WorldWideScience

Sample records for sba-15 mesoporous silica

  1. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Tung Xuan, E-mail: bxtung@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2009-09-15

    The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3-5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.

  2. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials.

    Science.gov (United States)

    Mellaerts, Randy; Aerts, Caroline A; Van Humbeeck, Jan; Augustijns, Patrick; Van den Mooter, Guy; Martens, Johan A

    2007-04-07

    This in vitro study reports on the enhanced release of the hydrophobic drug itraconazole from the ordered mesoporous SBA-15 silica material and on the existence of a critical mesopore diameter for enhancing release.

  3. Encapsulation of mangiferin in ordered mesoporous silica type SBA-15: synthesis and characterization

    Science.gov (United States)

    Pontes Silva, Cássia Roberta; da Rocha Ferreira, Fabricia; Dresch Webler, Geovana; Osimar Sousa da Silva, Antônio; Caxico de Abreu, Fabiane; Fonseca, Eduardo J. S.

    2017-06-01

    SBA-15 ordered mesoporous silica were synthesized using the method reported by Zhao et al (1998 J. Am. Chem. Soc. 120 6024-36). The goal of this work is to study the encapsulation of mangiferin (MGN) into porous SBA-15. SBA-MGN composites were obtained from a mixture of SBA-15 and MGN. The structures of these materials were analyzed using different characterization techniques: differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption measurement, transmission electron microscopy (TEM), absorbance spectra and electrochemical assay. The isotherms of the adsorption/desorption for SBA-15 and SBA-MGN are type IV, showing that the ordered mesoporous structure of SBA-15 was maintained even after the incorporation of MGN. The decrease in the value of the specific surface area and the reduction in pore volume confirmed the incorporation of MGN at the surface and in the pores of SBA-15. The incorporation of MGN in SBA-15 aims to increase the solubility of mangiferin.

  4. SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts—Review

    Directory of Open Access Journals (Sweden)

    Eric M. Rivera-Muñoz

    2013-09-01

    Full Text Available SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as catalyst supports, absorbents, drug delivery materials, etc. Since it has a lack of functionality, heteroatoms and organic functional groups have been incorporated by direct or post-synthesis methods in order to modify their functionality. The aim of this article is to review the state-of-the-art related to the use of SBA-15-based mesoporous systems as supports for hydrodesulfurization (HDS catalysts.

  5. Esterification of fatty acid catalyzed by hydrothermally stable propylsulfonic acid-functionalized mesoporous silica SBA-15.

    Science.gov (United States)

    Mar, Win Win; Somsook, Ekasith

    2013-01-01

    Propylsulfonic acid-functionalized mesoporous silica SBA-15 has been synthesized via one-step strategy at 130°C based on the co-condensation of TEOS and MPTMS in the presence of Pluronic 123 polymer and H₂O₂ in HCl aqueous solution. The synthesized solid exhibited hydrothermal stability in boiling water without significant change in textural properties. The catalytic performance of the synthesized solid was studied in the esterification of oleic acid with methanol. The experimental results revealed that the large mesopore structures of SBA-15-PrSO₃H solid synthesized at 130°C could favor a facile access of oleic acid to the acid sites, making the comparable activity to that of phenyl ethyl sulfonic acid functionalized silica and higher than that of dry amberlyst-15.

  6. Chaperonin-Inspired pH Protection by Mesoporous Silica SBA-15 on Myoglobin and Lysozyme.

    Science.gov (United States)

    Lynch, Michele M; Liu, Jichuan; Nigra, Michael; Coppens, Marc-Olivier

    2016-09-20

    While enzymes are valuable tools in many fields of biotechnology, they are fragile and must be protected against denaturing conditions such as unfavorable solution pH. Within living organisms, chaperonins help enzymes fold into their native shape and protect them from damage. Inspired by this natural solution, mesoporous silica SBA-15 with different pore diameters is synthesized as a support material for immobilizing and protecting enzymes. In separate experiments, the model enzymes myoglobin and lysozyme are physically adsorbed to SBA-15 and exposed to a range of buffered pH conditions. The immobilized enzymes' biocatalytic activities are quantified and compared to the activities of nonimmobilized enzymes in the same solution conditions. It has been observed that myoglobin immobilized on SBA-15 is protected from acidic denaturation from pH 3.6 to 5.1, exhibiting relative activity of up to 350%. Immobilized lysozyme is protected from unfavorable conditions from pH 6.6 to 7.6, with relative activity of up to 200%. These results indicate that the protective effects conferred to enzymes immobilized by physical adsorption to SBA-15 are driven by the enzymes' electrostatic attraction to the material's surface. The pore diameter of SBA-15 affects the quality of protection given to immobilized enzymes, but the contribution of this effect at different pH values remains unclear.

  7. Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles.

    Science.gov (United States)

    Limnell, Tarja; Heikkilä, Teemu; Santos, Hélder A; Sistonen, Sanna; Hellstén, Sanna; Laaksonen, Timo; Peltonen, Leena; Kumar, Narendra; Murzin, Dmitry Yu; Louhi-Kultanen, Marjatta; Salonen, Jarno; Hirvonen, Jouni; Lehto, Vesa-Pekka

    2011-09-15

    Stability of high indomethacin (IMC) content formulations based on ordered mesoporous silica MCM-41 and SBA-15 materials was studied before and after a 3 month storage in stressed conditions (30°C/56% RH). Overall, the physical stability of the samples was found satisfactory after the storage. However, some issues with the chemical stability were noted, especially with the MCM-41 based samples. The stability issues were evident from the decreased HPLC loading degrees of the drug after stressing as well as from the observed extra peaks in the HPLC chromatograms of the drug in the stressed samples. Drug release from the mesoporous formulations before stressing was rapid at pH 1.2 in comparison to bulk crystalline IMC. The release profiles also remained similar after stressing. Even faster and close to complete IMC release was achieved when the pH was raised from 1.2 to 6.8. To our knowledge, this is the first report of chemical stability issues of drugs in mesoporous silica drug formulations. The present results encourage further study of the factors affecting the chemical stability of drugs in mesoporous silica MCM-41 and SBA-15 formulations in order to realize their potential in oral drug delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

    Directory of Open Access Journals (Sweden)

    Negar Lashgari

    2016-01-01

    Full Text Available The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring specific analytes in various systems. Organic-inorganic hybrid nanomaterials have important advantages as solid chemosensors and various innovative hybrid materials modified by fluorescence molecules were recently prepared. On the other hand, the homogeneous porosity and large surface area of mesoporous silica make it a promising inorganic support. SBA-15 as a two-dimensional hexagonal mesoporous silica material with stable structure, thick walls, tunable pore size, and high specific surface area is a valuable substrate for modification with different organic chelating groups. This review highlights the fluorescent chemosensors for ionic species based on modification of the mesoporous silica SBA-15 with different organic molecules, which have been recently developed from our laboratory.

  9. SBA-15 ordered mesoporous silica inside a bioactive glass-ceramic scaffold for local drug delivery.

    Science.gov (United States)

    Cauda, V; Fiorilli, S; Onida, B; Vernè, E; Vitale Brovarone, C; Viterbo, D; Croce, G; Milanesio, M; Garrone, E

    2008-10-01

    The paper reports the synthesis of an ordered silica mesostructure of the SBA-15 type inside a macroporous bioactive glass-ceramic scaffold of the type SiO(2)-CaO-K(2)O, to combine the bioactivity of the latter with the release properties of the former, in view of local drug delivery from implants designed for tissue engineering. The standard procedure for SBA-15 synthesis has been modified to minimize the damage to the scaffold caused by the acidic synthesis medium. The composite system has been characterized by means of Scanning Electron Microscopy (coupled with EDS analysis), Small Angle X-Ray Diffraction, Thermogravimetry analysis and Infrared Spectroscopy: the formation of a well ordered hexagonal mesostructure was confirmed. Ibuprofen has been chosen as model drug. The uploading properties have been investigated of the scaffold-mesoporous silica composite as compared with the scaffold as such, and a five-fold increase in the adsorbing properties toward ibuprofen was found, due to the presence of the ordered mesoporous silica. The ibuprofen release to a SBF solution in vitro is complete in 1 day. Retention of bioactivity from the glass-ceramic scaffold after the silica mesostructure incorporation has been observed.

  10. Iron Doped SBA-15 Mesoporous Silica Studied by Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Łukasz Laskowski

    2016-01-01

    Full Text Available Mesoporous silica SBA-15 containing propyl-iron-phosphonate groups were considered to confirm their molecular structure. To detect the iron-containing group configuration the Mössbauer spectroscopy was used. Both mesoporous silica SBA-15 containing propyl-iron-phosphonate groups and pure doping agent (iron acetylacetate were investigated using Mössbauer spectroscopy. The parameters such as isomer shift, quadrupole splitting, and asymmetry in 57Fe Mössbauer spectra were analyzed. The differences in Mössbauer spectra were explained assuming different local surroundings of Fe nuclei. On this base we were able to conclude about activation of phosphonate units by iron ions and determinate the oxidation state of the metal ion. To examine bonding between iron atoms and phosphonic units the resonance Raman spectroscopy was applied. The density functional theory (DFT approach was used to make adequate calculations. The distribution of active units inside silica matrix was estimated by comparison of calculated vibrational spectra with the experimental ones. Analysis of both Mössbauer and resonance Raman spectra seems to confirm the correctness of the synthesis procedure. Also EDX elemental analysis confirms our conclusions.

  11. Preparation of mesoporous silica films SBA-15 over different substrates; Preparacao de filmes de silica mesoporosa SBA-15 sobre diferentes substratos

    Energy Technology Data Exchange (ETDEWEB)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A., E-mail: vitorcampos@ufmg.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Nanotecnologia

    2010-07-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  12. Molecular organization of hydrophobic molecules and co-adsorbed water in SBA-15 ordered mesoporous silica material.

    Science.gov (United States)

    Mellaerts, Randy; Roeffaers, Maarten B J; Houthoofd, Kristof; Van Speybroeck, Michiel; De Cremer, Gert; Jammaer, Jasper A G; Van den Mooter, Guy; Augustijns, Patrick; Hofkens, Johan; Martens, Johan A

    2011-02-21

    The purpose of this study was to improve our understanding of the molecular organization of hydrophobic guest molecules in the presence of co-adsorbed water inside SBA-15 ordered mesoporous silica material. Understanding this adsorption competition is essential in the development of applications of controlled adsorption and desorption. The poorly water soluble drug compound itraconazole and the fluorescent probe Nile red were selected for the study. The interaction between itraconazole and SBA-15 was investigated using FT-IR, (1)H MAS NMR and (29)Si MAS NMR spectroscopy, by determination of adsorption isotherms and release kinetics in simulated gastric fluid. The distribution and migration of the hydrophobic fluorescent probe Nile red was visualized in situ using confocal fluorescence microscopy. For both molecules, there was a pronounced influence of the co-adsorbed water on adsorption, hydrophobic aggregation and migration in SBA-15 pores. These insights contribute to the development of practical methods for loading ordered mesoporous silica materials with hydrophobic molecules.

  13. Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy

    Directory of Open Access Journals (Sweden)

    Lu Qingshan

    2009-01-01

    Full Text Available Abstract The two-solvent method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/SBA-15. The prepared ZnO/SBA-15 samples have been studied by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm, and photoluminescence spectroscopy. The ZnO/SBA-15 nanocomposite has the ordered hexagonal mesostructure of SBA-15. ZnO clusters of a high loading are distributed in the channels of SBA-15. Photoluminescence spectra show the UV emission band around 368 nm, the violet emission around 420 nm, and the blue emission around 457 nm. The UV emission is attributed to band-edge emission of ZnO. The violet emission results from the oxygen vacancies on the ZnO–SiO2interface traps. The blue emission is from the oxygen vacancies or interstitial zinc ions of ZnO. The UV emission and blue emission show a blue-shift phenomenon due to quantum-confinement-induced energy gap enhancement of ZnO clusters. The ZnO clusters encapsulated in SBA-15 can be used as light-emitting diodes and ultraviolet nanolasers.

  14. Physical properties of ordered mesoporous SBA-15 silica as immunological adjuvant

    Science.gov (United States)

    Mariano-Neto, F.; Matos, J. R.; Cides da Silva, L. C.; Carvalho, L. V.; Scaramuzzi, K.; Sant'Anna, O. A.; Oliveira, C. P.; Fantini, M. C. A.

    2014-10-01

    This work reports a detailed analysis of the ordered mesoporous SBA-15 silica synthesis procedure that provides a matrix with mean pore diameter around 10 nm. The encapsulation of bovine serum albumin (BSA) by four different methods allowed the determination of the best imbibition condition, which is keeping the mixture under rest and solvent evaporation. Simulation of the in situ SAXS scattered intensity of the BSA release in potassium buffer solution, gastrointestinal fluids revealed a slow evolution of BSA content, independent of the media. Proton induced x-ray emission results obtained in calcined mouse organs revealed that silica is only present in the spleen after 35 days and is completely eliminated from all mouse organs after 10 weeks. Biological studies showed that Santa Barbara Amorphous-15 is an effective adjuvant when compared to the traditional Al(OH)3, and is non-toxic to mice, rats, dogs and even cells, such as macrophages and dendritic cells. Recent studies showed that the immunological response is improved by enhancing the inflammatory response and the recruitment of immune competent cells to the site of injection as by the oral route and, most importantly, by increasing the number of phagocytes of a particulate antigen by antigen presenting cells. This research is under the scope of the International Patent WO 07030901, IN248654,ZA2008/02277, KR 1089400, MX297263, JP5091863, CN101287491B.

  15. Functionalized SBA-15 mesoporous silica in ion chromatography of alkali, alkaline earths, ammonium and transition metal ions.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Fiorilli, Sonia; Onida, Barbara; Sarzanini, Corrado

    2009-07-17

    The retention properties of a SBA-15 mesoporous silica functionalized with -(CH(2))(3)COOH groups, synthesized by a co-condensation route, were investigated for the ion chromatography of different cationic species. A systematic study on the effect of different eluent compositions containing non-complexing (methanesulfonic acid) or complexing (oxalic or pyridine-2,6-dicarboxylic acids) eluents, in the presence of organic modifiers (CH(3)CN, CH(3)OH, CH(3)NH(2)) on the retention of cations (Li(+), Na(+), K(+), Ca(2+), Mg(2+), Sr(2+), Ba(2+), NH(4)(+), Cu(2+), Ni(2+), Zn(2+), Cd(2+), Co(2+), Pb(2+), Fe(3+)) chosen as model analytes and for their environmental importance, allowed us to elucidate the mechanisms (cation-exchange or complexation) involved in the retention on the SBA-15 phase. For the first time separations of cations on SBA-15 based stationary phases are investigated, providing the basis for further development of mesoporous silica chemistry for in-flow ion-exchange applications.

  16. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen.

    Science.gov (United States)

    Mellaerts, Randy; Jammaer, Jasper A G; Van Speybroeck, Michiel; Chen, Hong; Van Humbeeck, Jan; Augustijns, Patrick; Van den Mooter, Guy; Martens, Johan A

    2008-08-19

    The ordered mesoporous silica material SBA-15 was loaded with the model drugs itraconazole and ibuprofen using three different procedures: (i) adsorption from solution, (ii) incipient wetness impregnation, and (iii) heating of a mixture of drug and SBA-15 powder. The location of the drug molecules in the SBA-15 particles and molecular interactions were investigated using nitrogen adsorption, TGA, DSC, DRS UV-vis, and XPS. The in vitro release of hydrophobic model drugs was evaluated in an aqueous environment simulating gastric fluid. The effectiveness of the loading method was found to be strongly compound dependent. Incipient wetness impregnation using a concentrated itraconazole solution in dichloromethane followed by solvent evaporation was most efficient for dispersing itraconazole in SBA-15. The itraconazole molecules were located on the mesopore walls and inside micropores of the mesopore walls. When SBA-15 was loaded by slurrying it in a diluted itraconazole solution from which the solvent was evaporated, the itraconazole molecules ended up in the mesopores that they plugged locally. At a loading of 30 wt %, itraconazole exhibited intermolecular interactions inside the mesopores revealed by UV spectroscopy and endothermic events traced with DSC. The physical mixing of itraconazole and SBA-15 powder followed by heating above the itraconazole melting temperature resulted in formulations in which glassy itraconazole particles were deposited externally on the SBA-15 particles. Loading with ibuprofen was successful with each of the three loading procedures. Ibuprofen preferably is positioned inside the micropores. In vitro release experiments showed fast release kinetics provided the drug molecules were evenly deposited over the mesoporous surface.

  17. Preparation And Characterization Of Glycidyl Methacrylate Organo Bridges Grafted Mesoporous Silica Sba-15 As Ibuprofen And Mesalamine Carrier For Controlled Release

    OpenAIRE

    Rehman; Fozia; Rahim; Abdur; Airoldi; Claudio; Volpe; Pedro L. O.

    2016-01-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in ...

  18. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    Science.gov (United States)

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  19. Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization.

    Science.gov (United States)

    Dai, Hongjie; Ou, Shiyi; Liu, Zhijun; Huang, Huihua

    2017-08-01

    Hydrogel composites based on pineapple peel carboxymethyl cellulose, polyvinyl alcohol and mesoporous silica SBA-15 were synthesized by an eco-friendly method of repeated freeze-thaw cycles for the application of papain immobilization. The experiment was optimized to obtain an efficient papain immobilization carrier. Simultaneously the immobilization conditions, including enzyme concentration, pH, crosslinker concentration and cross-linking time were optimized. The immobilized papain had maximum activity at low reaction temperature of 40°C and showed pH-sensitivity by exhibiting a rapid decrease of activity within a narrow range from pH 7.0 to pH 7.5. Compared with the free papain, the immobilized papain revealed enhanced pH, thermal and storage stability. After 2h incubation at 80°C, the immobilized papain retained 56% of its initial activity while the free papain only retained 16%. After 10days of storage, 79% of the initial activity was retained for the immobilized papain while only 27% for the free papain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica.

    Science.gov (United States)

    Wang, Zhouhua; Chen, Bao; Quan, Guilan; Li, Feng; Wu, Qiaoli; Dian, Linghui; Dong, Yixuan; Li, Ge; Wu, Chuanbin

    2012-01-01

    The aim of this study was to develop an immediate-release pellet formulation with improved drug dissolution and adsorption. Carbamazepine, a poorly water-soluble drug, was adsorbed into mesoporous silica (SBA-15-CBZ) via a wetness impregnation method and then processed by extrusion/spheronization into pellets. Physicochemical characterization of the preparation was carried out by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, small-angle and wide-angle x-ray diffraction, and differential scanning calorimetry. Flowability and wettability of the drug-loaded silica powder were evaluated by bulk and tapped density and by the angle of repose and contact angle, respectively. The drug-loaded silica powder was formulated into pellets to improve flowability. With maximum drug loading in SBA-15 matrices determined to be 20% wt, in vitro release studies demonstrated that the carbamazepine dissolution rate was notably improved from both the SBA-15 powder and the corresponding pellets as compared with the bulk drug. Correspondingly, the oral bioavailability of SBA-15-CBZ pellets was increased considerably by 1.57-fold in dogs (P release commercial carbamazepine tablets. Immediate-release carbamazepine pellets prepared from drug-loaded silica provide a feasible approach for development of a rapidly acting oral formulation for this poorly water-soluble drug and with better absorption.

  1. Space-confined preparation of high surface area tungsten oxide and tungsten nitride inside the pores of mesoporous silica SBA-15

    DEFF Research Database (Denmark)

    Meyer, Simon; Beyer, Hans; Köhler, Klaus

    2015-01-01

    N inside the pores of ordered mesoporous silica SBA-15 offers a possibility to reduce sintering phenomena and thus to obtain smaller particles, porous structures and a higher surface area material. The preparation was pursued in a two-step approach. First, WO3 was introduced into the channels of SBA......For the direct preparation of high surface area nitride materials, a lack of suitable precursors exists. Indirect preparation by gas phase nitridation (e.g. by ammonia) requires high temperatures and often results in sintering. The present work demonstrates that the space-confined preparation of W2......-15 and second, ammonolysis was conducted for its conversion to W2N. When performed in the presence of the exo-template, SBA-15 acts as a stabilizer and small W2N particles (6-7 nm) with a high specific surface area (40 m(2) g(-1)) are obtained after template removal. When the template is, however...

  2. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl [Czestochowa University of Technology, Institute of Computational Intelligence, Unit of Microelectronics and Nanotechnology, Al. Armii Krajowej 36, 42–201 Czestochowa (Poland); Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, ul. Radzikowskiego 152 (Poland); Jelonkiewicz, Jerzy, E-mail: jerzy.jelonkiewicz@kik.pcz.pl [Czestochowa University of Technology, Institute of Computational Intelligence, Unit of Microelectronics and Nanotechnology, Al. Armii Krajowej 36, 42–201 Czestochowa (Poland); Dulski, Mateusz, E-mail: mateusz.dulski@us.edu.pl [University of Silesia, Faculty of Computer Science and Materials Science, Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41–500 Chorzów (Poland); Wojtyniak, Marcin, E-mail: marcin.wojtyniak@us.edu.pl [University of Silesia, Institute of Physics, Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41–500 Chorzów (Poland); Fitta, Magdalena, E-mail: magdalena.fitta@ifj.edu.pl [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31–342 Krakow, ul. Radzikowskiego 152 (Poland); Balanda, Maria, E-mail: Maria.Balanda@ifj.edu.pl [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31–342 Krakow, ul. Radzikowskiego 152 (Poland)

    2016-09-15

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.

  3. Enhancing in vitro dissolution and in vivo bioavailability of fenofibrate by solid self-emulsifying matrix combined with SBA-15 mesoporous silica.

    Science.gov (United States)

    Quan, Guilan; Wu, Qiaoli; Zhang, Xiaoxu; Zhan, Zhengwen; Zhou, Chan; Chen, Bao; Zhang, Zhengzan; Li, Ge; Pan, Xin; Wu, Chuanbin

    2016-05-01

    Mesoporous silica Santa Barbara amorphous-15 (SBA-15), derived from supermolecular assemblies of surfactant Pluronic(®) P123 with well-ordered 2-D hexagonal pores, was investigated as a reservoir to construct a novel solid self-emulsifying matrix for enhancing the oral bioavailability of fenofibrate (FNB). The emulsification rate and droplet size of a liquid self-emulsifying delivery system (SEDDS) were analyzed for optimization. SBA-15 was then added to the ethanol solution containing liquid SEDDS, and the obtained suspension changed into solid SEDDS matrix via solvent evaporation. The characterizations by SEM and XRD revealed that the solid matrix consisted of particles with smooth surface and FNB was completely transformed into molecular or amorphous state in the formulation. When introduced to aqueous media under gentle agitation, the solid matrix exhibited excellent self-emulsification properties and formed a uniform microemulsion with mean diameter of 117.35 ± 2.33 nm. The solid SEDDS matrix showed faster in vitro release rate than the raw powder and commercial capsule. The absorption of FNB delivered by solid SEDDS matrix was significantly improved in beagle dogs, and its Cmax and AUC values were about 8- and 4-fold greater than those of commercial products, respectively. In conclusion, SBA-15 emerged as a promising reservoir for SEDDS to enhance the bioavailability of poorly water-soluble drugs, which may provide a new strategy for advanced therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Fozia, E-mail: fozia@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Rahim, Abdur [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Airoldi, Claudio; Volpe, Pedro L.O. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2016-02-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2 m{sup 2} g{sup −1} and pore volume was reduced from 1.98 to 0.89 cm{sup 3} g{sup −1}, when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer–Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH 1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8 h, while comparatively high release rates were observed in simulated intestinal (pH 6.8) and simulated body fluids (pH 7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. - Highlights: • Modified SBA-15 silica with long hydrophobic chains was evaluated as drug carrier. • This silica showed improved loading capacity and controlled release of ibuprofen. • Compared to gastric pH high release rate of mesalamine was observed at colonic pH.

  5. Characterization and comprehension of zeolite NaY/mesoporous SBA-15 composite as adsorbent for paraquat

    Energy Technology Data Exchange (ETDEWEB)

    Osakoo, Nattawut, E-mail: natawut.work@gmail.com [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Pansakdanon, Chaianun [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Sosa, Narongrit; Deekamwong, Krittanun; Keawkumay, Chalermpan; Rongchapo, Wina [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Chanlek, Narong [Synchrotron Light Research Institute, Nakhon Ratchasima, 30000 (Thailand); Jitcharoen, Juthamas [Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Prayoonpokarach, Sanchai [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Wittayakun, Jatuporn, E-mail: jatuporn@g.sut.ac.th [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand)

    2017-06-01

    NaY was synthesized from fumed silica and further modified to form a composite with SBA-15. Textural properties and basicity of the composite NaY-SBA-15 were between those of the parent materials. Paraquat adsorption on NaY was 204.1 mg/g, higher than that on NaY synthesized with rice husk silica from the previous work. SBA-15 was a poor adsorbent for paraquat. Based on the weight of NaY, the adsorption capacity of analytical-grade paraquat on the NaY-SBA-15 composite was 241.5 mg/g-NaY. Moreover, the composite adsorbed blue dye from a commercial grade paraquat. Interaction between the NaY-SBA-15 and paraquat could be from C and N atoms in paraquat with oxygen atom on NaY-SBA-15. - Highlights: • Zeolite NaY/mesoporous SBA-15 composite was synthesized with a simple method. • NaY and SBA-15 coexisted in the composite confirmed by FTIR, CO{sub 2}-TPD and XPS. • Adsorption capacity of paraquat (mg/g-NaY) was improved by NaY and SBA-15 composite. • C and N atoms in paraquat could interact with oxygen atom on NaY-SBA-15 composite.

  6. In situ FT-IR investigation of etravirine speciation in pores of SBA-15 ordered mesoporous silica material upon contact with water.

    Science.gov (United States)

    Mellaerts, Randy; Fayad, Elie J; Van den Mooter, Guy; Augustijns, Patrick; Rivallan, Mickaël; Thibault-Starzyk, Frédéric; Martens, Johan A

    2013-02-04

    Ordered mesoporous silica (OMS) has been recognized as promising adsorbent material for drug molecules with low aqueous solubility. The release of drug molecules from OMS upon contact with aqueous environment enhances their oral bioavailability. The release is governed by a complex interplay of adsorption, diffusion, and intermolecular interaction inside OMS pores. The presence of water hampers in situ FT-IR investigation of the behavior of the drug molecules upon release. The poorly water-soluble etravirine molecule having two nitrile functions was selected for an in situ FT-IR spectroscopic investigation of the release process. The stretching vibration of the nitrile organic function (υ(CN)) is a spectral feature that is accessible to FT-IR even in the presence of water. Etravirine depending on the loading was found to be present in SBA-15 pores as isolated adsorbed molecules, solvated molecules, and aggregates with intermolecular interaction similar to the crystalline state, each with a different spectroscopic fingerprint. Etravirine evacuation from the SBA-15 pores was shown to proceed in the solvated state. Surprisingly, the etravirine clusters inside pores were converted more readily into solvated molecules compared to individually adsorbed molecules.

  7. A well-defined mesoporous amine silica surface via a selective treatment of SBA-15 with ammonia

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2012-01-01

    2D double-quantum 1H- 1H NMR unambiguously shows that the "isolated" Si-OH surface silanols of dehydroxylated SBA-15 are converted upon treatment with ammonia into single silylamine surface site Si-NH 2. The "gem" di-silanols (Si(OH) 2) remain intact. Treatment using HMDS produces (Si(OSiMe 3) 2) but leaves Si-NH 2 untouched. The resulting surface is hydrophobic and stable. © The Royal Society of Chemistry 2012.

  8. Facile fabrication of mesoporous Fe-Ti-SBA15 silica with enhanced visible-light-driven simultaneous photocatalytic degradation and reduction reactions

    Science.gov (United States)

    Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng

    2018-03-01

    A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.

  9. Calorimetric Study of Mesoporous SBA-15 Modified for Controlled Valproic Acid Delivery

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available SBA-15 ordered mesoporous silica functionalized with (3-aminopropyltriethoxysilane (APTES was used as the carrier for anticonvulsant drug 2-propylpentanoic acid (valproic acid. The surface of SBA-15 containing free silanol groups was modified with 3-aminopropyltriethoxysilane via postsynthetic reaction. Functionalization of the carrier with basic aminopropyl groups resulted in an ionic interaction with acidic valproic acid. The samples of carriers and carrier-drug complexes were characterized by elemental analysis, N2 adsorption, FTIR, and UV spectroscopy. The adsorption of valproic acid on modified mesoporous matrix was proportional to the amount of introduced aminopropyl groups. A thermodynamic study with isothermal titration calorimetry (ITC was made to characterize the modification and encapsulation of SBA-15 with APTES and valproic acid, respectively. The maximum content of deposited drug in modified SBA-15 was close to 30 wt.%. Tests performed in acidic solution (pH 2.0 showed the best pharmaceutical availability.

  10. Controlled and localized delivery of c-myc AS-ODN to cells by 3-aminopropyl-trimethoxylsilane modified SBA-15 mesoporous silica

    Science.gov (United States)

    Zhang, Juan; Chen, Minmin; Zhao, Xiqiu; Zhang, Min; Mao, Jinxiang; Cao, Xichuan; Zhang, Zhuoqi

    2018-01-01

    SBA-15 mesoporous silicate was synthesized and functionalized with 3-aminopropyl organic groups through a post-synthesis method. The materials were characterized consecutively by powder X-ray diffraction (XRD), N2 adsorption/desorption analysis and solid-state magic-angle spinning 29Si nuclear magnetic resonance (MAS NMR). Human c-myc anti-sense oligodeoxyneucleotide (AS-ODN) was selected as a model molecule to be loaded onto the surface of bare and functionalized SBA-15 via different loading conditions. It has been found that the amount of AS-ODN incorporated into the porous matrix is strongly dependent on the surface properties, pH of the loading solvent and AS-ODN concentration. The release behaviour of AS-ODN from modified SBA-15 materials was also investigated and depended on conditions chosen. Cellular uptake of the eluted AS-ODN into Hela cells was observed by fluorescent microscopy. The materials showed excellent cytocompatibility. The AS-ODN keeps full transfection and expression activities indicating its structural integrity. The functionalized SBA-15 is an excellent prospect as a biomedical material candidate for the future.

  11. Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 8. Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant solid acid catalyst for the synthesis of uracil fused spirooxindoles as antioxidant agents. Robabeh Baharfar Razieh Azimi. Regular Articles Volume 127 Issue 8 August 2015 pp 1389- ...

  12. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, M.V. [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); Videla, M. [Rhein Chemie Argentina, Luis Maria Drago 1555 - (B1852LGS) Burzaco, Buenos Aires (Argentina); Calvo, A.; Requejo, F.G. [INIFTA-CONICET, Universidad Nacional de La Plata, CC 16 Sucursal 4 (1900), La Plata (Argentina); Soler-Illia, G.J.A.A., E-mail: gsoler@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (C1428EHA), Buenos Aires (Argentina)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We produce mesoporous amino-silica as Cu(II) adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}). Black-Right-Pointing-Pointer Elemental analysis and XPS demonstrate that amino groups concentrate at the material surface. Black-Right-Pointing-Pointer The integrity of the adsorbent through the adsorption, desorption and recycling processes is assessed. Black-Right-Pointing-Pointer These materials can be regenerated by exposure to acidic media. Black-Right-Pointing-Pointer A careful thermal processing of the material is central to better durability during reprocessing. - Abstract: Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption-desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the

  13. Enhanced dissolution and stability of artemisinin by nano-confinement in ordered mesoporous SBA-15 particles.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Tan, Reginald B H

    2015-01-01

    Dissolution of poorly water-soluble drug, Artemisinin (ART), was enhanced by encapsulating the drug particles inside pore channels of ordered mesoporous silica, SBA-15, via co-spray drying. The drug release profiles of ART were investigated by using flow-through cell (USP IV) and in vitro dissolution tester (USP II). The co-spray-dried ART/SBA-15 samples demonstrated significantly improved dissolution rates and supersaturation compared to the untreated ART. The low cytotoxicity effect of ART and SBA-15 on Caco-2 cells after 24 h incubation demonstrated the biocompatibility of ART/SBA-15. Finally, the storage stability of the samples was investigated for 6 months under five different storage conditions. Overall, the solid dispersions exhibited excellent physical stability; however, their chemical stability was affected by humidity regardless of storage temperatures. The formulation of solid dispersions of ART/SBA-15 is potentially safe and an effective approach to enhance the solubility of poorly water-soluble ART.

  14. Highly Efficient Near-IR Photoluminescence of Er3+ Immobilized in Mesoporous SBA-15

    Directory of Open Access Journals (Sweden)

    Wu P

    2010-01-01

    Full Text Available Abstract SiO2 mesoporous molecular sieve SBA-15 with the incorporation of erbium ions is studied as a novel type of nanoscopic composite photoluminescent material in this paper. To enhance the photoluminescence efficiency, two schemes have been used for the incorporation of Er3+ where (1 Er3+ is ligated with bis-(perfluoromethylsulfonyl-aminate (PMS forming Er(PMSx-SBA-15 and (2 Yb3+ is codoped with Er3+ forming Yb-Er-SBA-15. As high as 11.17 × 10−21cm2 of fluorescent cross section at 1534 nm and 88 nm of “effective bandwidth” have been gained. It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica. The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts. The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier. Finally, the Judd–Ofelt theory has also been used for the analyses of the optical spectra of Er(PMSx-SBA-15.

  15. Synthesis and structural characterization of ZnO-and CuO-NPs supported mesoporous silica materials (hexagonal SBA-15 and lamellar-SiO2)

    Science.gov (United States)

    El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.

    2018-01-01

    Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.

  16. Selective Preparation of trans-Carveol over Ceria Supported Mesoporous Materials MCM-41 and SBA-15

    Directory of Open Access Journals (Sweden)

    Nariman F. Salakhutdinov

    2013-05-01

    Full Text Available Ce-modified mesoporous silica materials MCM-41 and SBA-15, namely 32 wt % Ce–Si–MCM-41, 16 wt % Ce–H–MCM-41 and 20 wt % Ce–Si–SBA-15, were prepared, characterized and studied in the selective preparation of trans-carveol by α-pinene oxide isomerization. The characterizations of these catalysts were performed using scanning electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and FTIR pyridine adsorption. Selective preparation of trans-carveol was carried out in the liquid phase in a batch reactor. The activity and the selectivity of catalyst were observed to be influenced by their acidity, basicity and morphology of the mesoporous materials. The formation of trans-carveol is moreover strongly influenced by the basicity of the used solvent and in order to achieve high yields of this desired alcohol it is necessary to use polar basic solvent.

  17. Growth and physico-chemical properties of interconnected carbon nanotubes in FeSBA-15 mesoporous molecular sieves

    Directory of Open Access Journals (Sweden)

    Ulka Suryavanshi

    2016-03-01

    Full Text Available Carbon nanotubes (CNTs with well-defined hollow interiors, and different morphologies have been grown inside the nanochannels of iron substituted SBA-15 (Santa Barbara Amorphous with different iron contents and well-ordered large mesopores by chemical vapour deposition method. This novel method requires only 3 min for the formation of high quality multiwalled CNTs inside the SBA-15. The physico-chemical characteristics of the prepared CNT/Fe-SBA-15 nanocomposite have been analysed with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy and thermogravimetric analysis (TGA. XRD, Raman spectroscopy and TGA results confirm that the formed CNTs in SBA-15 nanochannels are highly pure and graphitic in nature, which can be altered by tuning the Fe content in the support matrix. SEM images show the interconnected network of SBA-15/CNT where CNT bridges the neighbouring SBA-15 nanoparticles. Interestingly, spring like CNTs and multi-terminal junctions such as Y and H junctions were also observed. The morphology of the CNTs inside the nanochannels of the SBA-15 support can also be controlled by the simple adjustment of the iron content in the SBA-15 framework. It has also been found that the content of Fe in the silica framework of SBA-15 plays a significant role in the formation of the CNTs and the amount of deposited CNTs in the nanochannels of SBA-15 increased with increasing the concentration of iron in framework. Among the materials studied, the FeSBA-15 with the nSi/nFe ratio of 2 showed the highest catalytic activity towards the formation of high quality CNTs.

  18. SBA-15 mesoporous material modified with APTES as the carrier for 2-(3-benzoylphenyl)propionic acid

    Science.gov (United States)

    Moritz, Michał; Łaniecki, Marek

    2012-07-01

    SBA-15 ordered mesoporous silica functionalized with (3-aminopropyl)triethoxysilane (APTES) was used as the carrier for anti-inflammatory drug: 2-(3-benzoylphenyl)propionic acid - ketoprofen. The surface of SBA-15 containing free silanol groups was modified with 3-aminopropyltriethoxysilane via post-synthetic reaction. Functionalization of the carrier with basic aminopropyl groups resulted in an ionic interaction with acidic ketoprofen. The samples of carriers and carrier-drug complexes were characterized by elemental analysis, TG, N2 adsorption, FTIR, DRUV spectroscopies and an in vitro drug release test. The adsorption of ketoprofen on modified mesoporous matrix was proportional to the amount of introduced aminopropyl groups. The maximum content of deposited drug in modified SBA-15 was close to 20 wt.%. After drug adsorption the reduction of BET surface area, pore volume and pore diameter of non-modified SBA-15 and aminopropyl-modified SBA-15 after drug adsorption were observed while the hexagonal array of siliceous matrix was well preserved. The release profiles of the aminopropyl-modified drug-containing SBA-15 exhibited prolonged release of ketoprofen in applied media. Tests performed in acidic solution (pH 1.2) showed the best pharmaceutical availability.

  19. HCI as a key parameter in size-tunable synthesis of SBA-15 silica with rodlike morphology.

    Science.gov (United States)

    Kang, Segoo; Chae, Young Bae; Yu, Jong-Sung

    2009-01-01

    Highly ordered mesoporous SBA-15 silica particles with rodlike morphologies were synthetically controlled for the first time by adjusting hydrochloric acid concentration in the range of 0.1-5.0 M in the presence of block copolymer template under static condition but with no addition of inorganic salts. This work illustrates that it is possible to achieve a facile, convenient, reproducible high yield synthesis of SBA-15 silica particles with rodlike morphology in a wide range of length scale (0.4-4.5 microm in length), and it is HCl that plays a key role in regulating the morphological architecture of the mesoporous particles. The acid revealed strong effects not only on mesostuctural properties, but also on macrostructural morphologies of the resulting SBA-15 particles in a wide range of acid concentration (1.0-3.0 M).

  20. Selective Preparation of Furfural from Xylose over Sulfonic Acid Functionalized Mesoporous Sba-15 Materials

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2011-04-01

    Full Text Available Sulfonic acid functionalized mesoporous SBA-15 materials were prepared using the co-condensation and grafting methods, respectively, and their catalytic performance in the dehydration of xylose to furfural was examined. SBA-15-SO3H(C prepared by the co-condensation method showed 92–95% xylose conversion and 74% furfural selectivity, and 68–70% furfural yield under the given reaction conditions. The deactivation and regeneration of the SBA-15-SO3H(C catalyst for the dehydration of xylose was also investigated. The results indicate that the used and regeneration catalysts retained the SBA-15 mesoporous structure, and the S content of SBA-15-SO3H(C almost did not change. The deactivation of the catalysts is proposed to be associated with the accumulation of byproducts, which is caused by the loss reaction of furfural. After regeneration by H2O2, the catalytic activity of the catalyst almost recovered.

  1. Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant ...

    Indian Academy of Sciences (India)

    led to a water-tolerant solid acid catalyst, SBA-15-PhSO3H, which showed excellent catalytic performance in synthesis of uracil-fused spirooxindoles in aqueous ethanol. The synthesized compounds were evaluated for their antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay. Keywords.

  2. Extrusion of Fe2O3/SBA-15 mesoporous material for application as heterogeneous Fenton-like catalyst

    Directory of Open Access Journals (Sweden)

    María Isabel Pariente

    2015-03-01

    Full Text Available The aim of this work has been the extrusion of powder Fe2O3/SBA-15 catalyst in order to be successfully used in continuous catalytic fixed bed reactors as Fenton-like catalyst. The extrusion method was optimised using an amorphous silica material of similar properties than the Fe2O3/SBA-15 catalyst. The main studied variable was the composition of the extrusion paste using bentonite and methylcellulose as inorganic and organic binders, respectively. The organic content displayed a significant influence on the mechanical strength and specific surface area of the final extrudates. In contrast, the inorganic binder content hardly affected the final properties (in the studied range. The extruded Fe2O3/SBA-15 material showed a remarkable mechanical strength as well as the typical mesoporous structure of Fe2O3/SBA-15 with a relevant specific surface area (264 m2/g. The extruded catalyst achieved a high catalytic performance in the catalytic wet peroxide oxidation of phenol with a 60 % of total organic carbon reduction in both batch and continuous processes.

  3. Surface acidity effects of Al-SBA-15 mesoporous materials on adsorptive desulfurization.

    Science.gov (United States)

    Meng, Xiuhong; Wang, Yuan; Duan, Linhai; Qin, Yucai; Yu, Wenguang; Wang, Qiang; Dong, Shiwei; Ruan, Yanjun; Wang, Haiyan; Song, Lijuan

    2014-09-01

    SBA-15 and Aluminum-substituted SBA-15 with Si/Al molar ratio 10 (Al-SBA-15(10)) mesoporous materials were directly synthesized by a hydrolysis approach and characterized by a powder X-ray diffraction (XRD), N2 physisorption analysis and Fourier transform infrared (FTIR) etc. The relative number of hydroxyl groups was investigated by in situ FTIR systematically. The acid type and acid strength of the adsorbents were monitord by FTIR at 423 K and 673 K, respectively, utilizing pyridine as a probe. Desulfurization performances of the adsorbents were investigated via static adsorption experiment. Gas chromatography-sulfur chemiluminescence detector (GC-SCD) was employed to detect the sulfur compounds in model fuels before and after treated by the adsorbents. The calcined Al-SBA-15(10) material shows well-ordered hexagonal mesostructure and strong Lewis acid sites (L acid) and weak Brönsted acid sites (B acid). The number of hydroxy on the surface of the Al-SBA-15(10) is more than that of SBA-15, which is beneficial to further modifications such as spontaneous monolayer dispersion. Desulfurization performance of the adsorbents is affected by surface acidity of adsorbents and the constituent of model fuels (olefins, arene, etc.). The thiophene and olefins adsorbed on the B acid site of the adsorbent may occur subsequently alkylation reactions, which may block the pores of the adsorbents and thus cause the reduction of desulfurization capacity.

  4. Ascorbyl Tetraisopalmitate Inclusion into Υ-Cyclodextrin and Mesoporous SBA-15: Preparation, Characterization and In Vitro Release Study

    Directory of Open Access Journals (Sweden)

    Maria Bastianini

    2017-07-01

    Full Text Available Ascorbic acid or vitamin C is a strong antioxidant widely used in cosmetic and food fields. This vitamin is very unstable and rapidly undergoes degradation. In order to solve this problem and to obtain a stable ascorbic acid, Nikkol Group has developed ascorbyltetraisopalmitate (VC-IP. This raw material is an oil phase, already well-known and employed in the cosmetic market. The objective of this study is to obtain VC-IP in micro-powder form, in order to produce a new raw material that is easily dispersible in oil and water phases and useful for make-up and color cosmetic applications. Various types of drug carriers were studied and considered in order to support VC-IP and obtain the conversion in powder. Υ-cyclodextrin and mesoporous silica SBA-15 were chosen as the best candidates. A white powder of supported VC-IP was obtained with each carrier (VC-IP@cyclodextrin, VC-IP@SBA-15. The systems underwent physicochemical characterization and in vitro release tests were carried out. Based on the conducted study, it can be concluded that by supporting VC-IP on Υ-cyclodextrin and SBA-15, it is feasible to obtain a new raw material in powder form. The two carriers possess different release profiles, adding the possibility to finely tune the release of the active component in smart formulations.

  5. Short-time synthesis of SBA-15 using various silica sources.

    Science.gov (United States)

    Fulvio, Pasquale F; Pikus, Stanisław; Jaroniec, Mietek

    2005-07-15

    A short-time synthesis of SBA-15 is reported by using two different silica sources, sodium metasilicate (Na2SiO3(9)H2O) and tetraethyl orthosilicate (TEOS). The SBA-15 samples obtained from both silica sources were highly ordered as evidenced by SAXS spectra showing five reflection peaks characteristic for p6mm symmetry group. While the surface areas of these samples were similar, the pore volume of the sample prepared from TEOS was slightly larger than that from sodium metasilicate. However, the latter exhibited higher microporosity and thicker pore walls. It was shown that a significant reduction of time of the self-assembly step from 24 to 2 h had no detrimental influence on the quality of SBA-15 materials.

  6. The applicability of ordered mesoporous SBA-15 and its hydrophobic glutaraldehyde-bridge derivative to improve ibuprofen-loading in releasing system.

    Science.gov (United States)

    Rehman, Fozia; Volpe, Pedro L O; Airoldi, Claudio

    2014-07-01

    The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Anatase TiO{sub 2} nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, M.M. [PPGQ-GERATEC-CCN-DQ, Universidade Estadual do Piauí, João Cabral, N. 2231, P.O. Box 381, 64002-150 Teresina, PI (Brazil); Departamento de Química (DQ), Universidade Federal do Piauí-UFPI, 64049-550 Teresina, PI (Brazil); Silva, L.K.R. [PPGQ-GERATEC-CCN-DQ, Universidade Estadual do Piauí, João Cabral, N. 2231, P.O. Box 381, 64002-150 Teresina, PI (Brazil); Sczancoski, J.C.; Orlandi, M.O.; Longo, E. [CDMF-Universidade Estadual Paulista, P.O. Box 355, 14801-907, Araraquara, SP (Brazil); Santos, A.G.D. [Departamento de Ciências Naturais, Universidade Estadual do Rio Grande do Norte, Mossoró, RN (Brazil); Sá, J.L.S.; Santos, R.S.; Luz, G.E. [PPGQ-GERATEC-CCN-DQ, Universidade Estadual do Piauí, João Cabral, N. 2231, P.O. Box 381, 64002-150 Teresina, PI (Brazil); Cavalcante, L.S., E-mail: laeciosc@gmail.com [PPGQ-GERATEC-CCN-DQ, Universidade Estadual do Piauí, João Cabral, N. 2231, P.O. Box 381, 64002-150 Teresina, PI (Brazil)

    2016-12-15

    Highlights: • New synthesis method to obtention of TiO{sub 2}/SBA-15 mesoporous. • Textural properties of TiO{sub 2}/SBA-15 mesoporous. • Optical band gap model to TiO{sub 2}/SBA-15 mesoporous. - Abstract: In this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO{sub 2}) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO{sub 2} nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO{sub 2} nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO{sub 2} nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO{sub 2} nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO{sub 2}-SBA mesoporous. UV–vis spectra revealed a dependence of the optical band gap energy (E{sub gap}) with the decreasing of Si/Ti molar

  8. Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles

    KAUST Repository

    Kerdi, Fatmé

    2011-04-01

    The preparation and characterization of highly dispersed gold nanoparticles in ordered mesoporous carbons CMK-3 are reported. These carbons were obtained using gold-containing functionalized SBA-15 silicas as hard templates. Two series of Au/SiO2 templates were prepared, depending on the nature of the functionalization molecule. While ammonium-functionalized silicas gave gold particles with a size determined by the pores of the silica support, the use of mercaptopropyltrimethoxysilane as grafting molecule afforded the possibility to control the particle size inside the mesopores. Both series gave highly ordered mesoporous carbons with gold particles incorporated in the carbon nanorods. However, the gold particle size in mesoporous carbons was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis, solid-state nuclear magnetic resonance and transmission electron microscopy. They were also used as catalysts in the aerobic oxidation of cyclohexene and trans-stilbene in the liquid phase. © 2010 Elsevier Inc. All rights reserved.

  9. Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report.

    Science.gov (United States)

    Molina-Manso, Diana; Manzano, Miguel; Doadrio, Juan Carlos; Del Prado, Gema; Ortiz-Pérez, Alberto; Vallet-Regí, María; Gómez-Barrena, Enrique; Esteban, Jaime

    2012-09-01

    Bone infections are a challenge for modern medicine. The most common pathogen is Staphylococcus aureus, which usually develops a biofilm inside the infected bone. Local release of antibiotics within the infected tissue may diminish this problem because high concentrations of the antibiotic would be delivered to the required place. This study was carried out to evaluate silica-based mesoporous material SBA-15 as a delivery system for three antibiotics with activity against S. aureus, namely vancomycin, rifampicin and linezolid, alone or in combination. SBA-15 disks were loaded with antibiotics by adsorption using a 1000 mg/L solution. Measurements of biological activity were carried out by bioassay tests, and antibiotic release was monitored by high-performance liquid chromatography (HPLC). In all cases, the ceramic disks released most of the antibiotics at the initial stage of the experiments, with concentrations above the susceptibility breakpoints. The most active antibiotic was rifampicin, with an active concentration of 96.14 mg/L at 24 h, followed by linezolid (7.2 mg/L) and vancomycin (5.5 mg/L). In the HPLC measurements, the antibiotic that showed the best release was linezolid, followed by vancomycin; rifampicin alone could not be measured by HPLC with precision. Taking into account all these results, the antibiotic that remains most active after loading and release is vancomycin (77.46%), followed by linezolid (24%). The results presented here demonstrate the efficacy of SBA-15 bioceramics for local release of antibiotics, which could be of interest in the context of bone infection. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Amine-modified SBA-15 and MCF mesoporous molecular sieves as promising sorbents for natural antioxidant. Modeling of caffeic acid adsorption.

    Science.gov (United States)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2016-04-01

    This work presents a detailed study of caffeic acid adsorption on mesoporous SBA-15 and MCF silicas functionalized with (3-aminopropyl)triethoxysilane (APTES) and 3-[2-(aminoethylamino)propyl]trimethoxysilane (AEAPTMS). Synthesized mesoporous adsorbents were characterized using different analytical techniques such as N2 sorption, XRD, TEM, SEM and FT-IR. The adsorption studies of caffeic acid were conducted in various organic solvents. Moreover, the effect of water content in 2-propanol-water mixture on adsorption efficiency was investigated. The experimental data were best fitted to the Langmuir equation, followed by the Temkin, Dubinin-Radushkevich and Freundlich models. The maximum adsorption capacity values calculated from the Langmuir model demonstrated that SBA-15 and MCF silicas modified with AEAPTMS revealed better adsorption properties toward caffeic acid (192.3 and 161.3mg/g, respectively) as compared to the materials modified with APTES (125.0 and 113.6 mg/g, respectively). The obtained results indicate that both SBA-15 and MCF silicas functionalized with AEAPTMS and APTES are promising materials for the entrapment of caffeic acid. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  12. Enhanced photocatalytic performance of mesoporous TiO{sub 2} coated SBA-15 nanocomposites fabricated through a novel approach: supercritical deposition aided by liquid-crystal template

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Lin, Xiao; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng; Li, Ming; Chen, Feitai

    2016-03-15

    Highlights: • Highly uniform mesoporous TiO{sub 2} nanopartices were coated SBA-15. • MT showed smaller crystallite size, higher hydroxyl content and surface area. • MT/SBA-15 show enhanced photocatalytic activity and high reused activity. • The optimum MT loading rate and calcination temperature were obtained to be 15% and 400 °C, respectively. • Photocatalytic behaviors are discussed in terms of the Langmuir–Hinshelwood model. - Abstract: Mesoporous TiO2 coated SBA-15 (MT@S) nanocomposites were fabricated through supercritical CO{sub 2} deposition aided by liquid-crystal template. The as-prepared samples were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy and so on. The results reveal that MT uniformly deposited onto silica with titania incorporated in SBA-15 channels, showed smaller crystallite size, higher hydroxyl content and surface area than nonporous TiO{sub 2} coated SBA-15 (NT@S) obtained by a similar route without template. With TiO{sub 2} loading ratio of 15 wt% and calcination temperature of 400 °C, 15%MT@S-400 showed the enhanced degradation efficiency for azo dyes (methylene blue, methyl orange, and rhodamine B) and phenol in comparsion with 15%NT@S-400, due to those improved textural and physicochemical properties. Meanwhile, the reused MT@S also showed high photoactivity. Additionally, the effects of MT content and calcination temperature have been examined as operational parameters. Photocatalytic reactions followed pseudo-first-order kinetics and are discussed in terms of the Langmuir–Hinshelwood model.

  13. Mesoporous silica nanoparticles inhibit cellular respiration.

    Science.gov (United States)

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  14. Hoveyda–Grubbs type metathesis catalyst immobilized on mesoporous molecular sieves MCM-41 and SBA-15

    Directory of Open Access Journals (Sweden)

    Zdeněk Bastl

    2011-01-01

    Full Text Available A commercially available Hoveyda–Grubbs type catalyst (RC303 Zhannan Pharma was immobilized on mesoporous molecular sieves MCM-41 and on SBA-15 by direct interaction with the sieve wall surface. The immobilized catalysts exhibited high activity and nearly 100% selectivity in several types of alkene metathesis reactions. Ru leaching was found to depend on the substrate and solvent used (the lowest leaching was found for ring-closing metathesis of 1,7-octadiene in cyclohexane – 0.04% of catalyst Ru content. Results of XPS, UV–vis and NMR spectroscopy showed that at least 76% of the Ru content was bound to the support surface non-covalently and could be removed from the catalyst by washing with THF.

  15. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    Directory of Open Access Journals (Sweden)

    Martin Hartmann

    2010-02-01

    Full Text Available Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3 aminopropyltrimethoxysilane (ATS, 3-glycidoxypropyltrimethoxysilane (GTS and with 3 aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO and glucose oxidase (GOx and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions.

  16. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    Science.gov (United States)

    Jung, Dirk; Streb, Carsten; Hartmann, Martin

    2010-01-01

    Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS) in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3-aminopropyltrimethoxysilane (ATS), 3-glycidoxypropyltrimethoxysilane (GTS) and with 3-aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS) in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO) and glucose oxidase (GOx) and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions. PMID:20386667

  17. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Directory of Open Access Journals (Sweden)

    J. Lv

    2012-10-01

    Full Text Available In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using γ-glycidyloxypropyltrimethoxysilane (GOTMS as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 1–3 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix.

  18. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  19. Adsorption properties of proteins on SBA-15 nanoparticles functionalized with aminosilanes.

    Science.gov (United States)

    Lee, Jae-Wook; Tra, Pham Thi; Kim, Sul-Il; Roh, Sung-Hee

    2008-10-01

    Since the discovery of ordered mesoporous silica M41S in 1992, a variety of ordered mesoporous materials have been synthesized by using the template technique. In this work, aminosilane-modified SBA-15 nanoparticles were prepared by incorporating various aminosilanes on original SBA-15 via post synthesis method. These aminosilanes were 3-aminopropyltriethoxysilane, N-2(-aminoethyl)-3-aminopropyl trimethoxysilane and (3-trimethoxysilylpropyl)diethylenetriamine. The synthesized nanoparticles were characterized by XRD, SEM, TEM and FT-IR. Adsorption and release studies of bovine serum albumin (BSA), lysozyme and myoglobin on SBA-15 samples were investigated. It was found that the synthesized SBA-15 nanoparicles can be successfully applied in drug delivery system.

  20. Characterization and catalytic activity of NiO/mesoporous aluminosilicate AlSBA-15 in conversion of some hydrocarbons

    Directory of Open Access Journals (Sweden)

    Heba M. Gobara

    2012-06-01

    Full Text Available Mesoporous aluminosilicate AlSBA-15 was synthesized and adopted as a support for NiO with 3, 6 and 9 wt.% loadings. Characterization of various samples was performed through XRD, FTIR, DSC-TGA, TPR, SEM and TEM techniques. Textural and morphological characteristics were examined using N2 adsorption–desorption isotherms. Catalytic activities were measured in cumene cracking for parent AlSBA-15 and in n-hexane and toluene cracking and cyclohexane dehydrogenation for supported NiO samples. Uniformity of the ordered 2D-hexagonal structure of AlSBA-15 was evident even after loading with NiO. NiO and NiOOH phases could be detected particularly in the sample containing 9 wt.% NiO. TPR profile of solid loaded with 3 wt.% NiO sample showed negative peaks at 400 and 600 °C, related to hydrogen spillover on reduced sample. Selectivity towards n-hexane and toluene cracking increased with both temperature and metal oxide loading, achieving 100% at 350 °C. In cyclohexane dehydrogenation, the sample loaded with 3 wt.% NiO was the most active and selective one towards benzene formation.

  1. Structure/Property Relationships of Poly(L-lactic Acid/Mesoporous Silica Nanocomposites

    Directory of Open Access Journals (Sweden)

    Javier Gudiño-Rivera

    2013-01-01

    Full Text Available Biodegradable poly(L-lactic acid (PLLA/mesoporous silica nanocomposites were prepared by grafting L-lactic acid oligomer onto silanol groups at the surface of mesoporous silica (SBA-15. The infrared results showed that the lactic acid oligomer was grafted onto the mesoporous silica. Surface characterization of mesoporous silica proved that the grafted oligomer blocked the entry of nitrogen into the mesopores. Thermal analysis measurements showed evidence that, once mixed with PLLA, SBA-15 not only nucleated the PLLA but also increased the total amount of crystallinity. Neat PLLA and its nanocomposites crystallized in the same crystal habit and, as expected, PLLA had a defined periodicity compared with the nanocomposites. This was because the grafted macromolecules on silica tended to cover the lamellar crystalline order. The g-SBA-15 nanoparticles improved the tensile moduli, increasing also the tensile strength of the resultant nanocomposites. Overall, the silica concentration tended to form a brittle material.

  2. Preparation and Characterization of Kynurenic Acid Occluded in Sol-Gel Silica and SBA-15 Silica as Release Reservoirs

    Directory of Open Access Journals (Sweden)

    Tessy López

    2014-01-01

    Full Text Available Kynurenic acid (KYNA may have important therapeutic effects in neurological disorders; however, its use as a neuroprotective agent is restricted due to its very limited ability to cross the blood brain barrier (BBB. For this reason, we are looking for new alternatives for KYNA to reach the brain; one of them is using drug delivery systems. To obtain KYNA release reservoirs, KYNA molecules were hosted in two different silica materials. The different KYNA-silica materials were characterized by means of several physical techniques. The spectroscopic studies showed that KYNA molecules remained unchanged once hosted in silica materials. The surface area values of KYNA-silica samples were substantially lower than those for pure silica materials due to the addition of the drug. The electronic micrographs showed that the sol-gel KYNA-silica material consisted of aggregates of nanoparticles around 50 nm in size. On the other hand, the typical SBA-15 hexagonal arrangement was observed, even when hosting KYNA molecules. KYNA release profiles, carried out during approximately 300 hours, showed a first stage of fast drug release followed by a slow release phase. The experimental values fitted to the Peppas equation indicate that the release mechanism was controlled by Fickian diffusion.

  3. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    Science.gov (United States)

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282

  4. Adsorption and release of ampicillin antibiotic from ordered mesoporous silica.

    Science.gov (United States)

    Nairi, Valentina; Medda, Luca; Monduzzi, Maura; Salis, Andrea

    2017-07-01

    In this work the adsorption and the release of ampicillin - a β-lactam penicillin-like antibiotic - from MCM-41, SBA-15, and (amino functionalized) SBA-15-NH2 ordered mesoporous silica (OMS) materials were investigated. The silica matrices differ for their pore size (SBA-15 vs. MCM-41) mainly, and also for surface charge (SBA-15 and MCM-41, vs. SBA-15-NH2). OMS samples were characterized through small-angle X-rays scattering (SAXS), transmission electron microscopy (TEM), N2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and potentiometric titrations. The quantification of immobilized and released ampicillin was monitored by mean of UV-Vis spectroscopy. Experimental adsorption isotherms evidenced that ampicillin's loading is not related to the pore size (dBJH) of the adsorbent. Indeed the maximal loadings were 237mg/g for SBA-15 (dBJH=6.5nm), 278mg/g for MCM-41 (dBJH=2.2nm), and 333mg/g for SBA-15-NH2 (dBJH=5.6nm). Loading seems, instead, to be related to the surface charge density (σ) of the sorbent surface. Indeed, at pH 7.4 ampicillin drug is negatively charged and likely prefers to interact with SBA-15-NH2 (σSBA-15-NH2=+0.223Cm-2) rather than the slightly negatively charged silicasSBA-15=-0.044Cm-2 and σMCM-41=-0.033Cm-2). Similarly, ampicillin release is affected by interfacial interactions. Indeed, we found a burst release from pure silica samples (SBA-15 and MCM-41), whereas a sustained one from SBA-15-NH2 sample. We explain this behavior as a result of an attractive interaction between the protonated amino group of SBA-15-NH2 and the negatively charged carboxylate group of ampicillin. In summary, in order to obtain a sustained drug release, the chemical nature of the matrix's surface plays a role which is more important than its textural features. SBA-15-NH2 matrix is hence a suitable candidate for local sustained release of antibiotic drugs. Copyright © 2017 Elsevier Inc. All

  5. Immunoprecipitation of bisphenol A by antibody–mesoporous silica composites

    Directory of Open Access Journals (Sweden)

    Toru Orita

    2014-09-01

    Full Text Available Bisphenol A (BPA is of global concern because of its disruption of endocrine systems and ubiquity in aquatic environment. In this study, BPA antibody was successfully immobilised on novel mesoporous silica (MPS carriers that display unique properties such as high surface area, highly uniform pore distribution and high adsorption capacity. Mobil Crystalline Material MCM-41 (2.7 nm, Santa Barbara Amorphous SBA-15-1 (12.3 nm and SBA-15-2 (24.0 nm materials were used as supports for these antibodies. On these carriers, the BPA antibody immobilisation reached 40 μg mg−1. For each MPS, 15 ng of BPA antigen was adsorbed on 1 mg of MPS–antibody composite, which resulted in an antibody activity of 30%. The highest recovery rate of BPA antigen was observed for 80% acetonitrile in 10 mM phosphate buffer (pH 7. After six repeated runs, BPA antibodies immobilised on SBA-15-1 and SBA-15-2 retained about 30% of their initial activity. In contrast, these antibodies showed 13% lower residual activity on MCM-41 than on SBA-15-1 and SBA-15-2. This result indicated that entire antibody molecules were adsorbed inside SBA-15-1 and SBA-15-2 pores, stabilising their structural conformation.

  6. Support enhanced α-pinene isomerization over HPW/SBA-15

    OpenAIRE

    Frattini, Lucia; Isaacs, Mark A.; Parlett, Christopher M.A.; Wilson, Karen; Kyriakou, Georgios; Adam F. Lee

    2017-01-01

    A family of mesoporous SBA-15 supported H3PW12O40 (HPW) catalysts were synthesized by wet-impregnation and compared with fumed silica analogues for the solventless isomerization of α-pinene under mild conditions. Structural and acidic properties of supported HPW materials were characterized by powder XRD, HRTEM, XPS, TGA, N2 porosimetry, DRIFTS, and ammonia and propylamine chemisorption and TPD. The high area, mesoporous SBA-15 architecture facilitates the formation of highly dispersed (isola...

  7. Mesoporous Silicas with Tunable Morphology for the Immobilization of Laccase

    Directory of Open Access Journals (Sweden)

    Victoria Gascón

    2014-05-01

    Full Text Available Siliceous ordered mesoporous materials (OMM are gaining interest as supports for enzyme immobilization due to their uniform pore size, large surface area, tunable pore network and the introduction of organic components to mesoporous structure. We used SBA-15 type silica materials, which exhibit a regular 2D hexagonal packing of cylindrical mesopores of uniform size, for non-covalent immobilization of laccase. Synthesis conditions were adjusted in order to obtain supports with different particle shape, where those with shorter channels had higher loading capacity. Despite the similar isoelectric points of silica and laccase and the close match between the size of laccase and the pore dimensions of these SBA-15 materials, immobilization was achieved with very low leaching. Surface modification of macro-/mesoporous amorphous silica by grafting of amine moieties was proved to significantly increase the isoelectric point of this support and improve the immobilization yield.

  8. Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Directory of Open Access Journals (Sweden)

    Wang Xiaoyu

    2010-01-01

    Full Text Available Abstract An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15 was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyltriethoxysilane (APTES groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science.

  9. Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yunqiang; Wang Chunfeng [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China); Zhou Guowei, E-mail: guoweizhou@hotmail.com [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China); Wu Yue; Chen Jing [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China)

    2012-06-15

    Several types of amino-functionalized mesoporous silica, including F5-SBA-15, F10-SBA-15, and F15-SBA-15 were prepared through co-condensation of tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES) in varying molar ratios (5 mol%, 10 mol%, and 15 mol%) via a hydrothermal process. The materials obtained were characterized by means of small-angle X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, N{sub 2} adsorption-desorption, Fourier transformed infrared spectra, and X-ray photoelectron spectroscopy. Increasing APTES molar ratios decreased the degree of orderliness of the functionalized mesoporous silica. Pure and amino-functionalized SBA-15 samples were employed as supports for the controlled release of water-insoluble drug emodin. Loading experiments showed that drug loading capacities mainly depended on the surface areas and pore diameters of the carriers. Controlled release profiles of emodin-loaded samples were studied in phosphate buffered saline (PBS, pH 7.4), and results indicated that the emodin release rate could be controlled by surface amino-functionalized carriers. Emodin loaded on functionalized mesoporous supports exhibited a lower release rate than that of loaded on pure SBA-15, emodin loaded on F10-SBA-15 showed the smallest release amount (71.74 wt%) after stirring in PBS for 60 h. Findings suggest that functionalized mesoporous SBA-15 is a promising carrier for achieving prolonged release time periods.

  10. Insights into the Hydrothermal Stability of Triamine-Functionalized SBA-15 Silica for CO2Adsorption.

    Science.gov (United States)

    Jahandar Lashaki, Masoud; Ziaei-Azad, Hessam; Sayari, Abdelhamid

    2017-10-23

    The hydrothermal stability of triamine-grafted, large-pore SBA-15 CO 2 adsorbents was studied by using steam stripping. Following two 3 h cycles of steam regeneration, lower CO 2 uptakes, lower CO 2 /N ratios, and slower adsorption kinetics were observed relative to fresh samples, particularly at the lowest adsorption temperature (25 °C). CO 2 adsorption measurements for a selected sample exposed to 48 h of steam stripping depicted that after the initial loss during the first exposure to steam (3-6 h), the adsorptive properties stabilized. For higher adsorption temperatures (i.e., 50 and 75 °C), however, all adsorptive properties remained almost unchanged after steaming, indicating the significance of diffusional limitations. Thermogravimetric analysis and FTIR spectroscopy on grafted samples before and after steam stripping showed no amine leaching and no change in the chemical nature of the amine groups, respectively. Also, a six-cycle CO 2 adsorption/desorption experiment under dry conditions showed no thermal degradation. However, N 2 adsorption measurement at 77 K showed significant reductions in the BET surface area of the grafted samples following steaming. Based on the pore size distribution of calcined, grafted samples before and after steaming, it is proposed that exposure to steam restructured the grafted materials, causing mass transfer resistance. It is inferred that triamine-grafted, large-pore SBA-15 adsorbents are potential candidates for CO 2 capture at relatively high temperatures (50-75 °C; for example, flue gas) combined with steam regeneration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Application of mesoporous silica materials for the immobilization of polyphenol oxidase.

    Science.gov (United States)

    Corell Escuin, Paula; García-Bennett, Alfonso; Ros-Lis, Jose Vicente; Argüelles Foix, Angel; Andrés, Ana

    2017-02-15

    The ability of a number of mesoporous silica materials (SBA-15, SBA-3, and MCM-48) to immobilize polyphenol oxidase (PPO) at different pH has been tested. Pore size and volume are the structural characteristics with higher influence on the PPO immobilization. Mesoropous material SBA-15 adsorbs a larger quantity of PPO at pH 4.00 and offers an inhibition of enzymatic activity close the 50% in apple extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  13. Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15

    Czech Academy of Sciences Publication Activity Database

    Ibrahim, M. A.; Akhtar, M. N.; Čejka, Jiří; Montanari, E.; Balcar, Hynek; Kubů, Martin; Al-Khattaf, S. S.

    2017-01-01

    Roč. 53, SEP 2017 (2017), s. 119-126 ISSN 1226-086X R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : metathesis * MCM-41 * SBA-15 Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.421, year: 2016

  14. A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties

    Science.gov (United States)

    Xu, Yong; Gao, Dan; Feng, Pei; Gao, Chengde; Peng, Shuping; Ma, HaoTian; Yang, Sheng; Shuai, Cijun

    2017-11-01

    Mesoporous structure is beneficial to cellular response due to the large specific surface area and high pore volume. In this study, mesoporous silica (SBA15) was incorporated into poly-L-lactic acid (PLLA) to construct composite scaffold by selective laser sintering. The results showed that SBA15 facilitated cells proliferation, which was mainly attributed to its unique intrinsic mesoporous structure and the released bioactive silicon. Moreover, the hydrolyzate of soluble mesoporous silica can adsorb ions to form nucleation sites that promote biomineralization, leading to improve biological activity of the composite scaffold. In addition, the compressive strength, compressive modulus and Vickers hardness of the scaffold were increased by 47.6%, 35.5% and 29.53% respectively with 1.5 wt.% SBA15. It was found that the particle enhancement of uniform distributed SBA15 accounted for the mechanic reinforcement of the composite scaffold. It indicated that the PLLA-SBA15 composite scaffold had potential applications in bone tissue engineering.

  15. Catalytic Activity and Photophysical Properties of Biomolecules Immobilized on Mesoporous Silica

    DEFF Research Database (Denmark)

    Ikemoto, Hideki

    hybrid materials used for further study. One metalloenzyme, horseradish peroxidase(HRP), was immobilized on rod-shaped SBA-15 by physical adsorption. The catalytic activity of free and immobilized enzyme was first compared at room temperature. Details of the enzyme kinetics including the apparent...... 2 (LH2) from purple photosynthetic bacteria was immobilized on SBA-15 with hexagonally ordered cylindrical pores or on MCF-type mesoporous silica with disordered cage-like mesopores. To identify the location of LH2, spherical particles with small or large pores were tested for the adsorption of LH2....... LH2 was adsorbed to the particles with large pores, while little LH2 was adsorbed to the particles with small pores. Subsequent observation with fluorescence microscopy confirmed that LH2 is adsorbed in the pores of mesoporous silica. The conjugates of LH2 and mesoporous silica were studiedby steady...

  16. Binary and Ternary Heterometallic (La3+, Gd3+, Y3+)–Eu3+ Functionalized SBA-15 Mesoporous Hybrids: Chemically Bonded Assembly and Photoluminescence

    Science.gov (United States)

    2010-01-01

    A novel kind of organic–inorganic monomer SUASi has been achieved by modifying 5-sulfosalicylic acid (SUA) with 3-aminopropyltrimethoxysilane (APS), subsequently binary and ternary Eu3+ mesoporous hybrid materials with 5-sulfosalicylic acid (SUA)-functionalized SBA-15 and 1,10-phenanthroline (phen) are synthesized by co-condensation of SUASi and TEOS in the presence of Eu3+ complex and Pluronic P123 as a template. Finally, luminescent hybrid mesoporous materials consisting of active rare earth ions (Eu3+)—inert rare earth ions (Y3+, La3+, Gd3+) complex covalently bonded to the mesoporous materials network have been obtained via this sol–gel approach. The physical characterization and photoluminescence of all these resulting materials are studied in detail. Especially the luminescent behavior has been studied with the different ratios of Eu3+–(Y3+, La3+, Gd3+), which suggests that the existence of inert rare earth ions can enhance the luminescence intensity of Eu3+. This may be due to the intramolecular energy transfer between Y3+, La3+, Gd3+, and Eu3+ through the covalently bonded mesoporous framework. PMID:20596515

  17. Immobilization of HRP in Mesoporous Silica and Its Application for the Construction of Polyaniline Modified Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Chien-Chung Chen

    2009-06-01

    Full Text Available Polyaniline (PANI, an attractive conductive polymer, has been successfully applied in fabricating various types of enzyme-based biosensors. In this study, we have employed mesoporous silica SBA-15 to stably entrap horseradish peroxidase (HRP, and then deposited the loaded SBA-15 on the PANI modified platinum electrode to construct a GA/SBA-15(HRP/PANI/Pt biosensor. The mesoporous structures and morphologies of SBA-15 with or without HRP were characterized. Enzymatic protein assays were employed to evaluate HRP immobilization efficiency. Our results demonstrated that the constructed biosensor displayed a fine linear correlation between cathodic response and H2O2 concentration in the range of 0.02 to 18.5 mM, with enhanced sensitivity. In particular, the current approach provided the PANI modified biosensor with improved stability for multiple measurements.

  18. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  19. Mesoporous Silica-Supported Sulfonyldiamine Ligand for Microwave-Assisted Transfer Hydrogenation

    Directory of Open Access Journals (Sweden)

    Shaheen M. Sarkar

    2015-01-01

    Full Text Available N-Sulfonyl-1,2-diamine ligands, derived from 1,2-diaminocyclohexane and 1,2-diaminopropane, were immobilized onto mesoporous SBA-15 silica. The SBA-15-supported sulfonyldiamine-Ru complex was prepared in situ under microwave heating at 60 W for 3 min. The prepared sulfonyldiamine-Ru complex was used as an efficient catalyst for the transfer hydrogenation of ketones to the corresponding secondary alcohols. The heterogeneous complex showed extremely high catalytic activity with 99% conversion rate under microwave heating condition. The complexes were regenerated by simple filtration and reused two times without significant loss of activity.

  20. Mesoporous silica functionalized with 1-furoyl thiourea urea for Hg(II) adsorption from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Mureseanu, Mihaela; Reiss, Aurora; Cioatera, Nicoleta; Trandafir, Ion [Faculty of Chemistry, University of Craiova, 165 Calea Bucuresti, 200144 Craiova (Romania); Hulea, Vasile, E-mail: vasile.hulea@enscm.fr [Institut Charles Gerhardt, UMR 5253, CNRS-UM2-ENSCM-UM1, Materiaux Avances pour la Catalyse et la Sante, 8 rue de l' Ecole Normale, 34 296 Montpellier Cedex 5 (France)

    2010-10-15

    New organic-inorganic hybrid materials were prepared by covalently anchoring 1-furoyl thiourea on mesoporous silica (SBA-15). By means of various characterization techniques (X-ray diffraction, nitrogen adsorption-desorption, thermogravimetric analysis, and FTIR spectroscopy) it has been established that the organic groups were successfully anchored on the SBA-15 surfaces and the ordering of the inorganic support was preserved during the chemical modifications. The hybrid sorbents exhibited good ability to remove Hg(II) from aqueous solution. Thus, at pH 6, the adsorption capacity of mercury ions reached 0.61 mmol g{sup -1}.

  1. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption.

    Science.gov (United States)

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří

    2010-01-01

    Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures. This journal is © the Owner Societies 2010

  2. Luminescence functionalization of SBA-15 by YVO4:Eu3+ as a novel drug delivery system.

    Science.gov (United States)

    Yang, Piaoping; Huang, Shanshan; Kong, Deyan; Lin, Jun; Fu, Honggang

    2007-04-16

    Luminescence functionalization of the ordered mesoporous SBA-15 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process, resulting in the formation of the YVO4:Eu3+@SBA-15 composite material. This material, which combines the mesoporous structure of SBA-15 and the strong red luminescence property of YVO4:Eu3+, can be used as a novel functional drug delivery system. The structure, morphology, porosity, and optical properties of the materials were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption, and photoluminescence spectra. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the YVO4:Eu3+ layer and the adsorption of ibuprofen (IBU, drug). The IBU-loaded YVO4:Eu3+@SBA-15 system still shows the red emission of Eu3+ (617 nm, 5D0-7F2) under UV irradiation and the controlled drug release property. Additionally, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU in the system, making the extent of drug release easily identifiable, trackable, and monitorable by the change of luminescence. The system has great potential in the drug delivery and disease therapy fields.

  3. Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2016-01-01

    Full Text Available The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II. The blood and urine mercury levels of rats fed with a diet containing Hg (II and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system.

  4. [Preparation and release behaviour of mesoporous silica/ethylcellulose sustained-release mini-matrix].

    Science.gov (United States)

    Wu, Qiao-li; Quan, Gui-lan; Hong, Yu; Wu, Lin-na; Zeng, You-mei; Li, Ge; Pan, Xin; Wu, Chuan-bin

    2015-04-01

    Hot-melt extrusion was applied to prepare mesoporous silica/ethylcellulose mini-matrix for sustained release, and fenofibrate was used as a model drug, ethylcellulose and xanthan gum were chosen as sustained-release agent and releasing moderator, respectively. This novel matrix obtained the controlled release ability by combining mesoporous silica drug delivery system and hot-melt extrusion technology. And mesoporous silica particle (SBA-15) was chosen as drug carrier to increase the dissolution rate of fenofibrate in this martix. Scanning electron microscope, transmission electron microscope, small angle X-ray powder diffraction and N2 adsorption-desorption were introduced to determine the particle morphology, particle size and pore structure of the synthesized SBA-15. The results showed that SBA-15 had a very high Brunauer-Emmett-Teller specific surface area, a narrow pore size distribution, large pore volume and a ordered two-dimensional hexagonal structure of p6mm symmetry. Differential scanning calorimetry and X-ray powder diffraction results demonstrated that fenofibrate dispersed in an amorphous state inside the pores of the mesoporous silica which contributed to the improvement in the dissolution rate. The drug release of mini-matrices was influenced by ethylcellulose viscosity grades and xanthan gum concentration, which increased with the increasing of xanthan gum concentration and decreasing of ethylcellulose viscosity. Mini-matrix containing 22% xanthan gum exhibited a good sustained release performance, and the drug release behavior followed the first-order kinetics.

  5. Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug.

    Science.gov (United States)

    Popovici, R F; Seftel, E M; Mihai, G D; Popovici, E; Voicu, V A

    2011-02-01

    In the present study, captopril-loaded ordered mesoporous SBA-15 silica matrix were produced, functionalized, and characterized to obtain an efficient formulation of controlled drug delivery system. First, the starting SBA-15 materials are examined to verify that their synthesis has been successful considering the structural properties, using XRD, FTIR, and BET methods. Second, the influence of processing parameters of ordered mesoporous matrices for the loading and release of captopril was investigated. The release of captopril was controlled by tailoring the surface properties of the mesoporous silica via functionalization. The loading and release kinetics (in vitro in simulated gastric and intestinal fluids) showed that both of them were affected by the surface properties of the mesoporous silica materials. Such a formulation shows potential as an efficient controlled drug delivery system. Copyright © 2010 Wiley-Liss, Inc.

  6. Development of a Prolonged-Release Drug Delivery System with Magnolol Loaded in Amino-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Alina Stefanache

    2017-03-01

    Full Text Available Magnolol (MG is a small-molecule neolignan polyphenolic compound isolated from the genus Magnolia. The anti-inflammatory, anti-oxidative, anti-diabetic, anti-tumorgenic, anti-neurodegenerative, anti-depressant and anti-microbial properties of MG are well documented in recent literature. These fascinating multiple biological activities of MG encourage research about the development of new delivery and administration approaches able to maximize its potential benefits. This study describes the amino-functionalization of the SBA-15 (Santa Barbara Amorphous mesoporous matrix by post-synthesis grafting using APTES (3-aminopropyltriethoxysilane and the characterization of amino-functionalized mesoporous silica SBA-15 loaded with MG in order to achieve modified drug delivery systems. The amino-functionalization of silica SBA-15 was carried out by grafting by refluxing in dry toluene. The powders obtained were characterized texturally by Brunauer-Emmett-Teller (BET surface area analysis measurements and morphologically by scanning electron microscopy. MG loading degree in the nanoporous matrix was determined by the HPLC method at λ = 290 nm. Results showed that by grafting the amino groups in the silica SBA-15, we obtained amino-functionalized silica SBA-15 with an ordered structure, with specific surfaces and pore sizes that differ from the original matrix, which was reflected in the amount of MG immobilized and release kinetics profile.

  7. Ordered mesoporous silica modified with lanthanum for ibuprofen loading and release behaviour.

    Science.gov (United States)

    Goscianska, Joanna; Olejnik, Anna; Nowak, Izabela; Marciniak, Michal; Pietrzak, Robert

    2015-08-01

    The ordered mesoporous silicas SBA-15 and KIT-6, modified with lanthanum, have been for the first time applied in investigation of ibuprofen adsorption and release. The materials of hexagonal and regular structure were obtained by the hydrothermal method using a triblock copolymer Pluronic P123 as a template. The mesoporous silicas were impregnated with an aqueous solution of lanthanum(III) chloride in the amount necessary to obtain 1, 3 and 5wt.% La loading. The physicochemical properties of the modified silicas were characterised by X-ray diffraction, transmission electron microscopy, UV-Vis spectrophotometry and low-temperature nitrogen sorption. The results showed that lanthanum strongly determined structural as well as textural properties of the silicas. The samples of modified silica were checked for the ability to adsorb and release of ibuprofen. The storage capacity of the modified silicas obtained increased with increasing their average pore diameter and percentage content of lanthanum. The amount of ibuprofen adsorbed onto KIT-6 silica modified with La was higher than that adsorbed onto SBA-15 materials. The high coverage of lanthanum on the surface of KIT-6 and SBA-15 solids was found to increase the amount of ibuprofen and the rate of its release. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Isolation and immobilization of alkaline protease on mesoporous silica and mesoporous ZSM-5 zeolite materials for improved catalytic properties.

    Science.gov (United States)

    Kumari, Arpana; Kaur, Balwinder; Srivastava, Rajendra; Sangwan, Rajender S

    2015-07-01

    Alkaline protease from brinjal leaf (Solanum melongena) having milk clotting activity has been purified to 9.44 fold to a final specific activity of 45.71 U/mg. SDS-PAGE of the final preparation revealed a single protein band of approx 14 kDa. Purified enzyme was characterized and was successfully immobilized into the amorphous mesoporous silica (SBA-15) and crystalline mesoporous zeolite (Nano-ZSM-5) using entrapment method. Maximum immobilization of 63.5% and 79.77% was obtained with SBA-15 and Nano-ZSM-5, respectively. This protocol serves as a novel approach for bioprocesses, mainly as milk coagulant for local dairy products and particularly, cheese making, and opens the new dimension of further research and other innovation.

  9. Pineapple fruit bromelain recovery using recyclable functionalized ordered mesoporous silica synthesized from sugarcane leaf ash

    Directory of Open Access Journals (Sweden)

    A. Arumugam

    2013-09-01

    Full Text Available Bromelain, a protease enzyme found in Ananas comosus (Pineapple, was recovered from the fruit juice by adsorption using recyclable functionalized Santa Barbara Acid-15 (SBA-15 synthesized from sugarcane leaf ash. In this work, highly ordered mesoporous silica was synthesized from sugarcane leaf ash by a template-assisted method. It was successfully used as an adsorbent for the recovery of bromelain from pineapple fruit pulp. Amine-functionalized mesoporous silica exhibited a recovery efficiency of 97.89% and a 6.2-fold purification. It was also established that the adsorbent could be easily regenerated by adjusting the pH. In this study, the adsorbent was reused for three cycles without noticeable loss in recovery efficiency. Thus, adsroption using functionalized SBA-15 appears to be a promising alternate separation technique for the recovery of fruit bromelain.

  10. Comparison of the efficiency of mesoporous silicas as absorbents for removing naphthalene from contaminated water

    Directory of Open Access Journals (Sweden)

    Ali Balati

    2014-06-01

    Full Text Available Mesoporous silicas MCM-48 and SBA-15 were synthesized and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and Fourier transform infrared (FTIR spectroscopy. Adsorption capacity of two mesoporous silica for removing naphthalene from waste water was determined. The results indicate that under similar conditions, SBA-15 had a better adsorption capacity than MCM-48. In this context, SBA-15 was modified using 3-aminopropyltrimethoxysilane and the effect of contact time, adsorbent dose, solution pH and concentration of naphthalene was investigated in batch adsorption systems. Solution pH appeared to be a key factor affecting the adsorption of naphthalene by NH2-SBA-15. The adsorption experiments revealed that a higher percentage of up to 79.3% of naphthalene was adsorbed in highly acidic media (pH of 2. The equilibrium data were analyzed using Langmuir and Freundlich isotherms and nonlinear regression analysis. This revealed that based on the correlation coefficient (R2 = 0.979 the Langmuir model provided the best fit to the results. The adsorption kinetic was determined using the pseudo-first order, pseudo-second order and Elovich kinetic models. Of the kinetics models tested, the pseudo-first-order equation provided the best fit to the results (R2 = 0.991 of the absorption of naphthalene by the adsorbent.

  11. Functionalized iron oxide/SBA-15 sorbent: investigation of adsorption performance towards glyphosate herbicide.

    Science.gov (United States)

    Rivoira, Luca; Appendini, Marta; Fiorilli, Sonia; Onida, Barbara; Del Bubba, Massimo; Bruzzoniti, Maria Concetta

    2016-11-01

    Glyphosate is a worldwide-used herbicide occurring in many monitoring campaigns. Efficient technologies are currently unavailable for glyphosate removal from waters. In this work, a SBA-15 mesoporous silica-based material (Fe-NH2-SBA-15) was synthesized and studied for the adsorption of glyphosate from waters. In order to promote specific interactions between the sorbent and glyphosate via phosphoric group, iron oxide nanoparticles were encapsulated and a surface functionalization with (3-aminopropyl)triethoxysilane was accomplished. The adsorption of glyphosate on Fe-NH2-SBA-15 was investigated as a function of (i) pH, (ii) ionic strength (I), and (iii) adsorbate to adsorbent ratio (C), using a two-level, three-factor experimental design. The experimental design allowed for understanding the effect of the abovementioned variables and for proposing experimental conditions for quantitative removal (pH = 2.1, I = 1⋅10(-2) M and C = 0.35) under both batch and dynamic conditions. Interaction mechanism between glyphosate and Fe-NH2-SBA-15 sorbent was elucidated by studying the adsorption behavior of sorbents derived from the intermediate stages of synthesis and by desorption tests. Fe-NH2-SBA-15 sorbent can be quantitatively regenerated by 12.5 mM NaOH, and can be reused at least for five adsorption/desorption cycles. Quantitative removal of glyphosate from inlet and effluent wastewaters from a wastewater treatment plant is shown.

  12. Dynamical properties of nimodipine molecules confined in SBA-15 matrix

    Science.gov (United States)

    Kiwilsza, A.; Pajzderska, A.; Mielcarek, J.; Jenczyk, J.; Wąsicki, J.

    2016-08-01

    The paper reports results of 13C and 1H ssNMR for nimodipine confined in mesopores of SBA-15 for the samples (i) containing nimodipine molecules inside and on the external surface of silica, (ii) containing nimodipine only inside pores forming an incomplete monolayer on the surface (iii) for bulk nimodipine. The measurements permitted comparison of the dynamics of nimodipine bulk and confined in pores. The confined nimodipine is in an amorphous state and has additional degrees of rotational freedom with respect to the bulk one. The height of the energy barrier related to the rotation of methyl groups in confined nimodipine is lower than in bulk nimodipine. The higher mobility of nimodipine molecules confined in silica pores can explain the higher release rate of nimodipine from silica matrix than dissolution rate of bulk drug.

  13. Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Appell, Michael, E-mail: michael.appell@ars.usda.gov [Bacterial Foodborne Pathogens and Mycology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States); Jackson, Michael A.; Dombrink-Kurtzman, Mary Ann [Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States)

    2011-03-15

    Propylthiol functionalized SBA-15 silica was investigated to detoxify aqueous solutions contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propylthiol groups, a functional group known to form Michael reaction products with the conjugated double bond system of patulin. BET surface area analysis indicated the propylthiol functionalized SBA-15 possesses channels with the pore size of 5.4 nm and a surface area of 345 m{sup 2} g{sup -1}. Elemental analysis indicates the silicon/sulfur ratio to be 10:1, inferring one propylthiol substituent for every ten silica residues. The propylthiol modified SBA-15 was effective at significantly reducing high levels of patulin from aqueous solutions (pH 7.0) in batch sorption assays at room temperature. The material was less effective at lower pH; however heating low pH solutions and apple juice to 60 deg, C in the presence of propylthiol functionalized SBA-15 significantly reduced the levels of patulin in contaminated samples. Composite molecular models developed by semi-empirical PM3 and empirical force field methods support patulin permeation through the mesoporous channels of propylthiol functionalized SBA-15. Density functional study at the B3LYP/6-31G(d,p) level predicts the proposed patulin adducts formed by reaction with the thiol residues exhibit less electrophilic properties than patulin. It is demonstrated the use of propylthiol functionalized SBA-15 is a viable approach to reduce patulin levels in aqueous solutions, including contaminated apple juice.

  14. Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15.

    Science.gov (United States)

    Appell, Michael; Jackson, Michael A; Dombrink-Kurtzman, Mary Ann

    2011-03-15

    Propylthiol functionalized SBA-15 silica was investigated to detoxify aqueous solutions contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propylthiol groups, a functional group known to form Michael reaction products with the conjugated double bond system of patulin. BET surface area analysis indicated the propylthiol functionalized SBA-15 possesses channels with the pore size of 5.4 nm and a surface area of 345 m(2)g(-1). Elemental analysis indicates the silicon/sulfur ratio to be 10:1, inferring one propylthiol substituent for every ten silica residues. The propylthiol modified SBA-15 was effective at significantly reducing high levels of patulin from aqueous solutions (pH 7.0) in batch sorption assays at room temperature. The material was less effective at lower pH; however heating low pH solutions and apple juice to 60 °C in the presence of propylthiol functionalized SBA-15 significantly reduced the levels of patulin in contaminated samples. Composite molecular models developed by semi-empirical PM3 and empirical force field methods support patulin permeation through the mesoporous channels of propylthiol functionalized SBA-15. Density functional study at the B3LYP/6-31G(d,p) level predicts the proposed patulin adducts formed by reaction with the thiol residues exhibit less electrophilic properties than patulin. It is demonstrated the use of propylthiol functionalized SBA-15 is a viable approach to reduce patulin levels in aqueous solutions, including contaminated apple juice. Published by Elsevier B.V.

  15. Synthesis and optical behaviour of mesoporous silica functionalized by organometallic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, L; Kassiba, A; Errien, N [Laboratoire de Physique de l' Etat Condense LPEC, UMR CNRS n0 6087, Universite du Maine Avenue Olivier Messiaen 72085 - Le Mans CEDEX 9 France (France); Makowska-Janusik, M; Swiatek, J [Institute of Physics, Jan dlugosz University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Mehdi, A, E-mail: m.makowska@ajd.czest.pl [Institut Charles Gerhardt, UMR 5253 Chimie Moleculaire et Organisation du Solide, CC 1701 Universite Montpellier II Place E. Bataillon, F-34095 Montpellier Cedex 5 (France)

    2011-04-01

    Mesoporous silica SBA-15 functionalized by (1,4,8,11-tetraazacyclotetradecane) cyclam groups chelating nickel ions (Ni-cyclam) were synthesized by two different approaches. Characterizations by transmission electron microscopy TEM and UV-VIS absorption spectroscopy were performed to monitor the structure and optical properties of the material with regard to the used synthesis methods. The assignment of the experimental UV-VIS absorption spectra is carried out by using the support of suitable numerical simulations based on quantum chemistry DFT codes developed on the modelled (Ni-cyclam) system as free molecule and also constrained in the pores of mesoporous silica matrices.

  16. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    Science.gov (United States)

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  17. Biocompatibility of calcined mesoporous silica particles with ventricular myocyte structure and function.

    Science.gov (United States)

    Aburawi, Elhadi H; Qureshi, Mohammed Anwar; Oz, Deniz; Jayaprakash, Petrilla; Tariq, Saeed; Hameed, Rashed S; Das, Sayantani; Goswami, Anandarup; Biradar, Ankush V; Asefa, Tewodros; Souid, Abdul-Kader; Adeghate, Ernest; Howarth, Frank Christopher

    2013-01-18

    In vivo and in vitro systems were employed to investigate the biocompatibility of two forms of calcined mesoporous silica microparticles, MCM41-cal and SBA15-cal, with ventricular myocytes. These particles have potential clinical use in delivering bioactive compounds to the heart. Ventricular myocytes were isolated from 6 to 8 week male Wistar rats. The distribution of the particles in ventricular myocytes was investigated by transmission electron microscopy and scanning electron microscopy. The distribution of particles was also examined in cardiac muscle 10 min after intravenous injection of 2.0 mg/mL MCM41-cal. Myocyte shortening and the Ca(2+) transient were determined following exposure to 200 μg/mL MCM41-cal or SBA15-cal for 10 min. Within 10 min of incubation at 25 °C, both MCM41-cal and SBA15-cal were found attached to the plasma membrane, and some particles were observed inside ventricular myocytes. MCM41-cal was more abundant inside the myocytes than SBA15-cal. The particles had a notable affinity to mitochondrial membranes, where they eventually settled. Within 10 min of intravenous injection (2.0 mg/mL), MCM41-cal traversed the perivascular space, and some particles entered ventricular myocytes and localized around the mitochondrial membranes. The amplitude of shortening was slightly reduced in myocytes superperfused with MCM41-cal or SBA15-cal. The amplitude of the Ca(2+) transient was significantly reduced in myocytes superperfused with MCM41-cal but was only slightly reduced with SBA15-cal. Overall, the results show reasonable bioavailability and biocompatibility of MCM41-cal and SBA15-cal with ventricular myocytes.

  18. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  19. Functionalized SBA-15 organosilicas as sorbents of zinc(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Barczak, M., E-mail: mbarczak@umcs.pl [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland); Skwarek, E.; Janusz, W.; Dabrowski, A.; Pikus, S. [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2010-06-15

    SBA-15 nanoporous silicas functionalized with amine-, thiol-, vinyl-, phenyl- and cyano surface groups were synthesized by using the amphiphilic block copolymer P123 as the structure-directing agent. The obtained materials have a well-developed porous structure - the values of specific surface area are in the range 800-950 m{sup 2}/g and the sizes of cylindrical mesopores are in the range 7.4-8.6 nm. It was established that the size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with TEOS. Adsorption of Zn(II) ions at the SBA-15/NaCl interface was investigated by means of the radioactive isotope tracer technique over the pH range of 3-11. Surface charge density, adsorption density, pH{sub 50%} and {Delta}pH{sub 10-90%} parameters for different concentrations of the carrying electrolyte were evaluated and discussed.

  20. Preparation, characterization and catalytic activity of mesoporous Ag{sub 2}HPW{sub 12}O{sub 40}/SBA-15 and Ag{sub 2}HPW{sub 12}O{sub 40}/TiO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Holclajtner-Antunović, Ivanka; Bajuk-Bogdanović, Danica [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Popa, Alexandru; Sasca, Viorel [Institute of Chemistry Timişoara, Bl. Mihail Viteazul 24, 300223 Timişoara (Romania); Nedić Vasiljević, Bojana; Rakić, Aleksandra [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Uskoković-Marković, Snežana, E-mail: snezaum@pharmacy.bg.ac.rs [Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade (Serbia)

    2015-06-15

    The current study reports the synthesis and characterization of tungstophosphoric acid and its acid silver salt supported on mesoporous molecular sieve SBA-15 and TiO{sub 2}. Because silver salts are partially insoluble, the SBA-15 and TiO{sub 2} supported silver acid salts were prepared by two step sequential impregnations. The synthesized catalysts were characterized by various physicochemical methods such as Fourier transform infrared and Raman spectroscopy, differential thermal analysis, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and nitrogen physisorption at −196 °C. It is observed that both active phases keep their Keggin-type structure after being supported on the supports while their specific surface area is considerably increased by deposition on mesoporous substrates. The results also indicated that the synthesized catalysts retained the morphology specific for each of the supports, while their thermal stability is increased in comparison with their active phases. The catalytic activity of the prepared catalysts was probed for the vapor phase dehydration of ethanol at 300 °C. Results revealed that all the catalysts show considerably improved catalytic activity in comparison to the bulk active phases. - Highlights: • SBA-15 and TiO{sub 2} supported Ag{sub 2}HPW{sub 12}O{sub 40} and H{sub 3}PW{sub 12}O{sub 40} were prepared. • Active phases are uniformly dispersed without changing morphology of the substrates. • Composites are more thermally stable than active phases. • Composites exhibit high catalytic activity for gas phase ethanol dehydration.

  1. Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption.

    Science.gov (United States)

    Huang, Shanshan; Li, Chunxia; Cheng, Ziyong; Fan, Yong; Yang, Piaoping; Zhang, Cuimiao; Yang, Kuiyue; Lin, Jun

    2012-06-15

    Magnetic Fe(3)O(4)@mesoporous silica (MS) composites were synthesized by generating Fe(3)O(4) nanoparticles in the mesoporous silica matrix using the sol-gel method in nitrogen atmosphere. The mesoporous silica hosts include SBA-15 particles owning highly ordered p6mm mesostructure, siliceous mesostructured cellular foams (MCFs), and fiber-like mesoporous silica (FMS) with unique pore structures. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and N(2) adsorption/desorption results show that Fe(3)O(4) functionalized MCFs and FMS possess suitable mesoporous structure for the adsorption of both small-molecular drug and large biomolecules. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of these systems. These Fe(3)O(4)@mesoporous silica composites show sustained release properties for aspirin in vitro. The release of the aspirin molecules from the pores of the Fe(3)O(4)@mesoporous silica composites is basically a diffusive process. Fe(3)O(4)@MCFs and Fe(3)O(4)@FMS owning larger pore size are good candidates for the adsorption of bovine serum albumin (BSA). These magnetic composites can be potential vectors for drug delivery and bioadsorption. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Chen, Cuiwei; Zheng, Hongyue; Xu, Junjun; Shi, Xiaowei; Li, Fanzhu; Wang, Xuanshen

    2017-09-04

    Exenatide (EXT), the first glucagon-like peptide-1 receptor agonist, has been approved as an adjunctive therapy for patients with type 2 diabetes. Due to EXT's short half-life, EXT must be administrated by continuous subcutaneous (s.c.) injection twice daily. In previous studies, many studies on EXT loaded into polymer materials carriers for sustained release had been reported. However, these carriers have some defects, such as hydrophobicity, low surface energy, low mechanical strength, and poor chemical stability. Therefore, this study aims to develop a novel drug delivery system, which is EXT loaded into well-ordered hexagonal mesoporous silica structures (EXT-SBA-15), to control the sustainability of EXT. SBA-15 was prepared by hydrothermal method with uniform size. Morphology of SBA-15 was employed by transmission electron microscopy. The pore size of SBA-15 was characterized by N2 adsorption-desorption isotherms. The in vitro drug release behavior and pharmacokinetics of EXT-SBA-15 were investigated. Furthermore, the blood glucose levels of diabetic mice were monitored after subcutaneous injection of EXT-Sol and EXT-SBA-15 to evaluate further the stable hypoglycemic effect of EXT-SBA-15. EXT-SBA-15 showed a higher drug loading efficiency (15.2 ± 2.0%) and sustained-release features in vitro. In addition, pharmacokinetic studies revealed that the EXT-SBA-15 treatment group extended the half-life t 1/2(β) to 14.53 ± 0.70 h compared with that of the EXT solution (EXT-Sol) treatment group (0.60 ± 0.08 h) in vivo. Results of the pharmacodynamics study show that the EXT-SBA-15 treatment group had inhibited blood glucose levels below 20 mmol/L for 25 days, and the lowest blood glucose level was 13 mmol/L on the 10th day. This study demonstrates that the EXT-SBA-15 delivery system can control the sustainability of EXT and contribute to improve EXT clinical use.

  3. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors

    Science.gov (United States)

    Bouazizi, N.; Ouargli, R.; Nousir, S.; Slama, R. Ben; Azzouz, A.

    2015-02-01

    SBA-15-Fe was synthesized via the incorporation of Fe0 nanoparticles (Fe(0)-Nps) in the mesoporous channels. Electron microscopy and X-ray diffraction showed that dispersion of fine iron NPs occurs mainly inside the channels of SBA-15, producing a slight structure compaction. This was accompanied by a significant improvement of both the affinity towards hydrogen and electrical conductivity, as supported by hydrogen adsorption tests and impedance measurements. CO2 thermal programmed desorption measurements revealed an attenuation of the acid character of the solid surface. This was explained in terms of strong iron interaction with the lattice oxygen atoms that reduces the SiO-H bond polarity. The close vicinity of fine Fe(0)-Nps combined with the large pore size of SBA-15 appear to contribute to a synergistic improvement of the electrical conductivity. The results reported herein open new prospects for SBA-15 as potential adsorbents for hydrogen storage and carriers for hydrogen sensors. The use of iron in lieu of noble metals for designing such materials is a novelty, because such applications of iron-loaded silica have not been envisaged so far due to the high reactivity of iron towards air and water. The development of such technologies, if any, should address this issue.

  4. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  5. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie

    2016-06-09

    The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest for heterogeneous catalysis. Herein, we report a method to obtain a majority bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear polarization enhanced ²⁹Si and ¹⁵N spectra demonstrate both the close proximity between the two moieties and the formation of a covalent Si-N surface bond and confirm the design of vicinal acid-base pairs. This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. A correlation of the substituents effects on the aromatic ring (Hammet parameters) on the kinetics of the model reaction of Knoevenagel is observed.

  6. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Zohreh; Badiei, Alireza, E-mail: abadiei@khayam.ut.ac.ir [University of Tehran, School of Chemistry, College of Science (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Alzahra University, Research Laboratory of Pharmaceutical (Iran, Islamic Republic of)

    2015-03-15

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N{sub 2} adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  7. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Science.gov (United States)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-03-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  8. Mesoporous silica materials with different structures as the carriers for antimicrobial agent. Modeling of chlorhexidine adsorption and release

    Science.gov (United States)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-11-01

    The present study was aimed to evaluate the potential of five different mesoporous materials (SBA-15, compressed SBA-15, PHTS, SBA-16, MCF) as the carrier for chlorhexidine adsorption and release. All the materials were characterized by large specific surface area ∼700 m2, however their pore volume and pore geometry were substantially different. Langmuir, Freundlich and Dubinin-Radushkevich isotherm models were applied to experimental equilibrium data of chlorhexidine adsorption onto examined mesoporous materials. In all experiments, the commercial silica was used as a reference material. The highest maximum adsorption capacity calculated from the Langmuir model of 416.7 and 357.1 mg/g was observed for SBA-15 and MCF silicas, respectively. Meanwhile, SBA-16 material was characterized by the lowest maximum adsorption capacity of 85.5 mg/g. To compare the chlorhexidine dissolution profiles, four release models were tested such as Higuchi, Korsmeyer-Peppas, Baker-Lonsdale and Weibull. Mesoporous matrices with increased micropore fraction (PHTS, SBA-16) exhibited markedly prolonged release of chlorhexidine as compared to other silicas. The time interval necessary to dissolve 63.2% of chlorhexidine present in the formulation calculated from the Weibull model (t63.2%) reached the highest values of 203.5 and 308.5 h for PHTS and SBA-16 silicas, respectively.

  9. Synthesis of photoactive AgCl/SBA-15 by conversion of silver nanoparticles into stable AgCl nanoparticles

    Science.gov (United States)

    Zienkiewicz-Strzałka, M.; Pikus, S.

    2013-01-01

    In this work the results of synthesis the ordered mesoporous silica (SBA-15) in the presence of stable silver nanoparticles were presented. It has been proven that the proposed method leads to the synthesis of SBA-15 nanocomposite containing silver chloride nanoparticles, formed by the transformation of silver nanoparticles in the acidic conditions. Proposed one-pot procedure is simple and the one requirement is to prepare a stable solution of silver nanoparticles. In this work, silver nanoparticles were obtained during chemical reduction of [Ag(NH3)2]+ ions by formaldehyde. Silver nanoparticles solution can be used as a silver chloride source due to the application of the same polymer as a stabilizer of nanocrystals and structure directing agent of SBA-15. The final AgCl/SBA-15 materials show excellent structural ordering characteristic for this type of materials confirmed by diffraction measurements in range of small angles 2θ, transmission electron microscopy (TEM) and nitrogen adsorption/desorption measurements. AgCl nanoparticles were identified by diffraction measurements as chlorargyrite phase. The presence of silver nanoparticles in initial solution and their absence after synthesis were confirmed by UV-vis measurements. The photoactivity of obtained AgCl/SBA-15 composite was tested in reaction of organic impurities photodegradation.

  10. Synthesis of photoactive AgCl/SBA-15 by conversion of silver nanoparticles into stable AgCl nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zienkiewicz-Strzalka, M., E-mail: gosiazienkiewicz@wp.pl [Department of Crystallography, Faculty of Chemistry, Maria Curie-Sklodowska University, sq. Maria Curie-Sklodowska 3, 20-031 Lublin (Poland); Pikus, S. [Department of Crystallography, Faculty of Chemistry, Maria Curie-Sklodowska University, sq. Maria Curie-Sklodowska 3, 20-031 Lublin (Poland)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A new material AgCl/SBA-15 was synthesized and characterized. Black-Right-Pointing-Pointer New simple and effective approach of preparation was proposed. Black-Right-Pointing-Pointer AgCl/SBA-15 material was tested as an active agent during photodegradation of phenol and its photoactivity was confirmed. Black-Right-Pointing-Pointer The photoactive properties depend on AgCl nanoparticles present in the composite. - Abstract: In this work the results of synthesis the ordered mesoporous silica (SBA-15) in the presence of stable silver nanoparticles were presented. It has been proven that the proposed method leads to the synthesis of SBA-15 nanocomposite containing silver chloride nanoparticles, formed by the transformation of silver nanoparticles in the acidic conditions. Proposed one-pot procedure is simple and the one requirement is to prepare a stable solution of silver nanoparticles. In this work, silver nanoparticles were obtained during chemical reduction of [Ag(NH{sub 3}){sub 2}]{sup +} ions by formaldehyde. Silver nanoparticles solution can be used as a silver chloride source due to the application of the same polymer as a stabilizer of nanocrystals and structure directing agent of SBA-15. The final AgCl/SBA-15 materials show excellent structural ordering characteristic for this type of materials confirmed by diffraction measurements in range of small angles 2{theta}, transmission electron microscopy (TEM) and nitrogen adsorption/desorption measurements. AgCl nanoparticles were identified by diffraction measurements as chlorargyrite phase. The presence of silver nanoparticles in initial solution and their absence after synthesis were confirmed by UV-vis measurements. The photoactivity of obtained AgCl/SBA-15 composite was tested in reaction of organic impurities photodegradation.

  11. Large-Pore Mesoporous Silica with Three-Dimensional Wormhole Framework Structures.

    Science.gov (United States)

    Park, In; Pinnavaia, Thomas J

    2009-02-01

    Large-pore mesoporous silica with 3D wormhole framework structures (denoted MSU-J) are prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost sodium silicate as the silica source and commercially available mono- and triamine Jeffamine and Surfonamine surfactants as structure-directing porogens. The calcined mesostructures exhibit large pore sizes (up to 8.2 nm), surface areas (632-1030 m(2)/g) and pore volumes (0.5-2.0 cm(3)/g), depending on the surfactant chain length and synthesis temperature (25-65 °C). The textural properties of these new wormhole mesostructures are comparable to those of hexagonal SBA-15 derivatives and large pore MCM-48. However, unlike the SBA-15 structure type, wherein the 3D pore network is formed by connecting 1D cylindrical mesopores through micropores, MSU-J mesophases have wormhole framework structures containing fully interconnected 3D mesopores that can minimize the diffusion limitations often encountered in adsorption and chemical catalysis. Also, unlike large pore MCM-48, which requires cost-intensive tetraethylorthosilicate as a silica source and the use of a co-surfactant as a pore expander under strong acid conditions, MSU-J mesostructures are assembled from low cost sodium silicate in the presence of a single Jeffamine or Surfonamine porogen at near-neutral pH.

  12. Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Jianwei Fan

    2017-09-01

    Full Text Available Volatile organic compounds (VOCs are the primary poisonous emissions into the atmosphere in natural gas exploitation and disposing process. The adsorption method has been widely applied in actual production because of its good features such as low cost, low energy consumption, flexible devices needed, etc. The commonly used adsorbents like activated carbon, silicon molecular sieves and so on are not only susceptible to plugging or spontaneous combustion but difficult to be recycled. In view of this, a new adsorbent (CrSBA15 was made by the co-assembly method to synthesize the ordered mesoporous silica materials with different amounts of chromium to eliminate VOCs. This new adsorbent was characterized by small-angle-X-ray scattering (SAXS, nitrogen adsorption/desorption, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Its adsorption performance to eliminate VOCs (toluene, benzene, cyclohexane and ethyl acetate used as typical pollutants was also tested systematically. Research results indicate that this new adsorbent of CrSBA-15(30, with the silicon/chromium ration being 30, owns the maximum micropore volume, and shows a higher adsorption performance in eliminating toluene, benzene, cyclohexane and ethyl acetate. Besides, it is cost-effective and much easier to be recycled than the activated carbon. In conclusion, CrSBA-15(30 is a good adsorbent to eliminate VOCs with broad application prospects. Keywords: Mesoporous materials, Silicon dioxide, Synthesis, Adsorption, Volatile organic compounds (VOCs, Recyclability, Energy saving

  13. Synthesis of Pt-Sn core-shell nanoparticles deposited on SBA-15 modified

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Contreras, L.; Alonso-Lemus, I. [Centro de Investigacion en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnologia (Mexico); Botte, G. G. [Ohio University, Center for Electrochemical Engineering Research, Department of Chemical and Biomolecular Engineering (United States); Verde-Gomez, Y., E-mail: ysmaelverde@yahoo.com [Instituto Tecnologico de Cancun (Mexico)

    2013-07-15

    A novel one-step synthesis method to prepare Pt-Sn bimetallic nanoparticles supported on mesoporous silica with high surface area (SBA-15, 700 m{sup 2}/g) and narrow pore size distribution (around 9.5 nm) was developed. Tin incorporation plays an important dual role, to create active sites into the silica walls that serve as particles anchors center, and to grow Pt-Sn core-shell nanoparticles. High-resolution transmission and scanning electron microscopy, and X-ray diffraction pattern confirm the formation of the Pt-Sn core-shell type nanoparticles ( Almost-Equal-To 1-10 nm). The metal loading was 2.2 and 2.3 wt% for Pt and Sn, respectively. Electron microscopy results show that the metal nanoparticles were deposited not only on the matrix, but also inside of it. Structural, textural, and morphological features of the SBA-15 were slightly affected after the nanoparticles deposition, maintaining its high surface area. The results obtained suggest that Pt-Sn on SBA-15 could be attractive material for several catalytic applications, due to the narrow particle size distribution achieved (from 1 to 10 nm) the high dispersion on the support, as well as the Pt-Sn alloy developed.Graphical Abstract.

  14. Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Tubasum, Sumera; Pullerits, Tonu

    2013-01-01

    harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy......Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Towards understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescent effects of a light...

  15. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  16. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  17. Innovative preparation of Au/C by replication of gold-containing mesoporous silica catalysts

    KAUST Repository

    Kerdi, Fatmé

    2010-01-01

    A new strategy, based on the nanocasting concept, has been used to prepare gold nanoparticles (NPs) highly dispersed in meso-structured carbons. Gold is first introduced in various functionalized mesostructured silicas (MCM-48 and SBA-15) and particles are formed inside the porosity upon reduction of Au 3+ cations. Silica pores are then impregnated with a carbon precursor and the composite material is heated at 900°C under vacuum. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high temperature, both the mean size and distribution being similar to those observed in silica. However, while Au@SiO2 exhibit significant catalytic activity in the aerobic oxidation of trans-stilbene in the liquid phase, its Au@C mesostructured replica is quite inactive. © 2010 Elsevier B.V. All rights reserved.

  18. Theoretical and experimental study of isothiazolinone adsorption onto ordered mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Mardones, Lucas E.; Legnoverde, María Soledad [Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET Calle 47 N°257, B1900AJK La Plata (Argentina); Simonetti, Sandra [Departamento de Física and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahía Blanca (Argentina); Departamentos de Ciencias Básicas e Ingeniería Mecánica, Universidad Tecnológica Nacional, 11 de Abril 461, 8000 Bahía Blanca (Argentina); Basaldella, Elena I., E-mail: ebasaldella@hotmail.com [Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET Calle 47 N°257, B1900AJK La Plata (Argentina)

    2016-12-15

    Highlights: • The pore size of the silica increase by aging the reaction solution. • The theoretical study confirms that CMIT/MIT is adsorbed on the silica surface. • The adsorption capacities increase when the particle size becomes smaller. - Abstract: Mesoporous silica SBA-15 particles were synthesized in order to evaluate their effectiveness as encapsulating agents for a commercial biocide composed of a mixture of methylisothiazolinone and chloromethylisothiazolinone (MIT/CMIT). Three powdered samples of silica particles having different textural properties, sizes and morphologies were hydrothermally obtained and then characterized by SEM, TEM, SAXS, and nitrogen adsorption–desorption measurements. Adsorption of the biocide on the prepared materials was investigated, and the results showed that adsorption capacities increase as the particle size becomes smaller. Higher biocide amounts were also retained on particles having increased pore size and pore volume. Additionally, a most probable interaction mechanism between MIT/CMIT and SBA-15 is proposed on the basis of molecular modeling calculations. The theoretical approach indicates that two adsorption geometries with comparable minimum levels of strength can be adopted by the biocide: planar adsorption when the biocide molecule rings are adsorbed on the silica surface and vertical adsorption when the O atom of the MIT/CMIT interacts with the H atom of silanols.

  19. Microstructure and Magnetic Properties of Highly Ordered SBA-15 Nanocomposites Modified with Fe2O3 and Co3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    P. F. Wang

    2012-01-01

    Full Text Available Owing to the unique order mesopores, mesoporous SBA-15 could be used as the carrier of the magnetic nanoparticles. The magnetic nanoparticles in the frame and the mesopores lead to the exchange-coupling interaction or other interactions, which could improve the magnetic properties of SBA-15 nanocomposites. Mesoporous Fe/SBA-15 had been prepared via in situ anchoring Fe2O3 into the frame and the micropores of SBA-15 using the sol-gel and hydrothermal processes. Co3O4 nanoparticles had been impregnated into the mesopores of Fe/SBA-15 to form mesoporous Fe/SBA-15-Co3O4 nanocomposites. XRD, HRTEM, VSM, and N2 physisorption isotherms were used to characterize the mesostructure and magnetic properties of the SBA-15 nanocomposites, and all results indicated that the Fe2O3 nanoparticles presented into the frame and micropores, while the Co3O4 nanoparticles existed inside the mesopores of Fe/SBA-15. Furthermore, the magnetic properties of SBA-15 could be conveniently adjusted by the Fe2O3 and Co3O4 magnetic nanoparticles. Fe/SBA-15 exhibited ferromagnetic properties, while the impregnation of Co3O4 nanoparticles greatly improved the coercivity with a value of 1424.6 Oe, which was much higher than that of Fe/SBA-15.

  20. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    Science.gov (United States)

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO2-TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO2 adsorption indicated the stronger interactions between the surfaces and CO2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  1. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu

    2012-05-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review gives an introduction to recently developed mesoporous silicas with emphasis on their complicated structures and synthesis mechanisms. In addition, two powerful techniques for solving complex mesoporous structures, electron crystallography and electron tomography, are compared to elucidate their respective strength and limitations. Some critical issues and challenges regarding the development of novel mesoporous structures as well as their applications are also discussed. © 2011 Elsevier Ltd.

  2. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    Science.gov (United States)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  3. Rhizopus oryzae lipase immobilized on hierarchical mesoporous silica supports for transesterification of rice bran oil.

    Science.gov (United States)

    Ramachandran, Prashanth; Narayanan, Guru Krupa; Gandhi, Sakthivel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-03-01

    The tunable textural properties of self-oriented mesoporous silica were investigated for their suitability as enzyme immobilization matrices to support transesterification of rice bran oil. Different morphologies of mesoporous silica (rod-like, rice-like, and spherical) were synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms. The surface area, pore size, and ordered arrangement of the pores were found to influence the immobilization and activity of the enzyme in the mesopores. The immobilization in rod-like silica was highest with an immobilization efficiency of 63 % and exhibited minimal activity loss after immobilization. Functionalization of the mesoporous surface with ethyl groups further enhanced the enzyme immobilization. The free enzyme lost most of its activity at 50 °C while the immobilized enzyme showed activity even up to 60 °C. Transesterified product yield of nearly 82 % was obtained for 24 h of reaction with enzyme immobilized on ethyl-functionalized SBA-15 at an oil:methanol ratio of 1:3. Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectrometry (GC-MS) were used to characterize the transesterified product obtained. The reusability of the immobilized enzyme was studied for 3 cycles.

  4. EPR in functional structures based on doped (nano, meso)-porous silica and titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kassiba, A [Laboratoire de Physique de l' Etat Condense LPEC, UMRCNRS 6087 Universite du Maine, Avenue Olivier Messiaen 72085 Le Mans Cedex 9 France (France); Makowska-Janusik, M [Institute of Physics, Al Armii Krajowej 13/15, Akademina Im Jana Dlugosz w Czestochowa, 42200 (Poland); Mehdi, A, E-mail: kassiba@univ-lemans.fr [Institut Charles Gerhardt, UMR 5253 Chimie Moleculaire et Organisation du Solide, Universite Montpellier II Place E Bataillon, 34095 Montpellier Cedex 5 (France)

    2011-04-01

    EPR investigations are performed on mesoporous silica (SBA15) functionalized by Nickel-cyclam complexes (1,4,8,11-tetraazacyclotetradecane groups chelating nickel ions) and on mesoporous titanium dioxide with nitrogen doping. For functionalized silica, the magnetic behaviour of organometallic groups, their mutual interactions and dispersion in the host matrices are compared with respect to the doping rates and the synthesis procedures. The relaxation processes were analyzed from the thermal evolution of the paramagnetic spin susceptibilities and EPR line-widths. Particularly, some samples show the formation of clusters where phonon assisted one dimensional (1D) ferromagnetic ordering occurs below 45 K. For the mesoporous TiO{sub 2}, systematic EPR investigations were performed on two main classes of materials with regard to the porosity degrees. The EPR experiments point out the efficiency of EPR method to probe the degree of functionalization of mesoporous silica or the nitrogen doping achievement in TiO{sub 2}, and in general to give a valuable feedback to improve the synthesis routes of smart materials.

  5. Isocyanate-mediated covalent immobilization of Mucor miehei lipase onto SBA-15 for transesterification reaction.

    Science.gov (United States)

    Canilho, N; Jacoby, J; Pasc, A; Carteret, C; Dupire, F; Stébé, M J; Blin, J L

    2013-12-01

    Mucor miehei lipase (Mm-L) covalently bind on a hexagonally ordered silica SBA-15 (Santa Barbara Amorphous), previously functionalized with isocyanate moieties, was examined as biocatalyst for transesterification of colza oil with methanol. The isocyanate-mesoporous silica (NCO-SBA-15) was obtained by condensation of silanol with triethoxysilane propyl isocyanate (TPI). The efficiency of the functionalization has been evidenced by infrared, (29)Si and (13)C NMR spectroscopies. The substrate provided a moderate hydrophobic microenvironment together with reactive sites for chemical immobilization of the enzyme. The biocatalyst containing 0.28 g of Mm-L per gram of support afforded a high level of transesterification activity (yield up to 80%) while using 1:1 molar ratio of methanol/colza oil and small amount of water. The biocatalyst showed higher operational stability than the corresponding physisorbed enzyme since it can be reused 6 times against 2 consecutive runs for the physisorbed enzyme. © 2013 Elsevier B.V. All rights reserved.

  6. Kinetic modelling of cytochrome c adsorption on SBA-15.

    Science.gov (United States)

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi

    2017-01-01

    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  7. Study of mesoporous silica/magnetite systems in drug controlled release.

    Science.gov (United States)

    Souza, K C; Ardisson, J D; Sousa, E M B

    2009-02-01

    Ordered mesoporous materials like SBA-15 have a network of channels and pores with well-defined size in the nanoscale range. This particular silica matrix pore architecture makes them suitable for hosting a broad variety of compounds in very promising materials in a range of applications, including drug release magnetic carriers. In this work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation-precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N(2) adsorption, and scanning electron microscopy (SEM). The influence of magnetic nanoparticles on drug release kinetics was studied with cisplatin, carboplatin, and atenolol under in vitro conditions in the absence and in the presence of an external magnetic field (0.25 T) by using NdFeB permanent magnet. The constant external magnetic field did not affect drug release significantly. The low-frequency alternating magnetic field had a large influence on the cisplatin release profile.

  8. Phenol and methylene blue photodegradation over Ti/SBA-15 materials under uv light

    Directory of Open Access Journals (Sweden)

    Olejnik Tomasz

    2016-09-01

    Full Text Available Ordered SBA-15 mesoporous silica supports have been synthesized and used for incorporation of titanium with different Ti/Si weight ratio via incipient wetness impregnation. Titanium tetraisopropoxide (TTIP was used as a source of Ti. Obtained catalysts were characterized to investigate the chemical framework and morphology by nitrogen sorption measurements, powder X-ray diffraction (XRD, X-ray fluorescence elemental analysis (XRF, transmission electron microscopy (TEM, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS and Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS. The photocatalytic degradation of phenol and methylene blue water solutions were selected as a probe reactions to the photoactivity test of prepared samples and to verify the potential application of these materials for water purification. Experimental results indicate that the photocatalytic activity of Ti/Si mixed materials depends on the adsorption ability of composites and the photocatalytic activity of the titanium oxide.

  9. Drug Release from Ordered Mesoporous Silicas

    OpenAIRE

    Doadrio Villarejo, Antonio Luis; Salinas Sánchez, Antonio J.; Sánchez-Montero, José M.; Vallet Regí, María

    2015-01-01

    The state-of-the-art in the investigation of drugs release from Silica-based ordered Mesoporous Materials (SMMs) is reviewed. First, the SMM systems used like host matrixes are described. Then, the model drugs studied until now, including their pharmacological action, structure and the mesoporous matrix employed for each drug, are comprehensively listed. Next, the factors influencing the release of drugs from SMMs and the strategies used to control the drug delivery, specially the chemical fu...

  10. A novel method for preparation of 8-hydroxyquinoline functionalized mesoporous silica: Aluminum complexes and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Badiei, Alireza, E-mail: abadiei@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Goldooz, Hassan [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Department of Chemistry, Faculty of Science, Alzahra University, Tehran (Iran, Islamic Republic of)

    2011-03-15

    8-Hydroxyquinoline (8-HQ) was attached to mesoporous silica by sulfonamide bond formation between 8-hydroxyquinoline-5-sulfonyl chloride (8-HQ-SO{sub 2}Cl) and aminopropyl functionalized SBA-15 (designated as SBA-SPS-Q) and then aluminum complexes of 8-HQ was covalently bonded to SBA-SPS-Q using coordinating ability of grafted 8-HQ.The prepared materials were characterized by powder X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FT-IR), thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis and fluorescence spectra. The environmental effects on the emission spectra of grafted 8-HQ and its complexes were studied and discussed in details.

  11. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  12. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  13. Oil absorption in mesoporous silica particles

    Directory of Open Access Journals (Sweden)

    Radislav Filipović

    2010-12-01

    Full Text Available Mesoporous silica particles were prepared from highly basic sodium silicate solutions, having different silica modulus and SiO2 concentrations, by adding sulphuric acid at different temperatures. Pore structure of prepared silica particles (aggregates is strongly influenced by processing conditions and easy controllable in broad range of the specific surface area, pore size, pore volume and size distribution. It is shown that there is a clear correlation between volume of absorbed oil and processing parameters used in preparation of silica aggregates. Thus, oil absorption is higher in the samples prepared from sodium silicate solution with higher SiO2 concentration and at higher synthesis temperature.

  14. Photocatalytic Oxidation of Gaseous Isopropanol Using Visible-Light Active Silver Vanadates/SBA-15 Composite

    Directory of Open Access Journals (Sweden)

    Ting-Chung Pan

    2012-01-01

    Full Text Available An environmentally friendly visible-light-driven photocatalyst, silver vanadates/SBA-15, was prepared through an incipient wetness impregnation procedure with silver vanadates (SVO synthesized under a hydrothermal condition without a high-temperature calcination. The addition of mesoporous SBA-15 improves the formation of nanocrystalline silver vanadates. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS confirms the presence of Brønsted and Lewis acids on the SVO/SBA-15 composites. The results of photoluminescence spectra indicated that the electron-hole recombination rate have been effectively inhibited when SVO was loaded with mesoporous SBA-15. All the composites loaded with various amount of SVO inherit the higher adsorption capacity and larger mineralization yield than those of P-25 (commercial TiO2 and pure SVO. The sample loaded with 51% of SVO (51SVO/SBA-15 with mixed phases of Ag4V2O7 and α-Ag3VO4 exhibits the best photocatalytic activity. A favorable crystalline phase combined with high intensities of Brønsted and Lewis acids is considered the main cause of the enhanced adsorption capacity and outstanding photoactivity of the SVO/SBA-15 composites.

  15. Drug release from ordered mesoporous silicas.

    Science.gov (United States)

    Doadrio, Antonio L; Salinas, Antonio J; Sánchez-Montero, José M; Vallet-Regí, M

    2015-01-01

    The state-of-the-art in the investigation of drugs release from Silica-based ordered Mesoporous Materials (SMMs) is reviewed. First, the SMM systems used like host matrixes are described. Then, the model drugs studied until now, including their pharmacological action, structure and the mesoporous matrix employed for each drug, are comprehensively listed. Next, the factors influencing the release of drugs from SMMs and the strategies used to control the drug delivery, specially the chemical functionalization of the silica surface, are discussed. In addition, how all these factors were gathered in a kinetic equation that describes the drug release from the mesoporous matrixes is explained. The new application of molecular modeling and docking in the investigation of the drug delivery mechanisms from SMMs is also presented. Finally, the new approaches under investigation in this field are mentioned including the design of smart stimuli-responsive materials and other recent proposals for a future investigation.

  16. The formation of helical mesoporous silica nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wan Xiaobing; Pei Xianfeng; Zhao Huanyu; Chen Yuanli; Guo Yongmin; Li Baozong; Yang Yonggang [Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou (Soochow) University, Suzhou 215123 (China); Hanabusa, Kenji [Department of Functional Polymer Science, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan)], E-mail: ygyang@suda.edu.cn

    2008-08-06

    Three chiral cationic gelators were synthesized. They can form translucent hydrogels in pure water. These hydrogels become highly viscous liquids under strong stirring. Mesoporous silica nanotubes with coiled pore channels in the walls were prepared using the self-assemblies of these gelators as templates. The mechanism of the formation of this hierarchical nanostructure was studied using transmission electron microscopy at different reaction times. The results indicated that there are some interactions between the silica source and the gelator. The morphologies of the self-assemblies of gelators changed gradually during the sol-gel transcription process. It seems that the silica source directed the organic self-assemblies into helical nanostructures.

  17. Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

    Directory of Open Access Journals (Sweden)

    Amaury Pérez-Verdejo

    2014-08-01

    Full Text Available This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg–Al hydrotalcite. Two different Mg–Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method. The first procedure, i.e., the post-synthesis method, produces a composite material with Mg–Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method, Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  18. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

    Science.gov (United States)

    Jin, Min-Ho; Oh, Duckkyu; Park, Ju-Hyoung; Lee, Chun-Boo; Lee, Sung-Wook; Park, Jong-Soo; Lee, Kwan-Young; Lee, Dong-Wook

    2016-09-01

    For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA-15, and achieved the excellent catalytic activity (TOF: 593 h-1) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance.

  19. Vapour Phase Hydrogenation of Phenol over Rhodium on SBA-15 and SBA-16

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-12-01

    Full Text Available In the present work, mesoporous SBA-15 and SBA-16 were synthesised using classical methods, and their physicochemical properties were investigated by X-ray diffraction (XRD, FTIR, TEM and N2 adsorption–desorption. Rhodium (Rh, 1 wt % was loaded on the mesoporous SBA-15 and SBA-16 by an impregnation method. The Rh surface coverage, dispersion and crystallite size were determined by room temperature H2 chemisorption on reduced samples. The catalytic activity of Rh supported on mesoporous SBA-15 and SBA-16 was evaluated for the first time in the hydrogenation of phenol in vapour phase in a temperature range between 130 and 270 °C at atmospheric pressure. The reaction over Rh/SBA-15 at 180 °C produced cyclohexanone as the major product (about 60% along with lower amounts of cyclohexanol (about 35% and cyclohexane (about 15%. The influences of temperature, H2/phenol ratio, contact time and the nature of the solvent on the catalytic performance were systematically investigated. The Rh/SBA-16 system offered lower phenol conversion compared to Rh/SBA-15, but both have a very high selectivity for cyclohexanone (above 60%.

  20. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    Analysis indicates that the particles obtained were in spherical shape with decreasing size as the alkyl chain length of ionic liquid increases. The materials also show increase of BET surface value as the alkyl chain length increases from the range 19 m2/g to 23 m2/g. Keywords: mesoporous silica; ionic liquid, pyridinium; ...

  1. Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2013-10-01

    Full Text Available Gold nanoparticles, particularly with the particle size of 2–5 nm, have attracted increasing research attention during the past decades due to their surprisingly high activity in CO and volatile organic compounds (VOCs oxidation at low temperatures. In particular, CO oxidation below room temperature has been extensively studied on gold nanoparticles supported on several oxides (TiO2, Fe2O3, CeO2, etc.. Recently, mesoporous silica materials (such as SBA-15, MCM-41, MCM-48 and HMS possessing ordered channel structures and suitable pore diameters, large internal surface areas, thermal stabilities and excellent mechanical properties, have been investigated as suitable hosts for gold nanoparticles. In this review we highlight the development of novel mesoporous silica based gold catalysts based on examples, mostly from recently reported results. Several synthesis methods are described herein. In detail we report: the modification of silica with organic functional groups; the one-pot synthesis with the incorporation of both gold and coupling agent containing functionality for the synthesis of mesoporous silica; the use of cationic gold complexes; the synthesis of silica in the presence of gold colloids or the dispersion of gold colloids protected by ligands or polymers onto silica; the modification of silica by other metal oxides; other conventional preparation methods to form mesoporous silica based gold catalysts. The gold based catalysts prepared as such demonstrate good potential for use in oxidation of CO and VOCs at low temperatures. From the wide family of VOCs, the oxidation of methanol and dimethyldisulfide has been addressed in the present review.

  2. Mesoporous silica nanoparticles for active corrosion protection.

    Science.gov (United States)

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  3. Hydrothermal Synthesis of SBA-15 Using Sodium Silicate Derived from Coal Gangue

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-01-01

    Full Text Available Well-ordered SBA-15 was prepared with a hydrothermal route by sodium silicate derived from coal gangue. The as-prepared sample was analyzed by SAXRD, BET, TEM, and SEM, respectively. The results indicate that at a low hydrothermal temperature of 100∘C the well-ordered mesoporous SBA-15 could be synthesized. The surface area, pore volume, and pore size of the sample are 552 m2/g, 0.54 cm3/g, and 7.0 nm, respectively. It is suggested that coal gangue could be used in obtaining an Si source to prepare mesoporous materials, such as SBA-15.

  4. Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs.

    Science.gov (United States)

    Rehman, Fozia; Ahmed, Khalid; Airoldi, Claudio; Gaisford, Simon; Buanz, Asma; Rahim, Abdur; Muhammad, Nawshad; Volpe, Pedro L O

    2017-03-01

    Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0m2g-1. The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  6. Bioinspired synthesis of mesoporous silicas

    NARCIS (Netherlands)

    Sun, QY; Vrieling, E G; van Santen, RA; Sommerdijk, NAJM

    Recent years have witnessed rapid growth in the number of new investigations at the interface of materials chemistry and biology. This review highlights the recent developments in the studies of protein-mediated silica biomineralization in diatoms and the "downscaling" and "upscaling" models derived

  7. Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole.

    Science.gov (United States)

    Van Speybroeck, Michiel; Mols, Raf; Mellaerts, Randy; Thi, Thao Do; Martens, Johan A; Van Humbeeck, Jan; Annaert, Pieter; Van den Mooter, Guy; Augustijns, Patrick

    2010-08-01

    The release of poorly soluble drugs from mesoporous silicates is often associated with the generation of supersaturation, which implies the risk of drug precipitation and reduced availability for absorption. The aim of this study was to enhance the in vivo performance of an ordered mesoporous silicate (SBA-15) by combining it with the precipitation inhibitors hydroxypropylmethylcellulose (HPMC) and hydroxypropylmethylcellulose acetate succinate (HPMCAS). The poorly soluble weak base itraconazole was used as a model compound. Formulations were prepared by physically blending itraconazole-loaded SBA-15 with the precipitation inhibitors. In vitro release experiments implementing a transfer from simulated gastric fluid to simulated intestinal fluid were used to evaluate the pharmaceutical performance. Subsequently, the formulations were evaluated in vivo in rats. When high enough amounts of HPMC were co-administered with itraconazole-loaded SBA-15 (itraconazole:SBA-15:HPMC 1:4:6), the extent of absorption was increased by more than 60% when compared to SBA-15 without precipitation inhibitors (AUC 14,937+/-1617 versus 8987+/-2726nMh). HPMCAS was found ineffective in enhancing the in vivo performance of SBA-15 due to its insolubility in the stomach. The results of this study demonstrate that the pharmaceutical performance of SBA-15 is enhanced through addition of an appropriate precipitation inhibitor.

  8. The Effect of Nitrogen Surface Ligands on Propane Metathesis: Design and Characterizations of N-modified SBA15-Supported Schrock-type Tungsten Alkylidyne

    KAUST Repository

    Eid, Ahmed A.

    2014-04-01

    Catalysis, which is primarily a molecular phenomenon, is an important field of chemistry because it requires the chemical conversion of molecules into other molecules. It also has an effect on many fields, including, but not limited to, industry, environment and life Science[1]. Surface Organometallic Chemistry is an effective methodology for Catalysis as it imports the concept and mechanism of organometallic chemistry, to surface science and heterogeneous catalysis. So, it bridges the gap between homogenous and heterogeneous catalysis[1]. The aim of the present research work is to study the effect of Nitrogen surface ligands on the activity of Alkane, Propane in particular, metathesis. Our approach is based on the preparation of selectively well-defined group (VI) transition metal complexes supported onto mesoporous materials, SBA15 and bearing amido and/or imido ligands. We choose nitrogen ligands because, according to the literature, they showed in some cases better catalytic properties in homogenous catalysis in comparison with their oxygen counterparts[2]. The first section covers the modification of a highly dehydroxylated SBA15 surface using a controlled ammonia treatment. These will result in the preparation of two kind of Nitrogen surface ligands: -\\tOne with vicinal silylamine/silanol, (≡SiNH2)(≡SiOH), noted [N,O]SBA15 and, -\\tAnother\\tone\\twith\\tvicinal\\tbis-silylamine moieties (≡SiNH2)2, noted [N,N]SBA15[3]. The second section covers the reaction of Schrock type Tungsten Carbyne [W(≡C- tBu)(CH2-tBu)3] with those N-surface ligands and their characterizations by FT-IR, multiple quantum solid state NMR (1H, 13C), elemental analysis and gas phase analysis. The third section covers the generation of the active site, tungsten hydride species. Their performance toward propane metathesis reaction using the dynamic reactor technique PID compared toward previous well-known catalysts supported on silica oxide or mesoporous materials[4]. A fairly good

  9. Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution.

    Science.gov (United States)

    Gao, Jun-Kai; Hou, Li-An; Zhang, Guang-Hui; Gu, Ping

    2015-04-09

    A novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area. The effect of contact time, pH, ionic strength, temperature, and solid-liquid ratio on the sorption process was investigated. It was demonstrated that the adsorption of U(VI) by DMS was fast and that it can be described by the pseudo-second order-equation where the equilibrium time was 20 min. Additionally, the adsorption isotherm data were fitted well by the Langmuir model with the maximum adsorption capacity of DMS of 196 mg/g at pH 6.0. Furthermore, the influence of the K(+) and Na(+) concentrations and solid-to-liquid ratio on the sorption was very weak, and the values of the thermodynamic parameters revealed that the sorption process was exothermic and spontaneous. All the results suggested that the DMS could be used as an excellent adsorbent to remove U(VI) from aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water

    Science.gov (United States)

    Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara

    2017-07-01

    Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.

  11. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO 2 capture with excellent stability and regenerability

    KAUST Repository

    Patil, Umesh

    2012-01-01

    We report the use of silicon oxynitrides as novel adsorbents for CO 2 capture. Three series of functionalized materials based on KCC-1, SBA-15 and MCM-41 with Si-NH 2 groups were prepared using a simple one-step process via thermal ammonolysis using ammonia gas, and they demonstrated excellent CO 2 capture capabilities. These materials overcome several limitations of conventional amine-grafted mesoporous silica. They offer good CO 2 capture capacity, faster adsorption-desorption kinetics, efficient regeneration and reuse, more crucially excellent thermal and mechanical stability even in oxidative environments, and a clean and green synthesis route, which allows the overall CO 2 capture process to be practical and sustainable. This journal is © The Royal Society of Chemistry 2012.

  12. Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jun-Kai [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); Hou, Li-An; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-04-09

    Highlights: • Dopamine-functionalized SBA-15 (DMS) was developed via a biomimetic coating. • The modification approach was simple, facile and cost-effective. • The DMS was firstly used to remove U(VI) from aqueous solution. • Large adsorption capacity and rapid separation were obtained. - Abstract: A novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area. The effect of contact time, pH, ionic strength, temperature, and solid–liquid ratio on the sorption process was investigated. It was demonstrated that the adsorption of U(VI) by DMS was fast and that it can be described by the pseudo-second order-equation where the equilibrium time was 20 min. Additionally, the adsorption isotherm data were fitted well by the Langmuir model with the maximum adsorption capacity of DMS of 196 mg/g at pH 6.0. Furthermore, the influence of the K{sup +} and Na{sup +} concentrations and solid-to-liquid ratio on the sorption was very weak, and the values of the thermodynamic parameters revealed that the sorption process was exothermic and spontaneous. All the results suggested that the DMS could be used as an excellent adsorbent to remove U(VI) from aqueous solution.

  13. Shape matters when engineering mesoporous silica-based nanomedicines.

    Science.gov (United States)

    Hao, Nanjing; Li, Laifeng; Tang, Fangqiong

    2016-04-01

    Mesoporous silica nanomaterials have been successfully employed in the development of novel carriers for drug delivery. Numerous studies have been reported on engineering mesoporous silica-based carriers for drug loading, release, cellular uptake, and biocompatibility. A number of design parameters that govern the in vitro and in vivo performance of the carriers, including particle diameter, surface chemistry, and pore size, have been tuned to optimize nanomedicine efficacy. However, particle shape, which may generate a high impact on nanomedicine performance, has still not been thoroughly investigated. This is probably due to the limited availability of strategies and techniques to produce non-spherical mesoporous silica nanomaterials. Recent breakthroughs in controlling the particle shape of mesoporous silica nanomaterials have confirmed the important roles of shape on nanomedicine development. This review article introduces various fabrication methods for non-spherical mesoporous silica nanomaterials, including rod, ellipsoid, film, platelet/sheet, and cube, and the roles of particle shape in nanomedicine applications.

  14. Ruthenium carbenes supported on mesoporous silicas as highly active and selective hybrid catalysts for olefin metathesis reactions under continuous flow.

    Science.gov (United States)

    Bru, Miriam; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Danz, Manuel; Müller, Imke B; Limbach, Michael

    2013-08-26

    In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica-based mesoporous (i.e., MCM-41, MCM-48, and SBA-15) and microporous (ZSM-5 and MWW) versus macroporous materials (D11-10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such "linker-free" supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis-cyclooctene to form 1,9-cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles.

    Science.gov (United States)

    Zhu, Shenmin; Zhou, Zhengyang; Zhang, Di

    2007-12-03

    A site-selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli-responsive ordered SBA-15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant-template sol-gel method and control of transport through polymerization of N-isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm(3) g(-1)), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA-15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 degrees C, indicating a typical thermosensitive controlled release.

  16. The synthesis of novel hybrid thiol-functionalized nano-structured SBA-15

    Science.gov (United States)

    Hoang, Van Duc; Phuong Dang, Tuyet; Khieu Dinh, Quang; Phu Nguyen, Huu; Vu, Anh Tuan

    2010-09-01

    Mesoporous thiol-functionalized SBA-15 has been directly synthesized by co-condensation of tetraethyl orthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) with triblock copolymer P123 as-structure-directing agent under hydrothermal conditions. Surfactant removal was performed by Soxhlet ethanol extraction. These materials have been characterized by powder x-ray diffraction (XRD), nitrogen adsorption/desorption (BET model), transmission electron microscopy (TEM), thermal analysis, infrared spectroscopy (IR) and energy-dispersive x-ray spectroscopy (EDX). The main parameters, such as the initial molar ratio of MPTMS to TEOS, the time of adding MPTMS to synthesized gel and the Soxhlet ethanol extraction on the thiol functionalized SBA-15 with high thiol content and highly ordered hexagonal mesostructure, were investigated and evaluated. The adsorption capacity of the thiol-functionalized and non-functionalized SBA-15 materials for Pb2+ ion from aqueous solution was tested. It was found that the Pb2+ adsorption capacity of the thiol functionalized SBA-15 is three times higher than that of non-functionalized SBA-15.

  17. In vitro controlled release of antihypertensive drugs intercalated into unmodified SBA-15 and MgO modified SBA-15 matrices.

    Science.gov (United States)

    Alexa, Iuliana Florentina; Ignat, Maria; Popovici, Roxana Florentina; Timpu, Daniel; Popovici, Eveline

    2012-10-15

    The use of nanotechnology in medicine and more specifically in drug delivery systems is set to spread rapidly. In order to broaden the range of matrices and implicitly to develop the class of drug delivery systems based on diffusion mechanism, in this study the starting materials, SBA-15 powder matrices, were engineered by MgO modification for antihypertensive drugs intercalation. Captopril and aliskiren were used as drug models. All powders, unmodified and MgO-modified silica matrices, and their corresponding drug-loaded samples were characterized by X-ray diffraction, N(2) adsorption and desorption, FTIR spectroscopy and scanning electron microscopy. The studied drug carriers were tested in the controlled drug release process and the influence of the silica pore morphology and geometry on drug release profiles was extensively studied. In order to analyze the data obtained from the in vitro release studies and to evaluate the kinetic release mechanism, the Korsmeyer and Peppas equation was used. The obtained drug delivery system based on MgO-SBA-15 matrix exhibits exciting structural features and is therefore promising for its use as antihypertensive drug delivery system, having potential therapeutic benefits resulting in safe and effective management of captopril and aliskiren adsorption and in vitro release. Published by Elsevier B.V.

  18. Functionalized mesoporous silica particles for application in drug delivery system.

    Science.gov (United States)

    Pang, J; Luan, Y; Yang, X; Jiang, Y; Zhao, L; Zong, Y; Li, Z

    2012-07-01

    In these years, ordered mesoporous silica materials have shown promising applications in drug delivery system as drug carriers. These carriers with stable mesoporous structure, large surface area, good biocompatibility and tailored size of mesopores exhibit significant property of higher drug loading. However, silica-based mesoporous materials cannot control the release of the loaded drug without modifications. In this paper, we review the recent research work discussing functionalization of mesoporous materials by various components and methods for application in drug delivery systems. All the examples show that these functionalized mesoporous silica-based systems have great potential for a variety of drug delivery applications, specifically in the fields of the drug targeted and controlled delivery systems.

  19. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  20. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  1. Silylation and metalation of periodic mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Deschner, Thomas Christian

    2011-07-01

    Surface functionalization via silylation or SOMC (Surface Organometallic Chemistry) is a prosperous field for producing organic-inorganic hybrid materials. These concepts are proven by numerous applications in various topical areas like catalysis, chromatography, adsorption processes, as well as gas sensing and storage. The combination of a thermally stable high surface area inorganic host and a reactive surface chemistry which allows the control of dispersion of the surface species and fine tuning of the properties of the subsequent hybrid material is an endeavour especially in heterogeneous catalysis. The subgroup of cage-like PMS (Periodic Mesoporous Silica) materials comprising of SBA-1, SBA-2, SBA-6, SBA-I6 or KIT-5 are currently attractive candidates for designing size and shape selective catalysts. (Silyl)amides enjoy great popularity in (surface) organometallic chemistry because most of the metals of the periodic table form stable complexes with these ligands. Chapter A gives a brief summary of microporous and mesoporous materials in general and introduces compendiously possible surface modifications with special emphasis on silylation. In addition an overview of metal (silyl)amides[et]porous and metal (silyl)amides[et]nonporous support is presented. Chapter C deals with the summary of the main results placing emphasis on: distinct reactivity of various silylation reagents; distinct reactivity of metal (silyl)amides of the elements Mg, Ti, and Fe; o occurrence of any size effects; feasibility of consecutive intrapore chemistry. (Author)

  2. A stable luminescent hybrid mesoporous copper complex-silica.

    Science.gov (United States)

    Rico, Marisa; Sepúlveda, Angel E; Ruiz, Santiago; Serrano, Elena; Berenguer, Jesús R; Lalinde, Elena; Garcia-Martinez, Javier

    2012-09-14

    Surfactant-assisted co-condensation of an emissive tetranuclear alkynyl-phosphine copper cluster with TEOS affords a hydrothermally stable blue-emitter mesoporous hybrid metal complex-silica material.

  3. Capturing the Local Adsorption Structures of Carbon Dioxide in Polyamine-Impregnated Mesoporous Silica Adsorbents.

    Science.gov (United States)

    Huang, Shing-Jong; Hung, Chin-Te; Zheng, Anmin; Lin, Jen-Shan; Yang, Chun-Fei; Chang, Yu-Chi; Deng, Feng; Liu, Shang-Bin

    2014-09-18

    Interactions between amines and carbon dioxide (CO2) are essential to amine-functionalized solid adsorbents for carbon capture, and an in-depth knowledge of these interactions is crucial to adsorbent design and fabrication as well as adsorption/desorption processes. The local structures of CO2 adsorbed on a tetraethylenepentamine-impregnated mesoporous silica SBA-15 were investigated by solid-state (13)C{(14)N} S-RESPDOR MAS NMR technique and theoretical DFT calculations. Two types of adsorption species, namely, secondary and tertiary carbamates as well as distant ammonium groups were identified together with their relative concentrations and relevant (14)N quadrupolar parameters. Moreover, a dipolar coupling of 716 Hz was derived, corresponding to a (13)C-(14)N internuclear distance of 1.45 Å. These experimental data are in excellent agreement with results obtained from DFT calculations, revealing that the distribution of surface primary and secondary amines readily dictates the CO2 adsorption/desorption properties of the adsorbent.

  4. Synthesis and analysis of amino-functionalised mesoporous silica

    OpenAIRE

    Ritter, H T K

    2009-01-01

    The regularly ordered pore arrangement and the narrow pore size distribution of mesoporous silica offer possibilities for several applications such as drug delivery and controlled release. A successful implementation requires methods that allow the selective functionalisation of external and internal surfaces. A convenient and scale-up friendly procedure for synthesising high quality mesoporous silica MCM-41 at room temperature was developed. Amino-functionalised samples were a...

  5. Functionalized SBA-15 supported nickel (II)-oxime-imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    Science.gov (United States)

    Paul, Luna; Banerjee, Biplab; Bhaumik, Asim; Ali, Mahammad

    2016-05-01

    A new oxime-imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH2-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO4)2 to yield the functionalized nickel catalyst SBA-15-NH2-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH2-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant.

  6. 3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography

    DEFF Research Database (Denmark)

    Gondo, Takashi; Kasama, Takeshi; Kaneko, Kenji

    2014-01-01

    Mesoporous silica, SBA-15, is one of the best candidate for the supporting material of catalytic nanoparticles because of its relative large and controllable pore size and large specific surface area [1]. So far, various nanoparticles, such as Au, Pt and Pd, have been introduced into the pore for...

  7. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    Science.gov (United States)

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  8. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    Science.gov (United States)

    Yao, Qilu; Lu, Zhang-Hui; Yang, Kangkang; Chen, Xiangshu; Zhu, Meihua

    2015-10-01

    Ultrafine ruthenium nanoparticles (NPs) within the mesopores of the SBA-15 have been successfully prepared by using a “double solvents” method, in which n-hexane is used as a hydrophobic solvent and RuCl3 aqueous solution is used as a hydrophilic solvent. After the impregnation and reduction processes, the samples were characterized by XRD, TEM, EDX, XPS, N2 adsorption-desorption, and ICP techniques. The TEM images show that small sized Ru NPs with an average size of 3.0 ± 0.8 nm are uniformly dispersed in the mesopores of SBA-15. The as-synthesized Ru@SBA-15 nanocomposites (NCs) display exceptional catalytic activity for hydrogen generation by the hydrolysis of ammonia borane (NH3BH3, AB) and hydrazine borane (N2H4BH3, HB) at room temperature with the turnover frequency (TOF) value of 316 and 706 mol H2 (mol Ru min)-1, respectively, relatively high values reported so far for the same reaction. The activation energies (Ea) for the hydrolysis of AB and HB catalyzed by Ru@SBA-15 NCs are measured to be 34.8 ± 2 and 41.3 ± 2 kJ mol-1, respectively. Moreover, Ru@SBA-15 NCs also show satisfied durable stability for the hydrolytic dehydrogenation of AB and HB, respectively.

  9. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition.

    Science.gov (United States)

    Chiang, Hung-Lung; Wu, Trong-Neng; Ho, Yung-Shou; Zeng, Li-Xuan

    2014-07-15

    Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650-850°C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850°C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650-850°C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp(2) structure)cm(-1). Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H2, and C2H2 were 3.9-2.6/2.7-1.5, 1.4-2.8/2.6-4.3, 4.2-2.4/3.2-1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850°C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850°C, and the aromatics contributed more than 87% fraction of VOC concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  11. Adsorption and Wetting in Model Mesoporous Silicas and in Complex Metal Oxide Catalysts

    Science.gov (United States)

    Jayaraman, Karthik

    The surface of most metal oxides is covered by hydroxyl groups which influence many surface phenomena such as adsorption and wetting, catalysis and surface reactions. Surface chemistry of silica is a subject of exhaustive studies owing to a wide variety of practical applications of silica. In Chapter 1, a brief review of classification, synthesis and characterization of silica is provided. The hydroxylation of silica surface i.e the number of hydroxyl (-OH) groups on the surface is of utmost importance for its practical applications. In Chapter 2, a brief introduction to surface hydration of silica is provided followed by the gas adsorption measurements and characterization. Pore wetting is critical to many applications of mesoporous adsorbents, catalysts, and separation materials. In the work presented in Chapter 3, we employed the combined vapor adsorption study using nitrogen (77K) and water (293K) isotherms to evaluate the water contact angles for a series of ordered mesoporous silicas (ex:SBA-15). The proposed method of contact angle relies on the statistical film thickness (t-curve) of the adsorbed water. There were no t-curves for water for dehydroxylated or hydrophobic surfaces in literature and we addressed this issue by measuring t-curves for a series of model surfaces with known and varying silanol coverage. Using the radius of menisci ((H2O)), statistical film thickness t(H2O) from water isotherm, and the true radius of pores (rp(N 2)), from nitrogen isotherms, the water contact angle inside pores were calculated. As it was anticipated, the results obtained showed that the silica pore contact angles were strongly influenced by the number of the surface silanol groups and, therefore, by the thermal and hydration treatments of silicas. Phthalocyanines (Pcs) present an interesting class of catalytically active of molecules with unique spectroscopic, photoelectric, and sometimes magnetic properties. In the work presented in Chapter 4, we have undertaken a

  12. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst.

    Science.gov (United States)

    Kong, Liming; Zhou, Xiang; Yao, Yuan; Jian, Panming; Diao, Guowang

    2016-01-01

    SBA-15 mesoporous molecular sieves modified with copper (Cu-SBA-15) were prepared by pH-adjusting hydrothermal method and characterized by X-ray diffraction, BET, transmission electron microscopy, UV-Vis and (29)Si MAS NMR. The pH of the synthesis gel has a significant effect on the amount and the dispersion of copper on SBA-15. The Cu-SBA-15(4.5) (where 4.5 denotes the pH value of the synthesis gel) modified with highly dispersed copper was used as catalyst for the oxidation of aniline by H2O2. The Cu-SBA-15(4.5) shows a higher catalytic activity compared to CuO on the surface of SBA-15. The influences of reaction conditions, such as initial pH of the aqueous solutions, temperature, as well as the dosages of H2O2 and catalyst were investigated. Under weakly alkaline aqueous solution conditions, the aniline conversion, the H2O2 decomposition and the total organic carbon (TOC) removal could be increased significantly compared to the acid conditions. The percentage of leaching Cu(2+) could be decreased from 45.0% to 3.66% when the initial pH of solution was increased from 5 to 10. The TOC removal could be enhanced with the increases of temperature, H2O2 and catalyst dosage, but the aniline conversion and H2O2 decomposition change slightly with further increasing dosage of catalyst and H2O2. At 343 K and pH 8.0, 100% aniline conversion and 66.9% TOC removal can be achieved under the conditions of 1.0 g/L catalyst and 0.05 mol/L H2O2 after 180 min. Although copper might be slightly leached from catalyst, the homogeneous Cu(2+) contribution to the whole catalytic activity is unimportant, and the highly dispersed copper on SBA-15 plays a dominant role.

  13. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2016-08-11

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  14. Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery.

    Science.gov (United States)

    Zhang, Chengzhao; Dai, Chong; Zhang, Huaqin; Peng, Shitao; Wei, Xin; Hu, Yandi

    2017-09-15

    Silica aerogel, with mesoporous structure and high hydrophobicity, is a promising adsorbent for oil spill clean-up. To make it economic and environmental-friendly, hydrocarbon desorption and silica aerogel regeneration were investigated. After hydrocarbon desorption at 80°C, silica aerogel maintained its hydrophobicity. After toluene, petrol, and diesel desorption, shrinkage of mesopores (from 19.9 to 16.8, 13.5, and 13.4nm) of silica aerogels occurred, causing decreased adsorption capacities (from 12.4, 11.2, and 13.6 to 12.0, 6.5, and 2.3g/g). Low surface tension of petrol caused high stress on mesopores during its desorption, resulting in significant pore shrinkage. For diesel, its incomplete desorption and oxidation further hindered the regeneration. Therefore, diesel desorption was also conducted at 200°C. Severe diesel oxidation occurred under aerobic condition and destroyed the mesopores. Under anaerobic condition, no diesel oxidation occurred and the decreases in pore size (to 13.2nm) and adsorption efficiency (to 10.0g/g) of regenerated silica aerogels were much less, compared with under aerobic condition. This study provided new insights on silica aerogel regeneration for oil spill clean-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tin-based mesoporous silica for the conversion of CO2 into dimethyl carbonate.

    Science.gov (United States)

    Ballivet-Tkatchenko, Danielle; Bernard, Frédéric; Demoisson, Frédéric; Plasseraud, Laurent; Sanapureddy, Sreevardhan Reddy

    2011-09-19

    Sn-based SBA-15 was prepared by reacting di-n-butyldimethoxystannane with SBA-15 pretreated with trimethylchlorosilane (TMCS) to cap the external hydroxyl groups. Small-angle X-ray diffraction (SXRD), infrared spectroscopy (IR), nitrogen adsorption/desorption, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission (ICP-AES) measurements allow us to propose that the organotin species are located within the pore channels of the mesoporous host. This novel material catalyzes selectively the coupling of CO(2) with methanol to dimethyl carbonate (DMC). The reaction time-conversion dependence shows that a turnover number (TON) of 16 can be reached at 423 K under 20 MPa, which is among the highest reported so far in the absence of water traps. Moreover, as the catalytic activity is retained after recycling, even higher values can be obtained on a cumulative basis. A further TON increase is observed with the reaction temperature. Interestingly, the tin-based SBA-15 mesoporous material exhibits lower TONs if the TMCS pretreatment is left out. Therefore, the organotin species located outside the channels are far less active than those located within. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    Science.gov (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  18. A membrane electrode assembled photoelectrochemical cell with a solar-responsive cadmium sulfide-zinc sulfide-titanium dioxide/mesoporous silica photoanode

    Science.gov (United States)

    Chen, Ming; Chen, Rong; Zhu, Xun; Liao, Qiang; An, Liang; Ye, Dingding; Zhou, Yuan; He, Xuefeng; Zhang, Wei

    2017-12-01

    In this work, a membrane electrode assembled photoelectrochemical cell (PEC) is developed for the electricity generation by degrading the organic compounds. The photocatalyst is prepared by the incorporation of mesoporous silica SBA-15 into TiO2 and the photosensitization of CdS-ZnS to enhance the photoanode performance, while the cathode employs the air-breathing mode to enhance the oxygen transport. The experimental results show that the developed PEC exhibits good photoresponse to the illumination and the appropriate SBA-15 mass ratio in the photoanode enables the enhancement of the performance. It is also shown that the developed PEC yields better performance in the alkaline environment than that in the neutral environment. Increasing the KOH concentration can improve the cell performance. There exist optimal liquid flow rate and organics concentration leading to the best performance. Besides, it is found that increasing the light intensity can generate more electron-hole pairs and thus enhance the cell performance. These results are helpful for optimizing the design.

  19. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.

    Science.gov (United States)

    Tarn, Derrick; Ashley, Carlee E; Xue, Min; Carnes, Eric C; Zink, Jeffrey I; Brinker, C Jeffrey

    2013-03-19

    The study of ordered mesoporous silica materials has exploded since their discovery by Mobil researchers 20 years ago. The ability to make uniformly sized, porous, and dispersible nanoparticles using colloidal chemistry and evaporation-induced self-assembly has led to many applications of mesoporous silica nanoparticles (MSNPs) as "nanocarriers" for delivery of drugs and other cargos to cells. The exceptionally high surface area of MSNPs, often exceeding 1000 m²/g, and the ability to independently modify pore size and surface chemistry, enables the loading of diverse cargos and cargo combinations at levels exceeding those of other common drug delivery carriers such as liposomes or polymer conjugates. This is because noncovalent electrostatic, hydrogen-bonding, and van der Waals interactions of the cargo with the MSNP internal surface cause preferential adsorption of cargo to the MSNP, allowing loading capacities to surpass the solubility limit of a solution or that achievable by osmotic gradient loading. The ability to independently modify the MSNP surface and interior makes possible engineered biofunctionality and biocompatibility. In this Account, we detail our recent efforts to develop MSNPs as biocompatible nanocarriers (Figure 1 ) that simultaneously display multiple functions including (1) high visibility/contrast in multiple imaging modalities, (2) dispersibility, (3) binding specificity to a particular target tissue or cell type, (4) ability to load and deliver large concentrations of diverse cargos, and (5) triggered or controlled release of cargo. Toward function 1, we chemically conjugated fluorescent dyes or incorporated magnetic nanoparticles to enable in vivo optical or magnetic resonance imaging. For function 2, we have made MSNPs with polymer coatings, charged groups, or supported lipid bilayers, which decrease aggregation and improve stability in saline solutions. For functions 3 and 4, we have enhanced passive bioaccumulation via the enhanced

  20. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  1. Magnetic mesoporous materials for removal of environmental wastes.

    Science.gov (United States)

    Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, R Shane; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

    2011-09-15

    We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7h. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Crosslinked tyrosinase in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, was stable enough for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic and organic contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  3. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    Science.gov (United States)

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes.

    Science.gov (United States)

    Cendrowski, Krzysztof; Peruzynska, Magdalena; Markowska-Szczupak, Agata; Chen, Xuecheng; Wajda, Anna; Lapczuk, Joanna; Kurzawski, Mateusz; Kalenczuk, Ryszard J; Drozdzik, Marek; Mijowska, Ewa

    2014-06-01

    In this paper, we study synthesis and characteristics of mesoporous silica nanotubes modified by titanium dioxide, as well as their antimicrobial properties and influence on mitochondrial activity of mouse fibroblast L929. Nanocrystalized titania is confined in mesopores of silica nanotubes and its light activated antibacterial response is revealed. The analysis of the antibacterial effect on Escherichia coli. (ATCC 25922) shows strong enhancement during irradiation with the artificial visible and ultraviolet light in respect to the commercial catalyst and control sample free from the nanomaterials. In darkness, the mesoporous silica/titania nanostructures exhibited antibacterial activity dependent on the stirring speed of the suspension containing nanomaterials. Obtained micrograph proved internalization of the sample into the microorganism trough the cell membrane. The analysis of the mitochondrial activity and amount of lactate dehydrogenase released from mouse fibroblast cells L929 in the presence of the sample were determined with LDH and WST1 assays, respectively. The synthesized silica/titania antibacterial agent also exhibits pronounced photoinduced inactivation of the bacterial growth under the artificial visible and UV light irritation in respect to the commercial catalyst. Additionally, mesoporous silica/titania nanotubes were characterized in details by means of high resolution transmission electron microscopy (HR-TEM), XRD and BET Isotherm.

  5. Enhanced retention of aqueous transition metals in mesoporous silica

    Science.gov (United States)

    Nelson, J.; Bargar, J.; Brown, G. E.; Maher, K.

    2013-12-01

    Mesoporosity (2-50 nm diameter pores) is abundant within grain coatings and primary silicate minerals in natural environments. Mesopores often contribute significantly to total specific surface area and act as gateways for the transport of subsurface solutes, including nutrients and contaminants, between mineral surfaces and ambient fluids. However, the physiochemical mechanisms of sorption and transport within mesopores cannot be assumed to be the same as for macropores (>50 nm), because of confinement-induced changes in water properties, the structure of electrical double layers, solvation shells and dehydration rates of aquo ions, and the charge and reactive site densities of mineral surfaces. Despite the ubiquity of confined spaces in natural and industrial porous media, few studies have examined the molecular-scale mechanisms and geochemical reactions controlling meso-confinement phenomena in environmentally relevant materials. We conducted batch Zn sorption experiments using synthetic, controlled pore-size (i.e., 7.5-300 nm), metal-oxide beads as model geologic substrates. Comparison of Zn adsorbed onto macroporous and mesoporous silica beads indicates Zn adsorption capacity is increased in mesopores when normalized to surface area. In the presence of a background electrolyte (i.e., NaCl), Zn sorption capacity to macroporous silica is reduced; however, no significant difference in Zn sorption capacity on mesoporous silica was observed between the presence and absence of a background electrolyte. The effect of competing cations is indirect evidence that mesopores promote inner-sphere complexation and reduce outer-sphere complexation. EXAFS characterization of adsorbed zinc to macroporous silica matches that reported for low Zn coverages on silica (Roberts et al., JCIS, 2003), whereas a different spectrum is observed for the mesoporous case. Shell-by-shell fitting indicates that Zn is dominantly in octahedral coordination in macropores, as opposed to

  6. Mesoporous silica nanoparticles in drug delivery and biomedical applications.

    Science.gov (United States)

    Wang, Ying; Zhao, Qinfu; Han, Ning; Bai, Ling; Li, Jia; Liu, Jia; Che, Erxi; Hu, Liang; Zhang, Qiang; Jiang, Tongying; Wang, Siling

    2015-02-01

    In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. In this review, we highlight the recent advances in silica-assisted drug delivery systems, including (1) MSN-based immediate/sustained drug delivery systems and (2) MSN-based controlled/targeted drug delivery systems. In addition, we summarize the biomedical applications of MSNs, including (1) MSN-based biotherapeutic agent delivery; (2) MSN-assisted bioimaging applications; and (3) MSNs as bioactive materials for tissue regeneration. This comprehensive review presents recent advances in mesoporous silica nanoparticles assisted drug delivery systems, including both immediate and sustained delivery systems as well as controlled release and targeted drug delivery systems. In addition to achieving therapeutic agent delivery, imaging applications and potential use of silica NPs in tissue regeneration are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Functionalized SBA-15 supported nickel (II)–oxime–imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Luna [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India); Banerjee, Biplab [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ali, Mahammad, E-mail: m_ali2062@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2016-05-15

    A new oxime–imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH{sub 2}-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO{sub 4}){sub 2} to yield the functionalized nickel catalyst SBA-15-NH{sub 2}-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH{sub 2}-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant. - Graphical abstract: A new well characterized oxime–imine functionalized highly ordered mesoporous SBA-15-NH{sub 2}-DAMO-Ni complex catalyzes the one-pot oxidation of olefins under solvent free mild conditions.

  8. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications.

    Science.gov (United States)

    Lee, Ji Eun; Lee, Nohyun; Kim, Taeho; Kim, Jaeyun; Hyeon, Taeghwan

    2011-10-18

    Clever combinations of different types of functional nanostructured materials will enable the development of multifunctional nanomedical platforms for multimodal imaging or simultaneous diagnosis and therapy. Mesoporous silica nanoparticles (MSNs) possess unique structural features such as their large surface areas, tunable nanometer-scale pore sizes, and well-defined surface properties. Therefore, they are ideal platforms for constructing multifunctional materials that incorporate a variety of functional nanostructured materials. In this Account, we discuss recent progress by our group and other researchers in the design and fabrication of multifunctional nanocomposite nanoparticles based on mesoporous silica nanostructures for applications to simultaneous diagnosis and therapy. Versatile mesoporous silica-based nanocomposite nanoparticles were fabricated using various methods. Here, we highlight two synthetic approaches: the encapsulation of functional nanoparticles within a mesoporous silica shell and the assembly of nanoparticles on the surface of silica nanostructures. Various nanoparticles were encapsulated in MSNs using surfactants as both phase transfer agents and pore-generating templates. Using MSNs as a scaffold, functional components such as magnetic nanoparticles and fluorescent dyes have been integrated within these systems to generate multifunctional nanocomposite systems that maintain their individual functional characteristics. For example, uniform mesoporous dye-doped silica nanoparticles immobilized with multiple magnetite nanocrystals on their surfaces have been fabricated for their use as a vehicle capable of simultaneous magnetic resonance (MR) and fluorescence imaging and drug delivery. The resulting nanoparticle-incorporated MSNs were then tested in mice with tumors. These in vivo experiments revealed that these multifunctional nanocomposite nanoparticles were delivered to the tumor sites via passive targeting. These nanocomposite

  9. Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat.

    Science.gov (United States)

    Nasir, Tauqir; Herzog, Grégoire; Hébrant, Marc; Despas, Christelle; Liu, Liang; Walcarius, Alain

    2018-01-30

    An electrochemical method was developed for rapid and sensitive detection of the herbicide paraquat in aqueous samples using mesoporous silica thin film modified glassy carbon electrodes (GCE). Vertically aligned mesoporous silica thin films were deposited onto GCE by electrochemically assisted self-assembly (EASA). Cyclic voltammetry revealed effective response to the cationic analyte (while rejecting anions) thanks to the charge selectivity exhibited by the negatively charged mesoporous channels. Square wave voltametry (SWV) was then used to detect paraquat via its one electron reduction process. Influence of various experimental parameters (i.e., pH, electrolyte concentration, and nature of electrolyte anions) on sensitivity was investigated and discussed with respect to the mesopore characteristics and accumulation efficiency, pointing out the key role of charge distribution in such confined spaces on these processes. Calibration plots for paraquat concentration ranging from 10 nM to 10 μM were constructed at mesoporous silica modified GCE which were linear with increasing paraquat concentration, showing dramatically enhanced sensitivity (almost 30 times) as compared to nonmodified electrodes. Finally, real samples from Meuse River (France) spiked with paraquat, without any pretreatment (except filtration), were analyzed by SWV, revealing the possible detection of paraquat at very low concentration (10-50 nM). Limit of detection (LOD) calculated from real sample analysis was found to be 12 nM, which is well below the permissible limits of paraquat in drinking water (40-400 nM) in various countries.

  10. Catalytic Synthesis of n-Butyl Oleate by Cerium Complex Doped Y/SBA-15 Composite Molecular Sieve

    Science.gov (United States)

    Shi, Chunwei; Bian, Xue; Wu, Yongfu; Cong, Yufeng; Pei, Mingyuan

    2018-01-01

    Cerium ion was successfully incorporated into Y/SBA-15 micro-mesoporous molecular sieves via the hydrothermal synthesis method to give a series of composite materials. The prepared materials were thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and differential thermo gravimetric analysis (TG-DTG). The results showed that the prepared composite materials retained the highly ordered mesoporous two-dimensional hexagonal structure of SBA-15 and the octagonal structure of Y. The catalyst Ce-Y/SBA-15 was prepared and characterized, then the esterification of n-butanol and oleic acid was studied with bismuth phosphotungstate as a catalyst. Using this model reaction, the effects of Ce-HY/SBA-15, molar ratio of alcohol to oleic acid, amount of catalysts, reaction time and reaction temperature were investigated. The experimental results show that the optimal reaction conditions were: 1.8:1 molar ratio of alcohol to acid, 5 % catalyst amount (based on weight of oleic acid), 4 h reaction time and reflux conditions. Under these conditions, the yield of esterification was 90.6 %. The results suggest that the addition of Ce can effectively improve the catalytic properties of composite molecular sieves.

  11. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Nikola [Iowa State Univ., Ames, IA (United States)

    2009-12-15

    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  12. Mesoporous silica supported Pd/Ag bimetallic nanoparticles as a ...

    Indian Academy of Sciences (India)

    Priyanka Verma

    2017-09-19

    Sep 19, 2017 ... The catalysts display higher selectivity under visible light irradiation which can be due to the efficient adsorption and transfer of. H. +/H. − pair to the polar bonds in the nitro group. Keywords. Ag-plasmon; visible light irradiation; chemoselective hydrogenation; bimetallic; mesoporous silica. 1. Introduction.

  13. Elucidation of Surface Species through in Situ FTIR Spectroscopy of Carbon Dioxide Adsorption on Amine-Grafted SBA-15.

    Science.gov (United States)

    Foo, Guo Shiou; Lee, Jason J; Chen, Chia-Hsin; Hayes, Sophia E; Sievers, Carsten; Jones, Christopher W

    2017-01-10

    The nature of the surface species formed through the adsorption of CO2 on amine-grafted mesoporous silica is investigated through in situ FTIR spectroscopy with the aid of (15) N dynamic nuclear polarization (DNP) and (13) C NMR spectroscopy. Primary, secondary, and tertiary amines are functionalized onto a mesoporous SBA-15 silica. Both isotopically labeled (13) CO2 and natural-abundance CO2 are used for accurate FTIR peak assignments, which are compared with assignments reported previously. The results support the formation of monomeric and dimeric carbamic acid species on secondary amines that are stabilized differently to the monocarbamic acid species on primary amines. Furthermore, the results from isotopically labelled (13) CO2 experiments suggest the existence of two carbamate species on primary amines, whereas only one species is observed predominantly on secondary amines. The analysis of the IR peak intensities and frequencies indicate that the second carbamate species on primary amines is probably more asymmetric in nature and forms in a relatively smaller amount. Only the formation of bicarbonate ions at a low concentration is observed on tertiary amines; therefore, physisorbed water on the surface plays a role in the hydrolysis of CO2 even if water is not added intentionally and dry gases are used. This suggests that a small amount of bicarbonate ions could be expected to form on primary and secondary amines, which are more hydrophilic than tertiary amines, and these low concentration species are difficult to observe on such samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modulation of the captopril interference with the activity of some enzymatic biomolecules in monkey kidney vero cells by drug delivery mesoporous silica system

    Directory of Open Access Journals (Sweden)

    Roxana Popovici

    2011-12-01

    Full Text Available The in vitro effect of different formulations of captopril on some cellular enzymatic equipments activities of monkey kidney Vero cells was investigated in the present research. The preparation of the samples of the mesoporous silica nanocomposites, loaded or not with captopril, was described and their effect on membranary Na+-K+-ATP-ase, cell Mg2+-ATP-ase, LDH, Px, GSH-Px, SOD, CAT, ACP, ALP activities were studied. The Vero cells were incubated, for a period of 144 hours, with growing medium renewed twice. When the cells reached confluence in the monolayer stage, the cultures were divided into control cell cultures and other 4 treated groups. To the 12 hours treated cells were added: Cap H2, SBA–15, unfunctionalized SBA-15_CapH2_RT and functionalized SBA-15_APTES_CapH2_80°C nanocomposites, each of them in a dose of 0.4μg./flask. As compared with the control Vero cells, which are characterized by a specific level of the enzymatic activities, the cultures treated with SBA-15 have not presented significant alterations of them. The comparative study of captopril interactions with some membrane bound and intracellular enzymatic biomolecules of monkey kidney Vero cells has revealed either an enhancement of membranary Na+-K+-ATP-ase, intracell total ATP- ase , LDH, ACP , and GSH-Px activities or a repression of cellular CAT, Px and SOD activities. These variations of the enzymatic activities – which induce modifications of the membranary and metabolic processes – could be due to a direct or indirect interaction of captopril with cellular (plasmalemma or subcellular (organelles structures and with intracellular biomolecules (enzymes, DNA, RNA etc.. The association of captoptil with SBA – 15 or SBA – 15 _ APTES mesoporous silica matrices and treatment of Vero cells with these nanocomposites were correlated with modulation of the captopril interference with the activity of investigated enzymatic biomolecules, its sense (stimulation or

  15. Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis

    National Research Council Canada - National Science Library

    Wenjie Zhu; Jingxuan Wang; Di Wu; Xitong Li; Yongming Luo; Caiyun Han; Wenhui Ma; Sufang He

    2017-01-01

    Mesoporous silica materials (MSMs) of the MCM-41 type were rapidly synthesized by microwave heating using silica fume as silica source and evaluated as adsorbents for the removal of Cu2+, Pb2+, and Cd2...

  16. Orientation specific deposition of mesoporous particles

    Directory of Open Access Journals (Sweden)

    Tomas Kjellman

    2014-11-01

    Full Text Available We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface. A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  17. Fabrication of Mesoporous Silica Shells on Solid Silica Spheres Using Anionic Surfactants and Their Potential Application in Controlling Drug Release

    OpenAIRE

    El-Toni, Ahmed; Khan, Aslam; Ibrahim, Mohamed; Al-Hoshan, Mansour; Labis, Joselito

    2012-01-01

    In this work, mesoporous shells were constructed on solid silica cores by employing anionic surfactante. A co-structure directing agent (CSDA) has assisted the electrostatic interaction between negatively charged silica particles and the negatively charged surfactant molecules. Synthetic parameters such as reaction time and temperature had a significant impact on the formation of mesoporous silica shelld and their textural properties such as surface area and pore volume. Core-mesoporous shell...

  18. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  19. SBA-15-functionalized 3-oxo-ABNO as recyclable catalyst for aerobic oxidation of alcohols under metal-free conditions.

    Science.gov (United States)

    Karimi, Babak; Farhangi, Elham; Vali, Hojatollah; Vahdati, Saleh

    2014-09-01

    The nitroxyl radical 3-oxo-9-azabicyclo [3.3.1]nonane-N-oxyl (3-oxo-ABNO) has been prepared using a simple protocol. This organocatalyst is found to be an efficient catalyst for the aerobic oxidation of a wide variety of alcohols under metal-free conditions. In addition, the preparation and characterization of a supported version of 3-oxo-ABNO on ordered mesoporous silica SBA-15 (SABNO) is described for the first time. The catalyst has been characterized using several techniques including simultaneous thermal analysis (STA), transmission electron microscopy (TEM), and nitrogen sorption analysis. This catalyst exhibits catalytic performance comparable to its homogeneous analogue and much superior catalytic activity in comparison with (2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO) for the aerobic oxidation of almost the same range of alcohols under identical reaction conditions. It is also found that SABNO can be conveniently recovered and reused at least 12 times without significant effect on its catalytic efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Sun, Jihong, E-mail: jhsun@bjut.edu.cn [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Zhang, Li; Wang, Jinpeng; Ren, Bo [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China)

    2012-08-15

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N{sub 2} adsorption-desorption isotherms, thermogravimetric analyses, solid-state {sup 29}Si NMR spectra, elemental analysis, and UV-vis spectra. Meanwhile, the Korsmeyer-Peppas equation f{sub t} = kt{sup n} was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer-Peppas equation was around 4.10. Highlights: Black-Right-Pointing-Pointer BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. Black-Right-Pointing-Pointer Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. Black-Right-Pointing-Pointer BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  1. Catalytic properties of Thallium-containing mesoporous silicas

    Directory of Open Access Journals (Sweden)

    A. Baradji

    2017-02-01

    Full Text Available The benzylation of benzene by benzyl chloride over a series of Thallium-containing mesoporous silicas with different Tl contents has been investigated. These materials (Tl-HMS-n have been characterized by chemical analysis, N2 adsorption/desorption isotherm and X-ray diffraction (XRD. The mesoporous Thallium-containing materials showed both high activity and high selectivity for the benzylation of benzene. More interesting is the observation that these catalysts are always active and selective for large molecules like naphthenic compounds such as methoxynaphthalene.

  2. Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Z.; Yang, L.; Kabisatpathy, S.; He, J.; Lee, A.; Ron, J.; Sikha, G.; Popov, B.N.; Emrick, T.; Russell, T. P.; Wang. Q.

    2009-03-24

    A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.

  3. Synthesis of mesoporous silica microsphere from dual surfactant

    Directory of Open Access Journals (Sweden)

    Venkatathri Narayanan

    2008-12-01

    Full Text Available A new procedure is reported to synthesis mesoporous silica micro sphere for the first time. In these method two surfactants namely Span 80 and Tween 80 were used. Small angle X ray diffraction and N2 adsorption analysis shows the synthesized material has mesoporous property. The material has spherical morphology with 1-10 µm particle size. Beside the material found to have microcapsule property as observed from the Transmission electron microscopy. The Fourier transform Infrared spectroscopic analysis reveals that the materials are similar to other mesoporous materials. We also encapsulated an UV-absorber Ibuprofen inside the microcapsule, by mixing it before the synthesis. This shows a possibility of the materials in cosmetic applications.

  4. Interconnected mesopores and high accessibility in UVM-7-like silicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Cabero, Monica [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Hungria, Ana B. [Universidad de Cadiz, Departamento de Ciencia de Materiales, Ingenieria Metalurgica y Quimica Inorganica (Spain); Morales, Jose Manuel [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Tortajada, Marta; Ramon, Daniel [Biopolis S. L. (Spain); Moragues, Alaina; El Haskouri, Jamal; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro, E-mail: pedro.amoros@uv.es [Universitat de Valencia, Institut de Ciencia dels Materials (Spain)

    2012-08-15

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  5. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica.

    Science.gov (United States)

    Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling

    2013-01-01

    The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize

  6. Immobilization of mesoporous silica particles on stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pasqua, Luigi, E-mail: luigi.pasqua@unical.it [University of Calabria, Department of Environmental and Chemical Engineering (Italy); Morra, Marco, E-mail: mmorra@nobilbio.com [Via Valcastellana 26 (Italy)

    2017-03-15

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  7. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    Science.gov (United States)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  8. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole.

    Science.gov (United States)

    Kinnari, Päivi; Mäkilä, Ermei; Heikkilä, Teemu; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2011-07-29

    Mesoporous materials have an ability to enhance dissolution properties of poorly soluble drugs. In this study, different mesoporous silicon (thermally oxidized and thermally carbonized) and non-ordered mesoporous silica (Syloid AL-1 and 244) microparticles were compared as drug carriers for a hydrophobic drug, itraconazole (ITZ). Different surface chemistries pore volumes, surface areas, and particle sizes were selected to evaluate the structural effect of the particles on the drug loading degree and on the dissolution behavior of the drug at pH 1.2. The results showed that the loaded ITZ was apparently in amorphous form, and that the loading process did not change the chemical structure/morphology of the particles' surface. Incorporation of ITZ in both microparticles enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. Importantly, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. After storage under stressed conditions (3 months at 40 °C and 70% RH), the loaded silica gel particles showed practically similar dissolution profiles as before the storage. This was not the case with the loaded mesoporous silicon particles due to the almost complete chemical degradation of ITZ after storage. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers.

    Science.gov (United States)

    Suzuki, Norihiro; Zakaria, Mohamed B; Chiang, Ya-Dong; Wu, Kevin C-W; Yamauchi, Yusuke

    2012-05-28

    The colloidal mesoporous silica nanoparticles with small particle sizes (namely, CMS) are used as inorganic fillers of polymers (i.e. epoxy and silicone). From simple calculation, almost all polymers are estimated to be confined in the mesopores. To clarify the superiority of CMS over nonporous silica particles and mesoporous silica particles with much larger size (TMPS-4) as inorganic fillers, a systematic study on mechanical strength and transparency of polymer-silica nanocomposites was conducted. Compared with nonporous silica particles, similar to TMPS-4, CMS shows a greater effect on lowering the CTE. In addition, obtained polymer-CMS nanocomposites show improved transparency than polymer-TMPS-4 nanocomposites.

  10. Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15

    Directory of Open Access Journals (Sweden)

    Felipe Sombra dos Santos

    2017-04-01

    Full Text Available This paper aims to synthesize zero-valent iron nanoparticles (nZVI supported on SBA-15 nanosilica. The nanosilica generate in the system by polymer reaction with hydrochloric acid under controlled temperature. After, the iron nanomaterial was obtained by sodium borohydride reduction as described in this work. Afterward the synthesis of the nanoparticles contained iron supported on silica SBA-15, the material was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, zeta potential and X-ray fluorescence spectroscopy. The results indicated that nanomaterial obtained was in nanometric scale, by TEM results, and showing characteristic peaks at EDS results, with 11.9% iron and 14.0% silicon content, respectively, and containing 73.0% and 27.0% of their respective oxides through X-ray fluorescence spectroscopy. The isoelectric potential of the sample was around 2.0, close to the value reported for silica, due to the higher percentage of silica in the sample when compared to iron. The obtained material can be used, for some cases, as an possible alternative, to the Fenton reaction for the degradation of xenobiotic compounds or other applications in the groundwater and wastewater treatments.

  11. Solvent free amorphisation for pediatric formulations (minitablets) using mesoporous silica

    DEFF Research Database (Denmark)

    Monsuur, Fred; Choudhari, Yogesh; Reddy, Upendra

    2016-01-01

    Introduction: Most silica based amorphisation strategies are using organic solvent loading methods. Towards pediatric formulations this is creating concerns. With this in mind the development of a dry amorphisation strategy was the focus of this study. The high internal surface area of mesoporous...... silica gel is densely crowded with silanol groups, which can provide hydrogen-bonding possibilities with a drug, potentially resulting in amorphisation. Purpose: Amorphous drugs provide an advantage in solubility; however, their low physical stability always remained concern. Additional there was a need......-milled powder was compressed into minitablets using moisture activated dry granulation (MADG). Drug release studies were conducted. Results: Ball milling as dry loading technique resulted within 30 min; in the conversion of crystalline IBU into an amorphous form in the presence of Syloid® silica. It was found...

  12. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Michael Tiemann

    2011-03-01

    Full Text Available Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C and high (up to 210 °C operating temperatures.

  13. A high temperature capacitive humidity sensor based on mesoporous silica.

    Science.gov (United States)

    Wagner, Thorsten; Krotzky, Sören; Weiss, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures.

  14. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    Science.gov (United States)

    Wagner, Thorsten; Krotzky, Sören; Weiß, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures. PMID:22163790

  15. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Science.gov (United States)

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-01

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide.

  16. Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seong [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    I found an efficient method to control the morphology of the organically monofunctionalized mesoporous silica materials by introducing different types of organoalkoxysilanes in a base-catalyzed co-condensation reaction. The monofunctionalized materials exhibit different particle morphologies relative to the pure MCM-41 material. The concentration dependence of the morphology is a critical factor to determine the final particle shape. A proposed mechanism of the shape evolution is also offered. After understanding the role of organoalkoxysilanes in producing various well-shaped nanomaterials, I also obtained a series of bifunctional mesoporous silica materials with certain particle morphology. A series of bifunctional mesoporous silica nanospheres (MSNs) whose physicochemical properties was investigated via solid state NMR techniques and Cu2+ adsorption capacity tests, The ratio of two different organic groups inside of mesopores of these MSNs could be fine-tuned. These MSNs serve as a useful model system to study substrate selectivity in catalytic reactions and sorption phenomena. For example, the Cu2+ adsorption capacity of these materials was dictated by the chemical nature of the mesopores generated by the different organic functional groups. An investigation of the substrate selectivity of the bifunctionalized MSNs in a competitive nitroaldol reaction using an equimolar amount of two competing 4-nitrobenzaldehyde derivatives was performed. Shape-controlled bifunctional MSNs were employed as the catalysts. The properties of the MSNs were investigated using various spectroscopic methods and electron microscopy. The more hydrophobic the surface organic groups are, the higher the ratio of hydrophobic final product. This is the first example to demonstrate the selection of substrate using physicochemical nature of the mesopore surface other than the conventional shape selection in zeolite systems. I also created a cooperative dual catalyst

  17. Morphological control of multifunctionalized mesoporous silica nanomaterials for catalysis applications

    Science.gov (United States)

    Huh, Seong

    I found an efficient method to control the morphology of the organically monofunctionalized mesoporous silica materials by introducing different types of organoalkoxysilanes in a base-catalyzed co-condensation reaction. The monofunctionalized materials exhibit different particle morphologies relative to the pure MCM-41 material. The concentration dependence of the morphology is a critical factor to determine the final particle shape. A proposed mechanism of the shape evolution is also offered. After understanding the role of organoalkoxysilanes in producing various well-shaped nanomaterials, I also obtained a series of bifunctional mesoporous silica materials with certain particle morphology. A series of bifunctional mesoporous silica nanospheres (MSNs) whose physicochemical properties was investigated via solid state NMR techniques and Cu 2+ adsorption capacity tests. The ratio of two different organic groups inside of mesopores of these MSNs could be fine-tuned. These MSNs serve as a useful model system to study substrate selectivity in catalytic reactions and sorption phenomena. For example, the Cu2+ adsorption capacity of these materials was dictated by the chemical nature of the mesopores generated by the different organic functional groups. An investigation of the substrate selectivity of the bifunctionalized MSNs in a competitive nitroaldol reaction using an equimolar amount of two competing 4-nitrobenzaldehyde derivatives was performed. Shape-controlled bifunctional MSNs were employed as the catalysts. The properties of the MSNs were investigated using various spectroscopic methods and electron microscopy. The more hydrophobic the surface organic groups are, the higher the ratio of hydrophobic final product. This is the first example to demonstrate the selection of substrate using physicochemical nature of the mesopore surface other than the conventional shape selection in zeolite systems. I also created a cooperative dual catalyst system that is capable of

  18. Crystallization of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Drisko, Glenna L; Carretero-Genevrier, Adrian; Perrot, Alexandre; Gich, Martí; Gàzquez, Jaume; Rodriguez-Carvajal, Juan; Favre, Luc; Grosso, David; Boissière, Cédric; Sanchez, Clément

    2015-03-11

    Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.

  19. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wanyika, Harrison, E-mail: hwanyika@gmail.com [Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry (Kenya)

    2013-08-15

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol-gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil.

  20. Significant improvement in the pore properties of SBA-15 brought ...

    Indian Academy of Sciences (India)

    A comparative study of the pore properties of SBA-15 samples prepared under nonhydrothermal and hydrothermal conditions, in the absence and presence of carboxylic acids such as succinic, tartaric and citric acids has been carried out. In the absence of carboxylic acid, flake-like and spheroid particles were generally ...

  1. Significant improvement in the pore properties of SBA-15 brought ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. A comparative study of the pore properties of SBA-15 samples prepared under non- hydrothermal and hydrothermal conditions, in the absence and presence of carboxylic acids such as suc- cinic, tartaric and citric acids has been carried out. In the absence of carboxylic acid, flake-like and sphe- roid particles were ...

  2. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi

    2012-02-08

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  3. A Dual-Functional [SBA-15/Fe3O4/P(N-iPAAm] Hybrid System as a Potential Nanoplatform for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Andreza de Sousa

    2014-01-01

    Full Text Available The synthesis strategy of a multifunctional system of [SBA-15/Fe3O4/P(N-iPAAm] hybrids of interest for bioapplications was explored. Magnetite nanoparticles coated by mesoporous silica were prepared by an alternative chemical route using neutral surfactant and without the application of any functionalization method. Monomer adsorption followed by in situ polymerization initiated by a radical was the adopted procedure to incorporate the hydrogel into the pore channels of silica nanocomposite. Characterization of the materials was carried out by using X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, N2 adsorption, transmission electron microscopy (TEM, and Temperature programmed reduction studies (TPR. Their application as drug delivery system using atenolol as a model drug to assess the influence of the application of low frequency alternating magnetic fields on drug release was evaluated. The structural characteristics of the magnetic hybrid nanocomposite, including the effect of the swelling behavior on heating by the application of an alternating magnetic field, are presented and discussed.

  4. Synthesis of bifunctional catalysts Al-SBA-15-NH{sub 2} with high aluminum content and the catalytic application for different one-pot reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chunhua; Shang Fanpeng; Yu Xiaofang [Jilin University, Changchun (China); Guan Jingqi, E-mail: guanjq@jlu.edu.cn [Jilin University, Changchun (China); Kan Qiubin, E-mail: qkan@mail.jlu.edu.cn [Jilin University, Changchun (China)

    2012-07-01

    Acid-base bifunctional mesoporous catalysts Al-SBA-15-NH{sub 2} containing high content of Al and organic amine functional groups have been synthesized through the 'pH-adjusting' method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and elemental analysis. Catalytic results showed that 6-Al-SBA-15-NH{sub 2} (Si/Al = 6 mol%) was more active than 10-Al-SBA-15-NH{sub 2} (Si/Al = 10 mol%) in one-pot deacetalization-Knoevenagel and deacetalization-nitroaldol (Henry) reactions.

  5. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: Mechanism, effect of pH, humic acid and sustained reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xia, E-mail: lygsunxia@163.com [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Yan, Yubo [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Han, Weiqing [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2014-02-15

    Highlights: • Zero-valent iron nanoparticles were incorporated in the pores of SBA-15 rods. • Mechanism of the Cr(VI) removal by NZVIs/SBA-15 was proposed. • A low pH value was in favor of the Cr(VI) removal. • Humic acid (HA) had a negligible effect on the reactivity of NZVIs/SBA-15. • The stable reduction of NZVIs/SBA-15 was observed within six cycles. -- Abstract: Nanoscale zero-valent iron particles (NZVIs) were incorporated inside the channels of SBA-15 rods by a “two solvents” reduction technique and used to remove Cr(VI) from groundwater. The resulting NZVIs/SBA-15 composites before and after reaction were characterized by N{sub 2} adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Results helped to propose the mechanism of Cr(VI) removal by NZVIs/SBA-15, where Cr(VI) in aqueous was firstly impregnated into the channels of the silica, then adsorbed on the surfaces of the incorporated NZVIs and reduced to Cr(III) directly in the inner pores of the silica. Corrosion products included Fe{sub 2}O{sub 3}, FeO(OH), Fe{sub 3}O{sub 4} and Cr{sub 2}FeO{sub 4}. Batch experiments revealed that Cr(VI) removal decreased from 99.7% to 92.8% when the initial solution pH increased from 5.5 to 9.0, accompanied by the decrease of the k{sub obs} from 0.600 to 0.024 min{sup −1}. Humic acid (HA) had a little effect on the removal efficiency of Cr(VI) by NZVIs/SBA-15 but could decrease the reduction rate. The stable reduction of NZVIs/SBA-15 was observed within six cycles. NZVIs/SBA-15 composites offer a promising alternative material to remove heavy metals from groundwater.

  6. Antibacterial activity of N-halamine decorated mesoporous silica nanoparticles

    Science.gov (United States)

    Xu, Jiarong; Zhang, Yu; Zhao, Yanbao; Zou, Xueyan

    2017-09-01

    N-halamine decorated mesoporous silica nanoparticles (mSiO2/halamine NPs) were prepared by coating mSiO2 NPs with poly (1-allylhydantoin-co-methyl methacrylate) (AH-co-MMA) by the aid of the radical polymerization, followed by chlorination treatment. The sterilizing effect on the bacterial strain is investigated by incubating Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results indicated that the mSiO2/halamine NPs had excellent antibacterial activity and no significant change occurred in antibacterial efficiency after five recycle experiments.

  7. Progress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides

    Directory of Open Access Journals (Sweden)

    Heyong He

    2010-01-01

    Full Text Available Mesoporous silica molecular sieves are a kind of unique catalyst support due to their large pore size and high surface area. Several methods have been developed to immobilize heteropolyacids (HPAs inside the channels of these mesoporous silicas. The mesoporous silica-supported HPA materials have been widely used as recyclable catalysts in heterogeneous systems. They have shown high catalytic activities and shape selectivities in some reactions, compared to the parent HPAs in homogeneous systems. This review summarizes recent progress in the field of mesoporous silica-supported HPAs applied in the heterogeneous catalysis area and preparation of nanostructured metal oxides using HPAs as precursors and mesoporous silicas as hard templates.

  8. Progress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides

    Science.gov (United States)

    Ren, Yuanhang; Yue, Bin; Gu, Min; He, Heyong

    2010-01-01

    Mesoporous silica molecular sieves are a kind of unique catalyst support due to their large pore size and high surface area. Several methods have been developed to immobilize heteropolyacids (HPAs) inside the channels of these mesoporous silicas. The mesoporous silica-supported HPA materials have been widely used as recyclable catalysts in heterogeneous systems. They have shown high catalytic activities and shape selectivities in some reactions, compared to the parent HPAs in homogeneous systems. This review summarizes recent progress in the field of mesoporous silica-supported HPAs applied in the heterogeneous catalysis area and preparation of nanostructured metal oxides using HPAs as precursors and mesoporous silicas as hard templates.

  9. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  10. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2017-01-13

    The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.

  11. Protein adsorption into mesopores: a combination of electrostatic interaction, counterion release, and van der Waals forces.

    Science.gov (United States)

    Moerz, Sebastian T; Huber, Patrick

    2014-03-18

    Bovine heart cytochrome c has been immobilized into the mesoporous silica host material SBA-15 in both its native folded and urea-unfolded state. The comparison of the two folding states' behavior casts doubt on the commonly used explanation of cytochrome c adsorption, that is, the electrostatic interaction model. A detailed investigation of the protein binding as a function of pH and ionic strength of the buffer solution reveals the complex nature of the protein-silica interaction. Electrostatic interaction, van der Waals forces, and entropic contributions by counterion release each contribute to adsorption on the silica pore walls.

  12. Fabrication of mesoporous silica shells on solid silica spheres using anionic surfactants and their potential application in controlling drug release.

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Khan, Aslam; Ibrahim, Mohamed Abbas; Al-Hoshan, Mansour; Labis, Joselito Puzon

    2012-11-06

    In this work, mesoporous shells were constructed on solid silica cores by employing anionic surfactante. A co-structure directing agent (CSDA) has assisted the electrostatic interaction between negatively charged silica particles and the negatively charged surfactant molecules. Synthetic parameters such as reaction time and temperature had a significant impact on the formation of mesoporous silica shelld and their textural properties such as surface area and pore volume. Core-mesoporous shell silica spheres were characterized by small angle X-ray scattering, transmission electron microscopy, and N(2) adsorption–desorption analysis. The synthesized particles have a uniformly mesoporous shell of 34–65 nm and possess a surface area of ca. 7–324 m2/g, and pore volume of ca. 0.008–0.261 cc/g. The core-mesoporous shell silica spheres were loaded with ketoprofen drug molecules. The in vitro drug release study suggested that core-mesoporous shell silica spheres are a suitable nanocarrier for drug molecules offering the possibility of having control over their release rate.

  13. Desidratação de etanol sobre material nanoestruturado do tipo LaSBA-15 Ethanol dehydration over LaSBA-15 nanostrutured material

    Directory of Open Access Journals (Sweden)

    Geraldo E. Luz Jr

    2010-01-01

    Full Text Available La-incorporated SBA-15 mesopourous molecular sieves (LaSBA-15 were directly synthesized with aim to convert ethanol to ethylene. The samples were characterized by XRD, XRF, nitrogen sorption and acidity, by thermodesorption of n-buthylamine. The results have indicated that all the samples have showed high ordered mesostructure with a large average pore size, and that the lanthanum incorporation has caused an increase in the acidity of the SBA-15. The LaSBA-15 samples have improved, with low deactivation rate, the conversion of the ethanol to water, ether, acetaldehyde and ethylene. In addition, they have increased the ethylene selectivity.

  14. Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature.

    Science.gov (United States)

    Wang, Hailin; Tian, Hua; Hao, Zhengping

    2012-01-01

    Mesoporous SBA-15 with different Fe2O3 loading were synthesized by an in-situ coating progress for removals of dichlorodiphenyltrichloroethane (DDT) and its derivatives, i.e., 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis-(4-chloro -phenyl) ethane (DDE). The results from XRD (X-ray diffractometer), TEM (transmission electron microscopy) indicated that the iron could be well dispersed on SBA-15 within 6 wt.% Fe2O3 loading. Nitrogen adsorption-desorption tests indicated that the synthesized materials were characterized by ordered meso-structure, high surface area and large pore volume. DDTs were removed from aqueous media in 12-hr treatment and high removal efficiency of DDTs was achieved at over 94%. DDTs could be completely degraded at 350 degrees C under the existence of SBA-15 with 4 wt.% Fe2O3 loading. The final degradation products of DDT were dichlorobenzophenone (DCB) and bis-(4-chloro-phenyl) methane (DDM), suggesting a complete dechlorination from trichloromethyl.

  15. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells

    Science.gov (United States)

    Morelli, Catia; Maris, Pamela; Sisci, Diego; Perrotta, Enrico; Brunelli, Elvira; Perrotta, Ida; Panno, Maria Luisa; Tagarelli, Antonio; Versace, Carlo; Casula, Maria Francesca; Testa, Flaviano; Andò, Sebastiano; Nagy, Janos B.; Pasqua, Luigi

    2011-08-01

    Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae

  16. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  17. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  18. Environmental and Biomedical Applications of Iron Oxide/Mesoporous Silica Core-Shell Nanocomposites

    Science.gov (United States)

    Egodawatte, Shani Nirasha

    Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous

  19. Silica promoted self-assembled mesoporous aluminas. Impact of the silica precursor on the structural, textural and acidic properties

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Zarubina, Valeriya; Mayoral, Alvaro; Melian-Cabrera, Ignacio

    2015-01-01

    This paper investigates the effect of silica addition on the structural, textural and acidic properties of an evaporation induced self-assembled (EISA) mesoporous alumina. Two silica addition protocols were applied while maintaining the EISA synthesis route. The first route is based on the addition

  20. APTES-modified mesoporous silicas as the carriers for poorly water-soluble drug. Modeling of diflunisal adsorption and release

    Science.gov (United States)

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-04-01

    Four mesoporous siliceous materials such as SBA-16, SBA-15, PHTS and MCF functionalized with (3-aminopropyl)triethoxysilane were successfully prepared and applied as the carriers for poorly water-soluble drug diflunisal. Several techniques including nitrogen sorption analysis, XRD, TEM, FTIR and thermogravimetric analysis were employed to characterize mesoporous matrices. Adsorption isotherms were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. In order to find the best-fit isotherm for each model, both linear and nonlinear regressions were carried out. The equilibrium data were best fitted by the Langmuir isotherm model revealing maximum adsorption capacity of 217.4 mg/g for aminopropyl group-modified SBA-15. The negative values of Gibbs free energy change indicated that the adsorption of diflunisal is a spontaneous process. Weibull release model was employed to describe the dissolution profile of diflunisal. At pH 4.5 all prepared mesoporous matrices exhibited the improvement of drug dissolution kinetics as compared to the dissolution rate of pure diflunisal.

  1. Mesoporous silica nanoparticles in tissue engineering--a perspective.

    Science.gov (United States)

    Rosenholm, Jessica Maria; Zhang, Jixi; Linden, Mika; Sahlgren, Cecilia

    2016-02-01

    In this review, we summarize the latest developments and give a perspective on future applications of mesoporous silica nanoparticles (MSNs) in regenerative medicine. MSNs constitute a flexible platform for controlled delivery of drugs and imaging agents in tissue engineering and stem cell therapy. We highlight the recent advances in applying MSNs for controlled drug delivery and stem cell tracking. We touch upon novel functions of MSNs in real time imaging of drug release and biological function, and as tools to control the chemical and mechanical environment of stem cells. We discuss the need for novel model systems for studying biofunctionality and biocompatibility of MSNs, and how the interdisciplinary activities within the field will advance biotechnology research.

  2. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Giret, Simon; Wong Chi Man, Michel; Carcel, Carole

    2015-09-28

    The ever-growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Noble metal nanoparticles supported on amino-functionalized mesoporous silica as catalyst for tandem reaction

    OpenAIRE

    Sun, Qian

    2017-01-01

    Mesoporous materials are a type of porous materials with ordered pores on the range of 2-50 nanometers, which have attracted great attention because of wide applications in adsorption, separation, catalysis, electrode materials, chemical sensors and optoelectronic devices, and so on, due to their high surface area, ordered mesopores and tunable pore distribution. The pore size of mesoporous silica is large enough to accommodate a variety of large molecules, and the high density of silanol gro...

  4. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.

    Science.gov (United States)

    Sun, Xia; Yan, Yubo; Li, Jiansheng; Han, Weiqing; Wang, Lianjun

    2014-02-15

    Nanoscale zero-valent iron particles (NZVIs) were incorporated inside the channels of SBA-15 rods by a "two solvents" reduction technique and used to remove Cr(VI) from groundwater. The resulting NZVIs/SBA-15 composites before and after reaction were characterized by N2 adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Results helped to propose the mechanism of Cr(VI) removal by NZVIs/SBA-15, where Cr(VI) in aqueous was firstly impregnated into the channels of the silica, then adsorbed on the surfaces of the incorporated NZVIs and reduced to Cr(III) directly in the inner pores of the silica. Corrosion products included Fe2O3, FeO(OH), Fe3O4 and Cr2FeO4. Batch experiments revealed that Cr(VI) removal decreased from 99.7% to 92.8% when the initial solution pH increased from 5.5 to 9.0, accompanied by the decrease of the kobs from 0.600 to 0.024 min(-1). Humic acid (HA) had a little effect on the removal efficiency of Cr(VI) by NZVIs/SBA-15 but could decrease the reduction rate. The stable reduction of NZVIs/SBA-15 was observed within six cycles. NZVIs/SBA-15 composites offer a promising alternative material to remove heavy metals from groundwater. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    National Research Council Canada - National Science Library

    Jangra, Suman; Devi, Sunita; Tomer, Vijay K; Chhokar, Vinod; Duhan, Surender

    2016-01-01

    The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug...

  6. Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

    DEFF Research Database (Denmark)

    Lozano-Torres, Beatriz; Pascual, Lluís; Bernardos, Andrea

    2017-01-01

    Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA)....

  7. Evaluation of ordered mesoporous silica as a carrier for poorly soluble drugs: influence of pressure on the structure and drug release.

    Science.gov (United States)

    Vialpando, Monica; Aerts, Alexander; Persoons, Jeroen; Martens, Johan; Van Den Mooter, Guy

    2011-08-01

    Ordered mesoporous silica (OMS) materials are considered a promising drug delivery system for the dissolution enhancement of poorly soluble compounds. The purpose of the present work was to determine structural and behavioral changes of compressed OMS material necessary for the development of an immediate-release oral-dosage formulation. Two types of OMS materials (SBA-15 and COK-12) were subjected to pressures both in and beyond the tabletting region and characterized by nitrogen physisorption, scanning and transmission electron microscopy, small-angle X-ray scattering, and differential scanning calorimetry. Itraconazole was used as the poorly soluble model drug and the release process with respect to pressure was determined in vitro. The resulting decreased drug release due to increased pressure was recovered by incorporating a plastically deforming material such as microcrystalline cellulose in combination with croscarmellose sodium. These findings further elucidate the understanding of their structural behavior for the advancement as a drug delivery carrier. Copyright © 2011 Wiley-Liss, Inc.

  8. Carbohydrate-Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria.

    Science.gov (United States)

    Hao, Nanjing; Chen, Xuan; Jeon, Seaho; Yan, Mingdi

    2015-12-30

    Engineering nanomaterials with enhanced antibacterial activities remains a critical and practical challenge. Hollow oblate mesoporous silica nanoparticles (HOMSNs) are synthesized by a simple protocol of ammonia hydrothermal treatment of oblate mesoporous silica nanoparticles prepared using dibenzyl ether as a cosolvent. When conjugated with trehalose as the targeting ligand, the antibiotic-encapsulated HOMSNs exhibit high binding affinity and antibacterial efficacy toward mycobacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Organosulfonic acid-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-10-15

    This study is the first report on synthesis, characterization and catalytic application of propylsulfonic acid-functionalized mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). In comparison with propylsulfonic acid-functionalized HMS (HMS-SO{sub 3}H), a series of NR/HMS-SO{sub 3}H composites were prepared via an in situ sol–gel process using tetrahydrofuran as the synthesis media. Tetraethylorthosilicate as the silica source, was simultaneously condensed with 3-mercaptopropyltrimethoxysilane in a solution of NR followed by oxidation with hydrogen peroxide to achieve the mesoporous composites containing propylsulfonic acid groups. Fourier-transform infrared spectroscopy and {sup 29}Si MAS nuclear magnetic resonance spectroscopy results verified that the silica surfaces of the NR/HMS-SO{sub 3}H composites were functionalized with propylsulfonic acid groups and covered with NR molecules. After the incorporation of NR and organo-functional group into HMS, the hexagonal mesostructure remained intact concomitantly with an increased framework wall thickness and unit cell size, as evidenced by the X-ray powder diffraction analysis. Scanning electron microscopy analysis indicated a high interparticle porosity of NR/HMS-SO{sub 3}H composites. The textural properties of NR/HMS-SO{sub 3}H were affected by the amount of MPTMS loading to a smaller extent than that of HMS-SO{sub 3}H. NR/HMS-SO{sub 3}H exhibited higher hydrophobicity than HMS-SO{sub 3}H, as revealed by H{sub 2}O adsorption–desorption measurements. Moreover, the NR/HMS-SO{sub 3}H catalysts possessed a superior specific activity to HMS-SO{sub 3}H in the esterification of lauric acid with ethanol, resulting in a higher conversion level. - Highlights: • Acidic NR/HMS-SO{sub 3}H composites were prepared by in situ sol–gel process. • Propylsulfonic acid was functionalized onto HMS surface by direct co-condensation. • NR/HMS-SO{sub 3}H exhibited a hexagonal

  10. Mercaptosilane-assisted synthesis of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials and their enhanced hydrogenation properties.

    Science.gov (United States)

    Gao, Daowei; Zheng, Anmin; Zhang, Xin; Sun, Hui; Dai, Xiaoping; Yang, Ying; Wang, Hai; Qin, Yuchen; Xu, Shutao; Duan, Aijun

    2015-07-07

    A novel catalyst that consists of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials was synthesized. This catalyst exhibited high stability and a hierarchically porous structure of a micro-mesoporous composite and possessed a high density of active sites by confinement of sub-nanosized Pt particles within small-pore zeolites, showing high catalytic properties for the hydrogenation of 1,3-butadiene and cyclooctadiene at room temperature.

  11. Mechanical Stability of Templated Mesoporous Silica Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Williford, Rick E.; Li, Xiaohong S.; Addleman, Raymond S.; Fryxell, Glen E.; Baskaran, Suresh; Birnbaum, Jerome C.; Coyle, Christopher A.; Zemanian, Thomas S.; Wang, Chong M.; Courtney, Andrea R.

    2005-11-07

    Mesoporous silica thin films about 1 micron thick were prepared by spin casting using several organic templates that provide a range of pore structures from disordered (sponge-like) to more ordered (honeycomb-like) 2D hexagonal arrays. Nanoindentation measurements indicate that the elastic modulus (E), and thus the density, of the pore wall material are substantially lower than for fused silica. The corresponding lower dielectric constant for pore walls was used to calculate film porosities (P) with recent correlations from the literature. Curve fits to the standard modulus vs. porosity correlation, E/Eporewall=(1-P)n, for the films gave lower n=2.2 for the honeycomb-like film with higher E, but higher n=2.5 for the sponge-like film with lower E, in contrast to theoretical expectations (n=2 for sponge-like and n=3 for honeycomb-like). Although the dielectric constant depends primarily on first-order structural information (P), the elastic modulus of these structurally imperfect films required second-order (pore wall thickness/diameter ratio) and third-order (pore connectivity) parameters to resolve the data. The power law exponent n can vary continuously, depending on the details of the mesostructure, and should not be assumed a' priori unless justified by detailed structural information

  12. Mesoporous silica-magnetite nanocomposite synthesized by using a neutral surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Souza, K C; Sousa, E M B [Laboratorio de Biomateriais, Centro de Desenvolvimento da Tecnologia Nuclear, 30123-970 Belo Horizonte, MG (Brazil); Salazar-Alvarez, G [Institut Catala de Nanotecnologia (ICN), Edifici CM7, Campus Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Ardisson, J D; Macedo, W A A [Laboratorio de Fisica Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear, 30123-970 Belo Horizonte, MG (Brazil)], E-mail: sousaem@cdtn.br

    2008-05-07

    Magnetite nanoparticles coated by mesoporous silica were synthesized by an alternative chemical route using a neutral surfactant and without the application of any functionalization method. The magnetite (Fe{sub 3}O{sub 4}) nanoparticles were prepared by precipitation from aqueous media, and then coated with mesoporous silica by using nonionic block copolymer surfactants as the structure-directing agents. The mesoporous SiO{sub 2}-coated Fe{sub 3}O{sub 4} samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, N{sub 2} adsorption-desorption isotherms, transmission electron microscopy, {sup 57}Fe Moessbauer spectroscopy, and vibrating sample magnetometry. Our results revealed that the magnetite nanoparticles are completely coated by well-ordered mesoporous silica with free pores and stable ({approx}8 nm thick) pore walls, and that the structural and magnetic properties of the Fe{sub 3}O{sub 4} nanoparticles are preserved in the applied synthesis route.

  13. Effective intraparticle diffusion coefficients of CoCl2 in mesoporous functionalized silica adsorbents

    NARCIS (Netherlands)

    Djekic, T.; van der Ham, Aloysius G.J.; de Haan, A.B.

    2007-01-01

    The scope of this work is to determine the effective intraparticle diffusion coefficient of CoCl2 over mesoporous functionalized silica. Silica is selected as a carrier of the functionalized groups for its rigid structure which excludes troublesome swelling, often found in polymeric adsorbents.

  14. Recent progress of ordered mesoporous silica-supported chiral metallic catalysts

    Directory of Open Access Journals (Sweden)

    LIU Rui

    2013-02-01

    Full Text Available Recently,ordered silica-based mesoporous chiral organometallics-functionalized heterogeneous catalysts have attracted extensive research interest due to their excellent properties,such as easy preparation,high activity and convenient recycle.This review mainly summarizesthe generally prepared strategy and the silica-based organometallics-functionalized heterogeneous catalysts reported in the literatures.

  15. Coherent anti-Stokes Raman scattering (CARS) microscopy driving the future of loaded mesoporous silica imaging

    NARCIS (Netherlands)

    Fussell, A.L.; Mah, Pei Ting; Offerhaus, Herman L.; Niemi, Sanna-Mari; Salonen, Jarno; Santos, Helder A.; Strachan, Clare

    2014-01-01

    This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals,

  16. Mesoporous silica films as a novel biomaterial: applications in the middle ear.

    Science.gov (United States)

    Ehlert, Nina; Mueller, Peter P; Stieve, Martin; Lenarz, Thomas; Behrens, Peter

    2013-05-07

    In this tutorial review we present the process of the development of functional implants using mesoporous silica. The different steps from chemical synthesis and physicochemical characterization followed by in vitro testing in cell culture assays to clinically relevant in vivo animal studies are examined. Since the end of the 1990s, mesoporous silicas have been considered as biomaterials. Numerous investigations have demonstrated their non-toxic and biocompatible properties. These qualities in combination with the unique properties of high surface area and pore volume, uniform and tunable pore sizes and chemical modifiability are the reasons for the great scientific interest in this field. Here we show that besides bulk materials or mesoporous silica nanoparticles, mesoporous silica films are highly promising as coatings on medical prostheses or implants. We report on the development of functionalized mesoporous silica materials specifically for middle ear applications. Middle ear prostheses are used to restore the sound transmission through this air-filled cavity when the small bones of the middle air (the ossicular chain) have been destroyed by disease or by accidents. In addition to optimal restoration of sound transmission, this technique bears several challenges, e.g. an ongoing bacterial infection or the displacement of the prosthesis due to insufficient fixation. To improve the healing process, a mesoporous silica coating was established on ceramic middle ear prostheses, which then served as a base for further functionalizations. For example, the bone growth factor BMP2 was locally attached to the coating in order to improve the fixation of the prosthesis by forming a bony connection to the remainder of the ear bones. Further, an implant-based local drug delivery system for the antibiotic ciprofloxacin was developed with the aim of fighting bacterial infections. Further possibilities using mesoporous silica nanoparticles as part of a composite on an implant

  17. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  18. SYNTHESIS OF MESOPOROUS METHYL-SILICA HYBRID FOR ADSORPTION OF ALIZARIN RED-S

    OpenAIRE

    Rusdiarso, Bambang; Kunarti, Eko Sri; Hamdiani, Saprini

    2010-01-01

    Mesoporous methyl-silica hybrid has been synthesized through sol-gel process, by using tetraethylorthosilicate and methyltriethoxysilane as precursors and tartaric acid as a template. The adsorbent was applied to study the adsorption of alizarin red-S. The preparation of methyl-silica hybrid was carried out at various mol ratios of precursors and tartaric acid concentration. The methyl-silica hybrid result was characterized by infrared spectroscopy, X-ray diffraction, and surface area analyze...

  19. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Mogoantă, Laurenţiu [University of Medicine and Pharmacy of Craiova, Research Center for Microscopic Morphology and Immunology (Romania); Mogoşanu, George Dan [University of Medicine and Pharmacy of Craiova, Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Truşcă, Roxana [Metav SA-CD S.A. (Romania); Vasile, Eugeniu [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Iordache, Florin [Institute of Cellular Biology and Pathology of Romanian Academy, “Nicolae Simionescu”, Department of Fetal and Adult Stem Cell Therapy (Romania); Chifiriuc, Mariana-Carmen [University of Bucharest, Microbiology Department, Faculty of Biology (Romania); Holban, Alina Maria [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania)

    2015-05-15

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET–TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  20. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial

    Science.gov (United States)

    Arriagada, Francisco; Correa, Olosmira; Günther, Germán; Nonell, Santi; Mura, Francisco; Olea-Azar, Claudio

    2016-01-01

    Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased. PMID:27812111

  1. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial.

    Directory of Open Access Journals (Sweden)

    Francisco Arriagada

    Full Text Available Morin (2´,3, 4´,5,7-pentahydroxyflavone is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO• scavenger and singlet oxygen (1O2 quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased.

  2. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Hashmath I., E-mail: hashmath.i@deakin.edu.au [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Yi, Zhifeng [Deakin University, Institute for Frontier Materials (Australia); Rookes, James E. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Kong, Lingxue X. [Deakin University, Institute for Frontier Materials (Australia); Cahill, David M. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia)

    2013-06-15

    We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.

  3. Delivery of Gemcitabine Prodrugs Employing Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alessio Malfanti

    2016-04-01

    Full Text Available In this paper, mesoporous silica nanoparticles (MSNs were studied as vehicles for the delivery of the antitumoral drug gemcitabine (GEM and of its 4-(N-acyl derivatives, (4-(N-valeroyl-(C5GEM, 4-(N-lauroyl-(C12GEM and 4-(N-stearoyl-gemcitabine (C18GEM. The loading of the GEM lipophilic prodrugs on MSNs was explored with the aim to obtain both a physical and a chemical protection of GEM from rapid plasmatic metabolization. For this purpose, MSNs as such or with grafted aminopropyl and carboxyethyl groups were prepared and characterized. Then, their different drug loading capacity in relation to the nature of the functional group was evaluated. In our experimental conditions, GEM was not loaded in any MSNs, while C12GEM was the most efficiently encapsulated and employed for further evaluation. The results showed that loading capacity increased with the presence of functional groups on the nanoparticles; similarly, the presence of functional groups on MSNs’ surface influenced the drug release profile. Finally, the cytotoxicity of the different preparations was evaluated and data showed that C12GEM loaded MSNs are less cytotoxic than the free drug with an activity that increased with the incubating time, indicating that all these systems are able to release the drug in a controlled manner. Altogether, the results demonstrate that these MSNs could be an interesting system for the delivery of anticancer drugs.

  4. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    Science.gov (United States)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Truşcă, Roxana; Vasile, Eugeniu; Iordache, Florin; Chifiriuc, Mariana-Carmen; Holban, Alina Maria

    2015-05-01

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET-TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  5. Functionalization of Hollow Mesoporous Silica Nanoparticles for Improved 5-FU Loading

    Directory of Open Access Journals (Sweden)

    Xiaodong She

    2015-01-01

    Full Text Available Hollow mesoporous silica nanoparticles were successfully fabricated and functionalized with appropriate silanes. After modifications, amine, carboxyl, cyano, and methyl groups were grafted onto the nanoparticles and all functionalized hollow mesoporous silica nanoparticles maintained a spherical and hollow structure with a mean diameter of ~120 nm and a shell thickness of ~10 nm. The loading capacity of the hollow mesoporous silica nanoaprticles to the anticancer drug, 5-fluorouracil, can be controlled via precise functionalization. The presence of amine groups on the surface of nanoparticles resulted in the highest loading capacity of 28.89%, due to the amine functionalized nanoparticles having a similar hydrophilicity but reverse charge to the drug. In addition, the change in pH leads to the variation of the intensity of electrostatic force between nanoparticles and the drug, which finally affects the loading capacity of amine functionalized hollow mesoporous silica nanoparticles to some extent. Higher drug loading was observed at pH of 7.4 and 8.5 as 5-fluorouracil becomes more deprotonated in alkaline conditions. The improved drug loading capacity by amine functionalized hollow mesoporous silica nanoparticles has demonstrated that they can become potential intracellular 5-fluorouracil delivery vehicles for cancers.

  6. Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst

    Science.gov (United States)

    Tan, J. S.; Danh, H. T.; Singh, S.; Truong, Q. D.; Setiabudi, H. D.; Vo, D.-V. N.

    2017-06-01

    This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat -1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

  7. Mesoporous silica film from a solution containing a surfactant and methods of making same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [West Richland, WA; Domansky, Karel [Cambridge, MA; Li, Xiaohong [Richland, WA; Fryxell, Glen E [Kennewick, WA; Baskaran, Suresh [Kennewick, WA; Kohler, Nathan J [Richland, WA; Thevuthasan, Suntharampillai [Kennewick, WA; Coyle, Christopher A [Richland, WA; Birnbaum, Jerome C [Richland, WA

    2001-12-11

    The present invention is a mesoporous silica film having a low dielectric constant and method of making having the steps of combining a surfactant in a silica precursor solution, spin-coating a film from this solution mixture, forming a partially hydroxylated mesoporous film, and dehydroxylating the hydroxylated film to obtain the mesoporous film. It is advantageous that the small polyoxyethylene ether surfactants used in spin-coated films as described in the present invention will result in fine pores smaller on average than about 20 nm. The resulting mesoporous film has a dielectric constant less than 3, which is stable in moist air with a specific humidity. The present invention provides a method for superior control of film thickness and thickness uniformity over a coated wafer, and films with low dielectric constant.

  8. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu

    2009-04-06

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  9. Agglomeration of mesoporous silica by melt and steam granulation. Part I: a comparison between disordered and ordered mesoporous silica.

    Science.gov (United States)

    Vialpando, Monica; Albertini, Beatrice; Passerini, Nadia; Bergers, Daan; Rombaut, Patrick; Martens, Johan A; Van Den Mooter, Guy

    2013-11-01

    The objective of this study was to compare agglomerations by melt and steam granulation of ordered, COK-12, and disordered, Syloid(®) 244 FP (244), mesoporous silica material. Poloxamer 188 (P188) and polyvinylpyrrolidone K25 (PVP) were chosen as binders for melt and steam granulation, respectively. The poorly water-soluble compound, itraconazole (ITZ), was selected for the development of an immediate-release oral dosage form. Steam granulation resulted in the largest granules, however, the slowest release. Compression behavior and tablet properties of steam-granulated material prepared with COK-12 and 244 were similar. As determined by X-ray powder diffraction, melt granulation resulted in the most ITZ to extract from the pores during processing. However, the enhanced release rate was still maintained when compared with the crystalline form. Moreover, no additional drug extraction was observed following the 6 month storage in 25°C/60% relative humidity (RH) and 40°C/75%RH. P188 diffraction peaks were present in the 244 melt-granulated material, but disappeared because of the degradation following 1 week in 40°C/75%RH conditions. The differential scanning calorimetry analysis indicated that the degradation of P188 already occurred during the granulation process itself. Based on these results, steam granulation with PVP is the preferred method over melt granulation with P188. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Incorporation of mesoporous silica particles in gelatine gels: Effect of particle type and surface modification on physical properties

    NARCIS (Netherlands)

    Pérez-Esteve, E.; Oliver, L.; García, L.; Nieuwland, M.; Jongh, H.H.J. de; Martínez-Máñez, R.; Barat, J.M.

    2014-01-01

    The aim of this work was to investigate the impact of mesoporous silica particles (MSPs) on the physicochemical properties of filled protein gels. We have studied the effect of the addition of different mesoporous silica particles, either bare or functionalized with amines or carboxylates, on the

  11. Incorporation of Mesoporous Silica Particles in Gelatine Gels: Effect of Particle Type and Surface Modification on Physical Properties

    NARCIS (Netherlands)

    Perez-Esteve, E.; Oliver, L.; Garcia, L.; Nieuwland, M.; Jongh, de H.H.J.; Martinez-Manez, R.; Barat, J.M.

    2014-01-01

    The aim of this work was to investigate the impact of mesoporous silica particles (MSPs) on the physicochemical properties of filled protein gels. We have studied the effect of the addition of different mesoporous silica particles, either bare or functionalized with amines or carboxylates, on the

  12. Modifying the Hierarchical Porosity of SBA-15 via Mild-Detemplation Followed by Secondary Treatments

    NARCIS (Netherlands)

    Zhang, Zheng; Melian-Cabrera, Ignacio

    2014-01-01

    Fenton-chemistry-based detemplation combined with secondary treatments offers options to tune the hierarchical porosity of SBA-15. This approach has been studied on a series of SBA-15 mesophases and has been compared to the conventional calcination. The as-synthesized and detemplated materials were

  13. Modulation of microporous/mesoporous structures in self-templated cobalt-silica

    Science.gov (United States)

    Martens, Dana L.; Wang, David K.; Motuzas, Julius; Smart, Simon; da Costa, João C. Diniz

    2015-01-01

    Finite control of pore size distributions is a highly desired attribute when producing porous materials. While many methodologies strive to produce such materials through one-pot strategies, oftentimes the pore structure requires post-treatment modification. In this study, modulation of pore size in cobalt-silica systems was investigated by a novel, non-destructive, self-templated method. These systems were produced from two cobalt-containing silica starting materials which differed by extent of condensation. These starting materials, sol (SG') and xerogel (XG'), were mixed with pure silica sol to produce materials containing 5-40 mol% Co. The resultant SG-series materials exhibited typical attributes for cobalt-silica systems: mesoporous characteristics developed at high cobalt concentrations, coinciding with Co3O4 formation; whereas, in the XG-series materials, these mesoporous characteristics were extensively suppressed. Based on an examination of the resultant materials a mechanism describing the pore size formation and modulation of the two systems was proposed. Pore size modulation in the XG-series was caused, in part, by the cobalt source acting as an autogenous template for the condensation of the silica network. These domains could be modified when wetted, allowing for the infiltration and subsequent condensation of silica oligomers into the pre-formed, mesoporous cages, leading to a reduction in the mesoporous content of the final product.

  14. Synthesis and Derivatization of Stimuli Responsive Mesoporous Silica Nanoparticles and Biomedical Drug Delivery Application

    OpenAIRE

    Li, Zilu

    2015-01-01

    This thesis involves synthesis, derivatization and biomedical applications of mesoporous silica nanopartilces (MSNs) and Fe3O4@SiO2 core/shell nanoparticles. Chapter 1 introduces the development of MSNs including the mesopores formation mechanism, synthesis conditions and their capability to act as stimuli responsive drug delivery platforms. In chapter 2, the synthesis optimization of different kinds of particles and their surface derivatization are introduced. Chapter 3 & 4 give specific exa...

  15. A novel, efficient and facile method for the template removal from mesoporous materials

    KAUST Repository

    Chen, Lu

    2014-11-12

    © 2014, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH. A new catalytic-oxidation method was adopted to remove the templates from SBA-15 and MCM-41 mesoporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template’s property and textural property. The samples were characterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectroscopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.

  16. A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles.

    Science.gov (United States)

    Mochizuki, Dai; Tamura, Shinichi; Yasutake, Hiroaki; Kataoka, Tomoharu; Mitsuo, Kazunori; Wada, Yuji

    2013-04-01

    The accurate and high-resolution measurement of surface pressure is achieved by a pressure/ temperature-sensitive composite paint (bi-PSP), whereas the pressure-sensitive dye photodegraded the temperature sensitive dye in close arrangement of both dyes. In the present study, an attempt was made to synthesize a homogeneous bi-PSP membrane without light-induced degradation of the dye using mesoporous silica. Mesoporous silica as a molecular sieve was the separation of pressure- and temperature-sensitive dyes. Both achievement of control of photodegradation in temperature-sensitive paints with molecule-screening capacity and macroscopically uniform placement of insoluble pigments in the respective solvent, was accomplished using the mesoporous silica nanoparticles in a compound PSP.

  17. Synthesis, Characterization, and Catalytic Activity of Pd(II Salen-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Rotcharin Sawisai

    2017-01-01

    Full Text Available Salen ligand synthesized from 2-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde was used as a palladium chelating ligand for the immobilization of the catalytic site. Mesoporous silica supported palladium catalysts were prepared by immobilizing Pd(OAc2 onto a mesoporous silica gel through the coordination of the imine-functionalized mesoporous silica gel. The prepared catalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, inductivity couple plasma (ICP, nitrogen adsorption-desorption, and Fourier transform infrared (FT-IR spectroscopy. The solid catalysts showed higher activity for the hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosylallene with aromatic amines compared with the corresponding homogenous catalyst. The heterogeneous catalytic system can be easily recovered by simple filtration and reused for up to five cycles with no significant loss of catalytic activity.

  18. Comparison among Different pH Values of Rhodamine B Solution Impregnated into Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Juliana Jorge

    2013-05-01

    Full Text Available We studied the behavior of different pH values of Rhodamine B solution impregnated into pores of mesoporous silica, through structural characterization techniques, such as scanning electron microscopy and porosity measurements, and spectroscopic characterization techniques, such as infrared and luminescence spectroscopy; in order to applications in luminescence. Because, Rhodamine B is an interesting xanthene dye whose optical properties depend of many factors, dye concentration and pH values. MSU-4 type mesoporous silica has been synthesized with Tween 60 surfactant as directing-structure agent and tetraethyl orthosilicate (Si(OEt4, TEOS as silica source. The mesoporous structures doped with dyes are promissory materials for several applications, for example, optical sensors and biomarkers.

  19. Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution.

    Science.gov (United States)

    Li, Xu; Zhang, Jixi; Gu, Hongchen

    2012-02-07

    Among the numerous adsorption strategies for DNA adsorption into mesopores, the salt-solution-induced adsorption method has a great application potential in nucleic acids science; thus, it is important to understand the adsorption mechanism. This work demonstrates the mechanistic aspects underlying the adsorption behaviors of DNA with mesoporous silica nanoparticles (MSNs) in aqueous solution. The driving forces for the adsorption process can be categorized into three parts: the shielded electrostatic force, the dehydration effect, and the intermolecular hydrogen bonds. Compared to the adsorption behaviors of DNA with a solid silica nanosphere, we find some unique features for DNA adsorption into the mesopores, such as increasing the salt concentration or decreasing the pH value can promote DNA adsorption into the mesoporous silica. Further analysis indicates that the entrance of DNA into mesopores is probably controlled by the Debye length in solution and DNA can generate direct and indirect hydrogen bonds in the pores with different diameters. The following desorption study depicts that such types of hydrogen bonds result in different energy barriers for the desorption process. In summary, our study depicts the mechanism of DNA adsorption within mesopores in aqueous solution and sets the stage for formulating MSNs as carriers of nucleic acids.

  20. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhou, Xianguang [National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016 (China); Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Wang, Jiandong [Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Longjiang [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Teng, Zhaogang, E-mail: tzg@fudan.edu.cn [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Lu, Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2015-03-30

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  1. Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds.

    Science.gov (United States)

    Liu, Yupu; Chen, Junchen; Li, Wei; Shen, Dengke; Zhao, Yujuan; Pal, Manas; Yu, Haijun; Tu, Bo; Zhao, Dongyuan

    2016-09-01

    Indoor organic gaseous pollution is a global health problem, which seriously threats the health and life of human all over the world. Hence, it is important to fabricate new sensing materials with high sensitivity and efficiency for indoor volatile organic compounds. In this study, a series of ordered mesoporous silica-based nanocomposites with uniform carbon coatings on the internal surface of silica mesopore channels were synthesized through a simple template-carbonization strategy. The obtained mesoporous silica-carbon nanocomposites not only possess ordered mesostructures, high surface areas (up to ∼759m(2)g(-1)), large and tunable pore sizes (2.6-10.2nm), but also have the improved hydrophobicity and anti-interference capability to environmental humidity. The sensing performances of the mesoporous silica-carbon nanocomposites to volatile organic compounds, such as ethylbenzene, methylbenzene, benzene, methanol, acetone, formaldehyde, dichloromethane and tetrahydrofuran, were systematically investigated. The relationships between the sensing performances and their properties, including mesostructures, surface areas, pore sizes, carbon contents and surface hydrophilic/hydrophobic interactions, have been achieved. The mesoporous silica-carbon nanocomposites with hexagonal mesostructure exhibit outstanding performance at room temperature to benzene and acetone with high responses, short response (2-3s) and recovery (16-19s) time, strong anti-interference to environmental humidity, and long-term stability (less than ∼5% loss of the frequency shifts after 42days). Therefore, the obtained mesoporous silica-carbon nanocomposites have a hopeful prospect in the field of environmental air quality monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Co-synthesis and drug delivery properties of mesoporous hydroxyapatite-silica composites.

    Science.gov (United States)

    Zhao, Y F; Loo, S C J; Ma, J

    2009-06-01

    In this work, mesoporous hydroxyapatite-silica (HA-silica) composite materials with four different Si:Ca:P ratios were sol-gel derived through self-assembly using triblock copolymer Pluronics P123 as template. The composition and mesoporous structure formed were characterized by X-ray diffraction and electron microscopy. The XRD patterns indicated that the intensity of the HA phase becomes stronger as the Ca/Si ratio of the composite increases. From nitrogen gas analysis at 77 K, type IV isotherm plots for typical mesoporous materials were observed for all of the samples. However, the mesoporous structure of HA-silica tends to becomes less ordered as the Ca/Si ratio increases. Promising consistency between the pore sizes from the Barrett, Joyner and Halenda (BJH) method, Transmission Electron Microscopy (TEM) and Small Angle X-ray diffraction (SAXRD) was also observed. The formation mechanism of mesoporous HA-silica composites was proposed, where the interaction between the crystallization of HA and the surfactant liquid crystal determines the regularity of the meso-structure. In vitro drug loading and release studies showed that drug loading capacity is dependent on the pore volume of the sample, and the mesoporosity of the samples were responsible for the sustained release of drugs. In vitro cell culture of the samples showed promising biocompatibility where osteosarcoma cells were observed to grow favourably on the synthesized composites.

  3. Hybrid Mesoporous Silicas and Microporous POSS-Based Frameworks Incorporating Evaporation-Induced Self-Assembly

    Directory of Open Access Journals (Sweden)

    Jheng-Guang Li

    2015-06-01

    Full Text Available We fabricated a series of mesoporous silicas and mesoporous organosilicates with hierarchical porosity through evaporation-induced self-assembly using Pluronic F127 as a template in this study. We could tailor the mesophase of each mesoporous silica sample by varying the weight ratio of its two silica sources: tetraethyl orthosilicate (TEOS and triethoxysilane hydrosilylated octavinyl polyhedral oligomeric silsesquioxane (OV-POSS-SILY. The mesophases ranged from an ordered body-centered cubic (bcc structure (TEOS alone to ordered face-centered cubic (fcc structure (10 and 20 wt.% of OV-POSS-SILY and finally to disordered spherical pores (≥30 wt.% of OV-POSS-SILY. We used small-angle X-ray scattering (SAXS and transmission electron microscopy (TEM to study the transformations of these mesophases, while N2 isotherm sorption curves revealed the porosities of these mesoporous silicate samples. Moreover, 29Si CP/MAS solid state nuclear magnetic resonance spectroscopy allowed us to analyze the compositions of the POSS-containing silicate frameworks. Such functional mesoporous silica samples incorporating microporous POSS building units have potential applications in various systems, including optical and electronic devices.

  4. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    Science.gov (United States)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  5. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Science.gov (United States)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-03-01

    In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption-desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Qmax) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Qmax of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  6. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    Directory of Open Access Journals (Sweden)

    Ward Antony

    2011-01-01

    Full Text Available Abstract A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.

  7. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    Science.gov (United States)

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  8. Synthesis of Mesoporous Silica and Modified as a Drug Delivery System of Ibuprofen

    Directory of Open Access Journals (Sweden)

    Y. Mortazavi

    2016-01-01

    Full Text Available In this work we synthesized of mesoporous silica nanoparticles and functionalized with 3-aminopropyltriethoxysilane to improve the loading and release of ibuprofen bonded to 3-aminopropyltriethoxysilane. sample were characterized by Fourier transform infrared spectroscopy, Scanning electron microscopy , X-ray diffraction, and ultraviolet-visible. the Fourier transform infrared spectroscopy result demonstrate that organic group were successfully functionalized onto mesoporous silica nanoparticles. Then, we investigate of the adsorption and release of ibuprofen as a drug delivery system in simulated body fluid. The result demonstrates that high adsorption capacity for drug with functionalized sample and slower drug release rate was achieved.

  9. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia

    OpenAIRE

    Yu, Xia; Zhu, Yufang

    2016-01-01

    Abstract We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO2), and the rattle-type structured MMS nanoparticles (MCN/mSiO2) were obtained after the removal of the carbon layers from MCN@C/mSiO2 nanoparticles. ...

  10. Mesoporous silica hybrid membranes for precise size-exclusive separation of silver nanoparticles.

    Science.gov (United States)

    Mekawy, Moataz M; Yamaguchi, Akira; El-Safty, Sherif A; Itoh, Tetsuji; Teramae, Norio

    2011-03-15

    One-dimensional (1D) nanomaterials have unique applications due to their inherent physical properties. In this study, hexagonally ordered mesoporous silica hybrid anodic alumina membranes (AAM) were synthesized using template-guided synthesis with a number of nonionic n-alkyl-oligo(ethylene oxide), Brij-type (C(x)EO(y)), which are surfactants that have different molecular sizes and characteristics. The hexagonal mesoporous silicas are vertically aligned in the AAM channels with a predominantly columnar orientation. The hollow mesostructured silicas had tunable pore diameters varying from 3.7 to 5.1 nm. In this synthesis protocol, the surfactant molecular natures (corona/core features) are important for the controlled generation of ordered structures throughout AAM channels. The development of ultrafiltration membranes composed of silica mesostructures could be used effectively in separating silver nanoparticles (Ag NPs) in both aqueous and organic solution phases. This would be relevant to the production of well-defined Ag NPs with unique properties. To create a size-exclusive separation system of Ag NPs, we grafted hydrophobic trimethylsilyl (TMS) groups onto the inner pores of the mesoporous silica hybrid AAM. The immobilization of the TMS groups allowed the columnar mesoporous silica inside AAM to retain this inner pore order without distortion during the separation of solution-phase Ag NPs in organic solvents that may cause tortuous-pore membranes. Mesoporous TMS-silicas inside 1D AAM channels were applicable as a size-exclusive separation system to isolate organic solution-phase Ag NPs of uniform morphology and size. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Preparation and CO(2) adsorption properties of aminopropyl-functionalized mesoporous silica microspheres.

    Science.gov (United States)

    Araki, Sadao; Doi, Hayato; Sano, Yuji; Tanaka, Shunsuke; Miyake, Yoshikazu

    2009-11-15

    Aminopropyl-functionalized mesoporous silica microspheres (AF-MSM) were synthesized by a simple one-step modified Stöber method. Dodecylamine (DDA) was used as the catalyst for the hydrolysis and condensation of the silica source and as the molecular template to prepare the ordered mesopores. The mesoporous silica surfaces were modified to aminopropyl groups by the co-condensation of tetraethoxysilane (TEOS) with 3-aminopropyltriethoxysilane (APTES), up to a maximum of 20mol.% APTES content in the silica source. The particle size, Brunauer-Emmet-Teller (BET) specific surface area, and mesoporous regularity decreased with increasing APTES content. It is believed that this result is caused by a decreasing amount of DDA incorporated into AF-MSM with increasing APTES content. It was also confirmed that the spherical shape and the mesostructure were maintained even if 20mol.% of APTES was added to the silica source. Moreover, AF-MSM was applied to the CO(2) adsorbent. The breakthrough time of the CO(2) and CO(2) adsorption capacities increased with increasing APTES content. The adsorption capacity of CO(2) for AF-MSM, prepared at 20mol.% APTES, was 0.54mmolg(-1). Carbon dioxide adsorbed onto AF-MSM was completely desorbed by heating in a N(2) purge at 423K for 30min.

  12. The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice.

    Science.gov (United States)

    Lee, Soyoung; Kim, Mi-Sun; Lee, Dakeun; Kwon, Taeg Kyu; Khang, Dongwoo; Yun, Hui-Suk; Kim, Sang-Hyun

    2013-01-01

    Mesoporous silica (MPS) nanoparticles (NPs), which have a unique pore structure and extremely large surface area and pore volume, have received much attention because of their biomedical application potential. Using MPS NPs for biomedical devices requires the verification of their biocompatibility because the surface area of NPs is one of the most important determinants of toxicity, including the cellular uptake and immune response. We have previously reported that the cytotoxicity and inflammation potential of MPS NPs have been shown to be lower than those of general amorphous colloidal silica (Col) NPs in macrophages, but the low cytotoxicity does not guarantee high biocompatibility in vivo. In this study, we compared the in vivo immunotoxicity of MPS and Col NPs in the mouse model to define the effects of pore structural conditions of silica NPs. Both MPS and Col NPs (2, 20, and 50 mg/kg/day) were intraperitoneally administered in female BALB/c mice for 4 weeks, and clinical toxicity, lymphocyte population, serum IgG/IgM levels, and histological changes were examined. There was no overt sign of clinical toxicity in either MPS- or Col-treated mice. However, MPS NPs led to significant increases in liver and spleen weight and splenocyte proliferation. Mice treated with MPS NPs showed altered lymphocyte populations (CD3(+), CD45(+), CD4(+), and CD8(+)) in the spleen, increased serum IgG and IgM levels, and histological changes. Despite slight changes in lymphocyte populations in the spleen, Col NPs did not alter other immunological factors. The results indicate that in vivo exposure to MPS NPs caused more damage to systemic immunity than that of Col NPs through the dysregulation of the spleen. The results for in vivo data are inconsistent with those for in vitro data, which show lower cytotoxicity for MPS NPs. These results suggest the importance of verifying biocompatibility both in vitro and in vivo during the design of new nanomaterials.

  13. The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice

    Science.gov (United States)

    Lee, Soyoung; Kim, Mi-Sun; Lee, Dakeun; Kwon, Taeg Kyu; Khang, Dongwoo; Yun, Hui-Suk; Kim, Sang-Hyun

    2013-01-01

    Background Mesoporous silica (MPS) nanoparticles (NPs), which have a unique pore structure and extremely large surface area and pore volume, have received much attention because of their biomedical application potential. Using MPS NPs for biomedical devices requires the verification of their biocompatibility because the surface area of NPs is one of the most important determinants of toxicity, including the cellular uptake and immune response. We have previously reported that the cytotoxicity and inflammation potential of MPS NPs have been shown to be lower than those of general amorphous colloidal silica (Col) NPs in macrophages, but the low cytotoxicity does not guarantee high biocompatibility in vivo. In this study, we compared the in vivo immunotoxicity of MPS and Col NPs in the mouse model to define the effects of pore structural conditions of silica NPs. Materials and methods Both MPS and Col NPs (2, 20, and 50 mg/kg/day) were intraperitoneally administered in female BALB/c mice for 4 weeks, and clinical toxicity, lymphocyte population, serum IgG/IgM levels, and histological changes were examined. Results There was no overt sign of clinical toxicity in either MPS- or Col-treated mice. However, MPS NPs led to significant increases in liver and spleen weight and splenocyte proliferation. Mice treated with MPS NPs showed altered lymphocyte populations (CD3+, CD45+, CD4+, and CD8+) in the spleen, increased serum IgG and IgM levels, and histological changes. Despite slight changes in lymphocyte populations in the spleen, Col NPs did not alter other immunological factors. Conclusion The results indicate that in vivo exposure to MPS NPs caused more damage to systemic immunity than that of Col NPs through the dysregulation of the spleen. The results for in vivo data are inconsistent with those for in vitro data, which show lower cytotoxicity for MPS NPs. These results suggest the importance of verifying biocompatibility both in vitro and in vivo during the design of

  14. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  15. Kinetics of Enantiomerically Enriched Synthesis of Solketal Esters Using Native and SBA-15 supported P. Fluorescens Lipase

    Directory of Open Access Journals (Sweden)

    Zniszczoł Aurelia

    2017-06-01

    Full Text Available The studies showed that alkaline lipase from Pseudomonas fluorescens enables an irreversible transesterification of vinyl esters to give enantiomeric excess (eeR of about 80% using vinyl butyrate as acyl donor and diisopropyl ether as a solvent, at partially optimized conditions. For the native lipase the process was adequately described by a five-parameter Ping-Pong Bi Bi model for both enantiomers plus expression accounting for the formation of enzyme-acyl donor complex, but for the same lipase supported on mesoporous materials of SBA-15-Oc type, R-product inhibition also had to be taken into account. The use of hydrophobic support increased by more than two-fold the rate of the S-solketal conversion but even more that of R-solketal. Thus the immobilization of lipase had very positive effect on the process kinetics but decreased its enantioselectivity.

  16. The synthesis of novel thiol/amino bifunctionalized SBA-15 and application on the Cr(VI) absorption

    Science.gov (United States)

    Yang, Y.; Wang, D.; Yang, J. X.

    2017-08-01

    Novel amino/thiol organic groups modified SBA-15 materials were successfully prepared by a simple co-condensation approach. The synthesize mesoporous materials were characterized by FT-IR, SAXRD, N2 adsorption and elemental analysis (EA). The absorption behavior of Cr (VI) in the samples has been investigated. The experiments revealed that the adsorption amount of Cr (VI) was decided by thiol groups, but the adsorption equilibrium time was mainly effected by amino groups. The 15% NH2+20%SH sample had the best adsorption performance. Its maximum adsorption capacity can be up to 49.29 mg/g at the optimum conditions. The research of adsorption mechanism including adsorption kinetics and adsorption thermodynamics was also presented.

  17. Controllable synthesis of hollow mesoporous silica spheres and application as support of nano-gold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Ma, Weihua, E-mail: maweiuan@163.com; Shangguan, Junnan; Jiang, Wei; Zhong, Qin

    2014-07-01

    Hollow silica spheres with mesoporous structure were synthesized by sol–gel/emulsion method. In the process, the surfactant, cetyltrimethylammonium bromide (CTAB) was used to stabilize the oil droplet and also used as structure direct agent. The diameter of the hollow silica spheres, ranging from 895 nm to 157 nm, can be controlled by changing the ratio of ethanol to water and the concentration of the surfactant as well. The shell thickness of the spheres decreased when the ratio of ethanol to water decreased. The proposed mechanism of the formation of silica spheres could elucidate the experimental results well. Furthermore, the resultant hollow mesoporous silica spheres were then employed as support of nano-gold which was used to catalyze the isomerization reaction of propylene oxide to produce allyl alcohol. - Graphical abstract: It is the schematic mechanism for the formation of hollow mesoporous silica spheres. - Highlights: • The formation mechanism of the hollow spheres is proposed. • The isomerization of propylene oxide can be catalyzed by the nano-gold/SiO{sub 2}. • The hollow silica spheres can be prepared controllably.

  18. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD.

    Science.gov (United States)

    Gañán, Judith; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2013-09-15

    Functionalized (SBA-C₁₈ and SM-C₁₈) and non-functionalized (SBA-15 and SM) mesoporous silicas were then examined as sorbents for solid-phase extraction of 17β-estradiol in aqueous media. Experiments were run in order to test critical factors affecting the procedure extraction efficiency, including the type of sorbent, the analyte concentration, the solvent and volume used for elution and the sample volume. Among the prepared materials, SBA-C₁₈ had the highest adsorption affinity towards 17β-estradiol and under optimized conditions (200mg of sorbent, 150 mL of water sample, elution with 3 × 2 mL of methanol) this sorbent proved good extraction capacity and elution efficiency for this hormone from aqueous media (recovery near 100%). To evaluate the analytical applicability of the proposed method, it was applied to the determination of 17β-estradiol in drinking water by high performance liquid chromatography with a photodiode array detector. Calibration curves were shown to be linear between 1.25 and 100 mg L(-1)with correlation coefficients ≥0.999 (n=5) for 17β-estradiol. The instrumental detection and quantitation limits calculated were 0.38 and 1.25 mg L(-1), respectively. The relative standard deviation obtained values were ≤3% and the mean recoveries obtained were of 82%. The results suggest that SBA-C18 is a promising material for the off-line solid phase extraction of 17β-estradiol from waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synthesis of ordered mesoporous silica and alumina with controlled macroscopic morphologies

    Science.gov (United States)

    Alsyouri, Hatem Mohammad Sadi

    The ability to synthesize nanostructured inorganic materials with controlled microstructural and morphological features will provide materials with unique characteristics in unprecedented ways. This thesis investigates the synthesis of porous silica and alumina materials with controlled microstructures and desirable shapes using novel approaches based on template-assisted synthesis and chemical vapor deposition (CVD) techniques. It primarily focuses on fabricating mesoporous materials with unique microstructures and different morphologies (particles and membranes) and exploring the potential of the particle morphology in a polymer reaction application. The template-assisted growth of mesoporous silica under acidic and quiescent conditions at an oil-water interface can generate mesostructured silica at the interface with fibrous, gyroidal, spherical, and film morphologies. Synthesis conditions can be used to alter the growth environment and control the product morphology. Fiber morphology is obtained at narrow range of experimental conditions due to slow and one-dimensional diffusion of silicon alkoxide through the interface. Variation in these conditions can alter the axial growth of silica and yield non-fibrous shapes. The fibers grow from their base attached to the interface and coalesce to form fibers with larger diameters. Gas transport in the mesoporous silica fibers is governed by combination of Knudsen and surface diffusion mechanisms. Surface diffusion contributes to 40% of the net flow reflecting a highly smooth pore surfaces. Real Knudsen and surface diffusivities are in the order of 10-3 and 10 -5 cm2/s respectively. The one-dimensional mesopores are 45 time longer than the macroscopic fiber length and align helically around the fiber axis, confirming the literature observations, with a pitch value of 1.05 micron. For preparation of mesoporous silica materials as membranes, a novel counter diffusion self assembly (CDSA) approach is demonstrated. This

  20. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  1. Mesoporous Silica SBA-16 Functionalized with Alkoxysilane Groups: Preparation, Characterization, and Release Profile Study

    Directory of Open Access Journals (Sweden)

    Gracielle Ferreira Andrade

    2012-01-01

    Full Text Available A mesoporous material sphere based on silica, SBA-16, was chemically modified with alkoxysilane using two different solvents: methanol and toluene. The influence of the chemical modification of the matrix on the release rate of a model drug was also studied. The structural characteristics of the materials were evaluated by small-angle X-ray diffraction, N2 adsorption, and transmission electron microscopy. The functionalization of the matrix was evaluated using thermal analysis, FTIR spectroscopy, 13C and 29Si solid-state nuclear magnetic resonance, and elemental analysis, CHN. The results show that alkoxysilane groups have been chemically bonded to silicon atoms on the surface of cubic Im3m mesoporous silica. The influence of the release rate of atenolol molecules from chemically modified mesoporous SBA-16 could be identified, since significant differences could be observed among the release patterns of the different materials.

  2. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  3. Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks.

    Science.gov (United States)

    Liang, Jie; Liang, Zibin; Zou, Ruqiang; Zhao, Yanli

    2017-08-01

    Crystalline porous materials are important in the development of catalytic systems with high scientific and industrial impact. Zeolites, ordered mesoporous silica, and metal-organic frameworks (MOFs) are three types of porous materials that can be used as heterogeneous catalysts. This review focuses on a comparison of the catalytic activities of zeolites, mesoporous silica, and MOFs. In the first part of the review, the distinctive properties of these porous materials relevant to catalysis are discussed, and the corresponding catalytic reactions are highlighted. In the second part, the catalytic behaviors of zeolites, mesoporous silica, and MOFs in four types of general organic reactions (acid, base, oxidation, and hydrogenation) are compared. The advantages and disadvantages of each porous material for catalytic reactions are summarized. Conclusions and prospects for future development of these porous materials in this field are provided in the last section. This review aims to highlight recent research advancements in zeolites, ordered mesoporous silica, and MOFs for heterogeneous catalysis, and inspire further studies in this rapidly developing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Impregnation of mesoporous silica for catalyst preparation studied with differential scanning calorimetry

    NARCIS (Netherlands)

    Eggenhuisen, T.M.|info:eu-repo/dai/nl/313959498; van Steenbergen, M.J.|info:eu-repo/dai/nl/304839302; Talsma, H.|info:eu-repo/dai/nl/08138212X; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2009-01-01

    Aqueous impregnation of mesoporous silica as a first step in catalyst preparation was studied to investigate the distribution of the metal-precursor solution over the support. The degree of pore-filling after impregnation was determined using the freezing point depression of confined liquids. A

  5. pH-responsive controlled release of antitumour-active polyoxometalate from mesoporous silica materials.

    Science.gov (United States)

    Sun, Guoying; Chang, Yaping; Li, Siheng; Li, Qiuyu; Xu, Rui; Gu, Jianmin; Wang, Enbo

    2009-06-21

    Two efficient pH-responsive oral delivery systems have been fabricated through a dative bonding between the amino-functionalized mesoporous silica materials, including MCM-41-type mesoporous silica nanospheres (MMSNs) and bimodal mesoporous silica microspheres (BMSMs), and an antitumour-active polyoxometalate K(8)H(2)[Ti(H(2)O)](3)SiW(9)O(34) (Ti(3)SiW(9)). The Ti(3)SiW(9) loaded in the pores of MMSNs and BMSMs are up to 23.72 wt% and 28.69 wt% at pH 6.5, respectively. Both delivery systems reveal an increase of Ti(3)SiW(9) release under mildly alkaline conditions, while zero premature release is observed under acidic and neutral conditions, making them ideal for use as a new class of colon-specific oral delivery systems. Importantly, these systems provide very promising possibilities for many medical applications that require an increase or decrease in the rate of drug release, depending on disease evolution. Upon incorporation into mesoporous silica materials, the antitumour activity of Ti(3)SiW(9) against Ls-174-T was improved from 0.8 mg mL(-1) to 0.186 and 0.102 mg mL(-1) for Ti(3)SiW(9)@MMSN-NH(2) and Ti(3)SiW(9)@BMSM-NH(2), respectively.

  6. Catalytic signal amplification using [Fe(III)(biuret-amide)]-mesoporous silica nanoparticles: visual cyanide detection.

    Science.gov (United States)

    Panda, Chakadola; Dhar, Basab B; Malvi, Bharmana; Bhattacharjee, Yudhajit; Gupta, Sayam Sen

    2013-03-18

    Catalytic signal amplification was used for the colorimetric detection of CN(-) in aqueous media by using the enzyme catalase in tandem with mesoporous silica nanoparticle based synthetic HRP enzyme mimic Fe-MSNs. Signal amplification up to a maximum of eight fold was observed for the reporter "oxidized TMB" with respect to the added CN(-) ion.

  7. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration

    DEFF Research Database (Denmark)

    Zanjanizadeh Ezazi, Nazanin; Shahbazi, Mohammad-Ali; Shatalin, Yuri V.

    2018-01-01

    Bone tissue engineering is considered an alternative approach for conventional strategies available to treat bone defects. In this study, we have developed bone scaffolds composed of hydroxyapaptite (HAp), gelatin and mesoporous silica, all recognized as promising materials in bone tissue enginee...

  8. Synthesis and Textural Characterization of Mesoporous and Meso-/Macroporous Silica Monoliths Obtained by Spinodal Decomposition

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2016-04-01

    Full Text Available Silica monoliths featuring either mesopores or flow-through macropores and mesopores in their skeleton are prepared by combining spinodal phase separation and sol-gel condensation. The macroporous network is first generated by phase separation in acidic medium in the presence of polyethyleneoxides while mesoporosity is engineered in a second step in alkaline medium, possibly in the presence of alkylammonium cations as surfactants. The mesoporous monoliths, also referred as aerogels, are obtained in the presence of alkylpolyethylene oxides in acidic medium without the use of supercritical drying. The impact of the experimental conditions on pore architecture of the monoliths regarding the shape, the ordering, the size and the connectivity of the mesopores is comprehensively discussed based on a critical appraisal of the different models used for textural analysis.

  9. Amine-functionalized SBA-15 with uniform morphology and well-defined mesostructure for highly sensitive chemosensors to detect formaldehyde vapor.

    Science.gov (United States)

    Zhu, Yongheng; Li, Hui; Zheng, Qi; Xu, Jiaqiang; Li, Xinxin

    2012-05-22

    Amine-functionalized SBA-15 with uniform morphology and well-defined mesostructure was prepared using a postgrafting route. The morphology, mesostructure, and functionality of the materials were characterized by scanning electron microscopy, transmission electron microscopy, small-angle X-ray scattering, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy techniques. The results show that hexagonal lamelliform SBA-15 with a uniform particle size and short vertical channels plays two significant roles in uniformly dispersing amine-functionalizing groups and effectively adjusting the loadings of the functional groups within the mesopore channels. To confirm the potential application of the hybrids in gas sensors, using amine-functionalized SBA-15 as a sensing material and a quartz crystal microbalance as a transducer, a parts per billion level formaldehyde sensor with high sensitivity (response time about 11 s, recovery time about 15 s) and good chemoselectivity was achieved. This material holds great potential in the area of rapid, sensitive, and highly convenient formaldehyde detection.

  10. Simple Cocasting Method to Prepare Magnetic Mesoporous FePt/C Composites and Their Protein Adsorption Property

    Directory of Open Access Journals (Sweden)

    Yufang Zhu

    2013-01-01

    Full Text Available A simple cocasting method has been developed to prepare magnetic mesoporous FePt/C composites with superparamagnetic FePt nanoparticles embedded in carbon walls. Furfuryl alcohol, iron(III acetylacetonate (Fe(acac3, and platinum(II acetylacetonate (Pt(acac2 were used as the carbon and FePt nanoparticle precursors to be simultaneously incorporated into the channels of mesoporous silica SBA-15 template by the incipient wetness impregnation technique. After the polymerization of furfuryl alcohol, the carbonization in argon, and the removal of silica template, magnetic mesoporous FePt/C composites were finally obtained. Magnetic mesoporous FePt/C composites have high surface area of 1244 m2/g and narrow mesopore size distribution peaked at 4.93 nm. FePt nanoparticles were well embedded in mesoporous carbon walls, and mesoporous FePt/C composites exhibit superparamagnetic behavior. Using cytochrome c (Cyt c, myoglobin (Mb, and bovine serum albumin (BSA as model proteins, the adsorption capacities of Cyt c, Mb, and BSA on magnetic mesoporous FePt/C composites can reach ca. 200, 162, and 121 μg/mg, respectively. These results indicated that mesoporous FePt/C composites have potential as magnetically separable adsorbent for biomolecules separation.

  11. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    Science.gov (United States)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram

  12. Improved Stabilities of Immobilized Glucoamylase on Functionalized Mesoporous Silica Synthesised using Decane as Swelling Agent

    Directory of Open Access Journals (Sweden)

    Reni George

    2013-06-01

    Full Text Available Ordered mesoporous silica, with high porosity was used to immobilize glucoamylase via adsorption and covalent binding. Immobilization of glucoamylase within mesoporous silica was successfully achieved, resulting in catalytically high efficiency during starch hydrolysis. In this study, mesoporous silica was functionalized by co-condensation of tetraethoxysilane (TEOS with organosilane (3-aminopropyl triethoxysilane (APTES in a wide range of molar ratios of APTES: TEOS in the presence of triblock copolymer P123 under acidic hydrothermal conditions. The prepared materials were characterized by Small angle XRD, Nitrogen adsorption – desorption and 29Si MAS solid state NMR. N2 desorption studies showed that pore size distribution decreases due to pore blockage after functionalization and enzyme immobilization. Small angle XRD and 29Si MAS NMR study reveals mesophase formation and Si environment of the materials. The main aim of our work was to study the catalytical activity, effect of pH, temperature storage stability and reusability of covalently bound glucoamylase on mesoporous silica support. The result shows that the stability of enzyme can be enhanced by immobilization.  © 2013 BCREC UNDIP. All rights reservedReceived: 3rd December 2012; Revised: 4th April 2013; Accepted: 20th April 2013[How to Cite: George, R., Gopinath, S., Sugunan, S. (2013. Improved Stabilities of Immobilized Glucoamyl-ase on Functionalized Mesoporous Silica Synthesized using Decane as Swelling Agent. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 70-76. (doi:10.9767/bcrec.8.1.4208.70-76][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4208.70-76] | View in  |

  13. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  14. Effect of Porous Structure and Acidity of ZSM-5/SBA-15 Catalyst on 1,3,5-Triisopropylbenzene Cracking Catalytic Activity.

    Science.gov (United States)

    Vinh, Tran Quang; Nam, Le Thi Hoai; Nhiem, Nguyen Thi; Duc, Pham Minh; Trang, Nguyen Thi Thu; Hieu, Do Trung

    2018-02-01

    ZSM-5/SBA-15 composite materials with different acidities and mesoporous system formations were successfully synthesized by three-step method. The catalysts were characterized by XRD, HR-TEM, BET, EDX and TPD-NH3 methods. It showed that the Si/Al molar ratio had effect on the formation and property of materials. Among synthesized catalysts with the different Si/Al molar ratios of 30 (HZSC-30), 50 (HZSC-50), 70 (HZSC-70), HZSC-50 catalyst had better mesoporous system formation and acidity. These properties helped this catalyst to have higher catalytic activity in 1,3,5-triisopropylbenzene cracking reaction than other studied catalysts in term of higher benzene product yield. In comparison to HZSM-5 microporous material that had the similar Si/Al molar ratio of 50, it showed that the formation of mesopore system of HZSC-50 catalyst had a major improvement on the cracking catalytic activity.

  15. Ship-in-bottle synthesis of gold nanoparticles in amino-functionalized mesoporous silica thin films.

    Science.gov (United States)

    Fang, Jingyue; Qin, Shiqiao; Zhang, Xueao; Wang, Fei

    2013-04-01

    Amino-functionalized mesoporous silica thin films with high content of -NH2 moieties have been directly dip-coated on silicon wafers by co-condensation of tetraethoxysilane and 3-aminopropyltriethoxysilane in the presence of C16H33(OCH2CH2)10OH under acidic condition. X-ray diffraction patterns show that it is a good strategy to remove the surfactant by ethanol extraction rather than calcinations. Using the amino-functionalized mesoporous silica thin films as templates, nanoparticles arrays of gold are formed well within the mesostructures. The isolated gold nanoparticles with size of 2.4-3.9 nm are released by dissolving the silica frameworks with the help of an ethanol solution of HF, showing that the gold nanoparticles have uniform size and spherical appearance. The Ultraviolet-visible spectra show that as the size of gold nanoparticles increase when the dipping time extended, the surface plasmon resonance absorption peak shifts to a longer wavelength.

  16. A simple three step method for selective placement of organic groups in mesoporous silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (B1650KNA) San Martín, Buenos Aires (Argentina); Llave, Ezequiel de la; Williams, Federico J. [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Soler-Illia, Galo J.A.A., E-mail: galo.soler.illia@gmail.com [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Instituto de Nanosistemas, Universidad Nacional de General San Martín, 25 de Mayo y Francia (1650) San Martín, Buenos Aires (Argentina)

    2016-02-01

    Selective functionalization of mesoporous silica thin films was achieved using a three step method. The first step consists in an outer surface functionalization, followed by washing off the structuring agent (second step), leaving the inner surface of the pores free to be functionalized in the third step. This reproducible method permits to anchor a volatile silane group in the outer film surface, and a second type of silane group in the inner surface of the pores. As a concept test we modified the outer surface of a mesoporous silica film with trimethylsilane (–Si–(CH{sub 3}){sub 3}) groups and the inner pore surface with propylamino (–Si–(CH{sub 2}){sub 3}–NH{sub 2}) groups. The obtained silica films were characterized by Environmental Ellipsometric Porosimetry (EEP), EDS, XPS, contact angle and electron microscopy. The selectively functionalized silica (SF) shows an amount of surface amino functions 4.3 times lower than the one-step functionalized (OSF) silica samples. The method presented here can be extended to a combination of silane chlorides and alkoxides as functional groups, opening up a new route toward the synthesis of multifunctional mesoporous thin films with precisely localized organic functions. - Highlights: • Selective functionalization of mesoporous silica thin films was achieved using a three step method. • A volatile silane group is anchored by evaporation on the outer film surface. • A second silane is deposited in the inner surface of the pores by post-grafting. • Contact angle, EDS and XPS measurements show different proportions of amino groups on both surfaces. • This method can be extended to a combination of silane chlorides and alkoxides functional groups.

  17. Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials

    Science.gov (United States)

    Parsons-Moss, Tashi

    Ordered mesoporous materials are porous solids with a regular, patterned structure composed of pores between 2 and 50 nm wide. Such materials have attracted much attention in the past twenty years because the chemistry of their synthesis allows control of their unique physicochemical properties, which can be tuned for a variety of applications. Generally, ordered mesoporous materials have very high specific surface areas and pore volumes, and offer unique structures that are neither crystalline nor amorphous. The large tunable interface provided by ordered mesoporous solids may be advantageous in applications involving sequestration, separation, or detection of actinides and lanthanides in solution. However, the fundamental chemical interactions of actinides and lanthanides must be understood before applications can be implemented. This dissertation focuses primarily on the fundamental interactions of plutonium with organically modified mesoporous silica, as well as several different porous carbon materials, both untreated and chemically oxidized. A method for functionalizing mesoporous silica by self assembly and molecular grafting of functional organosilane ligands was optimized for the 2D-hexagonal ordered mesoporous silica known as SBA-15 (Santa Barbara amorphous silica). Four different organically-modified silica materials were synthesized and characterized with several techniques. To confirm that covalent bonds were formed between the silane anchor of the ligand and the silica substrate, functionalized silica samples were analyzed with 29Si nuclear magnetic resonance spectroscopy. Infrared spectroscopy was used in combination with 13C and 31P nuclear magnetic resonance spectroscopy to verify the molecular structures of the ligands after they were synthesized and grafted to the silica. The densities of the functional silane ligands on the silica surface were estimated using thermogravimetric analysis. Batch sorption experiments were conducted with solutions of

  18. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  19. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Wilke de [Institute of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster (Germany); Doerenkamp, Carsten; Zeng, Zhaoyang [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster (Germany); Oliveira, Marcos de [Instituto de Física em Sao Paulo, Universidade de Sao Paulo, Av. Trabalhador Saocarlense 400, Sao Carlos, S.P. 13560 590 (Brazil); Niehaus, Oliver; Pöttgen, Rainer [Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster (Germany); Studer, Armido, E-mail: studer@uni-muenster.de [Institute of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster (Germany); Eckert, Hellmut, E-mail: eckerth@uni-muenster.de [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster (Germany); Instituto de Física em Sao Paulo, Universidade de Sao Paulo, Av. Trabalhador Saocarlense 400, Sao Carlos, S.P. 13560 590 (Brazil)

    2016-05-15

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest that these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.

  20. Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide.

    Science.gov (United States)

    Buchtová, Nela; Réthoré, Gildas; Boyer, Cécile; Guicheux, Jérôme; Rambaud, Frédéric; Vallé, Karine; Belleville, Philippe; Sanchez, Clément; Chauvet, Olivier; Weiss, Pierre; Le Bideau, Jean

    2013-08-01

    Injectable materials for mini-invasive surgery of cartilage are synthesized and thoroughly studied. The concept of these hybrid materials is based on providing high enough mechanical performances along with a good medium for chondrocytes proliferation. The unusual nanocomposite hydrogels presented herein are based on siloxane derived hydroxypropylmethylcellulose (Si-HPMC) interlinked with mesoporous silica nanofibers. The mandatory homogeneity of the nanocomposites is checked by fluorescent methods, which show that the silica nanofibres dispersion is realized down to nanometric scale, suggesting an efficient immobilization of the silica nanofibres onto the Si-HPMC scaffold. Such dispersion and immobilization are reached thanks to the chemical affinity between the hydrophilic silica nanofibers and the pendant silanolate groups of the Si-HPMC chains. Tuning the amount of nanocharges allows tuning the resulting mechanical features of these injectable biocompatible hybrid hydrogels. hASC stem cells and SW1353 chondrocytic cells viability is checked within the nanocomposite hydrogels up to 3 wt% of silica nanofibers.

  1. Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade

    Directory of Open Access Journals (Sweden)

    Ling Fei

    2012-01-01

    Full Text Available We report the preparation of two hydrocracking catalysts Pd/CoMoO4/silica and Pd/CNTs/CoMoO4/silica (CNTs, carbon nanotubes. The structure, morphologies, composition, and thermal stability of catalysts were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, transmission electron microscopy (TEM, energy-dispersive X-ray (EDX, and thermogravimetric analysis (TGA. The catalyst activity was measured in a Parr reactor with camelina fatty acid methyl esters (FAMEs as the feed. The analysis shows that the palladium nanoparticles have been incorporated onto mesoporous silica in Pd/CoMoO4/silica or on the CNTs surface in Pd/CNTs/CoMoO4/silica catalysts. The different combinations of metals and supports have selective control cracking on heavy hydrocarbons.

  2. Increasing the Oral Bioavailability of Poorly Water-soluble Valsartan Using Non-ordered Mesoporous Silica Microparticles

    National Research Council Canada - National Science Library

    P Bahirat Santosh

    2016-01-01

      Aim: To evaluate the use of mesoporous silica SYLOID® 244 FP to increase the dissolution rate of valsartan, antihypertensive poorly water soluble, Biopharmaceutical Classification System Class II drug...

  3. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications

    KAUST Repository

    Croissant, Jonas G.

    2017-11-30

    Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer\\'s disease therapy.

  4. Pseudomorphic synthesis of monodisperse magnetic mesoporous silica microspheres for selective enrichment of endogenous peptides.

    Science.gov (United States)

    Zhu, Gang-Tian; Li, Xiao-Shui; Gao, Qiang; Zhao, Ning-Wei; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-02-10

    In this work, we describe a novel synthetic strategy of magnetic mesoporous silica spheres (Fe3O4@mSiO2) for the selective enrichment of endogenous peptides. Fe3O4 particles were coated with silica shell by a sol-gel method, followed by pseudomorphic synthesis to transform nonporous silica shell into ordered mesoporous silica shell. The core/shell structure and mesostructure were individually fabricated in two steps, which can be expedient to independently optimize the properties of monodispersion, magnetization and mesostructure. Actually, it was confirmed that the produced Fe3O4@mSiO2 particles possess good monodispersion, high magnetization, superparamagnetism, uniform accessible mesopores, and large surface area and pore volume. With these good properties, Fe3O4@mSiO2 spheres were applied to the rapid enrichment of peptides. Based on the size-exclusion mechanism and hydrophobic interaction with siloxane bridge group mainly on the surface of inside pores, Fe3O4@mSiO2 can selectively capture peptides and exclude high-MW proteins and salts. Furthermore, peptides in human plasma were successfully enriched by Fe3O4@mSiO2. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials.

    Science.gov (United States)

    Salis, Andrea; Medda, Luca; Cugia, Francesca; Monduzzi, Maura

    2016-01-01

    This short review highlights the effect of electrolytes on the performance of proteins-mesoporous silica conjugates which can open interesting perspectives in biotechnological fields, particularly nanomedicine and biocatalysis. Indeed therapeutic proteins and peptides represent a challenging innovation for several kinds of diseases, but since their self-life in biological fluids is very short, they need a stealth protective carrier. Similarly, enzymes need a solid support to improve thermal stability and to allow for recycling. Ordered mesoporous silica materials represent a valid choice as widely demonstrated. Both proteins and silica mesoporous materials possess charged surfaces, and here, the crucial role of pH, buffer, ionic strength and electrolyte type is posed in relation with loading/release of proteins onto/from the silica support through the analysis of adsorption and release processes. A delicate interplay of electrostatic and van der Waals interactions arises from considering electrolytes' effects on the two different charged surfaces. Clear outcomes concern the effect of pH and ionic strength. Protein loading onto the silica matrix is favored by an adsorbing solution having a pH close to the protein pI, and by a high ionic strength that reduces the Debye length. Release is instead favored by an adsorbing solution characterized by an intermediate ionic strength, close to the physiological values. Significant specific ions effects are shown to affect both proteins and silica matrices, as well as protein adsorption onto silica matrices. Further work is needed to quantify specific ion effects on the preservation of the biological activity, and on the release performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y.

    2017-07-01

    Development of mesoporous silica nanoparticles as carriers for drug delivery systems has increased exponentially during the last decade. The present work is focused on the synthesis of silica carriers by sol–gel from tetraethyl orthosilicate (TEOS) as precursor of silica and cetyltrimethylammonium bromide (CTAB) as pore generating agent. The synthesis conditions were modified varying the molar ratio of water/TEOS, NH3/TEOS and amount of CTAB. The silica particles were characterized by scan electron microscopy techniques (FESEM), high resolution transmission electron microscopy (HR-TEM), N2 adsorption–desorption isotherms, Zeta-potential and Dynamic Light Scattering (DLS). The results show that the specific surface area and the porosity of silica particles were strongly affected by the addition of CTAB and the amount of H2O. The dispersion and stability of silica mesoporous particles is achieved in spite of the high surface reactivity. The synthesis formulation affects considerably to the particle morphology, which changes from spheres to rods when the molar ratio of H2O increases. A maximum specific surface area of 1480m2/g was obtained with pore sizes ranging 2.5–2.8nm. (Author)

  7. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications

    Directory of Open Access Journals (Sweden)

    Naiara I. Vazquez

    2017-05-01

    Full Text Available Development of mesoporous silica nanoparticles as carriers for drug delivery systems has increased exponentially during the last decade. The present work is focused on the synthesis of silica carriers by sol–gel from tetraethyl orthosilicate (TEOS as precursor of silica and cetyltrimethylammonium bromide (CTAB as pore generating agent. The synthesis conditions were modified varying the molar ratio of water/TEOS, NH3/TEOS and amount of CTAB. The silica particles were characterized by scan electron microscopy techniques (FESEM, high resolution transmission electron microscopy (HR-TEM, N2 adsorption–desorption isotherms, Zeta-potential and Dynamic Light Scattering (DLS. The results show that the specific surface area and the porosity of silica particles were strongly affected by the addition of CTAB and the amount of H2O. The dispersion and stability of silica mesoporous particles is achieved in spite of the high surface reactivity. The synthesis formulation affects considerably to the particle morphology, which changes from spheres to rods when the molar ratio of H2O increases. A maximum specific surface area of 1480 m2/g was obtained with pore sizes ranging 2.5–2.8 nm.

  8. Synthesis of amino-functionalized mesoporous silica sheets and their application for metal ion capture

    Directory of Open Access Journals (Sweden)

    Kazuma Nakanishi

    2015-03-01

    Full Text Available Novel mesoporous silica sheets with surface amino-functional groups (sheet-NH2 were prepared for the efficient adsorption of aqueous metal ions. The sheet-NH2 were synthesized by a dual-templating process using Pluronic P123 and N-palmitoyl-l-alanine as templates. Two silicone regents were used to form the silica framework: tetraethoxysilane and 3-aminopropyltriethoxysilane. In the synthetic process, the as-prepared silicate was refluxed in ethanol to remove the organic templates remaining from the surface amino groups derived from APTES. The prepared sheet-NH2 showed widths of several micrometres and small thicknesses of approximately 50 nm. The pore diameter, pore volume and BET surface area of sheet-NH2 were determined by nitrogen adsorption–desorption isotherms to be 3.1 nm, 0.73 cm3 g−1 and 189.9 m2 g−1, respectively. TEM, XRD, FT-IR and TG–DTA analysis demonstrated that the sheet material had a disordered mesoporous structure and contained organic chains. The adsorptions of aqueous zinc(II and copper(II metal ions were examined and compared with amino-functionalized conventional mesoporous silica (MCM-NH2, calcined mesoporous silica sheets and silica beads with no porous structures. Notably, the sheet-NH2 exhibited the highest adsorption of both zinc and copper ions among the examined materials. In addition, the metal ion sorption equilibrium data of sheet-NH2 were fitted to the Langmuir isotherm model.

  9. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien, E-mail: dien.li@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Egodawatte, Shani [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Larsen, Sarah C. [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Serkiz, Steven M. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-11-05

    Highlights: • Magnetic mesoporous silica nanoparticles were functionalized with organic molecules. • The functionalized nanoparticles had high surface areas and consistent pore sizes. • The functionalized nanoparticles were easily separated due to their magnetism. • They exhibited high capacity for uranium removal from low- or high-pH groundwater. - Abstract: U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N{sub 2} adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), {sup 13}C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100–200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  10. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Jin; Liu, Jian; Lu, Shanfu

    2017-01-01

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH2–HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH2-meso-silica) by an alkaline solution. Nucl...

  11. Cr(VI Removal from Aqueous by Adsorption on Amine-Functionalized Mesoporous Silica Prepared from Silica Fume

    Directory of Open Access Journals (Sweden)

    Xitong Li

    2014-01-01

    Full Text Available Amino-functionalized mesoporous silica MCM-41 materials have been prepared to develop efficient adsorbents of Cr(VI in wastewater, using silica fume as silica source. Functionalization with amino groups has been carried out by using grafting method. The materials have been characterized by means of X-ray diffraction (XRD, nitrogen (N2 adsorption-desorption, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. Adsorption potential of the material for Cr(VI removal from aqueous solution was investigated by varying experimental conditions such as pH, initial metal concentration, and contact time. The equilibrium data were analyzed using the Langmuir and Freundlich isotherm by linear regression analysis, and the results show that the adsorption equilibrium data obeyed the Langmuir model. In addition, the kinetics analysis revealed that the overall adsorption process was successfully fitted with the pseudo-second-order kinetic model.

  12. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    Science.gov (United States)

    Zhao, Tiancong; Nguyen, Nam-Trung; Xie, Yang; Sun, Xiaofei; Li, Qin; Li, Xiaomin

    2017-01-01

    Mesoporous SiO2 nanoparticles (MSNs) are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores, and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2) on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted. PMID:29326923

  13. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  14. Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs.

    Science.gov (United States)

    Vialpando, Monica; Martens, Johan A; Van den Mooter, Guy

    2011-08-01

    The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.

  15. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Cai, Weibo

    2013-12-01

    Hollow mesoporous silica nanoparticles (HMSNs), with a large cavity inside each original mesoporous silica nanoparticle, have recently gained increasing interest owing to their tremendous potential for cancer imaging and therapy. The last several years have witnessed a rapid development in the engineering of functionalized HMSNs (i.e., f-HMSNs), with various types of inorganic functional nanocrystals integrated into the system for imaging and therapeutic applications. In this article, we summarize the recent progress in the design and biological applications of f-HMSNs, with a special emphasis on molecular imaging. Commonly used synthetic strategies for the generation of high quality HMSNs will be discussed in detail, followed by a systematic review of engineered f-HMSNs for optical, PET, MRI and ultrasound imaging in preclinical studies. Finally, we discuss the challenges and future research directions regarding the use of f-HMSNs for cancer imaging and therapy.

  16. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    Science.gov (United States)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  17. Synthesis of mesoporous silica nanoparticles and nanorods: Application to doxorubicin delivery

    Science.gov (United States)

    Rahmani, Saher; Durand, Jean-Olivier; Charnay, Clarence; Lichon, Laure; Férid, Mokhtar; Garcia, Marcel; Gary-Bobo, Magali

    2017-06-01

    The synthesis and application of mesoporous silica nanoparticles (MSN) and mesoporous silica nanorods (MSNR) for drug delivery were described. MSN or MSNR were obtained by adjusting the amount of added cosolvent to the sol-gel solution. Therefore, the addition of ethanol (EtOH) has contributed to the control of the particle shape and to the structure of the mesoporosity. MSN and MSNR particles were then loaded with doxorubicin and incubated with MCF-7 breast cancer cells. MSN and MSNR particles were efficient in killing cancer cells but their behavior in drug delivery was altered on account of the difference in their morphology. MSN showed a burst release of doxorubicin in cells whereas MSNR showed a sustained delivery of the anti-cancer drug.

  18. Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Chun-Ling Zhu

    2014-03-01

    Full Text Available To develop novel tumor cell microenvironment stimuli-responsive smart controlled-release delivery systems is one of the current common interests of materials science and clinical medicine. Meanwhile, mesoporous silica nanoparticles as a promising drug carrier have become the new area of interest in the field of biomedical application in recent years because of their unique characteristics and abilities to efficiently and specifically entrap cargo molecules. This review describes the more recent developments and achievements of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled-release systems that are able to respond to tumor cell environmental changes, such as pH, glucose, adenosine-5′-triphosphate (ATP, glutathione (GSH, and H2O2.

  19. Mesoporous silica/apatite nanocomposite: special synthesis route to control local drug delivery.

    Science.gov (United States)

    Sousa, A; Souza, K C; Sousa, E M B

    2008-05-01

    Synthetic hydroxyapatite is widely used in medicine and dentistry due its notable biocompatibility and bioactivity properties. The hydroxyapatite incorporation into silica has demonstrated excellent bioactivity or biodegradability, according to the content of calcium ions. Procedures to obtain ordered mesoporous silicates rely on the micelle-forming properties of a surfactant, whose chemical composition, size and concentration control the structural dimensions of the final material. This paper reports the synthesis of two types mesoporous materials: pure MCM-41 and a nanocomposite of apatite and mesoporous silica, MCM-41-HA. The samples were charged with atenolol as a model drug and in vitro release essays were carried out. The bioactivity behavior was investigated as a function of soaking time in simulated body fluid. The materials were characterized by X-ray diffraction, N2 adsorption, FTIR spectroscopy, scanning electron microscopy, dispersive energies spectroscopy, and transmission electron microscopy. The influence of the release rate of atenolol molecules from pure MCM-41 mesoporous and containing hydroxyapatite was demonstrated, since it results in a very slowly drug delivery from the nanocomposite system.

  20. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration.

    Science.gov (United States)

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-09-17

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  1. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    Energy Technology Data Exchange (ETDEWEB)

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato, E-mail: sherif.elsafty@nims.go.jp, E-mail: sherif@aoni.waseda.jp [National Institute for Materials Science, Exploratory Materials Research Laboratory for Energy and Environment, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan)

    2010-09-17

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of {<=} 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  2. Hybrid materials based on novel 2D lanthanide coordination polymers covalently bonded to amine-modified SBA-15 and MCM-41: assembly, characterization, structural features, thermal and luminescence properties.

    Science.gov (United States)

    Wang, Jun; Dou, Wei; Kirillov, Alexander M; Liu, Weisheng; Xu, Cailing; Fang, Ran; Yang, Lizi

    2016-11-22

    Three novel 2D coordination polymers [Tb2(μ4-L)2(μ-HL)(μ-HCOO)(DEF)]n (Tb-L), [Eu(μ4-L)(L)(H2O)2]n (Eu-L), and [Nd(μ4-L)(L)(H2O)2]n (Nd-L) were assembled from the corresponding lanthanide(iii) nitrates and 5 methoxy-(4-benzaldehyde)-1,3-benzenedicarboxylic acid (H2L) as a main multifunctional building block bearing carboxylate and aldehyde functional groups, using H2O/DEF {DEF = N,N-diethylformamide} as a reaction medium. The obtained coordination polymers were isolated as stable microcrystalline solids and fully characterized by elemental analysis, FT-IR spectroscopy, TGA, BET, PXRD, and single-crystal X-ray diffraction methods. Their structures feature intricate 2D metal-organic networks, which were topologically classified as underlying layers with the 4,6L26 (for Tb-L) or sql (for Eu-L and Nd-L) topologies. Besides, a novel series of mesoporous hybrid materials wherein the Tb-L, Eu-L, or Nd-L coordination polymers are covalently grafted into the amine-functionalized SBA-15-NH2 or MCM-41-NH2 matrices (via the formation of Schiff-base groups) was also synthesized and fully characterized. These hybrid materials show high thermal and photoluminescence stability, as well as remarkable chemical resistance to boiling water, and acidic or alkaline medium. Luminescent properties of the parent coordination polymers and derived hybrid materials are investigated in detail, showing that the latter combine the luminescent characteristics (intense green or red emissions and excellent stability) of lanthanide coordination polymers and structural features of ordered mesoporous silica molecular sieves. Moreover, light emitting devices were assembled, by coating the hybrid materials onto the surface of UV-LED bulbs, and showed excellent light emitting properties.

  3. Effect of amino groups of mesoporous silica nanoparticles on CpG oligodexynucleotide delivery

    OpenAIRE

    Xu, Yi; Claiden, Peter; Zhu, Yufang; Morita, Hiromi; Hanagata, Nobutaka

    2015-01-01

    In this study, we proposed to modify mesoporous silica nanoparticles (MSNs) with 3-aminopropyltriethoxysilane (NH2-TES), aminoethylaminopropyltriethoxysilane (2NH2-TES) and 3-[2-(2-aminoethylamino)ethylamino] propyl-trimethoxysilane (3NH2-TES) for binding of cytosine-phosphate-guanosine oligodexynucleotides (CpG ODN), and investigated the effect of different amino groups of MSNs on the CpG ODN delivery. Serum stability, in vitro cytotoxicity, and cytokine interleukin-6 (IL-6) induction by MSN...

  4. Utilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4) in Prodrug-Activated Cancer Theranostics

    OpenAIRE

    Bau-Yen Hung; Yaswanth Kuthati; Ranjith Kumar Kankala; Shravankumar Kankala; Jin-Pei Deng; Chen-Lun Liu; Chia-Hung Lee

    2015-01-01

    To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP) was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology), where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through the formation of covalent imine bonds. This strategy was used to protect HRP from immune exclusion, d...

  5. The synthesis and application involving regulation of the insoluble drug release from mesoporous silica nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: ydlijia@163.com [School of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Wang, Yan, E-mail: wangyan6505@163.com [School of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Zheng, Xin, E-mail: 33682150@qq.com [School of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Zhang, Ying, E-mail: yzhang7704@sina.com [College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Sun, Changshan, E-mail: freescs@163.com [School of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Gao, Yikun, E-mail: 174913818@qq.com [School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Jiang, Tongying, E-mail: jiangtongyingsy@163.com [School of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [School of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China)

    2015-03-01

    Highlights: • Mesoporous silica nanotubes (SNT) were synthesized by using CNT as hard template, and the formation of the SNT shows that CTAB played a significant effect on the coating process. • The tube mesoporous silica materials which were seldom reported were applied in the drug delivery system to improve the loading amount and the drug dissolution. • The release rate could be controlled by the gelatin layer on the silica surface and the mechanism was illustrated. - Abstract: Mesoporous silica nanotubes (SNT) were synthesized using hard template carbon nanotubes (CNT) with the aid of cetyltrimethyl ammonium bromide (CTAB) in a method, which was simple and inexpensive. Scanning electron microscopy, transmission electron microscopy and specific surface area analysis were employed to characterize the morphology and structure of SNT, and the formation mechanism of SNT was also examined by Fourier transform infrared spectroscopy. There are few published reports of the mesoporous SNT with large specific surface area applied in the drug delivery systems to improve the amount of drug loading. In addition, the structure of SNT allows investigators to control the drug particle size in the pore channels and significantly increase the drug dissolution rate. The insoluble drug, cilostazol, was chosen as a model drug to be loaded into SNT and we developed a simple and efficient method for regulating the drug release by using a gelatin coating with different thicknesses around the SNT. The release rate was adjusted by the amount of gelatin surrounding the SNT, with an increased barrier leading to a reduction in the release rate. A model developed on the basis of the Weibull modulus was established to fit the release results.

  6. Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, Magdalena, E-mail: mprokop@gumed.edu.pl; Czarnobaj, Katarzyna; Szewczyk, Adrian; Sawicki, Wiesław

    2016-03-01

    The aim of this study was to evaluate the surface mineralization activity and in vitro drug behaviour potential of new mesoporous silica microparticles (MSM). The unmodified MSM (MSM-0%Ca) and calcium-modified MSM (MSM-5%Ca, MSM-15%Ca, MSM-25%Ca) were prepared using the self-assembling method. Calcium diethoxide was used as a calcium precursor. Doxorubicin hydrochloride (DOX), used as an anticancer model drug, was selected to the drug loading and release studies. The DOX loading into the microparticles was performed by liquid adsorption process. The self-formation of carbonate hydroxyapatite (C-Hap) on the MSM surface was examined under in vitro biomimetic conditions. The samples were characterised by means of scanning-transmission electron microscopy (STEM) and energy dispersive X-ray spectrometry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption–desorption measurements. The results indicated an inverse relationship — while increasing the total amount of calcium in the MSM composition the surface area and pore volume decrease with a simultaneous increase in the pore size. This was correlated with a progressive increase in the surface mineralization ability — especially its initial promotion, and in the decrease in MSM drug loading efficiency. The release rate of the DOX can be effectively tailored by varying the amount of calcium, where the elution rate of DOX increases with an increasing amount of the Ca precursor. - Highlights: • Mesoporous silica microparticles were synthesized via self-assembling method. • Different compositions of Ca-modified mesoporous silica were obtained. • The mineralization process and drug behaviour potential of Ca-modified mesoporous silica were investigated. • The initial growth of calcium phosphate can be controlled by a calcium precursor. • The elution rate of DOX can be controlled by a calcium precursor.

  7. Investigating Unusual Organic Functional Groups to Engineer the Surface Chemistry of Mesoporous Silica to Tune CO2-Surface Interactions.

    Science.gov (United States)

    Bloch, Emily; Besson, Eric; Queyroy, Séverine; Llewellyn, Richard; Gastaldi, Stéphane; Llewellyn, Philip L

    2017-04-26

    As the search for functionalized materials for CO2 capture continues, the role of theoretical chemistry is becoming more and more central. In this work, a strategy is proposed where ab initio calculations are compared and validated by adsorption microcalorimetry experiments for a series of, so far unexplored, functionalized SBA-15 silicas with different spacers (aryl, alkyl) and terminal functions (N3, NO2). This validation then permitted to propose the use of a nitro-indole surface functionality. After synthesis of such a material the predictions were confirmed by experiment. This confirms that it is possible to fine-tune CO2-functional interactions at energies much lower than those observed with amine species.

  8. Comparison of the Acidity of Heteropolyacids Encapsulated in or Impregnated on SBA-15

    Directory of Open Access Journals (Sweden)

    Pinto Teresa

    2016-03-01

    Full Text Available Heteropolyacids (HPA immobilized onto SBA-15 silica were prepared by two different ways using either impregnation or encapsulation methodologies. Two Keggin-type HPA, H3PW12O40 and H4SiW12O40 were considered in this study. The resulting hybrid materials were fully characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, Raman, diffuse reflectance UV-Vis spectroscopies and 31P MAS NMR. All characterization methods showed that at room temperature the catalysts contained well-dispersed and intact Keggin units throughout the solid. The catalytic activity of these solids was investigated in the isomerization of n-hexane. The impregnated and encapsulated phosphotungstic catalysts performed similarly in catalysis showing that the amount of active sites was nearly the same in both catalysts. On the contrary, the tungstosilicic encapsulated material was completely inactive while its impregnated counterpart was even more active than the phosphotungstic derived catalysts. The acidity of the solids was measured by various methods: microcalorimetry of ammonia adsorption, ammonia desorption followed by Temperature Programmed Desorption (TPD and DRIFT/GC-MS and pyridine adsorption followed by infrared spectroscopy. Only pyridine adsorption and ammonia desorption followed by DRIFT/GC-MS agreed with the catalytic data. Ammonia adsorption followed by microcalorimetry was not able to differentiate between the four catalysts while the TPD experiments led to unreliable results, as not only the evolved ammonia but also other molecules such as water were taken into account in the measurements. The behavior difference between the encapsulated silico- and phosphotungstic acids was explained by a more pronounced encapsulation in the case of silicon.

  9. Thermal decomposition behavior of amino groups modified bimodal mesoporous silicas as aspirin carrier.

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Zhang, Li; Li, Yuzhen; Ren, Bo

    2011-12-01

    Two kinds of amino groups were employed to functionalize bimodal mesoporous silicas and related drug carriers were prepared. The characterization results of XRD, N2 adsorption and desorption, FT-IR and TG all confirmed the structural integrity of the bimodal mesopore architecture after introduction treatment of functional groups and the successful adsorption of aspirin. In order to investigate the interaction among the mesoporous structure, the functional groups grafted onto the mesoporous surface and the existential microenvironment of the drug molecules inside the mesoporous channels, the thermal decomposition behaviors of amino groups modified and aspirin loaded carriers were studied based on the thermogravimetric analysis in details. According to the thermogravimetry and derivative thermogravimetry results, the apparent activation energies E(a) of thermal decomposition for all related samples have been evaluated by Kissinger and Flynn-Wall-Ozawa methods. Meanwhile, their thermal decomposition mechanisms have been suggested by using Coats and Redfern methods. All these featured consequence could provide a deeper understanding for large loading capacity and controlled release of drug-carriers in the pharmaceutical application.

  10. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: lihuijsdx@163.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China); Key laboratory of plant resource and utilization, Jishou University, Hunan Jishou 416000 (China); Xu, Miaomiao; Wang, Susu; Lu, Cuimei; Li, Zhiping [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China)

    2015-02-15

    Highlights: • Preparation of a vanillic acid imprinted mesoporous silica polymers. • Improved selectivity and adsorption capability of this MIPs. • Excellent mass transfer dynamics for the MIPs. • High solid phase extraction applicability toward real sample. - Abstract: A vanillic acid imprinted mesoporous silica polymer (MIPs) was prepared by copolymerizing a modified mesoporous silica molecular sieve with template molecule, functional monomer and cross-linker in present work. Interaction between the template and functional monomer was investigated by ultraviolet/visible spectrophotometry. These MIPs were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption dynamics and thermodynamic behavior of MIPs was explored and the selective recognition capability evaluated. Also, the applicability for the MIPs as solid phase extraction media was tested. Results indicated the 1:1 (mole ratio) complex of vanillic acid-4-vinylpyridine might predominate in the pre-polymerization mixture and the MIPs obtained possessed rapid binding dynamics and higher affinity toward template molecules, reaching adsorption equilibrium within 230 min with the highest adsorption amount of 50.7 mg g{sup −1}. Freundlich model was shown best to describe isotherm adsorption for the MIPs. The MIPs could selectively bind template molecule with selectivity coefficients of 1.36–1.50. In addition, a higher enrichment capability when using it for gathering target compound from methanol extract of Artemisia stelleriana and a good reusability during adsorption–desorption recycling use could be observed.

  11. Design and fabrication of branched polyamine functionalized mesoporous silica: an efficient absorbent for water remediation.

    Science.gov (United States)

    Nayab, Sana; Farrukh, Aleeza; Oluz, Zehra; Tuncel, Eylül; Tariq, Saadia Rashid; ur Rahman, Habib; Kirchhoff, Katrin; Duran, Hatice; Yameen, Basit

    2014-03-26

    A novel branched polyamine (polyethyleneimine, PEI) functionalized mesoporous silica (MS) adsorbent is developed via a facile "grafting-to" approach. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy verified the effective surface functionalization of MS with monolayer and polymer. The transmission electron microscopy (TEM) was employed to reveal the morphology of the fabricated materials. The adsorption behavior of the polyamine functionalized mesoporous silica (MS-PEI) is assessed against anionic dyes. The adsorbent characteristics of MS-PEI are compared with a monolayer platform comprising of 3-aminopropyltriethoxy silane (APTES) functionalized mesoporous silica (MS-APTES). The adsorption behavior of the MS-PEI and MS-APTES toward anionic dyes is further evaluated by studying the effect of adsorbent dosage, pH, contact time, and temperature. Langmuir and Freundlich isotherm models are employed to understand the adsorption mechanism. The obtained kinetic data support a pseudo-second-order adsorption behavior for both monolayer and polymer functionalized MS. The associated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) reveal that the process of adsorption with MS-PEI is more spontaneous and energetically favored as compared to the adsorption with MS-APTES. Taken together, the novel adsorbent system derived from a combination of MS and branched polymer (MS-PEI) shows the higher absorption efficiency and capacity toward the anionic dyes than the monolayer based adsorbent (MS-APTES).

  12. Synthesis and characterization of a hexagonal mesoporous silica with enhanced thermal and hydrothermal stabilities

    Energy Technology Data Exchange (ETDEWEB)

    Al Othman, Zeid A., E-mail: zaothman@ksu.edu.sa [Department of Chemistry, College of Science building 5, PO Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Apblett, Allen W. [Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK (United States)

    2010-03-15

    A synthetic route was developed for a novel hexagonal mesoporous silica that has remarkably wide channel diameters and thick walls. The procedure involved the acid-catalyzed hydrolysis of tetraethylorthosilicate in a water/ethanol/isopropoanol solvent mixture while employing 1-hexadecylamine as a templating agent and mesitylene as an auxiliary agent. After removal of the template by either extraction with ethanolic hydrochloric acid or by calcination at 550 deg. C, the resulting mesoporous materials had surface areas of 1283 and 1211 m{sup 2}/g. The channel diameters were found to be 47.2-51.1 A, while the wall thicknesses were 20.9-21.1 A. X-ray powder diffraction demonstrated that the novel mesoporous silica belonged to the MCM-41 structural family. Notably, they displayed higher thermal and hydrothermal stabilities, and have higher surface areas than conventionally prepared MCM-41 silica. The thickest channel walls (21.1 A) can withstand calcination to nearly 850 deg. C with minimal structural damage. The calcined sample was more resistant to hydrothermal treatment in boiling water than was the solvent-extracted product but both materials showed minimal change after 25 h of hydrothermal treatment.

  13. Photocatalytic reduction of carbon dioxide by strontium titanate nanocube-dispersed mesoporous silica

    Directory of Open Access Journals (Sweden)

    Tomomi Ohashi

    2017-09-01

    Full Text Available Strontium titanate nanocube-dispersed mesoporous silica (STO(NC-MPS nanocomposite was examined as a photocatalyst for the photoreduction of CO2. Copper (Cu was examined as a co-catalyst, and the results showed that it was effective for the production of CO under a flow of CO2 and UV irradiation in water. As confirmed by gas chromatography–mass spectrometry, 13CO was produced in the presence of 13CO2, thus demonstrating that CO was generated upon photoreduction of CO2. Simultaneous formation of O2 suggested that water acted as a reductant in the photocatalysis process. Moreover, Cu supported on STO(NC-MPS showed higher selectivity toward CO2 reduction when compared with Cu-supported composite prepared from mesoporous silica and SrTiO3 that was synthesized by conventional solid state reaction. Thus, the current findings highlight the characteristics and advantages of SrTiO3 nanocubes and their nanocomposites with mesoporous silica as photocatalysts for CO2 photoreduction.

  14. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tessy, E-mail: tessy3@prodigy.net.mx [Universidad Autonoma Metropolitana-Xochimilco. Departamento de Microbiologia. Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico D.F. Mexico (Mexico); Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118 (United States); Ortiz, Emma [Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Meza, Doraliz [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, Mexico D.F., C.P. 09340 (Mexico); Basaldella, Elena [CIC-CINDECA - Universidad Nacional de La Plata - Calle 47 No 257 - La Plata (Argentina); Bokhimi, Xim; Magana, Carlos [Instituto de fisica, UNAM. Circuito de la Investigacion s/n. C.U. Mexico D.F. 01000 (Mexico); Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier [Departamento de Quimica Inorganica, Universidad de Alicante. Apartado 99, E-03080 Alicante, Espana Spain (Spain)

    2011-04-15

    Research highlights: {yields} Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. {yields} Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. {yields} Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. {yields} The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. {yields} There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO{sub 2}). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO{sub 2} tubes than in mesoporous silica

  15. Biological applications and transmission electron microscopy investigation of mesoporous silica nanoparticles

    Science.gov (United States)

    Trewyn, Brian G.

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both HeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the antioxidant dependent release was measured. Finally, the biological interaction of the material was determined along with TEM measurements. An electron microscopy investigation proved that the pore openings of the MSN were indeed blocked by the Fe 3O4 nanoparticles. The biological interaction investigation demonstrated Fe3O4-capped MSN

  16. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Science.gov (United States)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  17. Control of mesoporous silica nanostructures and pore-architectures using a thickener and a gelator.

    Science.gov (United States)

    Yang, Yonggang; Suzuki, Masahiro; Owa, Sanae; Shirai, Hirofusa; Hanabusa, Kenji

    2007-01-24

    A chiral cationic thickener l-ValPyBr, which was able to enhance the viscosity of water and form loosely physical gel in mixtures of water and alcohols, was synthesized. Sol-gel polymerization of TEOS was carried out in mixtures of water and alcohols under basic conditions using the self-assemblies of l-ValPyBr as template. The left-handed twisted mesoporous silica nanoribbons, which were constructed by nanotubes in monolayer, were obtained, and they tended to self-assemble into bundle structure. Stirring under the preparation process played an important role in the formation of this bundle structure. The obtained silica nanoribbons were uniform in width, thickness, and helical pitch without combining amorphous particles. The helical pitch and pore size of the mesoporous silica nanoribbons sensitively depended on the volume ratio of alcohols to water in the reaction mixtures. With increasing volume ratio of alcohols to water in the reaction mixture, the morphologies of the obtained silica changed from left-handed twisted ribbon to coiled ribbon, then to tubular structure. A compound l-ValPyPF6, structurally related to thickener l-ValPyBr, was able to form physical gel in ethanol, THF, acetonitrile, and the mixtures of ethanol and water. Left-handed multiple helical mesoporous silica nanofibers were prepared by using the self-assemblies of l-ValPyPF6 as template in mixtures of water and alcohols under basic conditions. By controlling both the volume ratio of ethanol to water and the weight ratio of l-ValPyPF6 to TEOS, two- or three-dimensional pore-architecture constructed by porous chiral nanotubes was obtained.

  18. Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Chunling Wei

    2016-10-01

    Full Text Available A series of vanadia catalysts supported on SBA-15 (V/SBA with a vanadia (V content ranging from 1% to 11% were prepared by an incipient wetness method. Their catalytic behavior in the dehydrogenation of isobutane to isobutene with CO2 was examined. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, and temperature-programmed reduction (TPR. It was found that these catalysts were effective for the dehydrogenation reaction, and the catalytic activity is correlated with the amount of dispersed vanadium species on the SBA-15 support. The 7% V/SBA catalyst shows the highest activity, which gives 40.8% isobutane conversion and 84.8% isobutene selectivity. The SBA-15-supported vanadia exhibits higher isobutane conversion and isobutene selectivity than the MCM-41-supported one.

  19. SYNTHESIS OF MESOPOROUS METHYL-SILICA HYBRID FOR ADSORPTION OF ALIZARIN RED-S

    Directory of Open Access Journals (Sweden)

    Bambang Rusdiarso

    2010-06-01

    Full Text Available Mesoporous methyl-silica hybrid has been synthesized through sol-gel process, by using tetraethylorthosilicate and methyltriethoxysilane as precursors and tartaric acid as a template. The adsorbent was applied to study the adsorption of alizarin red-S. The preparation of methyl-silica hybrid was carried out at various mol ratios of precursors and tartaric acid concentration. The methyl-silica hybrid result was characterized by infrared spectroscopy, X-ray diffraction, and surface area analyzer. Adsorption experiment was conducted to study the effect of pH and Alizarin Red-S concentration on the adsorption capacity of the adsorbent. The adsorbed Alizarin Red-S was calculated from different of Alizarin Red-S concentration before and after adsorption based on the analysis with UV-Vis method. Characterization with Infrared Spectroscopy showed that methyl-silica hybrid has been successfully synthesized as indicated by appearance of characteristic functional group vibrations i.e Si-C, silanol (Si-OH and siloksan (Si-O-Si. The X-ray diffraction data showed amorphous structure of methyl-silica Hybrid. The Surface Area Analyzer analysis data showed that the pore diameter and surface area of methyl-silica hybrid tended to increase as the template concentration increases. Adsorption study of methyl-silica hybrid showed that the adsorption decreased as the pH was increased. The optimum adsorption was obtained at pH=2.0 with the concentration of Alizarin Red-S of 70 mg/L.   Keywords: sol-gel, tartaric acid template, mesoporous, adsorption

  20. Detemplation of soft mesoporous silica nanoparticles with structural preservation

    NARCIS (Netherlands)

    Pérez, Lidia López; Ortiz-Iniesta, María J.; Zhang, Zheng; Agirrezabal-Telleria, Iker; Santes, Martijn; Heeres, Hero Jan; Melián-Cabrera, Ignacio

    2013-01-01

    A mild protocol that allows the template removal of soft un-aged silica nanoparticles was investigated. After oxidizing the organic template by Fenton chemistry, a good structural preservation is only achieved when the material is equilibrated and dried in a low-surface tension solvent. This avoids

  1. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  2. Semiconducting polymer encapsulated mesoporous silica particles with conjugated Europium complexes: toward enhanced luminescence under aqueous conditions.

    Science.gov (United States)

    Zhang, Jixi; Prabhakar, Neeraj; Näreoja, Tuomas; Rosenholm, Jessica M

    2014-01-01

    Immobilization of lanthanide organic complexes in meso-organized hybrid materials for luminescence applications have attracted immense interest due to the possibility of controlled segregation at the nanoscopic level for novel optical properties. Aimed at enhancing the luminescence intensity and stability of the hybrid materials in aqueous media, we developed polyvinylpyrrolidone (PVP) stabilized, semiconducting polymer (poly(9-vinylcarbazole), PVK) encapsulated mesoporous silica hybrid particles grafted with Europium(III) complexes. Monosilylated β-diketonate ligands (1-(2-naphthoyl)-3,3,3-trifluoroacetonate, NTA) were first co-condensed in the mesoporous silica particles as pendent groups for bridging and anchoring the lanthanide complexes, resulting in particles with an mean diameter of ∼ 450 nm and a bimodal pore size distribution centered at 3.5 and 5.3 nm. PVK was encapsulated on the resulted particles by a solvent-induced surface precipitation process, in order to seal the mesopores and protect Europium ions from luminescence quenching by producing a hydrophobic environment. The obtained polymer encapsulated MSN-EuLC@PVK-PVP particles exhibit significantly higher intrinsic quantum yield (Φ(Ln) = 39%) and longer lifetime (τ(obs) = 0.51 ms), as compared with those without polymer encapsulation. Most importantly, a high luminescence stability was realized when MSN-EuLC@PVK-PVP particles were dispersed in various aqueous media, showing no noticeable quenching effect. The beneficial features and positive attributes of both mesoporous silica and semiconducting polymers as lanthanide-complex host were merged in a single hybrid carrier, opening up the possibility of using these hybrid luminescent materials under complex aqueous conditions such as biological/physiological environments.

  3. Concentration quenching and photostability in Eu(dbm){sub 3}phen embedded in mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Talon, Aldo; Storaro, Loretta [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Le Donne, Alessia; Binetti, Simona [Department of Materials Science and Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Benedetti, Alvise; Polizzi, Stefano [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy)

    2014-02-15

    Ordered mesoporous silica nanoparticles (MSNs) were impregnated with different loadings of the luminescent complex tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm){sub 3}phen), with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as spectral converter for multi-crystalline silicon solar cells. The morphological, structural and luminescence properties of the impregnated silica nanoparticles were characterized by N{sub 2} physisorption, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, UV–visible spectroscopy and photoluminescence excitation and emission measurements. Photostability was tested under 1 sun (1000 W/m{sup 2}) illumination for 24 h and the related effects were inspected by UV–visible and photoluminescence spectroscopies. Impregnation of the complex into 50–70 nm MSNs with pore size tailored around 2.9 nm depressed concentration quenching and allowed the use of complex loadings as high as 23 wt%. Sunlight irradiation caused a marked increase in the luminescence intensity. -- Highlights: • Mesoporous silica nanoparticles tailored to the size of Eu{sup 3+}(dbm){sub 3}phen molecules. • Concentration quenching avoided up to 23 wt% of Eu{sup 3+}(dbm){sub 3}phen/silica. • Sun irradiation increased luminescence intensity by two order of magnitudes.

  4. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation.

    Science.gov (United States)

    Chen, Bao; Wang, Zhouhua; Quan, Guilan; Peng, Xinsheng; Pan, Xin; Wang, Rongchang; Xu, Yuehong; Li, Ge; Wu, Chuanbin

    2012-01-01

    A liquisolid technique has been reported to be a new approach to improve the release of poorly water-soluble drugs for oral administration. However, an apparent limitation of this technique is the formulation of a high dose because a large amount of liquid vehicle is needed, which finally results in a low-dose liquisolid formulation. Silica as an absorbent has been used extensively in liquisolid formulations. Although nanoparticle silica can be prepared and used to improve liquid adsorption capacity, loading a high dose of drug into a liquisolid is still a challenge. With the aim of improving adsorption capacity and accordingly achieving high drug loading, ordered mesoporous silica with a high surface area and narrow pore size distribution was synthesized and used in a liquisolid formulation. Ordered mesoporous silica was synthesized and its particle size and morphology were tailored by controlling the concentration of cetyltrimethyl ammonium bromide. The ordered mesoporous silica synthesized was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, small-angle x-ray diffraction, wide angle x-ray diffraction, and nitrogen adsorption-desorption measurements. The liquid adsorption capacity of ordered mesoporous silica was subsequently compared with that of conventional silica materials using PEG400 as the model liquid. Carbamazepine was chosen as a model drug to prepare the liquisolid formulation, with ordered mesoporous silica as the adsorbent material. The preparation was evaluated and compared with commercially available fast-release carbamazepine tablets in vitro and in vivo. Characterization of the ordered mesoporous silica synthesized in this study indicated a huge Brunauer-Emmett-Teller surface area (1030 m(2)/g), an ordered mesoporous structure with a pore size of 2.8 nm, and high adsorption capacity for liquid compared with conventional silica. Compared with fast-release commercial

  5. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  6. Cu(II) recognition materials: Fluorophores grafted on mesoporous silica supports

    Energy Technology Data Exchange (ETDEWEB)

    Kledzik, Krzysztof; Orlowska, Maja [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Patralska, Dorota [Institute of Organic Chem., Pol. Acad. Sciences, Kasprzaka 44, 01-224 Warsaw (Poland); Gwiazda, Marcin [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Jezierska, Julia [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Pikus, Stanislaw [Faculty of Chemistry, M. Curie-Sklodowska University, M. Curie Sklodowska 3, 20-031 Lublin (Poland); Ostaszewski, Ryszard [Institute of Organic Chem., Pol. Acad. Sciences, Kasprzaka 44, 01-224 Warsaw (Poland)], E-mail: rysza@icho.edu.pl; Klonkowski, Andrzej M. [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)], E-mail: aklonk@chem.univ.gda.pl

    2007-11-15

    There were designed and synthesized naphthalene and pyrene derivatives consisting of fluorophore group and of receptor fragment with donor N and O atoms. These fluorosensors were covalently attached by grafting carboxyl group to surfaces of silica xerogel or mesoporous silicas (MCM-41 and MCM-48) functionalized either with 3-aminopropyl or 3-glycidoxypropyl groups. The pyrene derivatives 2 and 3 covalently grafted on MCM-48 silica functionalized with 3-aminopropyl groups are potential recognition elements of a fluorescence chemical sensor. Fluorescence emission of the prepared recognition materials is quenched specifically owing to photoinduced electron transfer (PET) effect after coordination reactions with Cu(II) ions. Moreover, both the materials exhibit selectivity for Cu(II) ions in aqueous solutions in presence of such metal ions as: alkali, alkaline earth and transition. During UV irradiation the studied recognition elements undergo slowly photochemical degradation.

  7. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis.

    Science.gov (United States)

    Shi, Mengchao; Chen, Zetao; Farnaghi, Saba; Friis, Thor; Mao, Xueli; Xiao, Yin; Wu, Chengtie

    2016-01-01

    The application of mesoporous silica nanospheres (MSNs) loaded with drugs/growth factors to induce osteogenic differentiation of stem cells has been trialed by a number of researchers recently. However, limitations such as high cost, complex fabrication and unintended side effects from supraphysiological concentrations of the drugs/growth factors represent major obstacles to any potential clinical application in the near term. In this study we reported an in situ one-pot synthesis strategy of MSNs doped with hypoxia-inducing copper ions and systematically evaluated the nanospheres by in vitro biological assessments. The Cu-containing mesoporous silica nanospheres (Cu-MSNs) had uniform spherical morphology (∼100nm), ordered mesoporous channels (∼2nm) and homogeneous Cu distribution. Cu-MSNs demonstrated sustained release of both silicon (Si) and Cu ions and controlled degradability. The Cu-MSNs were phagocytized by immune cells and appeared to modulate a favorable immune environment by initiating proper pro-inflammatory cytokines, inducing osteogenic/angiogenic factors and suppressing osteoclastogenic factors by the immune cells. The immune microenvironment induced by the Cu-MSNs led to robust osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the activation of Oncostation M (OSM) pathway. These results suggest that the novel Cu-MSNs could be used as an immunomodulatory agent with osteostimulatory capacity for bone regeneration/therapy application. In order to stimulate both osteogenesis and angiogenesis of stem cells for further bone regeneration, a new kind of hypoxia-inducing copper doped mesoporous silica nanospheres (Cu-MSNs) were prepared via one-pot synthesis. Biological assessments under immune environment which better reflect the in vivo response revealed that the nanospheres possessed osteostimulatory capacity and had potential as immunomodulatory agent for bone regeneration/therapy application. The strategy of introducing

  8. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli.

    Science.gov (United States)

    Koneru, Bhuvaneswari; Shi, Yi; Wang, Yu-Chieh; Chavala, Sai H; Miller, Michael L; Holbert, Brittany; Conson, Maricar; Ni, Aiguo; Di Pasqua, Anthony J

    2015-10-30

    Tetracycline (TC) is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off) are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs) are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41), a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS), pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli) in culture over a 24 h period, while blank nanoparticles had no effect.

  9. Synthesis and modification of mesoporous silica and the preparation of molecular sieve thin films via pulsed laser deposition

    Science.gov (United States)

    Coutinho, Decio Heringer

    2001-07-01

    Hexagonal mesoporous DAM-1 (Dallas Amorphous Material-1) was prepared using Vitamin E TPGS as the structure-directing agent. Depending upon the temperature and gel composition, highly ordered and hydrothermally stable DAM-1 with various morphologies could be achieved including spheres, gyroids, discoid, hexagonal plates and rods. This synthesis was modified to prepare hybrid organic-inorganic amine and thiol bifunctionalized DAM-1 by direct co-condensation under acidic conditions. Patterned DAM-1 thin films were prepared on patterned transparencies utilizing pulsed laser deposition (PLD) and line patterning techniques. DAM-1 laser ablation onto the patterned substrate followed by hydrothermal treatment resulted in a densely packed film. Removal of the patterned lines by sonication revealed patterned DAM-1 films. Thin films of zeolite type X were also prepared using the PLD technique. Laser ablation of zeolite X onto TiN-coated silicon wafers followed by a hydrothermal treatment resulted in partially oriented, crystalline membranes. Hydrothermal treatment of PLD films on stainless steel mesh produced a coated wire mesh with a 3-mum thick zeolite X film. A novel strategy for imprinting mesoporous SBA-15 that combines a triblock copolymer template and a chiral ruthenium complex is reported. A chiral PEO helix was formed by the chiral ruthenium complex interaction with the block copolymer during the synthesis of SBA-15. Upon removal of the chiral ruthenium complex, a stereospecfic cavity was created. Preliminary results indicated stereoselective absorption of Delta or Λ-Ru(phen)3 2+ isomer from a racemic mixture could be achieved depending on the chirality of the PEO chain. Practicum Two. The industrial practicum report describes the process development unit (PDU) 3-pentenenitrile (3PN) refining operation. This distillation works was operated to refine crude 3PN product, which contained 3PN, 2-methyl-3-butenenitrile (2M3BN), and other byproducts. This report also

  10. Thermal stability of mesoporous silica-coated gold nanorods with different aspect ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gergely-Fülöp, Eszter, E-mail: fulop.eszter@ttk.mta.hu; Zámbó, Dániel, E-mail: zambo.daniel@ttk.mta.hu; Deák, András, E-mail: deak.andras@ttk.mta.hu

    2014-12-15

    The effect of different temperatures (up to 900 °C) on the morphology of mesoporous silica-coated gold nanorods was systematically investigated. Gold nanorods with different aspect ratios (AR ranging from 2.5 to 4.3) were coated with a 15 nm thick mesoporous silica shell. Silicon supported monolayers of the particles were annealed in the temperature range of 300–900 °C. The resulting changes in particle morphology were investigated using scanning electron microscopy and visible wavelength extinction spectroscopy. The silica coating generally improved the stability of the nanorods from ca. 250 °C by several hundreds degree Celsius. For nanorods with AR < 3 the shape and the aspect ratio change is only moderate up to 700 °C. At 900 °C these nanorods became spherical. For nanorods with AR>3, lower stability was found as the aspect ratio decrease was more significant and they transformed into spherical particles already at 700 °C. It was confirmed by investigating empty silica shells that the observed conformal change of the shell material when annealing core/shell particles is dictated by the deformation of the core particle. This also implies that a significant mechanical stress is exerted on the shell upon core deformation. In accordance with this, for the highest aspect ratio (AR ∼ 4) nanorod the shell breaks up at 900 °C and the gold cores were partially released and coalesced into large spherical particles. - Highlights: • Deformation of mesoporous silica-coated gold nanorods upon annealing up to 900 °C. • The silica shell protects the gold cores from turning into spheres up to 500 °C. • Decreasing thermal stability with increasing aspect ratio. • Deformation of the silica shell dictated by the shape change of the gold core. • Core induced break-up of the shell for high aspect ratio nanorods.

  11. Mesoporous silica nanoparticles for treating spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  12. Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography

    KAUST Repository

    Zhang, Daliang

    2011-12-01

    High resolution electron microscopy (HRTEM) has unique advantages for structural determination of nano-sized porous materials compared to X-ray diffraction, because it provides the important structure factor phase information which is lost in diffraction. Here we demonstrate the structure determination of the first tri-continuous mesoporous silica IBN-9 by electron crystallography. IBN-9 has a hexagonal unit cell with the space group P6 3/mcm and a = 88.4 , c = 84.3 . HRTEM images taken along three main directions, [0 0 1], [11̄0] and [1 0 0] were combined to reconstruct the 3D electrostatic potential map, from which the tri-continuous pore structure of IBN-9 was discovered. The different steps of structure determination of unknown mesoporous structures by electron crystallography are described in details. Similar procedures can also be applied for structure determination of other porous and nonporous crystalline materials. © 2011 Elsevier Inc. All rights reserved.

  13. Growth and branching of gold nanoparticles through mesoporous silica thin films

    Science.gov (United States)

    Angelomé, Paula C.; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Rodríguez-González, Benito; Zelcer, Andrés; Soler-Illia, Galo J. A. A.; Liz-Marzán, Luis M.

    2012-01-01

    Composite materials made of mesoporous oxide thin films containing metallic nanoparticles are of high interest in various fields, including catalysis, biosensing and non-linear optics. We demonstrate in this work the fabrication of such composite materials containing a sub-monolayer of gold nanoparticles (GNPs) of various shapes covered with mesoporous silica thin films. Additionally, the shape of the GNPs (and thus their optical properties) can be modified in situ through seeded growth and branching. Such growth proceeds upon wetting with HAuCl4 solution, a surfactant (cetyltrimethylammonium bromide, CTAB) and a mild reducing agent (ascorbic acid, AA). The effect of varying several reaction parameters (time and CTAB and AA concentrations) was evaluated, showing that more anisotropic particles are obtained at longer reaction times, lower CTAB concentration and higher AA concentration. The final shape of the GNPs was also found to depend on their initial shape and size, as well as the pore size of the mesoporous film covering them. Because the growth proceeds through the pores of the film, it may lead to shapes that are not easily obtained in solution, such as particles with branches on one side only. Finally, we have confirmed that no damage was induced to the mesoporous silica structure during the growth process and thus the final particles remain well covered by the thin film, which can eventually be used as a filter between the GNPs and the outer medium.Composite materials made of mesoporous oxide thin films containing metallic nanoparticles are of high interest in various fields, including catalysis, biosensing and non-linear optics. We demonstrate in this work the fabrication of such composite materials containing a sub-monolayer of gold nanoparticles (GNPs) of various shapes covered with mesoporous silica thin films. Additionally, the shape of the GNPs (and thus their optical properties) can be modified in situ through seeded growth and branching. Such growth

  14. Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe(3.).

    Science.gov (United States)

    Gai, Fangyuan; Zhou, Tianlei; Chu, Guang; Li, Ye; Liu, Yunling; Huo, Qisheng; Akhtar, Farid

    2016-01-14

    This work demonstrates a novel method for the synthesis of large pore mesoporous silica nanoparticles (MSNs) with a pore diameter of 10.3 nm and a particle diameter of ∼50 nm based on the incorporation of mixed anionic surfactants sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulphate (SDS) as the template in the synthesis process. The dispersity, morphology, pore structure and size of mesoporous nanoparticles were adjusted by changing the molar ratio of two anionic surfactants, the concentration of the co-structure-directing agent (3-aminopropyltrimethoxysilane) and the reaction temperature. The results of synthesis experiments suggested that the formation of large pore MSNs involved a nucleation and growth process. MSNs were post-grafted with a Schiff base moiety for fluorescence sensing of Fe(3+) in water. The applicability of functionalized MSNs was demonstrated by selective fluorescence detection of Fe(3+) in aqueous media.

  15. Controlled epitaxial growth of mesoporous silica/gold nanorod nanolollipops and nanodumb-bells

    Directory of Open Access Journals (Sweden)

    Ching-Mao Huang

    2014-11-01

    Full Text Available In this work, we describe the controlled synthesis of novel heterogeneous nanostructures comprised of mesoporous silica-coated gold nanorods (MSGNRs in the form of core–shell nanolollipops and nanodumb-bells, using a seed-mediated sol–gel method. Although MSGNR core–shell (θ-MSGNR structures have been reported previously by us and others, we herein discuss the first ever fabrication of MSGNR nanolollipops (φ-MSGNR and nanodumb-bells (β-MSGNR, achieved by simply controlling the aging time of gold nanorods (GNRs, the residual cetyltrimethylammonium bromide (CTAB coating of GNRs, and the addition of dimethyl formamide during incubation, centrifugation, and sonication, respectively. Transmission electron microscopy revealed two bare GNR isoforms, with aspect ratios of approximately 4 and 6, while scanning electron microscopy was used to further elucidate the morphology of φ-MSGNR and β-MSGNR heterostructures. In agreement with the smaller dielectric constants afforded by incomplete silica encasement, spectroscopic studies of φ-MSGNR and β-MSGNR, surface plasmon resonance (SPR bands revealed 20-40 nm blue shifts relative to the SPR of θ-MSGNR. On the basis of the attributes and applications of more conventional θ-MSGNRs, φ-MSGNRs and β-MSGNRs are anticipated to provide most of the utility of θ-MSGNRs, but with the additional functionalities that accompany their incorporation of both bare gold and mesoporous silica encased tips; with significant/unique implications for biomedical and catalytic applications.

  16. Controlled epitaxial growth of mesoporous silica/gold nanorod nanolollipops and nanodumb-bells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Mao [Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Material and Chemical Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan (China); Chung, Ming-Fang; Lo, Leu-Wei, E-mail: lwlo@nhri.org.tw [Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Souris, Jeffrey S. [Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2014-11-01

    In this work, we describe the controlled synthesis of novel heterogeneous nanostructures comprised of mesoporous silica-coated gold nanorods (MSGNRs) in the form of core–shell nanolollipops and nanodumb-bells, using a seed-mediated sol–gel method. Although MSGNR core–shell (θ-MSGNR) structures have been reported previously by us and others, we herein discuss the first ever fabrication of MSGNR nanolollipops (φ-MSGNR) and nanodumb-bells (β-MSGNR), achieved by simply controlling the aging time of gold nanorods (GNRs), the residual cetyltrimethylammonium bromide (CTAB) coating of GNRs, and the addition of dimethyl formamide during incubation, centrifugation, and sonication, respectively. Transmission electron microscopy revealed two bare GNR isoforms, with aspect ratios of approximately 4 and 6, while scanning electron microscopy was used to further elucidate the morphology of φ-MSGNR and β-MSGNR heterostructures. In agreement with the smaller dielectric constants afforded by incomplete silica encasement, spectroscopic studies of φ-MSGNR and β-MSGNR, surface plasmon resonance (SPR) bands revealed 20-40 nm blue shifts relative to the SPR of θ-MSGNR. On the basis of the attributes and applications of more conventional θ-MSGNRs, φ-MSGNRs and β-MSGNRs are anticipated to provide most of the utility of θ-MSGNRs, but with the additional functionalities that accompany their incorporation of both bare gold and mesoporous silica encased tips; with significant/unique implications for biomedical and catalytic applications.

  17. Poly(lactic) acid fibers loaded with mesoporous silica for potential applications in the active food packaging

    Science.gov (United States)

    Cacciotti, Ilaria; Nanni, Francesca

    2016-06-01

    Multifunctional fibrous systems based on poly(lactic) acid (PLA), mesoporous silica (SiO2) and ascorbic acid (AA) were produced by means of electrospinning technique, for potential applications in the active food packaging sector, as platform for the controlled release of antioxidant and/or antimicrobial agents with the additional filtering function. The ascorbic acid was physisorbed on the surface of mesoporous silica in order to stabilize it and to extend its antioxidant action. The influence of mesoporous silica and ascorbic acid on the microstructural and mechanical properties was investigated, revealing a revelant mechanical reinforcement in the case of fibers loaded only with SiO2 and a decrement in the case of SiO2 with physisorbed ascorbic acid, due to the worse interface between the fillers and the polymeric matrix.

  18. Core/shell magnetic mesoporous silica nanoparticles with radially oriented wide mesopores

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2014-06-01

    Full Text Available Core/shell nanoparticles, containing magnetic iron-oxide (maghemite core and mesoporous shell with radial porous structure, were prepared by dispersing magnetite nanoparticles and adding tetraethylorthosilicate to a basic aqueous solution containing structure-templating cetyltrimethylammonium bromide and a pore-swelling mesithylene. The material is characterized by SEM and TEM imaging, nitrogen sorption and powder X-ray diffraction. Distinctive features of the prepared material are its high surface area (959 m2/g, wide average pore diameter (12.4 nm and large pore volume (2.3 cm3/g. The material exhibits radial pore structure and the high angle XRD pattern characteristic for maghemite nanoparticles, which are obtained upon calcination of the magnetite-containing material. The observed properties of the prepared material may render the material applicable in separation, drug delivery, sensing and heterogeneous catalysis.

  19. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Piotrowo 3, 60-965 Poznań (Poland); Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2014-08-01

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N{sub 2} adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm{sup 3}. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  1. Using Cyclohexanol as a Co-Surfactant in the Synthesis of New Mesoporous Silica Particles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh

    2014-02-01

    Full Text Available In the synthesis of mesoporous silica particles, the geometry, pore size, and specific surface area and pore volume of the particles can be greatly influenced by selected media and method, selection of co-solvent and co-surfactant. In this study, new SPB particles (silicone mesoporous particles, prepared by sol-gel method using block copolymers as template were synthesized in a water/n-octane system from the mixture of two copolymers based on poly(ethylene oxide-b-poly (propylene oxide-b-poly(ethylene oxide (PEO-b-PPO-b-PEO and poly(propylene oxide-b-poly (ethylene oxide-b-poly(propylene oxide (PPO-b-PEO-b-PPO triblock copolymers. Tetraethyl orthosilicate (TEOS as precursor, cyclohexanol as co-surfactant, n-octane as co-solvent and citric acid catalyst were used. The specific surface area and pore volume, pore diameter, morphology, microstructure and porosity of the SPB particles were characterized by X-ray diffraction (XRD, nitrogen adsorption-desorption (BET method and scanning electron microscopy (SEM. The obtained results revealed that, using the mixture of two block copolymers in the synthesis of SPB1,2 particles, could produce mean pore diameters around 9 nm and control the pore size distribution of silica particles from non-normal to a normal distribution. Furthermore, the effect of chair conformation of cyclohexanol as a large co-surfactant on the mixed block copolymers due to increase in the uniformity and yield of the SPB1,2 mesoporous silica particles compared to the SPB1 particles, there is approximately a two fold increase in SPB1,2 particle yield. In this regard, the effect of cyclohexanol and the second block copolymer in making the new templates and micellization process were discussed.

  2. Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Atyaf Khalid Hameed

    2016-08-01

    Full Text Available Zero valent iron supported on mesoporous silicanano particles (NZVI/MSNs was prepared by the aqueous phase borohydride reduction methods. Prior to the reduction, mesoporous silica nanoparticles (MSNs were prepared through the activation of fumed silica with concentrated HCl by refluxing at 90 °C. FTIR, XRD, FESEM, EDX and BET were used to characterize theadsorbents prepared. BET surface areas of MSNs, NZVI, and NZVI/MSNs were 126, 41, and 72 m2/g for, respectively. The performance of NZVI/MSNs as adsorbent was examined by adsorption of methylene blue (MB, performed in series of batch experiments. In the kinetic studies, pseudo first order and pseudo second order kinetic models were examined. The pseudo second order equation provided the best fit with the experimental data. Thermodynamic studies indicated that the adsorption process is endothermic with ΔH° was 90.53 kJ/mol. Positive ΔS° (300 J/mol and negative ΔG° (-6.42 kJ/mol was recorded, indicating the spontaneous of the adsorption process and naturally favorable. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th March 2016; Revised: 18th March 2016; Accepted: 18th March 2016 How to Cite: Hameed, A.K., Dewayanto, N., Dongyun, D., Nordin, M.R., Mohd Hasbi Ab. Rahim, M.H.A. (2016. Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 250-261 (doi:10.9767/bcrec.11.2.443.250-261 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.443.250-261

  3. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel

    Directory of Open Access Journals (Sweden)

    Khosravian P

    2016-12-01

    Full Text Available Pegah Khosravian,1 Mehdi Shafiee Ardestani,2 Mehdi Khoobi,3 Seyed Naser Ostad,4 Farid Abedin Dorkoosh,1 Hamid Akbari Javar,1,* Massoud Amanlou5,6,* 1Department of Pharmaceutics, 2Department of Radiopharmacy, 3Department of Pharmaceutical Biomaterials, 4Department of Pharmacology and Toxicology, 5Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, 6Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran *These authors contributed equally to this work Abstract: Mesoporous silica nanoparticles (MSNs are known as carriers with high loading capacity and large functionalizable surface area for target-directed delivery. In this study, a series of docetaxel-loaded folic acid- or methionine-functionalized mesoporous silica nanoparticles (DTX/MSN-FA or DTX/MSN-Met with large pores and amine groups at inner pore surface properties were prepared. The results showed that the MSNs were successfully synthesized, having good pay load and pH-sensitive drug release kinetics. The cellular investigation on MCF-7 cells showed better performance of cytotoxicity and cell apoptosis and an increase in cellular uptake of targeted nanoparticles. In vivo fluorescent imaging on healthy BALB/c mice proved that bare MSN-NH2 are mostly accumulated in the liver but MSN-FA or MSN-Met are more concentrated in the kidney. Importantly, ex vivo fluorescent images of tumor-induced BALB/c mice organs revealed the ability of MSN-FA to reach the tumor tissues. In conclusion, DTX/MSNs exhibited a good anticancer activity and enhanced the possibility of targeted drug delivery for breast cancer. Keywords: targeted delivery, mesoporous silica nanoparticle, folic acid, methionine, docetaxel

  4. Acid leaching of natural chrysotile asbestos to mesoporous silica fibers

    Science.gov (United States)

    Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko

    2017-10-01

    Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.

  5. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery.

    Science.gov (United States)

    Du, Xin; Li, Xiaoyu; Xiong, Lin; Zhang, Xueji; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    Mesoporous silica material with organo-bridged silsesquioxane frameworks is a kind of synergistic combination of inorganic silica, mesopores and organics, resulting in some novel or enhanced physicochemical and biocompatible properties compared with conventional mesoporous silica materials with pure Si-O composition. With the rapid development of nanotechnology, monodispersed nanoscale periodic mesoporous organosilica nanoparticles (PMO NPs) and organo-bridged mesoporous silica nanoparticles (MSNs) with various organic groups and structures have recently been synthesized from 100%, or less, bridged organosilica precursors, respectively. Since then, these materials have been employed as carrier platforms to construct bioimaging and/or therapeutic agent delivery nanosystems for nano-biomedical application, and they demonstrate some unique and/or enhanced properties and performances. This review article provides a comprehensive overview of the controlled synthesis of PMO NPs and organo-bridged MSNs, physicochemical and biocompatible properties, and their nano-biomedical application as bioimaging agent and/or therapeutic agent delivery system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite

    Science.gov (United States)

    Aghajani, Khadijeh; Tayebi, Habib-Allah

    2017-01-01

    In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).

  7. Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) technology of mercury removal and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiangdong; Liu, Jun; Fryxell, G.E. [and others

    1997-09-01

    This paper explains the technology developed to produce Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) for mercury removal from aqueous wastewater and from organic wastes. The characteristics of SAMMS materials, including physical characteristics and mercury loading, and its application for mercury removal and stabilization are discussed. Binding kinetics and binding speciations are reported. Preliminary cost estimates are provided for producing SAMMS materials and for mercury removal from wastewater. The characteristics of SAMMS in mercury separation were studied at PNNL using simulated aqueous tank wastes and actual tritiated pump oil wastes from Savannah River Site; preliminary results are outlined. 47 refs., 16 figs., 16 tabs.

  8. Efficient CO2 sorbents based on silica foam with ultra-large mesopores

    KAUST Repository

    Qi, Genggeng

    2012-01-01

    A series of high-capacity, amine impregnated sorbents based on a cost-effective silica foam with ultra-large mesopores is reported. The sorbents exhibit fast CO2 capture kinetics, high adsorption capacity (of up to 5.8 mmol g-1 under 1 atm of dry CO2), as well as good stability over multiple adsorption-desorption cycles. A simple theoretical analysis is provided relating the support structure to sorbent performance. © 2012 The Royal Society of Chemistry.

  9. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent

    Science.gov (United States)

    Hong, Suk ho; Kim, Hyunjin; Choi, Yongdoo

    2017-05-01

    Here we report indocyanine green (ICG)-loaded hollow mesoporous silica nanoparticles (ICG@HMSNP) as an activatable theranostic platform. Near-infrared fluorescence and singlet oxygen generation of ICG@HMSNP was effectively quenched (i.e. turned off) in its native state because of the fluorescence resonance energy transfer between ICG molecules. Therefore, ICG@HMSNP was nonfluorescent and nonphototoxic in the extracellular region. After the nanoparticles entered the cancer cells via endocytosis, they became highly fluorescent and phototoxic. In addition, intracellular uptake of ICG@HMSNP was 2.75 times higher than that of free ICG, resulting in an enhanced phototherapy of cancer.

  10. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on

  11. Fabrication and characterization of mesoporous silica nanochannels inside the channels of anodic alumina membrane

    Directory of Open Access Journals (Sweden)

    Moataz M. Mekawy

    2016-03-01

    Full Text Available Brij type surfactants (CnEOx that have different chemical structures were used to fabricate 3D Mesoporous Silica Nanochannels (MSN inside the channels of Anodic Alumina Membrane (AAM under acidic conditions. The fabricated 3D MSN were characterized using TEM-ED, SEM, Small angle XRD, and N2 isotherm. Results revealed that the synthesis of ordered 3D cubic Im3m mesostructures can be formed with tunable pore diameters varied from 4.0 to 4.9 nm that are partially affected with the length of ethylene oxide (EO group in the template surfactant.

  12. Effect of addition of pore expanding agent on changes of structure characteristics of ordered mesoporous silicas

    Energy Technology Data Exchange (ETDEWEB)

    Derylo-Marczewska, A. [Faculty of Chemistry, M. Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland)], E-mail: annad@hektor.umcs.lublin.pl; Marczewski, A.W.; Skrzypek, I.; Pikus, S. [Faculty of Chemistry, M. Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland); Kozak, M. [Department of Macromolecular Physics, A. Mickiewicz University, 61-614 Poznan (Poland)

    2008-12-30

    A series of mesoporous silica materials were synthesized by applying two types of Pluronic copolymers as pore creating agents. Differentiation of pore structure of the obtained sorbents was attained by changing the amount of trimethylbenzene as pore expander introduced to a reacting mixture. The parameters characterizing porous structure were estimated from nitrogen adsorption/desorption isotherms. The changes of pore arrangement in the synthesized materials were investigated by using X-ray diffraction. The structural transformations were found at the TMB/polymer ratio of 0.8 and 1. Correlations between the values of structure parameters and the content of TMB were found.

  13. Preparation of Mesoporous SBA-16 Silica-Supported Biscinchona Alkaloid Ligand for the Asymmetric Dihydroxylation of Olefins

    Directory of Open Access Journals (Sweden)

    Shaheen M. Sarkar

    2014-01-01

    Full Text Available Optically active cinchona alkaloid was anchored onto mesoporous SBA-16 silica and the as-prepared complex was used as a heterogeneous chiral ligand of osmium tetraoxide for the asymmetric dihydroxylation of olefins. The prepared catalytic system provided 90–93% yield of vicinal diol with 92–99% enantioselectivity. The ordered mesoporous SBA-16 silica was found to be a valuable support for the cinchona alkaloid liganded osmium catalyst system which is frequently used in chemical industries and research laboratories for olefin functionalization.

  14. Cadmium(II) adsorption using functional mesoporous silica and activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Motoi, E-mail: machida@faculty.chiba-u.jp [Department of Chemistry and Biochemistry, Faulty of Science and Engineering, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada); Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Safety and Health Organization, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Fotoohi, Babak [Department of Chemistry and Biochemistry, Faulty of Science and Engineering, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada); Amamo, Yoshimasa [Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Safety and Health Organization, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Ohba, Tomonori; Kanoh, Hirofumi [Department of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Mercier, Louis [Department of Chemistry and Biochemistry, Faulty of Science and Engineering, Laurentian University, Sudbury, Ontario P3E 2C6 (Canada)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Mono-amino-functional groups were found better than di- and tri-amino for Cd(II) adsorption. Black-Right-Pointing-Pointer Amino-functional group would serve as a basic adsorption site for heavy metal ions. Black-Right-Pointing-Pointer Mercapto- and carboxyl-groups were found to behave as ion exchange sites for proton. Black-Right-Pointing-Pointer Introduction of amino- and mercapto-groups onto silica was proven by XPS and FT-IR measurements. - Abstract: The role of surface functionality on silica and carbonaceous materials for adsorption of cadmium(II) was examined using various mesoporous silica and activated carbon. Silica surfaces were principally functionalized by mono-amino- and mercapto-groups, while carboxylic group was introduced to the activated carbons by oxidation. Functional groups on silica surface were formed using grafting and co-condensation techniques in their preparation. Mono-amino group was found more effective than di- and tri-amino groups for cadmium(II) adsorption on the grafted silica. Mono-amino groups prepared by co-condensation adsorbed cadmium(II) as much as 0.25 mmol/g compared to mercapto- and carboxyl-groups which adsorbed around 0.12 mmol/g, whereas Langmuir adsorption affinities were as strong as 50-60 L/mmol for all of the three functions. The working pH range was wider for mercapto- and carboxyl-functions than for amino-group. Basic site could be an adsorption center for amino-functional groups while ion exchange sites were found to work for the mercapto- and carboxyl-functions to adsorb cadmium(II) from aqueous phase. Based on the experimental results, surface functional groups rather than structure of silica and carbon seemed to play a decisive role for cadmium(II) adsorption.

  15. Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica.

    Science.gov (United States)

    Chen, Jie; Wang, Wei; Xu, Yuquan; Zhang, Xuehong

    2011-01-12

    A slow-release formula of potential biological pesticide Pyoluteorin (Plt) was prepared by using nanophase material of silicon dioxide loading drugs. The final experimental formula was m(Plt:Brij56:TMOS:HCl(aq)) = 0.04:1.4:2:1, synthesized by a highly ordered monolith (HOM) method. This formula can continuously release 85.13 ± 2.03 % of Plt within 28 days. A characterization study showed the formula formed a well-ordered mesoporous structure, with a surface area of 822 m(2) g(-1), with a measured mesoporous volume of 0.41 cm(3) g(-1) and a narrow distribution for the pore size centered at 2.4 nm. A bioactivity experiment showed it authentically prolonged the antifungal effects. This study is the first to report mesoporous formulations for biological pesticides and indicates a potentially interesting drug carrier. The association of a nanostructured silica to the molecular state of the drug holds great interests for field applications as it overcomes the rapid loss of biological function during drug utilities.

  16. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers

    Science.gov (United States)

    Li, Hui; Xu, Miaomiao; Wang, Susu; Lu, Cuimei; Li, Zhiping

    2015-02-01

    A vanillic acid imprinted mesoporous silica polymer (MIPs) was prepared by copolymerizing a modified mesoporous silica molecular sieve with template molecule, functional monomer and cross-linker in present work. Interaction between the template and functional monomer was investigated by ultraviolet/visible spectrophotometry. These MIPs were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption dynamics and thermodynamic behavior of MIPs was explored and the selective recognition capability evaluated. Also, the applicability for the MIPs as solid phase extraction media was tested. Results indicated the 1:1 (mole ratio) complex of vanillic acid-4-vinylpyridine might predominate in the pre-polymerization mixture and the MIPs obtained possessed rapid binding dynamics and higher affinity toward template molecules, reaching adsorption equilibrium within 230 min with the highest adsorption amount of 50.7 mg g-1. Freundlich model was shown best to describe isotherm adsorption for the MIPs. The MIPs could selectively bind template molecule with selectivity coefficients of 1.36-1.50. In addition, a higher enrichment capability when using it for gathering target compound from methanol extract of Artemisia stelleriana and a good reusability during adsorption-desorption recycling use could be observed.

  17. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides.

    Science.gov (United States)

    Li, Xiao-Shui; Pan, Ya-Ni; Zhao, Yong; Yuan, Bi-Feng; Guo, Lin; Feng, Yu-Qi

    2013-11-08

    As one of the most important post-translational modifications, reversible phosphorylation of protein plays crucial roles in a large number of biological processes. Moreover, endogenous phosphopeptides are also associated with certain human diseases. An efficient enrichment and separation method is the premise for successful identification and quantification of phosphopeptides. In this work, titanium grafted magnetic mesoporous silica (Fe3O4@Ti-mSiO2) was developed and applied for the enrichment of endogenous phosphopeptides. Fe3O4@Ti-mSiO2 particles were prepared by grafting titanocene dichloride on the inner walls of magnetic mesoporous silica and then being calcined to remove cyclopentadienyl ligand. The physicochemical properties of the prepared materials were characterized by energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption-desorption analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). For selective enrichment of phosphopeptides, the prepared Fe3O4@Ti-mSiO2 particles were applied for tryptic digests of β-casein, mixtures of β-casein and bovine serum albumin (BSA), and low-fat milk. Finally, Fe3O4@Ti-mSiO2 was successfully applied for the enrichment of endogenous phosphopeptides from human serum. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. PNIPAm grafted amino-functionalized mesoporous silica for thermo-responsive chromium elimination

    Science.gov (United States)

    Chang, Jeong Ho; Kim, Jinwon; Lee, Hyesun

    2017-12-01

    In this study, the effective elimination of Cr(VI) was achieved by thermo-responsive polymer-grafted amino-functionalized mesoporous silica (MS@APTES@PNIPAm) in aqueous solution. The MS@APTES@PNIPAm was successfully synthesized by the coupling of 3-MOP and N-isopropyl acrylamide (NIPAm) in 3-aminoproyltriethoxysilane (APTES) grafted mesoporous silica surface. The thermo-responsive elimination of Cr(VI) was demonstrated at various pH levels and at room temperature and 40 °C, respectively. The characterization of the synthesized materials was achieved by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and nitrogen (N2) adsorption-desorption. The maximum adsorption of hexavalent chromium on MS@APTES@PNIPAm in aqueous solution was 123.8 mg g-1 at 40 °C in pH 2.5. Furthermore, the results of isotherm and kinetic experiments demonstrated that the adsorption behavior of Cr(VI) on MS@APTES@PNIPAm was well fitted to a Langmuir plot with a pseudo-second-order and intra-particle diffusion model.

  19. Fluorescein isothiocyanate-dyed mesoporous silica nanoparticles for tracking antioxidant delivery.

    Science.gov (United States)

    Rashidi, Ladan; Ganji, Fariba; Vasheghani-Farahani, Ebrahim

    2017-06-01

    This study investigated the cellular uptake of fluorescein isothiocyanate-labelled mesoporous silica nanoparticles (FITC-MSNs), amine-functionalised FITC-MSNs (AP-FITC-MSNs) and their gallic acid (GA)-loaded counterparts. Mesoporous silica nanoparticles were labelled with fluorescein isothiocyanate, functionalised by 3-aminopropyltriethoxysilane (APTES) (AP-FITC-MSNs) and then loaded by GA. All nanoparticles were characterised by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and X-ray diffraction. The cytotoxicity of different concentrations of dyed nanoparticles was investigated using (3-(4,5-trihydroxybenzoic acid, dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry. TEM images showed that the average particle sizes of FITC-MSNs and AP-FITC-MSNs were about 100 and 110 nm, respectively. These nanoparticles were internalised by Caco-2 cells, accumulated and dispersed into the cytoplasm, nucleus, and subcellular organelles. Nanoparticles containing GA clearly decreased the viability of cells. FITC-MSNs showed no toxicity on Caco-2 cells at concentrations of ≤50 µg/ml. Functionalisation of FITC-MSNs using APTES decreased toxicity effects on the cells. It was found that FITC-MSNs can be applied at low concentrations as a marker in the cells. In addition, AP-FITC-MSNs showed better biocompatibility with Caco-2 cells than FITC-MSNs, because of their positive surface charges.

  20. Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems.

    Science.gov (United States)

    Yang, Piaoping; Quan, Zewei; Lu, Lanlan; Huang, Shanshan; Lin, Jun

    2008-02-01

    Ordered mesoporous silica (MCM-41) particles with different morphologies were synthesized through a simple hydrothermal process. Then these silica particles were functionalized with luminescent YVO4:Eu3+ layers via the Pechini sol-gel process. The obtained YVO4:Eu3+ and MCM-41 composites, which maintained the mesoporous structure of MCM-41 and the red luminescence property of YVO4:Eu3+, were investigated as drug delivery systems using ibuprofen (IBU) as model drug. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, and photoluminescence (PL) spectra, respectively. It is found that the specific surface area and pore volume, which are directly correlated with the drug-loading amount and drug release rate, decrease in sequence after the deposition of YVO4:Eu3+ layer and the further incorporation of IBU. Additionally, the drug release test indicated that the IBU release rate could be controlled by regulating the morphology of the materials. It is worth noting that the IBU-incorporated samples still exhibit red luminescence under UV irradiation. Furthermore, the emission intensities of Eu3+ can be tailored as a function of the released amount of IBU, thus making the drug release be easily tracked and monitored.

  1. Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

    Directory of Open Access Journals (Sweden)

    Markus Börgardts

    2017-04-01

    Full Text Available The covalent attachment of organic fluorophores in mesoporous silica matrices for usage as energy down converting phosphors without employing inorganic transition or rare earth metals is reported in this article. Triethoxysilylpropyl-substituted derivatives of the blue emitting perylene, green emitting benzofurazane, and red emitting Nile red were synthesized and applied in the synthesis of mesoporous hybrid materials by postsynthetic grafting to commercially available MCM-41. These individually dye-functionalized hybrid materials are mixed in variable ratios to furnish a powder capable of emitting white light with CIE chromaticity coordinates of x = 0.33, y = 0.33 and an external quantum yield of 4.6% upon irradiation at 410 nm. Furthermore, as a proof of concept two different device setups of commercially available UV light emitting diodes, are coated with silica monoliths containing the three triethoxysilylpropyl-substituted fluorophore derivatives. These coatings are able to convert the emitted UV light into light with correlated color temperatures of very cold white (41100 K, 10700 K as well as a greenish white emission with correlated color temperatures of about 5500 K.

  2. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Daneshi, M.; Nami-Ana, F. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Behbahani, M.; Bagheri, A. [Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2016-11-15

    Highlights: • An electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode was developed. • The electrode provides an accessible surface for simultaneous determination of hydroquinone and catechol. • Hydroquinone and catechol are highly toxic to both environment and human even at very low concentrations. - Abstract: A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120 mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0 μM–1.0 mM range for hydroquinone with the detection limit of 1.2 μM and from 30.0 μM–1.0 mM for catechol with the detection limit of 1.1 μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  3. Polymer-modified fibrous mesoporous silica nanoparticles as coating material for open-tubular capillary electrochromatography.

    Science.gov (United States)

    Liu, Yuanyuan; Liu, Qing; Yu, Haiyan; Sun, Shujun; Xue, Yun; Wang, Yan; Qu, Qishu; Yan, Chao

    2017-05-26

    A novel fibrous mesoporous silica nanoparticles (fSiO 2 ) stationary phase grafted with polymer (Poly (2-(dimethylamino) ethyl methacrylate) (PDMAEMA) was developed for open tubular capillary electrochromatography (OT-CEC). The preparation procedure included synthesizing fSiO 2 through biphase stratification approach, removing the surfactants, silanization and in situ graft polymerization with monomers via atom transfer radical polymerization (ATRP). Subsequently, PDMAEMA-modified mesoporous silica nanoparticles (P-fSiO 2 )/ethanol solution was immobilized onto the inner surface of the pretreated capillary and functionalized with octadecylsilane to fabricate the open-tubular column. Separation of polycyclic aromatic hydrocarbons (PAHs) and proteins were carried out to evaluate the performance of the column in CEC. The run-to-run, day-to-day and column-to-column reproducibility in terms retention time of naphthalene was 1.9%, 2.2%, and 3.7%, respectively. The effects of solvent concentration and pH on the separation were evaluated. The method was also used for the separation of real bio-sample, egg white proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Utilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4) in Prodrug-Activated Cancer Theranostics.

    Science.gov (United States)

    Hung, Bau-Yen; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Kankala, Shravankumar; Deng, Jin-Pei; Liu, Chen-Lun; Lee, Chia-Hung

    2015-12-04

    To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP) was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology), where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through the formation of covalent imine bonds. This strategy was used to protect HRP from immune exclusion, degradation and denaturation under biological conditions. Furthermore, immobilization of HRP in the nanochannels of IBN-4 nanomaterials exhibited good functional stability upon repetitive use and long-term storage (60 days) at 4 °C. The generation of functionalized and HRP-immobilized nanomaterials was further verified using various characterization techniques. The possibility of using HRP-encapsulated IBN-4 materials in prodrug cancer therapy was also demonstrated by evaluating their ability to convert a prodrug (indole-3- acetic acid (IAA)) into cytotoxic radicals, which triggered tumor cell apoptosis in human colon carcinoma (HT-29 cell line) cells. A lactate dehydrogenase (LDH) assay revealed that cells could be exposed to the IBN-4 nanocomposites without damaging their membranes, confirming apoptotic cell death. In summary, we demonstrated the potential of utilizing large porous mesoporous silica nanomaterials (IBN-4) as enzyme carriers for prodrug therapy.

  5. Utilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4 in Prodrug-Activated Cancer Theranostics

    Directory of Open Access Journals (Sweden)

    Bau-Yen Hung

    2015-12-01

    Full Text Available To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology, where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through the formation of covalent imine bonds. This strategy was used to protect HRP from immune exclusion, degradation and denaturation under biological conditions. Furthermore, immobilization of HRP in the nanochannels of IBN-4 nanomaterials exhibited good functional stability upon repetitive use and long-term storage (60 days at 4 °C. The generation of functionalized and HRP-immobilized nanomaterials was further verified using various characterization techniques. The possibility of using HRP-encapsulated IBN-4 materials in prodrug cancer therapy was also demonstrated by evaluating their ability to convert a prodrug (indole-3- acetic acid (IAA into cytotoxic radicals, which triggered tumor cell apoptosis in human colon carcinoma (HT-29 cell line cells. A lactate dehydrogenase (LDH assay revealed that cells could be exposed to the IBN-4 nanocomposites without damaging their membranes, confirming apoptotic cell death. In summary, we demonstrated the potential of utilizing large porous mesoporous silica nanomaterials (IBN-4 as enzyme carriers for prodrug therapy.

  6. Mesoporous-silica nanofluidic channels for quick enrichment/extraction of trace pesticide molecules

    Science.gov (United States)

    Xu, Pengcheng; Chen, Chuanzhao; Li, Xinxin

    2015-11-01

    As nanofluidic channels, uniaxially oriented mesoporous-silica is, for the first time, in-situ self-assembled in a microfluidic chip for quick enrichment/extraction of ng L-1(ppt)-level organo-phosphorous (OP) pesticide residue from aqueous solution to ethanol. This micro/nano combined pre-treatment chip is essential for following gas chromatography-mass spectrometry (GC-MS) quantitative analysis. Featuring huge surface area and dense silanol groups at the inwall surface, the mesoporous-silica is uniaxially self-assembled in a micro-reservoir to form a pile of nanofluidic channels (diameter = 2.1 nm). The captured/enriched pesticide molecules in the nanochannels can be efficiently extracted by much smaller volume of ethanol due to its much higher solubility to OP. In our affirming experiment, three mixed OP pesticides of dichlorvos, paraoxon and chlorpyrifos (in water) are captured/enriched by the nano-channels and eluted/extracted by only 0.6 mL ethanol. The whole process only takes 16 min. The GC-MS quantitative results for the extracted three pesticides indicate that the extraction recovery achieves 80%. The achieved limit of quantification (LOQ) and the limit of detection (LOD) are 100 ng L-1 and 30 ng L-1, respectively. The nanofluidic-channel pre-treatment technique is promising in various application fields like agriculture and food safety security.

  7. Mesoporous Silica Formation by Block Copolymers and Cetyltrimethylammonium Bromide as Structure Control Agent

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Semsarzadeh

    2013-01-01

    Full Text Available Block copolymers and cetyltrimethylammonium bromide were used as templates in nano silica structure formation like MCM-41Mobil Composition of Matter, SBA16 Santa Barbara Amorphous and a new compound namely SPB  silicone mesoporous particles, prepared by sol-gel method using PPG-PEG-PPG block copolymer to compare the porosity and regularity of the products together. In this work tetraethylorthosilicate  TEOS, as silica source and alcohol as surface modifying agent were used because of having the main advantage, compared to an ionic template such as etyltrimethylammonium bromide, in producing larger pores  and thicker walls for holding larger catalytic molecules in their pores or increasing  their resistance towards fragmentation. In order to study the copolymer as a template,  SPB structure was prepared and compared with SBA16 which was found to have  broader  pore-size  distribution  and  smaller  specifc  surface  area.  Using  alcohol  in particle production resulted in higher formation rate of micelles with improved  morphology. Nitrogen adsorption-desorption, X-ray diffraction and electron scanning  microscopy confrmed the mesoporous structure and regularity of these synthesized  materials. Finally a mechanism is proposed for the formation of these structures.

  8. Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation.

    Science.gov (United States)

    Liu, Yupu; Shen, Dengke; Chen, Gang; Elzatahry, Ahmed A; Pal, Manas; Zhu, Hongwei; Wu, Longlong; Lin, Jianjian; Al-Dahyan, Daifallah; Li, Wei; Zhao, Dongyuan

    2017-09-01

    Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m2 g-1 ), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free-standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well-defined pore diameters for highly efficient nanosize-based separation at the macroscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    Science.gov (United States)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  10. Structural Variety and Adsorptive Properties of Mesoporous Silicas with Immobilized Oligosaccharide Groups

    Science.gov (United States)

    Trofymchuk, Iryna; Roik, Nadiia; Belyakova, Lyudmila

    2017-04-01

    In this research, we report on the synthesis of mesoporous silicas with various quantities of immobilized oligosaccharide groups and different pore ordering degree. The hydrothermal co-condensation of tetraethyl orthosilicate and β-cyclodextrin-containing organosilane in the presence of cetyltrimethylammonium bromide template was employed. The purpose of this investigation was to show the opportunity of increasing β-cyclodextrin content in silica matrix by changing the molar ratio of initial reagents during organosilane synthesis and to determine whether the enhancing of immobilized groups on the surface influences on model aromatic compound adsorption from water. It was prepared several β-cyclodextrin-organosilanes by modification of (3-aminopropyl)triethoxysilane with oligosaccharide (the molar composition of reaction mixtures were 1:1, 3:1, and 5:1) with using N, N'-carbonyldiimidazole as linking agent. Three types of MCM-41 materials were obtained with 0.018, 0.072, and 0.095 mmol g-1 β-cyclodextrin-group loading according to chemical analysis of silicas. The IR spectroscopy and potentiometric titration were also performed to confirm the presence of functional groups in the silica matrix. Nitrogen sorptometry experiments exhibited the decrease of high surface area (from 812 to 457 m2 g-1) and the average pore diameter (from 1.06 to 0.60 cm3 g-1) of synthesized silicas with increasing of immobilized oligosaccharide groups. The influence of β-cyclodextrin-organosilane presence on the forming of hexagonally arranged porous structure of silicas was evaluated by X-ray diffraction and TEM analyses. As the loading of oligosaccharide groups increases in obtained silicas, the (100) reflex in diffraction patterns is even less intense and broader, denoting the decrease of long-range pore ordering. Adsorption experiments were carried out to study the effect of β-cyclodextrin groups' attendance in silica matrix on benzene uptakes from aqueous solutions. Experimental

  11. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination.

    Science.gov (United States)

    Chen, Zhonghui; Tan, Yue; Xu, Kefeng; Zhang, Lan; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-01-15

    Mesoporous silica nanoparticles (MSN) based controlled release system had been coupled with diverse detection technologies to establish biosensors for different targets. Chemiluminescence (CL) system of luminol/H2O2 owns the characters of simplicity, low cost and high sensitivity, but the targets of which are mostly focused on some oxidants or which can participate in a chemical reaction that yields a product with a role in the CL reaction. In this study, chemiluminescent detection technique had been coupled with mesoporous silica-based controlled released system for the first time to develop a sensitive biosensor for the target which does not cause effect to the CL system itself. Cocaine had been chosen a model target, the MSN support was firstly loaded with glucose, then the positively charged MSN interacted with negatively charged oligonucleotides (the aptamer cocaine) to close the mesopores of MSN. At the present of target, cocaine binds with its aptamer with high affinity; the flexible linear aptamer structured will become stems structured through currently well-defined non-Waston-Crick interactions and causes the releasing of entrapped glucose into the solution. With the assistant of glucose oxidase (GOx), the released glucose can react with the dissolved oxgen to produce gluconic acid and H2O2, the latter can enhance the CL of luminol in the NaOH solution. The enhanced CL intensity has a relationship with the cocaine concentration in the range of 5.0-60μM with the detection limit of 1.43μM. The proposed method had been successfully applied to detect cocaine in serum samples with high selectivity. The same strategy can be applied to develop biosensors for different targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    Science.gov (United States)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  13. Synthesis of Mesoporous Silica Monoliths — A Novel Approach Towards Fabrication of Solid-State Optical Sensors for Environmental Applications

    Science.gov (United States)

    Prabhakaran, D.; Subashini, C.; Akhila Maheswari, M.

    2016-10-01

    Mesoporous silica monoliths are an attractive area of research owing to their high specific surface area, uniform channels and mesoporous size (2-30nm). This paper deals with the direct templating synthesis of a mesoporous worm-like silica monolithic material using F127 — a triblock copolymer, by micro-emulsion technique using trimethyl benzene (TMB), as the solvent. The synthesized silica monolith is characterized using SEM-EDAX, XRD, BET, NMR and FT-IR. The monolith shows an ordered worm-like mesoporous structure with tuneable through pores, an excellent host for the anchoring of chromo-ionophores for the naked-eye metal ion-sensing. The mesoporous monoliths were loaded with 4-dodecyl-6-(2-pyridylazo)-phenol (DPAP) ligand through direct immobilization, thereby acting as solid-state naked-eye colorimetric ion-sensors for the sensing toxic Pb(II) ions at parts-per-billion (ppb) level in various industrial and environmental systems. The influence of various experimental parameters such as solution pH, limiting ligand loading concentration, amount of monolith material, matrix tolerance level, limit of detection and quantification has been studied and optimized.

  14. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  15. Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Obdulia Medina-Juárez

    2016-11-01

    Full Text Available Special preparation of Santa Barbara Amorphous (SBA-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR, and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries, present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.

  16. Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

    Science.gov (United States)

    Medina-Juárez, Obdulia; García-Sánchez, Miguel Ángel; Arellano-Sánchez, Ulises; Kornhauser-Straus, Isaac; Rojas-González, Fernando

    2016-01-01

    Special preparation of Santa Barbara Amorphous (SBA)-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR), and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries), present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization. PMID:28774017

  17. Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15

    NARCIS (Netherlands)

    Yang, Chieh-Chao; Vernimmen, Jarian; Meynen, Vera; Cool, Pegie; Mul, Guido

    2011-01-01

    Ti-SBA-15 was exposed to illumination in the presence of different gas mixtures containing CO or CO2, and H2O or H2, in order to clarify the route to hydrocarbon formation in photocatalytic CO2 reduction over this photocatalyst. A mixture of CO and H2O led to the highest quantities of CH4, C2H4, and

  18. Anchoring Tri(8-QuinolinolatoIron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent

    Directory of Open Access Journals (Sweden)

    Yang Xiaoyuan

    2014-09-01

    Full Text Available Tri(8-quinolinolatoiron complex immobilized onto SBA-15 catalyst has been synthesized through a stepwise procedure. The characterization results indicated that the BET surface area, total pore volume and average pore width decrease after stepwise modification of SBA-15, while the structure keeps intact. Catalytic tests showed that FeQ3-SBA-15 catalyzes the oxidation reaction well with 34.8% conversion of benzyl alcohol and 74.7% selectivity to benzaldehyde when water is used as the solvent after 1 h reaction. In addition, homogeneous catalyst tri(8-quinolinolatoiron exhibits very bad catalytic behavior using water as the solvent.

  19. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  20. Synthesis of core-shell graphitic carbon@silica nanospheres with dual-ordered mesopores for cancer-targeted photothermochemotherapy.

    Science.gov (United States)

    Wang, Yi; Wang, Kaiyuan; Zhang, Ren; Liu, Xingang; Yan, Xueying; Wang, Jianxin; Wagner, Ernst; Huang, Rongqin

    2014-08-26

    Tumor site-directed multifunctional therapeutic platforms such as photothermochemotherapy that respond to tumor-focused physical and biological stimuli are highly demanded for effective cancer therapy. Herein, targeting peptide-conjugated core–shell graphitic carbon@silica nanospheres with dual-ordered mesopores (MMPS) were successfully fabricated and developed as antitumoral doxorubicin (DOX) delivery system (MMPSD) for synergistic targeted photothermal chemotherapy of breast cancer. The hydrophilic mesoporous silica shell guarantees good water dispersity of MMPSD. The hydrophobic graphitic mesoporous carbon core provides excellent hydrophobic drug loading, immediate contact between the drug and photothermal hotspots, and high NIR photothermal conversion efficiency. SP13 peptide facilitates MMPSD for targeted and enhanced delivery of DOX within HER2-positive SK-BR-3 breast cancer cells, while PEGylation ensures biocompatibility. Thus, the MMPSD system exhibited efficient drug loading capacity, high targeting ability, sensitive NIR/pH-responsive DOX release, sustained release, and excellent combined antitumor activity.

  1. Smart mesoporous silica nanoparticles gated by pillararene-modified gold nanoparticles for on-demand cargo release.

    Science.gov (United States)

    Wang, Xin; Tan, Li-Li; Li, Xi; Song, Nan; Li, Zheng; Hu, Jia-Na; Cheng, Yi-Ming; Wang, Yan; Yang, Ying-Wei

    2016-12-11

    A new drug delivery system, based on mesoporous silica nanoparticles gated by carboxylatopillar[5]arene-modified gold nanoparticles, has been fabricated, which demonstrated good responses to competitive binding and temperature variation. This multifunctional nanosystem combines the excellent characteristics of two kinds of nanoparticles and utilizes a supramolecular host-guest approach for on-demand cargo release.

  2. Removal of malachite green dye from aqueous solution using mesoporous silica synthesized from 1-octyl-3-methylimidazolium chloride ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ekka, Basanti; Nayak, Soumitra Ranjan; Dash, Priyabrat, E-mail: dashp@nitrkl.ac.in, E-mail: rkpatel@nitrkl.ac.in; Patel, Raj Kishore, E-mail: dashp@nitrkl.ac.in, E-mail: rkpatel@nitrkl.ac.in [Department of Chemistry, National Institute of Technology, Rourkela, Odisha, India 769008 (India)

    2016-04-13

    In this research, mesoporous silica was synthesized via a modified sol-gel route using 1-octyl-3-methylimidazolium chloride and was employed to remove malachite green (MG) dye from aqueous solution. Subsequently, this material was characterized and identified by different techniques such as Fourier transform infrared spectroscopy (FT-IR), N{sub 2} adsorption-desorption method, scanning electron microscopy (SEM), and thermosgravimetric analysis (TGA). Unique properties such as high surface area and pore diameter, in addition to highly reactive atoms and presence of various functional groups make the mesoporous silica possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal of MG by mesoporous silica was attained by varying different variables such as adsorbent dosage, initial dye concentration, contact time, and pH. Optimum values were set as pH of 8.0, 0.5 g of adsorbent at contact time of 120 min. The adsorption of MG follows the pseudo-second-order rate equation. Equilibrium data fitted well with the Freundlich model at all amount of adsorbent, while maximum adsorption capacity was 5.981 mg g{sup −}1 for 0.5 g mesoporous silica synthesized in IL.

  3. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells

    DEFF Research Database (Denmark)

    Garcia-Bennett, Alfonso E; Kozhevnikova, Mariya; König, Niclas

    2013-01-01

    . Here, we report the development of a novel technological approach for the local delivery of exogenous trophic factor mimetics to transplanted cells using specifically designed silica nanoporous particles. We demonstrated that delivering Cintrofin and Gliafin, established peptide mimetics of the ciliary...... by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation....

  4. Dendritic and Core-Shell-Corona Mesoporous Sister Nanospheres from Polymer-Surfactant-Silica Self-Entanglement.

    Science.gov (United States)

    Zhang, Kun; Yang, Tai-Qun; Shan, Bing-Qian; Liu, Peng-Cheng; Peng, Bo; Xue, Qing-Song; Yuan, En-Hui; Wu, Peng; Albela, Belén; Bonneviot, Laurent

    2018-01-09

    Mesoporous nanospheres are highly regarded for their applications in nanomedicine, optical devices, batteries, nanofiltration, and heterogeneous catalysis. In the last field, the dendritic morphology, which favors molecular diffusion, is a very important morphology known for silica, but not yet for carbon. A one-pot, easy, and scalable co-sol-gel route by using the triphasic resol-surfactant-silica system is shown to yield the topologies of dendritic and core-shell-corona mesoporous sister nanospheres by inner radial phase speciation control on a mass-transfer-limited process, depending on the relative polycondensation rates of the resol polymer and silica phases. The trick was the use of polyolamines with different catalytic activities on each hard phase polycondensation. The self-entanglement of phases is produced at the {O- , S+ , I- } organic-surfactant-inorganic interface. Mono- and biphasic mesoporous sister nanospheres of carbon and/or silica are derivatized from each mother nanospheres and called "syntaxic" because of similar sizes and mirrored morphologies. Comparing these "false twins", or yin and yang mesoporous nanospheres, functionalized by sulfonic groups provides evidence of the superiority of the dendritic topologies and the absence of a shell on the diffusion-controlled catalytic alkylation of m-cresol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One pot glucose detection by [Fe(III)(biuret-amide)] immobilized on mesoporous silica nanoparticles: an efficient HRP mimic.

    Science.gov (United States)

    Malvi, Bharmana; Panda, Chakadola; Dhar, Basab B; Gupta, Sayam Sen

    2012-05-28

    An [Fe(III)(biuret-amide)] complex has been immobilized onto mesoporous silica nanoparticles via Cu(I) catalyzed azide-alkyne click chemistry. This hybrid material functions as an efficient peroxidase mimic and was successfully used for the quantitative determination of hydrogen peroxide and glucose via a one-pot colorimetric assay. This journal is © The Royal Society of Chemistry 2012

  6. Carbon-covered mesoporous silica and its application in Rhodamine B adsorption.

    Science.gov (United States)

    Nascimento, R C S; Silva, A O S; Meili, L

    2017-05-18

    Modified versions of MCM-41 and SBA-15 were obtained from sucrose by carbon deposition. The ability of the resulting materials, MCM-41 CC and SBA-15 CC, to remove Rhodamine B from aqueous solutions was evaluated. TG/DTG, XRD, Nitrogen Adsorption (BET), and SEM were used to characterize the materials. Adsorption was investigated by finite bath studies. To characterize the adsorption behavior and mechanism, kinetics and equilibrium were assessed. MCM-41 CC provided the best adsorption results: adsorptive capacity of 11.91 mg of dye/g of material and 91.95% w/v dye removal (C0 = 50 mg L-1). The sucrose particles interacted well, to result in improved area and micropore volume. Hence, carbon deposition can afford materials with increased adsorptive capacity depending on the sieve employed during their preparation.

  7. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  8. Drug delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods.

    Science.gov (United States)

    Limnell, Tarja; Santos, Hélder A; Mäkilä, Ermei; Heikkilä, Teemu; Salonen, Jarno; Murzin, Dmitry Yu; Kumar, Narendra; Laaksonen, Timo; Peltonen, Leena; Hirvonen, Jouni

    2011-08-01

    A poorly soluble model drug, indomethacin (IMC), was loaded into two types of silica particles using three different loading methods. The loading efficiency and the extent/rate of drug release were evaluated. Widely used equipment in pharmaceutical laboratories, rotavapor and fluid bed, were used in the loading. The porous materials used were ordered mesoporous silica MCM-41 and nonordered silica gel Syloid 244 FP EU. The materials differ both in their pore properties and particle sizes. Tablets were successfully compressed from the IMC-loaded particles. Mechanical stability of the porous structures was studied with XRPD and nitrogen sorption after tableting and drug release was evaluated at pH 5.5 before and after tableting. The release of the poorly soluble IMC was faster from the Syloid than from the MCM-41, presumably due to the larger pore size and smaller particle size. Loading of IMC into the MCM-41 microparticles improved the drug dissolution, and blending the microparticles with pharmaceutical excipients improved the IMC release even further. The fast release was also maintained after tableting. Loading of IMC into the Syloid particles alone was sufficient to produce similar IMC release profiles, as in the case of MCM-41 with the excipients. Copyright © 2011 Wiley-Liss, Inc.

  9. Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic.

    Science.gov (United States)

    Ellison, Paul A; Chen, Feng; Goel, Shreya; Barnhart, Todd E; Nickles, Robert J; DeJesus, Onofre T; Cai, Weibo

    2017-03-01

    The development of new image-guided drug delivery tools to improve the therapeutic efficacy of chemotherapeutics remains an important goal in nanomedicine. Using labeling strategies that involve radioelements that have theranostic pairs of diagnostic positron-emitting isotopes and therapeutic electron-emitting isotopes has promise in achieving this goal and further enhancing drug performance through radiotherapeutic effects. The isotopes of radioarsenic offer such theranostic potential and would allow for the use of positron emission tomography (PET) for image-guided drug delivery studies of the arsenic-based chemotherapeutic arsenic trioxide (ATO). Thiolated mesoporous silica nanoparticles (MSN) are shown to effectively and stably bind cyclotron-produced radioarsenic. Labeling studies elucidate that this affinity is a result of specific binding between trivalent arsenic and nanoparticle thiol surface modification. Serial PET imaging of the in vivo murine biodistribution of radiolabeled silica nanoparticles shows very good stability toward dearsenylation that is directly proportional to silica porosity. Thiolated MSNs are found to have a macroscopic arsenic loading capacity of 20 mg of ATO per gram of MSN, sufficient for delivery of chemotherapeutic quantities of the drug. These results show the great potential of radioarsenic-labeled thiolated MSN for the preparation of theranostic radiopharmaceuticals and image-guided drug delivery of ATO-based chemotherapeutics.

  10. A molecular dynamics simulations study on ethylene glycol-water mixtures in mesoporous silica

    Science.gov (United States)

    Schmitz, Rebecca; Müller, Niels; Ullmann, Svenja; Vogel, Michael

    2016-09-01

    We perform molecular dynamics simulations to investigate structural and dynamical properties of ethylene glycol-water (EG-WA) mixtures in mesoporous silica. To obtain comprehensive insights into the dependence of liquid behaviors on the confinement features, we exploit that straightforward modification of the force field parameters allows us to vary the properties of the hydrogen-bond network of the confined liquid, we alter the polarity of the silica surface, and we consider amorphous as well as crystalline matrices. It is observed that the confinement induces a micro-phase separation in the liquid, which qualitatively depends on the properties of both liquid and matrix so that EG or WA molecules may be preferentially adsorbed at the silica surface. Furthermore, it is found that the confinement strongly affects the liquid dynamics. Largely independent of the polarity and structure of the matrix, structural relaxation is about a factor of 104 slower at the pore wall than in the pore center. Moreover, the non-Arrhenius temperature dependence of the bulk mixture turns into an Arrhenius behavior of the confined mixture so that the spatial restriction can slow down or speed up the structural relaxation, depending on temperature.

  11. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    Science.gov (United States)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  12. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique.

    Science.gov (United States)

    Li-Hong, Wang; Xin, Che; Hui, Xu; Li-Li, Zhou; Jing, Han; Mei-Juan, Zou; Jie, Liu; Yi, Liu; Jin-Wen, Liu; Wei, Zhang; Gang, Cheng

    2013-09-15

    The organic solvent solution immersion method was often used to achieve the loading of the drugs into mesoporous silica, but the drugs that have loaded into the pores of the mesoporous silica would inevitable migrate from the inside to the external surface or near the outside surface during the process of drying. Hence, it often leads to the pores of mesoporous materials not be fully utilized, and results in a low drug loading efficiency and a fast releasing rate. The purpose of this study was to develop a novel drug loading strategy to avoid soluble component migration during the process of drying, then, to prepare poorly water-soluble drug mesoporous silica microparticles with higher drug loading efficiency and longer sustained-release time. Ibuprofen was used as model drug. The microparticles were prepared by a novel method based on mesoporous silica and supercritical fluid (SCF) technique. The drug-loaded mesoporous silica microparticles prepared by SCF technique were analyzed by thermogravimetric analysis (TGA), N2 adsorption/desorption, scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). In vitro releasing study was used to evaluate the sustained-release effect of the drug-loaded microparticles. By virtue of the high diffusibility and the high dissolving capacity of the supercritical carbon dioxide (SCF-CO2), the poorly water-soluble drugs, ibuprofen, entered the pores of the mesoporous silica. The amount and the depth of ibuprofen entered the pores of the mesoporous silica by SCF technique were both larger than those by the solution immersion method. It was found that ibuprofen loaded into the mesoporous silica by SCF technique was amorphous and the largest amount of the ibuprofen loaded into the mesoporous silica by SCF technique could reach 386 mg/g (w/w, ibuprofen/SiO2), it was more than that by the solution immersion method. In vitro releasing study showed that the sustained-release effect of

  13. Electrochemical reduction of 2,4-dinitrophenol on nanocomposite electrodes modified with mesoporous silica and poly(vitamin B{sub 1}) films

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ping; Cai Hui; Liu Shantang [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China); Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430073 (China); Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan 430073 (China); Wan Qijin, E-mail: qijinwan@mail.wit.edu.cn [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China); Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430073 (China); Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan 430073 (China); Wang Xiaoxia [Blumenstrasse 6, Gundelfingen 79194 (Germany); Yang Nianjun, E-mail: nianjun.yang@iaf.fraunhofer.de [Fraunhofer-Institute for Applied Solid State Physics (IAF), Freiburg 79108 (Germany)

    2011-08-01

    Electrochemical reduction of 2,4-dinitrophenol was investigated on a glassy carbon electrode modified with a nanocomposite Santa Barbara Amorphous silica (SBA-15) film and poly(vitamin B{sub 1}) film. For sensitive and selective detections, vanadium pentoxide and cerium oxide nanoparticles were incorporated into the matrix of SBA-15. 2,4-Dinitrophenol was reduced on the modified electrode at -0.39 and -0.25 V, corresponding to the reduction of 4-dinitrophenol and 2-dinitrophenol, respectively. Both cathodic peak currents were controlled by the diffusion of 2,4-dinitrophenol. The amplitude of the peak currents was proportional to the 2,4-dinitrophenol concentration in the range of 3.0-30 {mu}M. The modified electrode demonstrated a long lifetime for the detection of 2,4-dinitrophenol. The detection limit of 2,4-dinitrophenol was 0.5 {mu}M. Moreover, the modified electrode was used successfully to detect 2,4-dinitrophenol in lake water.

  14. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery.

    Science.gov (United States)

    Li, Xiaomin; Zhou, Lei; Wei, Yong; El-Toni, Ahmed Mohamed; Zhang, Fan; Zhao, Dongyuan

    2014-10-22

    Multifunctional dual-compartment Janus mesoporous silica nanocomposites of UCNP@SiO2@mSiO2&PMO (UCNP = upconversion nanoparticle, PMO = periodic mesoporous organosilica) containing core@shell@shell structured UCNP@SiO2@mSiO2 nanospheres and PMO single-crystal nanocubes have been successfully synthesized via a novel anisotropic island nucleation and growth approach with the ordered mesostructure. The asymmetric Janus nanocomposites show a very uniform size of ~300 nm and high surface area of ~1290 m(2)/g. Most importantly, the Janus nanocomposites possess the unique dual independent mesopores with different pore sizes (2.1 nm and 3.5-5.5 nm) and hydrophobicity/hydrophilicity for loading of multiple guests. The distinct chemical properties of the silica sources and the different mesostructures of the dual-compartments are the necessary prerequisites for the formation of the Janus nanostructure. With the assistance of the near-infrared (NIR) to ultraviolet/visible (UV-vis) optical properties of UCNPs and heat-sensitive phase change materials, the dual-compartment Janus mesoporous silica nanocomposites can be further applied into nanobiomedicine for heat and NIR light bimodal-triggered dual-drugs controllable release. It realizes significantly higher efficiency for cancer cell killing (more than 50%) compared to that of the single-triggered drugs delivery system (~25%).

  15. Pillar[6]arene-valved mesoporous silica nanovehicles for multiresponsive controlled release.

    Science.gov (United States)

    Huang, Xuan; Du, Xuezhong

    2014-11-26

    The synthesis and host-guest chemistry of pillararene (PA) derivatives are a hot research topic, and the applications of PAs in relevant research fields are essential to explore. Carboxylate-substituted pillar[6]arene (CPA[6])-valved mesoporous silica nanoparticles (MSNs) functionalized with dimethylbenzimidazolium (DMBI) and bipyridinium (BP) stalks were constructed, respectively, for multiresponsive controlled release. CPA[6] encircled the DMBI or BP stalks to develop supramolecular nanovalves for encapsulation of cargo within the MSN pores. The release of cargo was triggered by acidic pH or competitive binding for the dethreading of CPA[6] and the opening of the nanovalves; moreover, coordination chemistry is the first strategy to activate CPA nanovalves by metal chelating with the carboxylate groups of CPA for cargo release. The controlled release of the CPA[6]-valved MSN delivery systems can meet diverse requirements and has promising biological applications in targeted drug therapy.

  16. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Virginia [Hospital Universitario La Paz-IdiPAZ (Spain); Yaguee, Clara; Arruebo, Manuel, E-mail: arruebom@unizar.es [University of Zaragoza, Aragon Nanoscience Institute (INA), C/Mariano Esquillor, Edif. I-D (Spain); Martin-Saavedra, Francisco M. [Hospital Universitario La Paz-IdiPAZ (Spain); Santamaria, Jesus [CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ (Spain)

    2011-09-15

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle-plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  17. pH-Responsive Mesoporous Silica and Carbon Nanoparticles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Miguel Gisbert-Garzarán

    2017-01-01

    Full Text Available The application of nanotechnology to medicine constitutes a major field of research nowadays. In particular, the use of mesoporous silica and carbon nanoparticles has attracted the attention of numerous researchers due to their unique properties, especially when applied to cancer treatment. Many strategies based on stimuli-responsive nanocarriers have been developed to control the drug release and avoid premature release. Here, we focus on the use of the subtle changes of pH between healthy and diseased areas along the body to trigger the release of the cargo. In this review, different approximations of pH-responsive systems are considered: those based on the use of the host-guest interactions between the nanocarriers and the drugs, those based on the hydrolysis of acid-labile bonds and those based on supramolecular structures acting as pore capping agents.

  18. Effect of Multimodal Pore Channels on Cargo Release from Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sushilkumar A. Jadhav

    2016-01-01

    Full Text Available Mesoporous silica nanoparticles (MSNs with multimodal pore channels were fully characterized by TEM, nitrogen adsorption-desorption, and DLS analyses. MSNs with average diameter of 200 nm with dual pore channel zones with pore diameters of 1.3–2.6 and 4 nm were tested for their use in drug delivery application. Important role of the multimodal pore systems present on MSNs on the quantitative release of model drug ibuprofen was investigated. The results obtained revealed that the release profile for ibuprofen clearly shows distinct zones which can be attributed to the respective porous channel zones present on the particles. The fluctuations in the concentration of ibuprofen during the prolonged release from MSNs were caused by the multimodal pore channel systems.

  19. Facile synthesis of blue-emitting carbon dots@mesoporous silica composite spheres

    Science.gov (United States)

    Guo, Ziying; Zhu, Zhenpeng; Zhang, Xinguo; Chen, Yibo

    2018-02-01

    This paper reported a facile and effective approach towards high-efficient composite luminophores by embedding blue-emitting N-doped carbon dots into spherical SiO2 matrix (CDs@SiO2). Mesoporous silica microspheres (r-CDs@MSN) with strong luminescence were synthesized by removing CTAB templates in CDs@SiO2 using reflux with acetone. The r-CDs@MSN possess a spherical morphology with smooth surface and a diameter of 130 nm, while it exhibits an excitation-independent blue emission peak at 440 nm with an internal quantum yield of 21.5%. BET result shows that the corresponding surface area and adsorption total pore volume are 156.27 m2/g and 0.682 cm3/g, which is suitable for the drugs loading and release. The results indicate that r-CDs@MSN might act as a potential fluorescent drug carrier.

  20. Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles.

    Science.gov (United States)

    Thomas, M J K; Slipper, I; Walunj, A; Jain, A; Favretto, M E; Kallinteri, P; Douroumis, D

    2010-03-15

    Silica nanoparticles (MSNs) with a highly ordered mesoporous structures (103A) with cubic Im3 m have been synthesized using triblock copolymers with high poly(alkylene oxide) (EO) segments in acid media. The produced nanoparticles displayed large specific surface area (approximately 765 cm(2)/g) with an average particles size of 120 nm. The loading efficiency was assessed by incorporating three major antiepileptic active substances via passive loading and it was found to varying from 17 to 25%. The state of the adsorbed active agents was further analyzed using differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Dissolution studies revealed rapid release profiles within the first 3 h. The viability of 3T3 endothelial cells was not affected in the presence of MSNs indicating negligible cytotoxicity. 2009 Elsevier B.V. All rights reserved.

  1. Dendronized Mesoporous Silica Nanoparticles Provide an Internal Endosomal Escape Mechanism for Successful Cytosolic Drug Release

    CERN Document Server

    Weiss, Veronika; Torrano, Adriano A; Strobel, Claudia; Mackowiak, Stephan A; Gatzenmeier, Tim; Hilger, Ingrid; Braeuchle, Christoph; Bein, Thomas

    2015-01-01

    Mesoporous silica nanoparticles (MSNs) attract increasing interest in the field of gene and drug delivery due to their versatile features as a multifunctional drug delivery platform. Here, we describe poly(amidoamine) (PAMAM) dendron-functionalized MSNs that fulfill key prerequisites for a controllable intracellular drug release. In addition to high loading capacity, they offer 1) low cytotoxicity, showing no impact on the metabolism of endothelial cells, 2) specific cancer cell targeting due to receptor-mediated cell uptake, 3) a redox-driven cleavage of disulfide bridges allowing for stimuli-responsive cargo release, and most importantly, 4) a specific internal trigger based on the high buffering capacity of PAMAM dendrons to provide endosomal escape.

  2. Advances in Functionalized Mesoporous Silica Nanoparticles for Tumor Targeted Drug Delivery and Theranostics.

    Science.gov (United States)

    Zhang, Wenjia; Liu, Mengrui; Liu, Anchang; Zhai, Guangxi

    2017-01-01

    In recent years, nanocarriers have played increasingly significant roles in cancer therapy. Among various nanoplatforms, mesoporous silica nanoparticles (MSNs) have been given serious attention due to their good colloidal stablity, tunable pore sizes, extensive drug loading capacity and easily modified surface. In this review, functionalized MSNs are introduced as an efficient nanocarrier for cancer treatment. First, MSN preparation strategies are generally introduced. Next, passive and active tumor targeting methods for the functionalization of MSNs are reviewed. Then, several types of stimuli-responsive strategies for on-demand drug release, a wide variety of designs integrating with magnetic resonance imaging agents, optical imaging agents, and positron emission tomography imaging agents, etc. for theranostic purpose are summarized. A discussion relating to the future perspectives of MSNs for clinical translocation is also included in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer.

    Science.gov (United States)

    Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2017-11-08

    Breast cancer is the second-leading cause of death in women worldwide owing to aggressive metastasis, lack of early diagnosis and poor access to treatment amenities. During the past decade, mesoporous silica nanoparticles (MSNs) have gained ground for the delivery of a wide variety of chemotherapeutic and bioimaging agents owing to their unique characteristics and straightforward fabrication methods. Present research studies based on MSNs have provided various potential insights in their applicability in breast cancer treatment by improving solubility and stability and decreasing the adverse effects of current treatment regimens. This review focuses on the applicability of this novel modality in the management of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Lipid, protein and poly(NIPAM) coated mesoporous silica nanoparticles for biomedical applications.

    Science.gov (United States)

    Yang, Yang; Li, Junbai

    2014-05-01

    In the past decade, mesoporous silica nanoparticles (MSNs) as nanocarriers have showed much potential in advanced nanomaterials due to their large surface area and pore volume. Especially, more and more MSNs based nanodevices have been designed as efficient drug delivery systems (DDSs) or biosensors. In this paper, lipid, protein and poly(NIPAM) coated MSNs are reviewed from the preparation, properties and their potential application. We also introduce the preparative methods including physical adsorption, covalent binding and self-assembly on the MSNs' surfaces. Furthermore, the interaction between the aimed cells and these molecular modified MSNs is discussed. We also demonstrate their typical applications, such as photodynamic therapy, bioimaging, controlled release and selective recognition in biomedical field. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Catalytic performance of subtilisin immobilized without covalently attachment on surface-functionalized mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Murai, K; Ando, F [Department of Applied Chemistry, Graduate School of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai-si, 487-8501 (Japan); Nonoyama, T; Kato, K, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimosidami, Moriyama-ku, Nagoya, 463-8510 (Japan)

    2011-10-29

    Mesoporous silica (MPS) materials were synthesized using cetyltrimethylammonium bromide or amphiphilic pluronic polymer P123 (EO{sub 20}PO{sub 70}EO{sub 20}) as structure-directing agent. MPS samples were characterized by FE-SEM and N{sub 2} adsorption-desorption isotherms, respectively. Subtilisin from Bacillus licheiformis (4.1 x 7.8 x 3.7 nm) was easily immobilized by a direct one-step immobilization process onto MPS with different organo-functinalized surfaces. However, enzyme immobilized on MPS modified with 3-mercaptopropyl group strongly reduced its enantioselectivity. Denaturation temperature of immobilized subtilisin shifted to a high temperature compared to free-enzyme. These biocatalysts on MPS particles retained about 30% of original activity even after 5 cycles of recycle use.

  6. The synthesis of clusters of iron oxides in mesopores of monodisperse spherical silica particles

    Science.gov (United States)

    Stovpiaga, E. Yu.; Eurov, D. A.; Kurdyukov, D. A.; Smirnov, A. N.; Yagovkina, M. A.; Grigorev, V. Yu.; Romanov, V. V.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    The method of obtaining nanoclusters α-Fe2O3 in the pores of monodisperse spherical particles of mesoporous silica ( mSiO2) by a single impregnation of the pores with a melt of crystalline hydrate of ferric nitrate and its subsequent thermal destruction has been proposed. Fe3O4 nanoclusters are synthesized from α-Fe2O3 in the pores by reducing in thermodynamically equilibrium conditions. Then particles containing Fe3O4 were annealed in oxygen for the conversion of Fe3O4 back to α-Fe2O3. In the result, the particles with the structure of the core-shell mSiO2/Fe3O4@ mSiO2/α-Fe2O3 are obtained. The composition and structure of synthesized materials as well as the field dependence of the magnetic moment on the magnetic field strength have been investigated.

  7. Water adsorption-desorption isotherms of two-dimensional hexagonal mesoporous silica around freezing point.

    Science.gov (United States)

    Endo, Akira; Yamaura, Toshio; Yamashita, Kyohei; Matsuoka, Fumio; Hihara, Eiji; Daiguji, Hirofumi

    2012-02-01

    Zr-doped mesoporous silica with a diameter of approximately 3.8 nm was synthesized via an evaporation-induced self-assembly process, and the adsorption-desorption isotherms of water vapor were measured in the temperature range of 263-298 K. The measured adsorption-desorption isotherms below 273 K indicated that water confined in the mesopores did not freeze at any relative pressure. All isotherms had a steep curve, resulting from capillary condensation/evaporation, and a pronounced hysteresis. The hysteresis loop, which is associated with a delayed adsorption process, increased with a decrease in temperature. Furthermore, the curvature radius where capillary evaporation/condensation occurs was evaluated by the combined Kelvin and Gibbs-Tolman-Koening-Buff (GTKB) equations for the modification of the interfacial tension due to the interfacial curvature. The thickness of the water adsorption layer for capillary condensation was slightly larger, whereas that for capillary evaporation was slightly smaller than 0.7 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Use of ordered mesoporous silica to enhance the oral bioavailability of ezetimibe in dogs.

    Science.gov (United States)

    Kiekens, Filip; Eelen, Siemon; Verheyden, Loes; Daems, Tinne; Martens, Johan; Van Den Mooter, Guy

    2012-03-01

    The aim of this study was to investigate the bioavailability enhancement of the biopharmaceutics classification system class II compound ezetimibe loaded in ordered mesoporous silica (OMS) in dogs. The OMS was characterized as highly ordered mesoporous material with a narrow pore size distribution. Ezetimibe was loaded in OMS via incipient wetness impregnation to obtain a 20% (w/w) drug load, characterized by nitrogen adsorption and differential scanning calorimetry, and formulated in one capsule and two tablet formulations. Physicochemical characterization of loaded OMS indicated that ezetimibe molecules were molecularly deposited on the hydrophilic surface of the OMS. Two in vitro dissolution experiments were performed at 37°C in simulated gastric fluid with 0.1% sodium lauryl sulfate or Tween 80 to determine the drug release. All concepts were compared in vitro and in vivo with the commercially available tablet Ezetrol®. A dog study was designed to determine the oral bioavailability of ezetimibe capsules and tablets. The tablet preparations showed similar results to that of Ezetrol®. The capsule formulation demonstrated a faster absorption into the blood circulation, including a superior metabolization of ezetimibe into the active glucuronide conjugate. In vivo evaluation in dogs confirmed the improvement of ezetimibe absorption with the use of OMS as drug delivery technology. Copyright © 2011 Wiley Periodicals, Inc.

  9. In situ biodegradable crosslinking of cationic oligomer coating on mesoporous silica nanoparticles for drug delivery.

    Science.gov (United States)

    Wang, Yifeng; Wang, Jine; Yang, Yang; Sun, Yi; Yuan, Yuan; Li, Yulin; Liu, Changsheng

    2017-05-01

    Although layer-by-layer assembly using anionic and cationic polymer has been a popular way to develop core-shell nanoparticles, the strong electrostatic interactions may limit shell degradability, thus hampering their application as a platform for controlled therapeutic delivery. In this study, we demonstrate a simple approach to developing mesoporous nanohybrids via a process of pre-drug loading (using doxorubicin (DOX) as a model drug) into mesoporous silica nanoparticles (MSN), followed by surface functionalization with a kind of cationic oligomer (low molecular weight polyethylene imine, LPEI) and in situ crosslinking by degradable N,N'-bis(acryloyl)cystamine (BAC). The presence of LPEI shell affords the nanohybrids with charge-reversal ability, which means that the acidic tumor extracellular microenvironment can transform the negative surface charge at neutral conditions into positive-charged ones. The nanohybrids displayed a pH- and redox-dual sensitivity in DOX release under conditions that mimic intracellular reductive conditions and acidic tumor microenvironments. The nanohybrids can be effectively internalized into A549 cells (a carcinomic human alveolar basal epithelial cell line), resulting in a high DOX intracellular accumulation and an improved anticancer cytotoxicity when compared with free DOX, suggesting their high potential as a new platform for therapeutic delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Direct synthesis of mesoporous carbon from the carbonization of hydroxypropyl- β-cyclodextrin/silica composite and its catalytic performance

    Science.gov (United States)

    Wang, Hui Chun; Li, Bao Lin; Li, Jiang Tao; Lin, Pei; Bian, Xiao Bing; Li, Jiang; Zhang, Bo; Wan, Zhuan Xin

    2011-02-01

    A simple and efficient route is reported for the synthesis of mesoporous carbon materials by directly carbonizing hydroxypropyl-β-cyclodextrin-silica composites. The resulting carbon materials, with uniform wormlike mesoporous structure and certain degree graphitic phase characteristics in porous wall, possess narrow pore size distribution, high surface area (>1000 m2 g-1) and pore volume (>1.2 cm3 g-1). It is worth mentioning that the carbon materials have high catalytic activity for the reduction of p-nitrotoluene using hydrazine hydrate as the reducing agent; moreover, the catalytic activity is not reduced notably after being reused for six times.

  11. Coating with mesoporous silica remarkably enhances the stability of the highly active yet fragile flower-like MgO catalyst for dimethyl carbonate synthesis.

    Science.gov (United States)

    Cui, Zhi-Min; Chen, Zhe; Cao, Chang-Yan; Song, Wei-Guo; Jiang, Lei

    2013-07-11

    Flower-like MgO is a highly effective catalyst for the synthesis of dimethyl carbonate through the transesterification method, and coating the catalyst with mesoporous silica significantly enhances the stability of the MgO catalyst.

  12. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Zhou Yumei; Zhao Zhenzhen; Guo Meiqing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2009-08-31

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t{sub 90%}) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 {mu}M and the linear detect range is about from 4.0 {mu}M to 87.98 {mu}M for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (K{sub M}{sup app}) is estimated using the Lineweaver-Burk equation and the K{sub M}{sup app} value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  13. Development of TRPN dendrimer-modified disordered mesoporous silica for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyun; Zhang, Sisi; Qin, Hongyan; Wu, Wei, E-mail: wuweiupc@upc.edu.cn

    2014-08-15

    Highlights: • A novel series of TRPN dendrimers are synthesized. • Structurally disordered mesoporous silica was used to develop the CO{sub 2} adsorbent. • The CO{sub 2} adsorption capacity is relatively high. • The sorbent exhibits a high stability after 12 cycling runs. • The sorbent achieves complete desorption at low temperature (60 °C). - Abstract: A novel series of tri(3-aminopropyl) amine (TRPN) dendrimers were synthesized and impregnated on structurally disordered mesoporous silica (DMS) to generate CO{sub 2} adsorbents (TS). The physicochemical and adsorption properties of the adsorbents before and after dendrimer modification were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and N{sub 2} adsorption–desorption (N{sub 2}-BET) techniques. CO{sub 2} adsorption–desorption tests indicated that the sorbent demonstrates high CO{sub 2} adsorption capacity (138.1 mg g{sup −1} for G1 sample TS-G1-3CN-50 and 91.7 mg g{sup −1} for G2 sample TS-G2-6CN-50), and can completely desorb CO{sub 2} under vacuum at 60 °C. Its CO{sub 2} adsorption capacity at 25 °C increases with the amine loading, achieving the highest adsorption capacity (140.6 mg g{sup −1} for TS-G1-3CN) at 60%. The developed TS materials exhibited excellent cycling stability. After 12 consecutive adsorption–desorption runs, TS-G1-3CN-50 shows an adsorption capacity of 136.0 mg g{sup −1}, retaining 98.5% of its original value.

  14. Improved Gene Transfer with Functionalized Hollow Mesoporous Silica Nanoparticles of Reduced Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Zhengwen Zhan

    2017-06-01

    Full Text Available Gene therapy is a promising strategy for treatment of genetically caused diseases. Successful gene delivery requires an efficient carrier to transfer the desired gene into host cells. Recently, mesoporous silica nanoparticles (MSNs functionalized with 25 kD polyethyleneimine (PEI were extensively used as gene delivery carriers. However, 25 kD PEI could significantly reduce the safety of the modified MSNs although it is efficient for intracellular delivery of nucleic acids. In addition, limited drug loading remains a challenge for conventional MSNs drug carriers. Hollow mesoporous silica nanoparticles (HMSNs with high pore volume, tunable pore size, and excellent biocompatibility are attractive alternatives. To make them more efficient, a less toxic 1.8 kD PEI polymer was used to functionalize the HMSNs which have large pore size (~10 nm and form PEI-HMSNs. Scanning and transmission electron microscopic images showed that HMSNs were spherical in shape and approximately 270 nm in diameter with uniform hollow nanostructures. The maximum loading capacity of green fluorescent protein labeled DNA (GFP-DNA in PEI-HMSNs was found to be 37.98 mg/g. The loading capacity of PEI-HMSNs was nearly three-fold higher than those of PEI modified solid nanoparticles, indicating that both hollow and large pores contributed to the increase in DNA adsorption. The transfection of GFP-DNA plasmid loaded in PEI-HMSNs was increased two-fold in comparison to that of 25 kD PEI. MTT assays in Lovo cells showed that the cell viability was more than 85% when the concentration of PEI-HMSNs was 120 µg/mL, whereas the cell viability was less than 20% when the 25 kD PEI was used at the same concentration. These results indicated that PEI-HMSNs could be used as a delivery system for nucleic acids due to good biocompatibility, high gene loading capacity, and enhanced gene transfer efficiency.

  15. Fabrication of and drug delivery by an upconversion emission nanocomposite with monodisperse LaF3:Yb,Er core / mesoporous silica shell structure

    NARCIS (Netherlands)

    Yang, Y.; Qu, Y.; Zhao, J.; Zeng, Q.; Ran, Y.; Zhang, Q.; Kong, X.; Zhang, H.

    2010-01-01

    Monodisperse, uniform, encapsulated mesoporous silicananocomposites with a LaF3:Yb,Er core and a mesoporous silica shell structure, which still exhibit green upconversion photoluminescence (PL) under 980 nm irradiation, have been successfully synthesized and investigated as potential drug delivery

  16. Nanostructured Mesoporous Silica Wires with Intrawire Lamellae via Evaporation-Induced Self-Assembly in Space-Confined Channels

    Directory of Open Access Journals (Sweden)

    Michael Z. Hu

    2014-01-01

    Full Text Available Evaporation-induced self-assembly (EISA of silica sol-gel ethanol-water solution mixtures with block-copolymer were studied inside uniform micro/nano-channels. Nanostructured mesoporous silica wires, with various intrawire self-assembly structures including lamellae, were prepared via EISA process but in space-confined channels with the diameter ranging from 50 nm to 200 nm. Membranes made of anodized aluminum oxide (AAO and track-etched polycarbonate (EPC were utilized as the arrays of space-confined channels (i.e., 50, 100, and 200 nm EPC and 200 nm AAO for infiltration and drying of mixture solutions; these substrate membranes were submerged in mixture solutions consisting of a silica precursor, a structure-directing agent, ethanol, and water. After the substrate channels were filled with the solution under vacuum impregnation, the membrane was removed from the solution and dried in air. The silica precursor used was tetraethyl othosilicate (TEOS, and the structure-directing agent employed was triblock copolymer Pluronic-123 (P123. It was found that the formation of the mesoporous nanostructures in silica wires within uniform channels were significantly affected by the synthesis conditions including (1 preassemble TEOS aging time, (2 the evaporation rate during the vacuum impregnation, and (3 the air-dry temperature. The obtained intrawire structures, including 2D hexagonal rods and lamellae, were studied by scanning transmission electron microscopy (STEM. A steric hindrance effect seems to explain well the observed polymer-silica mesophase formation tailored by TEOS aging time. The evaporation effect, air-drying effect, and AAO versus EPC substrate effect on the mesoporous structure of the formed silica wires were also presented and discussed.

  17. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells.

    Science.gov (United States)

    Tang, Haolin; Pan, Mu; Jiang, San Ping

    2011-05-21

    A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).

  18. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States); Ilias, Shamsuddin [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States)

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  19. Mesoporous silica matrices derived from sol-gel process assisted by low power ultrasonic activation

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2009-06-01

    Full Text Available The present work contributes to elucidating the differences between silica gels obtained by low doses ultrasonic activation, and those obtained by the conventional method, termed as classical sol gel. Silica matrices were produced by sol-gel synthesis process, assisted and non-assisted by an ultrasonic fi eld, and subsequently characterized by various methods. Nitrogen adsorption and small-angle neutron scattering (SANS measurements provided texture and microstructure of the dried gels. The adsorption results show that the sample sonicated for 2 hours presents the most ordered microstructure, characterized by pore shape close to spherical and the narrowest size distribution – about 90 % of the pores for this sample fall into the mesopore range (2–50 nm. SANS data reveal the formation of primary structural units of sizes around 1.5–2 nm which are small linear or branched polymeric species of roughly spherical shape and with rough surface. They are generated in the very early stage of sol gel process, as a result of hydrolysis and condensation reactions. The aggregated primary units form the secondary porous structure which can be described as a rough surface with fractal dimension above 2. The best porosity characteristics were obtained for the sample activated for 2 hours, indicating the optimal doses of sonication in the present conditions. Our results demonstrate the possibility of tailoring the pore size distribution using a low power ultrasonic bath.

  20. Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers

    Science.gov (United States)

    Hartono, Sandy B.; Yu, Meihua; Gu, Wenyi; Yang, Jie; Strounina, Ekaterina; Wang, Xiaolin; Qiao, Shizhang; Yu, Chengzhong

    2014-02-01

    The development of functional nanocarriers that can enhance the cellular delivery of a variety of nucleic acid agents is important in many biomedical applications such as siRNA therapy. We report the synthesis of large pore mesoporous silica nanoparticles (LPMSN) loaded with iron oxide and covalently modified by polyethyleneimine (denoted PEI-Fe-LPMSN) as carriers for gene delivery. The LPMSN have a particle size of ˜200 nm and a large pore size of 11 nm. The large pore size is essential for the formation of large iron oxide nanoparticles to increase the magnetic properties and the adsorption capacity of siRNA molecules. The magnetic property facilitates the cellular uptake of nanocarriers under an external magnetic field. PEI is covalently grafted on the silica surface to enhance the nanocarriers’ affinity against siRNA molecules and to improve gene silencing performance. The PEI-Fe-LPMSN delivered siRNA-PLK1 effectively into osteosarcoma cancer cells, leading to cell viability inhibition of 80%, higher compared to the 50% reduction when the same dose of siRNA was delivered by a commercial product, oligofectamine.

  1. The novel mesoporous silica aerogel modified with protic ionic liquid for lipase immobilization

    Directory of Open Access Journals (Sweden)

    Anderson S. Barbosa

    2016-05-01

    Full Text Available Mesoporous silica supports (aerogels were used to immobilize Burkholderia cepacia lipase (BC by encapsulation (EN or ENIL, physical adsorption (ADS or ADSIL and covalent binding (CB or CBIL into or onto the aerogel modified with protic ionic liquid (PIL. Yield immobilization (Ya and operational stability were determined by the hydrolytic reaction of olive oil. Ya (37% to 83% by physical adsorption and operational stability (2 to 23 batches by encapsulation increased when the support was modified with PIL. For immobilized derivates observed by the BET method, in this case ADS and CB for ADSIL and CBIL, increased pores size was observed, possibly due to the higher amount of BC immobilized conferring Ya and operational stability. This effect was probably attributed to the entry of the enzyme into the pores of the silica aerogel structure. SEM images showed a change in the structure and properties of immobilized lipase derived with PIL. A characteristic FTIR band was obtained for the silanol groups and amides I, IV and V, demonstrating the efficiency of immobilization of BC. The most efficient biocatalysts were ADSIL with regard to yield immobilization and ENIL for operational stability.

  2. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes

    Science.gov (United States)

    An, Weili; Fu, Jijiang; Su, Jianjun; Wang, Lei; Peng, Xiang; Wu, Kai; Chen, Qiuyun; Bi, Yajun; Gao, Biao; Zhang, Xuming

    2017-03-01

    SiO2 as lithium ion batteries (LIBs) anode has drawn considerable attentions because of its low cost, high theoretical specific capacity and low discharge potentials but been limited by its low conductivity and electrochemical kinetics, resulting in obvious capacity decay and poor rate performance. Herein, we developed a simple approach to synthesize mesoporous hollow nanosphere (MHSiO2@C) assembled by conformal carbon coating tiny silica nanoparticles through chemical polymerization of dopamine inside the shell of MHSiO2. The continuous carbon can conformally coat on the surface of all primary SiO2 nanoparticles in the shell, which not only enhances the conductivity but also improves the structural stability of the MHSiO2. Compared to raw MHSiO2 and non-conformal carbon coated MHSiO2, the MHSiO2@C demonstrate a high reversible capacity of 440.7 mA h g-1 at a current density of 0.5 A g-1 after 500 cycles and excellent rate pe