WorldWideScience

Sample records for scaffold design enhances

  1. Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering

    Directory of Open Access Journals (Sweden)

    A. Yazdanpanah

    2015-10-01

    Full Text Available In this study, a new design of graded tubular scaffolds have been developed for the performance enhancement in vascular tissue engineering. The graded poly-L-lactide (PLLA and gelatin fibrous scaffolds produced by electrospining were then characterized. The morphology, degradability, porosity, pore size and mechanical properties of four tubular scaffolds (graded PLLA/gelatin, layered PLLA/gelatin, PLLA and gelatin scaffolds have been investigated. The tensile tests demonstrated that the mechanical strength and also the estimated burst pressure of the graded scaffolds were significantly increased in comparison with the layered and gelatin scaffolds. This new design, resulting in an increase in the mechanical properties, suggested the widespread use of these scaffolds in vascular tissue engineering in order to prepare more strengthened vessels.

  2. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.

    Directory of Open Access Journals (Sweden)

    Akihiro Horii

    Full Text Available A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG and 2-unit RGD binding sequence PGR (PRGDSGYRGDS. We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration.

  3. Scaffolds for design communication

    NARCIS (Netherlands)

    Dr. Ir. Remko van der Lugt; J. van Dijk

    2013-01-01

    In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our

  4. Explicit teaching and scaffolding to enhance concept learning by design challenges

    NARCIS (Netherlands)

    MEd Dave van Breukelen; MEd Maurice Smeets; Prof. Dr. Marc de Vries

    2016-01-01

    This paper presents a mixed methods study in which 21 first-year student teachers took part that investigated learning outcomes of a modified learning by design task. The study is part of a series of studies that aims to improve student learning, teaching skills and teacher training. Design-based

  5. Enhanced bioactive scaffolds for bone tissue regeneration

    Science.gov (United States)

    Karnik, Sonali

    ]. The focus of this dissertation was to design and develop novel implant materials for coating titanium to improve its biological properties. These natural and/or semi-synthetic materials improved cellular adhesion, biological response to the scaffolds and prevented growth of bacteria when they were enhanced with growth factor and anti-infective loaded nanotubes. The implant materials showed promise when tested in vitro for cell proliferation, differentiation and bacterial growth inhibition.

  6. Enhancing Student Learning through Scaffolded Client Projects

    Science.gov (United States)

    Tomlinson, Elizabeth

    2017-01-01

    This article reports on the current status of client projects (CPs) in business communication courses, provides a scaffolded model for implementing CP, and assesses student learning in CPs. Using a longitudinal mixed method research design, survey data and qualitative materials from six semesters are presented. The instructor survey indicated need…

  7. Stratified scaffold design for engineering composite tissues.

    Science.gov (United States)

    Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H

    2015-08-01

    A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications.

    Science.gov (United States)

    Zakhem, Elie; Bitar, Khalil N

    2015-10-13

    Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young's modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds.

  9. Influence of scaffold design on 3D printed cell constructs.

    Science.gov (United States)

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  10. Scaffolding learners in designing investigation assignments for a computer simulation

    NARCIS (Netherlands)

    Vreman-de Olde, Cornelise; de Jong, Anthonius J.M.

    2006-01-01

    This study examined the effect of scaffolding students who learned by designing assignments for a computer simulation on the physics topic of alternating circuits. We compared the students' assignments and the knowledge acquired in a scaffolded group (N=23) and a non-scaffolded group (N=19). The

  11. The design of 3D scaffold for tissue engineering using automated scaffold design algorithm.

    Science.gov (United States)

    Mahmoud, Shahenda; Eldeib, Ayman; Samy, Sherif

    2015-06-01

    Several progresses have been introduced in the field of bone regenerative medicine. A new term tissue engineering (TE) was created. In TE, a highly porous artificial extracellular matrix or scaffold is required to accommodate cells and guide their growth in three dimensions. The design of scaffolds with desirable internal and external structure represents a challenge for TE. In this paper, we introduce a new method known as automated scaffold design (ASD) for designing a 3D scaffold with a minimum mismatches for its geometrical parameters. The method makes use of k-means clustering algorithm to separate the different tissues and hence decodes the defected bone portions. The segmented portions of different slices are registered to construct the 3D volume for the data. It also uses an isosurface rendering technique for 3D visualization of the scaffold and bones. It provides the ability to visualize the transplanted as well as the normal bone portions. The proposed system proves good performance in both the segmentation results and visualizations aspects.

  12. Current trends in the design of scaffolds for computer-aided tissue engineering.

    Science.gov (United States)

    Giannitelli, S M; Accoto, D; Trombetta, M; Rainer, A

    2014-02-01

    Advances introduced by additive manufacturing have significantly improved the ability to tailor scaffold architecture, enhancing the control over microstructural features. This has led to a growing interest in the development of innovative scaffold designs, as testified by the increasing amount of research activities devoted to the understanding of the correlation between topological features of scaffolds and their resulting properties, in order to find architectures capable of optimal trade-off between often conflicting requirements (such as biological and mechanical ones). The main aim of this paper is to provide a review and propose a classification of existing methodologies for scaffold design and optimization in order to address key issues and help in deciphering the complex link between design criteria and resulting scaffold properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  14. Bionic Design, Materials and Performance of Bone Tissue Scaffolds.

    Science.gov (United States)

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-10-17

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  15. Design of multi-scaffold fabrication system for various 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Min Woo; Kim, Jong Young [Andong National University, Andong (Korea, Republic of)

    2013-10-15

    Three-dimensional (3D) porous scaffolds have been fabricated recently for tissue engineering applications through solid free-form fabrication (SFF) technologies. A multi-scaffold fabrication system for the fabrication of scaffolds, such as polymer, polymer/ceramic, ceramic, and nanofiber, was designed in this study. The various components, including a dispenser with a maximum pressure of 750 kPa, a thermostat with a maximum temperature of 250 .deg. C, a high-voltage power supply with a maximum output of 60 kV, and a syringe pump with small flow control, play important roles in determining the process characteristics of scaffolds. The system can process applicable biomaterials with extremely high accuracy with a precision nozzle. Several 3D scaffolds, including PCL, PCL/PLGA/β-TCP, β-TCP, and PCL nanofibers, were fabricated. The morphology and pore size of fabricated scaffolds were observed through scanning electron microscopy. Results show that the scaffolds manufactured in this study can be effectively utilized as bone regeneration scaffolds.

  16. Design of a bioresorbable polymeric scaffold for osteoblast culture

    Science.gov (United States)

    Ditaranto, Vincent M., Jr.

    Bioresorbable polymeric scaffolds were designed for the purpose of growing rat osteosarcoma cells (ROS 17/2.8) using the compression molding method. The material used in the construction of the scaffolds was a mixture of polycaprolactone (PCL), Hydroxyapatite (HA), Glycerin (GL) and salt (NaCl) for porosity. The concentration of the several materials utilized, was determined by volume. Past research at the University of Massachusetts Lowell (UML) has successfully utilized the compression molding method for the construction of scaffolds, but was unable to accomplish the goal of long term cell survival and complete cellular proliferation throughout a three dimensional scaffold. This research investigated various concentrations of the materials and molding temperatures used for the manufacture of scaffolds in order to improve the scaffold design and address those issues. The design of the scaffold using the compression molding process is detailed in the Method and Materials section of this thesis. The porogen (salt) used for porosity was suspected as a possible source of contamination causing cell apoptosis in past studies. This research addressed the issues for cell survival and proliferation throughout a three dimensional scaffold. The leaching of the salt was one major design modification. This research successfully used ultrasonic leaching in addition to the passive method. Prior to cell culture, the scaffolds were irradiated to 2.75 Mrad, with cobalt-60 gamma radionuclide. The tissue culture consisted of two trials: (1) cell culture in scaffolds cleaned with passive leaching; (2) cell culture with scaffolds cleaned with ultrasonic leaching. Cell survival and proliferation was accomplished only with the addition of ultrasonic leaching of the scaffolds. Analysis of the scaffolds included Scanning Electron Microscopy (SEM), Nikon light microscopy and x-ray mapping of the calcium, sodium and chloride ion distribution. The cells were analyzed by Environmental Scanning

  17. Designing Appropriate Scaffolding for Student Science Projects

    Science.gov (United States)

    Johnson, Marie; Smith, Mark

    2008-01-01

    The authors have developed a successful approach to teaching and inspiring undergraduate science and nonscience majors to complete creditable, semester-long, hands-on science research projects. This approach utilizes a carefully developed scaffolding consisting of in-class exercises and discussions, preparatory homework and lab events, and three…

  18. Hierarchically Ordered Porous and High-Volume Polycaprolactone Microchannel Scaffolds Enhanced Axon Growth in Transected Spinal Cords.

    Science.gov (United States)

    Shahriari, Dena; Koffler, Jacob Y; Tuszynski, Mark H; Campana, Wendy M; Sakamoto, Jeff S

    2017-05-01

    The goal of this work was to design nerve guidance scaffolds with a unique architecture to maximize the open volume available for nerve growth. Polycaprolactone (PCL) was selected as the scaffold material based on its biocompatibility and month-long degradation. Yet, dense PCL does not exhibit suitable properties such as porosity, stiffness, strength, and cell adhesion to function as an effective nerve guidance scaffold. To address these shortcomings, PCL was processed using a modified salt-leaching technique to create uniquely controlled interconnected porosity. By controlling porosity, we demonstrated that the elastic modulus could be controlled between 2.09 and 182.1 MPa. In addition, introducing porosity and/or coating with fibronectin enhanced the PCL cell attachment properties. To produce PCL scaffolds with maximized open volume, porous PCL microtubes were fabricated and translated into scaffolds with 60 volume percent open volume. The scaffolds were tested in transected rat spinal cords. Linear axon growth within both the microtubes as well as the interstitial space between the tubes was observed, demonstrating that the entire open volume of the scaffold was available for nerve growth. Overall, a novel scaffold architecture and fabrication technique are presented. The scaffolds exhibit significantly higher volume than state-of-the-art scaffolds for promising spinal cord nerve repair.

  19. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.

    Science.gov (United States)

    Velasco, Marco A; Narváez-Tovar, Carlos A; Garzón-Alvarado, Diego A

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.

  20. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  1. Review scaffold design and stem cells for tooth regeneration

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2013-02-01

    Full Text Available Current dental treatments for the missing teeth depend largely on dentures and implants crowned with prosthetic caps to restore some functionality of the teeth. However, these devices cannot mimic the biological teeth, do not remodel and they have poor integration with the host. The concept of tissue engineering is based on that fact that by cultivating postnatal dental stem cells (DSCs on a well-designed bioengineered three dimensional scaffold, it is possible to regenerate tooth organogenesis. To date, a range of biomaterial scaffolds with different sources of cells have been proposed to regenerate substitutes to the natural extracellular matrix (ECM analogs. The design of scaffold is critical as it should be capable of supporting cell attachment and proliferation and has the appropriate mechanical properties. Moreover, there are a number of parameters that must be examined in constructing the scaffold, including porosity, the mechanical integrity and effect of surface morphology on cell adhesion and proliferation. In this paper a brief review of literature is presented together with a discussion on the future directions and the challenges ahead in the areas of periodontal dental stem cells DSCs and the scaffold design and manufacturing techniques that are of particular significant for tooth tissue engineering.

  2. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    Science.gov (United States)

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  3. A mechanistic approach to design smart scaffolds for tissue engineering

    NARCIS (Netherlands)

    Moroni, Lorenzo

    2006-01-01

    This thesis describes a library of novel 3D scaffolds designed and optimized for tissue engineering and regenerative medicine applications. Tissue engineering aims at restoring or regenerating a deamaged tissue by combining cells, derived from a patient biopsy, with a 3D porous matrix, functioning

  4. Design and 3D Printing of Scaffolds and Tissues

    Directory of Open Access Journals (Sweden)

    Jia An

    2015-06-01

    Full Text Available A growing number of three-dimensional (3D-printing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS and fused deposition modeling (FDM processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

  5. Design and Functional Testing of a Multichamber Perfusion Platform for Three-Dimensional Scaffolds

    Directory of Open Access Journals (Sweden)

    Marco Piola

    2013-01-01

    Full Text Available Perfusion culture systems are widely used in tissue engineering applications for enhancing cell culture viability in the core of three-dimensional scaffolds. In this work, we present a multichamber confined-flow perfusion system, designed to provide a straightforward platform for three-dimensional dynamic cell cultures. The device comprises 6 culture chambers allowing independent and simultaneous experiments in controlled conditions. Each chamber consists of three parts: a housing, a deformable scaffold-holder cartridge, and a 7 mL reservoir, which couples water-tightly with the housing compressing the cartridge. Short-term dynamic cell seeding experiments were carried out with MC3T3-E1 cells seeded into polycaprolactone porous scaffolds. Preliminary results revealed that the application of flow perfusion through the scaffold favored the penetration of the cells to its interior, producing a more homogeneous distribution of cells with respect to dropwise or injection seeding methods. The culture chamber layout was conceived with the aim of simplifying the user operations under laminar flow hood and minimizing the risks for contamination during handling and operation. Furthermore, a compact size, a small number of components, and the use of bayonet couplings ensured a simple, fast, and sterility-promoting assembling. Finally, preliminary in vitro tests proved the efficacy of the system in enhancing cell seeding efficiency, opening the way for further studies addressing long-term scaffold colonization.

  6. Design and functional testing of a multichamber perfusion platform for three-dimensional scaffolds.

    Science.gov (United States)

    Piola, Marco; Soncini, Monica; Cantini, Marco; Sadr, Nasser; Ferrario, Giulio; Fiore, Gianfranco B

    2013-01-01

    Perfusion culture systems are widely used in tissue engineering applications for enhancing cell culture viability in the core of three-dimensional scaffolds. In this work, we present a multichamber confined-flow perfusion system, designed to provide a straightforward platform for three-dimensional dynamic cell cultures. The device comprises 6 culture chambers allowing independent and simultaneous experiments in controlled conditions. Each chamber consists of three parts: a housing, a deformable scaffold-holder cartridge, and a 7 mL reservoir, which couples water-tightly with the housing compressing the cartridge. Short-term dynamic cell seeding experiments were carried out with MC3T3-E1 cells seeded into polycaprolactone porous scaffolds. Preliminary results revealed that the application of flow perfusion through the scaffold favored the penetration of the cells to its interior, producing a more homogeneous distribution of cells with respect to dropwise or injection seeding methods. The culture chamber layout was conceived with the aim of simplifying the user operations under laminar flow hood and minimizing the risks for contamination during handling and operation. Furthermore, a compact size, a small number of components, and the use of bayonet couplings ensured a simple, fast, and sterility-promoting assembling. Finally, preliminary in vitro tests proved the efficacy of the system in enhancing cell seeding efficiency, opening the way for further studies addressing long-term scaffold colonization.

  7. Electrospun Polymeric Scaffolds with Enhanced Biomimetic Properties for Tissue Engineering Applications

    OpenAIRE

    Fiorani, Andrea

    2014-01-01

    This PhD Thesis is focused on the development of fibrous polymeric scaffolds for tissue engineering applications and on the improvement of scaffold biomimetic properties. Scaffolds were fabricated by electrospinning, which allows to obtain scaffolds made of polymeric micro or nanofibers. Biomimetism was enhanced by following two approaches: (1) the use of natural biopolymers, and (2) the modification of the fibers surface chemistry. Gelatin was chosen for its bioactive properties and cellu...

  8. Urban scaffolding : A topological design tool

    NARCIS (Netherlands)

    Alexandrescu, Maria; Forgaci, C.; Ionescu, Ioana; Dahl, Caroline; Diedrich, Lisa; Lindholm, Gunilla; Vicenzotti, Vera; Vogel, Nina

    2016-01-01

    Landscape architecture, landscape urbanism, and urbanism provide a number of tools, methods, and techniques for the design of the built and unbuilt urban landscape. The interplay of these techniques is left up to the designers, and the resulting range of projects associated with the terms is broad

  9. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  10. The use of biodegradable polymers in design of cellular scaffolds

    OpenAIRE

    Joanna Orłowska; Urszula Kurczewska; Katarzyna Derwińska; Wojciech Orłowski; Daria Orszulak-Michalak

    2015-01-01

    The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics). To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye...

  11. The use of biodegradable polymers in design of cellular scaffolds.

    Science.gov (United States)

    Orłowska, Joanna; Kurczewska, Urszula; Derwińska, Katarzyna; Orłowski, Wojciech; Orszulak-Michalak, Daria

    2015-03-05

    The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics). To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining) show that the tested materials have a positive influence on cell adhesion crucial for wound healing - fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  12. The use of biodegradable polymers in design of cellular scaffolds

    Directory of Open Access Journals (Sweden)

    Joanna Orłowska

    2015-03-01

    Full Text Available The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics. To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining show that the tested materials have a positive influence on cell adhesion crucial for wound healing – fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  13. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.

    Science.gov (United States)

    Uth, Nicholas; Mueller, Jens; Smucker, Byran; Yousefi, Azizeh-Mitra

    2017-02-21

    This study reports the development of biological/synthetic scaffolds for bone tissue engineering (TE) via 3D bioplotting. These scaffolds were composed of poly(L-lactic-co-glycolic acid) (PLGA), type I collagen, and nano-hydroxyapatite (nHA) in an attempt to mimic the extracellular matrix of bone. The solvent used for processing the scaffolds was 1,1,1,3,3,3-hexafluoro-2-propanol. The produced scaffolds were characterized by scanning electron microscopy, microcomputed tomography, thermogravimetric analysis, and unconfined compression test. This study also sought to validate the use of finite-element optimization in COMSOL Multiphysics for scaffold design. Scaffold topology was simplified to three factors: nHA content, strand diameter, and strand spacing. These factors affect the ability of the scaffold to bear mechanical loads and how porous the structure can be. Twenty four scaffolds were constructed according to an I-optimal, split-plot designed experiment (DE) in order to generate experimental models of the factor-response relationships. Within the design region, the DE and COMSOL models agreed in their recommended optimal nHA (30%) and strand diameter (460 μm). However, the two methods disagreed by more than 30% in strand spacing (908 μm for DE; 601 μm for COMSOL). Seven scaffolds were 3D-bioplotted to validate the predictions of DE and COMSOL models (4.5-9.9 MPa measured moduli). The predictions for these scaffolds showed relative agreement for scaffold porosity (mean absolute percentage error of 4% for DE and 13% for COMSOL), but were substantially poorer for scaffold modulus (51% for DE; 21% for COMSOL), partly due to some simplifying assumptions made by the models. Expanding the design region in future experiments (e.g., higher nHA content and strand diameter), developing an efficient solvent evaporation method, and exerting a greater control over layer overlap could allow developing PLGA-nHA-collagen scaffolds to meet the mechanical requirements for

  14. Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation

    Science.gov (United States)

    Pelto, Jani; Björninen, Miina; Pälli, Aliisa; Talvitie, Elina; Hyttinen, Jari; Mannerström, Bettina; Suuronen Seppanen, Riitta; Kellomäki, Minna; Miettinen, Susanna; Haimi, Suvi

    2013-01-01

    An electrically conductive polypyrrole (PPy) doped with a bioactive agent is an emerging functional biomaterial for tissue engineering. We therefore used chondroitin sulfate (CS)-doped PPy coating to modify initially electrically insulating polylactide resulting in novel osteogenic scaffolds. In situ chemical oxidative polymerization was used to obtain electrically conductive PPy coating on poly-96L/4D-lactide (PLA) nonwoven scaffolds. The coated scaffolds were characterized and their electrical conductivity was evaluated in hydrolysis. The ability of the coated and conductive scaffolds to enhance proliferation and osteogenic differentiation of human adipose stem cells (hASCs) under electrical stimulation (ES) in three-dimensional (3D) geometry was compared to the noncoated PLA scaffolds. Electrical conductivity of PPy-coated PLA scaffolds (PLA-PPy) was evident at the beginning of hydrolysis, but decreased during the first week of incubation due to de-doping. PLA-PPy scaffolds enhanced hASC proliferation significantly compared to the plain PLA scaffolds at 7 and 14 days. Furthermore, the alkaline phosphatase (ALP) activity of the hASCs was generally higher in PLA-PPy seeded scaffolds, but due to patient variation, no statistical significance could be determined. ES did not have a significant effect on hASCs. This study highlights the potential of novel PPy-coated PLA scaffolds in bone tissue engineering. PMID:23126228

  15. Biomimetic Scaffold Design for Functional and Integrative Tendon Repair

    Science.gov (United States)

    Zhang, Xinzhi; Bogdanowicz, Danielle; Erisken, Cevat; Lee, Nancy M.; Lu, Helen H.

    2012-01-01

    Rotator cuff tears represent the most common shoulder injuries in the United States. The debilitating effect of this degenerative condition coupled with the high incidence of failure associated with existing graft choices underscore the clinical need for alternative grafting solutions. The two critical design criteria for the ideal tendon graft would require the graft to not only exhibit physiologically relevant mechanical properties but also be able to facilitate functional graft integration by promoting the regeneration of the native tendon-to-bone interface. Centered on these design goals, this review will highlight current approaches to functional and integrative tendon repair. In particular, the application of biomimetic design principles through the use of nanofiber- and nanocomposite-based scaffolds for tendon tissue engineering will be discussed. This review will begin with nanofiber-based approaches to functional tendon repair, followed by a section highlighting the exciting research on tendon-to-bone interface regeneration, with an emphasis on implementation of strategic biomimicry in nanofiber scaffold design and the concomitant formation of graded multi-tissue systems for integrative soft tissue repair. This review will conclude with a summary and future directions section. PMID:22244070

  16. A Pareto-optimal refinement method for protein design scaffolds.

    Directory of Open Access Journals (Sweden)

    Lucas Gregorio Nivón

    Full Text Available Computational design of protein function involves a search for amino acids with the lowest energy subject to a set of constraints specifying function. In many cases a set of natural protein backbone structures, or "scaffolds", are searched to find regions where functional sites (an enzyme active site, ligand binding pocket, protein-protein interaction region, etc. can be placed, and the identities of the surrounding amino acids are optimized to satisfy functional constraints. Input native protein structures almost invariably have regions that score very poorly with the design force field, and any design based on these unmodified structures may result in mutations away from the native sequence solely as a result of the energetic strain. Because the input structure is already a stable protein, it is desirable to keep the total number of mutations to a minimum and to avoid mutations resulting from poorly-scoring input structures. Here we describe a protocol using cycles of minimization with combined backbone/sidechain restraints that is Pareto-optimal with respect to RMSD to the native structure and energetic strain reduction. The protocol should be broadly useful in the preparation of scaffold libraries for functional site design.

  17. A Pareto-optimal refinement method for protein design scaffolds.

    Science.gov (United States)

    Nivón, Lucas Gregorio; Moretti, Rocco; Baker, David

    2013-01-01

    Computational design of protein function involves a search for amino acids with the lowest energy subject to a set of constraints specifying function. In many cases a set of natural protein backbone structures, or "scaffolds", are searched to find regions where functional sites (an enzyme active site, ligand binding pocket, protein-protein interaction region, etc.) can be placed, and the identities of the surrounding amino acids are optimized to satisfy functional constraints. Input native protein structures almost invariably have regions that score very poorly with the design force field, and any design based on these unmodified structures may result in mutations away from the native sequence solely as a result of the energetic strain. Because the input structure is already a stable protein, it is desirable to keep the total number of mutations to a minimum and to avoid mutations resulting from poorly-scoring input structures. Here we describe a protocol using cycles of minimization with combined backbone/sidechain restraints that is Pareto-optimal with respect to RMSD to the native structure and energetic strain reduction. The protocol should be broadly useful in the preparation of scaffold libraries for functional site design.

  18. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  19. Fatigue Design and Prevention in Movable Scaffolding Systems

    Science.gov (United States)

    Coelho, Hugo; Torres, Alberto; Pacheco, Pedro; Moreira, Cristiano; Silva, Rute; Soares, José M.; Pinto, Dânia

    2017-06-01

    The Movable Scaffolding System (MSS) is a heavy construction equipment used for casting situ of concrete bridge decks. In the past decades, MSSs have become increasingly complex and industrialized, enlarging its span ranges, incorporating auxiliary elevation machinery and increasing productivity. The tendency nowadays is for strong reutilization and the notion of MSS as a disposable or temporary structure is somehow reductive. The main structure of MSSs may be potentially exposed to fatigue, usually characterized by low number of cycles with significant stress amplitude. Fatigue may be prevented through adequate design; judicious selection of materials; demanding quality control and implementation of robust inspection and maintenance plans.

  20. Fatigue Design and Prevention in Movable Scaffolding Systems

    Directory of Open Access Journals (Sweden)

    Coelho Hugo

    2017-06-01

    Full Text Available The Movable Scaffolding System (MSS is a heavy construction equipment used for casting situ of concrete bridge decks. In the past decades, MSSs have become increasingly complex and industrialized, enlarging its span ranges, incorporating auxiliary elevation machinery and increasing productivity. The tendency nowadays is for strong reutilization and the notion of MSS as a disposable or temporary structure is somehow reductive. The main structure of MSSs may be potentially exposed to fatigue, usually characterized by low number of cycles with significant stress amplitude. Fatigue may be prevented through adequate design; judicious selection of materials; demanding quality control and implementation of robust inspection and maintenance plans.

  1. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Abbas [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD (Australia); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Sadat Taherzadeh, Elham [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Dinarvand, Peyman [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO (United States); Soleimani, Masoud [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers.

  2. Differentiation of adipose stem cells towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography

    NARCIS (Netherlands)

    Blanquer, Sebastien; Gebraad, Arjen; Miettinen, S.; Poot, Andreas A.; Grijpma, Dirk W.; Haimi, Suvi

    2016-01-01

    Cell-based therapies could potentially restore the biomechanical function and enhance the self-repair capacity of annulus fibrosus (AF) tissue. However, choosing a suitable cell source and scaffold design are still key challenges. In this study, we assessed the in vitro ability of human adipose stem

  3. Scaffold design for artificial tissue with bone marrow stem cells

    Directory of Open Access Journals (Sweden)

    Aurelija Noreikaitė

    2017-01-01

    Conclusions: The obtained results suggest that electrospinning technology and femtosecond laser micro-structuring could be employed for the development of multi-layer scaffolds. Different biopolymers, such as PLA, fibrin, and collagen, could be used as appropriate environments for cell inhabitation and as an inner layer of the multi-layer scaffold. PI could be suitable as a barrier blocking cell migration from the scaffold. However, additional studies are needed to determine optimal parameters of inner and outer scaffold layers.

  4. Design and Synthesis of Biomimetic Hydrogel Scaffolds with Controlled Organization of Cyclic RGD Peptides

    Science.gov (United States)

    Zhu, Junmin; Tang, Chad; Kottke-Marchant, Kandice; Marchant, Roger E.

    2009-01-01

    We report on the rational design and synthesis of a new type of bioactive poly(ethylene glycol) diacrylate (PEGDA) macromers, cyclic Arg-Gly-Asp (cRGD)-PEGDA, to mimic the cell-adhesive properties of extracellular matrix (ECM), aiming to create biomimetic scaffolds with controlled spatial organization of ligands and enhanced cell binding affinity for tissue engineering. To attach the cRGD peptide in the middle of PEGDA chain, a tailed cRGD peptide, c[RGDfE(SSSKK-NH2)] (1) was synthesized with c(RGDfE) linked to a tail of SSSKK. The tail consists of a spacer with three serine residues, and a linker with two lysine residues for conjugating with acryloyl-PEG-NHS (5) to create cRGD-PEGDA (6). cRGD-PEGDA possesses good ability of photopolymerization to fabricate hydrogel scaffolds under UV radiation. Surface morphology and composition analysis demonstrates that cRGD-PEGDA hydrogels were well-constructed with porous three-dimensional (3D) structures and uniform distribution of cRGD ligands. Our results show that cRGD-PEGDA hydrogels facilitate endothelial cell (EC) adhesion and spreading on the hydrogel surfaces, and exhibit significantly higher EC population in comparison with linear RGD-modified hydrogels at low peptide incorporation. Since ligand presentation in biomimetc scaffolds plays an important role in controlling cell behaviors, cRGD-PEGDA has great advantages of controlling hydrogel properties and ligand spatial organization in the resulting scaffolds. Furthermore, cRGD-PEGDA is an attractive candidate for the future development of tissue engineering scaffolds with optimum cell adhesive strength and ligand density. PMID:19191566

  5. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  6. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  7. Structural and biochemical modification of a collagen scaffold to selectively enhance MSC tenogenic, chondrogenic, and osteogenic differentiation.

    Science.gov (United States)

    Caliari, Steven R; Harley, Brendan A C

    2014-07-01

    Biomaterial approaches for engineering orthopedic interfaces such as the tendon-bone junction (TBJ) are limited by a lack of understanding of how insoluble (microstructure, composition) and soluble regulators of stem cell fate work in concert to promote bioactivity and differentiation. One strategy for regenerating the interface is to design biomaterials containing spatially graded structural properties sufficient to induce divergent mesenchymal stem cell (MSC) differentiation into multiple interface-specific phenotypes. This work explores the hypothesis that selective structural modification to a 3D collagen-glycosaminoglycan (CG) scaffold combined with biochemical supplementation can drive human bone-marrow-derived MSC differentiation down tenogenic, osteogenic, and chondrogenic lineages. Tenogenic differentiation is enhanced in geometrically anisotropic scaffolds versus a standard isotropic control. Notably, blebbistatin treatment abrogates this microstructurally driven effect. Further, enhanced osteogenic differentiation and new mineral synthesis are achieved by incorporation of a calcium phosphate mineral phase within the CG scaffold along with the use of osteogenic induction media. Finally, chondrogenic differentiation is optimally driven by combining chondrogenic induction media with a reduced density scaffold that promotes increased cellular condensation, significantly higher expression of chondrogenic genes, and increased GAG deposition. Together these data provide critical insight regarding design rules for elements of an integrated biomaterial platform for orthopedic interface regeneration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhanced Piezoelectric Shunt Design

    Directory of Open Access Journals (Sweden)

    Chul H. Park

    2003-01-01

    Full Text Available Piezoceramic material connected to an electronic shunt branch circuit has formed a successful vibration reduction device. One drawback of the conventional electronic shunt circuit is the large inductance required when suppressing low frequency vibration modes. Also, the large internal resistance associated with this large inductance exceeds the optimal design resistance needed for low frequency vibration suppression. To solve this problem, a modified and enhanced piezoelectric shunt circuit is designed and analyzed by using mechanical-electrical analogies to present the physical interpretation. The enhanced shunt circuit developed in this paper is proved to significantly reduce the targeted vibration mode of a cantilever beam, theoretically and experimentally.

  9. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs

    Science.gov (United States)

    Peng, Hongju; Yin, Zi; Liu, Huanhuan; Chen, Xiao; Feng, Bei; Yuan, Huihua; Su, Bo; Ouyang, Hongwei; Zhang, Yanzhong

    2012-12-01

    Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications.

  10. Scaffolding and interventions between students and teachers in a Learning Design Sequence

    Directory of Open Access Journals (Sweden)

    Eva Edman Stålbrandt

    Full Text Available The aims of this paper are to develop knowledge about scaffolding when students in Swedish schools use digital educational material and to investigate what the main focus is in teachers' interventions during a Learning Design Sequence (LDS, based on a socio-cultural perspective. The results indicate that scaffolding were most common in the primary transformation unit and the most frequent type was procedural scaffolding, although all types of scaffolds; conceptual, metacognitive, procedural, strategic, affective and technical scaffolding occurred in all parts of a learning design sequence. In this study most of the teachers and students, think that using digital educational material requires more and other forms of scaffolding and concerning teacher interventions teachers interact both supportively and restrictively according to students' learning process. Reasons for that are connected to the content of the intervention and whether teachers intervene together with the students or not.

  11. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

    Science.gov (United States)

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang

    2015-08-01

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.

  12. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide.

    Science.gov (United States)

    Li, Na; Fan, Xialian; Tang, Keyong; Zheng, Xuejing; Liu, Jie; Wang, Baoshi

    2016-04-01

    In this study, three-dimensional (3D) nanocomposite scaffolds, as potential substrates for skin tissue engineering, were fabricated by freeze drying the mixture of type I collagen extracted from porcine skin and polyvinyl pyrrolidone (PVP)-coated titanium dioxide (TiO2) nanoparticles. This procedure was performed without any cross-linker or toxic reagents to generate porosity in the scaffold. Both morphology and thermal stability of the nanocomposite scaffold were examined. The swelling behavior, mechanical properties and hydrolytic degradation of the composite scaffolds were carefully investigated. Our results revealed that collagen, PVP and TiO2 are bonded together by four main hydrogen bonds, which is an essential action for the formation of nanocomposite scaffold. Using Coasts-Redfern model, we were able to calculate the thermal degradation apparent activation energy and demonstrated that the thermal stability of nanocomposites is dependent on amount of PVP incorporated. Furthermore, SEM images showed that the collagen fibers are wrapped and stabilized on scaffolds by PVP molecules, which improve the ultimate tensile strength (UTS). The UTS of PVP-contained scaffold is four times higher than that of scaffold without PVP, whereas ultimate percentage of elongation (UPE) is decreased, and PVP can enhance the degradation resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    Science.gov (United States)

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2011-01-01

    Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883

  14. Design principles for lymphatic drainage of fluid and solutes from collagen scaffolds.

    Science.gov (United States)

    Thompson, Rebecca L; Margolis, Emily A; Ryan, Tyler J; Coisman, Brent J; Price, Gavrielle M; Wong, Keith H K; Tien, Joe

    2018-01-01

    In vivo, tissues are drained of excess fluid and macromolecules by the lymphatic vascular system. How to engineer artificial lymphatics that can provide equivalent drainage in biomaterials remains an open question. This study elucidates design principles for engineered lymphatics, by comparing the rates of removal of fluid and solute through type I collagen gels that contain lymphatic vessels or unseeded channels, or through gels without channels. Surprisingly, no difference was found between the fluid drainage rates for gels that contained vessels or bare channels. Moreover, solute drainage rates were greater in collagen gels that contained lymphatic vessels than in those that had bare channels. The enhancement of solute drainage by lymphatic endothelium was more pronounced in longer scaffolds and with smaller solutes. Whole-scaffold imaging revealed that endothelialization aided in solute drainage by impeding solute reflux into the gel without hindering solute entry into the vessel lumen. These results were reproduced by computational models of drainage with a flow-dependent endothelial hydraulic conductivity. This study shows that endothelialization of bare channels does not impede the drainage of fluid from collagen gels and can increase the drainage of macromolecules by preventing solute transport back into the scaffold. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 106-114, 2018. © 2017 Wiley Periodicals, Inc.

  15. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  16. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits.

    Science.gov (United States)

    Chen, S-H; Lei, M; Xie, X-H; Zheng, L-Z; Yao, D; Wang, X-L; Li, W; Zhao, Z; Kong, A; Xiao, D-M; Wang, D-P; Pan, X-H; Wang, Y-X; Qin, L

    2013-05-01

    Bone defect repair is challenging in orthopaedic clinics. For treatment of large bone defects, bone grafting remains the method of choice for the majority of surgeons, as it fills spaces and provides support to enhance biological bone repair. As therapeutic agents are desirable for enhancing bone healing, this study was designed to develop such a bioactive composite scaffold (PLGA/TCP/ICT) made of polylactide-co-glycolide (PLGA) and tricalcium phosphate (TCP) as a basic carrier, incorporating a phytomolecule icaritin (ICT), i.e., a novel osteogenic exogenous growth factor. PLGA/TCP/ICT scaffolds were fabricated as PLGA/TCP (control group) and PLGA/TCP in tandem with low/mid/high-dose ICT (LICT/MICT/HICT groups, respectively). To evaluate the in vivo osteogenic and angiogenic potentials of these bioactive scaffolds with slow release of osteogenic ICT, the authors established a 12 mm ulnar bone defect model in rabbits. X-ray and high-resolution peripheral quantitative computed tomography results at weeks 2, 4 and 8 post-surgery showed more newly formed bone within bone defects implanted with PLGA/TCP/ICT scaffolds, especially PLGA/TCP/MICT scaffold. Histological results at weeks 4 and 8 also demonstrated more newly mineralized bone in PLGA/TCP/ICT groups, especially in the PLGA/TCP/MICT group, with correspondingly more new vessel ingrowth. These findings may form a good foundation for potential clinical validation of this innovative bioactive scaffold incorporated with the proper amount of osteopromotive phytomolecule ICT as a ready product for clinical applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Electrospun biphasic tubular scaffold with enhanced mechanical properties for vascular tissue engineering.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Bartnikowski, Michal; Hamlet, Stephen; Ivanovski, Sašo

    2018-01-01

    Polymer scaffolds produced through an electrospinning process are frequently explored as tissue substitutes for regenerative medicine. Despite offering desirable surface area to volume ratios and tailorable pore sizes, their poor structural mechanical properties limit their applicability in load-bearing regions. In this study, we present a simple strategy to improve the mechanical properties of a vascular graft scaffold. We achieved the formation of biphasic tubular scaffolds by electrospinning polyurethane (PU) onto an airbrushed tube made of polycaprolactone (PCL). After preparation, the scaffold was subsequently thermally-crosslinked (60°C) to strengthen the bonding between the two materials. The tensile strength and tensile elastic (Young's) modulus of the biphasic scaffolds were significantly enhanced from 4.5±1.72 and 45±15MPa (PU-only) up to 67.5±2.4 and 1039±81.8MPa (PCL/PU; pmechanically robust vascular graft scaffold using a novel combination of well-established fabrication techniques. This study could also be extended to the fabrication of other biphasic scaffolds to better enhance the mechanical properties of the electrospun fibers mat without deteriorating its architecture structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enhanced Optical Filter Design

    CERN Document Server

    Cushing, David

    2011-01-01

    This book serves as a supplement to the classic texts by Angus Macleod and Philip Baumeister, taking an intuitive approach to the enhancement of optical coating (or filter) performance. Drawing from 40 years of experience in thin film design, Cushing introduces the basics of thin films, the commonly used materials and their deposition, the major coatings and their applications, and improvement methods for each.

  19. Computer-aided design of microvasculature systems for use in vascular scaffold production

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, William Lafayette [Department of Chemical and Biomedical Engineering, University of South Florida, FL (United States); Cameron, Don [Department of Pathology and Cell Biology, College of Medicine, University of South Florida, FL (United States); Timmermans, Jean-Pierre [Department of Veterinary Sciences, University of Antwerp (Belgium); De Clerck, Nora [Department of Biomedical Sciences University of Antwerp (Belgium); Sasov, Alexander [Skyscan (Belgium); Casteleyn, Christophe [College of Veterinary Medicine, Ghent University (Belgium); Piegl, Les A [Department of Computer Science and Engineering, University of South Florida, FL (United States)

    2009-09-15

    In vitro biomedical engineering of intact, functional vascular networks, which include capillary structures, is a prerequisite for adequate vascular scaffold production. Capillary structures are necessary since they provide the elements and compounds for the growth, function and maintenance of 3D tissue structures. Computer-aided modeling of stereolithographic (STL) micro-computer tomographic (micro-CT) 3D models is a technique that enables us to mimic the design of vascular tree systems containing capillary beds, found in tissues. In our first paper (Mondy et al 2009 Tissue Eng. at press), using micro-CT, we studied the possibility of using vascular tissues to produce data capable of aiding the design of vascular tree scaffolding, which would help in the reverse engineering of a complete vascular tree system including capillary bed structures. In this paper, we used STL models of large datasets of computer-aided design (CAD) data of vascular structures which contained capillary structures that mimic those in the dermal layers of rabbit skin. Using CAD software we created from 3D STL models a bio-CAD design for the development of capillary-containing vascular tree scaffolding for skin. This method is designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the bioengineering of various other types of 3D tissue structures, and as such greatly expands the potential applications of biomedical engineering technology into the fields of biomedical research and medicine.

  20. Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope from Respiratory Syncytial Virus

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, Jason S.; Correia, Bruno E.; Chen, Man; Yang, Yongping; Graham, Barney S.; Schief, William R.; Kwong, Peter D. (UWASH); (NIH)

    2012-06-28

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 {angstrom} resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.

  1. Thermogel-Coated Poly(ε-Caprolactone Composite Scaffold for Enhanced Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2016-05-01

    Full Text Available A three-dimensional (3D composite scaffold was prepared for enhanced cartilage tissue engineering, which was composed of a poly(ε-caprolactone (PCL backbone network and a poly(lactide-co-glycolide-block-poly(ethylene glycol-block-poly(lactide-co-glycolide (PLGA–PEG–PLGA thermogel surface. The composite scaffold not only possessed adequate mechanical strength similar to native osteochondral tissue as a benefit of the PCL backbone, but also maintained cell-friendly microenvironment of the hydrogel. The PCL network with homogeneously-controlled pore size and total pore interconnectivity was fabricated by fused deposition modeling (FDM, and was impregnated into the PLGA–PEG–PLGA solution at low temperature (e.g., 4 °C. The PCL/Gel composite scaffold was obtained after gelation induced by incubation at body temperature (i.e., 37 °C. The composite scaffold showed a greater number of cell retention and proliferation in comparison to the PCL platform. In addition, the composite scaffold promoted the encapsulated mesenchymal stromal cells (MSCs to differentiate chondrogenically with a greater amount of cartilage-specific matrix production compared to the PCL scaffold or thermogel. Therefore, the 3D PCL/Gel composite scaffold may exhibit great potential for in vivo cartilage regeneration.

  2. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.

    Science.gov (United States)

    Brown, Andrew; Zaky, Samer; Ray, Herbert; Sfeir, Charles

    2015-01-01

    Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices. Copyright © 2014. Published by Elsevier Ltd.

  3. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    Science.gov (United States)

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.

  4. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features.

    Science.gov (United States)

    Neal, Rebekah A; Jean, Aurélie; Park, Hyoungshin; Wu, Patrick B; Hsiao, James; Engelmayr, George C; Langer, Robert; Freed, Lisa E

    2013-03-01

    Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering.

  5. 3D printing for the design and fabrication of polymer-based gradient scaffolds.

    Science.gov (United States)

    Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P

    2017-07-01

    To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review

  6. Enhancing students' higher order thinking skills through computer-based scaffolding in problem-based learning

    Science.gov (United States)

    Kim, Nam Ju

    This multiple paper dissertation addressed several issues in Problem-based learning (PBL) through conceptual analysis, meta-analysis, and empirical research. PBL is characterized by ill-structured tasks, self-directed learning process, and a combination of individual and cooperative learning activities. Students who lack content knowledge and problem-solving skills may struggle to address associated tasks that are beyond their current ability levels in PBL. This dissertation addressed a) scaffolding characteristics (i.e., scaffolding types, delivery method, customization) and their effects on students' perception of optimal challenge in PBL, b) the possibility of virtual learning environments for PBL, and c) the importance of information literacy for successful PBL learning. Specifically, this dissertation demonstrated the effectiveness of scaffolding customization (i.e., fading, adding, and fading/adding) to enhance students' self-directed learning in PBL. Moreover, the effectiveness of scaffolding was greatest when scaffolding customization is self-selected than based on fixed-time interval and their performance. This suggests that it might be important for students to take responsibility for their learning in PBL and individualized and just-in-time scaffolding can be one of the solutions to address K-12 students' difficulties in improving problem-solving skills and adjusting to PBL.

  7. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering

    Science.gov (United States)

    Kamath, Manjunath Srinivas; Ahmed, Shiek SSJ; Dhanasekaran, M; Santosh, S Winkins

    2014-01-01

    Biomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, and osteogenic for enhanced bone formation. In this study, a three-dimensional porous polycapro-lactone (PCL) scaffold was engineered for prolonged release of resveratrol. Resveratrol-loaded albumin nanoparticles (RNP) were synthesized and entrapped into a PCL scaffold to form PCL-RNP by a solvent casting and leaching method. An X-ray diffraction study of RNP and PCL-RNP showed that resveratrol underwent amorphization, which is highly desired in drug delivery. Furthermore, Fourier transform infrared spectroscopy indicates that resveratrol was not chemically modified during the entrapment process. Release of resveratrol from PCL-RNP was sustained, with a cumulative release of 64% at the end of day 12. The scaffold was evaluated for its bone-forming potential in vitro using human bone marrow-derived mesenchymal stem cells for 16 days. Alkaline phosphatase activity assayed on days 8 and 12 showed a significant increase in activity (1.6-fold and 1.4-fold, respectively) induced by PCL-RNP compared with the PCL scaffold (the positive control). Moreover, von Kossa staining for calcium deposits on day 16 showed increased mineralization in PCL-RNP. These results suggest PCL-RNP significantly improves mineralization due to its controlled and prolonged release of resveratrol, thereby increasing the therapeutic potential in bone tissue engineering. PMID:24399875

  8. Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering.

    Science.gov (United States)

    Lacroix, Damien; Planell, Josep A; Prendergast, Patrick J

    2009-05-28

    Scaffold biomaterials for tissue engineering can be produced in many different ways depending on the applications and the materials used. Most research into new biomaterials is based on an experimental trial-and-error approach that limits the possibility of making many variations to a single material and studying its interaction with its surroundings. Instead, computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. In this paper, a review of the current approach in biomaterials designed through computer-aided design (CAD) and through finite-element modelling is given. First we review the approach used in tissue engineering in the development of scaffolds and the interactions existing between biomaterials, cells and mechanical stimuli. Then, scaffold fabrication through CAD is presented and characterization of existing scaffolds through computed images is reviewed. Several case studies of finite-element studies in tissue engineering show the usefulness of computer simulations in determining the mechanical environment of cells when seeded into a scaffold and the proper design of the geometry and stiffness of the scaffold. This creates a need for more advanced studies that include aspects of mechanobiology in tissue engineering in order to be able to predict over time the growth and differentiation of tissues within scaffolds. Finally, current perspectives indicate that more efforts need to be put into the development of such advanced studies, with the removal of technical limitations such as computer power and the inclusion of more accurate biological and genetic processes into the developed algorithms.

  9. Nanofiber technology: designing the next generation of tissue engineering scaffolds.

    Science.gov (United States)

    Barnes, Catherine P; Sell, Scott A; Boland, Eugene D; Simpson, David G; Bowlin, Gary L

    2007-12-10

    Tissue engineering is an interdisciplinary field that has attempted to utilize a variety of processing methods with synthetic and natural polymers to fabricate scaffolds for the regeneration of tissues and organs. The study of structure-function relationships in both normal and pathological tissues has been coupled with the development of biologically active substitutes or engineered materials. The fibrillar collagens, types I, II, and III, are the most abundant natural polymers in the body and are found throughout the interstitial spaces where they function to impart overall structural integrity and strength to tissues. The collagen structures, referred to as extracellular matrix (ECM), provide the cells with the appropriate biological environment for embryologic development, organogenesis, cell growth, and wound repair. In the native tissues, the structural ECM proteins range in diameter from 50 to 500 nm. In order to create scaffolds or ECM analogues, which are truly biomimicking at this scale, one must employ nanotechnology. Recent advances in nanotechnology have led to a variety of approaches for the development of engineered ECM analogues. To date, three processing techniques (self-assembly, phase separation, and electrospinning) have evolved to allow the fabrication of nanofibrous scaffolds. With these advances, the long-awaited and much anticipated construction of a truly "biomimicking" or "ideal" tissue engineered environment, or scaffold, for a variety of tissues is now highly feasible. This review will discuss the three primary technologies (with a focus on electrospinning) available to create tissue engineering scaffolds that are capable of mimicking native tissue, as well as explore the wide array of materials investigated for use in scaffolds.

  10. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration

    Science.gov (United States)

    Ma, Bing; Xie, Jingwei; Jiang, Jiang; Shuler, Franklin D; Bartlett, David E

    2013-01-01

    This article reviews recent significant advances in the design of nanofiber scaffolds for orthopedic tissue repair and regeneration. It begins with a brief introduction on the limitations of current approaches for orthopedic tissue repair and regeneration. It then illustrates that rationally designed scaffolds made up of electrospun nanofibers could be a promising solution to overcome the problems that current approaches encounter. The article also discusses the intriguing properties of electrospun nanofibers, including control of composition, structures, orders, alignments and mechanical properties, use as carriers for topical drug and/or gene sustained delivery, and serving as substrates for the regulation of cell behaviors, which could benefit musculoskeletal tissue repair and regeneration. It further highlights a few of the many recent applications of electrospun nanofiber scaffolds in repairing and regenerating various orthopedic tissues. Finally, the article concludes with perspectives on the challenges and future directions for better design, fabrication and utilization of nanofiber scaffolds for orthopedic tissue engineering. PMID:23987110

  11. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Brunelle, Alexander R; Horner, Christopher B; Low, Karen; Ico, Gerardo; Nam, Jin

    2017-11-08

    Hydrogels have shown great potential for cartilage tissue engineering applications due to their capability to encapsulate cells within biomimetic, 3-dimensional (3D) microenvironments. However, the multi-step fabrication process that is necessary to produce cell/scaffold constructs with defined dimensions, limits their off-the-shelf translational usage. In this study, we have developed a hybrid scaffolding system which combines a thermosensitive hydrogel, poly(ethylene glycol)-poly(N-isopropylacrylamide) (PEG-PNIPAAm), with a biodegradable polymer, poly(ε-caprolactone) (PCL), into a composite, electrospun microfibrous structure. A judicious optimization of material composition and electrospinning process produced a structurally self-supporting hybrid scaffold. The reverse thermosensitivity of PEG-PNIPAAm allowed its dissolution/hydration upon cell seeding within a network of PCL microfibers while maintaining the overall scaffold shape at room temperature. A subsequent temperature elevation to 37 °C induced the hydrogel's phase transition to a gel state, effectively encapsulating cells in a 3D hydrogel without the use of a mold. We demonstrated that the hybrid scaffold enhanced chondrogenic differentiation of human mesenchymal stem cells (hMSCs) based on chondrocytic gene and protein expression, which resulted in superior viscoelastic properties of the cell/scaffold constructs. The hybrid scaffold enables a facile, single-step cell seeding process to inoculate cells within a 3D hydrogel with the potential for cartilage tissue engineering. Hydrogels have demonstrated the excellent ability to enhance chondrogenesis of stem cells due to their hydrated fibrous nanostructure providing a cellular environment similar to native cartilage. However, the necessity for multi-step processes, including mixing of hydrogel precursor with cells and subsequent gelation in a mold to form a defined shape, limits their off-the-shelf usage. In this study, we developed a hybrid

  12. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion.

    Science.gov (United States)

    Chen, Yuhang; Schellekens, Michiel; Zhou, Shiwei; Cadman, Joseph; Li, Wei; Appleyard, Richard; Li, Qing

    2011-08-01

    Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.

  13. Investigating the Effect of Scaffolding in Modern Game Design

    DEFF Research Database (Denmark)

    Jensen, Kasper Halkjær; Kraus, Martin

    2017-01-01

    Nowadays, game developers are much more focused on providing players with short-term rewards for overcoming challenges than they have been previously. This has resulted in a lot of games having more scaffolding to teach the players what to do, so they don’t quit the games in frustration of not kn...

  14. A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery.

    Science.gov (United States)

    Dorj, Biligzaya; Won, Jong-Eun; Purevdorj, Odnoo; Patel, Kapil D; Kim, Joong-Hyun; Lee, Eun-Jung; Kim, Hae-Won

    2014-03-01

    Three-dimensional (3-D) open-channeled scaffolds of biopolymers are a promising candidate matrix for tissue engineering. When scaffolds have the capacity to deliver bioactive molecules the potential for tissue regeneration should be greatly enhanced. In order to improve drug-delivery capacity, we exploit 3-D poly(lactic acid) (PLA) scaffolds by creating microporosity within the scaffold network. Macroporous channeled PLA with a controlled pore configuration was obtained by a robotic dispensing technique. In particular, a room temperature ionic liquid (RTIL) bearing hydrophilic counter-anions, such as OTf and Cl, was introduced to the biopolymer solution at varying ratios. The RTIL-biopolymer slurry was homogenized by ultrasonication, and then solidified through the robotic dispensing process, during which the biopolymer and RTIL formed a bicontinuous interpenetrating network. After ethanol wash-out treatment the RTIL was completely removed to leave highly microporous open channels throughout the PLA network. The resultant pore size was observed to be a few micrometers (average 2.43 μm) and microporosity was determined to be ∼ 70%. The microporous surface was also shown to favor initial cell adhesion, stimulating cell anchorage on the microporous structure. Furthermore, in vivo tissue responses assessed in rat subcutaneous tissue revealed good tissue compatibility, with minimal inflammatory reactions, while gathering a larger population of fibroblastic cells than the non-microporous scaffolds, and even facilitating invasion of the cells within the microporous structure. The efficacy of the micropore networks generated within the 3-D scaffolds in loading and releasing therapeutic molecules was addressed using antibiotic sodium ampicillin and protein cytochrome C as model drugs. The microporous scaffolds exhibited significantly enhanced drug loading capacity: 4-5 times increase in ampicillin and 9-10 times increase in cytochrome C compared to the non

  15. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.

    Science.gov (United States)

    Lei, Yong; Xu, Zhengliang; Ke, Qinfei; Yin, Wenjing; Chen, Yixuan; Zhang, Changqing; Guo, Yaping

    2017-03-01

    For the clinical application of bone tissue engineering with the combination of biomaterials and mesenchymal stem cells (MSCs), bone scaffolds should possess excellent biocompatibility and osteoinductivity to accelerate the repair of bone defects. Herein, strontium hydroxyapatite [SrHAP, Ca 10-x Sr x (PO 4 ) 6 (OH) 2 ]/chitosan (CS) nanohybrid scaffolds were fabricated by a freeze-drying method. The SrHAP nanocrystals with the different x values of 0, 1, 5 and 10 are abbreviated to HAP, Sr1HAP, Sr5HAP and Sr10HAP, respectively. With increasing x values from 0 to 10, the crystal cell volumes and axial lengths of SrHAP become gradually large because of the greater ion radius of Sr 2+ than Ca 2+ , while the crystal sizes of SrHAP decrease from 70.4nm to 46.7nm. The SrHAP/CS nanohybrid scaffolds exhibits three-dimensional (3D) interconnected macropores with pore sizes of 100-400μm, and the SrHAP nanocrystals are uniformly dispersed within the scaffolds. In vitro cell experiments reveal that all the HAP/CS, Sr1HAP/CS, Sr5HAP/CS and Sr10HAP/CS nanohybrid scaffolds possess excellent cytocompatibility with the favorable adhesion, spreading and proliferation of human bone marrow mesenchymal stem cells (hBMSCs). The Sr5HAP nanocrystals in the scaffolds do not affect the adhesion, spreading of hBMSCs, but they contribute remarkably to cell proliferation and osteogenic differentiation. As compared with the HAP/CS nanohybrid scaffold, the released Sr 2+ ions from the SrHAP/CS nanohybrid scaffolds enhance alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization and osteogenic-related COL-1 and ALP expression levels. Especially, the Sr5HAP/CS nanohybrid scaffolds exhibit the best osteoinductivity among four groups because of the synergetic effect between Ca 2+ and Sr 2+ ions. Hence, the Sr5HAP/CS nanohybrid scaffolds with excellent cytocompatibility and osteogenic property have promising application for bone tissue engineering. Copyright © 2016. Published

  16. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.

    Science.gov (United States)

    Gregor, Aleš; Filová, Eva; Novák, Martin; Kronek, Jakub; Chlup, Hynek; Buzgo, Matěj; Blahnová, Veronika; Lukášová, Věra; Bartoš, Martin; Nečas, Alois; Hošek, Jan

    2017-01-01

    The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells. During the cell growth gradual biodegradation of the scaffold occurs and the final product is a new tissue with the desired shape and properties. In recent years, research workplaces are focused on developing scaffold by bio-fabrication techniques to achieve fast, precise and cheap automatic manufacturing of these structures. Most promising techniques seem to be Rapid prototyping due to its high level of precision and controlling. However, this technique is still to solve various issues before it is easily used for scaffold fabrication. In this article we tested printing of clinically applicable scaffolds with use of commercially available devices and materials. Research presented in this article is in general focused on "scaffolding" on a field of bone tissue replacement. Commercially available 3D printer and Polylactic acid were used to create originally designed and possibly suitable scaffold structures for bone tissue engineering. We tested printing of scaffolds with different geometrical structures. Based on the osteosarcoma cells proliferation experiment and mechanical testing of designed scaffold samples, it will be stated that it is likely not necessary to keep the recommended porosity of the scaffold for bone tissue replacement at about 90%, and it will also be clarified why this fact eliminates mechanical properties issue. Moreover, it is demonstrated that the size of an individual pore could be double the size of the recommended range between 0.2-0.35 mm without affecting the cell proliferation. Rapid prototyping technique based on Fused deposition modelling was used for the fabrication of designed scaffold

  17. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

    Directory of Open Access Journals (Sweden)

    Jan Wieding

    2012-08-01

    Full Text Available Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V, fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.

  18. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization.

    Science.gov (United States)

    Monaco, Graziana; Cholas, Rahmatullah; Salvatore, Luca; Madaghiele, Marta; Sannino, Alessandro

    2017-02-01

    In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regeneration. Scanning electron microscopy, mechanical testing, quantification of primary amines, differential scanning calorimetry and enzymatic degradation were performed to analyze possible structural and chemical changes induced by the sterilization. Moreover, in vitro proliferation and infiltration of the rat Schwann cell line RSC96 within the scaffolds was evaluated, up to 10days of culture. No major differences in morphology and compressive stiffness were observed among scaffolds sterilized by the different methods, as all samples showed approximately the same structure and stiffness as the unsterilized control. Proliferation, infiltration, distribution and morphology of RSC96 cells within the scaffolds were also comparable throughout the duration of the cell culture study, regardless of the sterilization treatment. However, we found a slight increase of chemical crosslinking upon sterilization (EtOsterilized scaffolds. The results demonstrated that β irradiation impaired the scaffold properties to a greater extent, whereas EtO exposure appeared as the most suitable method for the sterilization of the proposed scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    Directory of Open Access Journals (Sweden)

    Anna Maria Pappa

    2015-01-01

    Full Text Available Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM. Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.

  20. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

    Science.gov (United States)

    Quinlan, Elaine; Partap, Sonia; Azevedo, Maria M; Jell, Gavin; Stevens, Molly M; O'Brien, Fergal J

    2015-06-01

    One of the biggest challenges in regenerative medicine is promoting sufficient vascularisation of tissue-engineered constructs. One approach to overcome this challenge is to target the cellular hypoxia inducible factor (HIF-1α) pathway, which responds to low oxygen concentration (hypoxia) and results in the activation of numerous pro-angiogenic genes including vascular endothelial growth factor (VEGF). Cobalt ions are known to mimic hypoxia by artificially stabilising the HIF-1α transcription factor. Here, resorbable bioactive glass particles (38 μm and 100 μm) with cobalt ions incorporated into the glass network were used to create bioactive glass/collagen-glycosaminoglycan scaffolds optimised for bone tissue engineering. Inclusion of the bioactive glass improved the compressive modulus of the resulting composite scaffolds while maintaining high degrees of porosity (>97%). Moreover, in vitro analysis demonstrated that the incorporation of cobalt bioactive glass with a mean particle size of 100 μm significantly enhanced the production and expression of VEGF in endothelial cells, and cobalt bioactive glass/collagen-glycosaminoglycan scaffold conditioned media also promoted enhanced tubule formation. Furthermore, our results prove the ability of these scaffolds to support osteoblast cell proliferation and osteogenesis in all bioactive glass/collagen-glycosaminoglycan scaffolds irrespective of the particle size. In summary, we have developed a hypoxia-mimicking tissue-engineered scaffold with pro-angiogenic and pro-osteogenic capabilities that may encourage bone tissue regeneration and overcome the problem of inadequate vascularisation of grafts commonly seen in the field of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Taxonomic Organization Scaffolds Young Children's Learning from Storybooks: A Design Experiment

    Science.gov (United States)

    Kaefer, Tanya; Pinkham, Ashley M.; Neuman, Susan B.

    2010-01-01

    The purpose of this design experiment was to research, test and iteratively design a set of taxonomically-organized storybooks that served to scaffold young children's word learning and concept development. Specifically, Phase 1 of the design experiment asked: (1) What are the effects of taxonomic organization on children's ability to acquire…

  2. Hypoxia Enhances Chondrogenic Differentiation of Human Cord Blood Multilineage Progenitor Cells Seeded on a Novel Scaffold of Freeze Dried Polycaprolactone

    DEFF Research Database (Denmark)

    Munir, Samir; Figueroa, Ryan Jude; Koch, Thomas Gadegaard

    pattern in relation to the oxygen tension. Induced scaffolds showed cellularity and matrix deposition superficially and to adjacent scaffold fibres. Induced MLPCs pellets and scaffolds had significantly higher gene expression of aggrecan, SOX9, CD-RAP, collagen I, II and X compared with controls. Ratios...... for chondrogenic differentiation. According to recent studies combined three-dimensional (3D) culturing in low oxygen tension enhances differentiation. Aim This study evaluates the chondrogenic potential of MLPC culturing in a novel 3D-scaffold of polycaprolactone and 5% O2. Materials and methods MLPCs were...

  3. A Design Model of Distributed Scaffolding for Inquiry-Based Learning

    Science.gov (United States)

    Hsu, Ying-Shao; Lai, Ting-Ling; Hsu, Wei-Hsiu

    2015-04-01

    This study presents a series of three experiments that focus on how distributed scaffolding influences learners' conceptual understanding and reasoning from combined levels of triangulation, at the interactive level (discourses within a focus group) and the collective level (class). Three inquiry lessons on plate tectonics (LPT) were designed, implemented and redesigned to explore how students responded to the scaffoldings provided. The results show that the goal-oriented version (LPT3) was significantly more effective at helping students develop an understanding of plate tectonics and evidence-based reasoning than the teacher-led (LPT1) and deconstructed (LPT2) versions ( χ 2 = 11.56, p reflection on the whole inquiry cycle at the end of class time. In addition, LPT3 took much less teaching time. In other words, it appears to be effective and efficient, most likely due to synergies between teacher facilitation and lesson scaffolds. The empirical results clarify the functions of the design model proposed for distributed scaffolding: navigating inquiry, structuring tasks, supporting communication, and fostering reflection. Future studies should more closely evaluate the scaffolding system as a whole and synergies between different types of scaffolds for advancing learning.

  4. Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography

    NARCIS (Netherlands)

    Blanquer, Sebastien; Gebraad, Arjen; Miettinen, Susanna; Poot, Andreas A.; Grijpma, Dirk W.; Haimi, Suvi

    2016-01-01

    Cell-based therapies could potentially restore the biomechanical function and enhance the self-repair capacity of annulus fibrosus (AF) tissue. However, choosing a suitable cell source and scaffold design are still key challenges. In this study, we assessed the in vitro ability of human adipose stem

  5. Scaffold-free and scaffold-assisted 3D culture enhances differentiation of bone marrow stromal cells.

    Science.gov (United States)

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Sahoo, Sanjeeb Kumar; Verma, Rama Shanker

    2016-02-01

    3D cultures of stem cells can preserve differentiation potential or increase the efficiency of methods that induce differentiation. Mouse bone marrow-derived stromal cells (BMSCs) were cultured in 3D as scaffold-free spheroids or "mesoid bodies" (MBs) and as aggregates on poly(lactic) acid microspheres (MB/MS). 3D cultures demonstrated viable cells, interaction on multiple planes, altered cell morphology, and the formation of structures similar to epithelial cell bridges. Cell proliferation was limited in suspension cultures of MB and MB/MS; however, cells regained proliferative capacity when transferred to flat substrates of tissue culture plates (TCPs). Expanded as monolayer, cells retained expression of Sca-1 and CD44 stem cell markers. 3D cultures demonstrated enhanced potential for adipogenic and osteogenic differentiation showing higher triglyceride accumulation and robust mineralization in comparison with TCP cultures. Enhanced and efficient adipogenesis was also observed in 3D cultures generated in a rotating cell culture system. Preservation of multilineage potential of BMSC was demonstrated in 5-azacytidine treatment of 3D cultures and TCP by expression of cardiac markers GATA4 and ACTA1 although functioning cardiomyocytes were not derived.

  6. Assessment of collagen crosslinking and denaturation for the design of regenerative scaffolds.

    Science.gov (United States)

    Madaghiele, Marta; Calò, Emanuela; Salvatore, Luca; Bonfrate, Valentina; Pedone, Deborah; Frigione, Mariaenrica; Sannino, Alessandro

    2016-01-01

    Crosslinking and denaturation were two variables that deeply affected the performance of collagen-based scaffolds designed for tissue regeneration. If crosslinking enhances the mechanical properties and the enzymatic resistance of collagen, while masking or reducing the available cell binding sites, denaturation has very opposite effects, as it impairs the mechanical and the enzymatic stability of collagen, but increases the number of exposed cell adhesive domains. The quantification of both crosslinking and denaturation was thus fundamental to the design of collagen-based scaffolds for selected applications. The aim of this work was to investigate the extents of crosslinking and denaturation of collagen-based films upon dehydrothermal (DHT) treatment, that is, one of the most commonly employed methods for zero-length crosslinking that shows the unique ability to induce partial denaturation. Swelling measurements, differential scanning calorimetry, Fourier transform infrared spectroscopy, colorimetric assays for the quantification of primary amines, and mechanical tests were performed to analyze the effect of the DHT temperature on crosslinking and denaturation. In particular, chemically effective and elastically effective crosslink densities were evaluated. Both crosslinking and denaturation were found to increase with the DHT temperature, although according to different trends. The results also showed that DHT treatments performed at temperatures up to 120°C maintained the extent of denaturation under 25%. Coupling a mild DHT treatment with further crosslinking may thus be very useful not only to modulate the crosslink density, but also to induce a limited amount of denaturation, which shows potential to partially compensate the loss of cell binding sites caused by crosslinking. © 2015 Wiley Periodicals, Inc.

  7. Design Thinking and Metacognitive Reflective Scaffolds: A Graphic Design-Industrial Design Transfer Case Study

    Science.gov (United States)

    Lee, Chien-Sing; Wong, Kuok-Shoong Daniel

    2015-01-01

    Scaffolding is crucial as transfer of learning does not occur naturally and teaching-learning strategies found to be effective for experts may not be suitably adopted as is for novice learners. Furthermore, opportunities are often "found" or "made." The quality of solutions, however, is mediated by different conceptualizations…

  8. Towards the Design of 3D Fiber-Deposited Poly(ε-caprolactone)/lron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration.

    Science.gov (United States)

    De Santis, Roberta; Russo, Alessandro; Gloria, Antonio; D'Amora, Ugo; Russo, Teresa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Marcacci, Maurilio; Dediu, Valentin A; Wilde, Colin J; Ambrosio, Luigi

    2015-07-01

    In the past few years, researchers have focused on the design and development of three-dimensional (3D) advanced scaffolds, which offer significant advantages in terms of cell performance. The introduction of magnetic features into scaffold technology could offer innovative opportunities to control cell populations within 3D microenvironments, with the potential to enhance their use in tissue regeneration or in cell-based analysis. In the present study, 3D fully biodegradable and magnetic nanocomposite scaffolds for bone tissue engineering, consisting of a poly(ε-caprolactone) (PCL) matrix reinforced with iron-doped hydroxyapatite (FeHA) nanoparticles, were designed and manufactured using a rapid prototyping technique. The performances of these novel 3D PCL/FeHA scaffolds were assessed through a combination of theoretical evaluation, experimental in vitro analyses and in vivo testing in a rabbit animal model. The results from mechanical com- pression tests were consistent with FEM simulations. The in vitro results showed that the cell growth in the magnetized scaffolds was 2.2-fold greater than that in non-magnetized ones. In vivo experiments further suggested that, after only 4 weeks, the PCL/FeHA scaffolds were completely filled with newly formed bone, proving a good level of histocompatibility. All of the results suggest that the introduction of magnetic features into biocompatible materials may confer significant advantages in terms of 3D cell assembly.

  9. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering.

    Science.gov (United States)

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca

    2016-09-01

    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    Science.gov (United States)

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications.

    Science.gov (United States)

    Requicha, João F; Viegas, Carlos A; Hede, Shantesh; Leonor, Isabel B; Reis, Rui L; Gomes, Manuela E

    2016-05-01

    The inefficacy of the currently used therapies in achieving the regeneration ad integrum of the periodontium stimulates the search for alternative approaches, such as tissue-engineering strategies. Therefore, the core objective of this study was to develop a biodegradable double-layer scaffold for periodontal tissue engineering. The design philosophy was based on a double-layered construct obtained from a blend of starch and poly-ε-caprolactone (30:70 wt%; SPCL). A SPCL fibre mesh functionalized with silanol groups to promote osteogenesis was combined with a SPCL solvent casting membrane aiming at acting as a barrier against the migration of gingival epithelium into the periodontal defect. Each layer of the double-layer scaffolds was characterized in terms of morphology, surface chemical composition, degradation behaviour and mechanical properties. Moreover, the behaviour of seeded/cultured canine adipose-derived stem cells (cASCs) was assessed. In general, the developed double-layered scaffolds demonstrated adequate degradation and mechanical behaviour for the target application. Furthermore, the biological assays revealed that both layers of the scaffold allow adhesion and proliferation of the seeded undifferentiated cASCs, and the incorporation of silanol groups into the fibre-mesh layer enhance the expression of a typical osteogenic marker. This study allowed an innovative construct to be developed, combining a three-dimensional (3D) scaffold with osteoconductive properties and with potential to assist periodontal regeneration, carrying new possible solutions to current clinical needs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  13. Using Web 2.0 Technology to Enhance, Scaffold and Assess Problem-Based Learning

    Directory of Open Access Journals (Sweden)

    Catherine Hack

    2013-08-01

    Full Text Available Web 2.0 technologies, such as social networks, wikis, blogs, and virtual worlds provide a platform for collaborative working, facilitating sharing of resources and joint document production. They can act as a stimulus to promote active learning and provide an engaging and interactive environment for students, and as such align with the philosophy of Problem-based Learning. Furthermore, Web 2.0 technologies can provide the tutor or facilitator with an opportunity to scaffold and asses the PBL process. However, whilst it is recognised that technology has an important role in enhancing each step of a PBL exercise, academic staff can be reluctant to use it. This paper provides some illustrative examples of the technologies that have been used to enhance, scaffold and assess PBL and their evaluation by distance learning and on-campus students at the University of Ulster. The benefits and limitations of using technology for both staff and students to support PBL are discussed.

  14. Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2015-11-01

    Full Text Available Calcium sulfate (CaSO4, as a promising tissue repair material, has been applied widely due to its outstanding bioabsorbability and osteoconduction. However, fast disintegration, insufficient mechanical strength and poor bioactivity have limited its further application. In the study, CaSO4 scaffolds fabricated by using selective laser sintering were improved by adding 45S5 bioglass. The 45S5 bioglass enhanced stability significantly due to the bond effect of glassy phase between the CaSO4 grains. After immersing for four days in simulated body fluid (SBF, the specimens with 45S5 bioglass could still retain its original shape compared as opposed to specimens without 45S5 bioglass who experienced disintegration. Meanwhile, its compressive strength and fracture toughness increased by 80% and 37%, respectively. Furthermore, the apatite layer was formed on the CaSO4 scaffolds with 45S5 bioglass in SBF, indicating good bioactivity of the scaffolds. In addition, the scaffolds showed good ability to support the osteoblast-like cell adhesion and proliferation.

  15. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres

    OpenAIRE

    Wei, Guobao; Jin, Qiming; Giannobile, William V.; Ma, Peter X.

    2007-01-01

    It is advantageous to incorporate controlled growth factor delivery into tissue engineering strategies. The objective of this study was to develop a three-dimensional (3D) porous tissue engineering scaffold with the capability of controlled releasing recombinant human bone morphogenetic protein-7 (rhBMP-7) for enhancement of bone regeneration. RhBMP-7 was first encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanospheres (NS) with an average diameter of 300 nm. Poly(L-lactic acid) (PLLA...

  16. Hyaluronic Acid Coating Enhances Biocompatibility of Nonwoven PGA Scaffold and Cartilage Formation.

    Science.gov (United States)

    Lin, Xunxun; Wang, Wenbo; Zhang, Wenjie; Zhang, Zhiyong; Zhou, Guangdong; Cao, Yilin; Liu, Wei

    2017-02-01

    Synthetic polymers such as polyglycolic acid (PGA) fibers are the traditional tissue engineering scaffolds that are widely used for engineering a variety of soft tissues. However, the major disadvantage of this polymer material is its released acidic degradation products that trigger inflammatory response and fibrotic process, which affects the biocompatibility and the quality of the engineered tissues. In this study, the effect of hyaluronic acid (HA) coating on improving PGA biocompatibility was explored. The results showed that 1% HA solution could better coat PGA fibers than other tested concentrations of HA, and coated PGA exhibited less inflammatory reaction upon in vivo subcutaneous implantation. In vitro characterization demonstrated that HA coating could enhance cell adhesion to the scaffold and reduce gene expression of IL-1, IL-6, IL-8, and α-SMA. It also decreased the acidity of degradation products in vitro. Furthermore, coated PGA could engineer better cartilages in vitro with higher content of total collagen and glycosaminoglycan, as well as higher gene expression levels of collagen II, aggrecan, and Sox9. Collectively, the data indicate that HA coating can significantly enhance the biocompatibility of this traditional scaffold material, which also enhances the quality of engineered tissues.

  17. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment.

    Science.gov (United States)

    Yousefi, Azizeh-Mitra; Smucker, Byran; Naber, Alex; Wyrick, Cara; Shaw, Charles; Bennett, Katelyn; Szekely, Sarah; Focke, Carlie; Wood, Katherine A

    2018-02-01

    Tissue engineering using three-dimensional porous scaffolds has shown promise for the restoration of normal function in injured and diseased tissues and organs. Rigorous control over scaffold architecture in melt extrusion additive manufacturing is highly restricted mainly due to pronounced variations in the deposited strand diameter upon any variations in process conditions and polymer viscoelasticity. We have designed an I-optimal, split-plot experiment to study the extrudate swell in melt extrusion additive manufacturing and to control the scaffold architecture. The designed experiment was used to generate data to relate three responses (swell, density, and modulus) to a set of controllable factors (plotting needle diameter, temperature, pressure, and the dispensing speed). The fitted regression relationships were used to optimize the three responses simultaneously. The swell response was constrained to be close to 1 while maximizing the modulus and minimizing the density. Constraining the extrudate swell to 1 generates design-driven scaffolds, with strand diameters equal to the plotting needle diameter, and allows a greater control over scaffold pore size. Hence, the modulus of the scaffolds can be fully controlled by adjusting the in-plane distance between the deposited strands. To the extent of the model's validity, we can eliminate the effect of extrudate swell in designing these scaffolds, while targeting a range of porosity and modulus appropriate for bone tissue engineering. The result of this optimization was a predicted modulus of 14 MPa and a predicted density of 0.29 g/cm 3 (porosity ≈ 75%) using polycaprolactone as scaffold material. These predicted responses corresponded to factor levels of 0.6 μm for the plotting needle diameter, plotting pressure of 2.5 bar, melt temperature of 113.5 °C, and dispensing speed of 2 mm/s. The validation scaffold enabled us to quantify the percentage difference for the predictions, which was 9.5% for the

  18. Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human Osteoblasts Behavior in Static and Dynamic Cell Investigations

    Directory of Open Access Journals (Sweden)

    Jana Markhoff

    2015-08-01

    Full Text Available In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM or electron beam melting (EBM varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration.

  19. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W

    2014-03-01

    This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Design of an elasticized collagen scaffold: A method to induce elasticity in a rigid protein.

    Science.gov (United States)

    Versteegden, Luuk R; Hoogenkamp, Henk R; Lomme, Roger M; van Goor, Harry; Tiemessen, Dorien M; Geutjes, Paul J; Oosterwijk, Egbert; Feitz, Wout F; Hafmans, Theo G; Verdonschot, Nico; Daamen, Willeke F; van Kuppevelt, Toin H

    2016-10-15

    Type I collagen is widely applied as a biomaterial for tissue regeneration. In the extracellular matrix, collagen provides strength but not elasticity under large deformations, a characteristic crucial for dynamic organs and generally imparted by elastic fibers. In this study, a methodology is described to induce elastic-like characteristics in a scaffold consisting of solely type I collagen. Tubular scaffolds are prepared from collagen fibrils by a casting, molding, freezing and lyophilization process. The lyophilized constructs are compressed, corrugated and subsequently chemically crosslinked with carbodiimide in the corrugated position. This procedure induces elastic-like properties in the scaffolds that could be repeatedly stretched five times their original length for at least 1000 cycles. The induced elasticity is entropy driven and can be explained by the introduction of hydrophobic patches that are disrupted upon stretching thus increasing the hydrophobic-hydrophilic interface. The scaffolds are cytocompatible as demonstrated by fibroblast cell culture. In conclusion, a new straightforward technique is described to endow unique elastic characteristics to scaffolds prepared from type I collagen alone. Scaffolds may be useful for engineering of dynamic tissues such as blood vessels, ligaments, and lung. In this research report, a methodology is presented to introduce elasticity to biomaterials consisting of only type I collagen fibrils. The method comprises physical compression and corrugation in combination with chemical crosslinking. By introducing elasticity to collagen biomaterials, their application in regenerative medicine may be expanded to dynamic organs such as blood vessels, ligaments and lung. The combination of strength and elasticity in one single natural biomaterial may also "simplify" the design of new scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Barbara Vigani

    2017-01-01

    Full Text Available The complex pathophysiology of spinal cord injury may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. Many efforts have been performed to design and develop suitable scaffolds for spinal cord regeneration, keeping in mind that the reconstruction of a pro-regenerative environment is the key challenge for an effective neurogenesis. The aim of this review is to outline the main features of an ideal scaffold, based on biomaterials, produced by the electrospinning technique and intended for the spinal cord regeneration. An overview of the polymers more investigated in the production of neural fibrous scaffolds is also provided.

  2. Anode Design Based on Microscale Porous Scaffolds for Advanced Lithium Ion Batteries

    Science.gov (United States)

    Park, Hyeji; Choi, Hyelim; Nam, Kyungju; Lee, Sukyung; Um, Ji Hyun; Kim, Kyungbae; Kim, Jae-Hun; Yoon, Won-Sub; Choe, Heeman

    2017-06-01

    Considering the increasing demands for advanced power sources, present-day lithium-ion batteries (LIBs) must provide a higher energy and power density and better cycling stability than conventional LIBs. This study suggests a promising electrode design solution to this problem using Cu, Co, and Ti scaffolds with a microscale porous structure synthesized via freeze-casting. Co3O4 and TiO2 layers are uniformly formed on the Co and Ti scaffolds, respectively, through a simple thermal heat-treatment process, and a SnO2 layer is formed on the Cu scaffold through electroless plating and thermal oxidation. This paper characterizes and evaluates the physical and electrochemical properties of the proposed electrodes using scanning electron microscopy, four-point probe and coin-cell tests to confirm the feasibility of their potential use in LIBs.

  3. Enhanced cell viability in hyaluronic acid coated poly(lactic-co-glycolic acid) porous scaffolds within microfluidic channels.

    Science.gov (United States)

    Zamboni, Fernanda; Keays, Marie; Hayes, Sheri; Albadarin, Ahmad B; Walker, Gavin M; Kiely, Patrick A; Collins, Maurice N

    2017-10-30

    The concept of the present work is to produce porous optimised scaffolds of poly(lactic-co-glycolic acid) (PLGA) coated with hyaluronic acid (HA), to provide a suitable microenvironment for cellular proliferation. Freeze dried scaffolds were produced from PLGA with varying lactic acid and glycolic acid ratios along the polymer backbone, as follows: 50:50 ester terminated, 50:50 carboxylate end-group and 85:15 ester terminated. Subsequently, these scaffolds were immersed in crosslinked HA in order for the coating to enhance biological performance. Scaffolds were fully characterized with respect to surface morphology, physical and chemical properties. The biocompatibility of the scaffolds was firstly evaluated using standard L929 fibroblast cells in static culture and subsequently MCF-7 breast cancer cells were seeded on scaffolds which were incorporated within a microfluidic device. The results show that cells were attracted to and adhered to the scaffolds, with a higher affinity for HA coated scaffolds. In our system, cell viability was maintained up to 48h. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Teaching Design in Middle-School: Instructors' Concerns and Scaffolding Strategies

    Science.gov (United States)

    Bamberger, Yael M.; Cahill, Clara S.

    2013-04-01

    This study deals with engineering education in the middle-school level. Its focus is instructors' concerns in teaching design, as well as scaffolding strategies that can help teachers deal with these concerns. Through participatory action research, nine instructors engaged in a process of development and instruction of a curriculum about energy along with engineering design. A 50-h curriculum was piloted during a summer camp for 38 middle-school students. Data was collected through instructors' materials: observation field notes, daily reflections and post-camp discussions. In addition, students' artifacts and planning graphical models were collected in order to explore how instructors' concerns were aligned with students' learning. Findings indicate three main tensions that reflect instructors' main concerns: how to provide sufficient scaffolding yet encourage creativity, how to scaffold hands-on experiences that promote mindful planning, and how to scaffold students' modeling practices. Pedagogical strategies for teaching design that developed through this work are described, as well as the ways they address the National Research Council (A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, Washington, DC, 2011) core ideas of engineering education and the International Technological Literacy standards (ITEA in Standards for technological literacy, 3rd edn. International Technology education Association, Reston, VA, 2007).

  5. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    Science.gov (United States)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  6. Enhanced Vascularization in Hybrid PCL/Gelatin Fibrous Scaffolds with Sustained Release of VEGF

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-01-01

    Full Text Available Creating a long-lasting and functional vasculature represents one of the most fundamental challenges in tissue engineering. VEGF has been widely accepted as a potent angiogenic factor involved in the early stages of blood vessel formation. In this study, fibrous scaffolds that consist of PCL and gelatin fibers were fabricated. The gelatin fibers were further functionalized by heparin immobilization, which provides binding sites for VEGF and thus enables the sustained release of VEGF. In vitro release test confirms the sustained releasing profile of VEGF, and stable release was observed over a time period of 25 days. In vitro cell assay indicates that VEGF release significantly promoted the proliferation of endothelial cells. More importantly, in vivo subcutaneous implantation reflects that vascularization has been effectively enhanced in the PCL/gelatin scaffolds compared with the PCL counterpart due to the sustained release of VEGF. Therefore, the heparinized PCL/gelatin scaffolds developed in this study may be a promising candidate for regeneration of complex tissues with sufficient vascularization.

  7. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    Science.gov (United States)

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  8. Bone Marrow-Derived Mesenchymal Stromal Cells Enhanced by Platelet-Rich Plasma Maintain Adhesion to Scaffolds in Arthroscopic Simulation.

    Science.gov (United States)

    Hoberman, Alexander R; Cirino, Carl; McCarthy, Mary Beth; Cote, Mark P; Pauzenberger, Leo; Beitzel, Knut; Mazzocca, Augustus D; Dyrna, Felix

    2017-11-13

    To assess the response of bone marrow-derived mesenchymal stromal cells (bMSCs) enhanced by platelet-rich plasma (PRP) in the setting of a normal human tendon (NHT), a demineralized bone matrix (DBM), and a fibrin scaffold (FS) with simulated arthroscopic mechanical washout stress. Bone marrow was aspirated from the humeral head and concentrated. BMSCs were counted, plated, and grown to confluence. Cells were seeded onto 3 different scaffolds: (1) NHT, (2) DBM, and (3) FS. Each scaffold was treated with a combination of (+)/(-) PRP and (+)/(-) arthroscopic washout simulation. A period of 60 minutes was allotted before arthroscopic washout. Adhesion, proliferation, and differentiation assays were performed to assess cellular activity in each condition. Significant differences were seen in mesenchymal stromal cell adhesion, proliferation, and differentiation among the scaffolds. DBM and FS showed superior results to NHT for cell adhesion, proliferation, and differentiation. PRP significantly enhanced cellular adhesion, proliferation, and differentiation. Arthroscopic simulation did not significantly decrease bMSC adhesion. We found that the type of scaffold impacts bMSCs' behavior. Both scaffolds (DBM and FS) were superior to NHT. The use of an arthroscopic simulator did not significantly decrease the adhesion of bMSCs to the scaffolds nor did it decrease their biologic differentiation potential. In addition, PRP enhanced cellular adhesion, proliferation, and differentiation. Improved healing after tendon repair can lead to better clinical outcomes. BMSCs are attractive for enhancing healing given their accessibility and regenerative potential. Application of bMSCs using scaffolds as cell carriers relies on arthroscopic feasibility. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. An Insilico Design of Nanoclay Based Nanocomposites and Scaffolds in Bone Tissue Engineering

    Science.gov (United States)

    Sharma, Anurag

    A multiscale in silico approach to design polymer nanocomposites and scaffolds for bone tissue engineering applications is described in this study. This study focuses on the role of biomaterials design and selection, structural integrity and mechanical properties evolution during degradation and tissue regeneration in the successful design of polymer nanocomposite scaffolds. Polymer nanocomposite scaffolds are synthesized using aminoacid modified montmorillonite nanoclay with biomineralized hydroxyapatite and polycaprolactone (PCL/in situ HAPclay). Representative molecular models of polymer nanocomposite system are systematically developed using molecular dynamics (MD) technique and successfully validated using material characterization techniques. The constant force steered molecular dynamics (fSMD) simulation results indicate a two-phase nanomechanical behavior of the polymer nanocomposite. The MD and fSMD simulations results provide quantitative contributions of molecular interactions between different constituents of representative models and their effect on nanomechanical responses of nanoclay based polymer nanocomposite system. A finite element (FE) model of PCL/in situ HAPclay scaffold is built using micro-computed tomography images and bridging the nanomechanical properties obtained from fSMD simulations into the FE model. A new reduction factor, K is introduced into modeling results to consider the effect of wall porosity of the polymer scaffold. The effect of accelerated degradation under alkaline conditions and human osteoblast cells culture on the evolution of mechanical properties of scaffolds are studied and the damage mechanics based analytical models are developed. Finally, the novel multiscale models are developed that incorporate the complex molecular and microstructural properties, mechanical properties at nanoscale and structural levels and mechanical properties evolution during degradation and tissue formation in the polymer nanocomposite

  10. Design control for clinical translation of 3D printed modular scaffolds.

    Science.gov (United States)

    Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E

    2015-03-01

    The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach

  11. Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration.

    Science.gov (United States)

    Castro, Nathan J; Patel, Romil; Zhang, Lijie Grace

    2015-09-01

    Chronic and acute osteochondral defects as a result of osteoarthritis and trauma present a common and serious clinical problem due to the tissue's inherent complexity and poor regenerative capacity. In addition, cells within the osteochondral tissue are in intimate contact with a 3D nanostructured extracellular matrix composed of numerous bioactive organic and inorganic components. As an emerging manufacturing technique, 3D printing offers great precision and control over the microarchitecture, shape and composition of tissue scaffolds. Therefore, the objective of this study is to develop a biomimetic 3D printed nanocomposite scaffold with integrated differentiation cues for improved osteochondral tissue regeneration. Through the combination of novel nano-inks composed of organic and inorganic bioactive factors and advanced 3D printing, we have successfully fabricated a series of novel constructs which closely mimic the native 3D extracellular environment with hierarchical nanoroughness, microstructure and spatiotemporal bioactive cues. Our results illustrate several key characteristics of the 3D printed nanocomposite scaffold to include improved mechanical properties as well as excellent cytocompatibility for enhanced human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation in vitro. The present work further illustrates the effectiveness of the scaffolds developed here as a promising and highly tunable platform for osteochondral tissue regeneration.

  12. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells.

    Science.gov (United States)

    Ko, Eunkyung; Yang, Kisuk; Shin, Jisoo; Cho, Seung-Woo

    2013-09-09

    Immobilization of osteoinductive molecules, including growth factors or peptides, on polymer scaffolds is critical for improving stem cell-mediated bone tissue engineering. Such molecules provide osteogenesis-stimulating signals for stem cells. Typical methods used for polymeric scaffold modification (e.g., chemical conjugation or physical adsorption), however, have limitations (e.g., multistep, complicated procedures, material denaturation, batch-to-batch inconsistency, and inadequate conjugation) that diminish the overall efficiency of the process. Therefore, in this study, we report a biologically inspired strategy to prepare functional polymer scaffolds that efficiently regulate the osteogenic differentiation of human adipose-derived stem cells (hADSCs). Polymerization of dopamine (DA), a repeated motif observed in mussel adhesive protein, under alkaline pH conditions, allows for coating of a polydopamine (pDA) layer onto polymer scaffolds. Our study demonstrates that predeposition of a pDA layer facilitates highly efficient, simple immobilization of peptides derived from osteogenic growth factor (bone morphogenetic protein-2; BMP-2) on poly(lactic-co-glycolic acid) (PLGA) scaffolds via catechol chemistry. The BMP-2 peptide-immobilized PLGA scaffolds greatly enhanced in vitro osteogenic differentiation and calcium mineralization of hADSCs using either osteogenic medium or nonosteogenic medium. Furthermore, transplantation of hADSCs using pDA-BMP-2-PLGA scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Therefore, pDA-mediated catechol functionalization would be a simple and effective method for developing tissue engineering scaffolds exhibiting enhanced osteoinductivity. To the best of our knowledge, this is the first study demonstrating that pDA-mediated surface modification of polymer scaffolds potentiates the regenerative capacity of human stem cells for healing tissue defect in vivo.

  13. Does Design Rationale Enhance Creativity?

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2010-01-01

    Full Text Available Creativity and rationale are often viewed as two contrasting facets in software design. A lack in recognizing the facilitative relationship between creativity and rationale not only underestimates the benefits designers can obtain from rationale practices, but also confines the approaches that support creativity in software design. Our exploratory study provides empirical evidence of the positive correlation between rationale and creativity. Furthermore, we found that the feasibility of design alternatives and the comprehensiveness of tradeoff evaluation are critical to enhancing novelty, persuasiveness, and insightfulness. We also discuss future directions to further understand how these properties, or rationale quality in general, affects design creativity.

  14. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering.

    Science.gov (United States)

    Zou, Fengjuan; Li, Runrun; Jiang, Jianjun; Mo, Xiumei; Gu, Guofeng; Guo, Zhongwu; Chen, Zonggang

    2017-12-01

    The collagen-chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen-chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen-chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen-chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young's modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen-chitosan nanofiber reinforced by TPU, both the break strength and the Young's modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen-chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.

  15. Scaffolds for design communication : Research through design of shared understanding in design meetings

    NARCIS (Netherlands)

    van Dijk, Jelle; van der Lugt, Remko

    2013-01-01

    In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our

  16. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.

    Science.gov (United States)

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP-PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP-PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering.

  17. Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies.

    Science.gov (United States)

    Li, Shan; Xu, Yanyi; Yu, Jiayi; Becker, Matthew L

    2017-10-01

    Additive manufacturing has the potential to revolutionize regenerative medicine, but the harsh thermal or photochemical conditions during the 3D printing process limit the inclusion of drugs, growth factors and other biologics within the resulting scaffolds. Functionalization strategies that enable specific placement of bioactive species on the surface of 3D printed structures following the printing process afford a promising approach to sidestep the harsh conditions and incorporate these valuable bioactive molecules with precise control over concentration. Herein, resorbable polymer scaffolds were prepared from propargyl functionalized L-phenylalanine-based poly(ester urea)s (PEUs). Osteogenic growth peptide (OGP) or bone morphogenic protein-2 (BMP-2) peptides were immobilized on PEU scaffolds through surface available propargyl groups via copper-catalyzed azide alkyne cycloaddition (CuAAC) post 3D printing. The presence of either OGP or BMP-2 significantly enhanced hMSCs osteogenic differentiation compared to unfunctionalized scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine.

    Science.gov (United States)

    Luo, Xiangyou; Yang, Bo; Sheng, Lei; Chen, Jinlong; Li, Hui; Xie, Li; Chen, Gang; Yu, Mei; Guo, Weihua; Tian, Weidong

    2015-07-01

    Tooth root supports dental crown and bears occlusal force. While proper root shape and size render the force being evenly delivered and dispersed into jawbone. Yet it remains unclear what shape and size of a biological tooth root (bio-root), which is mostly determined by the scaffold geometric design, is suitable for stress distributing and mastication performing. Therefore, this study hypothesized scaffold fabricated in proper shape and size is better for regeneration of tooth root with approving biomechanical functional features. In this study, we optimized shape and size of scaffolds for bio-root regeneration using computer aided design (CAD) modeling and finite element analysis (FEA). Statical structural analysis showed the total deformation (TD) and equivalent von-mises stress (EQV) of the restored tooth model mainly concentrated on the scaffold and the post, in accordance with the condition in a natural post restored tooth. Design sensitivity analysis showed increasing the height and upper diameter of the scaffold can tremendously reduce the TD and EQV of the model, while increasing the bottom diameter of scaffold can, to some extent, reduce the EQV in post. However, increase on post height had little influence on the whole model, only slightly increased the native EQV stress in post. Through response surface based optimization, we successfully screened out the optimal shape of the scaffold used in tissue engineering of tooth root. The optimal scaffold adopted a slightly tapered shape with the upper diameter of 4.9 mm, bottom diameter of 3.4 mm; the length of the optimized scaffold shape was 9.4 mm. While the analysis also suggested a height of about 9 mm for a metal post with a diameter of 1.4 mm suitable for crown restoration in bio-root regeneration. In order to validate the physiological function of the shape optimized scaffold in vivo, we transplanted the shape optimized treated dentin matrix (TDM) scaffold, seeding with dental stem cells, into alveolar

  19. Design and synthesis of 5-methylpyrazine-2-carbohydrazide derivatives: A new anti-tubercular scaffold

    Directory of Open Access Journals (Sweden)

    P.B. Miniyar

    2017-01-01

    Full Text Available A simple synthetic methodology was employed for synthesis of series of 5-methylpyrazine-2-carbohydrazide derivatives (PM series. In vitro anti-tubercular activity was evaluated against Mycobacterium tuberculosis (H37Rv in Middle brook 7H-9 broth medium. Amongst synthesized compounds, seven compounds showed remarkable anti-tubercular activity. The 2-D QSAR illustrates the design PM series of compounds as potential anti-tubercular scaffolds that can be further optimized to improve the activity.

  20. Injectable Pore-Forming Hydrogel Scaffolds for Complex Wound Tissue Engineering: Designing and Controlling Their Porosity and Mechanical Properties.

    Science.gov (United States)

    Staruch, Robert M T; Glass, Graeme E; Rickard, Rory; Hettiaratchy, Shehan P; Butler, Peter E M

    2017-04-01

    Traumatic soft tissue wounds present a significant reconstructive challenge. The adoption of closed-circuit negative pressure wound therapy (NPWT) has enabled surgeons to temporize these wounds before reconstruction. Such systems use porous synthetic foam scaffolds as wound fillers at the interface between the negative pressure system and the wound bed. The idea of using a bespoke porous biomaterial that enhances wound healing, as filler for an NPWT system, is attractive as it circumvents concerns regarding reconstructive delay and the need for dressing changes that are features of the current systems. Porous foam biomaterials are mechanically robust and able to synthesize in situ. Hence, they exhibit potential to fulfill the niche for such a functionalized injectable material. Injectable scaffolds are currently in use for minimally invasive surgery, but the design parameters for large-volume expansive foams remain unclear. Potential platforms include hydrogel systems, (particularly superabsorbent, superporous, and nanocomposite systems), polyurethane-based moisture-cured foams, and high internal phase emulsion polymer systems. The aim of this review is to discuss the design parameters for such future biomaterials and review potential candidate materials for further research into this up and coming field.

  1. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering

    Science.gov (United States)

    Maitlo, Inamullah; Ali, Safdar; Akram, Muhammad Yasir; Shehzad, Farooq Khurum; Nie, Jun

    2017-09-01

    Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.

  2. The Synthesis Approach to Analysing Educational Design Dataset: Application of Three Scaffolds to a Learning by Design Task for Postgraduate Education Students

    Science.gov (United States)

    Thompson, Kate; Carvalho, Lucila; Aditomo, Anindito; Dimitriadis, Yannis; Dyke, Gregory; Evans, Michael A.; Khosronejad, Maryam; Martinez-Maldonado, Roberto; Reimann, Peter; Wardak, Dewa

    2015-01-01

    The aims of the Synthesis and Scaffolding Project were to understand: the role of specific scaffolds in relation to the activity of learners, and the activity of learners during a collaborative design task from multiple perspectives, through the collection and analysis of multiple streams of data and the adoption of a synthesis approach to the…

  3. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity.

    Science.gov (United States)

    Yu, Jiayi; Xu, Yanyi; Li, Shan; Seifert, Gabrielle V; Becker, Matthew L

    2017-10-25

    Polymer-bioceramic composites incorporate the desirable properties of each material while mitigating the limiting characteristics of each component. 1,6-Hexanediol l-phenylalanine-based poly(ester urea) (PEU) blended with hydroxyapatite (HA) nanocrystals were three-dimensional (3D) printed into porous scaffolds (75% porosity) via fused deposition modeling and seeded with MC3T3-E1 preosteoblast cells in vitro to examine their bioactivity. The resulting 3D printed scaffolds exhibited a compressive modulus of ∼50 MPa after a 1-week incubation in PBS at 37 °C, cell viability >95%, and a composition-dependent enhancement of radio-contrast. The influence of HA on MC3T3-E1 proliferation and differentiation was measured using quantitative real-time polymerase chain reaction, immunohistochemistry and biochemical assays. After 4 weeks, alkaline phosphatase activity increased significantly for the 30% HA composite with values reaching 2.5-fold greater than the control. Bone sialoprotein showed approximately 880-fold higher expression and 15-fold higher expression of osteocalcin on the 30% HA composite compared to those of the control. Calcium quantification results demonstrated a 185-fold increase of calcium concentration in mineralized extracellular matrix deposition after 4 weeks of cell culture in samples with higher HA content. 3D printed HA-containing PEU composites promote bone regeneration and have the potential to be used in orthopedic applications.

  4. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation.

    Science.gov (United States)

    Hirota, Makoto; Hayakawa, Tohru; Yoshinari, Masao; Ametani, Akihiro; Shima, Takaki; Monden, Yuka; Ozawa, Tomomichi; Sato, Mitsunobu; Koyama, Chika; Tamai, Naoto; Iwai, Toshinori; Tohnai, Iwai

    2012-10-01

    This study investigated the bone regeneration properties of titanium fibre mesh as a tissue engineering material. A thin hydroxyapatite (HA) coating on the titanium fibre web was created using the developed molecular precursor method without losing the complex interior structure. HA-coated titanium fibre mesh showed apatite crystal formation in vitro in a human osteoblast culture. Titanium fibre mesh discs with or without a thin HA coating were implanted into rat cranial bone defects, and the animals were killed at 2 and 4 weeks. The in vivo experience revealed that the amount of newly formed bone was significantly higher in the HA-coated titanium fibre mesh than in the non-coated titanium fibre mesh 2 weeks after implantation. These results suggest that thin HA coating enhances osteoblast activity and bone regeneration in the titanium fibre mesh scaffold. Thin HA-coating improved the ability of titanium fibre mesh to act as a bone regeneration scaffold. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts.

    Science.gov (United States)

    Pascual-Garcia, Pau; Debo, Brian; Aleman, Jennifer R; Talamas, Jessica A; Lan, Yemin; Nguyen, Nha H; Won, Kyoung J; Capelson, Maya

    2017-04-06

    Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation.

    Science.gov (United States)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian; Feng, Yakai; Yao, Fanglian; Zhang, Wencheng

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.

    Science.gov (United States)

    Igwe, John C; Mikael, Paiyz E; Nukavarapu, Syam P

    2014-02-01

    The development of a bone mechanically-compatible and osteoinductive scaffold is important for bone tissue engineering applications, particularly for the repair and regeneration of large area critically-sized bone defects. Although previous studies with weight-bearing scaffolds have shown promising results, there is a clear need to develop better osteoinductive strategies for effective scaffold-based bone regeneration. In this study, we designed and fabricated a novel polymer-hydrogel hybrid scaffold system in which a load-bearing polymer matrix and a peptide hydrogel allowed for the synergistic combination of mechanical strength and great potential for osteoinductivity in a single scaffold. The hybrid scaffold system promoted increased pre-osteoblastic cell proliferation. Further, we biotinylated human recombinant bone morphogenetic protein 2 (rhBMP2), and characterized the biotin addition and its effect on rhBMP2 biological activity. The biotinylated rhBMP2 was tethered to the hybrid scaffold using biotin-streptavidin complexation. Controlled release studies demonstrated increased rhBMP2 retention with the tethered rhBMP2 hybrid scaffold group. In vitro evaluation of the hybrid scaffold was performed with rat bone marrow stromal cells and mouse pre-osteoblast cell line MC3T3-E1 cells. Gene expression of alkaline phosphatase (ALP), collagen I (Col I), osteopontin (OPN), bone sialoprotein (BSP), Runx-2 and osteocalcin (OC) increased in MC3T3-E1 cells seeded on the rhBMP2 tethered hybrid scaffolds over the untethered counterparts, demonstrating osteoinductive potential of the hybrid graft. These findings suggest the possibility of developing a novel polymer-hydrogel hybrid system that is weight bearing and osteoinductive for effective bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Zamparini, Fausto; Degli Esposti, Micaela; Chiellini, Federica; Aparicio, Conrado; Fava, Fabio; Fabbri, Paola; Taddei, Paola; Prati, Carlo

    2018-01-01

    Polylactic acid (PLA), dicalcium phosphate dihydrate (DCPD) and/or hydraulic calcium silicate (CaSi) have been used to prepare highly-porous scaffolds by thermally induced phase separation technique (TIPS). Three experimental mineral-doped formulations were prepared (PLA-10CaSi, PLA-5CaSi-5DCPD, PLA-10CaSi-10DCPD). Pure PLA scaffolds constituted the control group. Scaffolds were tested for their chemical-physical and biological properties, namely calcium release, alkalinizing activity, surface microchemistry and micromorphology by ESEM, apatite-forming ability by EDX, micro-Raman and IR spectroscopy, thermal properties by differential scanning calorimetry, mechanical properties by quasi-static parallel-plates compression testing, porosity by a standard water-absorption method and direct-contact cytotoxicity. All mineral-doped scaffolds released biologically relevant ions (biointeractive). A B-type carbonated apatite layer (thickness decreasing along the series PLA-10CaSi-10DCPD>PLA-10CaSi>PLA-5CaSi-5DCPD>PLA) was detected on the surface of all the 28d-aged scaffolds. Surface pores of fresh scaffolds ranged from 10 to 20μm in pure PLA to 10-100μm in PLA-10CaSi. An increase in porosity was detected in 28d-aged pure PLA scaffolds (approx. 30% of material loss with decrease of the PLA chain length); differently, in mineral-doped scaffolds, the PLA degradation was balanced by deposition/nucleation of apatite. All scaffolds showed absence of toxicity, in particular PLA-10CaSi-10DCPD. The designed scaffolds are biointeractive (release biologically relevant ions), nucleate apatite, possess high surface and internal open porosity and can be colonized by cells, appearing interesting materials for bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Challenges in designing appropriate scaffolding to improve students' representational consistency: The case of a Gauss's law problem

    Science.gov (United States)

    Maries, Alexandru; Lin, Shih-Yin; Singh, Chandralekha

    2017-12-01

    Prior research suggests that introductory physics students have difficulty with graphing and interpreting graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on students' representational consistency. Students in calculus-based introductory physics were given a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution in which they were asked to write a mathematical expression for the electric field in various regions and then plot the electric field. In study 1, we found that students had great difficulty in plotting the electric field as a function of the distance from the center of the sphere consistent with the mathematical expressions in various regions, and interviews with students suggested possible reasons which may account for this difficulty. Therefore, in study 2, we designed two scaffolding interventions with levels of support which built on each other (i.e., the second scaffolding level built on the first) in order to help students plot their expressions consistently and compared the performance of students provided with scaffolding with a comparison group which was not given any scaffolding support. Analysis of student performance with different levels of scaffolding reveals that scaffolding from an expert perspective beyond a certain level may sometimes hinder student performance and students may not even discern the relevance of the additional support. We provide possible interpretations for these findings based on in-depth, think-aloud student interviews.

  10. Enhanced repair of segmental bone defects in rabbit radius by porous tantalum scaffolds modified with the RGD peptide.

    Science.gov (United States)

    Wang, Hui; Li, Qijia; Wang, Qian; Zhang, Hui; Shi, Wei; Gan, Hongquan; Song, Huiping; Wang, Zhiqiang

    2017-03-01

    Fast and stable repair of segmental bone defects remains a challenge for clinical orthopedic surgery. In recent years, porous tantalum has been widely applied in clinical orthopedics for low modulus of elasticity, with three-dimensional microstructures similar to cancellous bone and excellent biocompatibility. To further improve bone the repairing ability of porous tantalum, the cyclo(-RGDfK-) peptide was coated on the surface of porous tantalum scaffolds. A model of 15 mm segmental defect was made at the midshaft of right radius in New Zealand White rabbits. In the experimental group, defects were implanted (press-fit) using porous tantalum scaffolds modified with cyclo(-RGDfK-) peptide. Control animals were implanted with non-modified porous tantalum scaffolds or xenogeneic cancellous bone scaffolds, respectively. No implant was provided for the blank group. Bone repair was assessed by X-ray and histological observations at 4, 8, and 16 weeks post-operation, with biomechanical tests and micro-computed tomography performed at 16 weeks post-surgery. The results showed that bone formation was increased at the interface and inside the inner pores of modified porous tantalum scaffolds than those of non-modified porous tantalum scaffolds; biomechanical properties in the modified porous tantalum group were superior to those of the non-modified porous tantalum and xenogeneic cancellous bone groups, while new bone volume fractions using micro-computed tomography analysis were similar between the modified porous tantalum and xenogeneic cancellous bone groups. Our findings suggested that modified porous tantalum scaffolds had enhanced repairing ability in segmental bone defect in rabbit radius, and may serve as a potential material for repairing large bone defects.

  11. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Weiguang Wang

    2016-12-01

    Full Text Available Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly(ε-caprolactone (PCL/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response.

  12. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Wang, Weiguang; Caetano, Guilherme; Ambler, William Stephen; Blaker, Jonny James; Frade, Marco Andrey; Mandal, Parthasarathi; Diver, Carl; Bártolo, Paulo

    2016-12-07

    Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response.

  13. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    Energy Technology Data Exchange (ETDEWEB)

    Mehrasa, Mohammad [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Asadollahi, Mohammad Ali, E-mail: ma.asadollahi@ast.ui.ac.ir [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Nasri-Nasrabadi, Bijan [Department of Chemical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ghaedi, Kamran [Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Salehi, Hossein [Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Dolatshahi-Pirouz, Alireza [DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby (Denmark); Arpanaei, Ayyoob, E-mail: arpanaei@yahoo.com [Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974 ± 68 nm for the pure PLGA scaffolds vs 832 ± 70, 764 ± 80, and 486 ± 64 for the PLGA/gelatin, PLGA/10 wt% MSNPs, and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. - Highlights: • PLGA-based random nanofibers embedded with mesoporous silica nanoparticles were fabricated using electrospinning method • Incorporation of gelatin and MSNPs into PLGA-based scaffolds increased the hydrophilicity of scaffold • Addition of nanoparticles also improved the tensile mechanical properties of scaffolds • Introduction of MSNPs led to improved cell attachment and proliferation.

  14. Technique for internal channelling of hydroentangled nonwoven scaffolds to enhance cell penetration

    Science.gov (United States)

    Durham, Elaine R; Ingham, Eileen; Russell, Stephen J

    2013-01-01

    An important requirement in thick, high-porosity scaffolds is to maximise cellular penetration into the interior and avoid necrosis during culture in vitro. Hitherto, reproducible control of the pore structure in nonwoven scaffolds has proved challenging. A new, channelled scaffold manufacturing process is reported based on water jet entanglement of fibres (hydroentangling) around filamentous template to form a coherent scaffold that is subsequently removed. Longitudinally-oriented channels were introduced within the scaffold in controlled proximity using 220 µm diameter cylindrical templates. In this case study, channelled scaffolds composed of poly(l-lactic acid) were manufactured and evaluated in vitro. Environmental scanning electron microscope and µCT (X-ray microtomography) confirmed channel openings in the scaffold cross-section before and after cell culture with human dermal fibroblasts up to 14 weeks. Histology at week 11 indicated that the channels promoted cell penetration and distribution within the scaffold interior. At week 14, cellular matrix deposition was evident in the internal channel walls and the entrances remained unoccluded by cellular matrix suggesting that diffusion conduits for mass transfer of nutrient to the scaffold interior could be maintained. PMID:22532409

  15. Technique for internal channelling of hydroentangled nonwoven scaffolds to enhance cell penetration.

    Science.gov (United States)

    Durham, Elaine R; Ingham, Eileen; Russell, Stephen J

    2013-08-01

    An important requirement in thick, high-porosity scaffolds is to maximise cellular penetration into the interior and avoid necrosis during culture in vitro. Hitherto, reproducible control of the pore structure in nonwoven scaffolds has proved challenging. A new, channelled scaffold manufacturing process is reported based on water jet entanglement of fibres (hydroentangling) around filamentous template to form a coherent scaffold that is subsequently removed. Longitudinally-oriented channels were introduced within the scaffold in controlled proximity using 220 µm diameter cylindrical templates. In this case study, channelled scaffolds composed of poly(l-lactic acid) were manufactured and evaluated in vitro. Environmental scanning electron microscope and µCT (X-ray microtomography) confirmed channel openings in the scaffold cross-section before and after cell culture with human dermal fibroblasts up to 14 weeks. Histology at week 11 indicated that the channels promoted cell penetration and distribution within the scaffold interior. At week 14, cellular matrix deposition was evident in the internal channel walls and the entrances remained unoccluded by cellular matrix suggesting that diffusion conduits for mass transfer of nutrient to the scaffold interior could be maintained.

  16. Enhanced Cartilaginous Tissue Formation with a Cell Aggregate-Fibrin-Polymer Scaffold Complex

    National Research Council Canada - National Science Library

    Soojin Lee; Kangwon Lee; Soo Hyun Kim; Youngmee Jung

    2017-01-01

    .... Here, we developed an engineered cartilage with a cell aggregate-hydrogel-polymer scaffold complex capable of inducing the effective regeneration of cartilage tissue similar to natural cartilage...

  17. Biomimetic tendon extracellular matrix composite gradient scaffold enhances ligament-to-bone junction reconstruction.

    Science.gov (United States)

    Liu, Huanhuan; Yang, Long; Zhang, Erchen; Zhang, Rui; Cai, Dandan; Zhu, Shouan; Ran, Jisheng; Bunpetch, Varitsara; Cai, Youzhi; Heng, Boon Chin; Hu, Yejun; Dai, Xuesong; Chen, Xiao; Ouyang, Hongwei

    2017-07-01

    Management of ligament/tendon-to-bone-junction healing remains a formidable challenge in the field of orthopedic medicine to date, due to deficient vascularity and multi-tissue transitional structure of the junction. Numerous strategies have been employed to improve ligament-bone junction healing, including delivery of stem cells, bioactive factors, and synthetic materials, but these methods are often inadequate at recapitulating the complex structure-function relationships at native tissue interfaces. Here, we developed an easily-fabricated and effective biomimetic composite to promote the regeneration of ligament-bone junction by physically modifying the tendon extracellular matrix (ECM) into a Random-Aligned-Random composite using ultrasound treatment. The differentiation potential of rabbit bone marrow stromal cells on the modified ECM were examined in vitro. The results demonstrated that the modified ECM enhanced expression of chondrogenesis and osteogenesis-associated epigenetic genes (Jmjd1c, Kdm6b), transcription factor genes (Sox9, Runx2) and extracellular matrix genes (Col2a1, Ocn), resulting in higher osteoinductivity than the untreated tendon ECM in vitro. In the rabbit anterior cruciate ligament (ACL) reconstruction model in vivo, micro-computed tomography (Micro-CT) and histological analysis showed that the modified Random-Aligned-Random composite scaffold enhanced bone and fibrocartilage formation at the interface, more efficaciously than the unmodified tendon ECM. Therefore, these results demonstrated that the biomimetic Random-Aligned-Random composite could be a promising scaffold for ligament/tendon-bone junction repair. The native transitional region consists of several distinct yet contiguous tissue regions, composed of soft tissue, non-calcified fibrocartilage, calcified fibrocartilage, and bone. A stratified graft whose phases are interconnected with each other is essential for supporting the formation of functionally continuous multi

  18. Design and properties of 3D scaffolds for bone tissue engineering.

    Science.gov (United States)

    Gómez, S; Vlad, M D; López, J; Fernández, E

    2016-09-15

    In this study, the Voronoi tessellation method has been used to design novel bone like three dimension (3D) porous scaffolds. The Voronoi method has been processed with computer design software to obtain 3D virtual isotropic porous interconnected models, exactly matching the main histomorphometric indices of trabecular bone (trabecular thickness, trabecular separation, trabecular number, bone volume to total volume ratio, bone surface to bone volume ratio, etc.). These bone like models have been further computed for mechanical (elastic modulus) and fluid mass transport (permeability) properties. The results show that the final properties of the scaffolds can be controlled during their microstructure and histomorphometric initial design stage. It is also shown that final properties can be tuned during the design stage to exactly match those of trabecular natural bone. Moreover, identical total porosity models can be designed with quite different specific bone surface area and thus, this specific microstructural feature can be used to favour cell adhesion, migration and, ultimately, new bone apposition (i.e. osteoconduction). Once the virtual models are fully characterized and optimized, these can be easily 3D printed by additive manufacturing and/or stereolitography technologies. The significance of this article goes far beyond the specific objectives on which it is focussed. In fact, it shows, in a guided way, the entire novel process that can be followed to design graded porous implants, whatever its external shape and geometry, but internally tuned to the exact histomorphometric indices needed to match natural human tissues microstructures and, consequently, their mechanical and fluid properties, among others. The significance is even more relevant nowadays thanks to the available new computing and design software that is easily linked to the 3D printing new technologies. It is this transversality, at the frontier of different disciplines, the main characteristic

  19. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  20. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation : An in vitro and in vivo characterization

    NARCIS (Netherlands)

    Yeo, A.; Wong, W. J.; Khoo, H. H.; Teoh, S. H.

    Pretreatment of polycaprolactone-20% tricalcium phosphate (PCL-TCP) scaffolds under alkaline conditions can be utilized to alter surface characteristics for enhanced early bone formation. PCL-TCP scaffolds were treated with sodium hydroxide (NaOH) at various time intervals (group A: untreated, group

  1. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation.

    Science.gov (United States)

    Li, Yumei; Li, Xiang; Zhao, Rui; Wang, Chuying; Qiu, Fangping; Sun, Bolun; Ji, He; Qiu, Ju; Wang, Ce

    2017-03-01

    Recently, electrically conductive biomaterial scaffolds have shown great potential in tissue regeneration. Herein, we reported an electrically conductive polyaniline (PANI) coated poly(ε-caprolactone) (PCL) electrospun micron-fiber scaffold for the enhanced attachment and proliferation of human umbilical vein endothelial cells (HUVECs) under electrical stimulation conditions. After the O2 plasma treatment toward PCL electrospun fiber, PANI could be polymerized onto their surfaces successfully. The obtained PANI-PCL fibers were characterized by SEM observations, FT-IR spectra, XPS analysis, and water contact angle measurement. The mechanical tests indicated that the fibers could satisfy the practical vascular scaffold requirements. The conductivity of the PANI-PCL fibers was 6.71×10-3S/cm which could provide a conductive in-vitro platform to study the effect of electrical stimulation on HUVECs proliferation. When PANI-coated PCL fibers were compared with PCL fibers, HUVECs exhibited highly enhanced adhesion and viability, especially under electrical stimulation (ES) of 200, 300, and 400mV/cm. Proliferation of HUVECs on PANI-PCL fibers was strongly dependent on electrical stimulation intensity. The results showed new insights into conductive scaffolds for vascular tissue engineering. Copyright © 2016. Published by Elsevier B.V.

  2. Implementation of sensor technology in scaffolding - An application of technological brokering and smart product design

    OpenAIRE

    Ullrich, Christopher

    2016-01-01

    Collapsing scaffolds pose a constant danger in today’s construction industry and can result in serious injuries and substantial financial losses. To avoid the occurrence of such incidents on scaffold structures, a solution based on technological brokering between scaffolding and a wireless sensor network was evaluated on technological and market based feasibility. Interviews revealed the wall anchoring of scaffolds as a weak spot, which frequently fails as a consequence of human errors. As a ...

  3. Reticulated vitreous carbon as a scaffold for enzymatic fuel cell designing.

    Science.gov (United States)

    Kizling, Michal; Dzwonek, Maciej; Olszewski, Bartłomiej; Bącal, Paweł; Tymecki, Łukasz; Więckowska, Agnieszka; Stolarczyk, Krzysztof; Bilewicz, Renata

    2017-09-15

    Three - dimensional (3D) electrodes are successfully used to overcome the limitations of the low space - time yield and low normalized space velocity obtained in electrochemical processes with two - dimensional electrodes. In this study, we developed a three - dimensional reticulated vitreous carbon - gold (RVC-Au) sponge as a scaffold for enzymatic fuel cells (EFC). The structure of gold and the real electrode surface area can be controlled by the parameters of metal electrodeposition. In particular, a 3D RVC-Au sponge provides a large accessible surface area for immobilization of enzyme and electron mediators, moreover, effective mass diffusion can also take place through the uniform macro - porous scaffold. To efficiently bind the enzyme to the electrode and enhance electron transfer parameters the gold surface was modified with ultrasmall gold nanoparticles stabilized with glutathione. These quantum sized nanoparticles exhibit specific electronic properties and also expand the working surface of the electrode. Significantly, at the steady state of power generation, the EFC device with RVC-Au electrodes provided high volumetric power density of 1.18±0.14mWcm-3 (41.3±3.8µWcm-2) calculated based on the volume of electrode material with OCV 0.741±0.021V. These new 3D RVC-Au electrodes showed great promise for improving the power generation of EFC devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    Science.gov (United States)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  5. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.

    Science.gov (United States)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-12

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  6. 3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette

    2016-01-01

    is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid...... technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high...... cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN...

  7. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis.

    Science.gov (United States)

    Coelho, Pedro G; Hollister, Scott J; Flanagan, Colleen L; Fernandes, Paulo R

    2015-03-01

    Bone scaffolds for tissue regeneration require an optimal trade-off between biological and mechanical criteria. Optimal designs may be obtained using topology optimization (homogenization approach) and prototypes produced using additive manufacturing techniques. However, the process from design to manufacture remains a research challenge and will be a requirement of FDA design controls to engineering scaffolds. This work investigates how the design to manufacture chain affects the reproducibility of complex optimized design characteristics in the manufactured product. The design and prototypes are analyzed taking into account the computational assumptions and the final mechanical properties determined through mechanical tests. The scaffold is an assembly of unit-cells, and thus scale size effects on the mechanical response considering finite periodicity are investigated and compared with the predictions from the homogenization method which assumes in the limit infinitely repeated unit cells. Results show that a limited number of unit-cells (3-5 repeated on a side) introduce some scale-effects but the discrepancies are below 10%. Higher discrepancies are found when comparing the experimental data to numerical simulations due to differences between the manufactured and designed scaffold feature shapes and sizes as well as micro-porosities introduced by the manufacturing process. However good regression correlations (R(2) > 0.85) were found between numerical and experimental values, with slopes close to 1 for 2 out of 3 designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size.

    Science.gov (United States)

    Zhao, Ying; Tanaka, Masayoshi; Kinoshita, Takatoshi; Higuchi, Masahiro; Tan, Tianwei

    2010-11-01

    The aim of this study was to develop controlled drug delivery by network scaffolds based on self-assembling peptide RADAFI and RADAFII. These two peptides self-assembled into interconnected nanofibrilar network structures with distinct physical morphologies. The hydrogels were also utilized for entrapment and release of some model guests, promising their future application as a drug delivery vehicle. Fickian diffusion controlled the release kinetics. Furthermore, the obtained release function was dependent on both rational design of the peptides used for hydrogel formation and choice of the entrapped molecules. On the basis of the striking different releases of these two peptide scaffolds, we suggested that guest size and lipophilicity influenced the release competitively. The release of RADAFI system was dominated by guest size, and the guest lipophilicity controlled the release behavior in RADAFII system. In a word, this work would potentially provide a spatially and temporally controlled delivery system for some functional drugs in the future. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells

    OpenAIRE

    Doo Yeon Kwon; Jin Seon Kwon; Seung Hun Park; Ji Hun Park; So Hee Jang; Xiang Yun Yin; Jeong-Ho Yun; Jae Ho Kim; Byoung Hyun Min; Jun Hee Lee; Wan-Doo Kim; Moon Suk Kim

    2015-01-01

    A computer-designed, solvent-free scaffold offer several potential advantages such as ease of customized manufacture and in vivo safety. In this work, we firstly used a computer-designed, solvent-free scaffold and human dental pulp stem cells (hDPSCs) to regenerate neo-bone within cranial bone defects. The hDPSCs expressed mesenchymal stem cell markers and served as an abundant source of stem cells with a high proliferation rate. In addition, hDPSCs showed a phenotype of differentiated osteob...

  10. Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, Volodymyr [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, SE-412 96 Gothenburg (Sweden); Kalogeropoulos, Theodoros [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Thunberg, Johannes [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Johannesson, Sara; Hägg, Daniel [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Enoksson, Peter [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, SE-412 96 Gothenburg (Sweden); Gatenholm, Paul, E-mail: paul.gatenholm@chalmers.se [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden)

    2016-01-01

    The problem of recovery from neurodegeneration needs new effective solutions. Tissue engineering is viewed as a prospective approach for solving this problem since it can help to develop healthy neural tissue using supportive scaffolds. This study presents effective and sustainable tissue engineering methods for creating biomaterials from cellulose that can be used either as scaffolds for the growth of neural tissue in vitro or as drug screening models. To reach this goal, nanofibrous electrospun cellulose mats were made conductive via two different procedures: carbonization and addition of multi-walled carbon nanotubes. The resulting scaffolds were much more conductive than untreated cellulose material and were used to support growth and differentiation of SH-SY5Y neuroblastoma cells. The cells were evaluated by scanning electron microscopy and confocal microscopy methods over a period of 15 days at different time points. The results showed that the cellulose-derived conductive scaffolds can provide support for good cell attachment, growth and differentiation. The formation of a neural network occurred within 10 days of differentiation, which is a promising length of time for SH-SY5Y neuroblastoma cells. - Highlights: • The conductive scaffolds for neural tissue engineering are derived from cellulose. • The scaffolds are used to support growth and differentiation of SH-SY5Y cells. • Distinctive cell differentiation occurs within 10 days on conductive scaffolds. • Electrical conductivity and nanotopography improve neural network formation.

  11. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.

    Science.gov (United States)

    Hu, Yang; Dan, Weihua; Xiong, Shanbai; Kang, Yang; Dhinakar, Arvind; Wu, Jun; Gu, Zhipeng

    2017-01-01

    To improve the mechanical properties and biocompatibility of collagen I matrix, a novel and facile strategy was developed to modify porcine acellular dermal matrix (PADM) via dopamine self-polymerization followed by collagen immobilization to enhance the biological, mechanical and physicochemical properties of PADM. Mechanism study indicated that the polymerization of dopamine onto PADM surface could be regulated by controlling the amount of hydrogen bonds forming between phenol hydroxyl (COH) and nitrogen atom (NCO) within collagen fibers of PADM. The investigations of surface interactions between PDA and PADM illustrated that PDA-PADM system yielded better mechanical properties, thermal stability, surface hydrophilicity and the structural integrity of PADM was maintained after dopamine coating. Furthermore, collagen (COL) was immobilized onto the fresh PDA-PADM to fabricate the collagen-PDA-PADM (COL-PDA-PADM) complexed scaffold. The MTT assay and CLSM observation showed that COL-PDA-PADM had better biocompatibility and higher cellular attachment than pure PADM and COL-PADM without dopamine coating, thus demonstrating the efficacy of PDA as the intermediate layer. Meanwhile, the expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) of COL-PDA-PADM were investigated by an in vivo study. The results revealed that COL-PDA-PADM could effectively promote bFGF and VEGF expression, possibly leading to enhancing the dura repairing process. Overall, this work contributed a new insight into the development of a semi-natural tissue engineering scaffold with high biocompatibility and good mechanical properties. Obtaining scaffolds with high biocompatibility and good mechanical properties is still one of the most challenging issues in tissue engineering. To have excellent in vitro and in vivo performance, scaffolds are desired to have similar mechanical and biological properties as the natural extracellular matrix, such as collagen

  12. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue.

    Science.gov (United States)

    Cao, Dandan; Xu, Zhengliang; Chen, Yixuan; Ke, Qinfei; Zhang, Changqing; Guo, Yaping

    2018-02-01

    Bone tissue engineering scaffolds for the reconstruction of large bone defects should simultaneously promote osteogenic differentiation and avoid postoperative infection. Herein, we develop, for the first time, Ag-loaded MgSrFe-layered double hydroxide/chitosan (Ag-MgSrFe/CS) composite scaffold. This scaffold exhibits three-dimensional interconnected macroporous structure with a pore size of 100-300 μm. The layered double hydroxide nanoplates in the Ag-MgSrFe/CS show lateral sizes of 200-400 nm and thicknesses of ∼50 nm, and the Ag nanoparticles with particle sizes of ∼20 nm are uniformly dispersed on the scaffold surfaces. Human bone marrow-derived mesenchymal stem cells (hBMSCs) present good adhesion, spreading, and proliferation on the Ag-MgSrFe/CS composite scaffold, suggesting that the Ag and Sr elements in the composite scaffold have no toxicity to hBMSCs. When compared with MgFe/CS composite scaffold, the Ag-MgSrFe/CS composite scaffold has better osteogenic property. The released Sr2+ ions from the composite scaffold enhance the alkaline phosphatase activity of hBMSCs, promote the extracellular matrix mineralization, and increase the expression levels of osteogenic-related RUNX2 and BMP-2. Moreover, the Ag-MgSrFe/CS composite scaffold possesses good antibacterial property because the Ag nanoparticles in the composite scaffold effectively prevent biofilm formation against S. aureus. Hence, the Ag-MgSrFe/CS composite scaffold with excellent osteoinductivity and antibacterial property has a great potential for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 863-873, 2018. © 2017 Wiley Periodicals, Inc.

  13. Effectiveness of a scaffolded approach for teaching students to design scientific inquiries

    Science.gov (United States)

    Gabel, Connie

    Teaching students to design their own science experiments has perplexed science educators for over a hundred years. Throughout the years, a number of approaches have been tried with little success. As the new millennium opens, current curriculum reform efforts are stressing science inquiry and science for all students, but methods for teaching science inquiry have remained elusive. Teaching science inquiry is a complex process that requires students to perform multiple tasks well in order for them to be able to conduct a meaningful scientific investigation. The merging of knowledge gained from the field of educational psychology with advancements made in pedagogy were found to be key factors in successfully teaching students to design their own scientific inquiries. The findings from this research study indicate that a scaffolded approach in all pedagogical aspects contributes to a successful performance from the students in designing their own scientific investigations. A schema using the following steps: question, prior knowledge, design of experiment, gathering data, analysis, and conclusion was found to be effective. Students also exhibited a gain in science inquiry skills and maintained a positive attitude toward science. This method was successful with both genders and both minority and non-minority students. A quasi-experimental research design with three independent variables: teaching method, gender, and ethnicity and three dependent variables: science inquiry skills, ability to design an experiment, and attitude toward science was utilized in this research study.

  14. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Zhang, Jieyuan; Liu, Xiaolin; Li, Haiyan; Chen, Chunyuan; Hu, Bin; Niu, Xin; Li, Qing; Zhao, Bizeng; Xie, Zongping; Wang, Yang

    2016-09-20

    Recently, accumulating evidence has shown that exosomes, the naturally secreted nanocarriers of cells, can exert therapeutic effects in various disease models in the absence of parent cells. However, application of exosomes in bone defect repair and regeneration has been rarely reported, and little is known regarding their underlying mechanisms. Exosomes derived from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-Exos) were combined with tricalcium phosphate (β-TCP) to repair critical-sized calvarial bone defects, and the efficacy was assessed by histological examination. We evaluated the in vitro effects of hiPSC-MSC-Exos on the proliferation, migration, and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) by cell-counting, scratch assays, and qRT-PCR, respectively. Gene expression profiling and bioinformatics analyses were also used to identify the underlying mechanisms in the repair. We found that the exosome/β-TCP combination scaffolds could enhance osteogenesis as compared to pure β-TCP scaffolds. In vitro assays showed that the exosomes could release from β-TCP and could be internalized by hBMSCs. In addition, the internalization of exosomes into hBMSCs could profoundly enhance the proliferation, migration, and osteogenic differentiation of hBMSCs. Furthermore, gene expression profiling and bioinformatics analyses demonstrated that exosome/β-TCP combination scaffolds significantly altered the expression of a network of genes involved in the PI3K/Akt signaling pathway. Functional studies further confirmed that the PI3K/Akt signaling pathway was the critical mediator during the exosome-induced osteogenic responses of hBMSCs. We propose that the exosomes can enhance the osteoinductivity of β-TCP through activating the PI3K/Akt signaling pathway of hBMSCs, which means that the exosome/β-TCP combination scaffolds possess better osteogenesis activity than pure β-TCP scaffolds. These

  15. Using Classroom Assessment and Cognitive Scaffolding to Enhance the Power of Small-Group Learning

    Science.gov (United States)

    Cooper, James L.; Robinson, Pamela

    2014-01-01

    The authors describe several types of classroom assessment techniques (CATs) and cognitive scaffolding procedures that they have developed over the years. They then bring the procedures together in a sample lecture/group learning class presentation.

  16. Design of a Potent CB1 Receptor Antagonist Series: Potential Scaffold for Peripherally-Targeted Agents.

    Science.gov (United States)

    Dow, Robert L; Carpino, Philip A; Gautreau, Denise; Hadcock, John R; Iredale, Philip A; Kelly-Sullivan, Dawn; Lizano, Jeffrey S; O'Connor, Rebecca E; Schneider, Steven R; Scott, Dennis O; Ward, Karen M

    2012-05-10

    Antagonism of cannabinoid-1 (CB1) receptor signaling has been demonstrated to inhibit feeding behaviors in humans, but CB1-mediated central nervous system (CNS) side effects have halted the marketing and further development of the lead drugs against this target. However, peripherally restricted CB1 receptor antagonists may hold potential for providing the desired efficacy with reduced CNS side effect profiles. In this report we detail the discovery and structure-activity-relationship analysis of a novel bicyclic scaffold (3) that exhibits potent CB1 receptor antagonism and oral activity in preclinical feeding models. Optimization of physical properties has led to the identification of analogues which are predicted to have reduced CNS exposure and could serve as a starting point for the design of peripherally targeted CB1 receptor antagonists.

  17. Challenges in designing appropriate scaffolding to improve students’ representational consistency: The case of a Gauss’s law problem

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2017-08-01

    Full Text Available Prior research suggests that introductory physics students have difficulty with graphing and interpreting graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on students’ representational consistency. Students in calculus-based introductory physics were given a typical problem that can be solved using Gauss’s law involving a spherically symmetric charge distribution in which they were asked to write a mathematical expression for the electric field in various regions and then plot the electric field. In study 1, we found that students had great difficulty in plotting the electric field as a function of the distance from the center of the sphere consistent with the mathematical expressions in various regions, and interviews with students suggested possible reasons which may account for this difficulty. Therefore, in study 2, we designed two scaffolding interventions with levels of support which built on each other (i.e., the second scaffolding level built on the first in order to help students plot their expressions consistently and compared the performance of students provided with scaffolding with a comparison group which was not given any scaffolding support. Analysis of student performance with different levels of scaffolding reveals that scaffolding from an expert perspective beyond a certain level may sometimes hinder student performance and students may not even discern the relevance of the additional support. We provide possible interpretations for these findings based on in-depth, think-aloud student interviews.

  18. Enhanced Metastatic Potential in a 3D Tissue Scaffold toward a Comprehensive in Vitro Model for Breast Cancer Metastasis.

    Science.gov (United States)

    Balachander, Gowri Manohari; Balaji, Sai A; Rangarajan, Annapoorni; Chatterjee, Kaushik

    2015-12-23

    Metastasis is clinically the most challenging and lethal aspect of breast cancer. While animal-based xenograft models are expensive and time-consuming, conventional two-dimensional (2D) cell culture systems fail to mimic in vivo signaling. In this study we have developed a three-dimensional (3D) scaffold system that better mimics the topography and mechanical properties of the breast tumor, thus recreating the tumor microenvironment in vitro to study breast cancer metastasis. Porous poly(ε-caprolactone) (PCL) scaffolds of modulus 7.0 ± 0.5 kPa, comparable to that of breast tumor tissue were fabricated, on which MDA-MB-231 cells proliferated forming tumoroids. A comparative gene expression analysis revealed that cells growing in the scaffolds expressed increased levels of genes implicated in the three major events of metastasis, viz., initiation, progression, and the site-specific colonization compared to cells grown in conventional 2D tissue culture polystyrene (TCPS) dishes. The cells cultured in scaffolds showed increased invasiveness and sphere formation efficiency in vitro and increased lung metastasis in vivo. A global gene expression analysis revealed a significant increase in the expression of genes involved in cell-cell and cell-matrix interactions and tissue remodeling, cancer inflammation, and the PI3K/Akt, Wnt, NF-kappaB, and HIF1 signaling pathways-all of which are implicated in metastasis. Thus, culturing breast cancer cells in 3D scaffolds that mimic the in vivo tumor-like microenvironment enhances their metastatic potential. This system could serve as a comprehensive in vitro model to investigate the manifold mechanisms of breast cancer metastasis.

  19. Enhanced bone formation in the vicinity of porous β-TCP scaffolds exhibiting slow release of collagen-derived tripeptides.

    Science.gov (United States)

    Kamikura, Keita; Minatoya, Tsutomu; Terada-Nakaishi, Michiko; Yamamoto, Shoko; Sakai, Yasuo; Furusawa, Toshitake; Matsushima, Yuta; Unuma, Hidero

    2017-09-01

    It has been experimentally proven that orally ingested collagen-derived tripeptides (Ctp) are quickly absorbed in the body and effectively promote the regeneration of connective tissues including bone and skin. Ctp are capable to activate osteoblasts and fibroblasts, which eventually promotes tissue regeneration. Based on these findings, a hypothesis was formulated in this study that direct delivery of Ctp to bone defect would also facilitate tissue regeneration as well as oral administration. To test the hypothesis, we prepared a bone augmentation material with the ability to slowly release Ctp, and investigated its in vivo bone regeneration efficacy. The implant material was porous β-tricalcium phosphate (β-TCP) scaffold which was coated with a co-precipitated layer of bone-like hydroxyapatite and Ctp. The β-TCP was impregnated with approximately 0.8%(w/w) Ctp. Then, the Ctp-modified β-TCP was implanted into bone defects of Wistar rats to evaluate in vivo efficacy of Ctp directly delivered from the material to the bone defects. The control was pristine porous β-TCP. In vitro tests showed that Ctp were steadily released from the co-precipitated layer for approximately two weeks. The Ctp-modified scaffolds significantly promoted new bone formation in vivo in their vicinity as compared with pristine β-TCP scaffolds; 6 weeks after the implantation, Ctp-modified scaffolds promoted twice as much bone formation as the control implants. Consequently, we achieved the slow and steady release of Ctp, and found that direct delivery of Ctp from implant materials was effective for bone regeneration as well as oral administration. A β-TCP scaffold capable of slowly releasing bone-enhancing substances significantly promoted bone formation.

  20. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Jin Lee, Seung [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  1. Mechanical, Permeability, and Degradation Properties of 3D Designed Poly(1,8 Octanediol-co-Citrate)(POC) Scaffolds for Soft Tissue Engineering

    Science.gov (United States)

    Jeong, Claire G.; Hollister, Scott J.

    2015-01-01

    Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into 3D scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data was fit to a 1D nonlinear elastic model and solid tensile data was fit to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness which also became less nonlinear. Scaffold characterization in this paper will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage. PMID:20091910

  2. Design and modular parallel synthesis of a MCR derived α-helix mimetic protein-protein interaction inhibitor scaffold

    NARCIS (Netherlands)

    Antuch, Walfrido; Menon, Sanjay; Chen, Quin-Zene; Lu, Yingchun; Sakamuri, Sukumar; Beck, Barbara; Schauer-Vukašinović, Vesna; Agarwal, Seema; Hess, Sibylle; Dömling, Alexander

    2006-01-01

    A terphenyl α-helix mimetic scaffold recognized to be capable of disrupting protein-protein interactions was structurally morphed into an easily amenable and versatile multicomponent reaction (MCR) backbone. The design, modular in-parallel library synthesis, initial cell based biological data, and

  3. Intertwining Lexical and Conceptual Learning Trajectories--A Design Research Study on Dual Macro-Scaffolding towards Percentages

    Science.gov (United States)

    Pöhler, Birte; Prediger, Susanne

    2015-01-01

    Monolingual or multilingual students with low academic language proficiency need to acquire conceptual understanding for percentages and the language to communicate about them. The design research study explores how these two learning goals can be fostered by a macro-scaffolding approach for seventh grade students. The dual hypothetical learning…

  4. Scaffolding Learner-Centered Curricular Coherence Using Learning Maps and Diagnostic Assessments Designed around Mathematics Learning Trajectories

    Science.gov (United States)

    Confrey, Jere; Gianopulos, Garron; McGowan, William; Shah, Meetal; Belcher, Michael

    2017-01-01

    The paper describes how designers used the construct of learning trajectories to create a tool, Math-Mapper 6-8, to help scaffold curricula toward increased learner-centered coherence. It defines "learner-centered curricular coherence" as "an organizational means to promote a high likelihood that each learner traverses one of many…

  5. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    Science.gov (United States)

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min

    2016-03-01

    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Plasmin inhibitors with hydrophobic amino acid-based linker between hydantoin moiety and benzimidazole scaffold enhance inhibitory activity.

    Science.gov (United States)

    Teno, Naoki; Gohda, Keigo; Yamashita, Yukiko; Otsubo, Tadamune; Yamaguchi, Masafumi; Wanaka, Keiko; Tsuda, Yuko

    2016-05-01

    In this letter we report the design and synthesis of a series of plasmin inhibitors, which share the amino acid-based linker with limited free rotation between the hydantoin moiety and the benzimidazole scaffold. Our studies led to potent plasmin inhibitors and yielded important new insights into their structure-activity relationship for binding to the active site of plasmin. Copyright © 2016. Published by Elsevier Ltd.

  7. In vitro design of mesenchymal to epithelial transition of prostate cancer metastasis using 3D nanoclay bone-mimetic scaffolds.

    Science.gov (United States)

    Molla, Md Shahjahan; Katti, Dinesh R; Katti, Kalpana S

    2017-06-11

    Nanocomposite scaffolds show extensive applications in regenerative medicine and have shown promise as in vitro analogues of human tissue that can be used for the study of diseases. The complex nature of cancer metastasis is recently investigated using several 3D scaffold models. Herein, we report a polymer-nanoclay-based in vitro tumour model that recapitulates early stage of prostate cancer (PCa) colonization during skeletal metastasis on bone mimetic scaffolds. A unique cell culture system termed as "sequential culture (SC)" has been applied to create a bone-mimetic niche for colonization of PCa cells. Human mesenchymal stem cells (MSCs) were seeded on the bone-mimetic scaffolds, where they differentiated into bone cells and then formed mineralized bone matrix without osteogenic supplements. Further, PCa was seeded on MSCs-seeded scaffolds. Sequentially cultured PCa cells with MSCs formed self-organized multicellular tumoroids with distinct tight cellular junctions and hypoxic core regions. Extensive quantitative reverse transcription-polymerase chain reaction experiments were performed to evaluate the expressions of genes related to osteotropic bone metastasis of PCa. On the nanoclay scaffolds, the MSCs differentiated to mature osteoblasts and epithelial to mesenchymal transition was inhibited whereas mesenchymal to epithelial transition was enhanced, as also the hypoxia increased angiogenesis, and finally, PCa cells initiated osteoblastic lesion. Further, the SC technique has significant effects on expression of key metastasis-related genes. Therefore, the SC-based tumour model can be applied to recapitulate more consistent osteotropic cancer cell behavior in understanding tumour biology. This model also can be implemented for drug screening to target colonization stage of PCa cells in the bone microenvironment. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Impact of stent strut design in metallic stents and biodegradable scaffolds.

    Science.gov (United States)

    Foin, Nicolas; Lee, Renick D; Torii, Ryo; Guitierrez-Chico, Juan Luis; Mattesini, Alessio; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Davies, Justin E; Di Mario, Carlo; Joner, Michael; Virmani, Renu; Wong, Philip

    2014-12-20

    Advances in the understanding of healing mechanisms after stent implantation have led to the recognition of stent strut thickness as an essential factor affecting re-endothelialization and overall long term vessel healing response after Percutaneous Coronary Interventions (PCI). Emergence of Drug-eluting stents (DESs) with anti-proliferative coating has contributed to reducing the incidence of restenosis and Target Lesion Revascularization (TVR), while progress and innovations in stent materials have in the meantime facilitated the design of newer platforms with more conformability and thinner struts, producing lesser injury and improving integration into the vessel wall. Recent advances in biodegradable metal and polymer materials now also allow for the design of fully biodegradable platforms, which are aimed at scaffolding the vessel only temporarily to prevent recoil and constrictive remodeling of the vessel during the initial period required, and are then progressively resorbed thereby avoiding the drawback of leaving an unnecessary implant permanently in the vessel. The aim of this article is to review recent evolution in stent material and stent strut design while understanding their impact on PCI outcomes. The article describes the different metallic alloys and biodegradable material properties and how these have impacted the evolution of stent strut thickness and ultimately outcomes in patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function.

    Science.gov (United States)

    Ayres, Chantal E; Jha, B Shekhar; Sell, Scott A; Bowlin, Gary L; Simpson, David G

    2010-01-01

    Engineered scaffolds function to supplement or replace injured, missing, or compromised tissue or organs. The current direction in this research area is to create scaffolds that mimic the structure and function of the native extracellular matrix (ECM). It is believed that the fabrication of a scaffold that has both structural integrity and allows for normal cellular function and interaction will bring scaffolds closer to clinical relevance. Nanotechnology innovations have aided in the development of techniques for the production of nanofiber scaffolds. The three major processing techniques, self-assembly, phase separation, and electrospinning, produce fibers that rival the size of those found in the native ECM. However, the simplicity, versatility, and scalability of electrospinning make it an attractive processing method that can be used to reproduce aspects of the complexity that characterizes the native ECM. Novel electrospinning strategies include alterations of scaffold composition and architecture, along with the addition and encapsulation of cells, pharmaceuticals and growth factors within the scaffold. This article reviews the major nanofiber fabrication technologies as well as delves into recent significant contributions to the conception of a meaningful and practical electrospun scaffold. (c) 2009 John Wiley & Sons, Inc.

  10. Towards Enhanced Affective Design: Rethinking the Notion of Design

    Science.gov (United States)

    Kim, SuKyoung; Cho, Youngil

    2017-09-01

    Design disciplines have been contributing to shaping the life of human beings, as well as fostering culture and heritage. Design disciplines and research have been rapidly transforming, and not only objects but also services are target of design. This paper reviews design disciplines towards enhanced affective design, which attributes to intuitive knowledge. It aims at rethinking the notion of design to propose a conceptual framework for integrating user experience into objects that strengthen the form and function based design with pleasing.

  11. Biomimetic hybrid scaffolds for osteo-chondral tissue repair: Design and osteogenic differentiation of human placenta-derived cells (hPDC).

    Science.gov (United States)

    Farè, Silvia; Bertoldi, Serena; Meskinfam, Masoumeh; Spoldi, Valentina; Tanzi, M Cristina; Parolini, Ornella

    2015-08-01

    A novel functionally-graded hybrid (FGHY) scaffold was designed and developed with a load-bearing structure represented by a PU foam loaded with a graded composition of CaPs (biomimetic component) and pectin gel as cell carrier. hPDC populations encapsulated in pectin gels and injected into the FGHY scaffolds demonstrated the ability to differentiate toward the osteogenic lineage. The ability of these biomimetic hybrid scaffolds to stimulate cell adhesion and proliferation and to support differentiation of hPDCs make these scaffolds excellent candidates for an use in bone regeneration.

  12. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    Science.gov (United States)

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.

  13. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.

    Science.gov (United States)

    Woodfield, T B F; Malda, J; de Wijn, J; Péters, F; Riesle, J; van Blitterswijk, C A

    2004-08-01

    In this study, we present and characterize a fiber deposition technique for producing three-dimensional poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT/PBT) block co-polymer scaffolds with a 100% interconnecting pore network for engineering of articular cartilage. The technique allowed us to "design-in" desired scaffold characteristics layer by layer by accurately controlling the deposition of molten co-polymer fibers from a pressure-driven syringe onto a computer controlled x-y-z table. By varying PEGT/PBT composition, porosity and pore geometry, 3D-deposited scaffolds were produced with a range of mechanical properties. The equilibrium modulus and dynamic stiffness ranged between 0.05-2.5 and 0.16-4.33 MPa, respectively, and were similar to native articular cartilage explants (0.27 and 4.10 MPa, respectively). 3D-deposited scaffolds seeded with bovine articular chondrocytes supported a homogeneous cell distribution and subsequent cartilage-like tissue formation following in vitro culture as well as subcutaneous implantation in nude mice. This was demonstrated by the presence of articular cartilage extra cellular matrix constituents (glycosaminoglycan and type II collagen) throughout the interconnected pore volume. Similar results were achieved with respect to the attachment of expanded human articular chondrocytes, resulting in a homogeneous distribution of viable cells after 5 days dynamic seeding. The processing methods and model scaffolds developed in this study provide a useful method to further investigate the effects of scaffold composition and pore architecture on articular cartilage tissue formation.

  14. Enhanced learning through design problems

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Högberg, Stig; Jensen, Frida av Fløtum

    2012-01-01

    This paper describes a teaching method used in an electrical machines course, where the students learn about electrical machines by designing them. The aim of the course is not to teach design, albeit this is a side product, but rather to teach the fundamentals and the function of electrical...... machines through design. The teaching method is evaluated by a student questionnaire, designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively show that this method labelled ‘learning through design’ is a very effective way of teaching...

  15. The effect of scaffolded strategies on content learning in a designed science cyberlearning environment

    Science.gov (United States)

    Kern, Cynthia Lee

    Scientific inscriptions---graphs, diagrams, and data---and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in inscriptions. Furthermore, when learners engage in argumentation, learning science content becomes secondary to the learning of argumentation skills. This design-based research study is nested within the larger effort to inform the design and development of the 5-Featured Dynamic Inquiry Enterprise design framework (5-DIE) for cyberlearning environments and to advance theory associated with the difficulties learners have with scientific inscriptions and the consequences related to using argumentation to learn science content. In an attempt to engage participants in the process of learning science content with scientific inscriptions and argumentation, two learning strategies were embedded in a 5-DIE lessons. The two learning strategies evaluated in this study were (1) self-explanation prompts paired with a scientific inscription and (2) faded worked examples for the evaluation and development of scientific knowledge claims. The participants consisted of ninth and tenth grade students (age: 13-16 years; N=245) enrolled in one of three state-mandated biology courses taught by four different teachers. A three factor mixed model analysis of variance (ANOVA) with two between factors (self-explanation prompts and faded worked examples) and one within factor (pre, post, delayed post-test) was used to evaluate the effects of the learning strategies on the acquisition and retention of domain-specific content knowledge. Both between factors had two levels (with & without) and are described by the following experimental conditions: (1) control condition (general prompts), (2) self-explanation condition, (3) faded worked examples

  16. Directional fluid flow enhances in vitro periosteal tissue growth and chondrogenesis on poly-ε-caprolactone scaffolds

    Science.gov (United States)

    Tarng, Yih-Wen; Casper, Michelle E.; Fitzsimmons, James S.; Stone, James J.; Bekkers, Joris; An, Kai-Nan; Su, Fong-Chin; O'Driscoll, Shawn W.; Reinholz, Gregory G.

    2010-01-01

    The purpose of this study was to investigate the effect of directional fluid flow on periosteal chondrogenesis. Periosteal explants were harvested from two-month-old rabbits and sutured onto poly-ε-caprolactone (PCL) scaffolds with the cambium layer facing away from the scaffolds. The periosteum/PCL composites were cultured in suspension in spinner flask bioreactors and exposed to various fluid flow velocities: 0, 20, 60, 150 rpm for 4 hours each day for 6 weeks. The application of fluid flow significantly increased percent cartilage yield in periosteal explants from 17% in the static controls to 65-75% under fluid flow (there was no significant difference between 20, 60, or 150 rpm). The size of the neocartilage was also significantly greater in explants exposed to fluid flow compared to static culture. The development of zonal organization within the engineered cartilage was observed predominantly in the tissue exposed to flow conditions. The Young's modulus of the engineered cartilage exposed to 60 rpm was significantly greater than the samples exposed to 150 rpm and 20 rpm. These results demonstrate that application of directional fluid flow to periosteal explants secured onto PCL scaffolds enhances cell proliferation, chondrogenic differentiation, cell organization, and alters the biomechanical properties of the engineered cartilage. PMID:20540101

  17. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide.

    Directory of Open Access Journals (Sweden)

    Chuan Fu

    Full Text Available One of the goals of bone tissue engineering is to mimic native ECM in architecture and function, creating scaffolds with excellent biocompatibility, osteoinductive ability and mechanical properties. The aim of this study was to fabricate nanofibrous matrices by electrospinning a blend of poly (L-lactic-co-glycolic acid (PLGA, hydroxyapatite (HA, and grapheme oxide (GO as a favourable platform for bone tissue engineering. The morphology, biocompatibility, mechanical properties, and biological activity of all nanofibrous matrices were compared. The data indicate that the hydrophilicity and protein adsorption rate of the fabricated matrices were significantly increased by blending with a small amount of HA and GO. Furthermore, GO significantly boosted the tensile strength of the nanofibrous matrices, and the PLGA/GO/HA nanofibrous matrices can serve as mechanically stable scaffolds for cell growth. For further test in vitro, MC3T3-E1 cells were cultured on the PLGA/HA/GO nanofbrous matrices to observe various cellular activities and cell mineralization. The results indicated that the PLGA/GO/HA nanofibrous matrices significantly enhanced adhesion, and proliferation in MCET3-E1 cells and functionally promoted alkaline phosphatase (ALP activity, the osteogenesis-related gene expression and mineral deposition. Therefore, the PLGA/HA/GO composite nanofibres are excellent and versatile scaffolds for applications in bone tissue regeneration.

  18. Fetal Bone Marrow-Derived Mesenchymal Stem/Stromal Cells Enhance Humanization and Bone Formation of BMP7 Loaded Scaffolds.

    Science.gov (United States)

    Shafiee, Abbas; Baldwin, Jeremy G; Patel, Jatin; Holzapfel, Boris M; Fisk, Nicholas M; Khosrotehrani, Kiarash; Hutmacher, Dietmar W

    2017-09-01

    Tissue engineered constructs built with human cells capable of generating a bone-like organ within the mouse have attracted considerable interest over the past decade. Here, we aimed to compare the utility of human mesenchymal stem/stromal cells (MSC) isolated from fetal term placenta (fPL-MSC) and fetal first trimester bone marrow (fBM-MSC) in a polycaprolactone scaffold/BMP7-based model in nude mice. Furthermore, fPL-MSC were co-seeded with fetal placenta-derived endothelial colony forming cells (ECFC) to assess the impact of ECFC on fPL-MSC osteogenesis. X-ray radiography and micro computed tomography analyses showed enhanced bone formation in all BMP7 groups; however there was no difference after 2 months in bone formation between scaffolds seeded with fPL-MSC alone or combination of ECFC and fPL-MSC. Of interest, fBM-MSC showed the highest level of bone formation. Additionally, endochondral ossification contributed in generation of bone in fBM-MSC. Histological analysis showed the primary role of BMP in generation of cortical and trabecular bone, and the recruitment of hematopoietic cells to the scaffolds. Current in vivo engineered bone organs can potentially be used for drug screening or as models to study bone tissue development in combination with haematopoiesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rational Design of Selective Adenine-Based Scaffolds for Inactivation of Bacterial Histidine Kinases.

    Science.gov (United States)

    Goswami, Manibarsha; Wilke, Kaelyn E; Carlson, Erin E

    2017-10-12

    Bacterial histidine kinases (HKs) are quintessential regulatory enzymes found ubiquitously in bacteria. Apart from their regulatory roles, they are also involved in the production of virulence factors and conferring resistance to various antibiotics in pathogenic microbes. We have previously reported compounds that inhibit multiple HKs by targeting the conserved catalytic and ATP-binding (CA) domain. Herein, we conduct a detailed structure-activity relationship assessment of adenine-based inhibitors using biochemical and docking methods. These studies have resulted in several observations. First, interaction of an inhibitor's amine group with the conserved active-site Asp is essential for activity and likely dictates its orientation in the binding pocket. Second, a N-NH-N triad in the inhibitor scaffold is highly preferred for binding to conserved Gly:Asp:Asn residues. Lastly, hydrophobic electron-withdrawing groups at several positions in the adenine core enhance potency. The selectivity of these inhibitors was tested against heat shock protein 90 (HSP90), which possesses a similar ATP-binding fold. We found that groups that target the ATP-lid portion of the catalytic domain, such as a six-membered ring, confer selectivity for HKs.

  20. Design and evaluation of antibiotic releasing self- assembled scaffolds at room temperature using biodegradable polymer particles.

    Science.gov (United States)

    Admane, Prasad; Gupta, Jatin; I J, Ancy; Kumar, Robin; Panda, Amulya K

    2017-03-30

    Biodegradable polymer-based drug-eluting implants offer many advantages such as predictable drug release kinetics, safety, and acceptable drug loading under ambient conditions. Herein, we describe fabrication and evaluation of antibiotic loaded scaffolds for localized delivery and tissue engineering applications. PDLLA particles entrapping gentamycin were formulated using solvent evaporation method and used for scaffold fabrication. Optimization of formulation parameters such as pH of the internal aqueous phase and combination of excipients like glycerol, polyvinyl alcohol (PVA) resulted in high entrapment efficiencies up to 96% of gentamicin in particles with drug load of 16-18μg/mg of polymer particles. These microparticles were fused in presence of methanol at ambient temperatures to form scaffolds of different geometry having reasonable mechanical strength. Porosity of these scaffolds was found to be more than 80%. Antibiotic released from the scaffolds was found to be bioactive as tested against Staphylococcus aureus and the release pattern was biphasic over a period of one week. The scaffolds were found to be non-toxic to murine fibroblasts cultures in vitro as well as to mice upon subcutaneous implantation. This method provides a novel and easy way of fabricating antibiotic loaded polymer scaffolds for varieties of applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    Directory of Open Access Journals (Sweden)

    Antonio Boccaccio

    Full Text Available Functionally Graded Scaffolds (FGSs are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards

  2. Integrating Scaffolding Strategies into Technology-Enhanced Assessments of English Learners: Task Types and Measurement Models

    Science.gov (United States)

    Wolf, Mikyung Kim; Guzman-Orth, Danielle; Lopez, Alexis; Castellano, Katherine; Himelfarb, Igor; Tsutagawa, Fred S.

    2016-01-01

    This article investigates ways to improve the assessment of English learner students' English language proficiency given the current movement of creating next-generation English language proficiency assessments in the Common Core era. In particular, this article discusses the integration of scaffolding strategies, which are prevalently utilized as…

  3. Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds.

    Science.gov (United States)

    Kuzmenko, Volodymyr; Kalogeropoulos, Theodoros; Thunberg, Johannes; Johannesson, Sara; Hägg, Daniel; Enoksson, Peter; Gatenholm, Paul

    2016-01-01

    The problem of recovery from neurodegeneration needs new effective solutions. Tissue engineering is viewed as a prospective approach for solving this problem since it can help to develop healthy neural tissue using supportive scaffolds. This study presents effective and sustainable tissue engineering methods for creating biomaterials from cellulose that can be used either as scaffolds for the growth of neural tissue in vitro or as drug screening models. To reach this goal, nanofibrous electrospun cellulose mats were made conductive via two different procedures: carbonization and addition of multi-walled carbon nanotubes. The resulting scaffolds were much more conductive than untreated cellulose material and were used to support growth and differentiation of SH-SY5Y neuroblastoma cells. The cells were evaluated by scanning electron microscopy and confocal microscopy methods over a period of 15 days at different time points. The results showed that the cellulose-derived conductive scaffolds can provide support for good cell attachment, growth and differentiation. The formation of a neural network occurred within 10 days of differentiation, which is a promising length of time for SH-SY5Y neuroblastoma cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication.

    Science.gov (United States)

    Gao, Chengde; Yang, Bo; Hu, Huanlong; Liu, Jinglin; Shuai, Cijun; Peng, Shuping

    2013-10-01

    Biphasic calcium phosphate (BCP), which is composed of hydroxyapatite [HAP, Ca10(PO4)6(OH)2] and β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2], is usually difficult to densify into a solid state with selective laser sintering (SLS) due to the short sintering time. In this study, the sintering ability of BCP ceramics was significantly improved by adding a small amount of polymers, by which a liquid phase was introduced during the sintering process. The effects of the polymer content, laser power and HAP/β-TCP ratios on the microstructure, chemical composition and mechanical properties of the BCP scaffolds were investigated. The results showed that the BCP scaffolds became increasingly more compact with the increase of the poly(l-lactic acid) (PLLA) content (0-1 wt.%) and laser power (6-10 W). The fracture toughness and micro-hardness of the sintered scaffolds were also improved. Moreover, PLLA could be gradually decomposed in the late sintering stages and eliminated from the final BCP scaffolds if the PLLA content was below a certain value (approximately 1 wt.% in this case). The added PLLA could not be completely eliminated when its content was further increased to 1.5 wt.% or higher because an unexpected carbon phase was detected in the sintered scaffolds. Furthermore, many pores were observed due to the removal of PLLA. Micro-cracks and micro-pores occurred when the laser power was too high (12 W). These defects resulted in a deterioration of the mechanical properties. The hardness and fracture toughness reached maximum values of 490.3±10 HV and 1.72±0.10 MPa m(1/2), respectively, with a PLLA content of approximately 1 wt.% and laser power of approximately 10 W. Poly(l-lactic-co-glycolic acid) (PLGA) showed similar effects on the sintering process of BCP ceramics. Rectangular, porous BCP scaffolds were fabricated based on the optimum values of the polymer content and laser power. This work may provide an experimental basis for improving the mechanical

  5. Metacognition Modules: A Scaffolded Series of Online Assignments Designed to Improve Students’ Study Skills

    Directory of Open Access Journals (Sweden)

    Jean A. Cardinale

    2017-05-01

    Full Text Available Many first-year biology students begin college with high aspirations but limited skills in terms of those needed for their success. Teachers are increasingly focused on students’ lack of metacognitive awareness combined with students’ inability to self-regulate learning behaviors. To address this need, we have designed a series of out-of-class assignments to provide explicit instruction on memory and learning. Our metacognition modules consist of six video assignments with reflective journaling prompts, allowing students to explore the relationship between the learning cycle, neuroplasticity, memory function, expert and novice thinking, and effective study strategies. By setting lessons on improving study behavior within a biological context, we help students grasp the reason for changing their behavior based on an understanding of biological functions and their application to learning. Students who complete these scaffolded journaling assignments show a shift toward a growth mindset and a consistent ability to evaluate the efficacy of their own study behaviors. In this article, we discuss the modules and student assignments, as well as provide in depth support for faculty who wish to adopt the modules for their own courses.

  6. Metacognition Modules: A Scaffolded Series of Online Assignments Designed to Improve Students’ Study Skills†

    Science.gov (United States)

    Cardinale, Jean A.; Johnson, Bethany C.

    2017-01-01

    Many first-year biology students begin college with high aspirations but limited skills in terms of those needed for their success. Teachers are increasingly focused on students’ lack of metacognitive awareness combined with students’ inability to self-regulate learning behaviors. To address this need, we have designed a series of out-of-class assignments to provide explicit instruction on memory and learning. Our metacognition modules consist of six video assignments with reflective journaling prompts, allowing students to explore the relationship between the learning cycle, neuroplasticity, memory function, expert and novice thinking, and effective study strategies. By setting lessons on improving study behavior within a biological context, we help students grasp the reason for changing their behavior based on an understanding of biological functions and their application to learning. Students who complete these scaffolded journaling assignments show a shift toward a growth mindset and a consistent ability to evaluate the efficacy of their own study behaviors. In this article, we discuss the modules and student assignments, as well as provide in depth support for faculty who wish to adopt the modules for their own courses. PMID:28904648

  7. Metacognition Modules: A Scaffolded Series of Online Assignments Designed to Improve Students' Study Skills.

    Science.gov (United States)

    Cardinale, Jean A; Johnson, Bethany C

    2017-01-01

    Many first-year biology students begin college with high aspirations but limited skills in terms of those needed for their success. Teachers are increasingly focused on students' lack of metacognitive awareness combined with students' inability to self-regulate learning behaviors. To address this need, we have designed a series of out-of-class assignments to provide explicit instruction on memory and learning. Our metacognition modules consist of six video assignments with reflective journaling prompts, allowing students to explore the relationship between the learning cycle, neuroplasticity, memory function, expert and novice thinking, and effective study strategies. By setting lessons on improving study behavior within a biological context, we help students grasp the reason for changing their behavior based on an understanding of biological functions and their application to learning. Students who complete these scaffolded journaling assignments show a shift toward a growth mindset and a consistent ability to evaluate the efficacy of their own study behaviors. In this article, we discuss the modules and student assignments, as well as provide in depth support for faculty who wish to adopt the modules for their own courses.

  8. Structure-Based Design of Scaffolds Targeting PDE10A by INPHARMA-NMR.

    Science.gov (United States)

    Codutti, Luca; Grimaldi, Manuela; Carlomagno, Teresa

    2017-06-26

    Phosphodiesterases (PDE) hydrolyze both cyclic AMP and GMP (cAMP/cGMP) and are responsible for the regulation of their levels in a multitude of cellular functions. PDE10A is expressed in the brain and is a validated target for both schizophrenia and Huntington disease. Here, we address the identification of novel chemical scaffolds that may bind PDE10A via structure-based drug design. For this task, we use INPHARMA, an NMR-based method that measures protein-mediated interligand NOEs between pairs of weakly, competitively binding ligands. INPHARMA is applied to a combination of four chemically diverse PDE10A binding fragments, with the aim of merging their pharmacophoric features into a larger, tighter binding molecule. All four ligands bind the PDE10A cAMP binding domain with affinity in the micromolar range. The application of INPHARMA to identify the correct docking poses of these ligands is challenging due to the nature of the binding pocket and the high content of water-mediated intermolecular contacts. Nevertheless, ensemble docking in the presence of conserved water molecules generates docking poses that are in agreement with all sets of INPHARMA data. These poses are used to build a pharmacophore model with which we search the ZINC database.

  9. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer.

    Science.gov (United States)

    Dorati, R; Colonna, C; Tomasi, C; Genta, I; Bruni, G; Conti, B

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability >85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400μm, high porosity (77-78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. © 2013.

  10. Designing of Collagen Based Poly(3-hydroxybutyrate-co-4-hydroxybutyrate Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Vigneswari

    2015-01-01

    Full Text Available P(3HB-co-4HB copolymer was modified using collagen by adapting dual solvent system. The surface properties of samples were characterized by Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, organic elemental analysis (CHN analysis, and water contact angle measurements. The effects of collagen concentration, scaffold thickness, and 4HB molar fraction on the hydrophilicity were optimized by the Taguchi method. The orthogonal array experiment was conducted to obtain the response for a hydrophilic scaffold. Analysis of variance (ANOVA was used to determine the significant parameters and determine the optimal level for each parameter. The results also showed that the hydrophilicity of P(3HB-co-4HB/collagen blend scaffolds increased as the collagen concentration increased up to 15 wt% with a molar fraction of 50 mol% at 0.1 mm scaffold thickness. The biocompatibility of the P(3HB-co-4HB/collagen blend surface was evaluated by fibroblast cell (L929 culture. The collagen blend scaffold surfaces showed significant cell adhesion and growth as compared to P(3HB-co-4HB copolymer scaffolds.

  11. Platelet lysate coating on scaffolds directly and indirectly enhances cell migration, improving bone and blood vessel formation.

    Science.gov (United States)

    Leotot, Julie; Coquelin, Laura; Bodivit, Gwellaouen; Bierling, Philippe; Hernigou, Philippe; Rouard, Helene; Chevallier, Nathalie

    2013-05-01

    Suitable colonization and vascularization of tissue-engineered constructs after transplantation represent critical steps for the success of bone repair. Human platelet lysate (hPL) is composed of numerous growth factors known for their proliferative, differentiative and chemo-attractant effects on various cells involved in wound healing and bone growth. The aim of this study was to determine whether the delivery of human mesenchymal stromal cells (hMSC) seeded on hPL-coated hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) scaffolds could enhance vascularization and bone formation, as well as to investigate the mechanisms by which hMSC participate in tissue regeneration. Our study demonstrates that hPL can be coated on HA/β-TCP scaffolds, which play direct and indirect effects on implanted and/or resident stem cells. Effectively, we show that hPL coating directly increases chemo-attraction to and adhesion of hMSC and endothelial cells on the scaffold. Moreover, we show that hPL coating induces hMSC to produce and secrete pro-angiogenic proteins (placental growth factor and vascular endothelial growth factor) which allow the proliferation and specific chemo-attraction of endothelial cells in vitro, thus improving in vivo neovascularization and new bone formation. This study highlights the potential of functionalizing biomaterials with hPL and shows that this growth factor combination can have synergistic effects leading to enhanced bone and blood vessel formation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A Gelatin-sulfonated Silk Composite Scaffold based on 3D Printing Technology Enhances Skin Regeneration by Stimulating Epidermal Growth and Dermal Neovascularization.

    Science.gov (United States)

    Xiong, Si; Zhang, Xianzhu; Lu, Ping; Wu, Yan; Wang, Quan; Sun, Heng; Heng, Boon Chin; Bunpetch, Varitsara; Zhang, Shufang; Ouyang, Hongwei

    2017-06-27

    One of the key problems hindering skin repair is the deficiency of dermal vascularization and difficulty of epidermis regeneration, which makes it challenging to fabricate scaffolds that can biologically fulfill the requirements for skin regeneration. To overcome this problem, three-dimensional printing was used to fabricate a gelatin-sulfonated silk composite scaffold that was incorporated with basic fibroblast growth factor 2 (FGF-2) through binding with a sulfonic acid group (SO3) (3DG-SF-SO3-FGF). The efficacy and mechanism by which the 3DG-SF-SO3-FGF scaffolds promote skin regeneration were investigated both within in vitro cell culture and in vivo with a full-thickness skin defect model. The histological results showed that the gelatin-sulfonated silk composite scaffolds promoted granulation, and that incorporation of FGF-2 significantly enhanced the regeneration of skin-like tissues after implantation in rat skin defects for 14 and 28 days. Further investigations demonstrated that 3DG-SF-SO3-FGF scaffolds might stimulate dermal vascularization. These findings thus suggest that incorporation of FGF-2 into the 3D printed scaffolds is a viable strategy for enhancing skin regeneration.

  13. Teacher Design Knowledge for Technology Enhanced Learning

    NARCIS (Netherlands)

    McKenney, Susan

    2014-01-01

    This presentation shares a framework for investigating the knowledge teachers need to be able to design technology-enhanced learning. Specific activities are undertaken to consider elements within the framework

  14. Novel nanofibrous spiral scaffolds for neural tissue engineering

    Science.gov (United States)

    Valmikinathan, Chandra M.; Tian, Jingjing; Wang, Junping; Yu, Xiaojun

    2008-12-01

    Due to several drawbacks associated with autografts and allografts, tissue-engineering approaches have been widely used to repair peripheral nerve injuries. Most of the traditional tissue-engineered scaffolds in use are either tubular (single or multi-lumen) or hydrogel-based cylindrical grafts, which provide limited surface area for cell attachment and regeneration. Here, we show a novel poly(lactide-co-glycotide) (PLGA) microsphere-based spiral scaffold design with a nanofibrous surface that has enhanced surface areas and possesses sufficient mechanical properties and porosities to support the nerve regeneration process. These scaffolds have an open architecture that goes evenly throughout the scaffolds hence leaving enough volume for media influx and deeper cell penetration into the scaffolds. The in vitro tests conducted using Schwann cells show that the nanofibrous spiral scaffolds promote higher cell attachment and proliferation when compared to contemporary tubular scaffolds or nanofiber-based tubular scaffolds. Also, the nanofiber coating on the surfaces enhances the surface area, mimics the extracellular matrix and provides unidirectional alignment of cells along its direction. Hence, we propose that these scaffolds could alleviate some drawbacks in current nerve grafts and could potentially be used in nerve regeneration.

  15. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Dorati, R., E-mail: rossella.dorati@unipv.it [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Colonna, C. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Tomasi, C. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Genta, I. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Bruni, G. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Conti, B. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability > 85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400 μm, high porosity (77–78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. - Highlights: • Tough PLA graft copolymer was proposed

  16. Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties.

    Science.gov (United States)

    Xu, Yongxiang; Xia, Dandan; Han, Jianmin; Yuan, Shenpo; Lin, Hong; Zhao, Chao

    2017-12-01

    Chitosan-based porous scaffolds are of great interest in biomedical applications because of their biodegradability and biocompatibility. However, the poor mechanical properties of these scaffolds hinder their broad utility. In the present study, a novel compression method was developed to fabricate chitosan scaffolds with high mechanical strength and tuneable topography, based on the ionic strength and pH-dependent solubility of chitosan. When the compressive ratio increases from 1 to 8, the compressive elastic modulus of the scaffold increases from 5.2kPa to 520kPa and the porosity decreases from 94.1% to 82.5%. Furthermore, the number of human adipose-derived stem cells adhering to the scaffolds increases as the compressive ratio increases, owing to the high density of the chitosan fibres. This method does not require external cross-linker agent, sophisticated instrumentation and/or technical proficiency and could be extended to other polysaccharides. Copyright © 2017. Published by Elsevier Ltd.

  17. Enhancing the Therapy Experience Using Principles of Video Game Design.

    Science.gov (United States)

    Folkins, John Wm; Brackenbury, Tim; Krause, Miriam; Haviland, Allison

    2016-02-01

    This article considers the potential benefits that applying design principles from contemporary video games may have on enhancing therapy experiences. Six principles of video game design are presented, and their relevance for enriching clinical experiences is discussed. The motivational and learning benefits of each design principle have been discussed in the education literature as having positive impacts on student motivation and learning and are related here to aspects of clinical practice. The essential experience principle suggests connecting all aspects of the experience around a central emotion or cognitive connection. The discovery principle promotes indirect learning in focused environments. The risk-taking principle addresses the uncertainties clients face when attempting newly learned skills in novel situations. The generalization principle encourages multiple opportunities for skill transfer. The reward system principle directly relates to the scaffolding of frequent and varied feedback in treatment. Last, the identity principle can assist clients in using their newly learned communication skills to redefine self-perceptions. These principles highlight areas for research and interventions that may be used to reinforce or advance current practice.

  18. Categorical Design Departure and Symbolic Enhancement

    DEFF Research Database (Denmark)

    Krabbe, Anders Dahl

    by showing how product form design can impact the selection of dominant technological designs within industries by enhancing the symbolic attributes of products. A longitudinal case study was carried out of the establishment of a new dominant technological architecture in the hearing aid industry...

  19. Teachers as designers of technology enhanced learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan; Sagy, Ornit; Voogt, Joke

    2015-01-01

    Design of (technology-enhanced) learning activities and materials is one fruitful process through which teachers learn and become professionals. To facilitate this process, research is needed to understand how teachers learn through design, how this process may be supported, and how teacher

  20. Design and synthesis of novel ROR inverse agonists with a dibenzosilole scaffold as a hydrophobic core structure.

    Science.gov (United States)

    Toyama, Hirozumi; Nakamura, Masaharu; Hashimoto, Yuichi; Fujii, Shinya

    2015-07-01

    Molecular structure calculations indicated that the dibenzosilole skeleton could be well superposed on phenanthridinone, which is a structural component of ligands of retinoic acid receptor-related orphan receptors (RORs). Therefore, we designed, synthesized and biologically evaluated a series of novel ROR ligands based on the dibenzosilole scaffold as a hydrophobic core structure. Dibenzosilole derivatives bearing a hexafluoro-2-hydroxypropyl group on the benzene ring exhibited significant ROR-inhibitory activity, comparable to that of the lead phenanthridinone derivative 5. Our results indicate that the dibenzosilole skeleton would be a useful scaffold for developing novel biologically active compounds, and that cis-amide structure can be replaced by an alkylsilyl functionality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds.

    Science.gov (United States)

    Caliari, Steven R; Harley, Brendan A C

    2013-05-01

    Biomolecular environments encountered in vivo are complex and dynamic, with combinations of biomolecules presented in both freely diffusible (liquid-phase) and sequestered (bound to the extracellular matrix) states. Strategies for integrating multiple biomolecular signals into a biomimetic scaffold provide a platform to simultaneously control multiple cell activities, such as motility, proliferation, phenotype, and regenerative potential. Here we describe an investigation elucidating the influence of the dose and mode of presentation (soluble, sequestered) of five biomolecules (stromal cell-derived factor 1α [SDF-1α], platelet-derived growth factor BB [PDGF-BB], insulin-like growth factor 1 [IGF-1], basic fibroblast growth factor [bFGF], and growth/differentiation factor 5 [GDF-5]) on the recruitment, proliferation, collagen synthesis, and genomic stability of equine tenocytes within an anisotropic collagen-GAG scaffold for tendon regeneration applications. Critically, we found that single factors led to a dose-dependent trade-off between driving tenocyte proliferation (PDGF-BB, IGF-1) versus maintenance of a tenocyte phenotype (GDF-5, bFGF). We identified supplementation schemes using factor pairs (IGF-1, GDF-5) to rescue the tenocyte phenotype and gene expression profiles while simultaneously driving proliferation. These results suggest coincident application of multi-biomolecule cocktails has a significant value in regenerative medicine applications where control of cell proliferation and phenotype are required. Finally, we demonstrated an immobilization strategy that allows efficient sequestration of bioactive levels of these factors within the scaffold network. We showed sequestration can lead to a greater sustained bioactivity than soluble supplementation, making this approach particularly amenable to in vivo translation where diffusive loss is a concern and continuous biomolecule supplementation is not feasible.

  2. Uniform surface modification of 3D Bioglass®-based scaffolds with mesoporous silica particles (MCM-41 for enhancing drug uptake capability

    Directory of Open Access Journals (Sweden)

    Elena eBoccardi

    2015-11-01

    Full Text Available The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG of 45S5 composition for bone tissue engineering and drug delivery applications is presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41, which act as an in-situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain at the same time a high ordered mesoporous structure and spherical shape, both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds and the drug release capability of this combined system was evaluated. Moreover the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity and sustained drug delivery capability.

  3. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri

    Directory of Open Access Journals (Sweden)

    Hiroshi Tamura

    2009-04-01

    Full Text Available Chitosan with a molecular weight (MW of 104 Da and 13% degree of acetylation (DA was extracted from the mycelia of the fungus Gongronella butleri USDB 0201 grown in solid substrate fermentation and used to prepare scaffolds by the freeze-drying method. The mechanical and biological properties of the fungal chitosan scaffolds were evaluated and compared with those of scaffolds prepared using chitosans obtained from shrimp and crab shells and squid bone plates (MW 105-106 Da and DA 10-20%. Under scanning electron microscopy, it was observed that all scaffolds had average pore sizes of approximately 60-90 mm in diameter. Elongated pores were observed in shrimp chitosan scaffolds and polygonal pores were found in crab, squid and fungal chitosan scaffolds. The physico-chemical properties of the chitosans had an effect on the formation of pores in the scaffolds, that consequently influenced the mechanical and biological properties of the scaffolds. Fungal chitosan scaffolds showed excellent mechanical, water absorption and lysozyme degradation properties, whereas shrimp chitosan scaffolds (MW 106Da and DA 12% exhibited the lowest water absorption properties and lysozyme degradation rate. In the evaluation of biocompatibility of chitosan scaffolds, the ability of fibroblast NIH/3T3 cells to attach on all chitosan scaffolds was similar, but the proliferation of cells with polygonal morphology was faster on crab, squid and fungal chitosan scaffolds than on shrimp chitosan scaffolds. Therefore fungal chitosan scaffold, which has excellent mechanical and biological properties, is the most suitable scaffold to use as a template for tissue regeneration.

  4. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.

    Science.gov (United States)

    McMurtrey, Richard J

    2014-12-01

    Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA constructs, which was a 65% relative

  5. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds

    Science.gov (United States)

    Liu, Xin; Rahaman, Mohamed N.; Liu, Yongxing; Bal, B. Sonny; Bonewald, Lynda F.

    2013-01-01

    The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity = 50%; filament width = 330 μm; pore width = 300 μm) to regenerate bone in a rat calvarial defect model. Six weeks postimplantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3, and 6 days, to convert a surface layer to hydroxyapatite prior to implantation, enhanced new bone formation to 46%, 57%, and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3, and 6 days and loaded with bone morphogenetic protein-2 (BMP-2) (1 μg/defect) was 65%, 61%, and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair. PMID:23567939

  6. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    Science.gov (United States)

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g-1 at 2 A g-1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g-1 at 1 A g-1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  7. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro.

    Science.gov (United States)

    Meng, Jie; Song, Li; Meng, Jie; Kong, Hua; Zhu, Guangjin; Wang, Chaoying; Xu, Lianghua; Xie, Sishen; Xu, Haiyan

    2006-11-01

    Carbon nanotubes have attracted intensive interests in biomedical research in recent years. In this study, a novel type of carbon nanotubes material so called nonwoven single-walled carbon nanotubes (SWNTs) with nanotopographic structure and macroscopic volume was used as cell growing scaffold. The morphology and surface chemistry of nonwoven SWNTs were observed and characterized through scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The cells were cultivated in nonwoven SWNTs and in other types of substrate as control. The cells growth behaviors including adhesion, proliferation, and cytoskeletal development was investigated by using cell viability assay and confocal observation. The experimental results indicated that nonwoven SWNTs exhibited significant enhancement to the cells adhesion and proliferation in at least 3 weeks. Numerous and highly organized cytoskeletal structures were observed when the cells were cultured in nonwoven SWNTs. Furthermore, an obvious promotional influence of the cells cultivated in nonwoven SWNTs scaffold upon the proliferation of those growing in the other kind of substrate through cell-cell communication had been found. The results obtained in this work are of significance to in vitro cell amplification in large scale, tissue regeneration, or guided repair, as well as biomedical device application.

  8. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration.

    Science.gov (United States)

    Costa, Pedro F; Puga, Ana M; Díaz-Gomez, Luis; Concheiro, Angel; Busch, Dirk H; Alvarez-Lorenzo, Carmen

    2015-12-30

    The adoption of additive manufacturing in tissue engineering and regenerative medicine (TERM) strategies greatly relies on the development of novel 3D printable materials with advanced properties. In this work we have developed a material for bone TERM applications with tunable bioerosion rate and dexamethasone release profile which can be further employed in fused deposition modelling (the most common and accessible 3D printing technology in the market). The developed material consisted of a blend of poly-ϵ-caprolactone (PCL) and poloxamine (Tetronic®) and was processed into a ready-to-use filament form by means of a simplified melt-based methodology, therefore eliminating the utilization of solvents. 3D scaffolds composed of various blend formulations were additively manufactured and analyzed revealing blend ratio-specific degradation rates and dexamethasone release profiles. Furthermore, in vitro culture studies revealed a similar blend ratio-specific trend concerning the osteoinductive activity of the fabricated scaffolds when these were seeded and cultured with human mesenchymal stem cells. The developed material enables to specifically address different regenerative requirements found in various tissue defects. The versatility of such strategy is further increased by the ability of additive manufacturing to accurately fabricate implants matching any given defect geometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    Science.gov (United States)

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    weeks. Taken together, these findings illustrate the advantages of incorporating collagen as a means to enhance cell migration and proliferation in porous scaffolds which could be used to augment tissue repair strategies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration.

    NARCIS (Netherlands)

    Heijkants, R.G.J.C.; Calck, R.V. van; Groot, J.H. de; Pennings, A.J.; Schouten, A.J.; Tienen, T.G. van; Ramrattan, N.N.; Buma, P.; Veth, R.P.H.

    2004-01-01

    Longitudinal lesions in menisci are among the most frequent orthopedic problems of the knee. Repair by simple techniques is only limited to the vascular part of the meniscus. For repair of the avascular part of the meniscus a scaffold, which will assist the body in the formation of new meniscus cell

  11. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration

    NARCIS (Netherlands)

    Heijkants, R.G.J.C.; Calck, R.V. van; Groot, J.H. de; Pennings, A.J.; Schouten, A.J.

    Longitudinal lesions in menisci are among the most frequent orthopedic problems of the knee. Repair by simple techniques is only limited to the vascular part of the meniscus. For repair of the avascular part of the meniscus a scaffold, which will assist the body in the formation of new meniscus cell

  12. Using Video Cases to Scaffold Mentoring Competencies: A Program Design from the Young Women Leaders Program

    Science.gov (United States)

    Lewis, Bryan Rossiter

    2013-01-01

    This capstone project conducted an intervention using video cases to scaffold traditional methods of concept presentation in a youth mentoring program. Video cases delivered online were chosen as a methodology to strengthen the support and practitioner aspects indicative of mentoring program success rates (D. L. DuBois, Holloway, Valentine, &…

  13. Scaffolding Learning for Practitioner-Scholars: The Philosophy and Design of a Qualitative Research Methods Course

    Science.gov (United States)

    Slayton, Julie; Samkian, Artineh

    2017-01-01

    We present our approach to a qualitative research methods course to prepare practitioner-scholars for their dissertation and independent research. We explain how an instructor's guide provides consistency and rigor, and in-class activities to scaffold learning, and helps faculty connect the content to students' out-of-school lives. We explain how…

  14. A Design Case of Scaffolding Hybrid/Online Student-Centered Learning with Multimedia

    Science.gov (United States)

    Hsiao, E-Ling; Mikolaj, Peter; Shih, Ya-Ting

    2017-01-01

    Implementing student-centered learning in hybrid/online settings is very challenging due to the physical separation of instructor and students. This article discusses the need for instructors to provide scaffolds and multimedia modules to facilitate knowledge construction in the student-centered learning process. To offer students solid learning…

  15. Pore structure and dielectric behaviour of the 3D collagen-DAC scaffolds designed for nerve tissue repair.

    Science.gov (United States)

    Pietrucha, Krystyna; Marzec, Ewa; Kudzin, Marcin

    2016-11-01

    The design and selection of a suitable scaffold with well-defined pores size distribution and dielectric properties are critical features for neural tissue engineering. In this study we use mercury porosimetry and the dielectric spectroscopy in the alpha-dispersion region of the electric field to determine the microarchitecture and activation energy of collagen (Col) modified by 2,3 dialdehyde cellulose (DAC). The scaffold was synthesized in three steps: (i) preparation of DAC by oxidation of cellulose, (ii) construction of a 3D Col sponge-shape or film, (iii) cross-linkage of the Col samples using DAC. The activation energy needed to break the bonds formed by water in the Col-DAC composite is approximately 2 times lower than that in the unmodified Col. In addition, the magnitude of conductivity for modified Col at 70°C is approximately 40% lower than that recorded for the unmodified Col. The largest fraction, of which at least 70% of the total pore volume comprises the sponge, is occupied by pores ranging from 20 to 100μm in size. The knowledge on the dielectric behaviour and microstructure of the Col-DAC scaffold may prove relevant to neural tissue engineering focused on the regeneration of the nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

    Directory of Open Access Journals (Sweden)

    Marco A. Velasco

    2016-10-01

    Full Text Available Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

  17. Developing Chemistry Teacher’s Ability to Design Inquiry-based Lab through Scaffolding type of Teacher Training Program

    Science.gov (United States)

    Gumilar, A. G.; Sunarya, Y.; Arifin, M.

    2017-02-01

    This study aims to develop chemistry teacher’s ability in designing inquiry-based lab. Preliminary study showed that the chemistry teacher ability to design inquiry-based lab need to be developed. Teacher’s training program with scaffolding strategy was selected to improve that ability. Twenty four chemistry teachers, who were involved in the Chemistry Teacher Council(CTC, also called MGMP Kimia) in Sumedang, and 60 students of class XI from two different schools were participated in this study. The instruments used were the test of designing inquiry-based lab, rubric to evaluate student worksheet (LKS) and rating scale questionnaire. The results showed that the ability to design inquiry-based lab increased with N-gain average was 0.8 or at the high category. The ability to assess the phenomenon of contextual and making steering questions had a highest mean N-gain is 0.9 at high category. Teachersgave positive responses about the training program generally, indicated by percentage of teacher’s response in strong and very strong criteria. Although teacher training with scaffolding strategy was newly applied in CTC, it helped developing teacher’s ability in designing inquiry-based lab and gave confidence to teachers to implement in their classroom.

  18. Custom-Made Computer-Aided-Design/Computer-Aided-Manufacturing Biphasic Calcium-Phosphate Scaffold for Augmentation of an Atrophic Mandibular Anterior Ridge

    Directory of Open Access Journals (Sweden)

    Francesco Guido Mangano

    2015-01-01

    Full Text Available This report documents the clinical, radiographic, and histologic outcome of a custom-made computer-aided-design/computer-aided-manufactured (CAD/CAM scaffold used for the alveolar ridge augmentation of a severely atrophic anterior mandible. Computed tomographic (CT images of an atrophic anterior mandible were acquired and modified into a 3-dimensional (3D reconstruction model; this was transferred to a CAD program, where a custom-made scaffold was designed. CAM software generated a set of tool-paths for the manufacture of the scaffold on a computer-numerical-control milling machine into the exact shape of the 3D design. A custom-made scaffold was milled from a synthetic micromacroporous biphasic calcium phosphate (BCP block. The scaffold closely matched the shape of the defect: this helped to reduce the time for the surgery and contributed to good healing. One year later, newly formed and well-integrated bone was clinically available, and two implants (AnyRidge, MegaGen, Gyeongbuk, South Korea were placed. The histologic samples retrieved from the implant sites revealed compact mature bone undergoing remodelling, marrow spaces, and newly formed trabecular bone surrounded by residual BCP particles. This study demonstrates that custom-made scaffolds can be fabricated by combining CT scans and CAD/CAM techniques. Further studies on a larger sample of patients are needed to confirm these results.

  19. Design-Oriented Enhanced Robotics Curriculum

    Science.gov (United States)

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  20. Design and synthesis of polyphosphazenes: Hard tissue scaffolding biomaterials and physically crosslinked elastomers

    Science.gov (United States)

    Modzelewski, Tomasz

    The work in this thesis is divided into two main parts. The first part examines the synthesis and characterization of polyphosphazenes as potential scaffolding materials usable for hard tissue repair. The goal of this work was to design polymers containing acidic functional groups in an attempt to encourage the deposition of calcium hydroxyapatite when the polymer is exposed to simulated body fluids. The second part examines the development of a new polymeric architecture which generates elastomeric properties without the use of traditional covalent or physical crosslinks. The goal was to examine the effects of this new architecture on the physical and mechanical properties of the final polymers. Chapter 1 provides a general background for the two main focus areas mentioned above. More specifically: a brief explanation is provided of the necessary physical and chemical properties of a suitable hard tissue engineering scaffolding substrate, and the basis of those requirements; together with an examination of the traditional ways in which elastomeric properties are introduced into a polymeric sample. Chapter 2 details the design and synthesis of polyphosphazenes bearing phosphonic acid and phosphoester side groups using two different routes. The first route utilized a linker unit which was functionalized with phosphoesters prior to its attachment to the polyphosphazene backbone, while the second route involved attachment of the same linking group to the polyphosphazene backbone before the introduction of the phosphoester moieties. In both cases, the samples were treated with iodotrimethylsilane to cleave the ester bonds and afford the parent phosphonic acid. Both routes proved successful. However, varying difficulties were encountered for each route. In Chapter 3 we examine the ability of the phosphonic acid functionalized polyphosphazenes described in Chapter 2 to mineralize calcium hydroxyapatite when exposed to simulated body fluid, which has the same ion

  1. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions.

    Science.gov (United States)

    de Picciotto, Seymour; Dickson, Paige M; Traxlmayr, Michael W; Marques, Bryan S; Socher, Elke; Zhao, Sixing; Cheung, Stephanie; Kiefer, Jonathan D; Wand, A Joshua; Griffith, Linda G; Imperiali, Barbara; Wittrup, K Dane

    2016-10-09

    Quantifying protein location and concentration is critical for understanding function in situ. Scaffold conjugated to environment-sensitive fluorophore (SuCESsFul) biosensors, in which a reporting fluorophore is conjugated to a binding scaffold, can, in principle, detect analytes of interest with high temporal and spatial resolution. However, their adoption has been limited due to the extensive empirical screening required for their development. We sought to establish design principles for this class of biosensor by characterizing over 400 biosensors based on various protein analytes, binding proteins, and fluorophores. We found that the brightest readouts are attained when a specific binding pocket for the fluorophore is present on the analyte. Also, interaction of the fluorophore with the binding protein it is conjugated to can raise background fluorescence, considerably limiting sensor dynamic range. Exploiting these two concepts, we designed biosensors that attain a 100-fold increase in fluorescence upon binding to analyte, an order of magnitude improvement over the previously best-reported SuCESsFul biosensor. These design principles should facilitate the development of improved SuCESsFul biosensors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  4. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.

    Science.gov (United States)

    Ahlfeld, Tilman; Akkineni, Ashwini Rahul; Förster, Yvonne; Köhler, Tino; Knaack, Sven; Gelinsky, Michael; Lode, Anja

    2017-01-01

    Additive manufacturing enables the fabrication of scaffolds with defined architecture. Versatile printing technologies such as extrusion-based 3D plotting allow in addition the incorporation of biological components increasing the capability to restore functional tissues. We have recently described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of an oil-based CPC paste under mild conditions. In the present study, we have developed a strategy for growth factor loading based on multichannel plotting: a biphasic scaffold design was realised combining CPC with VEGF-laden, highly concentrated hydrogel strands. As hydrogel component, alginate and an alginate-gellan gum blend were evaluated; the blend exhibited a more favourable VEGF release profile and was chosen for biphasic scaffold fabrication. After plotting, two-step post-processing was performed for both, hydrogel crosslinking and CPC setting, which was shown to be compatible with both materials. Finally, a scaffold was designed and fabricated which can be applied for testing in a rat critical size femur defect. Optimization of CPC plotting enabled the fabrication of highly resolved structures with strand diameters of only 200 µm. Micro-computed tomography revealed a precise strand arrangement and an interconnected pore space within the biphasic scaffold even in swollen state of the hydrogel strands.

  5. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.

    Science.gov (United States)

    Song, Kedong; Li, Liying; Li, Wenfang; Zhu, Yanxia; Jiao, Zeren; Lim, Mayasari; Fang, Meiyun; Shi, Fangxin; Wang, Ling; Liu, Tianqing

    2015-10-01

    Cartilage transplantation using in vitro tissue engineered cartilage is considered a promising treatment for articular cartilage defects. In this study, we assessed the advantages of adipose derived stem cells (ADSCs) combined with chitosan/gelatin hybrid hydrogel scaffolds, which acted as a cartilage biomimetic scaffold, to fabricate a tissue engineered cartilage dynamically in vitro and compared this with traditional static culture. Physical properties of the hydrogel scaffolds were evaluated and ADSCs were inoculated into the hydrogel at a density of 1×10(7) cells/mL and cultured in a spinner flask with a special designed steel framework and feed with chondrogenic inductive media for two weeks. The results showed that the average pore size, porosity, swelling rate and elasticity modulus of hybrid scaffolds with good biocompatibility were 118.25±19.51 μm, 82.60±2.34%, 361.28±0.47% and 61.2±0.16 kPa, respectively. ADSCs grew well in chitosan/gelatin hybrid scaffold and successfully differentiated into chondrocytes, showing that the scaffolds were suitable for tissue engineering applications in cartilage regeneration. Induced cells cultivated in a dynamic spinner flask with a special designed steel frame expressed more proteoglycans and the cell distribution was much more uniform with the scaffold being filled mostly with extracellular matrix produced by cells. A spinner flask with framework promoted proliferation and chondrogenic differentiation of ADSCs within chitosan/gelatin hybrid scaffolds and accelerated dynamic fabrication of cell-hydrogel constructs, which could be a selective and good method to construct tissue engineered cartilage in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Scaffolding the design of accessible eLearning content: a user-centered approach and cognitive perspective.

    Science.gov (United States)

    Catarci, Tiziana; De Giovanni, Loredana; Gabrielli, Silvia; Kimani, Stephen; Mirabella, Valeria

    2008-08-01

    There exist various guidelines for facilitating the design, preparation, and deployment of accessible eLearning applications and contents. However, such guidelines prevalently address accessibility in a rather technical sense, without giving sufficient consideration to the cognitive aspects and issues related to the use of eLearning materials by learners with disabilities. In this paper we describe how a user-centered design process was applied to develop a method and set of guidelines for didactical experts to scaffold their creation of accessible eLearning content, based on a more sound approach to accessibility. The paper also discusses possible design solutions for tools supporting eLearning content authors in the adoption and application of the proposed approach.

  7. Enhancing quality of life through Universal Design.

    Science.gov (United States)

    Joines, Sharon

    2009-01-01

    To inform clinicians, caregivers and researchers involved with assessing and treating individuals with neurological disabilities of the benefits of universal design in enhancing quality of life. The improvement of quality of life has the potential to benefit the individuals with neurological disabilities and those whose lives overlap and intersect with those individuals. Literature and design reviews are used as a foundation for a model for incorporating and leveraging universal design to the benefit of the patient's social sphere, which includes caregivers, family members and medical staff. By matching patients varied abilities with universal design solutions, the model of universal design benefitting the patients' social sphere will be demonstrated. Recommendations are made for clinicians and researchers that they may use in their practices and investigations in three areas: 1) educating patients about the benefits of universal design, 2) helping inform patients how to leverage universally designed products and approaches in their lives and living spaces and 3) understanding how to incorporate universal design principles into research and clinical spaces as demonstration pieces for patients.

  8. Bike Infrastructures and Design Qualities: Enhancing Cycling

    DEFF Research Database (Denmark)

    Silva, Victor; Jensen, Ole B.; Harder, Henrik

    2011-01-01

    Decisions on transportation projects are typically – alongside the project costs – based on the potential for the project to contribute to broad public policy goals. Information on how specific design qualities enhance cycling will help decision makers to develop better and more cost-effective bike...... infrastructures. This article aims to present findings of the research project titled Bikeability – funded by the Danish Research Council. The overall purpose of the Bikeability project is to investigate and document relations between cycling motivation from different socio- demographic groups and distinct design...

  9. Bike Infrastructures and Design Qualities: Enhancing Cycling

    OpenAIRE

    Silva, Victor; Jensen, Ole B.; Harder, Henrik; Madsen, Jens Chr. Overgaard

    2011-01-01

    Decisions on transportation projects are typically – alongside the project costs – based on the potential for the project to contribute to broad public policy goals. Information on how specific design qualities enhance cycling will help decision makers to develop better and more cost-effective bike infrastructures. This article aims to present findings of the research project titled Bikeability – funded by the Danish Research Council. The overall purpose of the Bikeability project is to inves...

  10. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    into a functionally coordinate unit. A genetic scaffolding accounts for the inherited invariance of pattern formation during the embryo’s growth. At higher level, cells behave as agents endowed with the capacity to interpret any scaffolding variation as signs. The full hierarchy of a multi-level scaffolding...

  11. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction.

    Science.gov (United States)

    Cao, Lingyan; Yu, Yuanman; Wang, Jing; Werkmeister, Jerome A; McLean, Keith M; Liu, Changsheng

    2017-05-01

    The aim of this study was to develop a 2-N, 6-O-sulfated chitosan (26SCS) modified electrospun fibrous PCL scaffold for bone morphogenetic protein-2 (BMP-2) delivery to improve osteoinduction. The PCL scaffold was modified by an aminolysis reaction using ethylenediamine (ED) and 26SCS was immobilized via electrostatic interactions (PCL-N-S). Scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vitro BMP-2 adsorption and release kinetics indicated that modified PCL-N-S scaffolds showed higher levels of binding of BMP-2 (about 30-100 times), moderative burst release (about one third), and prolonged releasing time compared to the unmodified PCL scaffold. The bioactivity of released BMP-2 determined by alkaline phosphatase (ALP) activity assay was maintained and improved 8-12 times with increasing concentration of immobilized 26SCS on the scaffolds. In vitro studies demonstrated that bone marrow mesenchymal stem cells (BMSCs) attached more readily to the PCL-N-S scaffolds with increased spreading. In conclusion, 26SCS modified PCL scaffolds can be a potent system for the sustained and bioactive delivery of BMP-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaffolds to Enhance the Osteoinductivity in Bone Tissue Engineering

    Science.gov (United States)

    Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong

    2017-10-01

    There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.

  13. Adenine: an important drug scaffold for the design of antiviral agents.

    Science.gov (United States)

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-09-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template.

  14. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    Science.gov (United States)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  15. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Laboratory of Energy Storage & Supply - ES& S, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12.244-000, Sao Paulo (Brazil); Rodrigues, Bruno Vinícius Manzolli [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Ribeiro Neto, Wilson Alves; Bretas, Rosario Elida Suman [Department of Materials Engineering, Federal University of Sao Carlos, Rodovia Washington Luis, km 235 – SP-310, Sao Carlos, Sao Paulo (Brazil); Da-Silva, Newton Soares [Laboratory of Cell Biology and Tissue, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12244-000, Sao Paulo (Brazil); Marciano, Fernanda Roberta [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Oliveira Lobo, Anderson, E-mail: aolobo@pq.cnpq.br [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil)

    2016-07-01

    We have prepared a novel 3D porous biomaterial combining poly (DL-lactic acid) (PDLLA) and graphene and multi-walled carbon nanotubes oxides (MWCNTO-GO) composite. PDLLA as control and a high loading of PDLLA/MWCNTO-GO (50/50 w/w) bioscaffolds were prepared and functionalized. MWCNTs were exfoliated to form MWCNTO-GO by oxygen plasma etching. The later was also applied to enhance the scaffolds wettability, attaching oxygen-containing groups on their surfaces. This approach produced a porous architecture observed by scanning electron microscopy and semi-quantified by electrochemical analysis. The later also indicated a notable increase on the conductivity of PDLLA/MWCNTO-GO scaffold compared to MWCNTO-GO free PDLLA (about 5 orders of magnitudes at low frequencies). Thermogravimetric analysis showed that the MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. The PDLLA/MWCNTO-GO scaffolds had significant cellular adhesion, did not present cytotoxicity effect, besides reduced bactericidal proliferation and produced mineralized tissues in SBF media. The metallic MWCNTO-GO powder held together by PDLLA polymer opens a whole new branch of applications, including bioelectroanalyses, drug delivery systems and tissue engineering. - Highlights: • We produced a novel 3D porous material from PDLLA, graphene oxide and MWCNT oxide. • MWCNTO-GO loading (50/50 w/w) increased notably the conductivity of PDLLA scaffold. • MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. • PDLLA/MWCNTO-GO scaffolds did not present cytotoxicity effect. • PDLLA/MWCNTO-GO scaffolds presented bioactivity properties.

  16. Engineered bone scaffolds with Dielectrophoresis-based patterning using 3D printing.

    Science.gov (United States)

    Huan, Zhijie; Chu, Henry K; Liu, Hongbo; Yang, Jie; Sun, Dong

    2017-11-13

    Patterning of cells into a specific pattern is an important procedure in tissue engineering to facilitate tissue culture and ingrowth. In this paper, a new type of 3D-printed scaffold utilizing dielectrophoresis (DEP) for active cell seeding and patterning was proposed. This scaffold adopted a concentric-ring design that is similar to native bone tissues. The scaffold was fabricated with a commercial three-dimensional (3D) printer. Polylactic Acid (PLA) was selected as the material for the printer and the fabricated scaffold was coated with gold to enhance the conductivity for DEP manipulation. Simulation from COMSOL confirmed that non-uniform electric fields were successfully generated under a voltage input. The properties of the scaffold were first characterized through a series of experiments. Then, preosteoblast MC3T3-E1 cells were seeded onto the coated scaffold and multiple cellular rings were observed under the microscope. The biocompatibility of the material was also examined and mineralized bone nodules were detected using Alizarin Red S Staining after 28 days of culture. The proposed scaffold design can enable formation of multiple ring patterns via DEP and the properties of the scaffold are suitable for bone tissue culture. This new type of 3D-printed scaffold with cell seeding mechanism offers a new and rapid approach for fabricating engineered scaffolds that can arrange cells into different patterns for various tissue engineering applications.

  17. Grand Challenge Problem 3: Empowering Science Teachers Using Technology-Enhanced Scaffolding to Improve Inquiry Learning

    NARCIS (Netherlands)

    Pedaste, Margus; Lazonder, Adrianus W.; Raes, Annelies; Wajeman, Claire; Moore, Emily; Girault, Isabelle; Eberle, Julia; Lund, Kristine; Tchounikine, Pierre; Fischer, Frank

    2016-01-01

    Inquiry learning in technology-enhanced learning (TEL) environments has potential to support science learning. The “symbiosis” between teachers and TEL environments is needed and, therefore, virtual assistants should be “taught” based on pedagogical theories. These assistants should be dynamically

  18. Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid–Gelatin Composite Scaffold

    Directory of Open Access Journals (Sweden)

    Christian G. Pfeifer

    2016-05-01

    Full Text Available Mesenchymal stem cells (MSCs seeded on specific carrier materials are a promising source for the repair of traumatic cartilage injuries. The best supportive carrier material has not yet been determined. As natural components of cartilage’s extracellular matrix, hyaluronic acid and collagen are the focus of biomaterial research. In order to optimize chondrogenic support, we investigated three different scaffold compositions of a hyaluronic acid (HA-gelatin based biomaterial. Methods: Human MSCs (hMSCs were seeded under vacuum on composite scaffolds of three different HA-gelatin ratios and cultured in chondrogenic medium for 21 days. Cell-scaffold constructs were assessed at different time points for cell viability, gene expression patterns, production of cartilage-specific extracellular matrix (ECM and for (immuno-histological appearance. The intrinsic transforming growth factor beta (TGF-beta uptake of empty scaffolds was evaluated by determination of the TGF-beta concentrations in the medium over time. Results: No significant differences were found for cell seeding densities and cell viability. hMSCs seeded on scaffolds with higher ratios of HA showed better cartilage-like differentiation in all evaluated parameters. TGF-beta uptake did not differ between empty scaffolds. Conclusion: Higher ratios of HA support the chondrogenic differentiation of hMSCs seeded on a HA-gelatin composite scaffold.

  19. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Ding, Bin [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600 (China)

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  20. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Li, Liying; Li, Wenfang [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Yanxia [Anti-Ageing and Regenerative Medicine Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060 Guangdong (China); Jiao, Zeren [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Lim, Mayasari [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Fang, Meiyun [Department of Hematology, First Affiliated Hospital, Dalian Medical University, Dalian 116011 (China); Shi, Fangxin [Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Wang, Ling, E-mail: whwl@hotmail.com [Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian 116011 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Cartilage transplantation using in vitro tissue engineered cartilage is considered a promising treatment for articular cartilage defects. In this study, we assessed the advantages of adipose derived stem cells (ADSCs) combined with chitosan/gelatin hybrid hydrogel scaffolds, which acted as a cartilage biomimetic scaffold, to fabricate a tissue engineered cartilage dynamically in vitro and compared this with traditional static culture. Physical properties of the hydrogel scaffolds were evaluated and ADSCs were inoculated into the hydrogel at a density of 1 × 10{sup 7} cells/mL and cultured in a spinner flask with a special designed steel framework and feed with chondrogenic inductive media for two weeks. The results showed that the average pore size, porosity, swelling rate and elasticity modulus of hybrid scaffolds with good biocompatibility were 118.25 ± 19.51 μm, 82.60 ± 2.34%, 361.28 ± 0.47% and 61.2 ± 0.16 kPa, respectively. ADSCs grew well in chitosan/gelatin hybrid scaffold and successfully differentiated into chondrocytes, showing that the scaffolds were suitable for tissue engineering applications in cartilage regeneration. Induced cells cultivated in a dynamic spinner flask with a special designed steel frame expressed more proteoglycans and the cell distribution was much more uniform with the scaffold being filled mostly with extracellular matrix produced by cells. A spinner flask with framework promoted proliferation and chondrogenic differentiation of ADSCs within chitosan/gelatin hybrid scaffolds and accelerated dynamic fabrication of cell–hydrogel constructs, which could be a selective and good method to construct tissue engineered cartilage in vitro. - Highlights: • ADSCs/hybrid scaffold constructs are dynamically fabricated in a spinner flask with a special framework. • Inside convection in spinner flask made enough supplement of oxygen and nutrients far beyond the depth of passive diffusion. • 3D culture environment accelerated mass

  1. Scaffolds for central nervous system tissue engineering

    Science.gov (United States)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  2. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    Directory of Open Access Journals (Sweden)

    Fransisca A. S. van Esterik

    2016-01-01

    Full Text Available For bone tissue engineering synthetic biphasic calcium phosphate (BCP with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP ratio of 60/40 (BCP60/40 is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80 is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%. After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites.

  3. Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for Schwann cell migration

    Directory of Open Access Journals (Sweden)

    Koichiro Uto, Takanari Muroya, Michio Okamoto, Hiroyuki Tanaka, Tsuyoshi Murase, Mitsuhiro Ebara and Takao Aoyagi

    2012-01-01

    Full Text Available We newly designed super-elastic biodegradable scaffolds with longitudinally oriented microchannels for repair and regeneration of peripheral nerve defects. Four-armed poly(ε-caprolactone-co-D,L-lactides (P(CL-co-DLLAs were synthesized by ring-opening copolymerization of CL and DLLA from terminal hydroxyl groups of pentaerythritol, and acryloyl chloride was then reacted with the ends of the chains. The end-functionalized P(CL-co-DLLA was crosslinked in a cylindrical mold in the presence of longitudinally oriented silica fibers as the templates, which were later dissolved by hydrofluoric acid. The elastic moduli of the crosslinked P(CL-co-DLLAs were controlled between 10−1 and 102 MPa at 37 °C, depending on the composition. The scaffolds could be elongated to 700% of their original size without fracture or damage ('super-elasticity'. Scanning electron microscopy images revealed that well-defined and highly aligned multiple channels consistent with the mold design were produced in the scaffolds. Owing to their elastic nature, the microchannels in the scaffolds did not collapse when they were bent to 90°. To evaluate the effect of the channel diameter on Schwann cell migration, microchannels were also fabricated in transparent poly(dimethylsiloxane, allowing observation of cell migration. The migration speed increased with channel size, but the Young's modulus of the scaffold decreased as the channel diameter increased. These findings may serve as the basis for designing tissue-engineering scaffolds for nerve regeneration and investigating the effects of the geometrical and dimensional properties on axonal outgrowth.

  4. Co-Seeding Human Endothelial Cells with Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on Calcium Phosphate Scaffold Enhances Osteogenesis and Vascularization in Rats.

    Science.gov (United States)

    Liu, Xian; Chen, Wenchuan; Zhang, Chi; Thein-Han, Wahwah; Hu, Kevin; Reynolds, Mark A; Bao, Chongyun; Wang, Ping; Zhao, Liang; Xu, Hockin H K

    2017-06-01

    A major challenge in repairing large bone defects with tissue-engineered constructs is the poor vascularization in the defect. The lack of vascular networks leads to insufficient oxygen and nutrients supply, which compromises the survival of seeded cells. To achieve favorable regenerative effects, prevascularization of tissue-engineered constructs by co-culturing of endothelial cells and bone cells is a promising strategy. The aim of this study was to investigate the effects of human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) co-cultured with human umbilical vein endothelial cells (HUVECs) for prevascularization of calcium phosphate cement (CPC) scaffold on bone regeneration in vivo for the first time. HUVECs co-cultured with hiPSC-MSCs formed microcapillary-like structures in vitro. HUVECs promoted mineralization of hiPSC-MSCs on CPC scaffolds. Four groups were tested in a cranial bone defect model in nude rats: (1) CPC scaffold alone (CPC control); (2) HUVEC-seeded CPC (CPC-HUVEC); (3) hiPSC-MSC-seeded CPC (CPC-hiPSC-MSC); and (4) HUVECs co-cultured with hiPSC-MSCs on CPC scaffolds (co-culture group). After 12 weeks, the co-culture group achieved the greatest new bone area percentage of 46.38% ± 3.8% among all groups (p < 0.05), which was more than four folds of the 10.61% ± 1.43% of CPC control. In conclusion, HUVECs co-cultured with hiPSC-MSCs substantially promoted bone regeneration. The novel construct of HUVECs co-cultured with hiPSC-MSCs delivered via CPC scaffolds is promising to enhance bone and vascular regeneration in orthopedic applications.

  5. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research

    NARCIS (Netherlands)

    Wilson, C.E.; Wilson, C.E.; de Bruijn, Joost Dick; van Blitterswijk, Clemens; Verbout, A.J.; Dhert, W.J.A.

    2004-01-01

    This investigation describes the production and characterization of calcium phosphate scaffolds with defined and reproducible porous macro-architectures and their preliminary in vitro and in vivo bone-tissue-engineered response. Fugitive wax molds were designed and produced using a rapid prototyping

  6. Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges.

    Science.gov (United States)

    Ma, Lie; Gao, Changyou; Mao, Zhengwei; Zhou, Jie; Shen, Jiacong

    2004-07-01

    Collagen porous scaffolds have been widely employed as a dermal equivalent to induce fibroblasts infiltration and dermal regeneration. To eliminate the disadvantageous drawback of the fast degradation speed, a cross-linking method was adopted by using a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC) and N-hydroxysuccinimide (NHS) in the presence of amino acids (glycin, glutamic acid or lysine), which function as cross-linking bridge between collagen molecular chains. In vitro assessment of the biological stability of the cross-linked collagen scaffolds found that the collagenase biodegradation degree was greatly decreased when lysine was added, resulting in a more biological stable scaffold. On the other hand, the biodegradation degree was accelerated compared with the purely cross-linked when glutamic acid was added, while less influenced by glycin addition. By comparing the biodegradation degree of the scaffolds added with amino acids and their model compounds, i.e. adipic acid and hexane diamine, the key factor influencing the biological stability was further investigated. The results indicated that the crucial factor is dependent on the ratio of amino groups to carboxyl groups in the cross-linking system. At optimal ratio the lowest biodegradation degree is achieved. Scanning electron microscopy measurements prove that the three-dimensional structure of the scaffolds was largely preserved. Preliminary in vitro culture of fibroblasts in the collagen scaffold cross-linked with EDAC/NHS in the presence of lysine has shown that the original good cytocompatibility of collagen was retained.

  7. Highly efficient release of simvastatin from simvastatin-loaded calcium sulphate scaffolds enhances segmental bone regeneration in rabbits

    Science.gov (United States)

    HUANG, XIN; HUANG, ZHONGMING; LI, WEIXU

    2014-01-01

    A number of clinical and experimental studies have investigated the effect of simvastatin on bone regeneration. In the present study, the release of simvastatin from simvastatin-loaded calcium sulphate (CS) scaffolds and the effect of these scaffolds on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) in vitro and the effect of simvastatin locally applied from CS scaffolds on bone regeneration were investigated. A total of 26 complete 1.2-cm bone defects were created in the ulna of rabbits, which were treated with CS, simvastatin-loaded CS or recombinant human bone morphogenetic protein 2 (rhBMP)-2-loaded CS. Simvastatin was highly efficiently released from simvastatin-loaded CS at the onset and stable release was maintained. Alkaline phosphatase was highly expressed in the MSCs co-cultured with simvastatin/CS scaffolds for 7 and 14 days. The defects treated with rhBMP-2-loaded CS and simvastatin-loaded CS showed significantly higher X-ray analysis scores and a larger amount of bone formation as determined by histology compared with the CS group (Psimvastatin-loaded CS (P>0.05). Simvastatin is capable of promoting osteogenic differentiation of MSCs in vitro and stimulating bone regeneration when locally released from CS scaffolds into bone defects. The beneficial effect of simvastatin was similar to that of rhBMP-2. In conclusion, the present study suggested that the simvastatin-loaded CS scaffolds may have great potential in bone tissue engineering. PMID:24691672

  8. Expansion of Bone Marrow Mesenchymal Stromal Cells in Perfused 3D Ceramic Scaffolds Enhances In Vivo Bone Formation.

    Science.gov (United States)

    Hoch, Allison I; Duhr, Ralph; Di Maggio, Nunzia; Mehrkens, Arne; Jakob, Marcel; Wendt, David

    2017-12-01

    Bone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs. 2D surface; 2) ceramic vs. polystyrene materials; and 3) BMSC niche established within the ceramic pores during in vitro culture, on subsequent in vivo bone formation. While BMSC expanded on 3D polystyrene scaffolds in the bioreactor could maintain their in vivo osteogenic potential, results were similar as BMSC expanded in monolayer on 2D polystyrene, suggesting little influence of the scaffold 3D environment. Bone formation was most reproducible when BMSC are expanded on 3D ceramic, highlighting the influence of the ceramic substrate. The presence of a pre-formed niche within the scaffold pores had negligible effects on the in vivo bone formation. The results of this study allow a greater understanding of the parameters required for perfusion bioreactor-based manufacturing of osteogenic grafts for clinical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fibrin scaffold enhances function of insulin producing cells differentiated from human umbilical cord matrix-derived stem cells.

    Science.gov (United States)

    Seyedi, Fatemeh; Farsinejad, Alireza; Nematollahi-Mahani, Seyed Noureddin

    2017-04-01

    Tissue engineering is a new strategy which proposed to treat numerous human diseases nowadays. Three dimensional (3D) scaffolds fill the gap between two dimensional cell culture (2D) and animal tissues through mimicking the environmental behaviors surrounding the cells. In this study, hUCMs into insulin producing cells in fibrin scaffold were differentiated compare to conventional culture condition. Differentiation rate was estimated by real time PCR, immunocytochemistry (ICC) and the chemiluminesence (CLIA) and enzyme immunoassay (EIA). Real time PCR's results showed an increasing expression in NKX2.2, PDX1 and INS (producing the hormone insulin) genes in fibrin scaffold. Furthermore ICC analysis exhibited that insulin and pro-insulin proteins were more in fibrin scaffolds. CLIA and EIA on insulin and C peptide secretion indicated that both of groups were sensitive to the glucose challenge test but significant higher response was observed in fibrin scaffold (6.5 fold in 3D, 1.8 fold in 2D culture). It could be concluded that differentiation of hUCM cells into insulin producing cells in fibrin scaffold 3D culture system is much more efficient than 2D conventional culture system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo.

    Science.gov (United States)

    Pan, Haitao; Zheng, Qixin; Guo, Xiaodong; Wu, Yongchao; Wu, Bin

    2016-06-01

    In this study, a polydopamine (pDA)-coated PLGA-[Asp-PEG]n scaffold was developed for sustained delivery of bone morphogenetic protein-2 (BMP-2)-derived peptide (designated as P24), and then used to address the hypothesis that P24 peptides delivered from the scaffolds could enhance bone induction in vitro and in vivo. We found pDA coating as compared with physical adsorption could more efficiently mediate the grafting of peptides onto polymer surfaces, and the release of P24 peptides from PLGA-[Asp-PEG]n-pDA-P24 was sustained for about 21 days, while a burst P24 release was observed in initial 4h and almost all peptides were released within 24h in physisorbed PLGA-[Asp-PEG]n-P24 group. In vitro, significantly greater ALP activity and mRNA expressions of osteo-specific markers of rat-derived mesenchymal stem cells (rMSCs) were observed in the sustained delivery system than those in physisorbed PLGA-[Asp-PEG]n-P24 and unmodified PLGA-[Asp-PEG]n groups. In vivo, ectopic bone formation studies showed that the sustained delivery system could induce bone formation to a much greater extent than physisorbed PLGA-[Asp-PEG]n-P24. Meanwhile, there were no evidences of bone formation in non-P24-loaded PLGA-[Asp-PEG]n. It is concluded that PLGA-[Asp-PEG]n-pDA-P24 biomaterial can delivery bioactive P24 peptides in a sustained manner, which can more efficiently promote osteogenic differentiation of rMSCs in vitro and induce ectopic bone formation in vivo, as compared with PLGA-[Asp-PEG]n-P24 delivering P24 in a burst manner. This pDA-coated PLGA-[Asp-PEG]n-pDA-P24 composite promises to be an excellent biomaterial for inducing bone regeneration. Moreover, pDA-mediated catechol functionalization can be an effective, simple technique for developing sustained delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.

    Science.gov (United States)

    Zhao, Feihu; Vaughan, Ted J; McNamara, Laoise M

    2016-06-01

    Recent studies have shown that mechanical stimulation, in the form of fluid perfusion and mechanical compression, can enhance osteogenic differentiation of mesenchymal stem cells and bone cells within tissue engineering scaffolds in vitro. The precise nature of mechanical stimulation within tissue engineering scaffolds is not only dictated by the exogenously applied loading regime, but also depends on the geometric features of the scaffold, in particular architecture, pore size and porosity. However, the precise contribution of each geometric feature towards the resulting mechanical stimulation within a scaffold is difficult to characterise due to the wide range of interacting parameters. In this study, we have applied a fluid-structure interaction model to investigate the role of scaffold geometry (architecture, pore size and porosity) on pore wall shear stress (WSS) under a range of different loading scenarios: fluid perfusion, mechanical compression and a combination of perfusion and compression. It is found that scaffold geometry (spherical and cubical pores), in particular the pore size, has a significant influence on the stimulation within scaffolds. Furthermore, we observed an amplified WSS within scaffolds under a combination of fluid perfusion and mechanical compression, which exceeded that caused by individual fluid perfusion or mechanical compression approximately threefold. By conducting this comprehensive parametric variation study, an expression was generated to allow the design and optimisation of 3D TE scaffolds and inform experimental loading regimes so that a desired level of mechanical stimulation, in terms of WSS is generated within the scaffold.

  12. A Curriculum and Software Design Scaffolding Goal Directed Teaching in Classrooms

    DEFF Research Database (Denmark)

    Misfeldt, Morten; Bundsgaard, Jeppe; Slot, Marie Falkesgaard

    transformed the national curriculum to a number of competencies which is further divided and detailed into pairs of knowledge and skills. Together with this curriculum reform there has been a government initiative to promote goal-oriented teaching, and a complementary need to scaffold the teachers own more...... or herself in writing, in talk, and in sound and image in near and well-known situations”). On the third level for each competence goal a number of pairs of skills and knowledge goals is expressed under a common headline (e.g. under the headline response: “The student can use templates in response” and “The...... and framing (OECD., 2010; Partnership for 21st Century Skills, 2009), and competence oriented teacher plans. Such framing enables a detailed comparison of competences with many-dimensional parameters (Chesler N.C. D’angelo C.M., Bagley E.A., Shaffer D.W., 2013). In the paper we presents a technology and our...

  13. Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolism

    Directory of Open Access Journals (Sweden)

    Devin G. Barrett

    2009-10-01

    Full Text Available Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, α-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.

  14. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  15. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Directory of Open Access Journals (Sweden)

    Román-Manso, B.

    2014-04-01

    Full Text Available Concentrated ceramic inks based on β-SiC powders, with different amounts of Y2O3 and Al2O3 as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densifi cation of the as-produced 3D structures, previously heat treated in air at 600 ºC for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS furnace. The effects of the amount of sintering additives (7 - 20 wt. % and the size of the SiC powders (50 nm and 0.5 μm on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized β-SiC powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink, involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics.Se han fabricado andamiajes de carburo de silicio (SiC usando la técnica de “Robocasting”, a partir de tintas cerámicas conteniendo β-SiC y distintas cantidades de Y2O3 and Al2O3, como aditivos de sinterización. La densificación de las estructuras tridimensionales, previamente calcinadas a 600 ºC para eliminar los aditivos orgánicos, se realizó en un horno de “Spark Plasma Sintering” (SPS. Se analizó el efecto de la cantidad de aditivos de sinterización (7-20 % en peso y del tamaño de partícula inicial del polvo de SiC (50 nm y 0.5 μm en el procesado de las tintas, en la microestructura, la dureza y el módulo elástico de las estructuras sinterizadas. El uso de polvo

  16. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  17. Toward a Framework on How Affordances and Motives Can Drive Different Uses of Scaffolds: Theory, Evidence, and Design Implications

    Science.gov (United States)

    Belland, Brian R.; Drake, Joel

    2013-01-01

    One way to help students engage in higher-order thinking is through scaffolding, which can be defined as support that allows students to participate meaningfully in and gain skill at a task that is beyond their unassisted abilities. Most research on computer-based scaffolds assesses the average impact of the tools on learning outcomes. This is…

  18. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  19. Designer Self-Assembling Peptide Nanofiber Scaffolds Containing Link Protein N-Terminal Peptide Induce Chondrogenesis of Rabbit Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Baichuan Wang

    2014-01-01

    Full Text Available Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS containing N-terminal peptide sequence of link protein (link N can promote nucleus pulposus cells (NPCs adhesion and three-dimensional (3D migration and stimulate biosynthesis of type II collagen and aggrecan by NPCs in vitro. The present study has extended these investigations to determine the effects of this functionalized LN-NS on bone marrow stem cells (BMSCs, a potential cell source for NP regeneration. Although the functionalized LN-NS cannot promote BMSCs proliferation, it significantly promotes BMSCs adhesion compared with that of the pure RADA16 hydrogel scaffold. Moreover, the functionalized LN-NS remarkably stimulates biosynthesis and deposition of type II collagen and aggrecan. These data demonstrate that the functionalized peptide nanofiber hydrogel scaffold containing link N peptide as a potential matrix substrate will be very useful in the NP tissue regeneration.

  20. Design of a hybrid biomaterial for tissue engineering: Biopolymer-scaffold integrated with an autologous hydrogel carrying mesenchymal stem-cells.

    Science.gov (United States)

    Weinstein-Oppenheimer, Caroline R; Brown, Donald I; Coloma, Rodrigo; Morales, Patricio; Reyna-Jeldes, Mauricio; Díaz, María J; Sánchez, Elizabeth; Acevedo, Cristian A

    2017-10-01

    Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method. The scaffold was a porous material which was designed evaluating both physical properties (glass transition, melting temperature and pore size) and biological properties (cell viability and fibronectin expression). Two types of chitosan (120 and 300kDa) were used to manufacture the scaffold, being the high molecular weight the most biologically active and stable after sterilization with gamma irradiation (25kGy). A clot hydrogel was formulated with autologous plasma and calcium chloride, using an approach based on design of experiments. The optimum hydrogel was used to incorporate cells onto the porous scaffold, forming a wound dressing biomaterial. The wound dressing device was firstly tested in-vitro using human cells, and then, its biosecurity was evaluated in-vivo using a rabbit model. The in-vitro results showed high cell viability after one week (99.5%), high mitotic index (19.8%) and high fibronectin expression. The in-vivo application to rabbits showed adequate biodegradability capacity (between 1 and 2weeks), and the histological evaluation confirmed absence of rejection signs and reepithelization on the wound zone. Finally, the wound dressing biomaterial was used in a single human case to implant autologous cells on a skin surgery. The medical examination indicated high biocompatibility, partial biodegradation at one week, early regeneration capacity at 4weeks and absence of rejection signs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Shape memory activation can affect cell seeding of shape memory polymer scaffolds designed for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Wang, Jing; Brasch, Megan E; Baker, Richard M; Tseng, Ling-Fang; Peña, Alexis N; Henderson, James H

    2017-08-31

    The ability of a three-dimensional scaffold to support cell seeding prior to implantation is a critical criterion for many scaffold-based tissue engineering and regenerative medicine strategies. Shape memory polymer functionality may present important new opportunities and challenges in cell seeding, but the extent to which shape memory activation can positively or negatively affect cell seeding has yet to be reported. The goal of this study was to determine whether shape memory activation can affect cell seeding. The hypothesis was that shape memory activation of porous scaffolds during cell seeding can affect both the number of cells seeded in a scaffold and the distribution (in terms of average infiltration distance) of cells following seeding. Here, we used a porous shape memory foam scaffold programmed to expand when triggered to study cell number and average cell infiltration distance following shape memory activation. We found that shape memory activation can affect both the number of cells and the average cell infiltration distance. The effect was found to be a function of rate of shape change and scaffold pore interconnectivity. Magnitude of shape change had no effect. Only reductions in cell number and infiltration distance (relative to control and benchmark) were observed. The findings suggest that strategies for tissue engineering and regenerative medicine that involve shape memory activation in the presence of a cell-containing medium in vitro or in vivo should consider how recovery rate and scaffold pore interconnectivity may ultimately impact cell seeding.

  2. Redesigning a Web-Conferencing Environment to Scaffold Computing Students' Creative Design Processes

    Science.gov (United States)

    Bower, Matt

    2011-01-01

    Based on a three-semester design research study, this paper argues the need to redesign online learning environments to better support the representation and sharing of factual, procedural, and conceptual knowledge in order for students to develop their design capabilities. A web-conferencing environment is redesigned so that the modalities…

  3. Scaffolding Students' Development of Creative Design Skills: A Curriculum Reference Model

    Science.gov (United States)

    Lee, Chien-Sing; Kolodner, Janet L.

    2011-01-01

    This paper provides a framework for promoting creative design capabilities in the context of achieving community goals pertaining to sustainable development among high school students. The framework can be used as a reference model to design formal or out-of-school curriculum units in any geographical region. This theme is chosen due to its…

  4. Wind Turbine Blade CAD Models Used as Scaffolding Technique to Teach Design Engineers

    Science.gov (United States)

    Irwin, John

    2013-01-01

    The Siemens PLM CAD software NX is commonly used for designing mechanical systems, and in complex systems such as the emerging area of wind power, the ability to have a model controlled by design parameters is a certain advantage. Formula driven expressions based on the amount of available wind in an area can drive the amount of effective surface…

  5. Using narrative-based design scaffolds within a mobile learning environment to support learning outdoors with young children

    Science.gov (United States)

    Seely, Brian J.

    This study aims to advance learning outdoors with mobile devices. As part of the ongoing Tree Investigators design-based research study, this research investigated a mobile application to support observation, identification, and explanation of the tree life cycle within an authentic, outdoor setting. Recognizing the scientific and conceptual complexity of this topic for young children, the design incorporated technological and design scaffolds within a narrative-based learning environment. In an effort to support learning, 14 participants (aged 5-9) were guided through the mobile app on tree life cycles by a comic-strip pedagogical agent, "Nutty the Squirrel", as they looked to explore and understand through guided observational practices and artifact creation tasks. In comparison to previous iterations of this DBR study, the overall patterns of talk found in this study were similar, with perceptual and conceptual talk being the first and second most frequently coded categories, respectively. However, this study coded considerably more instances of affective talk. This finding of the higher frequency of affective talk could possibly be explained by the relatively younger age of this iteration's participants, in conjunction with the introduced pedagogical agent, who elicited playfulness and delight from the children. The results also indicated a significant improvement when comparing the pretest results (mean score of .86) with the posttest results (mean score of 4.07, out of 5). Learners were not only able to recall the phases of a tree life cycle, but list them in the correct order. The comparison reports a significant increase, showing evidence of increased knowledge and appropriation of scientific vocabulary. The finding suggests the narrative was effective in structuring the complex material into a story for sense making. Future research with narratives should consider a design to promote learner agency through more interactions with the pedagogical agent and a

  6. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering.

    NARCIS (Netherlands)

    Becker, S.T.; Douglas, T.E.L.; Acil, Y.; Seitz, H.; Sivananthan, S.; Wiltfang, J.; Warnke, P.H.

    2010-01-01

    The aim of this study was to evaluate and compare the biocompatibility of computer-assisted designed (CAD) synthetic hydroxyapatite (HA) and tricalciumphosphate (TCP) blocks and natural bovine hydroxyapatite blocks for augmentations and endocultivation by supporting and promoting the proliferation

  7. Enhancing Deaf Students' Learning from Sign Language and Text: Metacognition, Modality, and the Effectiveness of Content Scaffolding

    Science.gov (United States)

    Borgna, Georgianna; Convertino, Carol; Marschark, Marc; Morrison, Carolyn; Rizzolo, Kathleen

    2011-01-01

    Four experiments, each building on the results of the previous ones, explored the effects of several manipulations on learning and the accuracy of metacognitive judgments among deaf and hard-of-hearing (DHH) students. Experiment 1 examined learning and metacognitive accuracy from classroom lectures with or without prior "scaffolding" in the form…

  8. Scaffolding Computer-Mediated Discussion to Enhance Moral Reasoning and Argumentation Quality in Pre-Service Teachers

    Science.gov (United States)

    Özçinar, Hüseyin

    2015-01-01

    This study investigated the effect of scaffolding computer-mediated discussions to improve moral reasoning and argumentation quality in pre-service teachers. Participants of this study were 76 teaching education students at a Turkish university. They were divided into three groups: (1) a computer-supported argumentation group; (2) a…

  9. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering--PART 1: design of experiments.

    Science.gov (United States)

    Seyedmahmoud, Rasoul; Rainer, Alberto; Mozetic, Pamela; Maria Giannitelli, Sara; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2015-01-01

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-L-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young's modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed. © 2014 Wiley Periodicals, Inc.

  10. A primer of statistical methods for correlating parameters and properties of electrospun poly(l -lactide) scaffolds for tissue engineering-PART 1: Design of experiments

    KAUST Repository

    Seyedmahmoud, Rasoul

    2014-03-20

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-l-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young\\'s modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed.

  11. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.

    Science.gov (United States)

    Ke, Dongxu; Bose, Susmita

    2017-09-01

    β-tricalcium phosphate (β-TCP) is a widely used biocompatible ceramic in orthopedic and dental applications. However, its osteoinductivity and mechanical properties still require improvements. In this study, porous β-TCP and MgO/ZnO-TCP scaffolds were prepared by the thermal decomposition of sucrose. Crack-free cylindrical scaffolds could only be prepared with the addition of MgO and ZnO due to their stabilization effects. Porous MgO/ZnO-TCP scaffolds with a density of 61.39±0.66%, an estimated pore size of 200μm and a compressive strength of 24.96±3.07MPa were prepared by using 25wt% sucrose after conventional sintering at 1250°C. Microwave sintering further increased the compressive strength to 37.94±6.70MPa, but it decreased the open interconnected porosity to 8.74±1.38%. In addition, the incorporation of polycaprolactone (PCL) increased 22.36±3.22% of toughness while maintaining its compressive strength at 25.45±2.21MPa. Human osteoblast cell line was seeded on scaffolds to evaluate the effects of MgO/ZnO and PCL on the biological property of β-TCP in vitro. Both MgO/ZnO and PCL improved osteoinductivity of β-TCP. PCL also decreased osteoblastic apoptosis due to its particular surface chemistry. This novel porous MgO/ZnO-TCP scaffold with PCL shows improved mechanical and biological properties, which has great potential in bone tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.

  12. Theoretical Design and Calculation of a Crown Ether Phase-Transfer-Catalyst Scaffold for Nucleophilic Fluorination Merging Two Catalytic Concepts.

    Science.gov (United States)

    Carvalho, Nathália F; Pliego, Josefredo R

    2016-09-16

    Fluorinated organic molecules are playing an increased role in the area of pharmaceuticals and agrochemicals. This fact demands the development of efficient catalytic fluorination processes. In this paper, we have designed a new crown ether with four hydroxyl groups strategically positioned. The catalytic activity of this basic scaffold was investigated with high levels of electronic structure theory, such as the ONIOM approach combining MP4 and MP2 methods. On the basis of the calculations, this new structure is able to solubilize potassium fluoride in toluene solution much more efficiently than 18-crown-6 (18C6). In addition, the strong interaction of the new catalyst with the SN2 transition state leads to a very important catalytic effect, with a predicted free energy barrier of 23.3 kcal mol(-1) for potassium fluoride plus ethyl bromide reaction model. Compared with experimental data and previous theoretical studies, this new catalyst is 10(4) times more efficient than 18C6 for nucleophilic fluorination of alkyl halides. The catalysis is predicted to be selective, leading to 97% of fluorination and only 3% of elimination. Catalytic fluorination of the aromatic ring has also been investigated, and although the catalyst is less efficient in this case, our analysis has indicated further development of this strategy can lead to more efficient catalysis.

  13. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency.

    Science.gov (United States)

    Wang, Jun; Yuan, Bo; Han, Ray P S

    2017-09-20

    The stiffness of a nano-fibrous scaffold is generally enhanced due to the size-dependency of the thin nanofibers contained in the scaffold. We proposed a model that incorporates size-dependency of single nanofibers to predict the scaffold effective modulus, in which the fibers' random or orientation distribution are considered. In the model the fiber segments between rigid fiber-fiber bonds can be stretching, shearing and bending. Using deformation energy equilibrium between sum of individual fibers and the plate of nano-fibrous scaffold, the scaffold effective modulus was derived explicitly. The model was verified via finite element analysis (FEA) and published experimental results. The parametric studies revealed that the fiber diameter is the dominant parameter to stiffen the scaffold beyond the fiber density and fiber aspect ratio when the fiber diameter is reduced below the onset value of size-dependencies. As a result, the scaffold stiffness can maintain its higher value and lower decrease rate because of the size-dependency with a decreasing diameter of the nanofiber as a result of biodegradation. This inspires the idea of selecting nanofibers near the onset value of size-dependency to obtain a controlled tuning of the scaffold stiffness in the design of novel nano-fibrous scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mild process to design silk scaffolds with reduced β-sheet structure and various topographies at nanometer scale

    Science.gov (United States)

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2014-01-01

    Three-dimensional (3D) porous silk scaffolds with good biocompatibility and minimal immunogenicity, have promising applications in different tissue regenerations. However, a challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy specific requirements of different tissues. In this study, silk scaffolds were fabricated to form extracellular matrix (ECM) mimetic nanofibrous architecture in a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in lyophilization process, endowing freeze-dried scaffolds water-stability. The glycerol was leached from the scaffolds, leaving similar porous structure at a micrometer scale but different topographies at nanoscale. Compared to previous salt-leached and methanol annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property, and improved cell growth and differentiation behaviors, implying their promising future as platforms for controlling stem cell fate and soft tissue regeneration. PMID:25463497

  15. MALL in the Wild: Learners' Designs for Scaffolding Vocabulary Learning Trajectories

    Science.gov (United States)

    Underwood, Joshua; Luckin, Rosemary; Winters, Niall

    2014-01-01

    This study aims to inform the design of mobile apps for vocabulary learning. Learning vocabulary involves developing, connecting, and sustaining various types of knowledge and skills. Learners do not typically acquire these all at once, but rather over the course of distinct episodes of activity. Yet, little is known about learning experience…

  16. A tunable protein-based scaffold for the study of central nervous system regeneration

    Science.gov (United States)

    Straley, Karin

    Central nervous system (CNS) injuries pose a significant and potentially debilitating health problem in society today and, to date, no successful clinical repair strategies have been advanced. The development of effective treatments is severely hindered by the quick formation of a complex, inhibitory scar at the site of CNS injury. This scar both physically blocks and chemically suppresses nerve regeneration. It has been hypothesized that combinatorial approaches involving biomaterial scaffolds, cell transplantation, and pro-survival factors, which provide a more permissive growth environment, have the highest chance of stimulating regeneration. The work completed in this thesis focuses on the design and characterization of a biomimetic hydrogel scaffold constructed from chemically crosslinked recombinant proteins. This protein-based scaffold has been designed to offer a flexible platform for the systematic optimization of key scaffold design parameters, such as mechanical strength, degradation, cellular interaction, molecule delivery, and topography. Specifically, a collection of proteins containing sequences previously shown to enhance cell adhesion, to promote neurite extension, and to exhibit varying susceptibility to cleavage by neurite-secreted proteases were synthesized to serve as the polymer backbone for the scaffold. Experiments were conducted to analyze the capacity of scaffolds, constructed from single proteins or mixtures of proteins, to independently control cell behavior, scaffold degradation properties, and scaffold mechanical properties based upon differences in the primary protein sequence and crosslinking conditions. In addition, composite scaffolds constructed by layered spatial deposition of chemically crosslinked, protease-degradable proteins were applied to the formation of dynamic internal, three-dimensional scaffold patterns that can be directly coupled to molecule delivery. Overall, this work demonstrates the tunable and bio

  17. Biomimetic Scaffolds for Osteogenesis

    Science.gov (United States)

    Yuan, Nance; Rezzadeh, Kameron S.; Lee, Justine C.

    2015-01-01

    Skeletal regenerative medicine emerged as a field of investigation to address large osseous deficiencies secondary to congenital, traumatic, and post-oncologic conditions. Although autologous bone grafts have been the gold standard for reconstruction of skeletal defects, donor site morbidity remains a significant limitation. To address these limitations, contemporary bone tissue engineering research aims to target delivery of osteogenic cells and growth factors in a defined three dimensional space using scaffolding material. Using bone as a template, biomimetic strategies in scaffold engineering unite organic and inorganic components in an optimal configuration to both support osteoinduction as well as osteoconduction. This article reviews the various structural and functional considerations behind the development of effective biomimetic scaffolds for osteogenesis and highlights strategies for enhancing osteogenesis. PMID:26413557

  18. Design and Fabrication of Anatomical Bioreactor Systems Containing Alginate Scaffolds for Cartilage Tissue Engineering

    OpenAIRE

    Gharravi, Anneh Mohammad; Orazizadeh, Mahmoud; Ansari-Asl, Karim; Banoni, Salem; Izadi, Sina; Hashemitabar, Mahmoud

    2012-01-01

    The aim of the present study was to develop a tissue-engineering approach through alginate gel molding to mimic cartilage tissue in a three-dimensional culture system. The perfusion biomimetic bioreactor was designed to mimic natural joint. The shear stresses exerting on the bioreactor chamber were calculated by Computational Fluid Dynamic (CFD). Several alginate/bovine chondrocyte constructs were prepared, and were cultured in the bioreactor. Histochemical and immunohistochemical staining me...

  19. Structure-Aided Design of Novel Inhibitors of HIV Protease Based on a Benzodiazepine Scaffold

    Czech Academy of Sciences Publication Activity Database

    Schimer, Jiří; Cígler, Petr; Veselý, J.; Grantz Šašková, Klára; Lepšík, Martin; Brynda, Jiří; Řezáčová, Pavlína; Kožíšek, Milan; Císařová, I.; Oberwinkler, H.; Kraeusslich, H. G.; Konvalinka, Jan

    2012-01-01

    Roč. 55, č. 22 (2012), s. 10130-10135 ISSN 0022-2623 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP207/11/1798 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : HIV protease inhibitor * rational drug design * 1,4-benzodiazepines Subject RIV: CE - Biochemistry Impact factor: 5.614, year: 2012

  20. Computational Design of Hypothetical New Peptides Based on a Cyclotide Scaffold as HIV gp120 Inhibitor.

    Directory of Open Access Journals (Sweden)

    Apiwat Sangphukieo

    Full Text Available Cyclotides are a family of triple disulfide cyclic peptides with exceptional resistance to thermal/chemical denaturation and enzymatic degradation. Several cyclotides have been shown to possess anti-HIV activity, including kalata B1 (KB1. However, the use of cyclotides as anti-HIV therapies remains limited due to the high toxicity in normal cells. Therefore, grafting anti-HIV epitopes onto a cyclotide might be a promising approach for reducing toxicity and simultaneously improving anti-HIV activity. Viral envelope glycoprotein gp120 is required for entry of HIV into CD4+ T cells. However, due to a high degree of variability and physical shielding, the design of drugs targeting gp120 remains challenging. We created a computational protocol in which molecular modeling techniques were combined with a genetic algorithm (GA to automate the design of new cyclotides with improved binding to HIV gp120. We found that the group of modified cyclotides has better binding scores (23.1% compared to the KB1. By using molecular dynamic (MD simulation as a post filter for the final candidates, we identified two novel cyclotides, GA763 and GA190, which exhibited better interaction energies (36.6% and 22.8%, respectively when binding to gp120 compared to KB1. This computational design represents an alternative tool for modifying peptides, including cyclotides and other stable peptides, as therapeutic agents before the synthesis process.

  1. Scaffolding for Creative Product Possibilities in a Design-Based STEM Activity

    Science.gov (United States)

    Hathcock, Stephanie J.; Dickerson, Daniel L.; Eckhoff, Angela; Katsioloudis, Petros

    2015-10-01

    Creativity can and should play a role in students' science experiences. Beghetto (Roeper Review 29(4):265-270, 2007) suggested a framework for teachers to assist students in transforming their creative ideas into creative products. This framework involves taking time to listen to students' ideas, helping them recognize the constraints of a task, and giving them multiple opportunities to think through and try their ideas. Ill-structured problems, such as those found in inquiry and engineering design activities, provide excellent opportunities for students to experience creative processing and express their creativity through product creation. These types of problems are typically challenging, but the use of appropriate questioning has been shown to assist students in solving problems. This multiple case study investigated the use of inquiry-based questioning as a means of supporting creativity within a design-based science, technology, engineering, and mathematics (STEM) activity. Findings suggest that groups facilitated by inquiry-based questioning strategies were better able to solve an ill-structured problem and achieved a more linear progression toward creative products than groups who were not facilitated by inquiry-based questions.

  2. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture

    KAUST Repository

    Inal, Sahika

    2017-05-03

    This work reports the design of a live-cell monitoring platform based on a macroporous scaffold of a conducting polymer, poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). The conducting polymer scaffolds support 3D cell cultures due to their biocompatibility and tissue-like elasticity, which can be manipulated by inclusion of biopolymers such as collagen. Integration of a media perfusion tube inside the scaffold enables homogenous cell spreading and fluid transport throughout the scaffold, ensuring long term cell viability. This also allows for co-culture of multiple cell types inside the scaffold. The inclusion of cells within the porous architecture affects the impedance of the electrically conducting polymer network and, thus, is utilized as an in situ tool to monitor cell growth. Therefore, while being an integral part of the 3D tissue, the conducting polymer is an active component, enhancing the tissue function, and forming the basis for a bioelectronic device with integrated sensing capability.

  3. A Human Hair Keratin Hydrogel Scaffold Enhances Median Nerve Regeneration in Nonhuman Primates: An Electrophysiological and Histological Study

    OpenAIRE

    Pace, Lauren A.; Plate, Johannes F.; Mannava, Sandeep; Barnwell, Jonathan C.; Koman, L. Andrew; Li, Zhongyu; Smith, Thomas L.; Van Dyke, Mark

    2013-01-01

    A human hair keratin biomaterial hydrogel scaffold was evaluated as a nerve conduit luminal filler following median nerve transection injury in 10 Macaca fascicularis nonhuman primates (NHP). A 1 cm nerve gap was grafted with a NeuraGen® collagen conduit filled with either saline or keratin hydrogel and nerve regeneration was evaluated by electrophysiology for a period of 12 months. The keratin hydrogel-grafted nerves showed significant improvement in return of compound motor action potential...

  4. Electrospun Zein/Gelatin Scaffold-Enhanced Cell Attachment and Growth of Human Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Yang, Fanqiao; Miao, Yingling; Wang, Yan; Zhang, Li-Ming; Lin, Xuefeng

    2017-10-12

    Periodontitis is a widespread dental disease affecting 10 to 15% of worldwide adult population, yet the current treatments are far from satisfactory. The human periodontal ligament stem cell is a promising potential seed cell population type in cell-based therapy and tissue regeneration, which require appropriate scaffold to provide a mimic extracellular matrix. Zein, a native protein derived from corn, has an excellent biodegradability, and therefore becomes a hotspot on research and application in the field of biomaterials. However, the high hydrophobicity of zein is unfavorable for cell adhesion and thus greatly limits its use. In this study, we fabricate co-electrospun zein/gelatin fiber scaffolds in order to take full advantages of the two natural materials and electrospun fiber structure. Zein and gelatin in four groups of different mass ratios (100:00, 100:20, 100:34, 100:50), and dissolved the mixtures in 1,1,1,3,3,3-hexafluoro-2-propanol, then produced membranes by electrospinning. The results showed that the scaffolds were smooth and homogeneous, as shown in scanning electron micrographs. The diameter of hybrid fibers was increased from 69 ± 22 nm to 950 ± 356 nm, with the proportion of gelatin increase. The cell affinity of zein/gelatin nanofibers was evaluated by using human periodontal ligament stem cells. The data showed that hydrophilicity and cytocompatibility of zein nanofibers were improved by blended gelatin. Taken together, our results indicated that the zein/gelatin co-electrospun fibers had sufficient mechanical properties, satisfied cytocompatibility, and can be utilized as biological scaffolds in the field of tissue regeneration.

  5. Design, synthesis, characterisation and in-vitro antimicrobial activity of some hybridized triazole scaffolds

    Directory of Open Access Journals (Sweden)

    Aiyalu Rajasekaran

    2017-06-01

    Full Text Available In the present study, twelve hybridized triazole derivatives were synthesized as Glucosamine-6-phosphate synthase inhibitor and evaluated for in-vitro antimicrobial activity. The in-vitro antimicrobial results demonstrated that compound B4b, B4g and B4j possesses potential antibacterial activity against all the tested Gram positive and Gram negative bacterial strains with percentage zone of inhibition 70–89% and antifungal activity against all the screened fungal strains with 85–105%, displaying minimal inhibitory concentration values of 3.125–6.25 μg/mL against bacteria strains and 3.125–12.5 μg/mL against fungi strains compared with standard Gatifloxacin (for bacteria and Clotrimazole (for fungi. Docking study reviews that the compounds which bind with Ser347, Thr352 and Val399 have significant anti-microbial activity. Comparing antimicrobial activity and docking results, conclude that triazolone derivatives linked through NC with substituted phenyl ring at 4th position seem to be potentially active. The docking study reveals that high affinity of synthesized derivatives (B4b, B4g and B4j within the binding pocket of glucosamine-6-phosphate synthase strongly enhances the determined activities of these derivatives as potent antimicrobial agents, particularly as antifungal agents.

  6. Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Ritu Goyal

    2017-01-01

    Full Text Available The design of composite tissue scaffolds containing an extracellular matrix (ECM and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000, medium (E0500, and fast (E1000 degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.

  7. Enhanced bone healing using collagen-hydroxyapatite scaffold implantation in the treatment of a large multiloculated mandibular aneurysmal bone cyst in a thoroughbred filly.

    Science.gov (United States)

    David, Florent; Levingstone, Tanya J; Schneeweiss, Wilfried; de Swarte, Marie; Jahns, Hanne; Gleeson, John P; O'Brien, Fergal J

    2015-10-01

    An unmet need remains for a bone graft substitute material that is biocompatible, biodegradable and capable of promoting osteogenesis safely in vivo. The aim of this study was to investigate the use of a novel collagen-hydroxyapatite (CHA) bone graft substitute in the clinical treatment of a mandibular bone cyst in a young horse and to assess its potential to enhance repair of the affected bone. A 2 year-old thoroughbred filly, presenting with a multilobulated aneurysmal bone cyst, was treated using the CHA scaffold. Post-operative clinical follow-up was carried out at 2 weeks and 3, 6 and 14 months. Cortical thickening in the affected area was observed from computed tomography (CT) examination as early as 3 months post-surgery. At 14 months, reduced enlargement of the operated mandible was observed, with no fluid-filled area. The expansile cavity was occupied by moderately dense mineralized tissue and fat and the compact bone was remodelled, with a clearer definition between cortex and medulla observed. This report demonstrates the promotion of enhanced bone repair following application of the CHA scaffold material in this craniomaxillofacial indication, and thus the potential of this material for translation to human applications. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds.

    Science.gov (United States)

    Beuerle, Florian; Gole, Bappaditya

    2017-12-05

    Porous organic materials are an emerging class of functional nanostructures with unprecedented properties. Dynamic covalent assembly of small organic building blocks under thermodynamic control is utilized for the intriguingly simple formation of complex molecular architectures in one-pot procedures. In this review, we aim to analyze the basic design principles that govern the formation of either covalent organic frameworks as crystalline porous polymers or covalent organic cage compounds as shape-persistent molecular objects. Common synthetic protocols and characterization techniques will be discussed besides more advanced strategies such as postsynthetic modification or self-sorting. When appropriate, healthy comparisons are drawn between polymeric frameworks and discrete organic cages considering their underlying properties. Furthermore, we highlight the potential of these materials for applications ranging from gas storage to catalysis or organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enhancing Instructional Design Efficiency: Methodologies Employed by Instructional Designers

    Science.gov (United States)

    Roytek, Margaret A.

    2010-01-01

    Instructional systems design (ISD) has been frequently criticised as taking too long to implement, calling for a reduction in cycle time--the time that elapses between project initiation and delivery. While instructional design research has historically focused on increasing "learner" efficiencies, the study of what instructional designers do to…

  11. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    Science.gov (United States)

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  12. Macro-Architectures in Spinal Cord Scaffold Implants Influence Regeneration

    Science.gov (United States)

    Wong, Darice Y.; Leveque, Jean-Christophe; Brumblay, Hunter; Krebsbach, Paul H.; LaMarca, Frank

    2008-01-01

    Abstract Biomaterial scaffold architecture has not been investigated as a tunable source of influence on spinal cord regeneration. This study compared regeneration in a transected spinal cord within various designed-macro-architecture scaffolds to determine if these architectures alone could enhance regeneration. Three-dimensional (3-D) designs were created and molds were built on a 3-D printer. Salt-leached porous poly(ɛ-caprolactone) was cast in five different macro-architectures: cylinder, tube, channel, open-path with core, and open-path without core. The two open-path designs were created in this experiment to compare different supportive aspects of architecture provided by scaffolds and their influence on regeneration. Rats received T8 transections and implanted scaffolds for 1 and 3 months. Overall morphology and orientation of sections were characterized by H&E, luxol fast blue, and cresyl violet staining. Borders between intact gray matter and non-regenerated defect were observed from GFAP immunolabeling. Nerve fibers and regenerating axons were identified with Tuj-1 immunolabeling. The open-path designs allowed extension of myelinated fibers along the length of the defect both exterior to and inside the scaffolds and maintained their original defect length up to 3 months. In contrast, the cylinder, tube, and channel implants had a doubling of defect length from secondary damage and large scar and cyst formation with no neural tissue bridging. The open-path scaffold architectures enhanced spinal cord regeneration compared to the three other designs without the use of biological factors. PMID:18721107

  13. Design and fabrication of anatomical bioreactor systems containing alginate scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Gharravi, Anneh Mohammad; Orazizadeh, Mahmoud; Ansari-Asl, Karim; Banoni, Salem; Izadi, Sina; Hashemitabar, Mahmoud

    2012-04-01

    The aim of the present study was to develop a tissue-engineering approach through alginate gel molding to mimic cartilage tissue in a three-dimensional culture system. The perfusion biomimetic bioreactor was designed to mimic natural joint. The shear stresses exerting on the bioreactor chamber were calculated by Computational Fluid Dynamic (CFD). Several alginate/bovine chondrocyte constructs were prepared, and were cultured in the bioreactor. Histochemical and immunohistochemical staining methods for the presence of glycosaminoglycan(GAG), overall matrix production and type II collagen protein were performed, respectively. The dynamic mechanical device applied a linear mechanical displacement of 2 mm to 10 mm. The CFD modeling indicated peak velocity and maximum wall shear stress were 1.706×10(-3)m/s and 0.02407 dyne/cm(2), respectively. Histochemical and immunohistochemical analysis revealed evidence of cartilage-like tissue with lacunas similar to those of natural cartilage and the production of sulfated GAG of matrix by the chondrons, metachromatic territorial matrix-surrounded cells and accumulation of type II collagen around the cells. The present study indicated that when chondrocytes were seeded in alginate hydrogel and cultured in biomimetic cell culture system, cells survived well and secreted newly synthesized matrix led to improvement of chondrogenesis.

  14. Use of a qualitative methodological scaffolding process to design robust interprofessional studies.

    Science.gov (United States)

    Wener, Pamela; Woodgate, Roberta L

    2013-07-01

    Increasingly, researchers are using qualitative methodology to study interprofessional collaboration (IPC). With this increase in use, there seems to be an appreciation for how qualitative studies allow us to understand the unique individual or group experience in more detail and form a basis for policy change and innovative interventions. Furthermore, there is an increased understanding of the potential of studying new or emerging phenomena qualitatively to inform further large-scale studies. Although there is a current trend toward greater acceptance of the value of qualitative studies describing the experiences of IPC, these studies are mostly descriptive in nature. Applying a process suggested by Crotty (1998) may encourage researchers to consider the value in situating research questions within a broader theoretical framework that will inform the overall research approach including methodology and methods. This paper describes the application of a process to a research project and then illustrates how this process encouraged iterative cycles of thinking and doing. The authors describe each step of the process, shares decision-making points, as well as suggests an additional step to the process. Applying this approach to selecting data collection methods may serve to guide and support the qualitative researcher in creating a well-designed study approach.

  15. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  16. Do we need teachers as designers of technology enhanced learning?

    NARCIS (Netherlands)

    Kirschner, Paul A.

    2016-01-01

    In this special issue, five teams of researchers discuss different aspects of the teacher as designer of technology enhanced learning situations. This final contribution critically discusses if and how teachers as designers of technology enhanced learning might (not) be feasible or even desirable.

  17. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs

    DEFF Research Database (Denmark)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov

    2013-01-01

    Appropriate scaffolds capable of providing suitable biological and structural guidance are of great importance to generate cell-scaffold constructs for cell-based tissue engineering. The aim of the present study was to develop composite microparticles with a structure to provide functionality...... as a combined drug delivery/scaffold system. Composite microparticles were produced by incorporating either alginate/dermatan sulfate (Alg/DS) or alginate/chitosan/dermatan sulfate (Alg/CS/DS) particles in mPEG-PLGA microparticles using coaxial ultrasonic atomization. The encapsulation and distribution of Alg....../DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles...

  18. Enhancing ecosystem services: Designing for multifunctionality

    Science.gov (United States)

    Mike Dosskey; Gary Wells; Gary Bentrup; Doug Wallace

    2012-01-01

    It is increasingly recognized that ecosystem services provide a foundation for the well-being of individuals and society (MEA 2005). Land managers typically strive to enhance particularly desirable services. For example, farmers plant crops and manage the soil and hydrologic conditions to favor crop production. In agricultural regions such as the US Corn Belt,...

  19. Scaffolding for Argumentation in Hypothetical and Theoretical Biology Concepts

    Science.gov (United States)

    Weng, Wan-Yun; Lin, Yu-Ren; She, Hsiao-Ching

    2017-01-01

    The present study investigated the effects of online argumentation scaffolding on students' argumentation involving hypothetical and theoretical biological concepts. Two types of scaffolding were developed in order to improve student argumentation: continuous scaffolding and withdraw scaffolding. A quasi-experimental design was used with four…

  20. Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors

    NARCIS (Netherlands)

    Stok, J. van der; Wang, H.; Yavari, S. Amin; Siebelt, M.; Sandker, M.; Waarsing, J.H.; Verhaar, J.A.N.; Jahr, H.; Zadpoor, A.A.; Leeuwenburgh, S.C.G.; Weinans, H.

    2013-01-01

    Porous titanium scaffolds are a promising class of biomaterials for grafting large bone defects, because titanium provides sufficient mechanical support, whereas its porous structure allows bone ingrowth resulting in good osseointegration. To reinforce porous titanium scaffolds with biological cues

  1. Enhanced Bone Regeneration of Cortical Segmental Bone Defects Using Porous Titanium Scaffolds Incorporated with Colloidal Gelatin Gels for Timeand Dose-Controlled Delivery of Dual Growth Factors

    NARCIS (Netherlands)

    Van der Stok, J.; Wang, H.; Yavari, S.A.; Siebelt, M.; Sandker, M.; Waarsing, J.H.; Verhaar, J.A.N.; Jahr, H.; Zadpoor, A.A.; Leeuwenburgh, S.C.G.; Weinans, H.

    2013-01-01

    Porous titanium scaffolds are a promising class of biomaterials for grafting large bone defects, because titanium provides sufficient mechanical support, whereas its porous structure allows bone ingrowth resulting in good osseointegration. To reinforce porous titanium scaffolds with biological cues

  2. Novel composite hyaluronan/type I collagen/fibrin scaffold enhances repair of osteochondral defect in rabbit knee

    Czech Academy of Sciences Publication Activity Database

    Filová, Eva; Jelínek, F.; Handl, M.; Lytvynets, Andrej; Rampichová, Michala; Varga, F.; Činátl, J.; Soukup, Tomáš; Trč, T.; Amler, Evžen

    2008-01-01

    Roč. 87, č. 2 (2008), s. 415-424 ISSN 1552-4973 R&D Projects: GA AV ČR(CZ) 1ET400110403; GA ČR(CZ) GA304/08/0256; GA MŠk(CZ) 1M0510 Grant - others:GA UK(CZ) 121/2005/B-BIO/2.LF; GA MZd(CZ) NR8122 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50110509 Keywords : Autologous chondrocytes in artifical scaffold * Cartilage regeneration * Fibrin Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.030, year: 2008

  3. Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo.

    Science.gov (United States)

    Luo, Haiming; Yang, Jie; Jin, Honglin; Huang, Chuan; Fu, Jianwei; Yang, Fei; Gong, Hui; Zeng, Shaoqun; Luo, Qingming; Zhang, Zhihong

    2011-06-01

    Relatively weak tumor affinities and short retention time in vivo hinder the application of targeting peptides in tumor molecular imaging. Multivalent strategies based on various scaffolds have been utilized to improve the ability of peptide-receptor binding or extend the clearance time of peptide-based probes. Here, we use a tetrameric far-red fluorescent protein (tfRFP) as a scaffold to create a self-assembled octavalent peptide fluorescent nanoprobe (Octa-FNP) using a genetic engineering approach. The multiligand connecting, fluorophore labeling and nanostructure formation of Octa-FNP were performed in one step. In vitro studies showed Octa-FNP is a 10-nm fluorescent probe with excellent serum stability. Cellular uptake of Octa-FNP by human nasopharyngeal cancer 5-8F cells is 15-fold of tetravalent probe, ∼80-fold of monovalent probe and ∼600-fold of nulvalent tfRFP. In vivo enhanced tumor targeting and intracellular uptake of Octa-FNP were confirmed using optical imaging and Western blot analysis. It achieved extremely high contrast of Octa-FNP signal between tumor tissue and normal organs, especially seldom Octa-FNP detected in liver and spleen. Owing to easy preparation, precise structural and functional control, and multivalent effect, Octa-FNP provides a powerful tool for tumor optical molecular imaging and evaluating the targeting ability of numerous peptides in vivo.

  4. Aligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosome.

    Science.gov (United States)

    Mori, Yutaro; Ozasa, Shiori; Kitaoka, Momoko; Noda, Shuhei; Tanaka, Tsutomu; Ichinose, Hirofumi; Kamiya, Noriho

    2013-08-11

    A novel multi-cellulase conjugate assembled on a double-stranded DNA scaffold, a DNA-(endoglucanase)n conjugate, exhibited unique hydrolytic activity toward crystalline cellulose (Avicel) depending on the cellulase/DNA ratio on the DNA-based artificial cellulosome.

  5. Design, synthesis, and biological evaluation of scaffold-based tripeptidomimetic antagonists for CXC chemokine receptor 4 (CXCR4)

    DEFF Research Database (Denmark)

    Zachariassen, Zack G; Thiele, Stefanie; Berg, Erik A

    2014-01-01

    antagonists. Starting by dissecting the cyclopentapeptide structure and reintroducing cyclic constraints in a stepwise manner, we here report a novel class of scaffold-based tripeptidomimetic CXCR4 antagonists based on the d-Arg-Arg-2-Nal motif. Biological testing of the prototype compounds showed...

  6. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique

    NARCIS (Netherlands)

    Woodfield, T.B.F.; Malda, J.; de Wijn, J.; Peters, F.; Riesle, J.U.; van Blitterswijk, Clemens

    2004-01-01

    In this study, we present and characterize a fiber deposition technique for producing three-dimensional poly(ethylene glycol)-terephthalate—poly(butylene terephthalate) (PEGT/PBT) block co-polymer scaffolds with a 100% interconnecting pore network for engineering of articular cartilage. The

  7. Enhancing Hohlraum Design with Artificial Neural Networks

    Science.gov (United States)

    Peterson, J. L.; Berzak Hopkins, L. F.; Humbird, K. D.; Brandon, S. T.; Field, J. E.; Langer, S. H.; Nora, R. C.; Spears, B. K.

    2017-10-01

    A primary goal of hohlraum design is to efficiently convert available laser power and energy to capsule drive, compression and ultimately fusion neutron yield. However, a major challenge of this multi-dimensional optimization problem is the relative computational expense of hohlraum simulations. In this work, we explore overcoming this obstacle with the use of artificial neural networks built off ensembles of hohlraum simulations. These machine learning systems emulate the behavior of full simulations in a fraction of the time, thereby enabling the rapid exploration of design parameters. We will demonstrate this technology with a search for modifications to existing high-yield designs that can maximize neutron production within NIF's current laser power and energy constraints. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734401.

  8. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  9. Principles and Designs for Enhancing Learning.

    Science.gov (United States)

    Mouton, Jane Srygley; Blake, Robert R.

    1984-01-01

    The concept of "synergogy," which combines the benefits of teacher-centered and learner-centered instruction, is discussed. The benefits of synergogy (broad applicability, modest resources, increased learning, and secondary learning) are explained. The principal synergogic designs (team effectiveness, team-member teaching, performance…

  10. Strategies to Assess Studio Spaces Designed to Enhance Student Learning

    Science.gov (United States)

    Ahmadi, Reza; Saiki, Diana

    2017-01-01

    Teachers are not always aware of how the classroom design influences teaching, particularly in many family and consumer sciences (FCS) classes that require studio space, such as apparel and interior design classes. The purpose of this paper is to introduce strategies to assess studio spaces that are designed for enhancement of student learning.…

  11. Improving Design Understandings and Skills through Enhanced Metacognition: Reflective Design Journals

    Science.gov (United States)

    Kurt, Mustafa; Kurt, Sevinc

    2017-01-01

    The main aim of this study was to investigate and discover whether going through the process of reflection by keeping reflective design journals (RDJ) enhances architecture students' metacognition and whether this enhanced metacognition improves their design understandings and skills. The study was a mixed-methods design and utilised content…

  12. Simulation-enhanced lean design process

    Directory of Open Access Journals (Sweden)

    Jon H. Marvel

    2009-07-01

    Full Text Available 72 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} A traditional lean transformation process does not validate the future state before implementation, relying instead on a series of iterations to modify the system until performance is satisfactory. An enhanced lean process that includes future state validation before implementation is presented.  Simulation modeling and experimentation is proposed as the primary validation tool.  Simulation modeling and experimentation extends value stream mapping to include time, the behavior of individual entities, structural variability, random variability, and component interaction effects. Experiments to analyze the model and draw conclusions about whether the lean transformation effectively addresses the current state gap can be conducted.  Industrial applications of the enhanced lean process show it effectiveness.

  13. Mineralized collagen scaffolds induce hMSC osteogenesis and matrix remodeling.

    Science.gov (United States)

    Weisgerber, Daniel W; Caliari, Steven R; Harley, Brendan A C

    2015-03-01

    Biomaterials for bone tissue engineering must be able to instruct cell behavior in the presence of the complex biophysical and biomolecular environments encountered in vivo. While soluble supplementation strategies have been identified to enhance osteogenesis, they are subject to significant diffusive loss in vivo or the need for frequent re-addition in vitro. This investigation therefore explored whether biophysical and biochemical properties of a mineralized collagen-GAG scaffold were sufficient to enhance human mesenchymal stem cell (hMSC) osteogenic differentiation and matrix remodeling in the absence of supplementation. We examined hMSC metabolic health, osteogenic and matrix gene expression profiles, as well as matrix remodeling and mineral formation as a function of scaffold mineral content. We found that scaffold mineral content enhanced long term hMSC metabolic activity relative to non-mineralized scaffolds. While osteogenic supplementation or exogenous BMP-2 could enhance some markers of hMSC osteogenesis in the mineralized scaffold, we found the mineralized scaffold was itself sufficient to induce osteogenic gene expression, matrix remodeling, and mineral formation. Given significant potential for unintended consequences with the use of mixed media formulations and potential for diffusive loss in vivo, these findings will inform the design of instructive biomaterials for regenerative repair of critical-sized bone defects, as well as for applications where non-uniform responses are required, such as in biomaterials to address spatially-graded interfaces between orthopedic tissues.

  14. Designing an enhanced groundwater sample collection system

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.

    1994-10-01

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples.

  15. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...... ligands of three different protein targets relevant for drug discovery using a rational approach based on statistical experimental design. Five out of eight and seven out of eight thrombin scaffolds and all seven HIV protease scaffolds were recovered within the top 10 and 31 out of 31 neuraminidase...

  16. Designing pseudocubic perovskites with enhanced nanoscale polarization

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Laws, W. J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Wang, D. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom; Reaney, I. M. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

    2017-11-20

    A crystal-chemical framework has been proposed for the design of pseudocubic perovskites with nanoscale ferroelectric order, and its applicability has been demonstrated using a series of representative solid solutions that combined ferroelectric (K0.5Bi0.5TiO3, BaTiO3, and PbTiO3) and antiferroelectric (Nd-substituted BiFeO3) end members. The pseudocubic structures obtained in these systems exhibited distortions that were coherent on a scale ranging from sub-nanometer to tens of nanometers, but, in all cases, the macroscopic distortion remained unresolvable even if using high-resolution X-ray powder diffraction. Different coherence lengths for the local atomic displacements account for the distinctly different dielectric, ferroelectric, and electromechanical properties exhibited by the samples. The guidelines identified provide a rationale for chemically tuning the coherence length to obtain the desired functional response.

  17. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    implies that genes do not control the life of organisms, they merely scaffold it. The nature-nurture dynamics is thus far more complex and open than is often claimed. Contrary to physically based interactions, semiotic interactions do not depend on any direct causal connection between the sign vehicle......Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... (the representamen) and the effect. Semiotic interaction patterns therefore provide fast and versatile mechanisms for adaptations, mechanisms that depend on communication and “learning” rather than on genetic preformation. Seen as a stabilizing agency supporting the emergence of higher-order structure...

  18. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  19. Metaconcrete: designed aggregates to enhance dynamic performance

    Science.gov (United States)

    Mitchell, Stephanie J.; Pandolfi, Anna; Ortiz, Michael

    2014-04-01

    We propose a new type of concrete for the attenuation of elastic waves induced by dynamic excitation. In this metamaterial, which we call metaconcrete, the stone, sand, and gravel aggregates of standard concrete are replaced with spherical inclusions consisting of a heavy metal core coated with a soft outer layer. These engineered aggregates can be tuned so that particular frequencies of a propagating blast wave will activate resonant oscillations of the heavy mass within the inclusions. The resonant behavior causes the system to exhibit negative effective mass, and this interaction between the wave motion and the resonant aggregates results in the attenuation of the applied dynamic loading. We introduce the concept of negative mass by deriving the effective momentum mass for the system and we define the geometrical and material parameters for the design of resonant aggregates. We develop finite element models for the analysis of metaconcrete behavior, defining a section of slab containing a periodic arrangement of inclusions. By computing the energy histories for the system when subject to a blast load, we show that there is a transfer of energy between the inclusions and the surrounding mortar. The inclusions are able to absorb a significant portion of the applied energy, resulting in a reduction in the amount of stress carried by the mortar phase and greatly improving the ability of the material to resist damage under explosive dynamic loading.

  20. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits.

    Science.gov (United States)

    Lai, Yuxiao; Cao, Huijuan; Wang, Xinluan; Chen, Shukui; Zhang, Ming; Wang, Nan; Yao, Zhihong; Dai, Yi; Xie, Xinhui; Zhang, Peng; Yao, Xinsheng; Qin, Ling

    2018-01-01

    Steroid-associated osteonecrosis (SAON) often requires surgical core decompression (CD) in the early stage for removal of necrotic bone to facilitate repair where bone grafts are needed for filling bone defect and avoiding subsequent joint collapse. In this study, we developed a bioactive composite scaffold incorporated with icariin, a unique phytomolecule that can provide structural and mechanical support and facilitate bone regeneration to fill into bone defects after surgical CD in established SAON rabbit model. An innovative low-temperature 3D printing technology was used to fabricate the poly (lactic-co-glycolic acid)/β-calcium phosphate/icariin (PLGA/TCP/Icariin, PTI) scaffold. The cytocompatibility of the PTI scaffold was tested in vitro, and the osteogenesis properties of PTI scaffolds were assessed in vivo in the SAON rabbit models. Our results showed that the fabricated PTI scaffold had a well-designed biomimic structure that was precisely printed to provide increased mechanical support and stable icariin release from the scaffold for bone regeneration. Furthermore, our in vivo study indicated that the PTI scaffold could enhanced the mechanical properties of new bone tissues and improved angiogenesis within the implanted region in SAON rabbit model than those of PLGA/TCP (PT) scaffold. The underlying osteoblastic mechanism was investigated using MC3T3-E1 cells in vitro and revealed that icariin could facilitate MC3T3-E1 cells ingrowth into the PTI scaffold and regulate osteoblastic differentiation. The PTI scaffold exhibited superior biodegradability, biocompatibility, and osteogenic capability compared with those of PT scaffold. In summary, the PTI composite scaffold which incorporated bioactive phyto-compounds is a promising potential strategy for bone tissue engineering and regeneration in patients with challenging SAON. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Universal Design for Learning: Application for Technology-Enhanced Learning

    Science.gov (United States)

    Morra, Thom; Reynolds, Jim

    2010-01-01

    The construct of Universal Design (UD) has been used in a number of fields such as engineering and architecture to design and produce products and services that are usable by people with a wide variety of characteristics. The field of UD supports a framework that can also be used to enhance the field of education. A number of constructs have been…

  2. Teachers as Designers of Technology-Enhanced Outdoor Inquiry

    Directory of Open Access Journals (Sweden)

    Keren Sarah Levy

    2015-12-01

    Full Text Available Implementing inquiry in the outdoors introduces many challenges for teachers, some of which can be dealt with using mobile technologies. For productive use of these technologies, teachers should be provided with the opportunity to develop relevant knowledge and practices. In a professional development (PD program in this design-based research, 24 teachers were involved in adaptation of a learning environment supporting inquiry in the outdoors that included the use of mobile technologies. They first experienced the learning environment as learners, then adapted it for their own use, and finally, enacted the adapted environment with peers. We examined the scope and character of teacher involvement in adaptation, and the consequent professional growth, by analyzing observations, questionnaires, interviews and the adapted learning-environments. Findings indicate that all teachers demonstrated change processes, including changes in knowledge and practice, but the coherence of the learning environments decreased when substantial adaptations were made. Some teachers demonstrated professional growth, as reflected by their implementation of ideas learned in the PD program in their daily practice, long after the PD program had ended. This study demonstrates how the Teachers as Designers approach can support teacher learning and illustrates productive use of scaffolds for teacher growth and professional development.

  3. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  4. Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals.

    Science.gov (United States)

    Caliari, Steven R; Harley, Brendan A C

    2014-09-01

    Biomaterial strategies for regenerating multitissue structures require unique approaches. One strategy is to design scaffolds so that their local biophysical properties can enhance site-specific effects of an otherwise heterogeneous biomolecular environment. This investigation examined the role of biomaterial physical properties (relative density, mineral content) on the human mesenchymal stem cell phenotype in the presence of mixed soluble signals to drive osteogenesis or chondrogenesis. We tested a series of three-dimensional collagen-glycosaminoglycan scaffolds with properties inspired by extracellular matrix characteristics across the osteotendinous interface (tendon, cartilage, and bone). We found that selective scaffold mineralization induced a depressed chondrogenic response compared with nonmineralized groups as demonstrated by gene expression and histological analyses. Interestingly, the greatest chondrogenic response was found in a higher density, nonmineralized scaffold variant despite increased contraction and cellular condensation in lower density nonmineralized scaffolds. In fact, the lower density scaffolds demonstrated a significantly higher expression of osteogenic transcripts as well as ample mineralization after 21 days of culture. This effect may be due to local stiffening of the scaffold microenvironment as the scaffold contracts, leading to increased cell density, accelerated differentiation, and possible endochondral ossification as evidenced by a transition from a glycosaminoglycan (GAG)-rich milieu to higher mineralization at later culture times. These findings will help shape the design rules for graded biomaterials to regenerate distinct fibrillar, fibrocartilagenous, and mineralized regions of orthopedic interfaces.

  5. Three hours of perfusion culture prior to 28 days of static culture, enhances osteogenesis by human cells in a collagen GAG scaffold.

    Science.gov (United States)

    Keogh, Michael B; Partap, Sonia; Daly, Jacqueline S; O'Brien, Fergal J

    2011-05-01

    In tissue engineering, bioreactors can be used to aid in the in vitro development of new tissue by providing biochemical and physical regulatory signals to cells and encouraging them to undergo differentiation and/or to produce extracellular matrix prior to in vivo implantation. This study examined the effect of short term flow perfusion bioreactor culture, prior to long-term static culture, on human osteoblast cell distribution and osteogenesis within a collagen glycosaminoglycan (CG) scaffold for bone tissue engineering. Human fetal osteoblasts (hFOB 1.19) were seeded onto CG scaffolds and pre-cultured for 6 days. Constructs were then placed into the bioreactor and exposed to 3 × 1 h bouts of steady flow (1 mL/min) separated by 7 h of no flow over a 24-h period. The constructs were then cultured under static osteogenic conditions for up to 28 days. Results show that the bioreactor and static culture control groups displayed similar cell numbers and metabolic activity. Histologically, however, peripheral cell-encapsulation was observed in the static controls, whereas, improved migration and homogenous cell distribution was seen in the bioreactor groups. Gene expression analysis showed that all osteogenic markers investigated displayed greater levels of expression in the bioreactor groups compared to static controls. While static groups showed increased mineral deposition; mechanical testing revealed that there was no difference in the compressive modulus between bioreactor and static groups. In conclusion, a flow perfusion bioreactor improved construct homogeneity by preventing peripheral encapsulation whilst also providing an enhanced osteogenic phenotype over static controls. Copyright © 2010 Wiley Periodicals, Inc.

  6. Channeled Scaffolds for Engineering Myocardium with Mechanical Stimulation

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q.; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2011-01-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) are critically important for engineering functional myocardial tissue. We report the development of chitosan-collagen scaffolds with micro-pores and an array of parallel channels (~200 μm in diameter) that were specifically designed for cardiac tissue engineering with mechanical stimulation. The scaffolds were designed to have the structural and mechanical properties similar to those of the native human heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom-designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1–2 mm thick) consisted of metabolically active cells and started to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stresses promoted cell alignment, elongation, and the expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. PMID:22081518

  7. Channelled scaffolds for engineering myocardium with mechanical stimulation.

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2012-10-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) of the heart are important characteristics in the engineering of functional myocardial tissue. This study reports on the development of chitosan-collagen scaffolds with micropores and an array of parallel channels (~ 200 µm in diameter) that were specifically designed for cardiac tissue engineering using mechanical stimulation. The scaffolds were designed to have similar structural and mechanical properties of those of native heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1-2 mm thick) consisted of metabolically active cells that began to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stress promoted cell alignment, elongation, and expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Capillarity Composited Recycled Paper/Graphene Scaffold for Lithium-Sulfur Batteries with Enhanced Capacity and Extended Lifespan.

    Science.gov (United States)

    Zhang, Yunya; Gao, Zan; Li, Xiaodong

    2017-11-01

    An effective strategy to tackle the twin crises of global deforestation and fossil fuel depletion is to recycle biomass materials for energy storage devices. This study reports a unique and innovative solution to capitalize on a currently overlooked resource to produce high-performance lithium-sulfur (Li-S) batteries from recycled paper. The recycled paper fibers are creatively composited with graphene oxide sheets via a capillary adsorption method. The recycled paper/graphene oxide hybrid is then converted to activated paper carbon/reduced graphene oxide (APC/graphene) scaffold for sulfur infiltration. The assembled Li-APC/graphene/S battery exhibits a superior lifespan of 620 cycles with an excellent capacity retention rate of 60.5%. An APC interlayer is sandwiched between the Li anode and the separator to suppress the degradation of Li anode by preventing the nonhomogeneous growth of mossy Li whiskers, stretching the battery lifespan up to 1000 cycles with a capacitance retention rate of 52.3%. The capillary adsorption method coupled with the porous carbonaceous anode interlayer configuration creates a new opportunity for the development of batteries derived from porous biomass materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    DEFF Research Database (Denmark)

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan

    2016-01-01

    Poly(lactic-co-glycolic.acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical...... the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nano fibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss...

  10. Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques

    KAUST Repository

    Limongi, Tania

    2014-12-12

    Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-ε- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.

  11. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  12. Bioinspired scaffolds for osteochondral regeneration.

    Science.gov (United States)

    Lopa, Silvia; Madry, Henning

    2014-08-01

    Osteochondral defects are difficult to treat because the articular cartilage and the subchondral bone have dissimilar characteristics and abilities to regenerate. Bioinspired scaffolds are designed to mimic structural and biological cues of the native osteochondral unit, supporting both cartilaginous and subchondral bone repair and the integration of the newly formed osteochondral matrix with the surrounding tissues. The aim of this review is to outline fundamental requirements and strategies for the development of biomimetic scaffolds reproducing the unique and multifaceted anatomical structure of the osteochondral unit. Recent progress in preclinical animal studies using bilayer and multilayer scaffolds, together with continuous gradient scaffolds will be discussed and placed in a translational perspective with data emerging from their clinical application to treat osteochondral defects in patients.

  13. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone Scaffolds

    Directory of Open Access Journals (Sweden)

    Sònia Palomeras

    2016-04-01

    Full Text Available The cancer stem cell (CSC population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs’ phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone (PCL, a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control. Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population.

  14. Hybrid Randomly Electrospun Poly(lactic-co-glycolic acid):Poly(ethylene oxide) (PLGA:PEO) Fibrous Scaffolds Enhancing Myoblast Differentiation and Alignment.

    Science.gov (United States)

    Evrova, Olivera; Hosseini, Vahid; Milleret, Vincent; Palazzolo, Gemma; Zenobi-Wong, Marcy; Sulser, Tullio; Buschmann, Johanna; Eberli, Daniel

    2016-11-23

    Cellular responses are regulated by their microenvironments, and engineered synthetic scaffolds can offer control over different microenvironment properties. This important relationship can be used as a tool to manipulate cell fate and cell responses for different biomedical applications. We show for the first time in this study how blending of poly(ethylene oxide) (PEO) to poly(lactic-co-glycolic acid) (PLGA) fibers to yield hybrid scaffolds changes the physical and mechanical properties of PLGA fibrous scaffolds and in turn affects cellular response. For this purpose we employed electrospinning to create fibrous scaffolds mimicking the basic structural properties of the native extracellular matrix. We introduced PEO to PLGA electrospun fibers by spinning a blend of PLGA:PEO polymer solutions in different ratios. PEO served as a sacrificial component within the fibers upon hydration, leading to pore formation in the fibers, fiber twisting, increased scaffold disintegration, and hydrophilicity, decreased Young's modulus, and significantly improved strain at break of initially electrospun scaffolds. We observed that the blended PLGA:PEO fibrous scaffolds supported myoblast adhesion and proliferation and resulted in increased myotube formation and self-alignment, when compared to PLGA-only scaffolds, even though the scaffolds were randomly oriented. The 50:50 PLGA:PEO blended scaffold showed the most promising results in terms of mechanical properties, myotube formation, and alignment, suggesting an optimal microenvironment for myoblast differentiation from the PLGA:PEO blends tested. The explored approach for tuning fiber properties can easily extend to other polymeric scaffolds and provides a valuable tool to engineer fibrillar microenvironments for several biomedical applications.

  15. Fostering High School Students' Conceptual Understandings About Seasons: The Design of a Technology-enhanced Learning Environment

    Science.gov (United States)

    Hsu, Ying-Shao; Wu, Hsin-Kai; Hwang, Fu-Kwun

    2008-03-01

    The purpose of this study is to understand in what ways a technology-enhanced learning (TEL) environment supports learning about the causes of the seasons. The environment was designed to engage students in five cognitive phases: Contextualisation, Sense making, Exploration, Modeling, and Application. Seventy-five high school students participated in this study and multiple sources of data were collected to investigate students’ conceptual understandings and the interactions between the design of the environment and students’ alternative conceptions. The findings show that the number of alternative conceptions held by students were reduced except for the incorrect concepts of “the length of sunshine” and “the distance between the sun and the earth.” The percentage of partial explanations held by students was also reduced from 60.5 to 55.3% and the percentage of students holding complete scientific explanations after using Lesson Seasons rose from 2.6 to 15.8%. While some students succeeded in modeling their science concepts closely to the expert’s concepts, some failed to do so after the invention. The unsuccessful students could not remediate their alternative conceptions without explicit guidance and scaffolding. Future research can then be focused on understanding how to provide proper scaffoldings for removing some alternative concepts which are highly resistant to change.

  16. Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system.

    Science.gov (United States)

    Hoque, M Enamul

    2017-03-01

    This study investigates the scaffolds' structural anisotropy (i.e. the effect of loading direction), viscoelasticity (i.e. the effect of cross head speed or strain rate), and the influence of simulated physiological environment (PBS solution at 37°C) on the mechanical properties. Besides, the in vitro degradation study has also been performed that evaluates the effect of variation in material and lay-down pattern on the scaffolds' degradation kinetics in terms of mass loss, and change in morphological and mechanical properties. Porous three dimensional (3D) scaffolds of polycarprolactone (PCL) and polycarprolactone-polyethylene glycol (PCL-PEG) were developed by laying down the microfilaments directionally layer-by-layer using an in-house built computer-controlled extrusion and deposition process, called desktop robot based rapid prototyping (DRBRP) system. The loading direction, strain rate and physiological environment directly influenced the mechanical properties of the scaffolds. In vitro degradation study demonstrated that both PCL and PCL-PEG scaffolds realized homogeneous hydrolytic degradation via surface erosion resulting in a consistent and predictable mass loss. The linear mass loss caused uniform and linear increase in porosity that accordingly led to the decrease in mechanical properties. The synthetic polymer had the potential to modulate hydrophilicity and/or degradability and consequently, the biomechanical properties of the scaffolds by varying the polymer constituents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Stimulation of vascularization of a subcutaneous scaffold applicable for pancreatic islet-transplantation enhances immediate post-transplant islet graft function but not long-term normoglycemia

    NARCIS (Netherlands)

    Smink, Alexandra M; Li, Shiri; Swart, Daniël H; Hertsig, Don T; de Haan, Bart J; Kamps, Jan A A M; Schwab, Leendert; van Apeldoorn, Aart; de Koning, Eelco; Faas, Marijke M; Lakey, Jonathan R T; de Vos, Paul

    The liver as transplantation site for pancreatic islets is associated with significant loss of islets, which can be prevented by grafting in a prevascularized, subcutaneous scaffold. Supporting vascularization of a scaffold to limit the period of ischemia is challenging and was developed here by

  18. Bioactive polymeric scaffolds for tissue engineering

    Science.gov (United States)

    Stratton, Scott; Shelke, Namdev B.; Hoshino, Kazunori; Rudraiah, Swetha; Kumbar, Sangamesh G.

    2016-01-01

    A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D) scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined. PMID:28653043

  19. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  20. Effect of strontium addition and chitosan concentration variation on cytotoxicity of chitosan-alginate-carbonate apatite based bone scaffold

    Science.gov (United States)

    Perkasa, Rilis Eka; Umniati, B. Sri; Sunendar, Bambang

    2017-09-01

    Bone scaffold is one of the most important component in bone tissue engineering. Basically, bone scaffold is a biocompatible structure designed to replace broken bone tissue temporarily. Unlike conventional bone replacements, an advanced bone scaffold should be bioactive (e.g: supporting bone growth) and biodegradable as new bone tissue grow, while retain its mechanical properties similarity with bone. It is also possible to add more bioactive substrates to bone scaffold to further support its performance. One of the substrate is strontium, an element that could improve the ability of the bone to repair itself. However, it must be noted that excessive consumption of strontium could lead to toxicity and diseases, such as osteomalacia and hypocalcemia. This research aimed to investigate the effect of strontium addition to the cytotoxic property of chitosan-alginate-carbonate apatite bone scaffold. The amount of strontium added to the bone scaffold was 5% molar of the carbonate apatite content. As a control, bone scaffold without stronsium (0% molar) were also made. The effect of chitosan concentration variation on the cytotoxicity were also observed, where the concentration varies on 1% and 3% w/v of chitosan solution. The results showed an optimum result on bone scaffold sample with 5% molar of strontium and 3% chitosan, where 87.67% cells in the performed MTS-Assay cytotoxicity testing survived. This showed that the use of up to 5% molar addition of strontium and 3% chitosan could enhance the survivability of the cell.

  1. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2010-08-01

    A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. (c) 2010 Wiley Periodicals, Inc.

  2. A switchable positive and negative air pressure device for efficient and gentle handling of nanofiber scaffolds

    Science.gov (United States)

    Hotaling, Nathan A.; Khristov, Vladimir; Maminishkis, Arvydas; Bharti, Kapil; Simon, Carl G.

    2017-10-01

    A scaffold handling device (SHD) has been designed that can switch from gentle suction to positive pressure to lift and place nanofiber scaffolds. In tissue engineering laboratories, delicate fibrous scaffolds, such as electrospun nanofiber scaffolds, are often used as substrates for cell culture. Typical scaffold handling procedures include lifting the scaffolds, moving them from one container to another, sterilization, and loading scaffolds into cell culture plates. Using tweezers to handle the scaffolds can be slow, can damage the scaffolds, and can cause them to wrinkle or fold. Scaffolds may also acquire a static charge which makes them difficult to put down as they cling to tweezers. An SHD has been designed that enables more efficient, gentle lifting, and placement of delicate scaffolds. Most of the parts to make the SHD can be purchased, except for the tip which can be 3D-printed. The SHD enables more reliable handling of nanofiber scaffolds that may improve the consistency of biomanufacturing processes.

  3. Product design enhancement using apparent usability and affective quality.

    Science.gov (United States)

    Seva, Rosemary R; Gosiaco, Katherine Grace T; Santos, Ma Crea Eurice D; Pangilinan, Denise Mae L

    2011-03-01

    In this study, apparent usability and affective quality were integrated in a design framework called the Usability Perception and Emotion Enhancement Model (UPEEM). The UPEEM was validated using structural equation modeling (SEM). The methodology consists of four phases namely product selection, attribute identification, design alternative generation, and design alternative evaluation. The first stage involved the selection of a product that highly involves the consumer. In the attribute identification stage, design elements of the product were identified. The possible values of these elements were also determined for use in the experimentation process. Design of experiments was used to identify how the attributes will be varied in the design alternative stage and which of the attributes significantly contribute to affective quality, apparent usability, and desirability in the design evaluation stage. Results suggest that product attributes related to form are relevant in eliciting intense affect and perception of usability in mobile phones especially those directly related to functionality and aesthetics. This study considered only four product attributes among so many due to the constraints of the research design employed. Attributes related to aesthetic perception of a product enhance apparent usability such as those related to dimensional ratios. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation.

    Science.gov (United States)

    Kerckhofs, G; Chai, Y C; Luyten, F P; Geris, L

    2016-04-15

    Biomaterials are a key ingredient to the success of bone tissue engineering (TE), which focuses on the healing of bone defects by combining scaffolds with cells and/or growth factors. Due to the widely variable material characteristics and patient-specificities, however, current bone TE strategies still suffer from low repeatability and lack of robustness, which hamper clinical translation. Hence, optimal TE construct (i.e. cells and scaffold) characteristics are still under debate. This study aimed to reduce the material-specific variability for cell-based construct design, avoiding trial-and-error, by combining microCT characterization and empirical modelling as an innovative and robust screening approach. Via microCT characterization we have built a quantitative construct library of morphological and compositional properties of six CE approved CaP-based scaffolds (CopiOs®, BioOss™, Integra Mozaik™, chronOS Vivify, MBCP™ and ReproBone™), and of their bone forming capacity and in vivo scaffold degradation when combined with human periosteal derived cells (hPDCs). The empirical model, based on the construct library, allowed identification of the construct characteristics driving optimized bone formation, i.e. (a) the percentage of β-TCP and dibasic calcium phosphate, (b) the concavity of the CaP structure, (c) the average CaP structure thickness and (d) the seeded cell amount (taking into account the seeding efficiency). Additionally, the model allowed to quantitatively predict the bone forming response of different hPDC-CaP scaffold combinations, thus providing input for a more robust design of optimized constructs and avoiding trial-and error. This could improve and facilitate clinical translation. Biomaterials that support regenerative processes are a key ingredient for successful bone tissue engineering (TE). However, the optimal scaffold structure is still under debate. In this study, we have provided a useful innovative approach for robust screening

  5. Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E. coli and S. aureus

    Science.gov (United States)

    Chen, Han-qing; Gao, Di; Wang, Bing; Zhao, Rui-fang; Guan, Ming; Zheng, Ling-na; Zhou, Xiao-yan; Chai, Zhi-fang; Feng, Wei-yue

    2014-04-01

    The impact of the gut microbiota on human health is widely perceived as the most exciting advancement in biomedicine. The gut microbiota has been known to play a crucial role in defining states of human health and diseases, and thus becomes a potential new territory for drug targeting. Herein, graphene oxide (GO) interaction with five common human gut bacteria, B. adolescentis, L. acidophilus, E. coli, E. faecalis, and S. aureus, was studied. It was shown that, in bacterial media, GO sheets were able to form effective, anaerobic membrane scaffolds that enhanced the antagonistic activity of B. adolescentis against the pathogens E. coli andS. aureus. Data obtained using bacterial growth measurements, colony counting and 16S rRNA gene sequencing consistently indicated that GO sheets promoted proliferation of gut bacteria, particularly for B. adolescentis. Scanning electron microscopy, atomic force microscopy images, and membrane potential measurements showed that cell membranes maintained their integrity and that no observable variations in cell morphology were induced after interaction with GO sheets, indicating good biocompatibility of GO. These results suggest the possibility of using GO sheets as efficient drug carriers in therapeutic applications to treat diseases related to the gut microbiota.

  6. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting.

    Science.gov (United States)

    Gao, Li; Li, Cuidi; Chen, Fangping; Liu, Changsheng

    2015-06-24

    A novel elastomeric material, poly(1,8-octanediol-co-citrate) (POC), has demonstrated tremendous versatility because of its advantageous toughness, tunable degradation properties, and efficient drug release capability. In this study, POC was used to improve the mechanical performance of β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). (3D) β-TCP/POC composite scaffolds were fabricated by a 3D printing technique based on the freeform fabrication system with micro-droplet jetting (FFS-MDJ). The physiochemical properties, compressive modulus, drug release behavior, and cell response of β-TCP/POC composite scaffolds were systematically investigated. The results showed that β-TCP/POC scaffolds had uniform macropores of 300-400 μm, porosity of approximately 45%, biodegradability in phosphate-buffered saline, and high compressive modulus of 50-75 MPa. With the incorporation of POC into β-TCP, the toughness of the composite scaffolds was improved significantly. Moreover, β-TCP/POC scaffolds exhibited sustained drug (ibuprofen (IBU)) release capability. Additionally, β-TCP/POC scaffolds facilitated C2C12 cell attachment and proliferation. It was indicated that the 3D-printed porous β-TCP/POC scaffolds with high compressive modulus and good drug delivery performance might be a promising candidate for bone defect repair.

  7. Platelet lysate embedded scaffolds for skin regeneration.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  8. Discovery of novel inhibitors of Aurora kinases with indazole scaffold: In silico fragment-based and knowledge-based drug design.

    Science.gov (United States)

    Chang, Chun-Feng; Lin, Wen-Hsing; Ke, Yi-Yu; Lin, Yih-Shyan; Wang, Wen-Chieh; Chen, Chun-Hwa; Kuo, Po-Chu; Hsu, John T A; Uang, Biing-Jiun; Hsieh, Hsing-Pang

    2016-11-29

    Aurora kinases have emerged as important anticancer targets so that there are several inhibitors have advanced into clinical study. Herein, we identified novel indazole derivatives as potent Aurora kinases inhibitors by utilizing in silico fragment-based approach and knowledge-based drug design. After intensive hit-to-lead optimization, compounds 17 (dual Aurora A and B), 21 (Aurora B selective) and 30 (Aurora A selective) possessed indazole privileged scaffold with different substituents, which provide sub-type kinase selectivity. Computational modeling helps in understanding that the isoform selectivity could be targeted specific residue in the Aurora kinase binding pocket in particular targeting residues Arg220, Thr217 or Glu177. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions.

    Science.gov (United States)

    Verdonk, René; Verdonk, Peter; Huysse, Wouter; Forsyth, Ramses; Heinrichs, Eva-Lisa

    2011-04-01

    A novel, biodegradable, aliphatic polyurethane scaffold was designed to fulfill an unmet clinical need in the treatment of patients with irreparable partial meniscal lesions. Treatment of irreparable partial meniscal lesions with an acellular polyurethane scaffold supports new tissue ingrowth. Case series; Level of evidence, 4. Fifty-two patients (with 34 medial and 18 lateral lesions) were recruited into a prospective, single-arm, multicenter, proof-of-principle study and treated with the polyurethane scaffold. The scaffold was implanted after partial meniscectomy using standard surgeon-preferred techniques for suturing. Tissue ingrowth was assessed at 3 months by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and at 12 months by gross examination during second-look arthroscopy, in the course of which a biopsy sample from the inner free edge of the scaffold meniscus was taken for qualitative histologic analysis. Tissue ingrowth at 3 months was demonstrated on DCE-MRI in 35 of 43 (81.4%) patients. All but one 12-month second-look (43 of 44 [97.7%]) showed integration of the scaffold with the native meniscus and all biopsy specimens (44) showed fully vital material, with no signs of cell death or necrosis. Three distinct layers were observed based on morphologic structure, vessel structure presence or absence, and extracellular matrix composition. The DCE-MRI demonstrated successful early tissue ingrowth into the scaffold. The biopsy findings demonstrated the biocompatibility of the scaffold and ingrowth of tissue with particular histologic characteristics suggestive of meniscus-like tissue. In conclusion, these data show for the first time consistent regeneration of tissue when using an acellular polyurethane scaffold to treat irreparable partial meniscus tissue lesions.

  10. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

    Science.gov (United States)

    Rodrigues, Márcia T; Martins, Albino; Dias, Isabel R; Viegas, Carlos A; Neves, Nuno M; Gomes, Manuela E; Reis, Rui L

    2012-11-01

    Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(ϵ-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in g

  11. Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures

    Directory of Open Access Journals (Sweden)

    Hernan Lara-Padilla

    2017-06-01

    Full Text Available The combination of different materials and capabilities to manufacture at several scales open new possibilities in scaffold design for bone regeneration. This work is focused on bimodal scaffolds that combine polylactic acid (PLA melt extruded strands with polycaprolactone (PCL electrospun fibers. This type of bimodal scaffold offers better mechanical properties, compared to the use of PCL for the extruded strands, and provides potential a means for controlled drug and/or growth factor delivery through the electrospun fibers. The technologies of fused deposition modeling (FDM and electrospinning were combined to create 3D bimodal constructs. The system uses a controlled cooling system allowing the combination of polymers with different melting temperatures to generate integrated scaffold architecture. The thermoplastic polymers used in the FDM process enhance the mechanical properties of the bimodal scaffold and control the pore structure. Integrated layers of electrospun microfibers induce an increase of the surface area for cell culture purposes, as well as potential in situ controlled drug and/or growth factor delivery. The proposed bimodal scaffolds (PLA extruded strands and PCL electrospun fibers show appropriate morphology and better mechanical properties when compared to the use of PCL extruded strands. On average, bimodal scaffolds with overall dimensions of 30 × 30 × 2.4 mm3 (strand diameter of 0.5 mm, strand stepover of 2.5 mm, pore size of 2 mm, and layer height of 0.3 mm showed scaffold stiffness of 23.73 MPa and compression strength of 3.85 MPa. A cytotoxicity assay based human fibroblasts showed viability of the scaffold materials.

  12. Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds

    Science.gov (United States)

    Lan, Sheeny K.

    osteoinductive proteins. To further investigate the effects of scaffold osteoinductivity, BCP scaffolds were implanted in porcine mandibular defects with rhBMP-2, which was partially sequestered in the micropores. Cell migration into osteoinductive scaffold micropores can be enhanced through the delivery of exogenous rhBMP-2 further promoting multi-scale osteointegration. Finally, endothelial colony forming cells (ECFCs) isolated from human umbilical cord blood (UCB) were evaluated in terms of their in vivo vasculogenic potential in the context of bone formation. This work was completed to determine if ECFCs could be utilized in a bone tissue engineering construct to promote neovascularization. ECFCs were combined with a BCP scaffold and rhBMP-2 and implanted subcutaneously on the abdominal wall of NOD/SCID mice. The result was formation of perfused human vessels within BCP scaffold macropores that were present at 4 weeks. The high density and persistence of human vessels at four weeks indicates that human UCB ECFCs exceed their reported in vivo vasculogenic potential when combined with rhBMP-2 and a BCP scaffold. This shows a dual role for BMP-2 in the context of bone regeneration. Collectively, the thesis demonstrates that (1) the design of synthetic bone scaffolds should include controlled multi-scale porosity to promote multi-scale osteointegration, which may significantly improve scaffold mechanical properties and (2) human umbilical cord blood-derived endothelial colony forming cells have potential for promoting neovascularization in a bone defect when combined with rhBMP-2.

  13. An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning

    Science.gov (United States)

    Chen, Ching-Huei

    2014-01-01

    This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…

  14. Wearable design issues for electronic vision enhancement systems

    Science.gov (United States)

    Dvorak, Joe

    2006-09-01

    As the baby boomer generation ages, visual impairment will overtake a significant portion of the US population. At the same time, more and more of our world is becoming digital. These two trends, coupled with the continuing advances in digital electronics, argue for a rethinking in the design of aids for the visually impaired. This paper discusses design issues for electronic vision enhancement systems (EVES) [R.C. Peterson, J.S. Wolffsohn, M. Rubinstein, et al., Am. J. Ophthalmol. 136 1129 (2003)] that will facilitate their wearability and continuous use. We briefly discuss the factors affecting a person's acceptance of wearable devices. We define the concept of operational inertia which plays an important role in our design of wearable devices and systems. We then discuss how design principles based upon operational inertia can be applied to the design of EVES.

  15. Mechanical anisotropy of titanium scaffolds

    Directory of Open Access Journals (Sweden)

    Rüegg Jasmine

    2017-09-01

    Full Text Available The clinical performance of an implant, e.g. for the treatment of large bone defects, depends on the implant material, anchorage, surface topography and chemistry, but also on the mechanical properties, like the stiffness. The latter can be adapted by the porosity. Whereas foams show isotropic mechanical properties, digitally modelled scaffolds can be designed with anisotropic behaviour. In this study, we designed and produced 3D scaffolds based on an orthogonal architecture and studied its angle-dependent stiffness. The aim was to produce scaffolds with different orientations of the microarchitecture by selective laser melting and compare the angle-specific mechanical behaviour with an in-silico simulation. The anisotropic characteristics of open-porous implants and technical limitations of the production process were studied.

  16. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Directory of Open Access Journals (Sweden)

    Anusuya Das

    Full Text Available In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid (PLAGA microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2 improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3 via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1 mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  17. Incorporation of iloprost in phospholipase-resistant phospholipid scaffold enhances its barrier protective effects on pulmonary endothelium.

    Science.gov (United States)

    Oskolkova, Olga; Sarich, Nicolene; Tian, Yufeng; Gawlak, Grzegorz; Meng, Fanyong; Bochkov, Valery N; Berdyshev, Evgeny; Birukova, Anna A; Birukov, Konstantin G

    2018-01-17

    Correction of barrier dysfunction and inflammation in acute lung injury (ALI) represents an important problem. Previous studies demonstrate barrier-protective and anti-inflammatory effects of bioactive lipid prostacyclin and its stable analog iloprost (ILO). We generated a phospholipase resistant synthetic phospholipid with iloprost attached at the sn-2 position (ILO-PC) and investigated its biological effects. In comparison to free ILO, ILO-PC caused sustained endothelial cell (EC) barrier enhancement, linked to more prolonged activation of Rap1 and Rac1 GTPases and their cytoskeletal and cell junction effectors: cortactin, PAK1, p120-catenin and VE-cadherin. ILO and ILO-PC equally efficiently suppressed acute, Rho GTPase-dependent EC hyper-permeability caused by thrombin. However, ILO-PC exhibited more sustained barrier-protective and anti-inflammatory effects in the model of chronic EC dysfunction caused by bacterial wall lipopolysacharide (LPS). ILO-PC was also more potent inhibitor of NFκB signaling and lung vascular leak in the murine model of LPS-induced ALI. Treatment with ILO-PC showed more efficient ALI recovery over 3 days after LPS challenge than free ILO. In conclusion, this study describes a novel synthetic phospholipid with barrier-enhancing and anti-inflammatory properties superior to existing prostacyclin analogs, which may be used as a prototype for future development of more efficient treatment for ALI and other vascular leak syndromes.

  18. The effects of scaffolding metacognitive activities in small groups

    NARCIS (Netherlands)

    Molenaar, I.; Boxtel, C.A.M. van; Sleegers, P.J.C.

    2010-01-01

    This study examined the effects of scaffolds on triads’ metacognitive activities in complex open learning environments. In an experimental design, two experimental groups receiving scaffolds were compared with a control group. The experimental groups differed in the form of scaffolding messages

  19. Design and Development of Potential Tissue Engineering Scaffolds from Structurally Different Longitudinal Parts of a Bovine-Femur

    Science.gov (United States)

    Pramanik, Sumit; Pingguan-Murphy, Belinda; Cho, Jongman; Osman, Noor Azuan Abu

    2014-07-01

    The complex architecture of the cortical part of the bovine-femur was examined to develop potential tissue engineering (TE) scaffolds. Weight-change and X-ray diffraction (XRD) results show that significant phase transformation and morphology conversion of the bone occur at 500-750°C and 750-900°C, respectively. Another breakthrough finding was achieved by determining a sintering condition for the nucleation of hydroxyapatite crystal from bovine bone via XRD technique. Scanning electron microscopy results of morphological growth suggests that the concentration of polymer fibrils increases (or decreases, in case of apatite crystals) from the distal to proximal end of the femur. Energy-dispersive analysis of X-ray, Fourier transform infrared, micro-computer tomography, and mechanical studies of the actual composition also strongly support our microscopic results and firmly indicate the functionally graded material properties of bovine-femur. Bones sintered at 900 and 1000°C show potential properties for soft and hard TE applications, respectively.

  20. Tolerogenic responses of CD206+, CD83+, FOXP3+, and CTLA-4 to sericin/polyvinyl alcohol/glycerin scaffolds relevant to IL-33 and HSP60 activity.

    Science.gov (United States)

    Ampawong, Sumate; Aramwit, Pornanong

    2016-09-01

    Silk sericin-releasing (sericin/polyvinyl alcohol (PVA)/glycerin) scaffolds have been designed for wound dressing applications using different fabrication techniques that influence scaffold antigenicity. The immunological tolerance of scaffolds depends on the balance of immunogenic and tolerogenic responses modulated by dendritic cells (DCs). An in vivo skin implantation model was used to compare the tolerogenic effect of sericin/PVA/glycerin scaffolds prepared by freeze-drying versus salt-leaching techniques, using an Allevyn® scaffold as a control. Immunohistochemical and histopathological studies were performed to evaluate tolerogenic DCs (CD206+), immunogenic DCs (CD83+), regulatory T-cells (FOXP3+ and CTLA-4), a proinflammatory cytokine (interleukin 33: IL-33), a stress marker (heat shock protein 60; HSP60), histopathological changes and related inflammatory cells. It was found that both sericin/PVA/glycerin scaffolds were tolerogenic and induced early activated Treg functions, while the Allevyn® scaffold was immunogenic. However, the tolerance of the freeze-dried sericin/PVA/glycerin scaffolds was not as consistent as the salt-leached sericin/PVA/glycerin scaffolds, indicated by the low level of CTLA-4 expression. This was probably due to molecular cross-linking and the morphological and mechanical properties of the freeze-drying technique, which would enhance the immune response. Severe inflammatory responses (including mast cell degranulation and foreign body giant cell accumulation) and histopathological changes (including fat infiltration and fibrosis formation) were mainly found with the Allevyn® scaffold, presumably from its architecture and chemical composition, especially polyurethane. The up-regulation of IL-33 and HSP60 with the Allevyn® scaffold was correlated with the inflammatory and pathological levels. Our findings suggested that salt-leached sericin/PVA/glycerin scaffolds were tolerogenic, induced a low inflammatory response and were

  1. Stimulation of vascularization of a subcutaneous scaffold applicable for pancreatic islet-transplantation enhances immediate post-transplant islet graft function but not long-term normoglycemia

    OpenAIRE

    Smink, Alexandra M.; Shiri, Li; Swart, Daniël H; Hertsig, Don T; de Haan, Bart J.; Kamps, Jan A A M; Schwab, Leendert; van Apeldoorn, Aart A.; de Koning, Eelco; Faas, Marijke M.; Lakey, Jonathan R.T.; Vos, Paul

    2017-01-01

    Abstract The liver as transplantation site for pancreatic islets is associated with significant loss of islets, which can be prevented by grafting in a prevascularized, subcutaneous scaffold. Supporting vascularization of a scaffold to limit the period of ischemia is challenging and was developed here by applying liposomes for controlled release of angiogenic factors. The angiogenic capacity of platelet?derived growth factor, vascular endothelial growth factor, acidic fibroblast growth factor...

  2. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  3. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    Science.gov (United States)

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  4. Moving beyond "Yes" or "No": Shifting from Over-Scaffolding to Contingent Scaffolding in Literacy Instruction with Emergent Bilingual Students

    Science.gov (United States)

    Daniel, Shannon M.; Martin-Beltrán, Melinda; Peercy, Megan Madigan; Silverman, Rebecca

    2016-01-01

    Building on theories of scaffolding and previous research on scaffolding between adults and children, this article provides empirical examples of over-scaffolding as it occurs in peer-to-peer literacy activities among elementary-level emergent bilingual students. In their analysis of data from the first year of a design-based research project…

  5. A Rationally Designed TNF-α Epitope-Scaffold Immunogen Induces Sustained Antibody Response and Alleviates Collagen-Induced Arthritis in Mice.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases.

  6. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...... and yield-driven design. We illustrate our results using a capacitively-loaded two-section impedance transformer, a single-resonator waveguide filter and a six-section H-plane waveguide filter....

  7. In Vivo Imaging Study of Angiogenesis in a Channelized Porous Scaffold

    Directory of Open Access Journals (Sweden)

    Margherita Tamplenizza

    2015-05-01

    Full Text Available The main scientific issue hindering the development of tissue engineering technologies is the lack of proper vascularization. Among the various approaches developed for boosting vascularization, scaffold design has attracted increasing interest over the last few years. The aim of this article is to illustrate a scaffold design strategy for enhancing vascularization based on sacrificial microfabrication of embedded microchannels. This approach was combined with an innovative poly(ether urethane urea (PEUtU porous scaffold to provide an alternative graft substitute material for the treatment of tissue defects. Fluorescent and chemiluminescent imaging combined with computed tomography were used to study the behavior of the scaffold composition within living subjects by analyzing angiogenesis and inflammation processes and observing the variation in x-ray absorption, respectively. For this purpose, an IntegriSense 680 probe was used in vivo for the localization and quantification of integrin αvβ3, due to its critical involvement in angiogenesis, and a XenoLight RediJect Inflammation Probe for the study of the decline in inflammation progression during healing. Overall, the collected data suggest the advantages of embedding a synthetic vascular network into a PEUtU porous matrix to enhance in vivo tissue integration, maturation, and regeneration. Moreover, our imaging approach proved to be an efficient and versatile tool for scaffold in vivo testing.

  8. Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications - A brief review.

    Science.gov (United States)

    Naghieh, Saman; Sarker, Md; Izadifar, Mohammad; Chen, Xiongbiao

    2018-02-01

    Over the past decades, significant progress has been achieved in the field of tissue engineering (TE) to restore/repair damaged tissues or organs and, in this regard, scaffolds made from biomaterials have played a critical role. Notably, recent advances in biomaterials and three-dimensional (3D) printing have enabled the manipulation of two or more biomaterials of distinct, yet complementary, mechanical and/or biological properties to form so-called hybrid scaffolds mimicking native tissues. Among various biomaterials, hydrogels synthesized to incorporate living cells and/or biological molecules have dominated due to their hydrated tissue-like environment. Moreover, dispensing-based bioprinting has evolved to the point that it can now be used to create hybrid scaffolds with complex structures. However, the complexities associated with multi-material bioprinting and synthesis of hydrogels used for hybrid scaffolds pose many challenges for their fabrication. This paper presents a brief review of dispensing-based bioprinting of hybrid scaffolds for TE applications. The focus is on the design and fabrication of hybrid scaffolds, including imaging techniques, potential biomaterials, physical architecture, mechanical properties, cell viability, and the importance of vessel-like channels. The key issues and challenges for dispensing-based bioprinting of hybrid scaffolds are also identified and discussed along with recommendations for future research directions. Addressing these issues will significantly enhance the design and fabrication of hybrid scaffolds to and pave the way for translating them into clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Scaffolder - software for manual genome scaffolding

    Directory of Open Access Journals (Sweden)

    Barton Michael D

    2012-05-01

    Full Text Available Abstract Background The assembly of next-generation short-read sequencing data can result in a fragmented non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together these considerations may make reproducing or editing an existing genome scaffold difficult. Methods The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format which is both human and machine-readable. Command line binaries and extensive documentation are available. Results This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with large FASTA nucleotide sequences. Conclusions Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs.

  10. Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering.

    Science.gov (United States)

    Ramphul, Honita; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-12-15

    Bagasse is a waste product of sugar extraction from sugar-cane with approximately 30% cellulose content. Cellulose was successfully extracted from sugar-cane bagasse using a modified mercerization-bleaching approach with a 40% yield. Extracted cellulose was converted to cellulose acetate for enhanced electrospinnability and blended with poly-l-Lactide or polydioxanone before solution electrospinning. Physico-chemical evaluation of the electrospun mats showed variable miscibility of blends. In vitro cell studies with L929 mouse fibroblast cells was quite conclusive as regards the biocompatibility of the blended mats with proliferative behavior of cells, extracellular matrix deposition and characteristic features of healthy cellular response. MTT assay indicated that the cellulose blended mats induced higher cell densities than the controls. Cellulose content influenced parameters such as fiber diameter, porosity and cell-matrix interaction of mats impacting on cell growth and behavior. Preliminary assessment of biomineralization potential of the mats by SEM showed nano-hydroxyapatite deposits on the electrospun fibers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  12. Participatory design and validation of mobility enhancement robotic wheelchair.

    Science.gov (United States)

    Daveler, Brandon; Salatin, Benjamin; Grindle, Garrett G; Candiotti, Jorge; Wang, Hongwu; Cooper, Rory A

    2015-01-01

    The design of the mobility enhancement robotic wheelchair (MEBot) was based on input from electric powered wheelchair (EPW) users regarding the conditions they encounter when driving in both indoor and outdoor environments that may affect their safety and result in them becoming immobilized, tipping over, or falling out of their wheelchair. Phase I involved conducting a participatory design study to understand the conditions and barriers EPW users found to be difficult to drive in/over. Phase II consisted of creating a computer-aided design (CAD) prototype EPW to provide indoor and outdoor mobility that addressed these conditions with advanced applications. Phase III involved demonstrating the advanced applications and gathering feedback from end users about the likelihood they would use the advanced applications. The CAD prototype incorporated advanced applications, including self-leveling, curb climbing, and traction control, that addressed the challenging conditions and barriers discussed with EPW users (n = 31) during the participatory design study. Feedback of the CAD design and applications in phase III from end users (n = 12) showed a majority would use self-leveling (83%), traction control (83%), and curb climbing (75%). The overall design of MEBot received positive feedback from EPW users. However, these opinions will need to be reevaluated through user trials as the design advances.

  13. Undergraduate courses for enhancing design ability in naval architecture

    Science.gov (United States)

    Lee, Kyu-Yeul; Ku, Namkug; Cha, Ju-Hwan

    2013-09-01

    Contemporary lectures in undergraduate engineering courses typically focus on teaching major technical knowledge-based theories in a limited time. Therefore, most lectures do not allow the students to gain understanding of how the theories are applied, especially in Naval Architecture and Ocean Engineering departments. Shipyards require students to acquire practical ship design skills in undergraduate courses. To meet this requirement, two lectures are organized by the authors; namely, "Planning Procedure of Naval Architecture & Ocean Engineering" (PNAOE) and "Innovative Ship Design" (ISD). The concept of project-based and collaborative learning is applied in these two lectures. In the PNAOE lecture, sophomores receive instruction in the designing and building of model ships, and the students' work is evaluated in a model ship contest. This curriculum enables students to understand the concepts of ship design and production. In the ISD lecture, seniors learn how to develop their creative ideas about ship design and communicate with members of group. They are encouraged to cooperate with others and understand the ship design process. In the capstone design course, students receive guidance to facilitate understanding of how the knowledge from their sophomore or junior classes, such as fluid mechanics, statics, and dynamics, can be applied to practical ship design. Students are also encouraged to compete in the ship design contest organized by the Society of Naval Architects of Korea. Moreover, the effectiveness of project-based and collaborative learning for enhancing interest in the shipbuilding Industry and understanding the ship design process is demonstrated by citing the PNAOE and ISD lectures as examples.

  14. Biomimetic Multispiked Connecting Ti-Alloy Scaffold Prototype for Entirely-Cementless Resurfacing Arthroplasty Endoprostheses—Exemplary Results of Implantation of the Ca-P Surface-Modified Scaffold Prototypes in Animal Model and Osteoblast Culture Evaluation

    Directory of Open Access Journals (Sweden)

    Ryszard Uklejewski

    2016-06-01

    Full Text Available We present here—designed, manufactured, and tested by our research team—the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold interfacing the components of resurfacing arthroplasty (RA endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the

  15. Biomimetic Multispiked Connecting Ti-Alloy Scaffold Prototype for Entirely-Cementless Resurfacing Arthroplasty Endoprostheses-Exemplary Results of Implantation of the Ca-P Surface-Modified Scaffold Prototypes in Animal Model and Osteoblast Culture Evaluation.

    Science.gov (United States)

    Uklejewski, Ryszard; Rogala, Piotr; Winiecki, Mariusz; Tokłowicz, Renata; Ruszkowski, Piotr; Wołuń-Cholewa, Maria

    2016-06-29

    We present here-designed, manufactured, and tested by our research team-the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold) interfacing the components of resurfacing arthroplasty (RA) endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like) coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine) and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP) activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the enhancement of the

  16. Biomimetic Multispiked Connecting Ti-Alloy Scaffold Prototype for Entirely-Cementless Resurfacing Arthroplasty Endoprostheses—Exemplary Results of Implantation of the Ca-P Surface-Modified Scaffold Prototypes in Animal Model and Osteoblast Culture Evaluation

    Science.gov (United States)

    Uklejewski, Ryszard; Rogala, Piotr; Winiecki, Mariusz; Tokłowicz, Renata; Ruszkowski, Piotr; Wołuń-Cholewa, Maria

    2016-01-01

    We present here—designed, manufactured, and tested by our research team—the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold) interfacing the components of resurfacing arthroplasty (RA) endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like) coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine) and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP) activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the enhancement of the

  17. Scaffolding shared learning about sustainable futures between design engineering students, users, and a smart grid project team

    NARCIS (Netherlands)

    Dr. Ir. Remko van der Lugt; Coen Steenhuisen

    2013-01-01

    Like the professionals, design students tend to avoid the complexity of the user context, and moral issues are largely overlooked. This inspired us to explore whether we could engage design students in thinking about moral issues by exploring different ethical frameworks in their designing. As a

  18. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance.

    Science.gov (United States)

    Jahangir, Mohammed Asadullah; Khan, Ruqaiyah; Sarim Imam, Syed

    2017-12-09

    The aim of the study to formulate and statistically optimize sitagliptin-loaded eudragit nanoparticles (SIT-NPs) and evaluate the in-vitro pharmaceutical quality and in-vivo anti-diabetic assessment. SIT-NPs were prepared by using combination method of solvent evaporation and nano-precipitation techniques. The influence of different independent variables as eudragit RL100 concentration (%), tween 80 concentration (%) and sonication time (min) were evaluated on dependent variables like particle size (nm), drug loading (%) and in-vitro drug release (%). Further, the optimized formulation was evaluated for surface morphology, CLSM, ex-vivo permeation study and in-vivo anti-diabetic activity and stability study. The developed SIT-NPs formulations showed particle size range (135.86-193.45 nm), drug loading (6.36-8.76%) and prolonged drug release over 24 h. The prepared SIT-NPs were found to be nearly spherical with smooth surface. The comparative in-vitro release study and CLSM study results revealed that SIT-NPopt showed significantly (p anti-diabetic assessment revealed that SIT-NPopt able to reduce the blood sugar level (BSL) for a prolonged period of time. Further, the stability study data showed the formulations were found stable at both temperature and having the shelf life of 488 d. This research has shown that SIT-NPs based on experimental design offers a new and better approach to delivering SIT, thus encouraging further development of this formulation.

  19. Undergraduate courses for enhancing design ability in naval architecture

    Directory of Open Access Journals (Sweden)

    Kyu-Yeul Lee

    2013-09-01

    Full Text Available Contemporary lectures in undergraduate engineering courses typically focus on teaching major technical knowledge-based theories in a limited time. Therefore, most lectures do not allow the students to gain understanding of how the theories are applied, especially in Naval Architecture and Ocean Engineering departments. Shipyards require students to acquire practical ship design skills in undergraduate courses. To meet this requirement, two lectures are organized by the authors; namely, “Planning Procedure of Naval Architecture & Ocean Engineering” (PNAOE and “Innovative Ship Design” (ISD. The concept of project-based and collaborative learning is applied in these two lectures. In the PNAOE lecture, sophomores receive instruction in the designing and building of model ships, and the students' work is evaluated in a model ship contest. This curriculum enables students to understand the concepts of ship design and production. In the ISD lecture, seniors learn how to develop their creative ideas about ship design and communicate with members of group. They are encouraged to cooperate with others and understand the ship design process. In the capstone design course, students receive guidance to facilitate understanding of how the knowledge from their sophomore or junior classes, such as fluid mechanics, statics, and dynamics, can be applied to practical ship design. Students are also encouraged to compete in the ship design contest organized by the Society of Naval Architects of Korea. Moreover, the effectiveness of project-based and collaborative learning for enhancing interest in the shipbuilding Industry and understanding the ship design process is demonstrated by citing the PNAOE and ISD lectures as examples.

  20. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility.

    Science.gov (United States)

    Tan, X P; Tan, Y J; Chow, C S L; Tor, S B; Yeong, W Y

    2017-07-01

    Metallic cellular scaffold is one of the best choices for orthopaedic implants as a replacement of human body parts, which could improve life quality and increase longevity for the people needed. Unlike conventional methods of making cellular scaffolds, three-dimensional (3D) printing or additive manufacturing opens up new possibilities to fabricate those customisable intricate designs with highly interconnected pores. In the past decade, metallic powder-bed based 3D printing methods emerged and the techniques are becoming increasingly mature recently, where selective laser melting (SLM) and selective electron beam melting (SEBM) are the two representatives. Due to the advantages of good dimensional accuracy, high build resolution, clean build environment, saving materials, high customisability, etc., SLM and SEBM show huge potential in direct customisable manufacturing of metallic cellular scaffolds for orthopaedic implants. Ti-6Al-4V to date is still considered to be the optimal materials for producing orthopaedic implants due to its best combination of biocompatibility, corrosion resistance and mechanical properties. This paper presents a state-of-the-art overview mainly on manufacturing, topological design, mechanical properties and biocompatibility of cellular Ti-6Al-4V scaffolds via SLM and SEBM methods. Current manufacturing limitations, topological shortcomings, uncertainty of biocompatible test were sufficiently discussed herein. Future perspectives and recommendations were given at the end. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties

    Science.gov (United States)

    Li, Cuidi; Jiang, Chuan; Deng, Yuan; Li, Tao; Li, Ning; Peng, Mingzheng; Wang, Jinwu

    2017-01-01

    A major limitation in the development of effective scaffolds for bone regeneration has been the limited vascularization of the regenerating tissue. Here, we propose the development of a novel calcium phosphate cement (CPC)-based scaffold combining the properties of mesoporous silica (MS) with recombinant human bone morphogenic protein-2 (rhBMP-2) to facilitate vascularization and osteogenesis. Specifically, the development of a custom MS/CPC paste allowed the three-dimensional (3D) printing of scaffolds with a defined macroporous structure and optimized silicon (Si) ions release profile to promote the ingrowth of vascular tissue at an early stage after implantation in support of tissue viability and osteogenesis. In addition, the scaffold microstructure allowed the prolonged release of rhBMP-2, which in turn significantly stimulated the osteogenesis of human bone marrow stromal cells in vitro and of bone regeneration in vivo as shown in a rabbit femur defect repair model. Thus, the combination MS/CPC/rhBMP-2 scaffolds might provide a solution to issues of tissue necrosis during the regeneration process and therefore might be able to be readily developed into a useful tool for bone repair in the clinic.

  2. New developments in 3D liquid crystal elastomers scaffolds for tissue engineering: from physical template to responsive substrate

    Science.gov (United States)

    Prévôt, Marianne E.; Bergquist, Leah E.; Sharma, Anshul; Mori, Taizo; Gao, Yungxiang; Bera, Tanmay; Zhu, Chenhui; Leslie, Michelle T.; Cukelj, Richard; Korley, LaShanda T. J.; Freeman, Ernest J.; McDonough, Jennifer A.; Clements, Robert J.; Hegmann, Elda

    2017-08-01

    We report here on cell growth and proliferation within a 3D architecture created using smectic liquid crystal elastomers (LCEs) leading to a responsive scaffold for tissue engineering. The investigated LCE scaffolds exhibit biocompatibility, controlled degradability, with mechanical properties and morphologies that can match development of the extracellular matrix. Moreover, the synthetic pathway and scaffold design offer a versatility of processing, allowing modifications of the surface such as adjusting the hydrophilic/hydrophobic balance and the mobility of the LC moieties to enhance the biomaterial performance. First, we succeeded in generating LCEs whose mechanical properties mimic muscle tissue. In films, our LCEs showed cell adhesion, proliferation, and alignment. We also achieved creating 3D LCE structures using either metallic template or microsphere scaffolds. Finally, we recorded a four times higher cell proliferation capability in comparison to conventional porous films and, most importantly, anisotropic cell growth that highlights the tremendous effect of liquid crystal moieties within LCEs on the cell environment.

  3. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes.

    Science.gov (United States)

    Daniel, A R; Gaviglio, A L; Knutson, T P; Ostrander, J H; D'Assoro, A B; Ravindranathan, P; Peng, Y; Raj, G V; Yee, D; Lange, C A

    2015-01-22

    Progesterone and estrogen are important drivers of breast cancer proliferation. Herein, we probed estrogen receptor-α (ER) and progesterone receptor (PR) cross-talk in breast cancer models. Stable expression of PR-B in PR-low/ER+ MCF7 cells increased cellular sensitivity to estradiol and insulin-like growth factor 1 (IGF1), as measured in growth assays performed in the absence of exogenous progestin; similar results were obtained in PR-null/ER+ T47D cells stably expressing PR-B. Genome-wide microarray analyses revealed that unliganded PR-B induced robust expression of a subset of estradiol-responsive ER target genes, including cathepsin-D (CTSD). Estradiol-treated MCF7 cells stably expressing PR-B exhibited enhanced ER Ser167 phosphorylation and recruitment of ER, PR and the proline-, glutamate- and leucine-rich protein 1 (PELP1) to an estrogen response element in the CTSD distal promoter; this complex co-immunoprecipitated with IGF1 receptor (IGFR1) in whole-cell lysates. Importantly, ER/PR/PELP1 complexes were also detected in human breast cancer samples. Inhibition of IGF1R or phosphoinositide 3-kinase blocked PR-B-dependent CTSD mRNA upregulation in response to estradiol. Similarly, inhibition of IGF1R or PR significantly reduced ER recruitment to the CTSD promoter. Stable knockdown of endogenous PR or onapristone treatment of multiple unmodified breast cancer cell lines blocked estradiol-mediated CTSD induction, inhibited growth in soft agar and partially restored tamoxifen sensitivity of resistant cells. Further, combination treatment of breast cancer cells with both onapristone and IGF1R tyrosine kinase inhibitor AEW541 was more effective than either agent alone. In summary, unliganded PR-B enhanced proliferative responses to estradiol and IGF1 via scaffolding of ER-α/PELP1/IGF1R-containing complexes. Our data provide a strong rationale for targeting PR in combination with ER and IGF1R in patients with luminal breast cancer.

  4. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    Science.gov (United States)

    Marchioli, G; van Gurp, L; van Krieken, P P; Stamatialis, D; Engelse, M; van Blitterswijk, C A; Karperien, M B J; de Koning, E; Alblas, J; Moroni, L; van Apeldoorn, A A

    2015-05-28

    In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate blood mediated inflammatory response, lack of vascularization, and allo- and autoimmunity. Bioengineered scaffolds can potentially provide an alternative extra-hepatic transplantation site for islets by improving nutrient diffusion and blood supply to the scaffold. This would ultimately result in enhanced islet viability and functionality compared to conventional intra portal transplantation. In this regard, the biomaterial choice, the three-dimensional (3D) shape and scaffold porosity are key parameters for an optimal construct design and, ultimately, transplantation outcome. We used 3D bioplotting for the fabrication of a 3D alginate-based porous scaffold as an extra-hepatic islet delivery system. In 3D-plotted alginate scaffolds the surface to volume ratio, and thus oxygen and nutrient transport, is increased compared to conventional bulk hydrogels. Several alginate mixtures have been tested for INS1E β-cell viability. Alginate/gelatin mixtures resulted in high plotting performances, and satisfactory handling properties. INS1E β-cells, human and mouse islets were successfully embedded in 3D-plotted constructs without affecting their morphology and viability, while preventing their aggregation. 3D plotted scaffolds could help in creating an alternative extra-hepatic transplantation site. In contrast to microcapsule embedding, in 3D plotted scaffold islets are confined in one location and blood vessels can grow into the pores of the construct, in closer contact to the embedded tissue. Once revascularization has occurred, the functionality is fully restored upon degradation of the scaffold.

  5. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].

    Science.gov (United States)

    Lian, Qin; Zhuang, Pei; Li, Changhai; Jin, Zhongmin; Li, Dichen

    2014-03-01

    To improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/beta-tricalcium phosphate (PLA/beta-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. The designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/beta-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. Morphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and beta-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold [(21.25 +/- 1.15) MPa] was higher than that of the single-channel scaffold[ (9.76 +/- 0.64) MPa]. The double-channel composite scaffolds fabricated by 3-D printing technique have

  6. Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf.

    Science.gov (United States)

    Ko, Sung Won; Soriano, Juan Paolo E; Lee, Ji Yeon; Unnithan, Afeesh Rajan; Park, Chan Hee; Kim, Cheol Sang

    2017-10-18

    Through exhaustive extraction via successive alkali and bleaching treatments cellulose was isolated from lettuce. The isolated cellulose was hydrolyzed using 64wt% H 2 SO 4 at 55°C under constant stirring for 1h to obtain cellulose nanocrystals (CNCs). Characterizations such as SEM, TEM, FTIR, TGA and XRD were done in order to determine differences in the physico-chemical characteristics of cellulose after each treatment step. The isolated CNCs have mean dimensions of 237±26, 33±12 and 32±7nm in length, thickness and height, respectively. These nanocrystals were incorporated to the formulations that were used to fabricate different chitosan-g-d,l-lactic acid (CgLA) scaffolds. Amide linkage formation between chitosan and lactic acid and further removal of water was facilitated by oven-drying under vacuum at 80°C. Results show that an increase in the concentration of CNCs added, increase in porosity, degradability, drug release property and cell viability were observed from the fabricated composite scaffolds. These results can provide information on how nanofillers such as CNCs can alter the properties of tissue scaffolds through the chemical properties and interactions they provide. Moreover, these characteristics can give new properties that are necessary for certain tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Recombinant protein scaffolds for tissue engineering.

    Science.gov (United States)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-02-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation.

  8. Scaffolding in Mobile Science Enquiry-based Learning Using Ontologies

    Directory of Open Access Journals (Sweden)

    Sohaib Ahmed

    2012-08-01

    Full Text Available The use of ontologies has become increasingly widespread in many areas, particularly in technology enhanced learning. They appear promising in supporting knowledge representation and learning content creation for domains of interest. In this paper, we show how ontology-based scaffolding has helped mobile learners to perform scientific enquiry investigations. Enquiry-based learning aims to provide educational activities and tools to assists students to learn science by doing science. In this study, a design science research approach was taken to creating an ontology-driven application for a science content domain, which has been evaluated with high school science students. The results showed the significant value of ontologies in scaffolding learning content in such enquiry-based learning environments. With this application, students were found to learn science in more meaningful and engaged ways as well as developing positive attitudes towards mobile learning.

  9. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.

    Science.gov (United States)

    Hou, Min; Wu, Qingkai; Dai, Miao; Xu, Peirong; Gu, Chaochen; Jia, Xiang; Feng, Jie; Mo, Xiumei

    2014-12-29

    Potential scaffolds for repair of the female pelvic floor require new materials and fabrication by novel methods to improve cellular infiltration. An 'ideal' engineered scaffold for pelvic-floor tissue should mimic the three-dimensional (3D) network of the extracellular matrix (ECM), which possesses intricate macro- and nano-architecture. In this study, a series of blended poly(l-lactide-co-ecaprolactone) P(LLA-CL)/thermoplastic polyurethane (TPU) microyarn/microfibrous scaffolds were produced with different weight ratios via dynamic liquid electrospinning and electrospinning. Both biopolymers were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Our data showed the mean diameter of microyarn scaffolds to be significantly larger than that of microfibers. Microyarn scaffolds possessed large pore sizes and high porosity. There was no significant difference between the mechanical properties of microyarn and microfibrous scaffolds. Fourier-transform infrared spectroscopy suggested that intermolecular bonds were not present between the molecules of TPU and P(LLA-CL). Morphologic observations using scanning electron microscopy and inverted fluorescence microscopy showed that adipose-derived stem cells labeled with enhanced green fluorescent protein could grow well along or within blend microyarns and migrate within the novel 3D scaffolds. Hematoxylin and eosin staining demonstrated that cell infiltration on microyarn scaffolds was significantly enhanced. The CCK-8 assay showed that microyarns could significantly facilitate cell proliferation compared with microfibrous scaffolds. These results suggested that blend microyarns of P(LLA-CL)/TPU designed to mimic the ECM for female pelvic-floor tissue may be excellent macroporous scaffolds for tissue repair.

  10. Design and synthesis of marine natural product-based 1H-indole-2,3-dione scaffold as a new antifouling/antibacterial agent against fouling bacteria.

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Rodrigues, C.; Mascarenhas, S.; DeSouza, L.

    Planococcus donghaensis, Erythrobacter litoralis, Alivibrio salmonicida, Vibrio furnisii. Overall, the modified analogues showed stronger activity than the parent marine natural product (isatin) and hence 1H-indole-2,3-dione scaffold has immense potential...

  11. In-Silico Template Selection of In-Vitro Evolved Kalata B1 of Oldenlandia Affinis for Scaffolding Peptide-Based Drug Design.

    Science.gov (United States)

    Senthilkumar, B; Kumar, Prakash; Rajasekaran, R

    2016-01-01

    Structural stability of Oldenlandia affinis cyclotide, kalata B1 of native (1NB1) and two mutants 2F2I ([P20D, V21K] kB1) and 2F2J ([W19K, P20N, V21K] kB1) was investigated. Single model analysis showed high number of intra-molecular interactions followed by more proportion of beta sheet contents in [P20D, V21K] kB1 as compared to that of native and the other mutant of kalata B1. Further, the modern conformational sampling approach, an alternate to classical molecular dynamics was introduced, which revealed that the [P20D, V21K] kB1 was identified as structurally stable one, substantiated by various structural events viz., root mean square deviation, root mean square fluctuation, and angular deviation by Ramachandran plot. Moreover, the statistically validated contours of polar surface area, hydrogen bond distribution and the distance of disulfide bridges also supported the priority of [P20D, V21K] kB1 with respect to stability. From this work, it is proposed that the [P20D, V21K] kB1 (2F2I) could be the best template for scaffolding peptide based drug design. © 2015 Wiley Periodicals, Inc.

  12. Structure-guided Design and Immunological Characterization of Immunogens Presenting the HIV-1 gp120 V3 Loop on a CTB Scaffold

    Energy Technology Data Exchange (ETDEWEB)

    M Totrov; X Jiang; X Kong; S Cohen; C Krachmarov; A Salomon; C Williams; M Seaman; R Abagyan; et al.

    2011-12-31

    V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boosting with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.

  13. Development of a human dihydroorotate dehydrogenase (hDHODH pharma-similarity index approach with scaffold-hopping strategy for the design of novel potential inhibitors.

    Directory of Open Access Journals (Sweden)

    Kuei-Chung Shih

    Full Text Available Human dihydroorotate dehydrogenase (hDHODH is a class-2 dihydroorotate dehydrogenase. Because it is extensively used by proliferating cells, its inhibition in autoimmune and inflammatory diseases, cancers, and multiple sclerosis is of substantial clinical importance. In this study, we had two aims. The first was to develop an hDHODH pharma-similarity index approach (PhSIA using integrated molecular dynamics calculations, pharmacophore hypothesis, and comparative molecular similarity index analysis (CoMSIA contour information techniques. The approach, for the discovery and design of novel inhibitors, was based on 25 diverse known hDHODH inhibitors. Three statistical methods were used to verify the performance of hDHODH PhSIA. Fischer's cross-validation test provided a 98% confidence level and the goodness of hit (GH test score was 0.61. The q(2, r(2, and predictive r(2 values were 0.55, 0.97, and 0.92, respectively, for a partial least squares validation method. In our approach, each diverse inhibitor structure could easily be aligned with contour information, and common substructures were unnecessary. For our second aim, we used the proposed approach to design 13 novel hDHODH inhibitors using a scaffold-hopping strategy. Chemical features of the approach were divided into two groups, and the Vitas-M Laboratory fragment was used to create de novo inhibitors. This approach provides a useful tool for the discovery and design of potential inhibitors of hDHODH, and does not require docking analysis; thus, our method can assist medicinal chemists in their efforts to identify novel inhibitors.

  14. Development of a human dihydroorotate dehydrogenase (hDHODH) pharma-similarity index approach with scaffold-hopping strategy for the design of novel potential inhibitors.

    Science.gov (United States)

    Shih, Kuei-Chung; Lee, Chi-Ching; Tsai, Chi-Neu; Lin, Yu-Shan; Tang, Chuan-Yi

    2014-01-01

    Human dihydroorotate dehydrogenase (hDHODH) is a class-2 dihydroorotate dehydrogenase. Because it is extensively used by proliferating cells, its inhibition in autoimmune and inflammatory diseases, cancers, and multiple sclerosis is of substantial clinical importance. In this study, we had two aims. The first was to develop an hDHODH pharma-similarity index approach (PhSIA) using integrated molecular dynamics calculations, pharmacophore hypothesis, and comparative molecular similarity index analysis (CoMSIA) contour information techniques. The approach, for the discovery and design of novel inhibitors, was based on 25 diverse known hDHODH inhibitors. Three statistical methods were used to verify the performance of hDHODH PhSIA. Fischer's cross-validation test provided a 98% confidence level and the goodness of hit (GH) test score was 0.61. The q(2), r(2), and predictive r(2) values were 0.55, 0.97, and 0.92, respectively, for a partial least squares validation method. In our approach, each diverse inhibitor structure could easily be aligned with contour information, and common substructures were unnecessary. For our second aim, we used the proposed approach to design 13 novel hDHODH inhibitors using a scaffold-hopping strategy. Chemical features of the approach were divided into two groups, and the Vitas-M Laboratory fragment was used to create de novo inhibitors. This approach provides a useful tool for the discovery and design of potential inhibitors of hDHODH, and does not require docking analysis; thus, our method can assist medicinal chemists in their efforts to identify novel inhibitors.

  15. Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries

    NARCIS (Netherlands)

    Pabittei, Dara R.; Heger, Michal; van Tuijl, Sjoerd; Simonet, Marc; de Boon, Wadim; van der Wal, Allard C.; Balm, Ron; de Mol, Bas A.

    2015-01-01

    The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently, ssLAVA

  16. Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects.

    NARCIS (Netherlands)

    Kretlow, J.D.; Spicer, P.P.; Jansen, J.A.; Vacanti, C.A.; Kasper, F.K.; Mikos, A.G.

    2010-01-01

    For bone tissue engineering, the benefits of incorporating mesenchymal stem cells (MSCs) into porous scaffolds are well established. There is, however, little consensus on the effects of or need for MSC handling ex vivo. Culture and expansion of MSCs adds length and cost, and likely increases risk

  17. Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery.

    Science.gov (United States)

    Servant, Ania; Leon, Veronica; Jasim, Dhifaf; Methven, Laura; Limousin, Patricia; Fernandez-Pacheco, Ester Vazquez; Prato, Maurizio; Kostarelos, Kostas

    2014-08-01

    Stimuli-responsive biomaterials have attracted significant attention in the field of polymeric implants designed as active scaffolds for on-demand drug delivery. Conventional porous scaffolds suffer from drawbacks such as molecular diffusion and material degradation, allowing in most cases only a zero-order drug release profile. The possibility of using external stimulation to trigger drug release is particularly enticing. In this paper, the fabrication of previously unreported graphene hydrogel hybrid electro-active scaffolds capable of controlled small molecule release is presented. Pristine ball-milled graphene sheets are incorporated into a three dimensional macroporous hydrogel matrix to obtain hybrid gels with enhanced mechanical, electrical, and thermal properties. These electroactive scaffolds demonstrate controlled drug release in a pulsatile fashion upon the ON/OFF application of low electrical voltages, at low graphene concentrations (0.2 mg mL(-1) ) and by maintaining their structural integrity. Moreover, the in vivo performance of these electroactive scaffolds to release drug molecules without any "resistive heating" is demonstrated. In this study, an illustration of how the heat dissipating properties of graphene can provide significant and previously unreported advantages in the design of electroresponsive hydrogels, able to maintain optimal functionality by overcoming adverse effects due to unwanted heating, is offered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.

    Science.gov (United States)

    Yang, Ying; Yang, Shengbing; Wang, Yugang; Yu, Zhifeng; Ao, Haiyong; Zhang, Hongbo; Qin, Ling; Guillaume, Olivier; Eglin, David; Richards, R Geoff; Tang, Tingting

    2016-12-01

    Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively disrupt microbial membranes. Using human bone marrow-derived mesenchymal stem cells (hBMSCs), we demonstrated that HA incorporated scaffolds, including PLGA/HA and PLGA/HA/HACC, favoured cell attachment, proliferation, spreading and osteogenic differentiation compared to HA-free PLGA or PLGA/HACC scaffolds. Finally, an in vivo biocompatibility assay conducted on rats, showed that HA incorporated scaffolds (including PLGA/HA and PLGA/HA/HACC scaffolds) exhibited good neovascularization and tissue integration. Taken together, our findings support the approach for developing porous PLGA/HA/HACC composite scaffold with potential clinical application in the treatment of infected bone. Although plenty of conductive scaffold biomaterials have been exploited to improve bone regeneration under infection, potential tissue toxicity under high concentration and antibiotic-resistance are their main deficiencies. This study indicated that HACC-grafted PLGA/HA composite scaffold prepared using an innovative 3D-printing technique and covalent grafting strategy showed significantly enhanced antibacterial activities, especially against the antibiotic-resistant strains, together with good osteogenic

  19. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

    Science.gov (United States)

    Tarafder, Solaiman; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis. © 2014 Wiley Periodicals, Inc.

  20. Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries

    Science.gov (United States)

    Straley, Karin S.; Po Foo, Cheryl Wong

    2010-01-01

    Abstract The highly debilitating nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Many experts agree that the greatest hope for treatment of spinal cord injuries will involve a combinatorial approach that integrates biomaterial scaffolds, cell transplantation, and molecule delivery. This manuscript presents a comprehensive review of biomaterial-scaffold design strategies currently being applied to the development of nerve guidance channels and hydrogels that more effectively stimulate spinal cord tissue regeneration. To enhance the regenerative capacity of these two scaffold types, researchers are focusing on optimizing the mechanical properties, cell-adhesivity, biodegradability, electrical activity, and topography of synthetic and natural materials, and are developing mechanisms to use these scaffolds to deliver cells and biomolecules. Developing scaffolds that address several of these key design parameters will lead to more successful therapies for the regeneration of spinal cord tissue. PMID:19698073

  1. Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance and Lead to Significant Bone Tissue Formation

    Science.gov (United States)

    Cusella-De Angelis, Maria Gabriella; Laino, Gregorio; Piattelli, Adriano; Pacifici, Maurizio; De Rosa, Alfredo; Papaccio, Gianpaolo

    2007-01-01

    Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and

  2. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    Directory of Open Access Journals (Sweden)

    Lakshminath Kundanati

    2016-09-01

    Full Text Available Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions.

  3. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    KAUST Repository

    Chen, Pai-Yen

    2015-03-31

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  4. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth.

    Science.gov (United States)

    Chen, Pai-Yen; Farhat, Mohamed; Bağcı, Hakan

    2015-04-24

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded high-permittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  5. Lightweight landscape enhancing design through minimal mass structures

    CERN Document Server

    Spinelli, Luigi; Monticelli, Carol; Pedrali, Paolo

    2016-01-01

    This book explains how lightweight materials and structures can be deployed in buildings to meet high environmental and aesthetic standards and emphasizes how the concept of lightness in building technology and design dovetails with the desire to enhance landscape. The first part of the book, on lightweight construction, aims to foster the use of membranes within the specific climatic context and in particular considers how lightweight materials and innovative technologies can enrich the quality of temporary spaces. The second part focuses exclusively on landscape, presenting novel approaches in the search for visual lightness and the quest to improve urban spaces. Particular attention is paid to the Italian experience, where the traditional appreciation of brick and stone has limited the scope for use of lightweight structures and membrane materials, often relegating them to a secondary or inappropriate role. The reader will come to appreciate how this attitude demeans a very advanced productive sector and n...

  6. Design on an enhanced interactive satellite communications system analysis program

    Science.gov (United States)

    Andersen, Kevin Robert

    1991-09-01

    This thesis describes the design of a user-friendly interactive satellite communications analysis program for use on a personal computer. The user inputs the various parameters of a satellite orbit, ground station location and communications equipment. The output generated allows a user to view the satellite ground trace and footprint, calculate satellite rise and set times, and analyze the performance of the communications link. The link analysis allows the user to input various signal losses and jamming interference. Care was taken to ensure that the program is simple to operate and that it provides on-line help for each segment. A principle goal of this thesis effort is to provide an educational tool that familiarizes the user with the communications segment of a space system. The initial success of the program based upon student response validates the use of object-oriented like software tools that enhance user understanding of complex subjects.

  7. Designing problem-based curricula: The role of concept mapping in scaffolding learning for the health sciences

    Directory of Open Access Journals (Sweden)

    Susan M. Bridges

    2015-03-01

    Full Text Available While the utility of concept mapping has been widely reported in primary and secondary educational contexts, its application in the health sciences in higher education has been less frequently noted. Two case studies of the application of concept mapping in undergraduate and postgraduate health sciences are detailed in this paper. The case in undergraduate dental education examines the role of concept mapping in supporting problem-based learning and explores how explicit induction into the principles and practices of CM has add-on benefits to learning in an inquiry-based curriculum. The case in postgraduate medical education describes the utility of concept mapping in an online inquiry-based module design. Specific attention is given to applications of CMapTools™ software to support the implementation of Novakian concept mapping in both inquiry-based curricular contexts.

  8. Structure-Based Design of a New Scaffold for Cell-Penetrating Peptidic Inhibitors of the Histone Demethylase PHF8

    DEFF Research Database (Denmark)

    Dorosz, Jerzy; Olsen, Lars; Seger, Signe Teuber

    2017-01-01

    The histone demethylase PHF8 catalyzes demethylation of mono- and di-methylated Lys9 on histone H3 (H3K9me1/2), and is a transcriptional activator involved in the development and cancer. Affinity and specificity of PHF8 towards H3K9me2 is affected by interaction with both the catalytic domain...... and a PHD reader domain. The latter specifically recognizes tri-methylated Ly4 on histone H3. A fragment of the histone H3 tail with tri-methylated Lys4 was used as a template for the structure-based design of a cyclic, cell-penetrating peptide that exhibits micromolar binding affinity to PHF8...... in biochemical assays. The inhibitor has significantly lower affinity towards KDM2 enzymes (the phylogenetically closest subfamily), and to KDM3 and KDM6 subfamilies. Selectivity is only marginal towards an enzyme from the KDM4 family, which shares histone tail specificity with PHF8. It is a substrate of KDM5B...

  9. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

    Science.gov (United States)

    Inzana, Jason A; Olvera, Diana; Fuller, Seth M; Kelly, James P; Graeve, Olivia A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2014-04-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  12. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.

    Science.gov (United States)

    Guex, Anne Géraldine; Puetzer, Jennifer L; Armgarth, Astrid; Littmann, Elena; Stavrinidou, Eleni; Giannelis, Emmanuel P; Malliaras, George G; Stevens, Molly M

    2017-10-15

    Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m(2)·g(-1). The electrical conductivity, based on I-V curves, was measured to be 140µS·cm(-1) with a reduced, but stable conductivity of 6.1µS·cm(-1) after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold

  13. Exploring design principles for technology-enhanced workplace learning

    NARCIS (Netherlands)

    Esther van der Stappen; Dr. Ilya Zitter

    2016-01-01

    From the article: "Abstract, technology-enhanced learning can be used to replicate existing teaching practices, supplement existing teaching or transform teaching and/or learning process and outcomes. Enhancing workplace learning, which is integrated into higher professional education, with

  14. Spatial screening of hemagglutinin on Influenza A virus particles: Sialyl-LacNAc displays on DNA and PEG scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders.

    Science.gov (United States)

    Bandlow, Victor; Liese, Susanne; Lauster, Daniel; Ludwig, Kai; Netz, Roland R; Herrmann, Andreas; Seitz, Oliver

    2017-10-20

    Attachment of the Influenza A virus onto host cells involves multivalent interactions between virus surface hemagglutinin (HA) and sialoside-containing glyco ligands. Despite the development of extremely powerful multivalent bind-ers of the Influenza virus and other viruses, comparably little is known about the optimal spacing of HA ligands, which ought to bridge binding sites within or across the trimeric HA molecules. To explore the criteria for ligand economical high affinity binding, we systematically probed distance-affinity relationships by means of two differently behaving scaffold types based on i) flexible polyethylene glycol (PEG) conjugates and ii) rigid self-assembled DNA·PNA complexes. The bivalent scaffolds presented two sialyl-LacNAc ligands in 23-101 Å distance. A combined analysis of binding by means of microscale thermophoresis measurements and statistical mechanics models exposed the inherent limitations of PEG-based spacers. Given the distance requirements of HA, the flexibility of PEG scaffolds is too high to raise the effective concentration of glyco ligands above a value that allows interactions with the low affinity binding site. By contrast, spatial screening with less flexible, self-assembled peptide nucleic acid (PNA)·DNA complexes uncovered a well-defined and, surprisingly, bimodal distance-affinity relationship for interactions of the Influenza A virus HA with bivalent displays of the natural sialyl-LacNAc ligand. Optimal constructs conferred 10(3)-fold binding enhancements with only two ligands. We discuss the existence of secondary binding sites and shine light on the preference for intramolecular rather than intermolecular recognition of HA trimers on the virus surface.

  15. Bioactive Nano-fibrous Scaffold for Vascularized Craniofacial Bone Regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda

    2017-01-01

    and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; (human bone marrow skeletal (mesenchymal) stem cells (hMSC) and dental pulp stem cells (DPSC)). In addition, the scaffold supported in vitro osteogenic...... the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA) - poly (ε) caprolactone (PCL) - Bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual...... electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic poly (ε) caprolactone (PCL) by combination with a hydrophilic polyvinyl alcohol (PVA) and the bioceramic (HAB) can contribute to enhance osteo-conductivity. We characterized the physicochemical...

  16. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  17. The dynamics of scaffolding

    NARCIS (Netherlands)

    Van Geert, P. L. C.; Steenbeek, H.W.

    2005-01-01

    In this article we have reinterpreted a relatively standard definition of scaffolding in the context of dynamic systems theory. Our main point is that scaffolding cannot be understood outside the context of a dynamic approach of learning and (formal or informal) teaching. We provide a dynamic

  18. Scaffolding students’ assignments

    DEFF Research Database (Denmark)

    Slot, Marie Falkesgaard

    2013-01-01

    This article discusses scaffolding in typical student assignments in mother tongue learning materials in upper secondary education in Denmark and the United Kingdom. It has been determined that assignments do not have sufficient scaffolding end features to help pupils understand concepts and build...

  19. Enhancement of osteoinduction by continual simvastatin release from poly(lactic-co-glycolic acid)-hydroxyapatite-simvastatin nano-fibrous scaffold.

    Science.gov (United States)

    Jiang, Liming; Sun, Haizhu; Yuan, Anliang; Zhang, Kai; Li, Daowei; Li, Chen; Shi, Ce; Li, Xiangwei; Gao, Kai; Zheng, Changyu; Yang, Bai; Sun, Hongchen

    2013-11-01

    Simvastatin is considered as a stimulator for bone formation. However, the half-life for simvastatin is generally 2 hours, which means, it is difficult to maintain biologically active simvastatin in vivo. To overcome this limitation, we created a system to slowly release simvastatin in vitro and in vivo. We constructed a poly(lactic-co-glycolic acid)/hydroxyapatite nano-fibrous scaffold to carry simvastatin. Releasing assays showed that simvastatin was released from poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin quickly within - 15 days, and small amounts continued to be released through day 56 (experiments terminated). MTT assays demonstrated that both poly(lactic-co-glycolic acid)/hydroxyapatite and poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin promoted MC3T3-E1 cell proliferation. However, Alkaline phosphatase assays showed that only poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold significantly promoted the osteogenic differentiation of MC3T3-E1 cells in vitro on day 14. To further test in vivo, we created calvaria bone defect models and implanted either poly(lactic-co-glycolic acid)/hydroxyapatite or poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin. After 4 or 8 weeks post-implantation, the results indicated that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold induced bone formation more efficiently than poly(lactic-co-glycolic acid)/hydroxyapatite alone. Our data demonstrates that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin has the potential to aid in healing bone defects and promoting bone regeneration in the future although we still need to optimize this complex to efficiently promote bone regeneration.

  20. How a Tutor Uses Gesture for Scaffolding: A Case Study on L2 Tutee's Writing

    Science.gov (United States)

    Kim, Suyeon; Cho, Sookyung

    2017-01-01

    Recently, from the Vygotskyan socio-cultural perspective, second language (L2) researchers have paid growing attention to scaffolding and have argued that L2 learning is enhanced through experts' scaffolding. However, not much is known about how teacher gesture scaffolds L2 learners' writing and how teachers manipulate writing-oriented gestures…

  1. Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries.

    Science.gov (United States)

    Pabittei, Dara R; Heger, Michal; van Tuijl, Sjoerd; Simonet, Marc; de Boon, Wadim; van der Wal, Allard C; Balm, Ron; de Mol, Bas A

    2015-07-01

    The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently, ssLAVA requires proof-of-concept in a physiologically representative ex vivo model before advancing to in vivo studies. This study therefore investigated the feasibility of ex vivo ssLAVA in medium-sized porcine arteries. Scaffolds composed of poly(ε-caprolactone) (PCL) or poly(lactic-co-glycolic acid) (PLGA) were impregnated with semisolid solder and placed over coapted aortic segments. ssLAVA was performed with a 670-nm diode laser. In the first substudy, the optimum number of laser spots was determined by bursting pressure analysis. The second substudy investigated the resilience of the welds in a Langendorf-type pulsatile pressure setup, monitoring the number of failed vessels. The type of failure (cohesive vs adhesive) was confirmed by electron microscopy, and thermal damage was assessed histologically. The third substudy compared breaking strength of aortic repairs made with PLGA and semisolid genipin solder (ssLAVR) to repairs made with BioGlue. ssLAVA with 11 lasing spots and PLGA scaffold yielded the highest bursting pressure (923 ± 56 mm Hg vs 703 ± 96 mm Hg with PCL ssLAVA; P = .0002) and exhibited the fewest failures (20% vs 70% for PCL ssLAVA; P = .0218). The two failed PLGA ssLAVA arteries leaked at 19 and 22 hours, whereas the seven failed PCL ssLAVA arteries burst between 12 and 23 hours. PLGA anastomoses broke adhesively, whereas PCL welds failed cohesively. Both modalities exhibited full-thickness thermal damage. Repairs with PLGA scaffold yielded higher breaking strength than BioGlue repairs (323 ± 28 N/cm(2) vs 25 ± 4 N/cm(2), respectively; P = .0003). PLGA ssLAVA yields greater anastomotic strength and fewer anastomotic failures than PCL ssLAVA. Aortic

  2. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  3. Design Framework for an Adaptive MOOC Enhanced by Blended Learning

    DEFF Research Database (Denmark)

    Gynther, Karsten

    2016-01-01

    The research project has developed a design framework for an adaptive MOOC that complements the MOOC format with blended learning. The design framework consists of a design model and a series of learning design principles which can be used to design in-service courses for teacher professional...

  4. Experimental Design on Laminated Veneer Lumber Fiber Composite: Surface Enhancement

    Science.gov (United States)

    Meekum, U.; Mingmongkol, Y.

    2010-06-01

    Thick laminate veneer lumber(LVL) fibre reinforced composites were constructed from the alternated perpendicularly arrayed of peeled rubber woods. Glass woven was laid in between the layers. Native golden teak veneers were used as faces. In house formulae epoxy was employed as wood adhesive. The hand lay-up laminate was cured at 150° C for 45 mins. The cut specimen was post cured at 80° C for at least 5 hours. The 2k factorial design of experimental(DOE) was used to verify the parameters. Three parameters by mean of silane content in epoxy formulation(A), smoke treatment of rubber wood surface(B) and anti-termite application(C) on the wood surface were analysed. Both low and high levels were further subcategorised into 2 sub-levels. Flexural properties were the main respond obtained. ANOVA analysis of the Pareto chart was engaged. The main effect plot was also testified. The results showed that the interaction between silane quantity and termite treatment is negative effect at high level(AC+). Vice versa, the interaction between silane and smoke treatment was positive significant effect at high level(AB+). According to this research work, the optimal setting to improve the surface adhesion and hence flexural properties enhancement were high level of silane quantity, 15% by weight, high level of smoked wood layers, 8 out of 14 layers, and low anti termite applied wood. The further testes also revealed that the LVL composite had superior properties that the solid woods but slightly inferior in flexibility. The screw withdrawn strength of LVL showed the higher figure than solid wood. It is also better resistance to moisture and termite attack than the rubber wood.

  5. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  6. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.

    Science.gov (United States)

    Van Bael, S; Chai, Y C; Truscello, S; Moesen, M; Kerckhofs, G; Van Oosterwyck, H; Kruth, J-P; Schrooten, J

    2012-07-01

    The specific aim of this study was to gain insight into the influence of scaffold pore size, pore shape and permeability on the in vitro proliferation and differentiation of three-dimensional (3-D) human periosteum-derived cell (hPDC) cultures. Selective laser melting (SLM) was used to produce six distinct designed geometries of Ti6Al4V scaffolds in three different pore shapes (triangular, hexagonal and rectangular) and two different pore sizes (500 μm and 1000 μm). All scaffolds were characterized by means of two-dimensional optical microscopy, 3-D microfocus X-ray computed tomography (micro-CT) image analysis, mechanical compression testing and computational fluid dynamical analysis. The results showed that SLM was capable of producing Ti6Al4V scaffolds with a broad range of morphological and mechanical properties. The in vitro study showed that scaffolds with a lower permeability gave rise to a significantly higher number of cells attached to the scaffolds after seeding. Qualitative analysis by means of live/dead staining and scanning electron micrography showed a circular cell growth pattern which was independent of the pore size and shape. This resulted in pore occlusion which was found to be the highest on scaffolds with 500 μm hexagonal pores. Interestingly, pore size but not pore shape was found to significantly influence the growth of hPDC on the scaffolds, whereas the differentiation of hPDC was dependent on both pore shape and pore size. The results showed that, for SLM-produced Ti6Al4V scaffolds with specific morphological and mechanical properties, a functional graded scaffold will contribute to enhanced cell seeding and at the same time can maintain nutrient transport throughout the whole scaffold during in vitro culturing by avoiding pore occlusion. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo

    Science.gov (United States)

    Fielding, Gary; Bose, Susmita

    2013-01-01

    Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941

  8. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    Directory of Open Access Journals (Sweden)

    R. T. De Silva

    2017-01-01

    Full Text Available Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol (PVA polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm at a predetermined concentration (10% (w/w, is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05. In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  9. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation.

    Science.gov (United States)

    Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua

    2017-01-01

    Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100-300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration.

  10. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review

    Directory of Open Access Journals (Sweden)

    A. H. Yusop

    2012-01-01

    Full Text Available Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds.

  11. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  12. Bioactivation of titanium dioxide scaffolds by ALP-functionalization

    Directory of Open Access Journals (Sweden)

    A. Sengottuvelan

    2017-06-01

    Full Text Available Three dimensional TiO2 scaffolds are receiving renewed attention for bone tissue engineering (TE due to their biocompatibility and attractive mechanical properties. However the bioactivity of these scaffolds is comparatively lower than that of bioactive glass or hydroxyapatite (HA scaffolds. One strategy to improve bioactivity is to functionalize the surface of the scaffolds using biomolecules. Alkaline phosphatase (ALP was chosen in this study due to its important role in the bone mineralization process. The current study investigated the ALP functionalization of 3D titanium dioxide scaffolds using self-polymerization of dopamine. Robust titanium scaffolds (compressive strength∼2.7 ± 0.3 MPa were produced via foam replica method. Enzyme grafting was performed by dip-coating in polydopamine/ALP solution. The presence of ALP was indirectly confirmed by contact angle measurements and enzymatic activity study. The influence of the enzyme on the bioactivity, e.g. hydroxyapatite formation on the scaffold surface, was measured in simulated body fluid (SBF. After 28 days in SBF, 5 mg ALP coated titania scaffolds exhibited increased hydroxyapatite formation. It was thus confirmed that ALP enhances the bioactivity of titania scaffolds, converting an inert bioceramic in an attractive bioactive system for bone TE.

  13. Microporous Nanofibrous Fibrin-based Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Osathanon, Thanaphum; Linnes, Michael L.; Rajachar, Rupak M.; Ratner, Buddy D.; Somerman, Martha J.; Giachelli, Cecilia M.

    2008-01-01

    The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds with tightly controllable pore size, pore interconnection, and calcium phosphate deposition was developed. Microporous, nanofibrous fibrin scaffolds were fabricated using sphere-templating methods. Composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to fibrin scaffolds and nHA incorporated fibrin scaffolds (0.25 g and 0.5 g). All types of scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2. PMID:18640716

  14. Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Dajiang Du

    2015-01-01

    Full Text Available Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL, we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP with room temperature vulcanization (RTV silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects.

  15. Design and Production of Continuously Gradient Macro/Microporous Calcium Phosphate (CaP) Scaffolds Using Ceramic/Camphene-Based 3D Extrusion

    Science.gov (United States)

    Ahn, Min-Kyung; Moon, Young-Wook; Maeng, Woo-Youl; Koh, Young-Hag; Kim, Hyoun-Ee

    2017-01-01

    This study proposes a new type of calcium phosphate (CaP) scaffolds with a continuously gradient macro/microporous structure using the ceramic/camphene-based 3D extrusion process. Green filaments with a continuously gradient core/shell structure were successfully produced by extruding a bilayered feedrod comprised of a CaP/camphene mixture lower part and a pure camphene upper part. The extruded filaments were then deposited in a controlled manner to construct triangular prisms, followed by the assembly process for the production of CaP scaffolds with a gradient core/shell structure. In addition, a gradient microporous structure was created by heat-treating the green body at 43 °C to induce the overgrowth of camphene dendrites in the CaP/camphene walls. The produced CaP scaffold showed a highly macroporous structure within its inner core, where the size of macrochannels increased gradually with an increase in the distance from the outer shell, while relatively larger micropores were created in the outer shell. PMID:28773077

  16. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients.

    Science.gov (United States)

    Amr, Sherif M; Gouda, Ashraf; Koptan, Wael T; Galal, Ahmad A; Abdel-Fattah, Dina Sabry; Rashed, Laila A; Atta, Hazem M; Abdel-Aziz, Mohammad T

    2014-01-01

    To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2-3 grades), ankle dorsiflexors (1-2 grades), long toe extensors (1-2 grades), and plantar flexors (0-2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold.

  17. Distributed Scaffolding in a Service-Learning Course

    Science.gov (United States)

    Smagorinsky, Peter; Clayton, Christopher M.; Johnson, Lindy L.

    2015-01-01

    This article argues that the instructional scaffolding metaphor may be reconceived as distributed scaffolding when multiple means of influence are provided in a service-learning setting. In the service-learning course described here, the professor's role is largely as designer of activity settings for preservice teacher candidates, through…

  18. How Digital Scaffolds in Games Direct Problem-Solving Behaviors

    Science.gov (United States)

    Sun, Chuen-Tsai; Wang, Dai-Yi; Chan, Hui-Ling

    2011-01-01

    Digital systems offer computational power and instant feedback. Game designers are using these features to create scaffolding tools to reduce player frustration. However, researchers are finding some unexpected effects of scaffolding on strategy development and problem-solving behaviors. We used a digital Sudoku game named "Professor Sudoku" to…

  19. A Review of Empirical Evidence on Scaffolding for Science Education

    Science.gov (United States)

    Lin, Tzu-Chiang; Hsu, Ying-Shao; Lin, Shu-Sheng; Changlai, Maio-Li; Yang, Kun-Yuan; Lai, Ting-Ling

    2012-01-01

    This content analysis of articles in the Social Science Citation Index journals from 1995 to 2009 was conducted to provide science educators with empirical evidence regarding the effects of scaffolding on science learning. It clarifies the definition, design, and implementation of scaffolding in science classrooms and research studies. The results…

  20. Great Expectations - Does worker participation in design enhance the integration of working environment and work life issues into design?

    DEFF Research Database (Denmark)

    Hansen, Iben Posniak

    Does worker participation in design enhance the integration of working environment and work life aspects into design? The interrelation between worker participation in design and the integration of working environment or work life aspects have been studied for decades within different traditions. I...... processes and that other subjects were important in the cases as well. The search for an answer to the overall question 'Does worker participation in design enhance the integration of working environment and work life aspects into design?' has gone through several questions related to the processes...... of design, and through questions related to learning processes in design. I have found it interesting to examine why and when working environment and work life issues are raised in participatory design processes. I have also found that it is interesting to examine who put the working environment and work...

  1. License Application Design Selection Enhanced Design Alternative V: Very High Thermal Loading

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Linden

    1999-06-22

    The major goals of Enhanced Design Alternative (EDA) V are to keep the temperature of the cladding on the spent nuclear fuel (SNF) within the waste package below 350 C (Section 4.2.3), the temperature of the emplacement drift walls below 225 C (Section 4.2.3), and to keep the emplacement drifts dry for several thousand years. In addition, the design would produce relatively consistent heat output from waste package to waste package and ensure that waste package thermal outputs are spread more evenly across the repository. The design would also provide defense in depth (Section 5.3). The goals of this design would be achieved by the combination of design features described below. This EDA would have an areal mass loading (AML) of 150 metric tons of uranium equivalent (MTU) per acre (Section 4.1.16) as opposed to the 85 MTU/acre in the Viability Assessment (VA) reference design. To achieve this loading and the elements necessary to the EDA's overall goals, the design would require approximately 420 acres of emplacement area, within the lower repository block (Appendix A, Section A.2). A conceptual layout was developed for EDA V (Section 5.4.3). The layout, as shown in Figure 2, contains openings that are sized and arranged in a similar configuration as the VA reference design. A total of 54 emplacement drifts will be required for emplacement of the 70,000 MTU of spent nuclear fuel and high level waste packages. A total of four ventilation shafts, one intake and three exhausts are anticipated for the layout in order to provide sufficient air quantities to the emplacement drifts. Two exhaust mains will be located below the level of the emplacement drifts to provide exhaust from the emplacement drifts. In addition, the evaluation has confirmed that the decision to close the repository is possible 50 years after start of emplacement (Section 5.7.5). The licensing and preclosure period encompassed by the Mined Geologic Repository (MGR) extends from the year 2002

  2. Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings.

    Science.gov (United States)

    Kim, Jinku; Magno, Maria Hanshella R; Ortiz, Ophir; McBride, Sean; Darr, Aniq; Kohn, Joachim; Hollinger, Jeffrey O

    2015-03-01

    Next-generation synthetic bone graft therapies will most likely be composed of resorbable polymers in combination with bioactive components. In this article, we continue our exploration of E1001(1k), a tyrosine-derived polycarbonate, as an orthopedic implant material. Specifically, we use E1001(1k), which is degradable, nontoxic, and osteoconductive, to fabricate porous bone regeneration scaffolds that were enhanced by two different types of calcium phosphate (CP) coatings: in one case, pure dicalcium phosphate dihydrate was precipitated on the scaffold surface and throughout its porous structure (E1001(1k) + CP). In the other case, bone matrix minerals (BMM) such as zinc, manganese and fluoride were co-precipitated within the dicalcium phosphate dihydrate coating (E1001(1k) + BMM). These scaffold compositions were compared against each other and against ChronOS (Synthes USA, West Chester, PA, USA), a clinically used bone graft substitute (BGS), which served as the positive control in our experimental design. This BGS is composed of poly(lactide co-ε-caprolactone) and beta-tricalcium phosphate. We used the established rabbit calvaria critical-sized defect model to determine bone regeneration within the defect for each of the three scaffold compositions. New bone formation was determined after 2, 4, 6, 8 and 12 weeks by micro-computerized tomography (μCT) and histology. The experimental tyrosine-derived polycarbonate, enhanced with dicalcium phosphate dihydrate, E1001(1k) + CP, supported significant bone formation within the defects and was superior to the same scaffold containing a mix of BMM, E1001(1k) + BMM. The comparison with the commercially available BGS was complicated by the large variability in bone formation observed for the laboratory preparations of E1001(1k) scaffolds. At all time points, there was a trend for E1001(1k) + CP to be superior to the commercial BGS. However, only at the 6-week time point did this trend reach statistical significance

  3. RIP Input Tables From Wapdeg For La Design Selection: Enhanced Design Alternative Iiib

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; K.G. Mast; J.H. Lee

    1999-07-01

    The purpose of this calculation is to document the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M&O 1998b. 'Software Routine Report for WAPDEG' (Version 3.09)) simulations used to analyze degradation and failure of 2-cm thick titanium grade 7 corrosion resistant material (CRM) drip shields as well as degradation and failure of the waste packages over which they are placed. The waste packages are composed of two corrosion resistant materials (CRM) barriers. The outer barrier is composed of 2 cm of Alloy 22 and the inner barrier is composed of 1.5 cm of titanium grade 7. The WAPDEG simulation results are post-processed into tables of drip shield/waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer code. This calculation supports Performance Assessment analysis of the License Application Design Selection (LADS) Enhanced Design Alternative IIIb.

  4. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation

    Science.gov (United States)

    Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2015-01-01

    Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587

  5. Alendronate-Eluting Biphasic Calcium Phosphate (BCP Scaffolds Stimulate Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2015-01-01

    Full Text Available Biphasic calcium phosphate (BCP scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN- eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDS, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation.

  6. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering.

    Science.gov (United States)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Novel target design for enhanced laser driven proton acceleration

    Directory of Open Access Journals (Sweden)

    Malay Dalui

    2017-09-01

    Full Text Available We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  8. Novel target design for enhanced laser driven proton acceleration

    Science.gov (United States)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  9. Applying multimedia design principles enhances learning in medical education.

    Science.gov (United States)

    Issa, Nabil; Schuller, Mary; Santacaterina, Susan; Shapiro, Michael; Wang, Edward; Mayer, Richard E; DaRosa, Debra A

    2011-08-01

    The Association of American Medical Colleges' Institute for Improving Medical Education's report entitled 'Effective Use of Educational Technology' called on researchers to study the effectiveness of multimedia design principles. These principles were empirically shown to result in superior learning when used with college students in laboratory studies, but have not been studied with undergraduate medical students as participants. A pre-test/post-test control group design was used, in which the traditional-learning group received a lecture on shock using traditionally designed slides and the modified-design group received the same lecture using slides modified in accord with Mayer's principles of multimedia design. Participants included Year 3 medical students at a private, midwestern medical school progressing through their surgery clerkship during the academic year 2009-2010. The medical school divides students into four groups; each group attends the surgery clerkship during one of the four quarters of the academic year. Students in the second and third quarters served as the modified-design group (n=91) and students in the fourth-quarter clerkship served as the traditional-design group (n=39). Both student cohorts had similar levels of pre-lecture knowledge. Both groups showed significant improvements in retention (pmultimedia design compared with those instructed using the traditional design. Multimedia design principles are easy to implement and result in improved short-term retention among medical students, but empirical research is still needed to determine how these principles affect transfer of learning. Further research on applying the principles of multimedia design to medical education is needed to verify the impact it has on the long-term learning of medical students, as well as its impact on other forms of multimedia instructional programmes used in the education of medical students. © Blackwell Publishing Ltd 2011.

  10. Affective Scaffolds, Expressive Arts, and Cognition

    Directory of Open Access Journals (Sweden)

    Michelle eMaiese

    2016-03-01

    Full Text Available Some theorists have argued that cognitive agents engineer their environment to sustain and amply their cognitive abilities, and also that elements of the surrounding world sometimes play a crucial role in evoking and sustaining emotion. Such insights raise an interesting question about the relationship between cognitive and affective scaffolding: in addition to enabling the realization of specific affective states, can an affective niche also enable the realization of certain cognitive capacities? In order to gain a better understanding of this relationship between affective scaffolding and cognition, I will examine the use of expressive arts in the context of psychotherapy and peacebuilding. In these settings, environmental resources and interpersonal scaffolds not only evoke emotion and encourage the adoption of particular bodily-affective styles, but also support the development of capacities for self-awareness and interpersonal understanding. These affective scaffolds play a crucial role in therapy and peacebuilding, in fact, insofar as they facilitate the development of self-knowledge, enhance capacities associated with social cognition, and build positive rapport and trust among participants. I will argue that this is because affectivity is linked to the way that subjects frame and attend to their surroundings. Insofar as the regulation and modulation of emotion goes hand in hand with opening up new interpretive frames and establishing new habits of mind, affective scaffolds can contribute significantly to various modes of cognition.

  11. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  12. Design Issues for Technology-Enhanced Formal Professional Development

    Science.gov (United States)

    Class, Barbara; Schneider, Daniel K.

    2014-01-01

    This research concerns the design, implementation and evaluation of a blended training course for interpreter trainers. Some of the complex issues pertaining to professional development in a rich web-based learner-centered environment are addressed. Findings confirm a socio-constructivist design within which participants developed the expected…

  13. Active Living by Design: Creating Activity-Enhancing Residential Settings

    OpenAIRE

    Zimring, Craig; Dalton, Ruth; Joseph, Anjali; Harris-Kojetin, Lauren; Kiefer, Kristen

    2005-01-01

    The focus of this study is to identify planning, programming and design factors in residential settings that encourage people over 50 to remain active, such as site selection, connection to the surrounding community, site design and walking paths, interior layout and circulation and provision of activity spaces, as well as more subtle factors such as overall wayfinding and ambience.

  14. Design methodology to enhance high impedance surfaces performances

    Directory of Open Access Journals (Sweden)

    M. Grelier

    2014-04-01

    Full Text Available A methodology is introduced for designing wideband, compact and ultra-thin high impedance surfaces (HIS. A parametric study is carried out to examine the effect of the periodicity on the electromagnetic properties of an HIS. This approach allows designers to reach the best trade-off for HIS performances.

  15. Designing for competence: spaces that enhance collaboration readiness in healthcare.

    Science.gov (United States)

    Lamb, Gerri; Shraiky, James

    2013-09-01

    Many universities in the United States are investing in classrooms and campuses designed to increase collaboration and teamwork among the health professions. To date, we know little about whether these learning spaces are having the intended impact on student performance. Recent advances in the identification of interprofessional teamwork competencies provide a much-needed step toward a defined outcome metric. Rigorous study of the relationship between design and student competence in collaboration also requires clear specification of design concepts and development of testable frameworks. Such theory-based evaluation is crucial for design to become an integral part of interprofessional education strategies and initiatives. Current classroom and campus designs were analyzed for common themes and features in collaborative spaces as a starting place for specification of design concepts and model development. Four major themes were identified: flexibility, visual transparency/proximity, technology and environmental infrastructure. Potential models linking this preliminary set of design concepts to student competencies are proposed and used to generate hypotheses for future study of the impact of collaborative design spaces on student outcomes.

  16. 3D Printing of Scaffolds for Tissue Regeneration Applications.

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M; Salem, Aliasger K

    2015-08-26

    The current need for organ and tissue replacement, repair, and regeneration for patients is continually growing such that supply is not meeting demand primarily due to a paucity of donors as well as biocompatibility issues leading to immune rejection of the transplant. In order to overcome these drawbacks, scientists have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired an interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity, where fine details can be included at a micrometer level. In this Review, the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering are discussed. Creating biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  18. Hydrogel scaffolds for tissue engineering: Progress and challenges

    Science.gov (United States)

    El-Sherbiny, Ibrahim M.; Yacoub, Magdi H.

    2013-01-01

    Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described. PMID:24689032

  19. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune......-caprolactone (PCL)- triphasic bioceramic(HAB) scaffold to biomimic native tissue and we tested its ability to support osteogenic differentiation of stromal stem cells ( MSC) and its suitability for regeneration of craniofa- cial defects. Physiochemical characterizations of the scaffold, including con- tact angle...... deficient mice. Histologic ex- amination of retrieved implant sections stained with H&E, Col- lagenType I and Human Vimentin antibody demonstrated that the cells survived in vivo in the implants for at least 8 weeks with evidence of osteoblastic differentiation and angiogenesis within the implants. Our...

  20. Systemic Operational Design: Enhancing the Joint Operation Planning Process

    National Research Council Canada - National Science Library

    Delacruz, Victor J

    2007-01-01

    Operational level commanders and their staffs require relevant and current joint doctrine that articulates the critical function of operational design and its role in the Joint Operation Planning Process (JOPP...

  1. Enhanced project brief: Structured approach to client-designer interface

    OpenAIRE

    Khosrowshahi, F

    2015-01-01

    © Emerald Group Publishing Limited. Purpose - The focus of this work is on the client-designer interface where decisions have significant impact over the lifecycle of the project. Therefore, the briefing stage is examined in the context of clients needs which is divided into project-based strategy and broader clients strategy. The purpose of this paper is to address the pitfalls in the briefing process which has been attributed to the shortcomings in the client-designer communication interfac...

  2. Enhancing public involvement in assistive technology design research.

    Science.gov (United States)

    Williamson, Tracey; Kenney, Laurence; Barker, Anthony T; Cooper, Glen; Good, Tim; Healey, Jamie; Heller, Ben; Howard, David; Matthews, Martin; Prenton, Sarah; Ryan, Julia; Smith, Christine

    2015-05-01

    To appraise the application of accepted good practice guidance on public involvement in assistive technology research and to identify its impact on the research team, the public, device and trial design. Critical reflection and within-project evaluation were undertaken in a case study of the development of a functional electrical stimulation device. Individual and group interviews were undertaken with lay members of a 10 strong study user advisory group and also research team members. Public involvement was seen positively by research team members, who reported a positive impact on device and study designs. The public identified positive impact on confidence, skills, self-esteem, enjoyment, contribution to improving the care of others and opportunities for further involvement in research. A negative impact concerned the challenge of engaging the public in dissemination after the study end. The public were able to impact significantly on the design of an assistive technology device which was made more fit for purpose. Research team attitudes to public involvement were more positive after having witnessed its potential first hand. Within-project evaluation underpins this case study which presents a much needed detailed account of public involvement in assistive technology design research to add to the existing weak evidence base. The evidence base for impact of public involvement in rehabilitation technology design is in need of development. Public involvement in co-design of rehabilitation devices can lead to technologies that are fit for purpose. Rehabilitation researchers need to consider the merits of active public involvement in research.

  3. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    Science.gov (United States)

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Highly Permeable Thin-Film Composite Forward Osmosis Membrane Based on Carbon Nanotube Hollow Fiber Scaffold with Electrically Enhanced Fouling Resistance.

    Science.gov (United States)

    Fan, Xinfei; Liu, Yanming; Quan, Xie; Chen, Shuo

    2018-02-06

    Forward osmosis (FO) is an emerging approach in water treatment, but its application is restricted by severe internal concentration polarization (ICP) and low flux. In this work, a self-sustained carbon nanotube hollow fiber scaffold supported polyamide thin film composite (CNT TFC-FO) membrane was first proposed with high porosity, good hydrophilicity and excellent electro-conductivity. It showed a specific structure parameter as low as 126 μm, suggesting its weakened ICP. Against a pure water feed using 2.0 M NaCl draw solution, its fluxes were 4.7 and 3.6 times as high as those of the commercial cellulose triacetate TFC-FO membrane in the FO and pressure retarded osmosis (PRO) modes, respectively. Meanwhile, the membrane showed excellent electrically assisted resistance to organic and microbial fouling. Its flux was improved by about 50% during oil-water simulation separation under 2.0 V voltage. These results indicate that the CNT TFC-FO membrane opens up a frontier for stably and effectively recycling potable water from electrochemical FO process.

  5. Engineering protein scaffolds for protein separation, biocatalysis and nanotechnology applications

    Science.gov (United States)

    Liu, Fang

    Globally, there is growing appreciation for developing a sustainable economy that uses eco-efficient bio-processes. Biotechnology provides an increasing range of tools for industry to help reduce cost and improve environmental performance. Inspired by the naturally evolved machineries of protein scaffolds and their binding ligands, synthetic protein scaffolds were engineered based on cohesin-dockerin interactions and metal chelating peptides to tackle the challenges and make improvements in three specific areas: (1) protein purification, (2) biofuel cells, and (3) nanomaterial synthesis. The first objective was to develop efficient and cost-effective non-chromatographic purification processes to purify recombinant proteins in an effort to meet the dramatically growing market of protein drugs. In our design, the target protein was genetically fused with a dockerin domain from Clostridium thermocellum and direct purification and recovery was achieved using thermo-responsive elastin-like polypeptide (ELP) scaffold containing the cohesin domain from the same species. By exploiting the highly specific interaction between the dockerin and cohesin domain and the reversible aggregation property of ELP, highly purified and active dockerin-tagged proteins, such as endoglucanase CelA, chloramphenicol acetyl transferase (CAT) and enhanced green fluorescence protein (EGFP), were recovered directly from crude cell extracts in a single purification step with yields achieving over 90%. Incorporation of a self-cleaving intein domain enabled rapid removal of the affinity tag from the target proteins by another cycle of thermal precipitation. The purification cost can be further reduced by regenerating and recycling the ELP-cohesin capturing scaffolds. However, due to the high binding affinity between cohesin and dockerin domains, the bound dockerin-intein tag cannot be completely disassociated from ELP-cohesin scaffold after binding. Therefore, a truncated dockerin with the calcium

  6. In vitro evaluation of decellularized ECM-derived surgical scaffold biomaterials.

    Science.gov (United States)

    Luo, Xiao; Kulig, Katherine M; Finkelstein, Eric B; Nicholson, Margaret F; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Grottkau, Brian E; Pomerantseva, Irina; Sundback, Cathryn A; Neville, Craig M

    2017-04-01

    Decellularized extracellular matrix (ECM) biomaterials are increasingly used in regenerative medicine for abdominal tissue repair. Emerging ECM biomaterials with greater compliance target surgical procedures like breast and craniofacial reconstruction to enhance aesthetic outcome. Clinical studies report improved outcomes with newly designed ECM scaffolds, but their comparative biological characteristics have received less attention. In this study, we investigated scaffolds derived from dermis (AlloDerm Regenerative Tissue Matrix), small intestinal submucosa (Surgisis 4-layer Tissue Graft and OASIS Wound Matrix), and mesothelium (Meso BioMatrix Surgical Mesh and Veritas Collagen Matrix) and evaluated biological properties that modulate cellular responses and recruitment. An assay panel was utilized to assess the ECM scaffold effects upon cells. Results of the material-conditioned media study demonstrated Meso BioMatrix and OASIS best supported cell proliferation. Meso BioMatrix promoted the greatest migration and chemotaxis signaling, followed by Veritas and OASIS; OASIS had superior suppression of cell apoptosis. The direct adhesion assay indicated that AlloDerm, Meso BioMatrix, Surgisis, and Veritas had sidedness that affected cell-material interactions. In the chick chorioallantoic membrane assay, Meso BioMatrix and OASIS best supported cell infiltration. Among tested materials, Meso BioMatrix and OASIS demonstrated characteristics that facilitate scaffold incorporation, making them promising choices for many clinical applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 585-593, 2017. © 2015 Wiley Periodicals, Inc.

  7. Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering

    Science.gov (United States)

    Thein-Han, W. W.; Misra, R. D. K.

    2009-09-01