanted overheads. The MPI-3.0 standard defines a programming interface for exploiting RDMA networks directly, however, it's scalability and practicability has to be demonstrated in practice. In this work, we develop scalable bufferless protocols that implement the MPI-3.0 specification. Our protocols support scaling to millions of cores with negligible memory consumption while providing highest performance and minimal overheads. To arm programmers, we provide a spectrum of performance models for all critical functions and demonstrate the usability of our library and models with several application studies with up to half a million processes. We show that our design is comparable to, or better than UPC and Fortran Coarrays in terms of latency, bandwidth and message rate. We also demonstrate application performance improvements with comparable programming complexity.

  9. The dual pathway to creativity model: creative ideation as a function of flexibility and persistence

    NARCIS (Netherlands)

    Nijstad, B.A.; de Dreu, C.K.W.; Rietzschel, E.F.; Baas, M.

    2010-01-01

    The dual pathway to creativity model argues that creativity—the generation of original and appropriate ideas—is a function of cognitive flexibility and cognitive persistence, and that dispositional or situational variables may influence creativity either through their effects on flexibility, on

  10. The dual pathway to creativity model : Creative ideation as a function of flexibility and persistence

    NARCIS (Netherlands)

    Nijstad, B.A.; De Dreu, C.K.W.; Rietzschel, E.F.; Baas, M.

    2010-01-01

    The dual pathway to creativity model argues that creativity-the generation of original and appropriate ideas-is a function of cognitive flexibility and cognitive persistence, and that dispositional or situational variables may influence creativity either through their effects on flexibility, on

  11. Flexible Work Options within the Organisational System

    Science.gov (United States)

    Albion, Majella J.; Chee, Munli

    2006-01-01

    The availability of flexible work options provides an opportunity for individuals to shape their careers in order to optimise their work and life goals. This study takes a systems theory approach to examine how the use of flexible work options influences relationships and interactions in the workplace. The "Flexible Work Options…

  12. On eliminating synchronous communication in molecular simulations to improve scalability

    Science.gov (United States)

    Straatsma, T. P.; Chavarría-Miranda, Daniel G.

    2013-12-01

    Molecular dynamics simulation, as a complementary tool to experimentation, has become an important methodology for the understanding and design of molecular systems as it provides access to properties that are difficult, impossible or prohibitively expensive to obtain experimentally. Many of the available software packages have been parallelized to take advantage of modern massively concurrent processing resources. The challenge in achieving parallel efficiency is commonly attributed to the fact that molecular dynamics algorithms are communication intensive. This paper illustrates how an appropriately chosen data distribution and asynchronous one-sided communication approach can be used to effectively deal with the data movement within the Global Arrays/ARMCI programming model framework. A new put_notify capability is presented here, allowing the implementation of the molecular dynamics algorithm without any explicit global or local synchronization or global data reduction operations. In addition, this push-data model is shown to very effectively allow hiding data communication behind computation. Rather than data movement or explicit global reductions, the implicit synchronization of the algorithm becomes the primary challenge for scalability. Without any explicit synchronous operations, the scalability of molecular simulations is shown to depend only on the ability to evenly balance computational load.

  13. Scalable, full-colour and controllable chromotropic plasmonic printing

    OpenAIRE

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates ...

  14. Temporal scalability comparison of the H.264/SVC and distributed video codec

    DEFF Research Database (Denmark)

    Huang, Xin; Ukhanova, Ann; Belyaev, Evgeny

    2009-01-01

    The problem of the multimedia scalable video streaming is a current topic of interest. There exist many methods for scalable video coding. This paper is focused on the scalable extension of H.264/AVC (H.264/SVC) and distributed video coding (DVC). The paper presents an efficiency comparison of SV...

  15. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes

    Science.gov (United States)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2018-03-01

    This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.

  16. Soft tissue models: easy and inexpensive flexible 3D printing as a help in surgical planning of cardiovascular disorders

    Science.gov (United States)

    Starosolski, Zbigniew; Ezon, David S.; Krishnamurthy, Rajesh; Dodd, Nicholas; Heinle, Jeffrey; Mckenzie, Dean E.; Annapragada, Ananth

    2017-03-01

    We developed a technology that allows a simple desktop 3D printer with dual extruder to fabricate 3D flexible models of Major AortoPulmonary Collateral Arteries. The study was designed to assess whether the flexible 3D printed models could help during surgical planning phase. Simple FDM 3D printers are inexpensive, versatile in use and easy to maintain, but complications arise when the designed model is complex and has tubular structures with small diameter less than 2mm. The advantages of FDM printers are cost and simplicity of use. We use precisely selected materials to overcome the obstacles listed above. Dual extruder allows to use two different materials while printing, which is especially important in the case of fragile structures like pulmonary vessels and its supporting structures. The latter should not be removed by hand to avoid a truncation of the model. We utilize the water soluble PVA as a supporting structure and Poro-Lay filament for flexible model of AortoPulmonary collateral arteries. Poro-Lay filament is different as compared to all the other flexible ones like polymer-based. Poro-Lay is rigid while printing and this allows printing of structures small in diameter. It achieves flexibility after washing out of printed model with water. It becomes soft in touch and gelatinous. Using both PVA and Poro-Lay gives a huge advantage allowing to wash out the supporting structures and achieve flexibility in one washing operation, saving time and avoiding human error with cleaning the model. We evaluated 6 models for MAPCAS surgical planning study. This approach is also cost-effective - an average cost of materials for print is less than $15; models are printed in facility without any delays. Flexibility of 3D printed models approximate soft tissues properly, mimicking Aortopulmonary collateral arteries. Second utilization models has educational value for both residents and patients' family. Simplification of 3D flexible process could help in other models

  17. Flexibility evaluation of multiechelon supply chains.

    Science.gov (United States)

    Almeida, João Flávio de Freitas; Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda

    2018-01-01

    Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.

  18. Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison

    Science.gov (United States)

    van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder

    2000-04-01

    Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very

  19. Scalable and near-optimal design space exploration for embedded systems

    CERN Document Server

    Kritikakou, Angeliki; Goutis, Costas

    2014-01-01

    This book describes scalable and near-optimal, processor-level design space exploration (DSE) methodologies.  The authors present design methodologies for data storage and processing in real-time, cost-sensitive data-dominated embedded systems.  Readers will be enabled to reduce time-to-market, while satisfying system requirements for performance, area, and energy consumption, thereby minimizing the overall cost of the final design.   • Describes design space exploration (DSE) methodologies for data storage and processing in embedded systems, which achieve near-optimal solutions with scalable exploration time; • Presents a set of principles and the processes which support the development of the proposed scalable and near-optimal methodologies; • Enables readers to apply scalable and near-optimal methodologies to the intra-signal in-place optimization step for both regular and irregular memory accesses.

  20. Software performance and scalability a quantitative approach

    CERN Document Server

    Liu, Henry H

    2009-01-01

    Praise from the Reviewers:"The practicality of the subject in a real-world situation distinguishes this book from othersavailable on the market."—Professor Behrouz Far, University of Calgary"This book could replace the computer organization texts now in use that every CS and CpEstudent must take. . . . It is much needed, well written, and thoughtful."—Professor Larry Bernstein, Stevens Institute of TechnologyA distinctive, educational text onsoftware performance and scalabilityThis is the first book to take a quantitative approach to the subject of software performance and scalability

  1. A PROFICIENT MODEL FOR HIGH END SECURITY IN CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    R. Bala Chandar

    2014-01-01

    Full Text Available Cloud computing is an inspiring technology due to its abilities like ensuring scalable services, reducing the anxiety of local hardware and software management associated with computing while increasing flexibility and scalability. A key trait of the cloud services is remotely processing of data. Even though this technology had offered a lot of services, there are a few concerns such as misbehavior of server side stored data , out of control of data owner's data and cloud computing does not control the access of outsourced data desired by the data owner. To handle these issues, we propose a new model to ensure the data correctness for assurance of stored data, distributed accountability for authentication and efficient access control of outsourced data for authorization. This model strengthens the correctness of data and helps to achieve the cloud data integrity, supports data owner to have control on their own data through tracking and improves the access control of outsourced data.

  2. On modelling of lateral buckling failure in flexible pipe tensile armour layers

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    In the present paper, a mathematical model which is capable of representing the physics of lateral buckling failure in the tensile armour layers of flexible pipes is introduced. Flexible pipes are unbounded composite steel–polymer structures, which are known to be prone to lateral wire buckling...... when exposed to repeated bending cycles and longitudinal compression, which mainly occurs during pipe laying in ultra-deep waters. On the basis of multiple single wire analyses, the mechanical behaviour of both layers of tensile armour wires can be determined. Since failure in one layer destabilises...... the torsional equilibrium which is usually maintained between the layers, lateral wire buckling is often associated with a severe pipe twist. This behaviour is discussed and modelled. Results are compared to a pipe model, in which failure is assumed not to cause twist. The buckling modes of the tensile armour...

  3. iSIGHT-FD scalability test report.

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.; Shneider, Max S.

    2008-07-01

    The engineering analysis community at Sandia National Laboratories uses a number of internal and commercial software codes and tools, including mesh generators, preprocessors, mesh manipulators, simulation codes, post-processors, and visualization packages. We define an analysis workflow as the execution of an ordered, logical sequence of these tools. Various forms of analysis (and in particular, methodologies that use multiple function evaluations or samples) involve executing parameterized variations of these workflows. As part of the DART project, we are evaluating various commercial workflow management systems, including iSIGHT-FD from Engineous. This report documents the results of a scalability test that was driven by DAKOTA and conducted on a parallel computer (Thunderbird). The purpose of this experiment was to examine the suitability and performance of iSIGHT-FD for large-scale, parameterized analysis workflows. As the results indicate, we found iSIGHT-FD to be suitable for this type of application.

  4. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  5. Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements

    International Nuclear Information System (INIS)

    Garcia-Vallejo, D.; Mayo, J.; Escalona, J. L.; Dominguez, J.

    2008-01-01

    Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated

  6. Quality Scalability Compression on Single-Loop Solution in HEVC

    Directory of Open Access Journals (Sweden)

    Mengmeng Zhang

    2014-01-01

    Full Text Available This paper proposes a quality scalable extension design for the upcoming high efficiency video coding (HEVC standard. In the proposed design, the single-loop decoder solution is extended into the proposed scalable scenario. A novel interlayer intra/interprediction is added to reduce the amount of bits representation by exploiting the correlation between coding layers. The experimental results indicate that the average Bjøntegaard delta rate decrease of 20.50% can be gained compared with the simulcast encoding. The proposed technique achieved 47.98% Bjøntegaard delta rate reduction compared with the scalable video coding extension of the H.264/AVC. Consequently, significant rate savings confirm that the proposed method achieves better performance.

  7. Flexibility in community pharmacy: a qualitative study of business models and cognitive services.

    Science.gov (United States)

    Feletto, Eleonora; Wilson, Laura K; Roberts, Alison S; Benrimoj, Shalom I

    2010-04-01

    To identify the capacity of current pharmacy business models, and the dimensions of organisational flexibility within them, to integrate products and services as well as the perceptions of viability of these models. Fifty-seven semi-structured interviews were conducted with community pharmacy owners or managers and support staff in 30 pharmacies across Australia. A framework of organisational flexibility was used to analyse their capacity to integrate services and perceptions of viability. Data were analysed using the method of constant comparison by two independent researchers. The study found that Australian community pharmacies have used the four types of flexibility to build capacity in distinct ways and react to changes in the local environment. This capacity building was manifested in four emerging business models which integrate services to varying degrees: classic community pharmacy, retail destination pharmacy, health care solution pharmacy and networked pharmacy. The perception of viability is less focused on dispensing medications and more focused on differentiating pharmacies through either a retail or services focus. Strategic flexibility appeared to offer pharmacies the ability to integrate and sustainably deliver services more successfully than other types, as exhibited by health care solution and networked pharmacies. Active support and encouragement to transition from being dependent on dispensing to implementing services is needed. The study showed that pharmacies where services were implemented and showed success are those strategically differentiating their businesses to become focused health care providers. This holistic approach should inevitably influence the sustainability of services.

  8. SOL: A Library for Scalable Online Learning Algorithms

    OpenAIRE

    Wu, Yue; Hoi, Steven C. H.; Liu, Chenghao; Lu, Jing; Sahoo, Doyen; Yu, Nenghai

    2016-01-01

    SOL is an open-source library for scalable online learning algorithms, and is particularly suitable for learning with high-dimensional data. The library provides a family of regular and sparse online learning algorithms for large-scale binary and multi-class classification tasks with high efficiency, scalability, portability, and extensibility. SOL was implemented in C++, and provided with a collection of easy-to-use command-line tools, python wrappers and library calls for users and develope...

  9. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Schoenbach, Karl H

    2012-01-01

    Energetic and scalable non-equilibrium plasma was formed in pure water vapour at atmospheric pressure between wire-to-strip electrodes on a dielectric surface with one of the electrodes extended forming a conductive plane on the back side of the dielectric surface. The energy deposition increased by an order of magnitude compared with the conventional pulsed corona discharges under the same conditions. The scalability was demonstrated by operating two electrode assemblies with a common conductive plane between two dielectric layers. The energy yields for hydrogen and hydrogen peroxide generation were measured as ∼1.2 g H 2 /kWh and ∼4 g H 2 O 2 /kWh. (fast track communication)

  10. Direct model reference adaptive control with application to flexible robots

    Science.gov (United States)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory W.

    1992-01-01

    A modification to a direct command generator tracker-based model reference adaptive control (MRAC) system is suggested in this paper. This modification incorporates a feedforward into the reference model's output as well as the plant's output. Its purpose is to eliminate the bounded model following error present in steady state when previous MRAC systems were used. The algorithm was evaluated using the dynamics for a single-link flexible-joint arm. The results of these simulations show a response with zero steady state model following error. These results encourage further use of MRAC for various types of nonlinear plants.

  11. Flexible regression models for estimating postmortem interval (PMI) in forensic medicine.

    Science.gov (United States)

    Muñoz Barús, José Ignacio; Febrero-Bande, Manuel; Cadarso-Suárez, Carmen

    2008-10-30

    Correct determination of time of death is an important goal in forensic medicine. Numerous methods have been described for estimating postmortem interval (PMI), but most are imprecise, poorly reproducible and/or have not been validated with real data. In recent years, however, some progress in PMI estimation has been made, notably through the use of new biochemical methods for quantifying relevant indicator compounds in the vitreous humour. The best, but unverified, results have been obtained with [K+] and hypoxanthine [Hx], using simple linear regression (LR) models. The main aim of this paper is to offer more flexible alternatives to LR, such as generalized additive models (GAMs) and support vector machines (SVMs) in order to obtain improved PMI estimates. The present study, based on detailed analysis of [K+] and [Hx] in more than 200 vitreous humour samples from subjects with known PMI, compared classical LR methodology with GAM and SVM methodologies. Both proved better than LR for estimation of PMI. SVM showed somewhat greater precision than GAM, but GAM offers a readily interpretable graphical output, facilitating understanding of findings by legal professionals; there are thus arguments for using both types of models. R code for these methods is available from the authors, permitting accurate prediction of PMI from vitreous humour [K+], [Hx] and [U], with confidence intervals and graphical output provided. Copyright 2008 John Wiley & Sons, Ltd.

  12. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade

    2013-05-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  13. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade; Stradford, Nicholas; Rodriguez, Cesar; Thomas, Shawna; Amato, Nancy M.

    2013-01-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  14. Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility.

    Science.gov (United States)

    Cobley, Matthew J; Rayfield, Emily J; Barrett, Paul M

    2013-01-01

    The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus). The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50). This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data.

  15. Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility.

    Directory of Open Access Journals (Sweden)

    Matthew J Cobley

    Full Text Available The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus. The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50. This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data.

  16. Modelling and Control of the Multi-Stage Cable Pulley-Driven Flexible-Joint Robot

    Directory of Open Access Journals (Sweden)

    Phongsaen Pitakwatchara

    2014-07-01

    Full Text Available This work is concerned with the task space impedance control of a robot driven through a multi-stage nonlinear flexible transmission system. Specifically, a two degrees-of-freedom cable pulley-driven flexible-joint robot is considered. Realistic modelling of the system is developed within the bond graph modelling framework. The model captures the nonlinear compliance behaviour of the multi-stage cable pulley transmission system, the spring effect of the augmented counterbalancing mechanism, the major loss throughout the system elements, and the typical inertial dynamics of the robot. Next, a task space impedance controller based on limited information about the angle and the current of the motors is designed. The motor current is used to infer the transmitted torque, by which the motor inertia may be modulated. The motor angle is employed to estimate the stationary distal robot link angle and the robot joint velocity. They are used in the controller to generate the desired damping force and to shape the potential energy of the flexible joint robot system to the desired configuration. Simulation and experimental results of the controlled system signify the competency of the proposed control law.

  17. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  18. Deceit: A flexible distributed file system

    Science.gov (United States)

    Siegel, Alex; Birman, Kenneth; Marzullo, Keith

    1989-01-01

    Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness.

  19. CloudTPS: Scalable Transactions for Web Applications in the Cloud

    NARCIS (Netherlands)

    Zhou, W.; Pierre, G.E.O.; Chi, C.-H.

    2010-01-01

    NoSQL Cloud data services provide scalability and high availability properties for web applications but at the same time they sacrifice data consistency. However, many applications cannot afford any data inconsistency. CloudTPS is a scalable transaction manager to allow cloud database services to

  20. Flexibility evaluation of multiechelon supply chains.

    Directory of Open Access Journals (Sweden)

    João Flávio de Freitas Almeida

    Full Text Available Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.

  1. A Flexible framework for forward and inverse modeling of stormwater control measures

    Science.gov (United States)

    Aflaki, S.; Massoudieh, A.

    2016-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and other custom-designed combinatory systems. Four demonstration applications covering a diverse range of systems will be presented. The example applications include a evaluating hydraulic performance of a complex bioretention system, hydraulic analysis of porous pavement system, flow colloid-facilitated transport, reactive transport and groundwater recharge underneath an infiltration pond and finally reactive transport and bed-sediment interactions in a wetland system will be presented.

  2. Scalable parallel prefix solvers for discrete ordinates transport

    International Nuclear Information System (INIS)

    Pautz, S.; Pandya, T.; Adams, M.

    2009-01-01

    The well-known 'sweep' algorithm for inverting the streaming-plus-collision term in first-order deterministic radiation transport calculations has some desirable numerical properties. However, it suffers from parallel scaling issues caused by a lack of concurrency. The maximum degree of concurrency, and thus the maximum parallelism, grows more slowly than the problem size for sweeps-based solvers. We investigate a new class of parallel algorithms that involves recasting the streaming-plus-collision problem in prefix form and solving via cyclic reduction. This method, although computationally more expensive at low levels of parallelism than the sweep algorithm, offers better theoretical scalability properties. Previous work has demonstrated this approach for one-dimensional calculations; we show how to extend it to multidimensional calculations. Notably, for multiple dimensions it appears that this approach is limited to long-characteristics discretizations; other discretizations cannot be cast in prefix form. We implement two variants of the algorithm within the radlib/SCEPTRE transport code library at Sandia National Laboratories and show results on two different massively parallel systems. Both the 'forward' and 'symmetric' solvers behave similarly, scaling well to larger degrees of parallelism then sweeps-based solvers. We do observe some issues at the highest levels of parallelism (relative to the system size) and discuss possible causes. We conclude that this approach shows good potential for future parallel systems, but the parallel scalability will depend heavily on the architecture of the communication networks of these systems. (authors)

  3. Business Process Optimization Through Soa And Cloud Integration Using Soa- Ra Model

    Directory of Open Access Journals (Sweden)

    Syed Ejaz Ali Shah

    2015-08-01

    Full Text Available Business processes workflow architecture based on agility and flexibility plays an important role in the success of any enterprise. In new era most of the processes are automated and they are supported by IT-Services in the form of Service Oriented Architecture SOA components. Due to mobility and scalability as well as high performance computing and distributed working environment it is crucial to focus on an architecture which is agile optimized cost effective and easy to implement. In this paper we have conducted a research study on layer based BPM SOA and cloud integrated architecture. The main contribution of the research study is to propose an agile cost effective and scalable solution framework based on Architectural Building Blocks ABBs following a SOA-RA layered model to integrate BPM SOA and cloud services.

  4. Efficient collective influence maximization in cascading processes with first-order transitions

    Science.gov (United States)

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-01-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988

  5. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    Science.gov (United States)

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  6. Scalable Combinatorial Tools for Health Disparities Research

    Directory of Open Access Journals (Sweden)

    Michael A. Langston

    2014-10-01

    Full Text Available Despite staggering investments made in unraveling the human genome, current estimates suggest that as much as 90% of the variance in cancer and chronic diseases can be attributed to factors outside an individual’s genetic endowment, particularly to environmental exposures experienced across his or her life course. New analytical approaches are clearly required as investigators turn to complicated systems theory and ecological, place-based and life-history perspectives in order to understand more clearly the relationships between social determinants, environmental exposures and health disparities. While traditional data analysis techniques remain foundational to health disparities research, they are easily overwhelmed by the ever-increasing size and heterogeneity of available data needed to illuminate latent gene x environment interactions. This has prompted the adaptation and application of scalable combinatorial methods, many from genome science research, to the study of population health. Most of these powerful tools are algorithmically sophisticated, highly automated and mathematically abstract. Their utility motivates the main theme of this paper, which is to describe real applications of innovative transdisciplinary models and analyses in an effort to help move the research community closer toward identifying the causal mechanisms and associated environmental contexts underlying health disparities. The public health exposome is used as a contemporary focus for addressing the complex nature of this subject.

  7. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    the recalibration scheme, the integration time of the dynamical system can be extended to arbitrarily large values provided that modified initial conditions are offered to the system. The low-order dynamical system composed with 28 modes employing periodic recalibration reconstructs the spatially averaged Reynolds stresses with similar accuracy as the POD-based turbulence description. Data-driven reduced order models like the one undertaken here are widely implemented for control applications, derive all necessary parameters directly from the input, and compute predictions of system dynamics efficiently. The speed, flexibility, and portability of the reduced order model come at the cost of strict data requirements; the model identification requires simultaneous realizations of mode coefficients and their time derivatives, which may be difficult to achieve in some investigations.

  8. Analysis of a Thrust Bearing with Flexible Pads and Flexible Supports

    DEFF Research Database (Denmark)

    Klit, Peder; Thomsen, Kim

    2007-01-01

    A theoretical analysis of a hydrodynamic thrust bearing is presented. The bearing investigated is used in an ndustrial product. The lubricant is water, but the results are valid also for other lubricants.At first the results from a 1-dimensional model for the fluid film forces and the associated...... deformation of the bearing geometry is presented. This model enlightens the influence of pad flexibility and support location and flexibility. Subsequently results from a 2-dimensional model of the bearing is presented. The model is used to carry out an optimization of the bearing design, and the obtained...

  9. Endogenous price flexibility and optimal monetary policy

    OpenAIRE

    Ozge Senay; Alan Sutherland

    2014-01-01

    Much of the literature on optimal monetary policy uses models in which the degree of nominal price flexibility is exogenous. There are, however, good reasons to suppose that the degree of price flexibility adjusts endogenously to changes in monetary conditions. This article extends the standard new Keynesian model to incorporate an endogenous degree of price flexibility. The model shows that endogenizing the degree of price flexibility tends to shift optimal monetary policy towards complete i...

  10. Application of flexibility model in modeling of flow boiling heat transfer

    International Nuclear Information System (INIS)

    Peng Jinfeng; Zhao Fuyu

    2009-01-01

    The mathematical modeling and computer simulation have been widely used in the analysis of system's dynamic characteristics, and often useful for system control. One of the popular methods for this purpose is the lumped parameter method. For flow boiling heat transfer system, the traditional lumped parameter modeling method has a problem that the heat transfer coefficients change suddenly at the boundary of coolant phase change. It can cause error. In this paper, an idea of flexibility model is developed to deal with the boundary problem and to improve the model of flow boiling heat transfer. The segments of coolant phase change's boundary are identified, and the membership functions which are derived from Fuzzy Mathematics are used to derive approximate expressions of heat transfer coefficient in those regions. The continuity of heat transfer coefficient can be described by those expressions. The membership functions are derived from mathematical analysis and transformation. The result shows that this idea is feasible and the conclusion is practicable.

  11. Scalable Packet Classification with Hash Tables

    Science.gov (United States)

    Wang, Pi-Chung

    In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.

  12. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade; Manavi, Kasra; Burgos, Juan; Denny, Jory; Thomas, Shawna; Amato, Nancy M.

    2012-01-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  13. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade

    2012-05-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  14. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries

    Science.gov (United States)

    Cai, Hongyan; Han, Kai; Jiang, Heng; Wang, Jingwen; Liu, Hui

    2017-10-01

    Silicon/carbon (Si/C) composite shows great potential to replace graphite as lithium-ion battery (LIB) anode owing to its high theoretical capacity. Exploring low-cost scalable approach for synthesizing Si/C composites with excellent electrochemical performance is critical for practical application of Si/C anodes. In this study, we rationally applied a scalable in situ approach to produce Si-carbon nanotube (Si-CNT) composite via acid etching of commercial inexpensive micro-sized Al-Si alloy powder and CNT mixture. In the Si-CNT composite, ∼10 nm Si particles were uniformly deposited on the CNT surface. After combining with graphene sheets, a flexible self-standing Si-CNT/graphene paper was fabricated with three-dimensional (3D) sandwich-like structure. The in situ presence of CNT during acid-etching process shows remarkable two advantages: providing deposition sites for Si atoms to restrain agglomeration of Si nanoparticles after Al removal from Al-Si alloy powder, increasing the cross-layer conductivity of the paper anode to provide excellent conductive contact sites for each Si nanoparticles. When used as binder-free anode for LIBs without any further treatment, in situ addition of CNT especially plays important role to improve the initial electrochemical activity of Si nanoparticles synthesized from low-cost Al-Si alloy powder, thus resulting in about twice higher capacity than Si/G paper anode. The self-standing Si-CNT/graphene paper anode exhibited a high specific capacity of 1100 mAh g-1 even after 100 cycles at 200 mA g-1 current density with a Coulombic efficiency of >99%. It also showed remarkable rate capability improvement compared to Si/G paper without CNT. The present work demonstrates a low-cost scalable in situ approach from commercial micro-sized Al-Si alloy powder for Si-based composites with specific nanostructure. The Si-CNT/graphene paper is a promising anode candidate with high capacity and cycling stability for LIBs, especially for the

  15. Efficient Enhancement for Spatial Scalable Video Coding Transmission

    Directory of Open Access Journals (Sweden)

    Mayada Khairy

    2017-01-01

    Full Text Available Scalable Video Coding (SVC is an international standard technique for video compression. It is an extension of H.264 Advanced Video Coding (AVC. In the encoding of video streams by SVC, it is suitable to employ the macroblock (MB mode because it affords superior coding efficiency. However, the exhaustive mode decision technique that is usually used for SVC increases the computational complexity, resulting in a longer encoding time (ET. Many other algorithms were proposed to solve this problem with imperfection of increasing transmission time (TT across the network. To minimize the ET and TT, this paper introduces four efficient algorithms based on spatial scalability. The algorithms utilize the mode-distribution correlation between the base layer (BL and enhancement layers (ELs and interpolation between the EL frames. The proposed algorithms are of two categories. Those of the first category are based on interlayer residual SVC spatial scalability. They employ two methods, namely, interlayer interpolation (ILIP and the interlayer base mode (ILBM method, and enable ET and TT savings of up to 69.3% and 83.6%, respectively. The algorithms of the second category are based on full-search SVC spatial scalability. They utilize two methods, namely, full interpolation (FIP and the full-base mode (FBM method, and enable ET and TT savings of up to 55.3% and 76.6%, respectively.

  16. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  17. Flexible and Scalable Data Fusion using Proactive, Schemaless Information Services

    Energy Technology Data Exchange (ETDEWEB)

    Widener, Patrick M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Scalable System Software Dept.

    2014-05-01

    Exascale data environments are fast approaching, driven by diverse structured and unstructured data such as system and application telemetry streams, open-source information capture, and on-demand simulation output. Storage costs having plummeted, the question is now one of converting vast stores of data to actionable information. Complicating this problem are the low degrees of awareness across domain boundaries about what potentially useful data may exist, and write-once-read- never issues (data generation/collection rates outpacing data analysis and integration rates). Increasingly, technologists and researchers need to correlate previously unrelated data sources and artifacts to produce fused data views for domain-specific purposes. New tools and approaches for creating such views from vast amounts of data are vitally important to maintaining research and operational momentum. We propose to research and develop tools and services to assist in the creation, refinement, discovery and reuse of fused data views over large, diverse collections of heterogeneously structured data. We innovate in the following ways. First, we enable and encourage end-users to introduce customized index methods selected for local benefit rather than for global interaction (flexible multi-indexing). We envision rich combinations of such views on application data: views that span backing stores with different semantics, that introduce analytic methods of indexing, and that define multiple views on individual data items. We specifically decline to build a big fused database of everything providing a centralized index over all data, or to export a rigid schema to all comers as in federated query approaches. Second, we proactively advertise these application-specific views so that they may be programmatically reused and extended (data proactivity). Through this mechanism, both changes in state (new data in existing view collected) and changes in structure (new or derived view exists) are

  18. Flexible and Scalable Data Fusion using Proactive Schemaless Information Services

    Energy Technology Data Exchange (ETDEWEB)

    Widener, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    Exascale data environments are fast approaching, driven by diverse structured and unstructured data such as system and application telemetry streams, open-source information capture, and on-demand simulation output. Storage costs having plummeted, the question is now one of converting vast stores of data to actionable information. Complicating this problem are the low degrees of awareness across domain boundaries about what potentially useful data may exist, and write-once- read-never issues (data generation/collection rates outpacing data analysis and integration rates). Increasingly, technologists and researchers need to correlate previously unrelated data sources and artifacts to produce fused data views for domain-specific purposes. New tools and approaches for creating such views from vast amounts of data are vitally important to maintaining research and operational momentum. We propose to research and develop tools and services to assist in the creation, refinement, discovery and reuse of fused data views over large, diverse collections of heterogeneously structured data. We innovate in the following ways. First, we enable and encourage end-users to introduce customized index methods selected for local benefit rather than for global interaction (flexible multi-indexing). We envision rich combinations of such views on application data: views that span backing stores with different semantics, that introduce analytic methods of indexing, and that define multiple views on individual data items. We specifically decline to build a big fused database of everything providing a centralized index over all data, or to export a rigid schema to all comers as in federated query approaches. Second, we proactively advertise these application-specific views so that they may be programmatically reused and extended (data proactivity). Through this mechanism, both changes in state (new data in existing view collected) and changes in structure (new or derived view exists) are

  19. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo2 Se4 Nanosheet and NiCo2 O4 /Polypyrrole Electrodes.

    Science.gov (United States)

    Wang, Qiufan; Ma, Yun; Wu, Yunlong; Zhang, Daohong; Miao, Menghe

    2017-04-10

    Flexible threadlike supercapacitors with improved performance are needed for many wearable electronics applications. Here, we report a high performance flexible asymmetric all-solid-state threadlike supercapacitor with a NiCo 2 Se 4 positive electrode and a NiCo 2 O 4 @PPy (PPy: polypyrrole) negative electrode. The as-prepared electrodes display outstanding volume specific capacitance (14.2 F cm -3 ) and excellent cycling performance (94 % retention after 5000 cycles at 0.6 mA) owing to their nanosheet and nanosphere structures. The asymmetric all-solid-state threadlike supercapacitor expanded the stability voltage window from 0-1.0 V to 0-1.7 V and exhibits high volume energy density (5.18 mWh cm -3 ) and superior flexibility under different bending conditions. This study provides a scalable method for fabricating high performance flexible supercapacitors from easily available materials for use in wearable and portable electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-09-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  1. Performance-scalable volumetric data classification for online industrial inspection

    Science.gov (United States)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  2. Investigation on Reliability and Scalability of an FBG-Based Hierarchical AOFSN

    Directory of Open Access Journals (Sweden)

    Li-Mei Peng

    2010-03-01

    Full Text Available The reliability and scalability of large-scale based optical fiber sensor networks (AOFSN are considered in this paper. The AOFSN network consists of three-level hierarchical sensor network architectures. The first two levels consist of active interrogation and remote nodes (RNs and the third level, called the sensor subnet (SSN, consists of passive Fiber Bragg Gratings (FBGs and a few switches. The switch architectures in the RN and various SSNs to improve the reliability and scalability of AOFSN are studied. Two SSNs with a regular topology are proposed to support simple routing and scalability in AOFSN: square-based sensor cells (SSC and pentagon-based sensor cells (PSC. The reliability and scalability are evaluated in terms of the available sensing coverage in the case of one or multiple link failures.

  3. Scalable Faceted Ranking in Tagging Systems

    Science.gov (United States)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  4. Flexibility and reliability in long-term planning exercises dedicated to the electricity sector

    Energy Technology Data Exchange (ETDEWEB)

    Maizi, Nadia; Drouineau, Mathilde; Assoumou, Edi; Mazauric, Vincent

    2010-09-15

    Long-term planning models are useful to build plausible options for future energy systems and must consequently address the technological feasibility and associated cost of these options. This paper focuses on the electricity sector and on problems of flexibility and reliability in power systems in order to improve results provided by long-term planning exercises: flexibility needs are integrated as an additional criterion for new investment decisions and, reliability requirements are assessed through the level of electrical losses they induced and a related cost. These approaches are implemented in a long-term planning model and demonstrated through a study of the Reunion Island.

  5. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    Science.gov (United States)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  6. Elements of a flexible approach for conceptual hydrological modeling : 1. Motivation and theoretical development

    NARCIS (Netherlands)

    Fenicia, F.; Kavetski, D.; Savenije, H.H.G.

    2011-01-01

    This paper introduces a flexible framework for conceptual hydrological modeling, with two related objectives: (1) generalize and systematize the currently fragmented field of conceptual models and (2) provide a robust platform for understanding and modeling hydrological systems. In contrast to

  7. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2007-06-01

    Full Text Available Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage maintenance (SCOM, which is scalable to sensor deployment density in terms of communication overhead (i.e., number of transmitted and received beacons and computational complexity (i.e., time and space complexity. In addition, SCOM achieves high energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations.

  8. DISP: Optimizations towards Scalable MPI Startup

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Huansong [Florida State University, Tallahassee; Pophale, Swaroop S [ORNL; Gorentla Venkata, Manjunath [ORNL; Yu, Weikuan [Florida State University, Tallahassee

    2016-01-01

    Despite the popularity of MPI for high performance computing, the startup of MPI programs faces a scalability challenge as both the execution time and memory consumption increase drastically at scale. We have examined this problem using the collective modules of Cheetah and Tuned in Open MPI as representative implementations. Previous improvements for collectives have focused on algorithmic advances and hardware off-load. In this paper, we examine the startup cost of the collective module within a communicator and explore various techniques to improve its efficiency and scalability. Accordingly, we have developed a new scalable startup scheme with three internal techniques, namely Delayed Initialization, Module Sharing and Prediction-based Topology Setup (DISP). Our DISP scheme greatly benefits the collective initialization of the Cheetah module. At the same time, it helps boost the performance of non-collective initialization in the Tuned module. We evaluate the performance of our implementation on Titan supercomputer at ORNL with up to 4096 processes. The results show that our delayed initialization can speed up the startup of Tuned and Cheetah by an average of 32.0% and 29.2%, respectively, our module sharing can reduce the memory consumption of Tuned and Cheetah by up to 24.1% and 83.5%, respectively, and our prediction-based topology setup can speed up the startup of Cheetah by up to 80%.

  9. Neuro-Fuzzy Prediction of Cooperation Interaction Profile of Flexible Road Train Based on Hybrid Automaton Modeling

    Directory of Open Access Journals (Sweden)

    Banjanovic-Mehmedovic Lejla

    2016-01-01

    Full Text Available Accurate prediction of traffic information is important in many applications in relation to Intelligent Transport systems (ITS, since it reduces the uncertainty of future traffic states and improves traffic mobility. There is a lot of research done in the field of traffic information predictions such as speed, flow and travel time. The most important research was done in the domain of cooperative intelligent transport system (C-ITS. The goal of this paper is to introduce the novel cooperation behaviour profile prediction through the example of flexible Road Trains useful road cooperation parameter, which contributes to the improvement of traffic mobility in Intelligent Transportation Systems. This paper presents an approach towards the control and cooperation behaviour modelling of vehicles in the flexible Road Train based on hybrid automaton and neuro-fuzzy (ANFIS prediction of cooperation profile of the flexible Road Train. Hybrid automaton takes into account complex dynamics of each vehicle as well as discrete cooperation approach. The ANFIS is a particular class of the ANN family with attractive estimation and learning potentials. In order to provide statistical analysis, RMSE (root mean square error, coefficient of determination (R2 and Pearson coefficient (r, were utilized. The study results suggest that ANFIS would be an efficient soft computing methodology, which could offer precise predictions of cooperative interactions between vehicles in Road Train, which is useful for prediction mobility in Intelligent Transport systems.

  10. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film

    International Nuclear Information System (INIS)

    Gao, Pingqi; Zhang, Qing

    2014-01-01

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm 2  V −1  s −1 , a subthreshold slope as low as 150 mV  dec −1 , operating gate voltages less than 2 V, on/off ratios larger than 10 4 and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc. (paper)

  11. Flexible Lithium-Ion Fiber Battery by the Regular Stacking of Two-Dimensional Titanium Oxide Nanosheets Hybridized with Reduced Graphene Oxide.

    Science.gov (United States)

    Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia

    2017-06-14

    Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.

  12. Blind Cooperative Routing for Scalable and Energy-Efficient Internet of Things

    KAUST Repository

    Bader, Ahmed; Alouini, Mohamed-Slim

    2016-01-01

    Multihop networking is promoted in this paper for energy-efficient and highly-scalable Internet of Things (IoT). Recognizing concerns related to the scalability of classical multihop routing and medium access techniques, the use of blind cooperation

  13. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Devices on Flexible Conducting Graphene Substrates

    OpenAIRE

    Wan, Chang Jin; Wang, Wei; Zhu, Li Qiang; Liu, Yang Hui; Feng, Ping; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-01-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were obtained. A proof-of-principle visual system model for emulating lobula giant motion detector neuron was investigated. Our results are of great interest for flexible neuromorphic cognitive systems.

  14. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  15. Towards a Scalable, Biomimetic, Antibacterial Coating

    Science.gov (United States)

    Dickson, Mary Nora

    Corneal afflictions are the second leading cause of blindness worldwide. When a corneal transplant is unavailable or contraindicated, an artificial cornea device is the only chance to save sight. Bacterial or fungal biofilm build up on artificial cornea devices can lead to serious complications including the need for systemic antibiotic treatment and even explantation. As a result, much emphasis has been placed on anti-adhesion chemical coatings and antibiotic leeching coatings. These methods are not long-lasting, and microorganisms can eventually circumvent these measures. Thus, I have developed a surface topographical antimicrobial coating. Various surface structures including rough surfaces, superhydrophobic surfaces, and the natural surfaces of insects' wings and sharks' skin are promising anti-biofilm candidates, however none meet the criteria necessary for implementation on the surface of an artificial cornea device. In this thesis I: 1) developed scalable fabrication protocols for a library of biomimetic nanostructure polymer surfaces 2) assessed the potential these for poly(methyl methacrylate) nanopillars to kill or prevent formation of biofilm by E. coli bacteria and species of Pseudomonas and Staphylococcus bacteria and improved upon a proposed mechanism for the rupture of Gram-negative bacterial cell walls 3) developed a scalable, commercially viable method for producing antibacterial nanopillars on a curved, PMMA artificial cornea device and 4) developed scalable fabrication protocols for implantation of antibacterial nanopatterned surfaces on the surfaces of thermoplastic polyurethane materials, commonly used in catheter tubings. This project constitutes a first step towards fabrication of the first entirely PMMA artificial cornea device. The major finding of this work is that by precisely controlling the topography of a polymer surface at the nano-scale, we can kill adherent bacteria and prevent biofilm formation of certain pathogenic bacteria

  16. Partially ordered models

    NARCIS (Netherlands)

    Fernandez, R.; Deveaux, V.

    2010-01-01

    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks).

  17. Scalable Multi-Platform Distribution of Spatial 3d Contents

    Science.gov (United States)

    Klimke, J.; Hagedorn, B.; Döllner, J.

    2013-09-01

    Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.

  18. Sensitivity of disease parameters to flexible budesonide/formoterol treatment in an allergic rat model.

    Science.gov (United States)

    Brange, Charlotte; Smailagic, Amir; Jansson, Anne-Helene; Middleton, Brian; Miller-Larsson, Anna; Taylor, John D; Silberstein, David S; Lal, Harbans

    2009-02-01

    Clinical studies show that flexible dosing (maintenance and symptom-driven dose adjustments) of budesonide and formoterol (BUD/FORM) improves control of asthma exacerbations as compared to fixed maintenance dosing protocols (maintenance therapy) even when the latter utilize higher BUD/FORM doses. This suggests that dose-response relationships for certain pathobiologic mechanisms in asthma shift over time. Here, we have conducted animal studies to address this issue. (1) To test in an animal asthma-like model whether it is possible to achieve the same or greater pharmacological control over bronchoconstriction and airway/lung inflammation, and with less total drug used, by flexible BUD/FORM dosing (upward adjustment of doses) in association with allergen challenges. (2) To determine whether the benefit requires adjustment of both drug components. Rats sensitized on days 0 and 7 were challenged intratracheally with ovalbumin on days 14 and 21. On days 13-21, rats were treated intratracheally with fixed maintenance or flexible BUD/FORM combinations. On day 22, rats were challenged with methacholine and lungs were harvested for analysis. A flexible BUD/FORM dosing regimen (using 3.3 times less total drug than the fixed maintenance high dose regimen), delivered the same or greater reductions of excised lung gas volume (a measure of gas trapped in lung by bronchoconstriction) and lung weight (a measure of inflammatory oedema). When either BUD or FORM alone was increased on days of challenge, the benefit of the flexible dose upward adjustment was lost. Flexible dosing of the BUD/FORM combination improves the pharmacological inhibition of allergen-induced bronchoconstriction and an inflammatory oedema in an allergic asthma-like rat model.

  19. Performance Prediction Modelling for Flexible Pavement on Low Volume Roads Using Multiple Linear Regression Analysis

    Directory of Open Access Journals (Sweden)

    C. Makendran

    2015-01-01

    Full Text Available Prediction models for low volume village roads in India are developed to evaluate the progression of different types of distress such as roughness, cracking, and potholes. Even though the Government of India is investing huge quantum of money on road construction every year, poor control over the quality of road construction and its subsequent maintenance is leading to the faster road deterioration. In this regard, it is essential that scientific maintenance procedures are to be evolved on the basis of performance of low volume flexible pavements. Considering the above, an attempt has been made in this research endeavor to develop prediction models to understand the progression of roughness, cracking, and potholes in flexible pavements exposed to least or nil routine maintenance. Distress data were collected from the low volume rural roads covering about 173 stretches spread across Tamil Nadu state in India. Based on the above collected data, distress prediction models have been developed using multiple linear regression analysis. Further, the models have been validated using independent field data. It can be concluded that the models developed in this study can serve as useful tools for the practicing engineers maintaining flexible pavements on low volume roads.

  20. Experimental Study of Flexible Plate Vibration Control by Using Two-Loop Sliding Mode Control Strategy

    Science.gov (United States)

    Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping

    2017-08-01

    It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.