WorldWideScience

Sample records for sauvignon grape berry

  1. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.

    Science.gov (United States)

    Deluc, Laurent G; Grimplet, Jérôme; Wheatley, Matthew D; Tillett, Richard L; Quilici, David R; Osborne, Craig; Schooley, David A; Schlauch, Karen A; Cushman, John C; Cramer, Grant R

    2007-11-22

    Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of transcripts, 4,151 Unigenes

  2. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development

    Science.gov (United States)

    Deluc, Laurent G; Grimplet, Jérôme; Wheatley, Matthew D; Tillett, Richard L; Quilici, David R; Osborne, Craig; Schooley, David A; Schlauch, Karen A; Cushman, John C; Cramer, Grant R

    2007-01-01

    Background Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. Results Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of

  3. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development

    Directory of Open Access Journals (Sweden)

    Schlauch Karen A

    2007-11-01

    Full Text Available Abstract Background Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I, berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate, tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening marks the beginning of the third major phase (Phase III in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose, and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system, through véraison (E-L stages 34 and 35, to mature berries (E-L stages 36 and 38. Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. Results Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry

  4. Influence of shriveling on berry composition and antioxidant activity of Cabernet Sauvignon grapes from Shanxi vineyards.

    Science.gov (United States)

    Fang, Yulin; Meng, Jiangfei; Zhang, Ang; Liu, Jinchuan; Xu, Tengfei; Yu, Weilong; Chen, Shuxia; Li, Hua; Zhang, Zhenwen; Wang, Hua

    2011-03-15

    Berry shrivel (BS), a berry development disorder, appears soon after veraison. It occurs worldwide and affects the quality of grape berries and wine. However, it had not been reported in China until recently. This study aimed to investigate the changes in berry composition and antioxidant activity of Cabernet Sauvignon grapes from Xiangning Valley, Shanxi Province, China, during BS. Shrinkage contributed to an increase in the concentration of basic grape ingredients such as sugar and acid. An appropriate degree of shrinkage was apparently helpful in improving the phenolic content and increasing the antioxidant activity, but the berries that continued to shrivel showed a low antioxidant activity. Further, the results indicated distinct differences between the berries harvested from the southern side of the canopy and those harvested from the northern side, presumably due to variations in sunlight exposure. Moderate BS was beneficial since it increased berry quality and antioxidant activity of Cabernet Sauvignon grapes from Shanxi vineyards. Copyright © 2011 Society of Chemical Industry.

  5. Transcriptome comparison of Cabernet Sauvignon grape berries from two regions with distinct climate.

    Science.gov (United States)

    Sun, Runze; He, Fei; Lan, Yibin; Xing, Ranran; Liu, Rui; Pan, Qiuhong; Wang, Jun; Duan, Changqing

    2015-04-15

    Primary and secondary metabolism in grape berries is under the control of complex interactions among environmental conditions, genotypes, and management practices. To obtain an interpretation from the view of transcriptome on distinct metabolite accumulation between ecologically different regions in China, next-generation sequencing technology was performed on E-L 31, 35, and 38 stages of Cabernet Sauvignon grape berries from Changli (CL, eastern) and Gaotai (GT, western). The transcript abundance of epoxycarotenoid dioxygenase and xanthoxin dehydrogenase required for ABA biosynthesis was significantly higher in the GT berries at E-L 35 and 38 stages compared with the CL berries, which may explain the relatively short maturation period of berries in the western region. Some genes required for carbohydrate metabolism, such as hexose transporter, L-idonate dehydrogenase, and phosphoenolpyruvate carboxylase, were significantly up-regulated in the CL berries in relation to the GT berries, which positively correlated with the sugar and organic acid accumulations. Pathway enrichment analysis of differentially expressed genes revealed that the CL berries had higher levels of phenylpropanoid biosynthesis at E-L 38 stage than the GT berries, which may relate to the quick fading of the GT wines because of weak co-pigmentation. This observation lays a foundation for further study concerning the molecular basis for environmental effects on berry quality formation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape.

    Science.gov (United States)

    Koyama, Kazuya; Ikeda, Hiroko; Poudel, Puspa Raj; Goto-Yamamoto, Nami

    2012-06-01

    Biosynthesis of phenolic compounds is known to be sensitive to light environments, which reflects the possible role of these compounds for photoprotection in plants. Herein, the effects of UV and visible light on biosynthesis of flavonoids was investigated, i.e., proanthocyanidins (PAs) and flavonols, in young berry skins of a red-wine grape, Vitis vinifera cv. Cabernet Sauvignon. Shading with light-proof boxes from the flowering stage until 49 days after treatment (DAT) partially decreased PA concentrations, and completely decreased flavonol concentrations in the berry skins. Shading decreased the transcript abundance of a flavonol-related gene more remarkably than those of PA-related genes. In addition, light exclusion influenced the composition of PAs, such as the decrease in the proportion of trihydroxylated subunits and the mean degree of polymerization (mDP) within PAs. However, solar UV exclusion did not affect the concentration and composition of PAs, whereas this exclusion remarkably decreased the flavonol concentration. Consistently, UV exclusion did not influence the transcript levels of PA-related genes, whereas it dramatically decreased that of flavonol-related genes. These findings indicated a different light regulation of the biosynthesis of these flavonoids in young berry skins of wine grape. Visible light primarily induces biosynthesis of PAs and affects their composition, whereas UV light specifically induces biosynthesis of flavonols. Distinct roles of members of a MYB transcription factor family for light regulation of flavonoid biosynthesis were proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Science.gov (United States)

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  8. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    Deluc Laurent G

    2009-05-01

    Full Text Available Abstract Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1 transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation

  9. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries.

    Science.gov (United States)

    Lecourieux, Fatma; Kappel, Christian; Pieri, Philippe; Charon, Justine; Pillet, Jérémy; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Lecourieux, David

    2017-01-01

    Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison

  10. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries.

    Science.gov (United States)

    Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin

    2016-10-12

    The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  11. Mass spectrometric and enzymatic evidence confirm the existence of anthocyanidin 3,5-O-diglucosides in cabernet sauvignon (Vitis vinifera L.) grape berries.

    Science.gov (United States)

    Xing, Ran-Ran; Li, Si-Yu; He, Fei; Yang, Zhe; Duan, Chang-Qing; Li, Zheng; Wang, Jun; Pan, Qiu-Hong

    2015-04-01

    It has been widely accepted that anthocyanidin 3,5-O-diglucosides do not exist in Vitis vinifera L. Cabernet Sauvignon (CS) berries. However, our anthocyanin analyses using HPLC-ESI-MS/MS detected the existence of a low level of anthocyanidin 3,5-O-diglucosides in the Cabernet Sauvignon grape berries grown in China. The authenticity of these samples was confirmed with microsatellite markers. The existence of anthocyanidin 3,5-O-diglucoside was further verified by the enzymatic evidence for the first time. Four putative 5-O-glucosyltransferase (5GT) genes were isolated from the Cabernet Sauvignon berries. The enzymatic analysis showed that a recombinant protein (designated as Vv5GT3) glucosylated the 3-O- and 5-O-positions of anthocyanidins and flavonols. A phylogenetic analysis revealed that this bifunctional enzyme belongs to the 5GT subfamily of UDP-glycosyltransferases. This finding brought a new understanding of the anthocyanins' profile and their biosynthesis in V. vinifera and would be helpful for further investigations of the mechanism of accumulation of anthocyanidin diglucosides in Cabernet Sauvignon berries in China's wine-producing regions.

  12. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L. Grape Berries

    Directory of Open Access Journals (Sweden)

    Yan-Lun Ju

    2016-10-01

    Full Text Available The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA and methyl jasmonate (MeJA on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC and individual anthocyanins. Lipoxygenase (LOX activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  13. Water deficit increases stilbene metabolism in Cabernet Sauvignon berries.

    Science.gov (United States)

    Deluc, Laurent G; Decendit, Alain; Papastamoulis, Yorgos; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2011-01-12

    The impact of water deficit on stilbene biosynthesis in wine grape (Vitis vinifera) berries was investigated. Water deficit increased the accumulation of trans-piceid (the glycosylated form of resveratrol) by 5-fold in Cabernet Sauvignon berries but not in Chardonnay. Similarly, water deficit significantly increased the transcript abundance of genes involved in the biosynthesis of stilbene precursors in Cabernet Sauvignon. Increased expression of stilbene synthase, but not that of resveratrol-O-glycosyltransferase, resulted in increased trans-piceid concentrations. In contrast, the transcript abundance of the same genes declined in Chardonnay in response to water deficit. Twelve single nucleotide polymorphisms (SNPs) were identified in the promoters of stilbene synthase genes of Cabernet Sauvignon, Chardonnay, and Pinot Noir. These polymorphisms resulted in eight changes within the predicted cis regulatory elements in Cabernet Sauvignon and Chardonnay. These results suggest that cultivar-specific molecular mechanisms might exist that control resveratrol biosynthesis in grapes.

  14. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation

    Science.gov (United States)

    Lücker, Joost; Laszczak, Mario; Smith, Derek; Lund, Steven T

    2009-01-01

    Background iTRAQ is a proteomics technique that uses isobaric tags for relative and absolute quantitation of tryptic peptides. In proteomics experiments, the detection and high confidence annotation of proteins and the significance of corresponding expression differences can depend on the quality and the species specificity of the tryptic peptide map database used for analysis of the data. For species for which finished genome sequence data are not available, identification of proteins relies on similarity to proteins from other species using comprehensive peptide map databases such as the MSDB. Results We were interested in characterizing ripening initiation ('veraison') in grape berries at the protein level in order to better define the molecular control of this important process for grape growers and wine makers. We developed a bioinformatic pipeline for processing EST data in order to produce a predicted tryptic peptide database specifically targeted to the wine grape cultivar, Vitis vinifera cv. Cabernet Sauvignon, and lacking truncated N- and C-terminal fragments. By searching iTRAQ MS/MS data generated from berry exocarp and mesocarp samples at ripening initiation, we determined that implementation of the custom database afforded a large improvement in high confidence peptide annotation in comparison to the MSDB. We used iTRAQ MS/MS in conjunction with custom peptide db searches to quantitatively characterize several important pathway components for berry ripening previously described at the transcriptional level and confirmed expression patterns for these at the protein level. Conclusion We determined that a predicted peptide database for MS/MS applications can be derived from EST data using advanced clustering and trimming approaches and successfully implemented for quantitative proteome profiling. Quantitative shotgun proteome profiling holds great promise for characterizing biological processes such as fruit ripening initiation and may be further

  15. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon berries at ripening initiation

    Directory of Open Access Journals (Sweden)

    Smith Derek

    2009-01-01

    Full Text Available Abstract Background iTRAQ is a proteomics technique that uses isobaric tags for relative and absolute quantitation of tryptic peptides. In proteomics experiments, the detection and high confidence annotation of proteins and the significance of corresponding expression differences can depend on the quality and the species specificity of the tryptic peptide map database used for analysis of the data. For species for which finished genome sequence data are not available, identification of proteins relies on similarity to proteins from other species using comprehensive peptide map databases such as the MSDB. Results We were interested in characterizing ripening initiation ('veraison' in grape berries at the protein level in order to better define the molecular control of this important process for grape growers and wine makers. We developed a bioinformatic pipeline for processing EST data in order to produce a predicted tryptic peptide database specifically targeted to the wine grape cultivar, Vitis vinifera cv. Cabernet Sauvignon, and lacking truncated N- and C-terminal fragments. By searching iTRAQ MS/MS data generated from berry exocarp and mesocarp samples at ripening initiation, we determined that implementation of the custom database afforded a large improvement in high confidence peptide annotation in comparison to the MSDB. We used iTRAQ MS/MS in conjunction with custom peptide db searches to quantitatively characterize several important pathway components for berry ripening previously described at the transcriptional level and confirmed expression patterns for these at the protein level. Conclusion We determined that a predicted peptide database for MS/MS applications can be derived from EST data using advanced clustering and trimming approaches and successfully implemented for quantitative proteome profiling. Quantitative shotgun proteome profiling holds great promise for characterizing biological processes such as fruit ripening

  16. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides.

    Science.gov (United States)

    Cholet, Céline; Delsart, Cristèle; Petrel, Mélina; Gontier, Etienne; Grimi, Nabil; L'hyvernay, Annie; Ghidossi, Remy; Vorobiev, Eugène; Mietton-Peuchot, Martine; Gény, Laurence

    2014-04-02

    Pulsed electric field (PEF) treatment is an emerging technology that is arousing increasing interest in vinification processes for its ability to enhance polyphenol extraction performance. The aim of this study was to investigate the effects of PEF treatment on grape skin histocytological structures and on the organization of skin cell wall polysaccharides and tannins, which, until now, have been little investigated. This study relates to the effects of two PEF treatments on harvested Cabernet Sauvignon berries: PEF1 (medium strength (4 kV/cm); short duration (1 ms)) and PEF2 (low intensity (0.7 kV/cm); longer duration (200 ms)). Histocytological observations and the study of levels of polysaccharidic fractions and total amounts of tannins allowed differentiation between the two treatments. Whereas PEF1 had little effect on the polyphenol structure and pectic fraction, PEF2 profoundly modified the organization of skin cell walls. Depending on the PEF parameters, cell wall structure was differently affected, providing variable performance in terms of polyphenol extraction and wine quality.

  17. Microorganisms of Grape Berries

    Directory of Open Access Journals (Sweden)

    Kántor Attila

    2017-12-01

    Full Text Available Grape surface is an unstable habitat that changes greatly according to the stage of grape ripening. Different bacteria and yeasts can colonise the surface of grape berry and the diversity of microorganisms depends on the stage of ripening, pesticide application and health condition. The aim of this study was to study the microflora of the surface of grape berries. Altogether, 19 grape samples from Slovakia were collected. The spread plate method was applied and a 100 μL inoculum of each dilution (10−2, 10−3 was plated on TSA, MEA, and MRS agar for isolation of microorganisms from grapes. Proteins were extracted from cells by ethanol/formic acid extraction procedure. MALDI-TOF Mass Spectrometry was used for identification of microorganisms. In total, 11 genera of Gram-negative bacteria, 11 of Gram-positive bacteria and nine of yeasts were identified. Among 200 isolates, Gram-negative, Gram-positive bacteria and yeasts represented 11%, 27% and 62% of the total number of isolates studied. The most common genera of isolated yeasts were Hanseniaspora (37%, Metschnikowia (31%, and Rhodotorula (10%. The most frequently isolated among Gram-negative bacteria were Acinetobacter (22%, Pseudomonas (22% and Sphingomonas (13%. The most common genera of Gram-positive bacteria were Bacillus (20%, Lactobacillus (19%, Leuconostoc and Staphylococcus (11%, respectively.

  18. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  19. Proteomic Analysis of Sauvignon Blanc Grape Skin, Pulp and Seed and Relative Quantification of Pathogenesis-Related Proteins.

    Directory of Open Access Journals (Sweden)

    Bin Tian

    Full Text Available Thaumatin-like proteins (TLPs and chitinases are the main constituents of so-called protein hazes which can form in finished white wine and which is a great concern of winemakers. These soluble pathogenesis-related (PR proteins are extracted from grape berries. However, their distribution in different grape tissues is not well documented. In this study, proteins were first separately extracted from the skin, pulp and seed of Sauvignon Blanc grapes, followed by trypsin digestion and analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS. Proteins identified included 75 proteins from Sauvignon Blanc grape skin, 63 from grape pulp and 35 from grape seed, mostly functionally classified as associated with metabolism and energy. Some were present exclusively in specific grape tissues; for example, proteins involved in photosynthesis were only detected in grape skin and proteins found in alcoholic fermentation were only detected in grape pulp. Moreover, proteins identified in grape seed were less diverse than those identified in grape skin and pulp. TLPs and chitinases were identified in both Sauvignon Blanc grape skin and pulp, but not in the seed. To relatively quantify the PR proteins, the protein extracts of grape tissues were seperated by HPLC first and then analysed by SDS-PAGE. The results showed that the protein fractions eluted at 9.3 min and 19.2 min under the chromatographic conditions of this study confirmed that these corresponded to TLPs and chitinases seperately. Thus, the relative quantification of TLPs and chitinases in protein extracts was carried out by comparing the area of corresponding peaks against the area of a thamautin standard. The results presented in this study clearly demonstrated the distribution of haze-forming PR proteins in grape berries, and the relative quantification of TLPs and chitinases could be applied in fast tracking of changes in PR proteins during grape growth and

  20. Influence of canopy-applied chitosan on the composition of organic cv. Sangiovese and Cabernet Sauvignon berries and wines.

    Science.gov (United States)

    Tessarin, Paola; Chinnici, Fabio; Donnini, Silvia; Liquori, Enrico; Riponi, Claudio; Rombolà, Adamo Domenico

    2016-11-01

    The effects of canopy-applied chitosan on grapes and derived wine were evaluated in an organically managed mature vineyard. The experiment was performed on Sangiovese and Cabernet Sauvignon red grape cultivars, the application of a chitosan solution was compared to water spraying. Each treatment was applied 3 times (beginning and end of veraison, and pre-harvest) in a randomized block experimental design. Significant differences in (+)-catechin, (-)-epicatechin and procyanidin B2 amounts in berries and wines were detected in Cabernet Sauvignon but not in Sangiovese. Chitosan did not influence the berry skin anthocyanin and flavonol amount or t-resveratrol concentration in both skins and wines. A considerable increase in γ-aminobutyric acid (GABA), together with some other amino acids, ammonium and amines was observed in the berry flesh of cv. Cabernet Sauvignon. The increase in phenolic acids and nitrogenous compounds, especially GABA, in the pulp of Cabernet Sauvignon grapes suggests changes in stress response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  2. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  3. Potassium uptake and redistribution in Cabernet Sauvignon and Syrah grape tissues and its relationship with grape quality parameters.

    Science.gov (United States)

    Ramos, María Concepción; Romero, María Paz

    2017-08-01

    The present study investigated the potassium (K) levels in petiole and other grape tissues during ripening in Vitis vinifera Shiraz and Cabernet Sauvignon, grown in areas with differences in vigour, as well as with and without leaf thinning. Potassium levels in petiole, seeds, skin and flesh were related to grape pH, acidity, berry weight and total soluble solids. Differences in K levels in petiole were in accordance with the differences in soil K. Leaf thinning gave rise to higher K levels in petiole but, in grape tissues, the differences were not significant in all samplings, with greater differences at the end of the growing cycle. Potassium levels per berry in grape tissues increased from veraison to harvest, with K mainly accumulated in skins and, to a lesser extent, in flesh. Potassium levels in flesh positively correlated with pH and total soluble solids, whereas the correlation with titratable acidity was negative. Grape juice pH and total soluble solids positively correlated with K, whereas titratable acidity correlated negatively. Leaf thinning increased K levels in petiole, although differences in K levels in grape tissues were not significant. This suggests the need to consider the K berry concentration when aiming to optimise K fertilisation programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. ENDOGENAL COLONIZATION OF GRAPES BERRIES

    Directory of Open Access Journals (Sweden)

    Dana Tančinová

    2015-02-01

    Full Text Available The aim of study was to detect the microscopic filamentous fungi from wine surface of sterilized grapes berries of Slovak origin. We analyzed 21 samples of grapes, harvested in the year 2012 of various wine-growing regions. For the isolation of species we used the method of direct plating surface-sterilized berries (using 0.4% freshly pre-pared chlorine on DRBC (Dichloran Rose Bengal Chloramphenicol agar. The cultivation was carried at 25±1°C, for 5 to 7 days. A total number of 2541 fungal isolates pertaining to 18 genera including Mycelia sterilia were recovered. Isolates of genus Alternaria were found in all of tested samples with the highest relative density 56.4%. The second highest isolation frequency we detected for genus Fusarium (90.48% positive samples, but with low relative density (31 isolates and 2.99% RD. Another genera with higher isolation frequency were Cladosporium (Fr 85.71%, RD 14.6%, Mycelia sterilia (Fr 85.71%, RD 4.25%, Penicillium (Fr 80.95%, RD 13.42%, Botrytis (Fr 71.43%, RD 2.95% Rhizopus (Fr 66.66%, RD 1.34%, Aspergillus (Fr 57.14%, RD 0.87%, Epicoccum (Fr 47.62%, RD 1.22%, Trichoderma (Fr 42.86%, RD 1.26%. Isolation frequency of another eight genera (Arthrinium, Dichotomophtora, Geotrichum, Harzia, Chaetomium, Mucor, Nigrospora and Phoma was less than 10% and relative density less than 0.5%. Chosen isolates of potential producers of mycotoxin (species of Alternaria, Aspergillus, Fusarium and Penicillium were tested for the ability to produce relevant mycotoxins in in vitro conditions using TLC method. None isolate of Aspergillus niger aggregate (13 tested did not produce ochratoxin A – mycotoxin monitored in wine and another products from grapes berries. Isolates of potentially toxigenic species recovered from the samples were found to produce another mycotoxins: aflatoxin B1, altenuene, alternariol, alternariol monomethylether, citrinin, diacetoxyscirpenol, deoxynivalenol, HT-2 patulin, penitrem A and T-2 toxin

  5. Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon.

    Science.gov (United States)

    Wang, Yu; He, Yan-Nan; Chen, Wei-Kai; He, Fei; Chen, Wu; Cai, Xiao-Dong; Duan, Chang-Qing; Wang, Jun

    2018-05-15

    Cluster thinning is a common practice for regulating vine yield and grape quality. The effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of V. vinifera L. Cabernet Sauvignon were evaluated during two seasons. Half of the clusters were removed at pea-size and veraison relative to two controls, respectively. Both cluster thinning treatments significantly increased pruning weight and decreased yield. No effects of cluster thinning on berry growth, ripeness and flavonol composition were observed. Early cluster thinning decreased the photosynthetic rate at pea-size, but the effect diminished at post-veraison. Early cluster thinning significantly promoted the biosynthesis of anthocyanins but decreased the proportion of 3'5'-hydroxylated and acylated anthocyanins at veraison. Late cluster thinning decreased the proportions of 3'5'-hydroxylated and acylated anthocyanins. Additionally, Cluster thinning showed inconsistent effects on flavan-3-ol composition over the two seasons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polyphenol Concentrate from Kazakhstan Cabernet Sauvignon Collection of Grapes

    OpenAIRE

    Zarina Shulgau; Vladislav Tritek; Alexander Gulyaev; Gulsim Adilgozhina; Talgat Nurgozhin

    2014-01-01

    Introduction. Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the benef...

  7. The microbial ecology of wine grape berries.

    Science.gov (United States)

    Barata, A; Malfeito-Ferreira, M; Loureiro, V

    2012-02-15

    Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp

  8. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions.

    Science.gov (United States)

    Liu, Di; Gao, Yuan; Li, Xiao-Xi; Li, Zheng; Pan, Qiu-Hong

    2015-09-17

    This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv.) under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A) and 99% (film B) invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA) revealed that (E)-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E)-2-heptenal, styrene, α-phenylethanol, and (Z)-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  9. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions

    Directory of Open Access Journals (Sweden)

    Di Liu

    2015-09-01

    Full Text Available This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv. under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A and 99% (film B invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA revealed that (E-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E-2-heptenal, styrene, α-phenylethanol, and (Z-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  10. Impact of Plasmopara viticola infection of Merlot and Cabernet Sauvignon grapes on wine composition and flavor.

    Science.gov (United States)

    Pons, Alexandre; Mouakka, Nadia; Deliere, Laurent; Crachereau, Jean Christophe; Davidou, Ludivine; Sauris, Pierre; Guilbault, Pascal; Darriet, Philippe

    2018-01-15

    This work reports the identification of volatile compounds involved in the particular and atypical flavor detected in Vitis vinifera red Merlot and Cabernet Sauvignon wines made with grapes infected and wilted by brown rot (Plasmopara viticola). Must made from withered grapes had green aromas while red wines were marked by intense odor reminiscent of green, herbaceous notes but also figs and cooked fruit. Thanks to GC-O and GC-MS analysis, cooked fruit notes were identified as 3-methyl-2,4-nonanedione, γ-nonalactone and γ-decalactone, whereas herbaceous and green aromas were identified as (Z)-1,5-octadien-3-one and 3-isobutyl-2-methoxypyrazine. We show that the organoleptic impact of P. viticola is more pronounced in Merlot wines compared to Cabernet Sauvignon ones. The highest levels of 3-methyl-2,4-nonanedione (75.3ng/L) were found in old Merlot wines made with 20% infected berries, suggesting the incidence of berry quality on the ability of a wine to age. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    Science.gov (United States)

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  12. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Pengbao Shi

    2017-02-01

    Full Text Available Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines (Vitis vinifera were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe from ferric ethylenediamine di (o-hydroxyphenylacetic acid (Fe-EDDHA in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-(6-O-coumaryl-glucoside, in moderate Fe treatment (46 μM grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, leucoanthocyanidin dioxygenase (LDOX, and anthocyanin O-methyltransferase (AOMT exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  13. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    OpenAIRE

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gom?s, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    ABSTRACT : The present work investigates the interactions between soil content, rootstock and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake ...

  14. Comparison of distinct transcriptional expression patterns of flavonoid biosynthesis in Cabernet Sauvignon grapes from east and west China.

    Science.gov (United States)

    Li, Qiang; He, Fei; Zhu, Bao-Qing; Liu, Bin; Sun, Run-Ze; Duan, Chang-Qing; Reeves, Malcolm J; Wang, Jun

    2014-11-01

    Flavonoids make a very important contribution to the organoleptic qualities of grapes and wines. In this work these were analyzed in Cabernet Sauvignon grown in Changli, Hebei Province in east China and Gaotai, Gansu Province in west China. These regions have distinctly different climates contributing to their different 'terroir'. RNA sequencing was performed to trace transcriptome changes in Cabernet Sauvignon berries at pea size, veraison and ripening, corresponding to E-L 31, 35 and 38. The accumulation of flavonols, flavan-3-ols and anthocyanins together with the expression of relevant genes were analyzed and compared between the two regions. The biosynthesis patterns were similar between two regions, but more flavonols, anthocyanins, and tri-hydroxylated flavonoids accumulated in grapes from Gaotai before berry harvest, possibly due to the higher transcript levels of the genes that encode biosynthetic enzymes and their potential candidate transcription factors. The lower levels of flavan-3-ols, mainly (-)-epigallocatechin, in the pre-veraison grapes from Changli, might be due to limited flow of carbon to the F3'5'H branch pathway, as the ratio of F3'5'H to F3'H was lower in these berries from Changli. It is suggested that the combination of climatic factors profoundly affect the flavonoid pathway in grapes from China, providing regionally specific metabolism patterns. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in Cabernet Sauvignon berries

    Directory of Open Access Journals (Sweden)

    Massimiliano eCorso

    2016-02-01

    Full Text Available In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigour. This study investigates the effect of M4 on Cabernet Sauvignon (CS berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behaviour of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  16. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

    Science.gov (United States)

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  17. Simple Rain-Shelter Cultivation Prolongs Accumulation Period of Anthocyanins in Wine Grape Berries

    Directory of Open Access Journals (Sweden)

    Xiao-Xi Li

    2014-09-01

    Full Text Available Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.

  18. Elemental profiling of Cabernet Sauvignon grapes as a function of geospatial variability in a Napa Valley vineyard

    Science.gov (United States)

    Carvalho, Angela; Hopfer, Helene; Nelson, Jenny; Ebeler, Sue; Jenkins, Christopher; Plant, Richard; Smart, David

    2015-04-01

    A primary tenant of the concept of geoscience and wine is that elemental composition of soils may be reflected in the elemental profile of fruit and discerned in the organoleptic assessment of wine. The extremely varied soil composition at the vineyard level in the Napa Valley region of California provides an ideal setting to study elemental pattern correlations between grape berries and soil samples. In the Napa Valley Cabernet Sauvignon is a wine grape variety of substantial economic value. Elemental profiling of Cabernet Sauvignon grapes in function of origin will provide a better understanding of the relationship between elemental accumulation in berries and soil element composition. The aim of this study was to explore the geospatial variability of elemental patterns in Cabernet Sauvignon grapes with respect to the soil elemental profiles at thirty-six geo-referenced vines in a 4 ha vineyard. Sixty-eight elements were determined via inductively coupled-plasma mass spectrometry (ICP-MS); this allowed for elemental profiling of both soil and berries at each sampling site. It was found that for the soil samples twenty-two elements contributed to a significant difference between sampling points, and thirty for the berries. Application of principal components analysis (PCA) showed that soil and berry elemental composition varied as a function of location in the vineyard. For the soil PCA, rare earth metals such as Dy, Ho, Ce, Er, Yb and Tm were driving separation towards the southern section of the vineyard while K, Ga, V, Al, Mg and P were correlated with the northern section. In the berry samples the Lanthanides, Gd, Pr, Yb, Dy, Er and Ho, also showed a higher influence in driving separation towards the southern section while Sr, Mo, Ba, Mg, P, K, Cd, Cu, B, Rb and Ti characterized the elemental profile of the northern part of the block. These findings showed that the rare earth metals, in particular Yb, Dy, Er and Ho, were the most distinguishing elemental

  19. Characterization and multivariate classification of grapes and wines of two Cabernet Sauvignon clones

    Directory of Open Access Journals (Sweden)

    Vívian Maria Burin

    2011-05-01

    Full Text Available The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.

  20. Polyphenol Concentrate from Kazakhstan Cabernet Sauvignon Collection of Grapes

    Directory of Open Access Journals (Sweden)

    Zarina Shulgau

    2014-12-01

    Full Text Available Introduction. Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the beneficial properties of polyphenols. Standard operating procedures were developed in our laboratories to collect alcohol free concentrate of polyphenols from the Kazakhstan Cabernet Sauvignon collection of grapes. The purpose of the study was to investigate the composition, biological safety, and potential therapeutic effects of the polyphenol concentrate.Methods. The total polyphenol amount was determined using the Enology Analyzer Y15 (BioSystems, Spain. HPLC analysis of the polyphenol composition was performed using Agilent 1290 chromatograph. The polyphenol concentrate was analyzed for the microbiological purity and the presence of the toxic elements. The cytoprotective effect of the polyphenol concentrate was studied in experimental models of diabetes, toxic hepatitis, doxorubicin cardiomyopathy, and acute radiation sickness.Results. The total polyphenol amount in one sample was 12,819 mg/l. Polyphenol composition analysis showed presence of the following polyphenols: catechin, epicatechin, gallic acid, quercetin, miricetin, 3-glucosylkaempferol, epicatechin gallate, 3-(3,4-Dihydroxyphenyl-2-propenoic acid, catechin gallate, pitseid, kaempferol, n-hydroxy-cinnamic acid, resveratrol and chlorogenic acid. The concentrate was proven to be biologically safe and acceptable for use as a dietary supplement. The polyphenol concentrate demonstrated high antioxidant activity against ABTS and DPPH radicals in vitro. It also showed the following impacts on the various

  1. The effect of different position of grape clusters on the bearing shoot on production results of Cabernet Sauvignon clones

    Directory of Open Access Journals (Sweden)

    Čoloveić Ana

    2014-01-01

    Full Text Available In this paper the differences were examined between clones of Cabernet sauvignon (clones ISV-F-V5, ISV-F-V6 and R5, i.e. the difference between uvological properties of grape clusters and grape berries, based on the different positions on the bearing shoot. Tests were conducted at the experimental field of the Faculty of Agriculture 'Radmilovac'. Standard ampelographic methods were used in numerous analyses of grape yield, as well as uvological properties of clones. All data were statistically analyzed and processed by the method of two-factor analysis of variance with repeated measuring of one factor (height and Tukey HSD test. Analysis of variance showed no significant differences between clones. The best results were achieved with grape clusters positioned in the base of bearing shoot. The first positioned grape clusters on the bearing shoot had the highest share in the total grape yield, the highest amount of sugar, and the highest positioned grape clusters had higher content of total acids. The differences determined between examined clones were in regard to productivity and quality of grapes which reflected also on production value.

  2. Detailed characterization of proanthocyanidins in skin, seeds, and wine of Shiraz and Cabernet Sauvignon wine grapes (Vitis vinifera).

    Science.gov (United States)

    Hanlin, Rachel L; Kelm, Mark A; Wilkinson, Kerry L; Downey, Mark O

    2011-12-28

    The distribution of proanthocyanidin (PA) polymer lengths, proanthocyanidin concentration at each polymer length, and polymer composition were determined in the seed, skin, and wine of Shiraz and Cabernet Sauvignon grape berries grown in southeast Australia. PA was fractionated by semipreparative high performance liquid chromatography (HPLC) and analyzed by phloroglucinolysis and HPLC to report the degree of polymerization (DP), concentration, and composition at 11 DP values in seed and wine and 21 DP values in skin. In skin, the highest PA concentration was observed at a DP of 31 in Shiraz and 29 in Cabernet Sauvignon representing 15% of the total PA in both varieties. The distribution of seed PA had the highest concentration at a DP of 7 in Shiraz and 6 in Cabernet Sauvignon representing around 30% of the total PA. In the wine PA distribution, the highest concentration was observed at a DP of 11 in Shiraz and 9 in Cabernet Sauvignon representing around 26 and 32% of the distribution, respectively. A second peak in wine PA concentration was observed at the largest DP of 18 in Shiraz and 15 in Cabernet Sauvignon representing around 20% of the distribution. The composition in wine did not vary at different DP, but the proportion of epicatechin gallate varied in seed PA less than 4 DP. The proportion of epigallocatechin increased with increasing DP in skin PA. Wine PA had a DP range and composition similar to the distribution of skin PA between DP 4 and 18 suggesting that larger skin PAs are not extracted into wine. This study provides information that could be used to target the important PA fractions in grapes that need to be measured to understand (or predict) PA extraction into wine and eventual mouthfeel.

  3. [Effects of rootstocks on the growth and berry quality of Vitis vinifera cv. Cabernet Sauvignon grapevine in Changli zone, Hebei Province, China].

    Science.gov (United States)

    Li, Min-min; Yuan, Jun-wei; Liu, Chang-jiang; Han, Bin; Huang, Jia-zhen; Guo, Zi-juan; Zhao, Sheng-iian

    2016-01-01

    Cabernet Sauvignon grafted onto seven rootstocks 188-08, 5BB, SO4, 3309C, 110R, 5C and 101-14M, with the own-rooted vines as control, were investigated to study the effects of different rootstocks on the growth, fruit quality and yield of Cabernet Sauvignon in Changli zone, Hebei Province, China. The results showed that Cabernet Sauvignon grafted on 5BB and 5C significantly increased the trunk diameter, and 5C significantly increased one-year-old shoot diameter. 188-08, 5BB and 5C as rootstock obviously improved berry soluble solid content, in addition 188- 08 and 5BB significantly increased berry reducing sugar content. The vines on 101-14M and 3309C significantly decreased berry titratable acid content. The rootstock 5C and 101-14M significantly raised grape skin phenol and anthocyanin contents, and rootstock 101-14M significantly increased tannin content in grape skin. Cabernet Sauvignon grafted onto 3309C, 110R, 5C and 101-14M obviously got higher yield per vine than own-rooted vines. Growing parameter, grape quality index and yield per vine grafted on seven rootstocks and own-rooted vine were synthetically evaluated by fuzzy evaluation method, and the synthetical effects of vine grafted on seven rootstocks were better than own-rooted vine, with the order of scores from high to low as 5C, 101-14M, 3309C, 5BB, 188-08, 110R and SO4 under Changli unique climate and environment conditions.

  4. Post-harvest UVC irradiation effect on anthocyanin profile of grape berries

    International Nuclear Information System (INIS)

    Rosas, I. de; Ponce, M.; Gargantini, R.; Martinez, L.

    2010-01-01

    Anthocyanins are a class of phenolic compounds that contribute to the color of red grapes and have shown nutraceutical properties for human health. UVC light irradiation has been proved to increase phenolic compounds such as stilbenes, but its effect on anthocyanins has not been reported. The aim of this work was to identify the best treatment conditions of UVC light irradiation on post-harvest berries of Malbec (M), Cabernet Sauvignon (CS) and Tempranillo (T) for anthocyanin increments. Grape berries were irradiated with 240 W at 20 and 40 cm from the light source, for 30, 60 and 120 seconds. Both, irradiated and control grapes were stored on darkness at 20 C degree until anthocyanin extraction with methanol/ClH. HPLC analysis were performed and nine anthocyanins were quantified. UVC light irradiation modified the anthocyanin profile of the three cultivars. All the glucoside anthocyanins derivates and peonidin-acetyl-glucoside, as well as total anthocyanins were increased when CS berries were exposed to UVC for 120 s at 40 cm. This suggests that UVC stimulated the entire biosynthetic pathway. The anthocyanin content of the control berries was always higher than the treatments with UVC on M and T, making necessary to evaluate less rigorous conditions for these varieties. (authors)

  5. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators.

    Science.gov (United States)

    Sun, Run-Ze; Cheng, Guo; Li, Qiang; He, Yan-Nan; Wang, Yu; Lan, Yi-Bin; Li, Si-Yu; Zhu, Yan-Rong; Song, Wen-Feng; Zhang, Xue; Cui, Xiao-Di; Chen, Wu; Wang, Jun

    2017-01-01

    Light environments have long been known to influence grape ( Vitis vinifera L.) berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs) and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs). Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries.

  6. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators

    Science.gov (United States)

    Sun, Run-Ze; Cheng, Guo; Li, Qiang; He, Yan-Nan; Wang, Yu; Lan, Yi-Bin; Li, Si-Yu; Zhu, Yan-Rong; Song, Wen-Feng; Zhang, Xue; Cui, Xiao-Di; Chen, Wu; Wang, Jun

    2017-01-01

    Light environments have long been known to influence grape (Vitis vinifera L.) berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs) and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs). Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries. PMID:28469625

  7. Fruit sphere microenvironments and berry phenolic content of Cabernet Sauvignon (Vitis vinifera L. cultivated under rain-shelter systems with coloured plastic film

    Directory of Open Access Journals (Sweden)

    Jiang-Fei MENG

    Full Text Available Abstract Rain-shelter cultivation has been proven an important cultivation method for grape-plantings in continental monsoon climate zones, of which white plastic films are the most common shelter material. However, while this method and material reduces the occurrence of the disease, it can also decrease the grape berry quality. Five colours (including red, yellow, blue, purple, and white of plastic films were covered above Cabernet Sauvignon (Vitis vinifera L. grapevine rows before veraison. Rain-shelter cultivation reduced air temperature, wind speed, and total solar radiation and enhanced relative humidity in the fruit sphere of grapevines. For each particular colour plastic film, the irradiance of its corresponding spectrum band in the canopy of vines was higher than with other colour plastic films. Meanwhile, the blue plastic film treatment significantly promoted the accumulation of total phenolics, anthocyanins, flavonoids, tannins, and phenolic acids more than the other colours of plastic films. Blue plastic films are more beneficial for berry quality promotion of wine grapes, especially Cabernet Sauvignon, under rain-shelter cultivation in continental monsoon climate zones.

  8. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes.

    Science.gov (United States)

    Bindon, Keren A; Kassara, Stella; Cynkar, Wieslawa U; Robinson, Ella M C; Scrimgeour, Neil; Smith, Paul A

    2014-05-21

    Cabernet Sauvignon and Shiraz grapes were sourced from different regions within Australia, and microvinified with a skin contact period of 6 days. Grape samples were extracted using two protocols: a 15% v/v ethanol, 10 g/L tartaric acid extract of gently crushed berries (wine-like, WL) and a 50% v/v ethanol, pH 2 extract of grape berry homogenate. It was found that in WL extracts, grape tannin and anthocyanin concentrations were strongly related to wine tannin, anthocyanin and color density achieved during the skin contact period. No relationship was observed for grape tannin concentration analyzed in homogenate extracts and wine tannin, but a strong, positive relationship was found for anthocyanin concentration. When the data obtained from homogenate extraction was treated separately by grape variety, a stronger relationship between grape and wine tannin concentration was observed. Tannin compositional analysis in wines indicated that higher tannin concentrations were due to the extraction of tannin of higher molecular mass during fermentation, most likely from grape skins.

  9. DETERMINATION OF THE OPTIMAL MOMENT OF HARVESTING FOR CABERNET SAUVIGNON AND MERLOT GRAPES IN DRĂGĂŞANI VINEYARD

    OpenAIRE

    Ovidiu Tiţa; Ciprian Tuşa; Axenia Rădulescu

    2011-01-01

    This paper presents an analysis of the main characteristics of black grapes during ripening and determining the optimum moment to harvest the grapes in the vineyard Drăgăşani. Monitoring process of maturation of the grapes has been done on the varieties of grapes for red wines Cabernet Sauvignon and Merlot from Drăgăşani vineyard.

  10. Microclimate influence on mineral and metabolic profiles of grape berries.

    Science.gov (United States)

    Pereira, G E; Gaudillere, J-P; Pieri, P; Hilbert, G; Maucourt, M; Deborde, C; Moing, A; Rolin, D

    2006-09-06

    The grape berry microclimate is known to influence berry quality. The effects of the light exposure of grape berry clusters on the composition of berry tissues were studied on the "Merlot" variety grown in a vineyard in Bordeaux, France. The light exposure of the fruiting zone was modified using different intensities of leaf removal, cluster position relative to azimuth, and berry position in the cluster. Light exposures were identified and classified by in situ measurements of berry temperatures. Berries were sampled at maturity (>19 Brix) for determination of skin and/or pulp chemical and metabolic profiles based on (1) chemical and physicochemical measurement of minerals (N, P, K, Ca, Mg), (2) untargeted 1H NMR metabolic fingerprints, and HPLC targeted analyses of (3) amino acids and (4) phenolics. Each profile defined by partial least-square discriminant analysis allowed us to discriminate berries from different light exposure. Discriminant compounds between shaded and light-exposed berries were quercetin-3-glucoside, kaempferol-3-glucoside, myricetin-3-glucoside, and isorhamnetin-3-glucoside for the phenolics, histidine, valine, GABA, alanine, and arginine for the amino acids, and malate for the organic acids. Capacities of the different profiling techniques to discriminate berries were compared. Although the proportion of explained variance from the 1H NMR fingerprint was lower compared to that of chemical measurements, NMR spectroscopy allowed us to identify lit and shaded berries. Light exposure of berries increased the skin and pulp flavonols, histidine and valine contents, and reduced the organic acids, GABA, and alanine contents. All the targeted and nontargeted analytical data sets used made it possible to discriminate sun-exposed and shaded berries. The skin phenolics pattern was the most discriminating and allowed us to sort sun from shade berries. These metabolite classes can be used to qualify berries collected in an undetermined environment. The

  11. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production.

    Science.gov (United States)

    Forde, Ciarán G; Cox, Agnieszka; Williams, Emlyn R; Boss, Paul K

    2011-03-23

    The sensory properties of wine are influenced by the chemical composition of the grapes used to produce them. Identification of grape and wine chemical markers associated with the attributes perceived by the consumer of the wine will enable better prediction of the potential of a parcel of grapes to produce wine of a certain flavor. This study explores the relationships between Cabernet Sauvignon grape volatile composition and wine volatile profiles with the sensory properties of wines. Twenty grape samples were obtained from nine vineyard sites across three vintages and wines vinified from these parcels using controlled winemaking methods. The volatile composition of the grapes were analyzed by SBSE-GCMS, the wines were analyzed by SPME-GCMS, and these data sets were compared to that obtained from the sensory analysis of the wines. Statistical treatment of the data to account for vintage and region effects allowed underlying relationships to be seen between wine sensory attributes and wine or grape volatile components. The observed associations between grape or wine volatile compounds and wine sensory attributes has revealed target compounds and pathways whose levels may reflect the biochemical effects on grape composition by differing growth conditions during berry development and ripening. The compounds identified in this study may be useful grape or wine markers for potential wine sensory characteristics.

  12. Roostocks/scion/ nitrogen interactions affect secondary metabolism in the grape berry

    Directory of Open Access Journals (Sweden)

    Aude Habran

    2016-08-01

    Full Text Available ABSTRACT : The present work investigates the interactions between soil content, rootstock and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS and Pinot Noir (PN varieties were grafted either on Riparia Gloire de Montpellier (RGM or 110 Richter (110R rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic and hydroxybenzoic acids. that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  13. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    Science.gov (United States)

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  14. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions.

    Science.gov (United States)

    Xu, Xiao-Qing; Liu, Bin; Zhu, Bao-Qing; Lan, Yi-Bin; Gao, Yuan; Wang, Dong; Reeves, Malcolm J; Duan, Chang-Qing

    2015-04-01

    Volatile compounds are considered important for plants to communicate with each other and interact with their environments. Most wine-producing regions in China feature a continental monsoon climate with hot-wet summers and dry-cold winters, giving grapes markedly different growing environments compared to the Mediterranean or oceanic climates described in previous reports. This study focused on comparing the volatile profiles of Vitis vinifera L. cv. Cabernet Sauvignon berries from two regions with distinct climate characteristics: Changli has a warm and semi-humid summer, and Gaotai has a cool-arid summer and a cold winter. The relationship between meteorological metrics and the concentrations of grape volatiles were also examined. In harvested grapes, benzyl alcohol, phenylethyl alcohol, 1-hexanol and 1-octen-3-ol were more abundant in the Changli berries, while hexanal, heptanal, 2-methoxy-3-isobutylpyrazine, and (E)-β-damascenone presented higher levels in the Gaotai berries. The fluctuation in the accumulation of volatile compounds observed during berry development was closely correlated with variations in short-term weather (weather in a week), especially rainfall. The concentration of some volatiles, notably aliphatic aldehydes, was significantly related to diurnal temperature differences. The variability during berry development of concentrations for compounds such as C6 volatile compounds, 2-methoxy-3-isobutylpyrazine and (E)-β-damascenone strongly depended upon weather conditions. This work expands our knowledge about the influence of continental monsoon climates on volatile compounds in developing grape berries. It will also improve the comprehension of the plant response to their surrounding environments through the accumulation of volatiles. The results will help growers to alter viticultural practices according to local conditions to improve the aromatic quality of grapes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Phenolic compositions of grapes and wines from cultivar cAbernet Sauvignon produced in Chile and their relationship to commercial value.

    Science.gov (United States)

    Cáceres, Alejandro; Peña-Neira, Alvaro; Galvez, Andrés; Obreque-Slier, Elías; López-Solís, Remigio; Canals, Joan Miquel

    2012-09-05

    The phenolic composition of wine depends on, among other factors, the grapes used to make it. In this sense, knowledge of the chemical composition of grapes and its association with the resulting wines is an important tool to determine if there is a relationship between the phenolic composition of grapes and the price that these wines obtain in the market. For this purpose, grape skins and seeds from the cultivar Cabernet Sauvignon from the central region of Chile, in 2009 and 2010 vintages from two ripening points, were subjected to chemical and phenolic analyses, as were the wines made from these grapes. Grapes and the corresponding wines from three retail price wine categories, U.S. $6-8, U.S. $28-30, and U.S. $150-160, were evaluated. No differences were found across the price categories in the chemical analysis of grapes. Berry skins and wines from the higher price categories presented a higher concentration only of total tannins, and the differences in their concentrations were only among the different fractions of proanthocyanidins in the skins, seeds, and wines; there were no differences in their proportions. A seasonal effect influenced the concentrations of certain compounds in grapes and led to a decrease in the concentration of total phenols, total tannins, and total anthocyanins between sampling dates as harvesting moved toward the common commercial grape harvest in Chilean viticulture.

  16. Grape berry bacterial inhibition by different copper fungicides

    Directory of Open Access Journals (Sweden)

    Martins Guilherme

    2016-01-01

    Full Text Available Copper fungicides are widely used in viticulture. Due to its large spectrum of action, copper provides an efficient control over a great number of vine pathogens. Previous studies showed that, high levels of cupric residues can impact grape-berry microbiota, in terms of the size and population structure, reducing the diversity and the abundance. Due to the importance of grape-berry bacterial in crop health, and the potential impact of copper fungicides over the microbiota, we determined Minimum Inhibitory Concentration (MIC of different copper formulations for bacterial species isolated from grape berries. We study the Minimum Inhibitory Concentration (MIC of different copper formulations (copper sulphate (CuSO4 pure, Bordeaux mixture (CuSO4 + Ca(OH2, copper oxide (Cu2O, copper hydroxide (Cu(OH2 over 92 bacterial strains isolated from grape berries in different stages of the ripening process. The results of MIC measurements revealed that the different copper formulations have a variable inhibitory effect and among the different isolates, some species are the most resistant to all copper formulations than others. This study confirm that usage of cupric phytosanitary products should be reasonable independently of the farming system; they also provide evidence of the importance of the choice of which copper formulations are to be used regarding their impact on the grape berry bacterial microbiota.

  17. Resveratrols in grape berry skins and leaves in vitis germplasm.

    Science.gov (United States)

    Wang, Lijun; Xu, Man; Liu, Chunyan; Wang, Junfang; Xi, Huifen; Wu, Benhong; Loescher, Wayne; Duan, Wei; Fan, Peige; Li, Shaohua

    2013-01-01

    Resveratrol is an important stilbene that benefits human health. However, it is only distributed in a few species including grape and is very expensive. At present, grape has been an important source resveratrol. However, the details are scarce on resveratrol distribution in different Vitis species or cultivars. The composition and content of resveratrols were investigated by HPLC for assessing genotypic variation in berry skins and leaves of 75 grape cultivars, belonging to 3 species and 7 interspecific hybrids. Trans-resveratrol, cis-piceid and trans-piceid were detected in berry skins and leaves, but cis-resveratrol was not. Resveratrol content largely varied with genetic background as well as usage. In most cultivars, total resveratrol including the above three compounds was higher in berry skins than leaves. In berry skins of most cultivars and leaves of almost all cultivars, cis-piceid was the most abundant resveratrol; trans-resveratrol and trans-piceid were minor components. Some specific cultivars were found with extremely high levels of trans-resveratrol, cis- piceid, trans-piceid or total resveratrols in berry skins or leaves. In skins and leaves, rootstock cultivars had a higher content of total resveratrols, and the cultivated European type cultivars and their hybrids with V. labrusca had relatively low totals. There were no significant correlations of the amounts of total resveratrols or any individual resveratrol between berry skins and leaves. All 75 cultivars can be divided into four groups based on the composition of resveratrols and their concentration by principal component analysis. Resveratrol content of grape berries and leaves varied largely with their genetic background and usage. Rootstock cultivars had a higher content of total resveratrols than the other germplasm. Total resveratrols were lower in leaves than berry skins in most cultivars. Cis-piceid was the most abundant resveratrol in most cultivars, and trans-res and trans-pd were

  18. Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin.

    Science.gov (United States)

    Li, Yuan; Ma, Ruijing; Xu, Zhenzhen; Wang, Junhan; Chen, Tong; Chen, Fang; Wang, Zhengfu

    2013-04-01

    The anthocyanins of Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin were identified and quantified by high-performance liquid chromatography-tandem mass spectrometry, and the influence of processing on the anthocyanin profiles was investigated. Twenty-three and 16 anthocyanins were found in fresh skin of Kyoho and Cabernet Sauvignon grapes, respectively. Malvidin 3-(trans)-coumaroyl-5-diglucoside and malvidin 3-glucoside were the most abundant anthocyanin in fresh skin of Kyoho and Cabernet Sauvignon grapes, respectively. The cis and trans isomers of malvidin 3-coumaroyl-5-diglucoside are reported in Kyoho grape for the first time. In addition, the anthocyanin content of juice-making pomace of Kyoho grapes and winemaking pomace of Cabernet Sauvignon grapes was significantly lower than the fresh skin samples (p < 0.05). The percentage variation of non-acylated anthocyanins was lower than that of acylated anthocyanins in all pomace samples. Kyoho grape and Cabernet Sauvignon grape showed distinctive anthocyanin profiles. Juice-making pomace is a better source of anthocyanins for use in functional foods than winemaking pomace. © 2012 Society of Chemical Industry.

  19. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon.

    Science.gov (United States)

    Liu, Mei-Ying; Chi, Ming; Tang, Yong-Hong; Song, Chang-Zheng; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-10-19

    Grapevine training systems determine the suitability for grape varieties in a specific growing region. We evaluated the influence of three training systems, Single Guyot (SG), Spur-pruned Vertical Shoot-Positioned (VSP), and Four-Arm Kniffin (4AK), on the performance of grapes and vines of Vitis vinifera L. cv. Cabernet Sauvignon in the 2012 and 2013 growing seasons in a wet region of central China. 4AK was the most productive system in comparison to SG and VSP. SG and VSP had lower disease infections of leaves and berries, especially in the mid- and final stage of berry ripening. Three training systems had no impact on berry maturity. PLS-DA (Partial Least Squares-Discriminant) analysis showed that the relatively dry vintage could well discriminate three training systems, but the wet vintage was not. A wet vintage of 2013 had more accumulation of 3'5'-substituted and acylated anthocyanins, including malvidin-3-O-(6-O-acetyl)-glucoside, malvidin-3-O-glucoside, and petunidin-3-O-(cis-6-O-coumaryl)-glucoside, etc. With regard to the effect of training systems, 4AK grapes had the lowest concentrations of total anthocyanins and individual anthocyanins, SG and VSP differed according to the different vintages, and showed highest concentration of total individual anthocyanins in 2012 and 2013, respectively. Generally, VSP benefited the most, contributing to significantly highest levels of total individual anthocyanins, and major anthocyanin, including malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl)-glucoside, and the grapes obtained from VSP presented significantly highest proportion of 3'5'-substituted anthocyanins. With regard to the ratios of 3'5'/3'-substituted, methoxylated/non-methoxylated and acylated/non-acylated anthocyanins, the significantly higher levels were also shown in VSP system. In summary, VSP was the best training system for Cabernet Sauvignon to accumulate relatively stable individual anthocyanins in this wet region of China and potentially in

  20. Effect of training systems on fatty acids and their derived volatiles in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan.

    Science.gov (United States)

    Xu, Xiao-Qing; Cheng, Guo; Duan, Liang-Liang; Jiang, Ren; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun

    2015-08-15

    C6 and C9 volatiles, originated from fatty acids, are important volatiles for 'Cabernet Sauvignon' grapes and wines. This study evaluated the influence of different training systems including Modified Vertical Shoot Positioned, (M-VSP); Fan training system with two trunks (F-TT); Fan training system with multiple trunks (F-MT) on these volatiles and the long-chain fatty acids (>C12) of grape berries and wines in the northwest of China. The expression profiles of genes from associated metabolic pathway were also analyzed. F-MT training resulted in lower vine vigor, larger yield, higher content of unsaturated fatty acids in grapes and lower C6 esters in wines in comparison with M-VSP and F-TT. M-VSP and F-TT enhanced C6 volatiles in grape berries. The concentrations of C6 volatiles were positively correlated with the expression of VvLOXA and VvHPL1. The results expanded the knowledge of the influence of training systems on fatty acids and their derived volatiles of grapes and wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of cabernet sauvignon grapes and wines.

    Science.gov (United States)

    Casassa, Luis Federico; Keller, Markus; Harbertson, James F

    2015-04-29

    Four regulated deficit irrigation (RDI) regimes were applied to Cabernet Sauvignon grapes, which were analyzed for phenolics and also made into wine over three consecutive growing seasons. Relative to an industry standard regime (IS), yield was reduced over the three years by 37% in a full-deficit (FD) regime and by 18% in an early deficit (ED) regime, whereas no yield reduction occurred with a late deficit (LD) regime. Relative to IS, skin anthocyanin concentration (fresh weight basis) was 18% and 24% higher in ED and FD, respectively, whereas no effect was seen in LD. Seed tannin concentration was 3% and 8% higher in ED and FD, respectively, relative to the other two RDI regimes, whereas seed tannin content (amount per berry) was higher in IS than in FD. There were no practically relevant effects on the basic chemistry of the wines. The finished wines showed concentrations of tannins and anthocyanins that generally mirrored observed differences in skin and seed phenolic concentrations, although these were amplified in FD wines. Descriptive sensory analysis of the 2008 wines showed that FD wines were the most saturated in color, with higher purple hue, roughness, dryness and harshness, followed by ED wines, whereas IS and LD wines were less saturated in color and with higher brown and red hues. Overall, FD and ED seemed to yield fruit and wine with greater concentrations of phenolics than IS and LD, with the additional advantage of reducing water usage. However, these apparent benefits need to be balanced out with reductions in crop yields and potential long-term effects associated with pre-véraison water deficits.

  2. Regulated Deficit Irrigation Alters Anthocyanins, Tannins and Sensory Properties of Cabernet Sauvignon Grapes and Wines

    Directory of Open Access Journals (Sweden)

    Luis Federico Casassa

    2015-04-01

    Full Text Available Four regulated deficit irrigation (RDI regimes were applied to Cabernet Sauvignon grapes, which were analyzed for phenolics and also made into wine over three consecutive growing seasons. Relative to an industry standard regime (IS, yield was reduced over the three years by 37% in a full-deficit (FD regime and by 18% in an early deficit (ED regime, whereas no yield reduction occurred with a late deficit (LD regime. Relative to IS, skin anthocyanin concentration (fresh weight basis was 18% and 24% higher in ED and FD, respectively, whereas no effect was seen in LD. Seed tannin concentration was 3% and 8% higher in ED and FD, respectively, relative to the other two RDI regimes, whereas seed tannin content (amount per berry was higher in IS than in FD. There were no practically relevant effects on the basic chemistry of the wines. The finished wines showed concentrations of tannins and anthocyanins that generally mirrored observed differences in skin and seed phenolic concentrations, although these were amplified in FD wines. Descriptive sensory analysis of the 2008 wines showed that FD wines were the most saturated in color, with higher purple hue, roughness, dryness and harshness, followed by ED wines, whereas IS and LD wines were less saturated in color and with higher brown and red hues. Overall, FD and ED seemed to yield fruit and wine with greater concentrations of phenolics than IS and LD, with the additional advantage of reducing water usage. However, these apparent benefits need to be balanced out with reductions in crop yields and potential long-term effects associated with pre-véraison water deficits.

  3. DETERMINATION OF THE OPTIMAL MOMENT OF HARVESTING FOR CABERNET SAUVIGNON AND MERLOT GRAPES IN DRĂGĂŞANI VINEYARD

    Directory of Open Access Journals (Sweden)

    Ovidiu Tiţa

    2011-02-01

    Full Text Available This paper presents an analysis of the main characteristics of black grapes during ripening and determining the optimum moment to harvest the grapes in the vineyard Drăgăşani. Monitoring process of maturation of the grapes has been done on the varieties of grapes for red wines Cabernet Sauvignon and Merlot from Drăgăşani vineyard.

  4. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L. Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-04-01

    Full Text Available Light environments have long been known to influence grape (Vitis vinifera L. berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs. Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries.

  5. Isohydrodynamic behavior in deficit-irrigated Cabernet Sauvignon and Malbec and its relationship between yield and berry composition

    Science.gov (United States)

    Cabernet Sauvignon and Malbec grapevines were irrigated at 70 or 23% of estimated crop evapotranspiration (ETc) throughout berry development over four growing seasons. Stomatal behavior was characterized by relating predawn leaf water potential and mid-morning stomatal conductance to mid-morning lea...

  6. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites.

    Science.gov (United States)

    Cuadros-Inostroza, Alvaro; Ruíz-Lara, Simón; González, Enrique; Eckardt, Aenne; Willmitzer, Lothar; Peña-Cortés, Hugo

    Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.

  7. NATURAL MICROFLORA OF WINE GRAPE BERRIES

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-02-01

    Full Text Available The diversity of yeasts and bacterial species on grapes has been investigated in vineyards worldwide. For winemaking are very important three groups of microorganisms. First two includes acetic acid and lactic acid bacteria; they live and grow normally on grape surface. The third group includes more than 20 detectable genera of yeasts. There are three principal genera found on grapes Hanseniaspora uvarum (Kloeckera apiculata, Metschnikowia pulcherrima (Candida pulcherrima, and Candida stellata or new descripted Candida zemplinina. Aim of this study was investigate of number of three major groups of microorganisms which are important for grapes and winemaking. The number of bacteria on Acetobacter agar (AA ranged from 1.76 log CFU/mL to 2.80 log CFU/mL. Lactic acid bacteria were counted on MRS agar and the number of detectable colonies ranged from 0.48 log CFU/mL to 2.06 log CFU/mL. Sabouraud dextrose agar (SDA was used for cultivation of yeast and the number of yeasts ranged from 2.47 log CFU/mL to 2.76 log CFU/mL. For identification of yeast species were used different types of agar media with acid base indicator bromocresol green. Identified 10 yeasts species includes to genus: Candida, Metschnikowia, Pichia, Kluyveromyces, Hanseniaspora, Hansenula, Candida, Debaromyces, Rhodotorula and Saccharomyces. We identified only few bacterial species includes to genus Lactobacillus, Pediococcus, Gluconobacter and Acetobacter.

  8. 'Cabernet Sauvignon' grape anthocyanin increased by soil conservation practices

    Science.gov (United States)

    Cover crops and no-till (mown) systems provide multiple benefits to vineyard soils such as improvements in soil organic matter and reductions in erosion and dust generation. Understanding the effects of such practices on grape attributes will contribute to the sustainability of the production system...

  9. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins.

    Science.gov (United States)

    Cáceres-Mella, Alejandro; Talaverano, M Inmaculada; Villalobos-González, Luis; Ribalta-Pizarro, Camila; Pastenes, Claudio

    2017-08-01

    The influence of controlled water deficit on the phenolic composition and gene expression of VvLAR2, VvMYBPA1, VvMYBPA2 and VvMYB4a in Cabernet Sauvignon grape skins throughout ripening was investigated. The assay was carried out on own-rooted Vitis vinifera plants cv. Cabernet Sauvignon in a commercial vineyard from veraison until commercial harvest. Three irrigation regimes were used from veraison until harvest with the following treatments: T1: 3.6 mm day -1 ; T2: 1.8 mm day -1 and T3: 0.3 mm day -1 . The content of total phenols and total anthocyanins in grape skins increased during ripening, but water deficit did not produce differences among treatments in the total anthocyanin concentration. Proanthocyanidins (PAs) decreased throughout ripening, although approximately 25 days after veraison (DAV), their content slightly increased. This effect was more pronounced in the most restrictive treatment (T3). A similar pattern was observed in the transcript abundance of VvLAR2, VvMYBPA1 and VvMYB4a. PAs separation revealed differences in concentration but not in the proportion among fractions among the irrigation treatments. Additionally, controlled water deficit increased the mean degree of polymerization and the flavan-3-ol polymeric concentration in grape skins throughout ripening but with no effects on the extent of PAs galloylation. Our results suggest that the water status of Cabernet Sauvignon grapevines affects the gene expression for proteins involved in the synthesis of PAs, increasing their concentration and also their composition, with further evidence for the efficacy of a convenient, controlled water deficit strategy for grapevine cultivation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. [The antioxidant activity of the products of processing of red grape of Cabernet Sauvignon, Merlot, Saperavi].

    Science.gov (United States)

    Avidzba, A M; Kubyshkin, A V; Guguchkina, T I; Markosov, V A; Katsev, A M; Naumova, N V; Shramko, Yu I; Zaytsev, G P; Chernousova, I V; Ogay, Yu A; Fomochkina, I I

    2016-01-01

    Experimental data on the antioxidant activity of grape juice, grape concentrates and wine from grapes of Cabernet Sauvignon, Merlot and Saperavi from Crimea and Krasnodar regions was presented. Flavonoids are presented in the form of glycosides of such anthocyanins as delphinidin, malvidin, cyanidin, petunidin, peonidin and also by quercetin and its glycoside, (+)-D-catechin and (-)-epicatechin. Oligomeric procyanidins, which are condensed catechol units (2-6) soluble in water, are presented in significant amounts, and polymeric procyanidins with the amount catechin units greater than 7, insoluble in water, constituted the bulk of polyphenols od wine and concentrates from red grapes (no juice). Among non-flavonoid polyphenols hydroxybenzoic (gallic, syringic) and hydroxycinnamic (caftaric, cautaric) acids are identified, the relative content of which in the amount of polyphenols in the juice is maximum, and minimum is in concentrates. It was found that antioxidant activity for all products in standard Trolox method can be estimated by the equation: Y = 0.53627+0.1395X+0.080439X2-0.00064708X3, with a correlation coefficient r = 0.9952; where: Y--antioxidant activity, g/dm3 by Trolox method; X--mass concentration of phenolic substances on the Folin-Ciocalteu, g/dm3. The equation is valid for Y = 0.76-196.22; X = 1.0-82.67. The results of biological testing of wines Cabernet Sauvignon, Merlot, Saperavi and polyphenol concentrates from grape on the biological model of bioluminescent bacteria Photobacterium leiognathi Sh1 demonstrated the applicability of bioassay to assess the antioxidant activity, which correlates well with the polyphenols content and antioxidant activity by trolox method.

  11. Influence of Grape Composition on Red Wine Ester Profile: Comparison between Cabernet Sauvignon and Shiraz Cultivars from Australian Warm Climate.

    Science.gov (United States)

    Antalick, Guillaume; Šuklje, Katja; Blackman, John W; Meeks, Campbell; Deloire, Alain; Schmidtke, Leigh M

    2015-05-13

    The relationship between grape composition and subsequent red wine ester profile was examined. Cabernet Sauvignon and Shiraz, from the same Australian very warm climate vineyard, were harvested at two different stages of maturity and triplicate wines were vinified. Grape analyses focused on nitrogen and lipid composition by measuring 18 amino acids by HPLC-FLD, 3 polyunsaturated fatty acids, and 6 C6-compounds derived from lipid degradation by GC-MS. Twenty esters and four higher alcohols were analyzed in wines by HS-SPME-GC-MS. Concentrations of the ethyl esters of branched acids were significantly affected by grape maturity, but the variations were inconsistent between cultivars. Small relative variations were observed between wines for ethyl esters of fatty acids, whereas higher alcohol acetates displayed the most obvious differences with concentrations ranging from 1.5- to 26-fold higher in Shiraz than in Cabernet Sauvignon wines regardless of the grape maturity. Grape analyses revealed the variations of wine ester composition might be related to specific grape juice nitrogen composition and lipid metabolism. To the authors' knowledge the present study is the first to investigate varietal differences in the ester profiles of Shiraz and Cabernet Sauvignon wines made with grapes harvested at different maturity stages.

  12. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Mei-Ying Liu

    2015-10-01

    Full Text Available Grapevine training systems determine the suitability for grape varieties in a specific growing region. We evaluated the influence of three training systems, Single Guyot (SG, Spur-pruned Vertical Shoot-Positioned (VSP, and Four-Arm Kniffin (4AK, on the performance of grapes and vines of Vitis vinifera L. cv. Cabernet Sauvignon in the 2012 and 2013 growing seasons in a wet region of central China. 4AK was the most productive system in comparison to SG and VSP. SG and VSP had lower disease infections of leaves and berries, especially in the mid- and final stage of berry ripening. Three training systems had no impact on berry maturity. PLS-DA (Partial Least Squares-Discriminant analysis showed that the relatively dry vintage could well discriminate three training systems, but the wet vintage was not. A wet vintage of 2013 had more accumulation of 3′5′-substituted and acylated anthocyanins, including malvidin-3-O-(6-O-acetyl-glucoside, malvidin-3-O-glucoside, and petunidin-3-O-(cis-6-O-coumaryl-glucoside, etc. With regard to the effect of training systems, 4AK grapes had the lowest concentrations of total anthocyanins and individual anthocyanins, SG and VSP differed according to the different vintages, and showed highest concentration of total individual anthocyanins in 2012 and 2013, respectively. Generally, VSP benefited the most, contributing to significantly highest levels of total individual anthocyanins, and major anthocyanin, including malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl-glucoside, and the grapes obtained from VSP presented significantly highest proportion of 3′5′-substituted anthocyanins. With regard to the ratios of 3′5′/3′-substituted, methoxylated/non-methoxylated and acylated/non-acylated anthocyanins, the significantly higher levels were also shown in VSP system. In summary, VSP was the best training system for Cabernet Sauvignon to accumulate relatively stable individual anthocyanins in this wet region of

  13. Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition.

    Science.gov (United States)

    Šuklje, Katja; Zhang, Xinyi; Antalick, Guillaume; Clark, Andrew C; Deloire, Alain; Schmidtke, Leigh M

    2016-02-03

    Berry shriveling is an often reported occurrence in the Shiraz (Vitis vinifera L.) cultivar. This study investigated the effect of berry shriveling occurring in a high yielding (18.6 ± 1.6 kg/vine) Shiraz vineyard in relation to a temporal investigation of grape and wine composition using three harvest dates. Berry shriveling resulted in delayed total soluble solids and amino acid accumulation into the berry, however differences between treatments diminished or became smaller by the third harvest date. Similarly, ethyl esters of fatty acids and higher alcohol acetates were lower in wines from shriveled berries from the first two harvests; anthocyanins were reduced in wines from shriveled berries at all harvest dates, whereas terpenes were unaltered. Wines made from shriveled berries had higher γ-nonalactone and β-damascenone concentrations. This study provides novel information on the chemical alterations of grapes and wines made from grapes affected by shriveling.

  14. Rootstock and vineyard floor management influence on 'Cabernet Sauvignon' grape yeast assimilable nitrogen (YAN).

    Science.gov (United States)

    Lee, Jungmin; Steenwerth, Kerri L

    2011-08-01

    This is a study on the influence that two rootstocks (110R, high vigour; 420A, low vigour) and three vineyard floor management regimes (tilled resident vegetation - usual practise in California, and barley cover crops that were either mowed or tilled) had upon grape nitrogen-containing compounds (mainly ammonia and free amino acids recalculated as YAN), sugars, and organic acids in 'Cabernet Sauvignon' clone 8. A significant difference was observed for some of the free amino acids between rootstocks. In both sample preparation methods (juiced or chemically extracted), 110R rootstock grapes were significantly higher in SER, GLN, THR, ARG, VAL, ILE, LEU, and YAN than were 420A rootstock grapes. Differences in individual free amino acid profiles and concentrations were observed between the two sample preparations, which indicate that care should be taken when comparing values from dissimilar methods. No significant differences among vineyard floor treatments were detected, which suggests that mowing offers vineyard managers a sustainable practise, alternative to tilling, without negatively affecting grape nitrogen compounds, sugars, or organic acids. Published by Elsevier Ltd.

  15. ROOTSTOCK-SCION INTERACTION: 2. EFFECT ON THE COMPOSITION OF CABERNET SAUVIGNON GRAPE MUST

    Directory of Open Access Journals (Sweden)

    ALBERTO MIELE

    2017-08-01

    Full Text Available ABSTRACT The interaction between rootstock, scion and the environment may induce different responses to the grapevine physiology and, consequently, to the grape composition. The vineyards of Serra Gaúcha, Brazil, are established in different soil types, each with different morphological and physicochemical attributes. Moreover, the grapevines are grafted onto a diversity of rootstocks. Therefore, this study aimed to determine the effect of 15 rootstocks in the composition of the Cabernet Sauvignon (CS grape must. The following rootstocks were used: Rupestris du Lot, 101-14 Mgt., 3309 C, 420A Mgt., 5BB K, 161-49 C, SO4, Solferino, 1103 P, 99 R, 110 R, Gravesac, Fercal, Dogridge and Isabel, featuring some genetic diversity altogether. The experimental design was in randomized blocks with 15 treatments, three replicates, 10 vines per plot. The grapes were harvested at maturity for four years, and then crushed for winemaking. Next, the grape musts were centrifuged to separate the solid phase from the liquid phase, which was used for analyses related to sugar, acidity and minerals. The data were submitted to correlation analysis and Principal Component Analysis. The main results from the average of four years show that, in general, the grape musts of the CS/101-14 Mgt., CS/161-49 C, CS/3309 C, CS/Rupestris du Lot and CS/Gravesac combinations had high values of density, total soluble solids, pH and °Brix/titratable acidity ratio, and low titratable acidity, which was high with CS/99 R, CS/110 R, CS/Dogridge and CS/1103 P. Potassium had higher concentrations in the grape musts of CS/SO4 and CS/5BB K. Titratable acidity did not correlate with density and total soluble solids, but positively correlated with yield. Density, total soluble solids, and the concentration of potassium were positively correlated with pH.

  16. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    Science.gov (United States)

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  17. Protein characterization of Roditis Greek grape variety and Sauvignon blanc and changes in certain nitrogen compounds during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Z. G. Nakopoulou

    2006-09-01

    Full Text Available Must and wine samples of the Greek grape variety Roditis and the French one Sauvignon blanc were analysed in order to obtain further knowledge of the protein profile of Roditis and to watch the evolution of grape proteins during the alcoholic fermentation of Roditis and Sauvignon blanc musts. For these purposes protein samples were isolated from must and wine samples by ammonium sulphate precipitation and subjected to sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS - PAGE. Eleven and nine bands with molecular weights between 11,1 and 64,4 kDa were detected on the electrophoregramms of Roditis and Sauvignon blanc must and wine samples respectively, using Coomassie Brillant Blue R-250 and silver staining methods. Two protein fractions of must and wine samples with molecular weights of 64,4 kDa and 34,4 kDa were identified as being glycoproteins in the profile of the Greek grape variety, according to the Periodic acid - silver staining, while only one must and wine fraction of 64,4 kDa had positively react with this stain, as far as it concerns Sauvignon blanc. None of the low molecular weight protein fractions found to be responsible for haze formation. A modified (Bradford dye - binding procedure was used for the determination of musts and wines soluble proteins. Free amino nitrogen and the contents of neutral and acidic polysaccharides in the protein fractions after chromatography on Sephadex G - 25, were also analyzed.

  18. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  19. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  20. Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon.

    Science.gov (United States)

    Liu, Ya; Nan, Lijun; Liu, Junchao; Yan, Haiyan; Zhang, Dianpeng; Han, Xinnian

    2016-01-01

    Obtain endophyte strains with effective resveratrol production from superior grapevine variety Cabernet Sauvignon in Xinjiang and determine related taxonomic position of the strain. Seventy-three strains of endophytes, including 23 strains of bacteria, 14 ones of actinomycetes, 24 fungus and 12 yeasts, were isolated, respectively. The distribution law of endophytes was spring (30.14 %) = summer (30.14 %) < autumn (39.73 %) in different seasons, while the fruit (12.33 %) < leaf (20.55 %) < stem (32.88 %) < root (34.25 %) in different tissues and organs. From the 36 strains of endophytic fungi isolated, seven strains producing polyphenols were screened by ferric chloride-potassium ferricyanide color reaction. C2J6, stable genetic properties producing highly 1.48 mg L(-1) of resveratrol, was identified as Aspergillus niger by 26S rDNA-ITS sequence analysis after thin-layer chromatography sieve analysis, ultra violet wavelength scanning and high performance liquid chromatography, respectively. There were the certain number and kinds of endophytes in the various tissues of Cabernet Sauvignon, which, to a certain extent, reflected the biological diversity of plant endophytes. The fact that the fungus C2J6 producing resveratrol in grape was acquired attested the special ability of the endophytes to produce the same or similar bioactive substances as the host plants.

  1. Metabolite and proteome changes during the ripening of Syrah and Cabernet Sauvignon grape varieties cultured in a nontraditional wine region in Brazil.

    Science.gov (United States)

    Fraige, Karina; González-Fernández, Raquel; Carrilho, Emanuel; Jorrín-Novo, Jesús V

    2015-01-15

    Grapevines are an important fruit crop from economic and cultural point of views in many countries, including Brazil, where the practice of vitiviniculture is being developed in different regions. We compared the anthocyanin concentration, the main organic acids and sugars, and the proteome profiles during berry ripening of Syrah and Cabernet Sauvignon grapes from two distinct geographical sources in São Paulo State. The proteome was mapped by two-dimensional gel electrophoresis and differentially abundant proteins during the ripening process were subjected to MALDI-TOF/TOF-MS analysis. An increase in sugar concentration and in anthocyanin content was observed, as well a decrease in the tartaric and malic acid concentration. A total of 128 spots varied with geographical origin, grape variety, and ripening stage, with 108 being identified. The identified proteins resulted in 80 gene products. A multivariate analysis of protein abundance clustered the samples according to grape variety, geographical origin, and stage of ripening, and showed the possibility of using proteomics to characterize three variables: variety, area where grown, and the ripening process. The changes observed during the ripening process corresponded to enzymes involved in sugar and organic acid metabolism. These results are in accordance with the metabolic profile reported for the process. Given the importance of discriminating grapes, thus making the adulteration of wines more difficult, in this paper we showed the possibility of differentiating varieties of grapes, geographical area of cultivation and stage of ripening by combining the results of differentially abundant protein determinations and multivariate analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries.

    Science.gov (United States)

    Deluc, Laurent; Bogs, Jochen; Walker, Amanda R; Ferrier, Thilia; Decendit, Alain; Merillon, Jean-Michel; Robinson, Simon P; Barrieu, François

    2008-08-01

    Among the dramatic changes occurring during grape berry (Vitis vinifera) development, those affecting the flavonoid pathway have provoked a number of investigations in the last 10 years. In addition to producing several compounds involved in the protection of the berry and the dissemination of the seeds, final products of this pathway also play a critical role in berry and wine quality. In this article, we describe the cloning and functional characterization of VvMYB5b, a cDNA isolated from a grape berry (V. vinifera 'Cabernet Sauvignon') library. VvMYB5b encodes a protein belonging to the R2R3-MYB family of transcription factors and displays significant similarity with VvMYB5a, another MYB factor recently shown to regulate flavonoid synthesis in grapevine. The ability of VvMYB5a and VvMYB5b to activate the grapevine promoters of several structural genes of the flavonoid pathway was confirmed by transient expression of the corresponding cDNAs in grape cells. Overexpression of VvMYB5b in tobacco (Nicotiana tabacum) leads to an up-regulation of genes encoding enzymes of the flavonoid pathway and results in the accumulation of anthocyanin- and proanthocyanidin-derived compounds. The ability of VvMYB5b to regulate particularly the anthocyanin and the proanthocyanidin pathways is discussed in relation to other recently characterized MYB transcription factors in grapevine. Taken together, data presented in this article give insight into the transcriptional mechanisms associated with the regulation of the flavonoid pathway throughout grape berry development.

  3. Potassium in the Grape (Vitis vinifera L. Berry: Transport and Function

    Directory of Open Access Journals (Sweden)

    Suzy Y. Rogiers

    2017-09-01

    Full Text Available K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.

  4. Free amino acids of leaves and berries of Cabernet Sauvignon grapevines

    Directory of Open Access Journals (Sweden)

    Alberto Miele

    2000-03-01

    Full Text Available The composition of free amino acids was studied from leaves, pericarps, skins, musts and seeds of Vitis vinifera L. cv. Cabernet Sauvignon. Vineyards were in the Bordeaux region and the grapevines were conducted in espalier and lyre systems. Grapes were collected at maturity and lyophilized after sampling. Extraction of free amino acids was done with a hydroalcoholic solution and their analysis was performed with an autoanalyzer. A standard of 34 amino acids was utilized for the qualitative analysis. The results showed that, for both espalier and lyre training systems, respectively, the free amino acids were predominant in the pericarps (12.85 and 11.21 mg/g dw - 16.88 and 15.12 mg/g dw in skins and 3.29 and 2.88 g/l in musts -, followed by the seeds (2.37 and 2.32 mg/g dw and leaves (1.87 and 1.98 mg/g dw. The most abundant free amino acids in leaves were glutamic acid (23.8 and 28.8 p. cent, aspartic acid (8.8 and 11.1 p. cent, and glutamine (10.1 and 9.4 p. cent. Proline (41.8 and 41.5 p. cent and arginine (22.8 and 22.4 p. cent predominated in the pericarps. In seeds, the main amino acids were proline (14.5 and 15.8 p. cent, arginine (11.0 and 11.8 p. cent, histidine (11.2 and 8.7 p. cent, and glutamic acid (11.3 and 8.2 p. cent. Grapevine training system showed some differences in the total amount and in the percentages of each free amino acid, but the pattern of these compounds for each tissue was similar for both training systems.

  5. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.

    Science.gov (United States)

    Musingarabwi, Davirai M; Nieuwoudt, Hélène H; Young, Philip R; Eyéghè-Bickong, Hans A; Vivier, Melané A

    2016-01-01

    Fourier transform (FT) near-infrared (NIR) and attenuated total reflection (ATR) FT mid-infrared (MIR) spectroscopy were used to qualitatively and quantitatively analyse Vitis vinifera L. cv Sauvignon blanc grape berries. FT-NIR and ATR FT-MIR spectroscopy, coupled with spectral preprocessing and multivariate data analysis (MVDA), provided reliable methods to qualitatively assess berry samples at five distinct developmental stages: green, pre-véraison, véraison, post-véraison and ripe (harvest), without any prior metabolite extraction. Compared to NIR spectra, MIR spectra provided more reliable discrimination between the berry samples from the different developmental stages. Interestingly, ATR FT-MIR spectra from fresh homogenized berry samples proved more discriminatory than spectra from frozen homogenized berry samples. Different developmental stages were discriminated by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In order to generate partial least squares (PLS) models from the MIR/NIR spectral datasets; the major sugars (glucose and fructose) and organic acids (malic acid, succinic acid and tartaric acid) were separated and quantified by high performance liquid chromatography (HPLC) and the data used as a reference dataset. PLS regression was used to develop calibration models to predict the concentration of the major sugars and organic acids in the berry samples from different developmental stages. Our data show that infrared (IR) spectroscopy could provide a rapid, reproducible and cost-effective alternative to the chromatographic analysis of the sugar and organic acid composition of grape berries at various developmental stages, using small sample volumes and requiring limited sample preparation. This provides scope and support for the possible development of hand-held devices to assess quality parameters in field-settings in real-time and non-destructively using IR technologies. Copyright

  6. Time and Frequency Domain Response of Grape Berries to Nondestructive Impact during the Harvesting Period

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Pavloušek, P.; Nedomová, Š.; Buchar, J.

    2016-01-01

    Roč. 47, č. 1 (2016), s. 24-33 ISSN 0022-4901 Institutional support: RVO:61388998 Keywords : berry´s response * dominant frequency * elastic modulus * grape berries Subject RIV: BO - Biophysics Impact factor: 1.290, year: 2016 http://onlinelibrary.wiley.com

  7. Pathogenicity of Phaeoacremonium aleophilum and Phaeomoniella chlamydospora on Grape Berries in California

    Directory of Open Access Journals (Sweden)

    W.D. Gubler

    2004-04-01

    Full Text Available Injured and non-injured grape berries were inoculated with spore suspension of Phaeomoniella chlamydospora or Phaeoacremonium aleophilum under field (intact berries and laboratory (detached berries conditions. In one test, berries were injured by pricking the skin with a syringe needle to a depth of approximately 1.5 mm. Brown to purple lesions appeared 5 to 7 days after inoculation in both the injured intact and detached berries. Lesions on these berries were larger when inoculated earlier in the season indicating that young, immature berries are more susceptible to infection than mature berries. In another test, berries were injured by rubbing the skin with carborundum dust using a cotton-tipped applicator. Esca-like lesions developed in 4 to 5 days after inoculation of detached but not intact berries. Occasional infection of non-injured berries occurred which appeared as small dots to pin-head size lesions around the lenticels. Scanning electron microscopy observations of these lesions showed abundant hyphal growth on the surface with apparent penetration through lenticels; however, fungal structures were not detected with certainty beneath the lenticels or intact cuticle. In both tests, the fungi were re-isolated from the advancing margin of the lesions.

  8. Produção e composição química da uva de videiras Cabernet Sauvignon submetidas à adubação nitrogenada Grapes yield and chemistry composition in Cabernet Sauvignon grapevine with nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2009-10-01

    Sauvignon grapevines, at Udorthent soil at Southern Brazil, Bento Gonçalves city. The treatments were control, 15, 30, 45 and 60kg ha-1 N, added during the vegetative and productive period. In the maturation, the grape was collected. Grape yield by plant and by hectare, length and width of bunches were evaluated and 100 berries were weighted. Berries were collected and a part of them was used to evaluate soluble solids in the must, pH, total acidity, tartaric acid, malic acid, total phenols, anthocyanins and N ammonia. The remaining berries were triturated and used to evaluated total N, P, K, Ca and Mg. The results showed that the yield of Cabernet Sauvignon grapevines in soils with medium content of organic matter is maximum with the fertilization of 15 and 30kg ha-1 N. The N fertilization increased the values of ammonia in the must and potassium percentage in the berry, but decreased the values of anthocyanins, what interferes the color of red wines and the formation of precipitate

  9. Phenolic profiles and antioxidant properties of young wines made from Yan73 (Vitis vinifera L.) and Cabernet Sauvignon (Vitis vinifera L.) grapes treated by 24-epibrassinolide.

    Science.gov (United States)

    Xu, Fan; Luan, Li-Ying; Zhang, Zhen-Wen; Huo, Shan-Shan; Gao, Xiang; Fang, Yu-Lin; Xi, Zhu-Mei

    2014-07-14

    The grape berries of two varieties, Yan73 (Vitis vinifera L.) and Cabernet Sauvignon (CS) (Vitis vinifera L.) were treated with 0.40 mg/L 24-epibrassinolide (EBR), 1.00 mg/L brassinazole (Brz), and deionized water (control), at the veraison period. The EBR treatment significantly increased total phenolic content (TPC), total tannin content (TTC) and total anthocyanin content (TAC) of Yan73 and CS wines, whereas Brz treatment decreased TPC, total flavonoid content (TFC), TAC in the two wines. Moreover, the content of most of the phenolic compounds identified by HPLC-DAD/ESI-MS in EBR-treated wines was significantly higher than that in control. The antioxidant capacities, which determined using DPPH, ABTS and HRSA methods, of the wines were increased by EBR treatment as well. There was a good correlation between the antioxidant capacity and phenolic content. The results demonstrated that EBR could enhance the phenolic compounds and antioxidant capacity of Yan73 and CS wines, but the effects may vary by different cultivars.

  10. Phenolic Profiles and Antioxidant Properties of Young Wines Made from Yan73 (Vitis vinifera L. and Cabernet Sauvignon (Vitis vinifera L. Grapes Treated by 24-Epibrassinolide

    Directory of Open Access Journals (Sweden)

    Fan Xu

    2014-07-01

    Full Text Available The grape berries of two varieties, Yan73 (Vitis vinifera L. and Cabernet Sauvignon (CS (Vitis vinifera L. were treated with 0.40 mg/L 24-epibrassinolide (EBR, 1.00 mg/L brassinazole (Brz, and deionized water (control, at the veraison period. The EBR treatment significantly increased total phenolic content (TPC, total tannin content (TTC and total anthocyanin content (TAC of Yan73 and CS wines, whereas Brz treatment decreased TPC, total flavonoid content (TFC, TAC in the two wines. Moreover, the content of most of the phenolic compounds identified by HPLC-DAD/ESI-MS in EBR-treated wines was significantly higher than that in control. The antioxidant capacities, which determined using DPPH, ABTS and HRSA methods, of the wines were increased by EBR treatment as well. There was a good correlation between the antioxidant capacity and phenolic content. The results demonstrated that EBR could enhance the phenolic compounds and antioxidant capacity of Yan73 and CS wines, but the effects may vary by different cultivars.

  11. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages

    Directory of Open Access Journals (Sweden)

    Feng Leng

    2016-10-01

    Full Text Available Root restriction improved berry quality by being involved in diverse aspects of grapevine life. However, the molecular mechanism driving this process is not understood very well. In this study, the ‘Summer Black’ grape berry (Vitis vinifera × V. labrusca under root restriction was investigated, which showed an increase of total soluble solids (TSS, color index of red grapes (CIRG value, anthocyanins accumulation, total phenolics and total procyanidins contents during berry development compared with those in control berries. The transcriptomic changes induced by root restriction in ‘Summer Black’ grape over the course of berry development were analyzed by RNA-Seq method. A total of 29,971 genes were generated in ‘Summer Black’ grape berry during development, among which, 1606 genes were significantly responded to root restriction. Furthermore, 1264, 313, 141, 246 and 19 sequences were significantly changed at S1, S2, S3, S4 and S5 sample points, respectively. The gene (VIT_04s0023g02290 predicted as a salicylate O-methyltransferase was differentially expressed in all developmental stages. Gene Ontology (GO enrichment showed that response to organic nitrogen, response to endogenous stimulus, flavonoid metabolic process, phenylpropanoid biosynthetic process and cell wall macromolecule metabolic process were the main significant differential categories. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment revealed plant–pathogen interaction, plant hormone signal transduction, flavone and flavonol biosynthesis, flavonoid biosynthesis and glucosinolate biosynthesis were the main significant differential pathways. The results of the present study provided a genetic base for the understanding of grape berry fruit quality improvement under root restriction.

  12. Anti-botrytis activity in epicuticular waxes of young grape berries of Vitis vinifera (Pinot noir

    Directory of Open Access Journals (Sweden)

    Pascal Comménil

    1996-03-01

    The evidence of a substance which exhibits a strong inhibition on the conidial germination of Botrytis cinerea was made after epicuticular waxes chromatographic analysis and biological tests. This compound, characterized by a Rf (0,2 closely related to the Rf of the primary alcohols, was present in the wax extracts originated from bloom and immature grape berries stages and it was absent in the extracts issued to the mature grape berries. The concentration of the conidial germination inhibitor was markedly different between the sensible (S792 and tolerant (T7613 cultivars of Pinot vineyards. Also this antifungal product would be considereted as an hypothetical resistance marked against Botrytis cinerea.

  13. Influence of grape maturity and maceration length on color, polyphenolic composition, and polysaccharide content of Cabernet Sauvignon and Tempranillo wines.

    Science.gov (United States)

    Gil, Mariona; Kontoudakis, Nikolaos; González, Elena; Esteruelas, Mireia; Fort, Francesca; Canals, Joan Miquel; Zamora, Fernando

    2012-08-15

    The aim of this paper was to study how maturity and maceration length affect color, phenolic compounds, polysaccharides, and sensorial quality of Cabernet Sauvignon and Tempranillo wines at three stages of grape ripening. Ripeness increased color extractability, phenolic compounds, and polysaccharide concentrations. Moreover, the proanthocyanidin mean degree of polymerization (mDP) and the percentage of prodelphinidins also increased with maturity, whereas the percentage of galloylation decreased. In general, wines from riper grapes contain higher proportions of skin proanthocyanidins. Color and anthocyanin concentration decreased when the maceration was longer, whereas polysaccharide and proanthocyanidin concentrations did the opposite. It was also detected that the mDP and the percentage of prodelphinidins decreased when the maceration was extended, whereas the percentage of galloylation increased. These data seem to indicate that proanthocyanidin extraction from seeds is clearly increased throughout the maceration time.

  14. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry.

    Science.gov (United States)

    Bindon, Keren; Varela, Cristian; Kennedy, James; Holt, Helen; Herderich, Markus

    2013-06-01

    The study aimed to quantify the effects of grape maturity on wine alcohol, phenolics, flavour compounds and polysaccharides in Vitis vinifera L. cv Cabernet Sauvignon. Grapes were harvested at juice soluble solids from 20 to 26 °Brix which corresponded to a range of wine ethanol concentrations between 12% and 15.5%. Grape anthocyanin and skin tannin concentration increased as ripening progressed, while seed tannin declined. In the corresponding wines, monomeric anthocyanin and wine tannin concentration increased with harvest date, consistent with an enhanced extraction of skin-derived phenolics. In wines, there was an observed increase in yeast-derived metabolites, including volatile esters, dimethyl sulfide, glycerol and mannoproteins with harvest date. Wine volatiles which were significantly influenced by harvest date were isobutyl methoxypyrazine, C(6) alcohols and hexyl acetate, all of which decreased as ripening progressed. The implications of harvest date for wine composition is discussed in terms of both grape composition and yeast metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Xenia and metaxenia in grapes: differences in berry and seed characteristics of maternal grape cv. 'Narince' (Vitis vinifera L.) as influenced by different pollen sources.

    Science.gov (United States)

    Sabir, A

    2015-03-01

    Literature investigations indicate that the grapes have quite complex fertilisation biology. This complexity necessitates extensive investigations to obtain reliable knowledge for both well-organised hybridisation studies and maximising grape yield. Therefore, this study was conducted to investigate the influences of self-, free- and cross-pollination on berry and seed characteristics in grape. Five different pollination treatments were applied to 'Narince', the most widely known and popular white wine grape in Turkey. Pollen tests indicated that all the cultivars had satisfactory in vitro pollen viability percentages. Free-pollination produced a significantly higher percentage berry set. Among the pollinizers, the use of pollen of 'Thompson Seedless' and 'Cardinal' varieties resulted in higher berry set percentage in 'Narince'. The free-pollination was also superior in giving the highest weight, length and width of the berry, as well as number of seeds per berry. These findings revealed that there were strong xenial and metaxenial effects in the studied grape cultivars. Among the pollinizer cultivars, the most effective pollinator was 'Thompson Seedless'. Hence, for better berry set and quality, the use of 'Thompson Seedless' as a pollinizer may be an attractive option in both grape production and breeding studies. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Berry composition and yield of Cabernet Sauvignon and Malbec in response to water deficit severity

    Science.gov (United States)

    Water supply is a production tool used in arid climates to elicit desirable, water-deficit related changes in berry composition and yield; however, response to water deficit is known to vary by cultivar. The objectives of this research were to determine whether cultivars differed in their relations...

  17. Complex Interplay of Hormonal Signals during Grape Berry Ripening

    Directory of Open Access Journals (Sweden)

    Ana Margarida Fortes

    2015-05-01

    Full Text Available Grape and wine production and quality is extremely dependent on the fruit ripening process. Sensory and nutritional characteristics are important aspects for consumers and their development during fruit ripening involves complex hormonal control. In this review, we explored data already published on grape ripening and compared it with the hormonal regulation of ripening of other climacteric and non-climacteric fruits. The roles of abscisic acid, ethylene, and brassinosteroids as promoters of ripening are discussed, as well as the role of auxins, cytokinins, gibberellins, jasmonates, and polyamines as inhibitors of ripening. In particular, the recently described role of polyamine catabolism in grape ripening is discussed, together with its putative interaction with other hormones. Furthermore, other recent examples of cross-talk among the different hormones are presented, revealing a complex interplay of signals during grape development and ripening.

  18. Influence of harvest day on changes in mechanical properties of grape berries

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2016-05-01

    Full Text Available Changes in the composition, physical and mechanical properties occur in grape berries during the ripening process, but the heterogeneity of the grapes harvested at different ripening stages affects the reliability of the results obtained. The characterization of the mechanical properties of grape berries seems to be an important parameter for understanding grape ripening. In this work, these changes were studied in seven grapevine varieties (Riesling, Blaufränkisch, Pinot Noir, Cerason, Malverina, Laurot, and Hibernal harvested during six consecutive weeks. Mechanical behaviour was measured using compression and puncture tests using of TIRATEST 27025 testing machine. Skin mechanical properties were evaluated using a puncture test carried out on the equatorial side. The dependence of these properties on the chemical composition has been evaluated. These parameters of force/time curves were studied by puncture test: the berry skin break force, the needle displacement at the skin break and the berry skin break energy. The crushing force, the plate displacement at the crushing strength and the berry crushing energy were studied from force/time curves by compression test. Results of the puncture test shows that there the skin break strength and the acidity content are monotonic functions of the time. A comparison of different varieties from the point of the value of the crushing force was obtained by vertical and transversal loading. The crushing force is monotonically decreasing function of the harvesting time like the break force evaluated at the puncture test. The correlation between the skin break strength and the sugar content is significant namely for the varieties: Hibernal, Riesling, Malverina, and Cerason. 

  19. Study of sugar phloem unloading in ripening grape berries under water stress conditions

    Directory of Open Access Journals (Sweden)

    Zenphing Wang

    2003-12-01

    Full Text Available Sugar phloem unloading in ripening grape berries (Vitis vinifera L. cv. Syrah was studied under water stress conditions using the «beny-cup» technique. After veraison, berry growth, the potential Exposed Leaf Area (pELA and photosynthetic activity are clearly reduced in water-stressed vines (- 0.5 > Ψb > - 0.6 MPa as compared to normal 1 Ψ-watcred vines (Mb = - 0.2 MPa. The ratio pELA/yield is also reduced, which is particular to this experiment. The beiries' ripening period (between veraison and maturity can be divided into three growth phases, Illa, Illb and IIlc. During phase Ma, the berries grow rapidly; at this point, water stress severely inhibits cell expan¬ sion of the berries but does not impact on daily sugar accumulation. During phase Mb, the berries grow slowly in both water-stressed and control vines. Water stress can shorten this phase and reduce sugar accumulation in the berries by decreasing daily sugar unloading. During phase II le, the Iresh weight and volume of the berries decreases as does the daily sugar unloading. During the day, sugar unloading in ripening berries occurs mainly in the morning (7 am to 10.30 am and at noon (1 to 1.30 pm; little sugar is unloaded in the afternoon (4 pm to 4.30 pin. Moderate water stress from veraison to maturity affects végétative growth (i.e. the growth of primary and secoridary shoots, and reduces the exposed leaf area, photosynthetic activity, berry growth, and the accumulation of sugar at the end of ripening (phases Mb and IIlc.

  20. Rootstock and vineyard floor management influence on 'Cabernet Sauvignon' grape yeast assimilable nitrogen (YAN)

    Science.gov (United States)

    This is a preliminary study on the influence two rootstocks (110R, high vigor; 420A, low vigor) grafted to scion 'Cabernet Sauvignon' clone 8, and three vineyard floor management regimes (tilled resident vegetation – usual practice in California, and barley cover crops that were either mowed or till...

  1. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries.

    Science.gov (United States)

    Pisani, Cristina; Nguyen, Trang Thoaivan; Gubler, Walter Douglas

    2015-09-01

    Sour rot, is a pre-harvest disease that affects many grape varieties. Sour rot symptoms include initial berry cracking and breakdown of berry tissue. This is a disease complex with many filamentous fungi and bacteria involved, but is usually initiated by Aspergillus niger or Aspergillus carbonarius. Usually, by the time one sees the rot there are many other organisms involved and it is difficult to attribute the disease to one species. In this study two species of Aspergillus were shown to produce a previously unknown fruiting structure in infected berries. The nodulous morphology, bearing conidia, suggests them to be an 'everted polymorphic stroma'. This structure forms freely inside the berry pulp and assumes multiple shapes and sizes, sometimes sclerotium-like in form. It is composed of a mass of vegetative hyphae with or without tissue of the host containing spores or fruiting bodies bearing spores. Artificially inoculated berries placed in soil in winter showed the possible overwintering function of the fruiting body. Inoculated berry clusters on standing vines produced fruiting structures within 21 d post inoculation when wounds were made at veraison or after (July-September). Histological studies confirmed that the fruiting structure was indeed fungal tissue. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. NMR analysis of seven selections of vermentino grape berry: metabolites composition and development.

    Science.gov (United States)

    Mulas, Gilberto; Galaffu, Maria Grazia; Pretti, Luca; Nieddu, Gianni; Mercenaro, Luca; Tonelli, Roberto; Anedda, Roberto

    2011-02-09

    The goal of this work was to study via NMR the unaltered metabolic profile of Sardinian Vermentino grape berry. Seven selections of Vermentino were harvested from the same vineyard. Berries were stored and extracted following an unbiased extraction protocol. Extracts were analyzed to investigate variability in metabolites concentration as a function of the clone, the position of berries in the bunch or growing area within the vineyard. Quantitative NMR and statistical analysis (PCA, correlation analysis, Anova) of the experimental data point out that, among the investigated sources of variation, the position of the berries within the bunch mainly influences the metabolic profile of berries, while the metabolic profile does not seem to be significantly influenced by growing area and clone. Significant variability of the amino acids such as arginine, proline, and organic acids (malic and citric) characterizes the rapid rearrangements of the metabolic profile in response to environmental stimuli. Finally, an application is described on the analysis of metabolite variation throughout the physiological development of berries.

  3. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway.

    Science.gov (United States)

    Degu, Asfaw; Hochberg, Uri; Sikron, Noga; Venturini, Luca; Buson, Genny; Ghan, Ryan; Plaschkes, Inbar; Batushansky, Albert; Chalifa-Caspi, Vered; Mattivi, Fulvio; Delledonne, Massimo; Pezzotti, Mario; Rachmilevitch, Shimon; Cramer, Grant R; Fait, Aaron

    2014-07-26

    Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3'5'H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3'5'H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized

  4. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    Science.gov (United States)

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in 'Vidal blanc' grape berries.

    Science.gov (United States)

    Pan, Qiu-Hong; Chen, Fang; Zhu, Bao-Qing; Ma, Li-Yan; Li, Li; Li, Jing-Ming

    2012-04-01

    The pleasantly fruity and floral 2-phenylethanol are a dominant aroma compound in post-ripening 'Vidal blanc' grapes. However, to date little has been reported about its synthetic pathway in grapevine. In the present study, a full-length cDNA of VvAADC (encoding aromatic amino acid decarboxylase) was firstly cloned from the berries of 'Vidal blanc', an interspecific hybrid variety of Vitis vinifera × Vitis riparia. This sequence encodes a complete open reading frame of 482 amino acids with a calculated molecular mass of 54 kDa and isoelectric point value (pI) of 5.73. The amino acid sequence deduced shared about 79% identity with that of aromatic L: -amino acid decarboxylases (AADCs) from tomato. Real-time PCR analysis indicated that VvAADC transcript abundance presented a small peak at 110 days after full bloom and then a continuous increase at the berry post-ripening stage, which was consistent with the accumulation of 2-phenylethanol, but did not correspond to the trends of two potential intermediates, phenethylamine and 2-phenylacetaldehyde. Furthermore, phenylalanine still exhibited a continuous increase even in post-ripening period. It is thus suggested that 2-phenylethanol biosynthetic pathway mediated by AADC exists in grape berries, but it has possibly little contribution to a considerable accumulation of 2-phenylethanol in post-ripening 'Vidal blanc' grapes.

  6. Wound-healing activity of the skin of the common grape (Vitis Vinifera) variant, Cabernet Sauvignon.

    Science.gov (United States)

    Nayak, B Shivananda; Ramdath, D Dan; Marshall, Julien R; Isitor, Godwin N; Eversley, Mathew; Xue, Sophia; Shi, John

    2010-08-01

    The common Grape L. (Vitaceae) is regarded as an important medicinal plant. European healers have suggested the use of grapevine sap, juice, and whole grape in the treatment of pain, allergic reactions, inflammation, and to promote wound healing. We evaluated grape-skin powder for its wound-healing activity using an excision wound model in rats. Animals were randomly divided into three groups of six (n = 6) each. The test group animals were treated topically with the grape-skin powder (100 mg/kg/day). The controls and standard group animals were treated with petroleum jelly and mupirocin ointment respectively. Healing was assessed by the rate of wound contraction, period of epithelialization, and hydroxyproline content. On day 13, treatment of the wounds with grape-skin powder enhanced significantly the rate of wound contraction (100 %). Treated animals showed significant decrease in the epithelialization period (p < 0.000) and increase in the hydroxyproline content (p < 0.05) when compared to control and the standard. Histological analysis was also consistent with the proposal that grape-skin powder exhibits significant wound-healing potential. Increased rate of wound contraction, hydroxyproline content, and decrease in epithelialization time in the treated animals support the use of grape-skin powder in the management of wound healing. Copyright (c) 2010 John Wiley & Sons, Ltd.

  7. Comparison on Phenolic Compounds and Antioxidant Properties of Cabernet Sauvignon and Merlot Wines from Four Wine Grape-Growing Regions in China

    Directory of Open Access Journals (Sweden)

    Bao Jiang

    2012-07-01

    Full Text Available The antioxidant activities in the Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China were measured by different analytical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH·, cupric reducing antioxidant capacity (CUPRAC, superoxide radical-scavenging activity (SRSA and the contents of total phenols, total flavonoids, total flavanols and total anthocyanins were determined. The results showed that the contents of phenolic compounds and the levels of antioxidant activity in the wine samples greatly varied with cultivar and environmental factors of vine growth. The contents of phenolic compounds and antioxidant activities in Cabernet Sauvignon and Merlot wines from the Yuquanying region of Ningxia were significantly higher than other three regions, followed by the wines from Shacheng region of Hebei, and these parameters were the lowest in Cabernet Sauvignon and Merlot wines from the Changli regions of Hebei and Xiangning region of Shanxi. Taken together, a close relationship between phenolic subclasses and antioxidant activity was observed for the wine samples. Moreover, there were significant discrepancies in the individual phenolic composition and content of four regional Cabernet Sauvignon and Merlot wines, among which the individual phenolic compounds (catechin, epicatechin, cinnamic acid, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside revealed a significant correlation (p < 0.05 with the antioxidant capacity in present study, especially for catechin and epicatechin.

  8. Comparison on phenolic compounds and antioxidant properties of cabernet sauvignon and merlot wines from four wine grape-growing regions in China.

    Science.gov (United States)

    Jiang, Bao; Zhang, Zhen-Wen

    2012-07-25

    The antioxidant activities in the Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China were measured by different analytical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH·), cupric reducing antioxidant capacity (CUPRAC), superoxide radical-scavenging activity (SRSA) and the contents of total phenols, total flavonoids, total flavanols and total anthocyanins were determined. The results showed that the contents of phenolic compounds and the levels of antioxidant activity in the wine samples greatly varied with cultivar and environmental factors of vine growth. The contents of phenolic compounds and antioxidant activities in Cabernet Sauvignon and Merlot wines from the Yuquanying region of Ningxia were significantly higher than other three regions, followed by the wines from Shacheng region of Hebei, and these parameters were the lowest in Cabernet Sauvignon and Merlot wines from the Changli regions of Hebei and Xiangning region of Shanxi. Taken together, a close relationship between phenolic subclasses and antioxidant activity was observed for the wine samples. Moreover, there were significant discrepancies in the individual phenolic composition and content of four regional Cabernet Sauvignon and Merlot wines, among which the individual phenolic compounds (catechin, epicatechin, cinnamic acid, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside) revealed a significant correlation (p < 0.05) with the antioxidant capacity in present study, especially for catechin and epicatechin.

  9. Phenolic Fractions from Muscadine Grape "Noble" Pomace can Inhibit Breast Cancer Cell MDA-MB-231 Better than those from European Grape "Cabernet Sauvignon" and Induce S-Phase Arrest and Apoptosis.

    Science.gov (United States)

    Luo, Jianming; Wei, Zheng; Zhang, Shengyu; Peng, Xichun; Huang, Yu; Zhang, Yali; Lu, Jiang

    2017-05-01

    Tons of grape pomace which still contained a rich amount of plant polyphenols, is discarded after winemaking. Plant polyphenols have multi-functional activities for human body. In this study, polyphenols of pomaces from Muscadinia rotundifolia "Noble" and Vitis vinifera "Cabernet Sauvignon" were extracted and fractionated, and then they were analyzed with LC-MS and the inhibitory effects on breast cancer cells were compared. The inhibition on MDA-MB-231 cells of fractions from "Noble" was further evaluated. The results showed that polyphenols from 2 grape pomaces could be separated into 3 fractions, and ellagic acid and/or ellagitannins were only detected in fractions from "Noble" pomace. All 3 fractions from "Noble" pomace inhibited MDA-MB-231 better than MCF-7. But fraction 2 from "Cabernet Sauvignon" inhibited MCF-7 better while fraction 1 and fraction 3 inhibited both 2 cells similarly. Moreover, the fractions from "Noble" pomace rather than "Cabernet Sauvignon" can inhibit MDA-MB-231 better. Finally, fractions from "Noble" pomace can induce S-phase arrest and apoptosis on MDA-MB-231. These findings suggested the extracts from grape pomace especially those from "Noble," are potential to be utilized as health beneficial products or even anti-breast cancer agents. © 2017 Institute of Food Technologists®.

  10. Extraction of Pathogenesis-Related Proteins and Phenolics in Sauvignon Blanc as Affected by Grape Harvesting and Processing Conditions

    Directory of Open Access Journals (Sweden)

    Bin Tian

    2017-07-01

    Full Text Available Thaumatin-like proteins (TLPs and chitinases are the two main groups of pathogenesis-related (PR proteins found in wine that cause protein haze formation. Previous studies have found that phenolics are also involved in protein haze formation. In this study, Sauvignon Blanc grapes were harvested and processed in two vintages (2011 and 2012 by three different treatments: (1 hand harvesting with whole bunch press (H-WB; (2 hand harvesting with destem/crush and 3 h skin contact (H-DC-3; and (3 machine harvesting with destem/crush and 3 h skin contact (M-DC-3. The juices were collected at three pressure levels (0.4 MPa, 0.8 MPa and 1.6 MPa, some juices were fermented in 750 mL of wine bottles to determine the bentonite requirement for the resulting wines. Results showed juices of M-DC-3 had significantly lower concentration of proteins, including PR proteins, compared to those of H-DC-3, likely due to the greater juice yield of M-DC-3 and interactions between proteins and phenolics. Juices from the 0.8–1.6 MPa pressure and resultant wines had the highest concentration of phenolics but the lowest concentration of TLPs. This supported the view that TLPs are released at low pressure as they are mainly present in grape pulp but additional extraction of phenolics largely present in skin occurs at higher pressing pressure. Wine protein stability tests showed a positive linear correlation between bentonite requirement and the concentration of chitinases, indicating the possibility of predicting bentonite requirement by quantification of chitinases. This study contributes to an improved understanding of extraction of haze-forming PR proteins and phenolics that can influence bentonite requirement for protein stabilization.

  11. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties.

    Science.gov (United States)

    Schelezki, Olaf J; Šuklje, Katja; Boss, Paul K; Jeffery, David W

    2018-09-01

    This study extends previous work on Cabernet Sauvignon wines of lowered alcohol concentrations produced by pre-fermentatively substituting proportions of juice from an overripe crop with "green harvest wine" or water to adjust initial sugar concentrations. Resulting wines were assessed for their volatile compositions and sensory characteristics to evaluate the suitability of this winemaking approach to managing wine alcohol concentrations in warm viticulture regions. Wines from water or green harvest wine substitution were also compared to wines of similar alcohol content produced from earlier harvested grapes. Implementation of water substitution in particular resulted in minor alterations of wine volatile composition compared to the control, and positive aroma and flavour characteristics were preserved. However, overripe sensory attributes such as 'hotness' and 'port wine' were conserved whereas they were absent in wines of similar alcohol level made from earlier harvested grapes, thereby emphasising the relevance of grape (over)maturity when producing lower alcohol wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    OpenAIRE

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major d...

  13. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN

    Science.gov (United States)

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde

    2015-01-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  14. Dormancy and cold hardiness transitions in wine grape cultivars Chardonnay and Cabernet Sauvignon

    Science.gov (United States)

    Dormancy and cold hardiness influence grapevine (Vitis vinifera L.) susceptibility to cold injury, which is a major cause of economic loss in high latitude growing regions. The objectives of this study were to compare dormancy and cold hardiness transitions in wine grape cultivars considered more (C...

  15. Short-term postharvest carbon dioxide treatments induce selective molecular and metabolic changes in grape berries.

    Science.gov (United States)

    Becatti, Elisa; Chkaiban, Lamia; Tonutti, Pietro; Forcato, Claudio; Bonghi, Claudio; Ranieri, Anna Maria

    2010-07-14

    Detached wine grapes ( Vitis vinifera cv. 'Trebbiano', white skinned) were treated for 3 days with 30 kPa of CO(2) and then transferred to air for an additional 9 days to partially dehydrate (about 20% weight loss). At the end of the CO(2) treatment on withering berries, total polyphenols and flavonoids were maintained in the skin, but to a more limited extent in the pulp. An induction of the proanthocyanidin synthesis appeared to be one of the responses to the treatment because both (+)-catechin and (-)-epicatechin concentrations increased in the skin. The skin and pulp of the grape berries showed different molecular responses to a high CO(2) treatment. As revealed by microarray hybridizations, 217 and 75 genes appeared differentially expressed in the skin and pulp of treated samples, respectively. Functional categorization and gene enrichment analyses pointed out that epicarp cells undergo more pronounced changes in transcript profiling at the end of the incubation period. Highly represented categories in both tissues were related to protein, stress, transcript, RNA, and hormone (ethylene, ABA) metabolism. Fermentation, CHO metabolism, and redox regulation functional categories were represented only in the skin.

  16. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless.

    Directory of Open Access Journals (Sweden)

    Iván Balic

    Full Text Available Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.

  17. Pink berry grape (Vitis vinifera L.) characterization: Reflectance spectroscopy, HPLC and molecular markers.

    Science.gov (United States)

    Rustioni, Laura; De Lorenzis, Gabriella; Hârţa, Monica; Failla, Osvaldo

    2016-01-01

    Color has a fundamental role for the qualitative evaluation and cultivar characterization of fruits. In grape, a normally functional pigment biosynthesis leads to the accumulation of a high quantity of anthocyanins. In this work, 28 Vitis vinifera L. cultivars accumulating low anthocyanins in berries were studied to characterize the biosynthetic dysfunctions in both a phenotypic and genotypic point of view. Reflectance spectroscopy, HPLC profiles and molecular markers related to VvMybA1 and VvMybA2 genes allowed a detailed description of the pigment-related characteristics of these cultivars. Data were consistent concerning the heterozygosity of the non-functional allele in both investigated genes, resulting in a low colored phenotype as described by reflectance. However, the variability in berry colour among our samples was not fully explained by MybA locus, probably due to specific interferences among the biosynthetic pathways, as suggested by the anthocyanin profile variations detected among our samples. The results presented in this work confirmed the importance of the genetic background: grapes accumulating high levels of cyanidin-3-O-glucosides (di-substituted anthocyanin) are generally originated by white cultivar retro-mutations and they seem to preserve the anomalies in the flavonoid hydroxylases enzymes which negatively affect the synthesis of tri-substituted anthocyanins. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Condições meteorológicas e tipo de solo na composição da uva 'Cabernet Sauvignon' Weather and soil effects on the composition of 'Cabernet Sauvignon' grape

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Luciano

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos das condições meteorológicas e do tipo de solo sobre características físico-químicas e compostos fenólicos da uva 'Cabernet Sauvignon' (Vitis vinifera. O experimento foi realizado em vinhedo implantado em 2003, enxertado sobre o porta-enxerto 'Paulsen 1103' e conduzido no sistema espaldeira. No vinhedo, foram selecionados dois solos: Cambissolo Háplico e Cambissolo Húmico. O efeito das condições meteorológicas (precipitação e temperatura mínima e máxima do ar foi avaliado nas safras 2008/2009, 2009/2010 e 2010/2011. Foram determinados os atributos físicos e químicos dos solos, os teores de sólidos solúveis, a acidez titulável e o pH do mosto, bem como o índice de polifenóis totais e dos teores de antocianinas e de taninos da uva. Os fatores solo e as condições meteorológicas (safras foram arranjados em esquema fatorial 2x3. Com exceção do teor de polifenóis totais, as condições meteorológicas e o tipo de solo afetam as características físico-químicas da uva 'Cabernet Sauvignon', com efeito mais pronunciado das condições meteorológicas do que do tipo de solo. Menores precipitações e maiores amplitudes térmicas favorecem o acúmulo de sólidos solúveis na uva 'Cabernet Sauvignon'. Maiores precipitações favorecem o aumento da acidez do mosto.The objective of this work was to evaluate the effects of weather and soil type on the physicochemical characteristics and phenolic compounds of the 'Cabernet Sauvignon' grape (Vitis vinifera. The experiment was carried out in a vineyard established in 2003, grafted onto 'Paulsen 1103', and conducted in the cordon system. Two soils were selected in the vineyard: Typic Dystrudepts and Pachic Humudepts. The effect of weather (rainfall, and minimum and maximum temperature was evaluated in the seasons 2008/2009, 2009/2010, and 2010/2011. Soil physical and chemical properties, soluble solids, titratable acidity and pH of the

  19. Effect of cluster sun exposure on chemical composition and technological properties of grapes and wine from cultivars Cabernet sauvignon and mavrud

    International Nuclear Information System (INIS)

    Bambalov, V.; Rijchev, V.; Botyanski, P.

    2005-01-01

    A study was conducted on the effect of direct solar radiation on grape clusters of cvs Cabernet sauvignon and Mavrid, formed under four different microclimatic conditions: Vo- control; V1 - clusters exposed naturally to direct sunlight; V2 - clusters formed under natural shading; V3 - clusters formed under artificial shading.The positive impact of direct solar radiation on the formation of wine structure, character and body indicated the primary role of agrotechnical practices for ensuring better sunlight exposure of clusters and microclimatic conditions to enable the production of good wine-making materials

  20. Tannin Composition of Cabernet-Sauvignon and Merlot Grapes from the Bordeaux Area for Different Vintages (2006 to 2009 and Comparison to Tannin Profile of Five 2009 Vintage Mediterranean Grapes Varieties

    Directory of Open Access Journals (Sweden)

    Kleopatra Chira

    2011-02-01

    Full Text Available The proanthocyandin composition of skins and seeds of Bordeaux Merlot (M and Cabernet Sauvignon (CS grapes was evaluated by HPLC-UV-fluorescence for four consecutive vintages (2006 to 2009. The results indicated a strong vintage effect on the tannin profile of each variety. However, and in spite of the vintage effect, some tannin characteristics such as mDP, %G and %P allow discrimination of both Bordeaux varieties. The same analyses were carried out for the 2009 vintage of five Mediterranean grape varieties (Syrah, Grenache, Mourvedre, Carignan and Counoise. The results demonstrated differences among these five varieties. Syrah appeared to exhibit the highest concentrations of flavanol monomers and dimmers, especially in skins. The comparison study between Bordeaux and Mediterranean grape varieties for the same vintage (2009 revealed that mDP and %G for seed extracts were parameters specific to each vineyard area.

  1. Comparative expression profiling in grape (Vitis vinifera berries derived from frequency analysis of ESTs and MPSS signatures

    Directory of Open Access Journals (Sweden)

    Cook Douglas R

    2008-05-01

    Full Text Available Abstract Background Vitis vinifera (V. vinifera is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS and combined it with available Expressed Sequence Tag (EST data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. Results The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS. A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was ~49 TPM (Transcripts Per Million. Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. Conclusion The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed

  2. Validation and application of an improved method for the rapid determination of proline in grape berries.

    Science.gov (United States)

    Rienth, Markus; Romieu, Charles; Gregan, Rebecca; Walsh, Caroline; Torregrosa, Laurent; Kelly, Mary T

    2014-04-16

    A rapid and sensitive method is presented for the determination of proline in grape berries. Following acidification with formic acid, proline is derivatized by heating at 100 °C for 15 min with 3% ninhydrin in dimethyl sulfoxide, and the absorbance, which is stable for at least 60 min, is read at 520 nm. The method was statistically validated in the concentration range from 2.5 to 15 mg/L, giving a repeatability and intermediate precision of generally amino acid analyzer. In terms of sample preparation, a simple dilution (5-20-fold) is required, and sugars, primary amino acids, and anthocyanins were demonstrated not to interfere, as the latter are bleached by ninhydrin under the experimental conditions. The method was applied to the study of proline accumulation in the fruits of microvines grown in phytotrons, and it was established that proline accumulation and concentrations closely resemble those of field-grown macrovines.

  3. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin.

    Science.gov (United States)

    Cramer, Grant R; Ghan, Ryan; Schlauch, Karen A; Tillett, Richard L; Heymann, Hildegarde; Ferrarini, Alberto; Delledonne, Massimo; Zenoni, Sara; Fasoli, Marianna; Pezzotti, Mario

    2014-12-19

    Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berry color and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of this ripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages of ripening between 22 and 37 °Brix was assessed using whole-genome micorarrays. The transcript abundance of approximately 18,000 genes changed with °Brix and tissue type. There were a large number of changes in many gene ontology (GO) categories involving metabolism, signaling and abiotic stress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolism and pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with °Brix revealed that there were statistically significantly higher abundances of transcripts changing with °Brix in the skin that were involved in ethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimal fruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamily of transcription factors changed during these developmental stages. The transcript abundance of a unique clade of ERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene, senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcript abundance of important transcription factors involved in fruit ripening was also higher in the skin. A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berries revealed that these berries went through massive transcriptional changes in gene ontology categories involving chemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcript abundance of genes involved in

  4. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile.

    Science.gov (United States)

    Ferreira, Vanessa; Fernandes, Fátima; Pinto-Carnide, Olinda; Valentão, Patrícia; Falco, Virgílio; Martín, Juan Pedro; Ortiz, Jesús María; Arroyo-García, Rosa; Andrade, Paula B; Castro, Isaura

    2016-03-01

    A germplasm set of twenty-five grapevine accessions, forming eleven groups of possible berry skin color mutants, were genotyped with twelve microsatellite loci, being eleven of them identified as true color mutants. The polyphenolic profiling of the confirmed mutant cultivars revealed a total of twenty-four polyphenols, comprising non-colored compounds (phenolic acids, flavan-3-ols, flavonols and a stilbene) and anthocyanins. Results showed differences in the contribution of malvidin-3-O-glucoside to the characteristic Pinot Noir anthocyanins profile. Regarding the two Pique-Poul colored variants, the lighter variant was richer than the darker one in all classes of compounds, excepting anthocyanins. In Moscatel Galego Roxo the F3'H pathway seems to be more active than F3'5'H, resulting in higher amounts of cyanidin, precursor of the cyanidin derivatives. As far as we are aware, this is the first time that a relationship between the content of polyphenolic compounds is established in groups of grape berry skin color mutant cultivars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. “Redglobe” Berries

    Directory of Open Access Journals (Sweden)

    Alexis E. Vergara

    2018-04-01

    Full Text Available Color and other quality parameters of “Redglobe” grape (Vitis vinifera L. berries were evaluated after treatment with brassinosteroid (BR analogs. Three BRs analogs (24-epibrassinolide, Triol, or Lactone were applied at three concentrations (0.0, 0.4, or 0.8 mg⋅L-1, at the onset of veraison. A commercial formulation (B-2000® was also applied, at a recommended rate of 0.06 mg⋅L-1. The tested BR analogs were effective improving berry color (evaluated as color index for red grapes, CIRG, increasing the levels of soluble solids and anthocyanins, and changing the types of anthocyanins present without altering other quality and yield parameters. The effects of BR analogs on color enhancement could be explained by an increase in soluble solids content and/or anthocyanin content. Treatment with 24-epibrassinolide (at 0.4 mg⋅L-1 or the commercial formulation tended to favor the production of dihydroxylated anthocyanins, which are responsible for the red and pink colors of grape berries. Results indicate that the use of BRs constitutes a potential tool in the production of table grapes. This is the first report of this enhancement effect in a productive context.

  6. Processes of malate catabolism during the anaerobic metabolism of grape berries

    International Nuclear Information System (INIS)

    Flanzy, C.; Andre, P.; Buret, M.; Chambroy, Y.; Garcia, P.

    1976-01-01

    In order to precise malate fate during the anaerobic metabolism of grape, malate- 3 - 14 C was injected into Carignan berries kept in darkness at 35 0 C under carbon dioxide atmosphere. The injection of labelled malate was effected in presence or not of non-labelled oxalate which inhibits malic enzyme (EC I.I.I.40). The analyses of the samples fixed after 3 and 7 days anaerobiosis concerned the titration of various substrates, organic acids, amino-acids and glycolysis products, and the measuring of the NADP + -malic enzyme (EC I.I.I.40) and malate dehydrogenase (EC I.I.I.40). Radioactivity is mainly observed in ethanol, amino-butyrate the non-separated group glycerate-shikimate and succinate. Malic enzyme acts in the first sequence of a process leading from malate to ethanol. Alanin synthesis seems to be stimulated in presence of oxalate. The results obtained and some hypotheses presented in the literature induce to suggest a utilization scheme for malate in the anaerobic metabolism of grape [fr

  7. Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries.

    Science.gov (United States)

    Koch, Alfredo; Ebeler, Susan E; Williams, Larry E; Matthews, Mark A

    2012-06-01

    The roles of light and temperature in the accumulation of the vegetal impact compound 2-methoxy-3-isobutylpyrazine (MIBP) in grape (Vitis vinifera L.) berries were determined. Individual clusters were exposed to various light intensities using neutral density shade cloth before ripening, during ripening or throughout the season in three growing seasons. A recently developed method using headspace solid-phase microextraction combined with GC-MS in the selected ion-monitoring mode was employed to measure MIBP in berries. Berry MIBP concentration increased subsequent to berry set, reached a maximum prior to onset of ripening, and then decreased thereafter until harvest. Complete shading of clusters increased the concentration of MIBP more than 100% compared to unshaded controls in 2 out of 3 years. Light increasingly inhibited MIBP concentrations up to 25-50% of ambient light intensities (1500 µmol photons m(-2) s(-1) ). However, only changes in light intensity before ripening had any effect on MIBP accumulation or final MIBP concentration. Analyses of weather data showed that the 1 year in which shading was ineffective was unusually warm, warm early in the season, and had more hot days and higher early season degree days than the other 2 years. In controlled environment experiments, warm growth conditions reduced MIBP concentrations in fruit about as much as light exposure reduced MIBP concentrations in the field experiments. The results indicate that both light and temperature significantly affect MIBP in harvested fruit, but that the light environment during ripening does not significantly affect MIBP concentrations in the berries at harvest. Copyright © Physiologia Plantarum 2012.

  8. Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in 'Chardonnay' grape berries.

    Science.gov (United States)

    Meng, Nan; Ren, Zhi-Yuan; Yang, Xiao-Fan; Pan, Qiu-Hong

    2018-02-01

    Fatty acids and amino acids are the precursors of aliphatic and aromatic volatile compounds, higher alcohols and esters. They are also nutrition for yeast metabolism during fermentation. However, few reports have been concerned about the effect of viticulture practices on the accumulation of fatty acids and amino acids in wine grapes. This study aimed to explore the accumulation of these compounds in developing Vitis vinifera L. cv. Chardonnay grape berries under two vintages, and compare the influences of the rain-shelter cultivation and open-field cultivation. Fifteen fatty acids and 21 amino acids were detected in total. The rain-shelter cultivation led to an increase in the total concentration of fatty acids, and a decrease in the total concentration of amino acids compared with the open-field cultivation in 2012, while no significant difference was observed between two cultivation modes in 2013 vintage. Concentrations of palmitoleic acid, isoleucine and cysteine were significantly promoted in the rain-shelter grape berries, whereas those of tyrosine and ornithine were markedly reduced in both vintages. The rain-shelter cultivation of wine grapes in the rainy region is beneficial for improving grape quality and fermentation activity by influence on the concentration of fatty acids and amino acids. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries

    Directory of Open Access Journals (Sweden)

    Bao-Qing Zhu

    2014-12-01

    Full Text Available Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer” with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes.

  10. Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries

    Science.gov (United States)

    Zhu, Bao-Qing; Cai, Jian; Wang, Zhi-Qun; Xu, Xiao-Qing; Duan, Chang-Qing; Pan, Qiu-Hong

    2014-01-01

    Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS) synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer”) with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes. PMID:25470020

  11. Desfolha parcial em videiras e seus efeitos em uvas e vinhos Cabernet Sauvignon da região da Campanha do Rio Grande do Sul, Brasil Partial de foliation on vines and its effects on Cabernet Sauvignon grapes and wines from the southwest of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriela Hermann Pötter

    2010-09-01

    Full Text Available A desfolha no vinhedo tem como principais objetivos aumentar a radiação solar e a aeração na região dos frutos, para melhorar a coloração e a maturação das uvas tintas, além de reduzir a incidência de podridões, visando, com isso, obter vinhos de qualidade superior. O principal objetivo deste trabalho foi avaliar o efeito da desfolha nos parâmetros físico-químicos das uvas e dos vinhos Cabernet Sauvignon de Dom Pedrito, região da Campanha, Rio Grande do Sul (RS. As uvas foram colhidas em março de 2008, sendo provenientes de um vinhedo comercial cultivado em espaldeira. A desfolha foi realizada na base dos ramos, somente no lado que recebe o sol da manhã, com intensidade de aproximadamente 20%, no estádio fenológico grão "ervilha". As microvinificações foram feitas com controle de temperatura, em tanques de vidro em triplicata, com oito dias de maceração. Os resultados mostraram que o tratamento com desfolha apresentou mostos com pH significativamente mais baixo e maior acidez total. As cascas das uvas e os vinhos do tratamento com desfolha apresentaram aumento significativo no teor de polifenóis totais. A desfolha também propiciou vinhos com maior intensidade de cor, antocianinas totais, extrato seco e açúcar redutor, e menor teor de nitrogênio. Nos vinhos, não foram observadas diferenças significativas entre os tratamentos para acidez total e volátil, pH, álcool, densidade, extrato seco reduzido e teor de potássio. Conclui-se que a prática da desfolha em vinhedos da região da Campanha melhora a qualidade dos vinhos.The practice of partial defoliation in vineyards has as main objectives increase sunlight and ventilation for the fruit, aiming to improve color and maturity in red grapes and helping to reduce fungal diseases, which should result in better wine quality. The main aim of this research was to evaluate the effects of partial defoliation on the quality of Cabernet Sauvignon grapes and wines from Dom

  12. Brix, pH and anthocyanin content determination in whole Port wine grape berries by hyperspectral imaging and neural networks

    DEFF Research Database (Denmark)

    Fernandes, Armando M.; Franco, Camilo; Mendes-Ferreira, Ana

    2015-01-01

    This work presents the results of measuring pH, sugars, and anthocyanin content of whole grape berries. The spectrum of each sample, composed of six whole grape berries, was collected using hyperspectral imaging in reflectance mode from 380 to 1028 nm. The spectra were converted to enological...... parameters by multilayer perceptrons created using 240 samples that were split for 7-fold cross-validation and test. The test set with 30 samples revealed R2 values of 0.73, 0.92 and 0.95 and RMSE of 0.18, 0.95 °Brix and 14 mg/l for pH, sugars and anthocyanin content, respectively. This is the only work, up...

  13. The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes.

    Science.gov (United States)

    Wang, X Q; Li, L M; Yang, P P; Gong, C L

    2014-02-01

    In plants, hexokinase (HXK, EC 2.7.1.1) involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. In this study, we found that at Phase I of grape berry development, lower hexose (glucose or fructose) levels were concomitant with higher HXK activities and protein levels. After the onset of ripening, we demonstrated a drastic reduction in HXK activity and protein levels accompanied by a rising hexose level. Therefore, our results revealed that HXK activity and protein levels had an inverse relationship with the endogenous glucose or fructose levels during grape berry development. A 51 kDa HXK protein band was detected throughout grape berry development. In addition, HXK located in the vacuoles, cytoplasm, nucleus, proplastid, chloroplast, and mitochondrion of the berry flesh cells. During grape berry development, HXK transcriptional level changed slightly, while cell wall invertase (CWINV) and sucrose synthase (SuSy) expression was enhanced after véraison stage. Intriguingly, when sliced grape berries were incubated in different glucose solutions, CWINV and SuSy expression was repressed by glucose, and the intensity of repression depended on glucose concentration and incubation time. After sliced, grape berries were treated with different glucose analogs, CWINV and SuSy expression analyses revealed that phosphorylation of hexoses by hexokinase was an essential component in the glucose-dependent CWINV and SuSy expression. In the meantime, mannoheptulose, a specific inhibitor of hexokinase, blocked the repression induced by glucose on CWINV and SuSy expression. It suggested that HXK played a major role in regulating CWINV and SuSy expression during grape berry development.

  14. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries.

    Science.gov (United States)

    Martínez-Lüscher, J; Torres, N; Hilbert, G; Richard, T; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Pascual, I; Gomès, E

    2014-06-01

    Grapevine cv. Tempranillo fruit-bearing cuttings were exposed to supplemental ultraviolet-B (UV-B) radiation under controlled conditions, in order to study its effect on grape traits, ripening, amino acids and flavonoid profile. The plants were exposed to two doses of UV-B biologically effective (5.98 and 9.66kJm(-2)d(-1)), applied either from fruit set to ripeness or from the onset of veraison to ripeness. A 0kJm(-2)d(-1) treatment was included as a control. UV-B did not significantly modify grape berry size, but increased the relative mass of berry skin. Time to reach ripeness was not affected by UV-B, which may explain the lack of changes in technological maturity. The concentration of must extractable anthocyanins, colour density and skin flavonols were enhanced by UV-B, especially in plants exposed from fruit set. The quantitative and qualitative profile of grape skin flavonols were modified by UV-B radiation. Monosubstituted flavonols relative abundance increased proportionally to the accumulated UV-B doses. Furthermore, trisubstituted forms, which where predominant in non-exposed berries, were less abundant as UV-B exposure increased. Although total free amino acid content remained unaffected by the treatments, the increased levels of gamma-aminobutyric acid (GABA), as well as the decrease in threonine, isoleucine, methionine, serine and glycine, revealed a potential influence of UV-B on the GABA-mediated signalling and amino acid metabolism. UV-B had an overall positive impact on grape berry composition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biochemical and proteomic analysis of grape berries (Vitis labruscana) during cold storage upon postharvest salicylic acid treatment.

    Science.gov (United States)

    Cai, Han; Yuan, Xiaozhuan; Pan, Jiaojiao; Li, Huan; Wu, Ziming; Wang, Yun

    2014-10-15

    Salicylic acid (SA) treatment has been widely used to maintain fruit quality during postharvest storage. To elucidate the molecular mechanism related to this treatment, the effect of SA treatment on fruit quality as well as protein expression profiles of grape berries (Vitis labruscana cv. Kyoho) during the subsequent cold storage was evaluated. As expected, SA treatment inhibited postharvest loss and chilling damage by reducing fruit softening and membrane damage and slowing weight loss. A gel-based proteomic approach was designed to screen for differentially expressed proteins in SA-treated and control grape berries. A total of 69 differentially accumulated proteins were successfully identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, which can be functionally classified into eight categories. Among these proteins, antioxidant enzymes including ascorbate peroxidase, oxidoreductase, and glutathione S-transferase were induced, and the abundances of several defense-related proteins, such as heat shock protein (HSP) and temperature-induced lipocalin, were up-regulated by SA treatment. In addition, proteins involved in carbohydrate catabolism and energy production were also induced by SA treatment. Interpretation of the data for differential accumulation of proteins revealed that the effect of SA on reducing postharvest losses and chilling damage of grape berries during cold storage may be due to activated defense responses and carbohydrate metabolism and higher levels of energy status.

  16. Application of sequential and orthogonalised-partial least squares (SO-PLS) regression to predict sensory properties of Cabernet Sauvignon wines from grape chemical composition.

    Science.gov (United States)

    Niimi, Jun; Tomic, Oliver; Næs, Tormod; Jeffery, David W; Bastian, Susan E P; Boss, Paul K

    2018-08-01

    The current study determined the applicability of sequential and orthogonalised-partial least squares (SO-PLS) regression to relate Cabernet Sauvignon grape chemical composition to the sensory perception of the corresponding wines. Grape samples (n = 25) were harvested at a similar maturity and vinified identically in 2013. Twelve measures using various (bio)chemical methods were made on grapes. Wines were evaluated using descriptive analysis with a trained panel (n = 10) for sensory profiling. Data was analysed globally using SO-PLS for the entire sensory profiles (SO-PLS2), as well as for single sensory attributes (SO-PLS1). SO-PLS1 models were superior in validated explained variances than SO-PLS2. SO-PLS provided a structured approach in the selection of predictor chemical data sets that best contributed to the correlation of important sensory attributes. This new approach presents great potential for application in other explorative metabolomics studies of food and beverages to address factors such as quality and regional influences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  18. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.)

    Science.gov (United States)

    Liu, Xu; Li, Jinlu; Tian, Yuping; Liao, Mingan; Zhang, Zhenwen

    2016-01-01

    Wine grapes are usually harvested in vineyards when they ripen. However, not all of the berries in a vineyard ripen homogeneously because of different microclimates around the clusters and berries. In this study, the influence of berry heterogeneity on the phenolic content and antioxidant capacity of grapes and wines under a continental monsoon climate was evaluated for a new wine grape cultivar Meili (Vitis vinifera L.). The total phenolic, flavonoid, flavanol, and monomeric anthocyanin contents in the skin and wine significantly increased with grape density; however, there was no significant difference in the seeds between the two lower densities. The highest values of DPPH free radical-scavenging activity, cupric-reducing antioxidant capacity, and hydroxyl radical-scavenging activity in the skin, seed and wine were detected for the densest berries. The sum of individual phenolic compounds in skin, seed and wine increased with berry density, though no significant difference for skin was observed between the two higher density classes. Hence, the chemical components of Meili grapes and wines were positively associated with the berry density at harvest under the continental monsoon climate. PMID:26974974

  19. PIST – IS THE NEWEST BLACK BERRY WINE GRAPE VARIETY WITH COLORED FLESH AND JUICE, FOR THE PRODUCTION GLOBAL BENEFIT RED WINES

    OpenAIRE

    Zamanidi P. C.; Troshin L. P.; Radchevskiy P. P.

    2014-01-01

    Newest technical black berry variety named Piste (“Faith” in Greek) with colored flesh and juice breeded at Athens Institute of Viticulture (Greece) by researchers Zamanidi P., L. Troshin and P. Radchevskii in 2007 by crossing the Greek varieties Afoos (Mavrodafni x Alicante Boucher) with Ukrainian variety Odessa black (Alicante Bouchet x Cabernet Sauvignon). Duration of production period is 146-155 days. Growth of shoots is strong (2,1-3,0 m). The percentage of productive shoots is more than...

  20. Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007).

    Science.gov (United States)

    Chira, Kleopatra; Schmauch, Gregory; Saucier, Cédric; Fabre, Sandy; Teissedre, Pierre-Louis

    2009-01-28

    Grape variety [Cabernet Sauvignon (CS) and Merlot (M)] effect on the proanthocyanidin composition and sensory perception of wine grapes from Bordeaux vineyards for two successive vintages (2006 and 2007) is reported. The flavan-3-ol monomers [(+)-catechin = C, (-)-epicatechin = EC, (-)-epicatechin-O-gallatte = ECG] and the proanthocyanidin oligomers [dimers B1, B2, B3, and B4 and trimer Cat-Cat-Epi (T)] in grape seed and skin tannin extracts were identified and quantified at harvest. Proanthocyanidin subunit compositions, percentage of galloylation (%G), and percentage of prodelphinidins (%P) as well as mean degree of polymerization (mDP) of the proanthocyanidin fraction were determined. Sensory analysis concerning the astringency and bitterness intensity of the proanthocyanidins of skin and seed tannin extracts was also performed. The results showed that proanthocyanidin composition can be greatly affected by grape variety. For both vintages between CS and M, significant differences were found on mDP (p astringency nor bitterness intensity perception for both skin and seed tannin extracts for the two successive vintages studied. A positive correlation was found between astringency intensity, mDP, and B3 content in skin tannin extracts.

  1. Produtividade e qualidade da uva 'Cabernet Sauvignon'produzida sob cobertura de plástico em cultivo orgânico Productivity and quality of grape 'Cabernet Sauvignon' produced in organic sistem under plastic covering

    Directory of Open Access Journals (Sweden)

    Alessandra Maria Detoni

    2007-01-01

    Full Text Available A uva 'Cabernet Sauvignon' (Vitis vinifera L. é utilizada na produção de vinhos finos, sendo muito cultivada no Sul do Brasil. Esta variedade é muito sensível à ocorrência de doenças, sendo necessário o desenvolvimento de práticas culturais para diminuir a incidência das mesmas. O objetivo deste trabalho foi avaliar a produtividade e a qualidade da uva 'Cabernet Sauvignon' cultivada sob cobertura de plástico em sistema de produção orgânico. O experimento foi realizado em um vinhedo localizado no município de Toledo, região oeste do Paraná, sendo as plantas conduzidas no sistema de espaldeira, com cobertura de plástico na linha de plantio. Foram determinados: teor de sólidos solúveis (SS, a acidez titulável (AT, pH, antocianinas totais, produtividade, número de cachos por planta e peso médio dos cachos. Não foram encontradas diferenças significativas no teor de SS (17,3 ºBrix, porém os frutos sob a cobertura plástica apresentaram maiores teores de AT e pH, 1,14 g 100 mL-1 de suco e 3,4, respectivamente, que aqueles colhidos de plantas sem cobertura de plástico, que apresentaram AT de 0,87 g 100 mL-1 de mosto e pH de 3,5. O maior teor de antocianinas totais foi verificado nas plantas fora da cobertura, com 22,8 mg L-1. Nas plantas protegidas, a produção foi maior (1769 g planta-1 do que nas plantas sem cobertura (492 g planta-1, que apresentaram elevado índice de doenças. Conclui-se, desta forma, que a cobertura de plástico viabiliza o cultivo da uva 'Cabernet Sauvignon' no sistema de produção orgânico, por proporcionar diminuição na incidência de doenças.The grape 'Cabernet Sauvignon' (Vitis vinifera L. it is used in fine wines production, being very cultivated in the South of Brazil. This variety is very sensitive of occurrence of diseases, being necessary the development of cultural practices to reduce the incidence of the same ones. The objective of this work was to evaluate the productivity and the

  2. Effects of different plastic sheet coverings on microclimate and berry ripening of table grape cv "Matilde"

    Directory of Open Access Journals (Sweden)

    Vittorino Novello

    2000-06-01

    Full Text Available Two types of plastic cover (LDPE + EVA and LDPE + HDPE were tested to assess their radiometric properties and the influence on the vegetative and reproductive performances of ‘Matilde’ table grape. Films showed the same transmittance to short infrared waves, but LDPE + EVA had a higher transmissivity to visible, PAR and short infrared wavelength ranges of solar radiation, especially as for the « direct » light component. In comparison to the open field, covering increased GDD accumulation and advanced budbreak by 12 days (LDPE + HDPE or 20 days (LDPE + EVA. Commercial ripening (14 °Brix was advanced by 8 and 22 days, respectively. Must acidity was higher in open field than under LDPE + EVA. Yield per vine increased under LDPE + EVA, although not at a significant level; bunch mass was higher under LDPE + EVA than in open field. Berry mass was maximum under LDPE + EVA and progressively decreased under LDPE + HDPE and in open field. Under covering, the pruning cane mass increased by 63% with LDPE + EVA and 43% with LDPE + HDPE.

  3. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal

    OpenAIRE

    Sun, Tianyu; Xu, Lili; Sun, Hong; Yue, Qianyu; Zhai, Heng; Yao, Yuxin

    2017-01-01

    In this work, four vacuolar H+-PPase (VHP) genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated...

  4. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition.

    Science.gov (United States)

    Schelezki, Olaf J; Smith, Paul A; Hranilovic, Ana; Bindon, Keren A; Jeffery, David W

    2018-04-01

    A changing climate has led to winegrapes being harvested with increased sugar levels and at greater risk of berry shrivel. A suggested easy-to-adopt strategy to manage the associated rising wine alcohol levels is the pre-fermentative substitution of juice with either "green harvest wine" or water. Our study investigates the effects of this approach on Vitis vinifera L. cv. Cabernet Sauvignon wine quality attributes. Wines were also made from fruit collected at consecutive earlier harvest time points to produce wines comparable in alcohol to the substituted wines. Tannin concentrations and colour did not change significantly in the wines with modified alcohol content even at higher juice substitution rates. Differences in polysaccharide and tannin composition indicated variability in extraction dynamics according to substitution rate and type of blending component. In scenarios where berry shrivel is inevitable, the incorporation of water in particular offers much promise as part of a strategy to manage wine alcohol content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems

    Directory of Open Access Journals (Sweden)

    MATHABATHA EVODIA SETATI

    2015-11-01

    Full Text Available Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as microbial terroir. The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6 than the conventional (H = 2.1 and integrated (H = 1.8 vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

  6. Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

    Science.gov (United States)

    Setati, Mathabatha E; Jacobson, Daniel; Bauer, Florian F

    2015-01-01

    Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

  7. Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation1

    Science.gov (United States)

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715

  8. Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype- and tissue-dependent manner.

    Science.gov (United States)

    Guan, Le; Wu, Benhong; Hilbert, Ghislaine; Li, Shaohua; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2017-08-01

    Amino acid composition of the grape berry at harvest is important for wine making. The present study investigates the complex interplay between tissue, cultivar and light conditions that determine berry amino acid content. Twenty amino acids were assessed in the berry skin and pulp of two grape cultivars (Gamay Noir and Gamay Fréaux), grown under either light exposure or cluster shading conditions. In all samples, cluster shading significantly reduced most amino acids, except gamma-aminobutyric acid (GABA) and phenylalanine. However, the magnitude of the decrease was stronger in the skin (67.0% decrease) than in the pulp (30.4%) and stronger in cv. Gamay Noir (69.7%) than in Gamay Fréaux (30.7%). Cluster shading also significantly modified amino acid composition by decreasing the proline content while increasing the GABA content. These results are of oenological interest for shaping the amino acid composition of the must and improving wine quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The table grape 'Victoria' with a long shaped berry: a potential mutation with attractive characteristics for consumers.

    Science.gov (United States)

    Ferrara, Giuseppe; Gallotta, Alessandra; Pacucci, Carmela; Matarrese, Angela Maria Stella; Mazzeo, Andrea; Giancaspro, Angelica; Gadaleta, Agata; Piazzolla, Francesca; Colelli, Giancarlo

    2017-12-01

    Puglia is the most important region in Italy for table grape production. Since consumers look for new products, the number of table grape varieties has greatly increased in recent years. In a survey in the Puglia region, we identified several years ago a potential mutation of the cv. Victoria. We described this accession in comparison with the standard Victoria for some amphelographic traits. All the characteristics were very similar to the standard Victoria except for the berry shape, which was significantly more elongated. Moreover, the berry of the mutated Victoria showed higher firmness, lightness and chroma than the standard one, with a more intense yellow colour of the skin (appreciated by consumers). The molecular characterisation with 25 SSR markers showed that normal and mutant Victoria were genetically identical at all the analysed loci, thus suggesting that the two accessions could be considered as clones with the difference in berry shape probably due to a somatic mutation. This mutation of the cv. Victoria may have interesting perspective for the market since consumers are always attracted by different shape and colour of the fruits (consumers buy with eyes). This accession can be an alternative clone of the already known standard Victoria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Experimental study of physical and rheological properties of grape juice using different temperatures and concentrations. Part I: Cabernet Sauvignon.

    Science.gov (United States)

    de Castilhos, Maurício Bonatto Machado; Betiol, Lilian Fachin Leonardo; de Carvalho, Gisandro Reis; Telis-Romero, Javier

    2017-10-01

    The effect of the temperature and concentration on rheological behavior of Cabernet Sauvignon juice concentrates was assessed using a rheometer over a wide range of temperature (1-66°C) and concentrations (13.6-45.0Brix) at shear rates of 0.84-212.1 1/s. The Ostwald-De Waele was the best rheological model fitted the data (R 2 =0.99957 and relative error=7.77%). The Cabernet Sauvignon juice concentrates presented a non-Newtonian pseudoplastic behavior (n<1). The consistency levels were significantly reduced with the increase of temperature and increased with the increase of the concentrations. The flow activation energy ranged from 28.87 (45.0Brix) to 38.05KJ/mol (37.0Brix) with a R 2 =0.9798 for both cases. Density and specific heat were influenced by both temperature and concentration; however, thermal conductivity was only influenced by concentration. The Cabernet Sauvignon juice concentrates will be useful as wine chaptalization agent in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines.

    Science.gov (United States)

    Deed, Rebecca C; Fedrizzi, Bruno; Gardner, Richard C

    2017-10-11

    Sauvignon blanc wine, balanced by herbaceous and tropical aromas, is fermented at low temperatures (10-15 °C). Anecdotal accounts from winemakers suggest that cold fermentations produce and retain more "fruity" aroma compounds; nonetheless, studies have not confirmed why low temperatures are optimal for Sauvignon blanc. Thirty-two aroma compounds were quantitated from two Marlborough Sauvignon blanc juices fermented at 12.5 and 25 °C, using Saccharomyces cerevisiae strains EC1118, L-1528, M2, and X5. Fourteen compounds were responsible for driving differences in aroma chemistry. The 12.5 °C-fermented wines had lower 3-mercaptohexan-1-ol (3MH) and higher alcohols but increased fruity acetate esters. However, a sensory panel did not find a significant difference between fruitiness in 75% of wine pairs based on fermentation temperature, in spite of chemical differences. For wine pairs with significant differences (25%), the 25 °C-fermented wines were fruitier than the 12.5 °C-fermented wines, with high fruitiness associated with 3MH. We propose that the benefits of low fermentation temperatures are not derived from increased fruitiness but a better balance between fruitiness and greenness. Even so, since 75% of wines showed no significant difference, higher fermentation temperatures could be utilized without detriment, lowering costs for the wine industry.

  12. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries.

    Science.gov (United States)

    Guan, Le; Dai, Zhanwu; Wu, Ben-Hong; Wu, Jing; Merlin, Isabelle; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Edwards, Everard; Li, Shao-Hua; Delrot, Serge

    2016-01-01

    Light exclusion reduces the concentration and modifies the composition of grape anthocyanins, by altering the expression of genes involved in anthocyanin biosynthesis and transport, in a cultivar- and tissue-specific manner. Unlike most grapes, teinturier grapes accumulate anthocyanins both in skin and flesh. However, the concentration and composition of anthocyanins in both tissues differ, providing a valuable system to study tissue-specific regulation of anthocyanin synthesis. Furthermore, little is known about the mechanisms controlling the sensitivity of anthocyanin accumulation to light. Here, light was excluded from Gamay (white-fleshed) and Gamay Fréaux (teinturier mutant) berries throughout berry development. Under light-exposed conditions, the skin of Gamay Fréaux accumulated the highest level of anthocyanins, followed by the skin of Gamay, while the pulp of Gamay Fréaux had much lower anthocyanins than the skins. Network analysis revealed the same order on the number of significant correlations among metabolites and transcripts in the three colored tissues, indicating a higher connectivity that reflects a higher efficiency of the anthocyanin pathway. Compared to light conditions, light exclusion reduced the total amount of anthocyanins, most severely in the skin of Gamay and to a lesser extent in the flesh and skin of Gamay Fréaux. Coordinated decrease in the transcript abundance of structural, regulatory and transporter genes by light exclusion correlated with the reduced anthocyanin concentration in a cultivar- and tissue-specific manner. Moreover, light exclusion increased the ratio of dihydroxylated to trihydroxylated anthocyanins, in parallel with F3'H and F3'5'H transcript amounts. Sugars and ABA only play a limited role in the control of anthocyanin synthesis in the berries, in contrast with what has been described in cell suspensions. This study provides novel insights into the regulation of anthocyanin in wild type and teinturier cultivars.

  13. Reduced-risk insecticides for control of grape berry moth (Lepidoptera: Tortricidae) and conservation of natural enemies.

    Science.gov (United States)

    Jenkins, Paul E; Isaacs, Rufus

    2007-06-01

    A 3-yr field study was conducted at commercial grape (Vitis spp.) farms to evaluate insect management programs for control of the grape berry moth, Paralobesia viteana Clemens (Lepidoptera: Tortricidae) and conservation of natural enemies. At each farm, one vineyard received only reduced-risk insecticides for control of second and third generation P. viteana, whereas the comparison vineyard received conventional insecticides. Both vineyards received a conventional insecticide application for control of first generation P. viteana and other insect pests. Monitoring with pheromone traps showed no differences between programs in the total number of adult male moths trapped in vineyards, and oviposition by P. viteana was similar between the two programs in all 3 yr. During weekly samples of crop infestation, both programs had a similar percentage of clusters infested by P. viteana larvae. Berries infested by P. viteana were collected from vineyard borders during the second and third P. viteana generations and held under controlled conditions. In eight of the nine berry samples, survival of larvae was significantly lower in berries collected from vineyards managed under the reduced-risk insecticide program compared with the conventional program. Parasitism of P. citeana larvae in these samples was not consistently different between the two insecticide programs over 3 yr, and similar captures of natural enemies were found on yellow sticky traps in the two programs throughout the study. Our results indicate that integrated pest management programs incorporating reduced-risk insecticides for control of P. viteana can obtain similar or greater control of P. viteana compared with programs based solely on conventional insecticides, but they may not lead to measurable long-term increases in parasitism of P. viteana.

  14. Influence of Grape Berry Maturity on Juice and Base Wine Composition and Foaming Properties of Sparkling Wines from the Champagne Region.

    Science.gov (United States)

    Liu, Pin-He; Vrigneau, Céline; Salmon, Thomas; Hoang, Duc An; Boulet, Jean-Claude; Jégou, Sandrine; Marchal, Richard

    2018-06-06

    In sparkling wine cool-climate regions like Champagne, it is sometimes necessary to pick the healthy grape clusters that have a relatively low maturity level to avoid the deleterious effects of Botrytis cinerea . In such conditions, we know that classical oenological parameters (sugars, pH, total acidity) may change but there is little information concerning the impact of grape berry maturity on wine proteins and foaming properties. Therefore, healthy grapes (Chardonnay and Pinot meunier) in 2015 and 2016 were picked at different maturity levels within the range of common industrial maturity for potential alcohol content 8⁻11% v/v in the Champagne region. Base wine protein content and foamability, and oenological parameters in grape juice and their corresponding base wines, were investigated. The results showed that base wine protein contents (analyzed by the Bradford method and by electrophoresis) and foamability were higher when the grapes were riper. The Pearson’s correlation test found significant positive correlations ( r = 0.890⁻0.997, p < 0.05) between Chardonnay grape berry maturity degree (MD) and base wine foamability in both vintages. Strong correlations between MD and most of the oenological parameters in grape juice and base wine were also found for the two cultivars. Under the premise of guaranteed grape health, delaying harvest date is an oenological decision capable of improving base wine protein content and foamability.

  15. Selection of 80 newly isolated autochthonous yeast strains from the Tikveš region of Macedonia and their impact on the quality of red wines produced from Vranec and Cabernet Sauvignon grape varieties.

    Science.gov (United States)

    Ilieva, Fidanka; Kostadinović Veličkovska, Sanja; Dimovska, Violeta; Mirhosseini, Hamed; Spasov, Hristo

    2017-02-01

    The main objectives of this study were to (i) isolate newly autochthonous yeast strains from the Tikveš region of Macedonia and (ii) test their impact on the quality of red wines from Vranec and Cabernet Sauvignon grape varieties. The newly isolated yeast strains were obtained by spontaneous fermentation of grape must from Vranec and Cabernet Sauvignon varieties collected from ten different micro-regions in Macedonia. The grapevines from both varieties grown in "Barovo" micro-region were the richest sources of yeast strains. In addition, the molecular identification and typing of strains were also carried out. The monomeric anthocyanins, polyphenolic content and other oenochemical characteristics of the wines were also compared with the wines from commercial yeast strain "SiHa". The Vranec wine from yeast strain F-8 and Cabernet Sauvignon wine from yeast strain F-20 had significantly (p<0.05) higher concentrations of monomeric anthocyanins and total phenolic compounds than other wines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Composição físico-química de uvas para vinho fino em ciclos de verão e inverno Physico-chemical composition of wine grapes berries in summer and winter growing seasons

    Directory of Open Access Journals (Sweden)

    Renata Vieira da Mota

    2010-12-01

    Full Text Available Este trabalho teve como objetivo avaliar o potencial de maturação das cultivares Pinot Noir, Tempranillo, Merlot, Cabernet Sauvignon, Syrah, Chardonnay e Sauvignon Blanc submetidas ao regime de dupla poda, em Cordislândia, região cafeeira do sul de Minas Gerais. As plantas foram submetidas a dois ciclos de produção, um de primavera-verão, compreendido entre agosto e janeiro, e outro ciclo de outono-inverno, entre janeiro e julho. Como parâmetros de qualidade, foram avaliados os diâmetros transversal e longitudinal da baga, acidez, ácidos tartárico e málico, pH, sólidos solúveis, antocianinas, fenólicos totais e os teores de glicose, frutose e sacarose. Todas as variedades apresentaram maiores teores de pH, sólidos solúveis, açúcares, antocianinas e fenólicos totais, e redução nos diâmetros transversal e longitudinal na safra de inverno. A cultivar Syrah destacou-se das demais no conteúdo de antocianinas e fenólicos totais tanto no verão quanto no inverno, entretanto apresentou o menor conteúdo de açúcares. A alteração do ciclo de produção da videira através da técnica da dupla poda para colheita, no período de inverno, na região cafeeira de Minas Gerais, favorece a maturação dos frutos e melhora consideravelmente a qualidade das uvas para vinificação.This work aimed to evaluate some ripening parameters of cultivars Pinot Noir, Tempranillo, Merlot, Cabernet Sauvignon, Syrah, Chardonnay and Sauvignon Blanc submitted to the double-pruning management in Cordislândia, in the coffee region of the south of Minas Gerais State. Grapevines were cultivated in two different growing seasons, spring-summer from August to January and autumn-winter from January to July. Quality parameters such as berry transversal and longitudinal diameters, acidity, tartaric and malic acids, pH, soluble solids, anthocyanins, phenolic compounds, glucose, fructose and sucrose were evaluated. All cultivars showed higher pH, soluble solids

  17. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-06-01

    Full Text Available Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other

  18. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism.

    Science.gov (United States)

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed

  19. Effect of rain-shelter cultivation of Vitis vinifera cv. Cabernet Gernischet on the phenolic profile of berry skins and the incidence of grape diseases.

    Science.gov (United States)

    Meng, Jiang-Fei; Ning, Peng-Fei; Xu, Teng-Fei; Zhang, Zhen-Wen

    2012-12-27

    Rain-shelter cultivation is an effective cultural method to prevent rainfall damage during grape harvest and widely applied in the Chinese rainy regions. In this study we investigated the effect of rain-shelter cultivation on grape diseases and phenolic composition in the skins of Vitis vinifera cv. Cabernet Gernischet grape berries through the comparison with open-field cultivation at two vintages (2010 and 2011). The results showed that rain-shelter cultivation reduced the incidence of grape diseases significantly and delayed the maturation of Cabernet Gernischet fruits. With regards to most of the phenolic compounds identified in this study, their content in grape samples under rain-shelter cultivation was decreased compared to those under open-field cultivation. However, rain-shelter cultivation stimulated the accumulation of dihydroquercetin-3-O-rhamnoside in grape skins during grape maturation. These were related with micrometeorological alterations in vineyards by using plastic covering under rain-shelter cultivation. It suggests the rain-shelter cultivation makes possible the cultivation of "Cabernet Gernischet" grapes in an organic production system, for providing a decrease in the incidence of diseases and the dependence on chemical pesticides in the grape and wine industry.

  20. Effect of Rain-Shelter Cultivation of Vitis vinifera cv. Cabernet Gernischet on the Phenolic Profile of Berry Skins and the Incidence of Grape Diseases

    Directory of Open Access Journals (Sweden)

    Teng-Fei Xu

    2012-12-01

    Full Text Available Rain-shelter cultivation is an effective cultural method to prevent rainfall damage during grape harvest and widely applied in the Chinese rainy regions. In this study we investigated the effect of rain-shelter cultivation on grape diseases and phenolic composition in the skins of Vitis vinifera cv. Cabernet Gernischet grape berries through the comparison with open-field cultivation at two vintages (2010 and 2011. The results showed that rain-shelter cultivation reduced the incidence of grape diseases significantly and delayed the maturation of Cabernet Gernischet fruits. With regards to most of the phenolic compounds identified in this study, their content in grape samples under rain-shelter cultivation was decreased compared to those under open-field cultivation. However, rain-shelter cultivation stimulated the accumulation of dihydroquercetin-3-O-rhamnoside in grape skins during grape maturation. These were related with micrometeorological alterations in vineyards by using plastic covering under rain-shelter cultivation. It suggests the rain-shelter cultivation makes possible the cultivation of “Cabernet Gernischet” grapes in an organic production system, for providing a decrease in the incidence of diseases and the dependence on chemical pesticides in the grape and wine industry.

  1. Influence of freezing skin grapes to extract phenolic compounds during red wine maceration

    Directory of Open Access Journals (Sweden)

    Alegria M.

    2014-01-01

    Full Text Available Wine quality depends on phenolic and aromatic compounds that are mainly located in skins and seeds of grapes and can be better extracted if suitable extraction technologies are applied. An increase in extractability has impact in the mouth feel, color and age ability of the wines. Using liquid or solid CO2 is a way to promote the breakdown of the cells membranes and enhance extraction of these compounds and protecting grapes and wine from oxidation. The main goal was to test the impact of solid CO2 addition to destemmed grapes with a new CO2 dispenser equipment in order to freeze the berry skins and improve the phenolic extraction in an economic and sustainable way in cv. Cabernet Sauvignon and Pinot Noir. The experiment designed for both cultivars was a treatment with CO2 addition and a control without CO2 addition each one with three replicates. Destemmed grapes submitted to carbonic snow reached temperature of the skins between − 1 and − 4 °C during four minutes under equipment treatment. The consumption of carbon dioxide was estimated around 0.3(kg ⋅kg−1CO2 per berries. Wines of Cabernet Sauvignon and Pinot noir from fresh grapes and frozen grapes were made and were being compared in phenolic composition and sensory attributes.

  2. PLASTICITY OF THE BERRY RIPENING PROGRAM IN A WHITE GRAPE VARIETY

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    2016-07-01

    Full Text Available Grapevine (Vitis vinifera L is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices, defined as terroir, which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture and composition. These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation

  3. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal.

    Science.gov (United States)

    Sun, Tianyu; Xu, Lili; Sun, Hong; Yue, Qianyu; Zhai, Heng; Yao, Yuxin

    2017-01-01

    In this work, four vacuolar H + -PPase ( VHP ) genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2- induced sugar signaling.

  4. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal

    Directory of Open Access Journals (Sweden)

    Tianyu Sun

    2017-10-01

    Full Text Available In this work, four vacuolar H+-PPase (VHP genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2-induced sugar signaling.

  5. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

    Science.gov (United States)

    Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara

    2016-06-01

    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For

  6. Different Anthocyanin Profiles of the Skin and the Pulp of Yan73 (Muscat Hamburg × Alicante Bouschet Grape Berries

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2010-03-01

    Full Text Available Yan73 is a “teinturier” red wine variety cultivated in China and used in winemaking to strengthen red wine color. Here, the anthocyanin profile in both the skin and pulp of this grape variety was analyzed by HPLC-MS. The results showed that 18 anthocyanins were detected in both the skin and the pulp, and pelargonidin-3-O-glucoside, an anthocyanin compound hardly detected in most other Vitis viniferaberries, was found. However, the contents of individual anthocyanins in the skin and the pulp were significantly different. Compared with the skin, the pulp exhibited much lower ratio of 3’,5’-substituted to 3’-substituted anthocyanins and much higher ratio of methoxylation of anthocyanin B-ring to non methoxylation, and with regard to the aromatic acylated and aliphatic acylated anthocyanins, both their contents in the skin are higher than in the pulp. The findings will provide some new insight for the tissue-specific expression and regulation of the genes involving in anthocyanin biosynthesis in grape berries.

  7. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas.

    Science.gov (United States)

    Son, Hong-Seok; Kim, Ki Myong; van den Berg, Frans; Hwang, Geum-Sook; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick

    2008-09-10

    (1)H NMR spectroscopy was used to investigate the metabolic differences in wines produced from different grape varieties and different regions. A significant separation among wines from Campbell Early, Cabernet Sauvignon, and Shiraz grapes was observed using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The metabolites contributing to the separation were assigned to be 2,3-butanediol, lactate, acetate, proline, succinate, malate, glycerol, tartarate, glucose, and phenolic compounds by PCA and PLS-DA loading plots. Wines produced from Cabernet Sauvignon grapes harvested in the continental areas of Australia, France, and California were also separated. PLS-DA loading plots revealed that the level of proline in Californian Cabernet Sauvignon wines was higher than that in Australian and French Cabernet Sauvignon, Australian Shiraz, and Korean Campbell Early wines, showing that the chemical composition of the grape berries varies with the variety and growing area. This study highlights the applicability of NMR-based metabolomics with multivariate statistical data sets in determining wine quality and product origin.

  8. The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids.

    Science.gov (United States)

    Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna; Terrier, Nancy; Doco, Thierry; Ros-García, José María

    2017-09-01

    Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability. This study explores the skin cell wall composition of grapes from plants resulting from intraspecific crosses of Vitis vinifera cultivars Monastrell × Cabernet Sauvignon. Moreover, the morphology of the cell wall material (CWM) from some representative samples was visualized by transmission optical microscopy. The total sugar content of CWM from nine out of ten genotypes of the progeny was lower than that from Monastrell. Seven out of ten genotypes showed lower phenolic content than Cabernet Sauvignon. The CWM from nine out of ten hybrids presented lower protein content than that from Monastrell. This study confirms that skin cell walls from Monastrell × Cabernet Sauvignon hybrid grapes presented major differences in composition compared with their parents. These data could help in the development of new cultivars adapted to the dry conditions of SE Spain and with a cell wall composition favouring extractability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Impact of reduced atmospheric CO2 and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries (Vitis vinifera L.).

    Science.gov (United States)

    Coetzee, Zelmari A; Walker, Rob R; Deloire, Alain J; Barril, Célia; Clarke, Simon J; Rogiers, Suzy Y

    2017-11-01

    To assess the robustness of the apparent sugar-potassium relationship during ripening of grape berries, a controlled-environment study was conducted on Shiraz vines involving ambient and reduced (by 34%) atmospheric CO 2 concentrations, and standard and increased (by 67%) soil potassium applications from prior to the onset of ripening. The leaf net photoassimilation rate was decreased by 35% in the reduced CO 2 treatment. The reduction in CO 2 delayed the onset of ripening, but at harvest the sugar content of the berry pericarp was similar to that of plants grown in ambient conditions. The potassium content of the berry pericarp in the reduced CO 2 treatment was however higher than for the ambient CO 2 . Berry potassium, sugar and water content were strongly correlated, regardless of treatments, alluding to a ternary link during ripening. Root starch content was lower under reduced CO 2 conditions, and therefore likely acted as a source of carbohydrates during berry ripening. Root carbohydrate reserve replenishment could also have been moderated under reduced CO 2 at the expense of berry ripening. Given that root potassium concentration was less in the vines grown in the low CO 2 atmosphere, these results point toward whole-plant fine-tuning of carbohydrate and potassium partitioning aimed at optimising fruit ripening. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Modifications of 'Gold Finger' Grape Berry Quality as Affected by the Different Rootstocks.

    Science.gov (United States)

    Jin, Zhongxin; Sun, Hong; Sun, Tianyu; Wang, Qingjie; Yao, Yuxin

    2016-06-01

    Berry qualities of the grafted 'Gold Finger' grapevines were determined to evaluate the impacts of the resistant rootstocks on fruit quality. Compared to the own-rooted vines, berry and cluster weights and skin color were altered by the rootstocks to varying extents. The rootstock of 101-14M maintained TSS/TA and the contents of fructose, glucose, and sucrose, and SO4 decreased these parameters. 101-14M and 3309C increased and reduced the resveratrol content, respectively. SO4, 5BB, and 3309C decreased the total free amino acid content, along with the changes in amino acid composition. The amounts of aroma components were widely altered by the rootstocks. Additionally, a digital gene expression tag profiling revealed that the biological processes were largely altered by 3309C and 101-14M, including sugar, amino acid, and aroma metabolisms. In summary, the rootstock of 101-14M generally maintained berry quality, and SO4, 5BB, and 3309C imparted varying influences on different quality parameters.

  11. Cu, Zn and Mn uptake and redistribution in Cabernet Sauvignon grapes and wine: effect of soil metal content and plant vigor

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, María Paz

    2015-04-01

    This study investigated the influence of leaf thinning on micronutrient (Cu, Zn and Mn) uptake and distribution in grape tissues, in a 16 year-old Cabernet Sauvignon vineyard. The analysis was carried out in two plots with differences in vigor (P1- high and P2-low) grown in calcareous soils. Vigour was analysed by the NDVI values. In each plot, two treatments (with and without leaf thinning after bloom) were applied. Total and the CaCl2-DTPA extractable fraction of these micronutrients were evaluated. Nutrient concentration in petiole were evaluated from veraison to harvest as well as the concentration of those elements in seeds and skins at ripening and in wines elaborated with grapes grown in each plot and treatment in 2013. Their relationships were evaluated. The soil extractable fraction did not give a good correlation with petiole concentrations. However, Mn in petiole was strongly correlated with soil total Mn. Cu and Zn had higher concentration at veraison than at harvest, while for Mn it was the opposite. Cu concentration in petiole and seeds was greater in the most vigorous plots, but there were not clear differences between treatments. Cu in seeds and skins correlated significantly but there was not correlation with Cu in petiole. Zn concentration in skins was quite similar in both plots, but with higher values in vines without leaf thinning. Zn concentrations in skins were correlated with Zn in petiole but no significant correlation was found with Zn in seeds. Higher concentrations were found in the no thinning treatment in skins. For Mn, petiole concentrations were greater in the high vigorous plot and in the leaf thinning treatment. However, petiole Zn concentrations were greater in the less vigorous plot and without clear effect of leaf thinning. Mn concentration in skins was greater in the less vigorous vines in both treatments and it was inversely correlated with Mn in seeds, but there were no significant correlation between them and Mn in petiole

  12. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines.

    Science.gov (United States)

    Bobeica, Natalia; Poni, Stefano; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2015-01-01

    Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3% as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1%. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9%) than under carbon sufficiency (48%). Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary metabolites.

  13. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines

    Directory of Open Access Journals (Sweden)

    Natalia eBobeica

    2015-05-01

    Full Text Available Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3 % as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1 %. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9% than under carbon sufficiency (48%. Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary

  14. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome.

    Science.gov (United States)

    Anesi, Andrea; Stocchero, Matteo; Dal Santo, Silvia; Commisso, Mauro; Zenoni, Sara; Ceoldo, Stefania; Tornielli, Giovanni Battista; Siebert, Tracey E; Herderich, Markus; Pezzotti, Mario; Guzzo, Flavia

    2015-08-07

    The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.

  15. GLUCOSE-FRUCTOSE INDEX IN THE GRAPES

    Directory of Open Access Journals (Sweden)

    N. V. Gnilomedova

    2016-01-01

    Full Text Available Results summarize literature and experimental data on the content of glucose and fructose of different varieties in grapes belonging to different botanical species of Vitis. The ratio of glucose and fructose indicator can be used for fermentation control and prevention of under fermentation in the production of dry wines, as well as an identification parameter to assess the authenticity of grape juice and concentratedmust. The object of the study were grapes of red and white winemaking European and autochthonous varieties, belonging to Vitis, as well as varieties of new selection (Aligote, Albilio, Verdelho, Sersial, Rkatsiteli, White Muscat, Cabernet-Sauvignon, Bastardo of Magarach, Kephesiya, Ekim kara, Golubok. Sugar content in grape samples was inthe range of 180-260 g/l. Total hexoses were determined by HPLC method according to a modified methodology developed by the Department of Chemistry and Biochemistry of Wine of "FSBSI "Magarach ". It was established that the value range of the glucose-fructose index in the grapes cultivated in different viniviticultural regions of the world makes 0.74-1.19. It has been revealed that the glucose-fructose index decreases with the ripening of berries. Low index values are characteristic for the grape that ripens at high temperatures and was cultivated in regions with hot climate. High index valuesare characteristic of table grapes and winemaking grape varieties of the species Vitis labrusca, Vitis amurensis and interspecific hybrids. Within the botanical species we canidentify varieties that tend to accumulate higher volumes of either glucose or fructose. These patterns are equally characteristic of white and red grape varieties. The analytical analyzes of the Crimean winemaking grape varieties resulted in the establishment of the glucose-fructose index for the first time, varying within the range of 0.9-1.06.

  16. Acute and reproductive effects of Align, an insecticide containing azadirachtin, on the grape berry moth, Lobesia botrana.

    Science.gov (United States)

    Irigaray, F Javier Sáenz-De-Cabezón; Moreno-Grijalba, Fernando; Marco, Vicente; Pérez-Moreno, Ignacio

    2010-01-01

    Azadirachtin, derived from the neem tree, Azadirachta indica A. Juss (Sapindales: Meliaceae), seems promising for use in integrated pest management programs to control a variety of pest species. A commercial formulation of azadirachtin, Align, has been evaluated against different developmental stages of the European grape berry moth, Lobesia botrana Denis and Schiffermüller (Lepidoptera: Tortricidae). When administered orally, Align reduced the fecundity and fertility of adults treated with 1, 5, and 10 mg litre(-1). At the highest doses, fecundity and fertility were zero, but longevity was not affected. An LC(50) of 231.5 mg litre(-1) was obtained when Align was sprayed on eggs less than 1 day old. Hatching of all egg classes was significantly reduced, and this reduction was more pronounced for eggs less than 24 h old. LC(50) values of 2.1 mg litre(-1) for first instars and 18.7 mg litre(-1) for third instars were obtained when Align was present in the diet. Larvae reared on a diet containing different concentrations of Align did not molt into adults at the highest concentrations (0.3, 0.6, 1.2), and 50% molted at the lowest concentration (0.15). Phenotypic effects included inability to molt properly and deformities. The combination of acute toxicity and low, effective concentrations of Align observed in this study could lead to the inclusion of insecticides containing azadirachtin in integrated management programs against this pest.

  17. Acute and Reproductive Effects of Align®, an Insecticide Containing Azadirachtin, on the Grape Berry Moth, Lobesia botrana

    Science.gov (United States)

    Irigaray, F. Javier Sáenz-De-Cabezón; Moreno-Grijalba, Fernando; Marco, Vicente; Pérez-Moreno, Ignacio

    2010-01-01

    Azadirachtin, derived from the neem tree, Azadirachta indica A. Juss (Sapindales: Meliaceae), seems promising for use in integrated pest management programs to control a variety of pest species. A commercial formulation of azadirachtin, Align®, has been evaluated against different developmental stages of the European grape berry moth, Lobesia botrana Denis and Schiffermüller (Lepidoptera: Tortricidae). When administered orally, Align reduced the fecundity and fertility of adults treated with 1, 5, and 10 mg litre-1. At the highest doses, fecundity and fertility were zero, but longevity was not affected. An LC50 of 231.5 mg litre-1 was obtained when Align was sprayed on eggs less than 1 day old. Hatching of all egg classes was significantly reduced, and this reduction was more pronounced for eggs less than 24 h old. LC50 values of 2.1 mg litre-1 for first instars and 18.7 mg litre-1 for third instars were obtained when Align was present in the diet. Larvae reared on a diet containing different concentrations of Align did not molt into adults at the highest concentrations (0.3, 0.6, 1.2), and 50% molted at the lowest concentration (0.15). Phenotypic effects included inability to molt properly and deformities. The combination of acute toxicity and low, effective concentrations of Align observed in this study could lead to the inclusion of insecticides containing azadirachtin in integrated management programs against this pest. PMID:20578954

  18. A Standard Addition Method to Assay the Concentration of Biologically Interesting Polyphenols in Grape Berries by Reversed-Phase HPLC

    Directory of Open Access Journals (Sweden)

    Serkos A. Haroutounian

    2007-09-01

    Full Text Available A reversed-phase HPLC method which allows the simultaneous assay of (+- catechin, (–-epicatechin, trans-resveratrol, quercetin and quercetin glycosides in grape berries is described. Kromasil 100 served as stationary phase and a gradient of acetic acid, water and methanol was used. The analytical run requires 42 min for complete sample elution. Satisfactory peak resolution was achieved following a novel extraction process and direct injection of a 20 μL sample. The method was used for the analyses of eighteen samples. Linearities were in the range of 0.98 to 0.999 regression coefficient, for all phenolics, while detection limits ranged from 30 μg mL–1 for trans-resveratrol to 1.5 mg mL–1 for (+-catechin. Recoveries ranged from 95.1 to 98.7% while the method provided good precision, with standard deviations between 3.5 and 6.1%, n=5.

  19. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.

    Science.gov (United States)

    May, Bianca; Lange, B Markus; Wüst, Matthias

    2013-11-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions.

    Science.gov (United States)

    de Rosas, Inés; Ponce, María Teresa; Malovini, Emiliano; Deis, Leonor; Cavagnaro, Bruno; Cavagnaro, Pablo

    2017-05-01

    Malbec and Bonarda are the two most widely cultivated grape varieties in Argentina, and their derived red wines are recognized worldwide, being their intense color a major quality trait. The temperature during fruit ripening conditions berries color intensity. In the main viticulture region of Malbec and Bonarda a 2-3°C increase in temperature has been predicted for the upcoming years as consequence of the global climate change. In the present study, this predicted temperature raise was simulated under field-crop conditions, and its effect on anthocyanin pigmentation in berries of Malbec and Bonarda was monitored by HPLC analysis throughout the ripening process, in two growing seasons. Additionally, expression levels of regulatory (MYBA1 and MYB4) and structural (UFGT and Vv3AT) anthocyanin genes were monitored in Malbec berry skins. Although cultivar-dependent time-course variation was observed for total anthocyanin content, in general, the berries of both cultivars grown under high temperature (HT) conditions had significantly lower total anthocyanins (∼28-41% reduction), and a higher proportion of acylated anthocyanins, than their respective controls. Expression of MYBA1 and UFGT, but not MYB4, was correlated with anthocyanin pigmentation at half ripening and harvest, whereas overexpression of the acyltransferase gene Vv3AT was associated with higher anthocyanin acylation in HT berries. These results suggest that color development and pigment modifications in Malbec berries under HT are regulated at transcriptional level by MYBA1, UFGT, and Vv3AT genes. These data contribute to the general understanding on the effect of high temperatures on anthocyanin biochemistry and genetic regulation, and may have direct implications in the production of high-quality wines from Malbec and Bonarda. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The effects of bud load and regulated deficit irrigation on sugar, organic acid, phenolic compounds and antioxidant activity of Razakı table grape berries

    Directory of Open Access Journals (Sweden)

    Tangolar Semih

    2015-01-01

    Full Text Available This study aims at assessing the effects of increased bud load and irrigation applications on berry quality of the Razakı table grape. Two Regulated Deficit Irrigation (RDI having different irrigation levels (RDI-I and RDI-II based on the growth stages, in addition to a non-irrigated control treatment together with two different bud load practices (K-normal and 2K-two-fold buds of the normal were examined for their effects on quality attributes such as sugar and organic acids contents, phenolic compounds as well as antioxidant capacity of the berries. The non-irrigated vines had highest sugar level (198.86 g/kg in the first year (2013 of the experiment whilst the sugar content of the berries was increased with irrigation (RDI-II in 2014. However the highest organic acid (7.10 g/kg was recorded from the RDI-II treatment in 2013 whereas those of from non-irrigated vines were highest (7.81 g/kg in 2014. Considering the sugar and organic acid content of the berries, bud load effects were not significant. The total phenolic acids were higher under non-irrigated and 2K bud load conditions. Antioxidant activity of berries was increased with RDI-I irrigation and 2K practices in the first year (2013 although no significant effect was recorded in the second year of the experiment. In all applications, glucose among the sugars, tartaric acid among the organic acids, catechin and epicatechin among the phenolic compounds were detected to be higher compared to other components in berries.

  2. Effect of different irrigation strategies on vine physiology, yield, grape composition and sensory profiles of Vitis vinifera L. Cabernet-Sauvignon in a cool climate area

    Directory of Open Access Journals (Sweden)

    Gabriel Balint

    2014-12-01

    Significance and impact of the study: To the best of our knowledge, this is the first evaluation of PRD and RDI on Cabernet-Sauvignon in a cool humid climate. It suggests that although RDI strategies are more effective, PRD also has value, particularly in dry seasons.

  3. Nitrogen fertilization of Cabernet Sauvignon grapevines: yield, total nitrogen content in the leaves and must composition

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    2015-08-01

    Full Text Available Grapevines grown on sandy soils are subjected to the application of supplemental nitrogen (N; however, there is little information available regarding the impact of these applications on yield, plant nutritional state and must composition. The aim of this study was to evaluate the yield, nutritional state and must composition of grapevines subjected to N fertilization. Cabernet Sauvignon grapevines were subjected to annual applications of 0, 10, 15, 20, 40, 80 and 120 kg N ha-1 in 2008, 2009 and 2010. During the 2008/09, 2009/10 and 2010/11 harvest seasons, leaves were collected during full flowering and when the berries changed color, and the total N content was analyzed. The grape yield and the enological characteristics of the must were evaluated. The response to applied N was low, and the highest Cabernet Sauvignon grape yield was obtained in response to an application of 20 kg N ha-1 year-1. The application of N increased the nutrient content in the leaf collected at full flowering, but it had little effect on the total nutrient content in the must, and it did not affect the enological characteristics of the must, such as soluble solids, pH, total acidity, malic acid and tartaric acid.

  4. Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine.

    Science.gov (United States)

    Dai, Ru; Ge, Hui; Howard, Susanne; Qiu, Wenping

    2012-12-01

    Stilbenic compounds are natural phytoalexins that have antimicrobial activities in plant defense against pathogens. Stilbene synthase (STS) is the key enzyme that catalyzes the biosynthesis of stilbenic compounds. Grapevine genome contains a family of preliminarily annotated 35 STS genes, the regulation of each STS gene needs to be studied to define their roles. In this study, we selected eight STS genes, STS8, STS27/31, STS16/22, STS13/17/23, and applied quantitative polymerase chain reaction (qPCR) to characterize their transcriptional expression profiles in leaf tissues upon infection by the powdery mildew fungus (PM), Erysiphe necator (Schw.) Burr. Their transcripts were also compared in young and old leaves as well as in the berry skin at five developmental stages in Vitis vinifera 'Cabernet Sauvignon' and Vitis aestivalis 'Norton'. The results showed that transcripts of selected STS genes increased significantly in Cabernet Sauvignon leaves at 24 and 48 h post inoculation with PM spores and remained unchanged in Norton leaves in response to the PM infection. Transcripts of STS8, STS27/31 and STS13/17/23 were more abundant in the old leaves of Norton than in Cabernet Sauvignon. STS genes showed lower expression levels in young leaves than in old leaves. Transcript levels of the eight STS genes increased drastically in the berry skin of Cabernet Sauvignon and Norton post véraison. In addition, the content of trans-resveratrol in the berry skin rapidly increased post véraison and reached the highest level at harvest. These assays demonstrated that individual STS genes are regulated differentially in response to PM infection and during development in the two grape varieties. The present study yields basic knowledge for further investigation of the regulation and function of each STS gene in grapevine and provides experimental evidences for the functional annotation of the STS gene family in the grapevine genome. Copyright © 2012 Elsevier Ireland Ltd. All

  5. Soil types effect on grape and wine composition in Helan Mountain area of Ningxia.

    Directory of Open Access Journals (Sweden)

    Rui Wang

    Full Text Available Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types--aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine.

  6. Soil types effect on grape and wine composition in Helan Mountain area of Ningxia.

    Science.gov (United States)

    Wang, Rui; Sun, Quan; Chang, Qingrui

    2015-01-01

    Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types--aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine.

  7. Soil Types Effect on Grape and Wine Composition in Helan Mountain Area of Ningxia

    Science.gov (United States)

    Wang, Rui; Sun, Quan; Chang, Qingrui

    2015-01-01

    Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types—aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine. PMID:25706126

  8. Study of the maturation of grapes (Vitis vinifera L. grown in Dois Vizinhos, Paraná

    Directory of Open Access Journals (Sweden)

    Gener Augusto Penso

    2014-12-01

    Full Text Available The edaphoclimatic conditions in Southwest Parana differ from those in traditional wine-growing regions and have a major influence on the organoleptic characteristics of the grapes. Studies of grape maturation under these conditions may enable us to time the supply of raw materials for the elaboration of differentiated wines. This study aimed to quantify the ripening components of the grape cultivars Cabernet Sauvignon, Merlot, Tempranillo, and Sangiovese grapes grown in Dois Vizinhos, PR, during the harvest seasons of 2008/2009 and 2011/2012. The grapevines were performed according to the espalier system and grafted on rootstock R110 (‘Cabernet Sauvignon’ and ‘Merlot’ and Paulsen 1103 (‘Tempranillo’ and ‘Sangiovese’. The ripening of the grapes was monitored every ten days from the beginning of ripening (verasion until harvest. The following variables were evaluated: mass and diameter of berries, total soluble solids (TSS, pH, titratable acidity (TTA, total sugars, estimated alcohol content, anthocyanins, and flavanols. Sangiovese berries showed the greatest weight and diameter in the two years. The TSS was higher in the second year of evaluation for Cabernet Sauvignon and Tempranillo grapes. The pH decreased from the first year to the second for all cultivars. There were no significant differences in ATT among the cultivars. A higher content of flavanols was observed during the first growing season of study than during the second. Tempranillo grapes showed the highest concentration of anthocyanins during both growing seasons. Not all cultivars had enough acidity to permit wine stability and guard time. None of the cultivars required the chaptalization of must, presenting good potential of alcohol production.

  9. Relationship between the elemental composition of grapeyards and bioactive compounds in the Cabernet Sauvignon grapes Vitis vinífera harvested in Mexico.

    Science.gov (United States)

    Acuña-Avila, Pedro Estanislao; Vásquez-Murrieta, María Soledad; Franco Hernández, Marina Olivia; López-Cortéz, Ma Del Socorro

    2016-07-15

    The red grape Vitis vinífera is an important source of phenolic compounds, which can prevent disease if included as a part of a diet. The levels of these compounds in grapes have been associated with various environmental factors, such as climate, soil composition, and biotic stress. The purpose of this study was to determine the relationship between the elemental compositions of the soil and the grapes and the presence of bioactive compounds, such as catechin, epicatechin, piceid and resveratrol. Ethanol-based extracts of red grapes were used to quantify total and individual phenolic compounds by HPLC. It was observed that the elemental compositions of the soil and the grapes were related to their locations within different wine-producing regions. A principal component analysis showed a relationship between high metal content (Sr, Mn, Si and Pb) and higher concentrations of antioxidants in the grapes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Influence of the liquid or gazeous nature of the grape berries environment on rheological properties and on colour and nitrogen extractabilities during conditions simulating the Beaujolais wine-making process

    Directory of Open Access Journals (Sweden)

    Philippe Abbal

    1999-06-01

    Full Text Available This study concerns the evolutions of some physicochemical characteristics of berries during conditions simulating the beaujolais wine-making process. In this process, a large number of intact berries is kept in a CO2 atmosphere which is produced by ethanolic fermentation of the must in the bottom of the tank. To simulate this, two equivalent samples of ripe Gamay or Carignane berries were placed in the same jar and subjected to carbonic anaerobiosis. One sample was maintained in the gaseous atmosphere and the other submerged in the liquid which was either an aqueous solution of 6 p. cent ethanol (v/v, the same solution with 1 M sorbitol, or grape must obtained from crushed berries. The aim of these experiments was to study, in both submerged and non-submerged samples, the effects of ethanol on rheological properties of berries and on potential extractabilities of colour and soluble nitrogen from skin and berry flesh. Whatever the model, ethanol had a deleterious effect on berries, especially on those which were immersed. For those, the development of anaerobic metabolism was drastically reduced, but nitrogeneous and colouring compounds extractabilities were significantly increased. The anthocyanins and their copigments seem to be preferentially extracted when berries were immersed. The rheological properties were related to the osmotical strength of the submerging liquid. It was assumed that hydratation or dehydratation phenomenons of cell-wall polysaccharides could explained the differences observed in the rheological behaviour of berries and in particular the modifications of their pellicular elasticity.

  11. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of

  12. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    Directory of Open Access Journals (Sweden)

    Jean Carlos Bettoni

    Full Text Available ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight of pruned material and number of branches per plant. At the time of skin color change, petioles of recently matured leaves were collected for analysis of the levels of N, P, K, Ca, Mg, Fe, Mn, Zn and B. Moments before harvest, 100 grape berries were collected randomly to determine the total soluble solids, titratable acidity and pH. At harvest, the number of bunches per branch, the number and mass of clusters per plant and the average mass of clusters per plot were determined. Fresh and dry matter yields of the cover crop and weed plants were also determined when coverage reached full bloom. The winter cover crops did not alter the yield and quality of "Cabernet Sauvignon" grapes and showed no differences from each other for the management of spontaneous vegetation by hand weeding or mechanical mowing. Rye and ryegrass are effective alternatives for weed control alternatives. The species of white and red clover present difficulty in initial establishment, producing a small amount of biomass.

  13. Use of image analysis for the study of phenolic compounds of the grape berry skin (Vitis vinifera L., cv Cabernet franc

    Directory of Open Access Journals (Sweden)

    Michel Chevalier

    2003-03-01

    Full Text Available The localization and quantitative determination of phenolics in grape berry skins, from the onset of veraison, constitute the first step to understand the évolution of these compounds throughout the maturation process. Histological techniques are appropriate to study the evolution of phenolics but manual countings are long and drudgery and do not allow for reliable quantitative results. The image analysis software "Scion Image" proved to be a good tool to improve the quantitative results. This method permitted also to measure the cells area and the area occupied by phenolic compounds inside the vacuoles. Image analysis could be helpful to the understanding of the évolution of phenolics during maturation and possibly contribute to explain their extraction during macération.

  14. Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins.

    Science.gov (United States)

    Barnavon, L; Doco, T; Terrier, N; Ageorges, A; Romieu, C; Pellerin, P

    2001-11-01

    Grape berries (Vitis vinifera L., cv Ugni blanc) were harvested at 12 different weeks of development in 1996 and 1997. Ripening was induced at veraison, the crucial stage of berry softening, and was followed by a rapid accumulation of glucose and fructose and an increase of pH. Total RNAs, crude proteins and cell wall material were isolated from each developmental stage. A partial length cDNA (pme1, accession number AF159122, GenBank) encoding a pectin methyl-esterase (PME, EC 3.1.1.11) was cloned by RT-PCR with degenerate primers. Northern blots revealed that mRNAs coding for PME accumulate from one week before the onset of ripening until complete maturity, indicating that this transcript represents an early marker of veraison and could be involved in berry softening. However, PME activity was detected during all developmental stages. Total activity per berry increased, whereas "specific" activity, on a fresh weight basis, decreased during development. The amount of cell wall material (per berry and per g of berry) followed the same pattern as that of PME activity (total and "specific" respectively), indicating they were tightly correlated and that PME levels varied very little in the cell walls. Nevertheless, the degree of methyl-esterification of insoluble pectins decreased throughout the development from 68% in green stages to less than 20% for the ripe berries, and this observation is consistent with the induction of PME mRNAs during ripening. Relations between transcript expression, PME activity, the DE of insoluble pectic polysaccharides and their involvement in grape berry ripening are discussed.

  15. Genome-Wide Transcriptional Profiles of the Berry Skin of Two Red Grape Cultivars (Vitis vinifera) in Which Anthocyanin Synthesis Is Sunlight-Dependent or -Independent

    Science.gov (United States)

    Guan, Le; Xin, Hai-Ping; Li, Ji-Hu; Li, Shao-Hua

    2014-01-01

    Global gene expression was analyzed in the berry skin of two red grape cultivars, which can (‘Jingyan’) or cannot (‘Jingxiu’) synthesize anthocyanins after sunlight exclusion from fruit set until maturity. Gene transcripts responding to sunlight exclusion in ‘Jingyan’ were less complex than in ‘Jingxiu’; 528 genes were induced and 383 repressed in the former, whereas 2655 genes were induced and 205 suppressed in ‘Jingxiu’. They were regulated either in the same or opposing manner in the two cultivars, or in only one cultivar. In addition to VvUFGT and VvMYBA1, some candidate genes (e.g. AOMT, GST, and ANP) were identified which are probably involved in the differential responses of ‘Jingxiu’ and ‘Jingyan’ to sunlight exclusion. In addition, 26 MYB, 14 bHLH and 23 WD40 genes responded differently to sunlight exclusion in the two cultivars. Interestingly, all of the 189 genes classified as being relevant to ubiquitin-dependent protein degradation were down-regulated by sunlight exclusion in ‘Jingxiu’, but the majority (162) remained unchanged in ‘Jingyan’ berry skin. It would be of interest to determine the precise role of the ubiquitin pathway following sunlight exclusion, particularly the role of COP9 signalosome, cullins, RING-Box 1, and COP1-interacting proteins. Only a few genes in the light signal system were found to be regulated by sunlight exclusion in either or both cultivars. This study provides a valuable overview of the transcriptome changes and gives insight into the genetic background that may be responsible for sunlight-dependent versus -independent anthocyanin biosynthesis in berry skin. PMID:25158067

  16. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    Science.gov (United States)

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This

  17. New insight into the unresolved HPLC broad peak of Cabernet Sauvignon grape seed polymeric tannins by combining CPC and Q-ToF approaches.

    Science.gov (United States)

    Ma, Wen; Waffo-Téguo, Pierre; Alessandra Paissoni, Maria; Jourdes, Michäel; Teissedre, Pierre-Louis

    2018-05-30

    Polymeric tannins from grapes have always been reported as an unresolved broad peak in HPLC chromatograms, and this has severely limited their identification to date. This study aimed to disassemble this broad peak and explore the polymeric tannin molecules inside. By applying centrifugal partition chromatography (CPC), an efficient separation approach was developed to split the broad peak of grape seed tannins into fractions. Then, the fractions were analyzed by Q-ToF (quadrupole time-of-flight mass spectrometry) to determine the corresponding structures of the tannins. The results suggest that grape seed polymeric tannins were eluted consecutively according to their degree of polymerization (DP). Condensed tannins identified in wine grape seed have a range of DP and degree of galloylation (DG) up to 20 and 11, respectively. The molecular mass of the largest molecule detected was 6067. To our knowledge, this is the first report to offer an insight into the broad peak of polymeric tannins found with HPLC and to characterize the tannins with a DP up to 20 as shown by HRMS and MS/MS data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development

    Science.gov (United States)

    Sara Tramontini; Cornelis van Leeuwen; Jean-Christophe Domec; Agnès Destrac-Irvine; Cyril Basteau; Marco Vitali; Olaf Mosbach-Schulz; Claudio Lovisolo

    2013-01-01

    All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes...

  19. Cabernet Sauvignon grapevine grafted onto rootstocks during the autumn-winter season in southeastern Brazilian

    Directory of Open Access Journals (Sweden)

    Claudia Rita de Souza

    2015-02-01

    Full Text Available The change of grape (Vitis vinifera harvest from summer to winter through double pruning management has improved the fine wine quality in southern Brazil. High altitude, late cultivar and grafting combination all need to be investigated to optimize this new viticulture management. For this purpose, this study was carried out during the 2011 and 2012 growing seasons in a high altitude region of the state of Minas Gerais, Brazil, using eight grafting combinations for five year old Cabernet Sauvignon vines. The stem water potential, photosynthetic rate and stomatal conductance were not affected by rootstock type. The rootstocks IAC 766 and 101-14 induced, respectively, the highest and lowest vegetative vigor in Cabernet Sauvignon, as shown by leaf area and pruning weight. In the 2011 growing season, the leaf chlorophyll contents were increased in IAC 766, whereas vines grafted onto 101-14 accumulated more leaf starch, probably due to reduced vegetative and reproductive growth. In general, rootstocks K5BB, 1045P, SO4 and IAC 766 had the highest yield as compared to 1103P and 101-14. Berries from the grapevine with the highest yield did not differ in pH, total soluble solids and acidity. The rootstocks did not influence the anthocyanins and total phenols in both growing seasons. Quality parameters were better in the 2011 than in the 2012 growing season due to better climatic conditions, mainly less rainfall. The best performance of Cabernet Sauvignon was achieved when grafted onto K5BB, 1045P, SO4 and IAC 766 rootstocks.

  20. Combined effects of soil-applied and foliar-applied nitrogen on the nitrogen composition and distribution in water stressed "Vitis vinifera L." cv Sauvignon blanc grapes

    Directory of Open Access Journals (Sweden)

    Rana Jreij

    2009-12-01

    Significance and impact of study: This work helps to provide insight into the effect of N soil fertilization along with foliar fertilization on waterstressed vines. This may be useful in fertilization programs in the Mediterranean area and may help to choose the type and the rate of the N fertilization in case of severe vine water deficit. Also, we provide information of utmost importance on the distribution of summer foliarapplied N in grape tissues.

  1. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L. Exposed to Water Deficit

    Directory of Open Access Journals (Sweden)

    Stefania Savoi

    2017-07-01

    Full Text Available Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis-regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

  2. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit.

    Science.gov (United States)

    Savoi, Stefania; Wong, Darren C J; Degu, Asfaw; Herrera, Jose C; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D

    2017-01-01

    Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis -regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

  3. The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; Scollary, Geoffrey R; McCully, Margaret E; Canny, Martin J; Rogiers, Suzy Y

    2016-08-01

    Amino acids are essential to grape berry and seed development and they are transferred to the reproductive structures through the phloem and xylem from various locations within the plant. The diurnal and seasonal dynamics of xylem and phloem amino acid composition in the leaf petiole and bunch rachis of field-grown Cabernet Sauvignon are described to better understand the critical periods for amino acid import into the berry. Xylem sap was extracted by the centrifugation of excised leaf petioles and rachises, while phloem exudate was collected by immersing these structures in an ethylenediaminetetraacetic acid (EDTA) buffer. Glutamine and glutamic acid were the predominant amino acids in the xylem sap of both grapevine rachises and petioles, while arginine and glycine were the principal amino acids of the phloem exudate. The amino acid concentrations within the xylem sap and phloem exudate derived from these structures were greatest during anthesis and fruit set, and a second peak occurred within the rachis phloem at the onset of ripening. The concentrations of the amino acids within the phloem and xylem sap of the rachis were highest just prior to or after midnight while the flow of sugar through the rachis phloem was greatest during the early afternoon. Sugar exudation rates from the rachis was greater than that of the petiole phloem between anthesis and berry maturity. In summary, amino acid and sugar delivery through the vasculature to grape berries fluctuates over the course of the day as well as through the season and is not necessarily related to levels near the source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Using Support Vector Regression and Hyperspectral Imaging for the Prediction of Oenological Parameters on Different Vintages and Varieties of Wine Grape Berries

    Directory of Open Access Journals (Sweden)

    Rui Silva

    2018-02-01

    Full Text Available The performance of a support vector regression (SVR model with a Gaussian radial basis kernel to predict anthocyanin concentration, pH index and sugar content in whole grape berries, using spectroscopic measurements obtained in reflectance mode, was evaluated. Each sample contained a small number of whole berries and the spectrum of each sample was collected during ripening using hyperspectral imaging in the range of 380–1028 nm. Touriga Franca (TF variety samples were collected for the 2012–2015 vintages, and Touriga Nacional (TN and Tinta Barroca (TB variety samples were collected for the 2013 vintage. These TF vintages were independently used to train, validate and test the SVR methodology; different combinations of TF vintages were used to train and test each model to assess the performance differences under wider and more variable datasets; the varieties that were not employed in the model training and validation (TB and TN were used to test the generalization ability of the SVR approach. Each case was tested using an external independent set (with data not included in the model training or validation steps. The best R2 results obtained with varieties and vintages not employed in the model’s training step were 0.89, 0.81 and 0.90, with RMSE values of 35.6 mg·L−1, 0.25 and 3.19 °Brix, for anthocyanin concentration, pH index and sugar content, respectively. The present results indicate a good overall performance for all cases, improving the state-of-the-art results for external test sets, and suggesting that a robust model, with a generalization capacity over different varieties and harvest years may be obtainable without further training, which makes this a very competitive approach when compared to the models from other authors, since it makes the problem significantly simpler and more cost-effective.

  5. Dissecting the Variations of Ripening Progression and Flavonoid Metabolism in Grape Berries Grown under Double Cropping System

    Directory of Open Access Journals (Sweden)

    Wei-Kai Chen

    2017-11-01

    Full Text Available A double cropping system has been commercially adopted in southern China, where there is abundant sunshine and heat resources. In this viticulture system, the first growing season normally starts as a summer cropping cycle; then, the vine is pruned and forced, resulting in a second crop in winter. Due to climate differences between the summer and winter growing seasons, grape ripening progression and flavonoid metabolism vary greatly. Here, the metabolites and transcriptome of flavonoid pathways were analyzed in grapes grown under two growing seasons at different stages. Notably, the winter cropping cycle strongly increased flavonoid levels by several times in comparison to summer grapes, while the summer season took a major toll on anthocyanin and flavonol accumulation, since the winter cropping greatly triggered the expression of upstream genes in the flavonoid pathway in a coordinated expression pattern. Moreover, the ratio of VviF3′5′Hs (flavonoid 3′5′-hydroxylase to VviF3′Hs (flavonoid 3′-hydroxylase transcript levels correlated remarkably well with the ratio of 3′5′-substituted to 3′-substituted flavonoids, which was presumed to control the flux of intermediates into different flavonoid branches. On the other hand, the phenological phase also varied greatly in the two crops. Compared to summer cropping, winter growing season accelerated the duration from budburst to veraison, therefore advancing the onset of ripening, but also prolonging the duration of ripening progression due to the purposes to harvest high-quality grapes. The differential expression pattern of hormone-related genes between the two cropping cycles might explain this phenomenon.

  6. Blend chemistry and field attraction of commercial sex pheromone lures to grape berry moth (Lepidoptera: Tortricidae), and a nontarget tortricid in vineyards.

    Science.gov (United States)

    Jordan, T A; Zhang, A; Pfeiffer, D G

    2013-06-01

    Anecdotal reports by scientists and growers suggested commercial sex pheromone lures were ineffective with monitoring field populations of grape berry moth, Paralobesia viteana (Clemens), in vineyards. This study addressed the need to evaluate commercial sex pheromone lures for chemical purity and efficacy of attracting grape berry moth and a nontarget tortricid, the sumac moth, Episumus argutanus (Clemens). The percentage of chemical components from a set of eight lures from each manufacturer was found using gas chromatography-mass spectrometry and confirmed by chemical standards. No lures adhered to the 9:1 blend of (Z)-9-dodecenyl acetate (Z9-12:Ac) to (Z)-11-tetradecenyl acetate (Z11-14:Ac), though Suterra (9.1:1), ISCA (5.7:1), and Trécé (5.4:1) lures were closest. The Trécé lures contained ≍98 μg Z9-12:Ac, which is 3-51 times more than the other lures. The Suterra and ISCA lures were loaded with ≍29 and 33 μg Z9-12:Ac, and the Alpha Scents lures only contained ≍2 μg Z9-12:Ac. An antagonistic impurity, (E)-9-tetradecenyl acetate (E9-12:Ac), was found in all manufacturer lures at concentrations from 3.2 to 4.8%. Field attraction studies were done in summer 2010, and again in 2011, to evaluate commercial lures for their potential to attract P. viteana and E. argutanus in the presence of lures from other manufacturers. Separate experiments were established in two vineyards in Augusta County, VA, one with open and the other with wooded surroundings. In field experiments, Suterra lures detected P. viteana most often, Trécé lures detected more E. argutanus, and ISCA lures detected P. viteana in the open vineyard the least, while Alpha Scents lures were least attractive to E. argutanus in both environments. Fewer P. viteana were captured in the wooded versus open vineyard, which may limit the potential for sex pheromone monitoring of P. viteana in wooded vineyards.

  7. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.).

    Science.gov (United States)

    Bombai, Giuseppe; Pasini, Federica; Verardo, Vito; Sevindik, Onur; Di Foggia, Michele; Tessarin, Paola; Bregoli, Anna Maria; Caboni, Maria F; Rombolà, Adamo D

    2017-07-01

    Seed oil and flours have been attracting the interest of researchers and industry, since they contain various bioactive components. We monitored the effects of ripening on lipids, monomeric flavan-3-ols, proanthocyanidins and tocols concentration in seed extracts from organically cultivated cv. Sangiovese vines. Linoleic acid was the most abundant fatty acid, followed by oleic, palmitic and stearic acids. The tocols detected were α-tocopherol, α-tocotrienol and γ-tocotrienol. The proanthocyanidins degree of polymerisation ranged from dimers to dodecamers; moreover, monomeric flavan-3-ols and polymeric proanthocyanidins were detected. Total flavan-3-ols (monomers, oligomers and polymers) concentration in grape seeds decreased during ripening. Fatty acids reached the highest level in post-veraison. The concentration of these compounds varied considerably during ripening. Capric acid has been found for the first time in grape seeds. α-Tocopherol and γ-tocotrienol decreased during ripening, while α-tocotrienol increased. The HPLC analysis with fluorimetric detection, conducted for the first time on cv. Sangiovese, revealed that the concentration of flavan-3-ols monomers, oligomeric proanthocyanidins and polymers greatly changed during ripening. These results suggest that the timing of bunch harvest plays a crucial role in the valorisation of grape seed flour. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. A Decision Support System Coupling Fuzzy Logic and Probabilistic Graphical Approaches for the Agri-Food Industry: Prediction of Grape Berry Maturity.

    Science.gov (United States)

    Perrot, Nathalie; Baudrit, Cédric; Brousset, Jean Marie; Abbal, Philippe; Guillemin, Hervé; Perret, Bruno; Goulet, Etienne; Guerin, Laurence; Barbeau, Gérard; Picque, Daniel

    2015-01-01

    Agri-food is one of the most important sectors of the industry and a major contributor to the global warming potential in Europe. Sustainability issues pose a huge challenge for this sector. In this context, a big issue is to be able to predict the multiscale dynamics of those systems using computing science. A robust predictive mathematical tool is implemented for this sector and applied to the wine industry being easily able to be generalized to other applications. Grape berry maturation relies on complex and coupled physicochemical and biochemical reactions which are climate dependent. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert predictions. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a decision support system so called FGRAPEDBN able to (1) capitalize the heterogeneous fragmented knowledge available including data and expertise and (2) predict the sugar (resp. the acidity) concentrations with a relevant RMSE of 7 g/l (resp. 0.44 g/l and 0.11 g/kg). FGRAPEDBN is based on a coupling between a probabilistic graphical approach and a fuzzy expert system.

  9. Effect of pH on the copigmentation of anthocyanins from Cabernet Sauvignon grape extracts with organic acids Efeito do pH na copigmentação de antocianinas do extrato de uvas Cabernet Sauvignon com ácidos orgânicos

    Directory of Open Access Journals (Sweden)

    Cony Gauche

    2010-02-01

    Full Text Available Anthocyanins show low-stability when exposed to different food processing conditions. Copigmentation is one of the main reactions contributing to the in vivo color responsible to the stability of anthocyanins. In the aim of holding the red color, copigmentation effect of organic acids (caffeic, ferulic, gallic and tannic acids combined with anthocyanins in crude Cabernet Sauvignon (Vitis vinifera L. grape skin extract at pH values (1.0, 2.0, 3.0, 3.3, 3.5, 3.7, 4.0, 4.5 was evaluated in this research. The maximum copigmentation effect, revealed by the hyperchromic and bathochromic shifts in anthocyanin maximum absorbance wavelength, was obtained at pH 3.3 with every acid used. Anthocyanin stability was followed by measuring the loss of color, thus it was possible to determine the protecting effects of these copigments. Tannic acid was the best copigment in our model system, giving half-life time of 2,585 h. We are suggesting the formation of pyranoanthocyanins by the reactions of anthocyanins with caffeic and ferulic acid, these substances could be avoiding the observation of the copigmentation effect. Addition of organic acids could improve the anthocyanin stability; though, more studies are needed to justify the lack of copigmenting effect observed with the caffeic and ferulic acids.Antocianinas apresentam baixa estabilidade frente aos fatores que afetam o processamento de alimentos. A copigmentação é uma das principais reações responsáveis pela estabilidade da coloração de antocianinas in vivo. Com objetivo de manter a coloração vermelha, a copigmentação das antocianinas do extrato bruto de uvas Cabernet Sauvignon (Vitis vinifera L. com ácidos orgânicos (ácidos caféico, ferrúlico, gálico e tânico em diferentes valores de pH (1,0; 2,0; 3,0; 3,3; 3,5; 3,7; 4,0; 4,5 foi avaliada neste estudo. O efeito máximo de copigmentação, revelado pelos deslocamentos hipercrômico e batocrômico, foi obtido em pH 3,3 para todos os

  10. Use of DMACA to visualise flavan-3-ols in grape berry skins (Vitis vinifera L., CV Cabernet Franc

    Directory of Open Access Journals (Sweden)

    Michel Chevalier

    2003-09-01

    Full Text Available Phenolic compounds are of great importance in Enology. They play a major role in the elaboration of red wines and during wine preservation, and contribute greatly to their organoleptic properties. Among them, flavonoïds constitute the major group present in berry skins. Their histological study is based classically on the use of Toluidine blue O as a staining agent, which is not specific of any type of phenolics. The use of DMACA (p-dimethylaminocinnamaldehyde, which is specific of tannins (flavan-3-ols, permitted to precise the localisation of these compounds without any risk of error ; it allowed also for the visualisation of tannins, stuck to the tonoplast, which had not been identified with Toluidine blue O.

  11. Fenologia, produção e composição do mosto da 'Cabernet sauvignon' e 'Tannat' em clima subtropical Phenology, production and must compounds of 'Cabernet Sauvignon' and 'Tannat' grapevines in subtropical climate

    Directory of Open Access Journals (Sweden)

    Alessandro Jefferson Sato

    2011-06-01

    Full Text Available O objetivo deste trabalho foi caracterizar a fenologia e a produção das videiras 'Cabernet Sauvignon' e 'Tannat' (Vitis vinifera L., em clima subtropical, para a elaboração de vinho tinto. A área experimental foi instalada em uma propriedade comercial pertencente à Vinícola Intervin®, em Maringá-PR, e as videiras foram conduzidas em latada sobre o 'IAC 766 Campinas', em espaçamento 4,0 x 1,5m. As avaliações tiveram início a partir das podas de frutificação, realizadas no fim do inverno, durante quatro safras consecutivas (2003, 2004, 2005 e 2006. Foram utilizadas 20 plantas representativas de cada variedade, sendo avaliada a duração em dias das principais fases fenológicas das videiras, bem como estimadas a produção por planta e a produtividade de cada variedade. A evolução de maturação das uvas foi determinada pela análise semanal do pH, teor de sólidos solúveis totais (SST e acidez titulável (AT do mosto das bagas. A duração média do ciclo da videira 'Cabernet Sauvignon' foi de 130,3 dias, enquanto da 'Tannat' foi de 131,3. As estimativas médias da produção por planta e da produtividade foram, respectivamente, de 4,5 kg e 8,9 t ha-1 para a uva 'Cabernet Sauvignon' e 7,3 kg e 12,1 t ha-1 para a 'Tannat'. Os teores médios de pH, SST e AT foram, respectivamente, de 3,3; 14,5 ºBrix e 1,1% de ácido tartárico para a uva 'Cabernet Sauvignon', e 3,3; 17,7 ºBrix e 1,1% de ácido tartárico para a 'Tannat'.The objective of this study was to characterize the phenology and the production of 'Cabernet Sauvignon' and 'Tannat' (Vitis vinifera L. grapes produced in a subtropical climate for red winemaking. The experimental area was located in a commercial vineyard belonging to the Intervin® Winery, in Maringá, PR. The grapevines were trained in a pergola system in a 4.0 x 1.5 m spacing, grafted on 'IAC 766 Campinas' rootstock. The evaluations started from the pruning held in late winter during four crops (2003, 2004

  12. Melatonin in grapes and grape-related foodstuffs: A review.

    Science.gov (United States)

    Meng, Jiang-Fei; Shi, Tian-Ci; Song, Shuo; Zhang, Zhen-Wen; Fang, Yu-Lin

    2017-09-15

    A decade has passed since melatonin was first reported in grapes in 2006. During this time, melatonin has not only been found in the berries of most wine grape (Vitis vinifera L.) cultivars, but also in most grape-related foodstuffs, e.g. wine, grape juice and grape vinegar. In this review, we discuss the melatonin content in grapes and grape-related foodstuffs (especially wine) from previous studies, the physiological function of melatonin in grapes, and the factors contributing to the production of melatonin in grapes and wines. In addition, we identify future research needed to clarify the mechanisms of grape melatonin biosynthesis and regulation, and establish more accurate analysis methods for melatonin in grapes and wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Phenolic Compounds from the Fermentation of Cultivars Cabernet Sauvignon and Merlot from the Slovenian Coastal Region

    Directory of Open Access Journals (Sweden)

    Marin Berovič

    2004-01-01

    Full Text Available Large scale fermentation of the cultivars Cabernet Sauvignon and Merlot from the Slovenian coastal region was performed in Bücher-Vaslin roto tank vinificators. Six different areas, Prade, Kortina, Škocijan, Ankaran, Labor and Hrvatini, were selected for this study to investigate total phenols, anthocyanins, tannins and colour density, as well as pH, titratable acidity, sugar content and ethanol. Anthocyanins and phenolic compounds were found to be in generally higher concentrations (up to 4240 mg/L in Cabernet Sauvignon. Prolongation of the fermentation phase with Merlot gave even reduced concentrations of anthocyanins, a phenomenon which was not observed in Cabernet Sauvignon. The highest concentration of anthocyanins was found in Merlot from the Kortina location (735 mg/L, and in Cabernet Sauvignon from the Labor location (998 mg/L. The highest concentration of tannins (1828 mg/L was found in the grapes of Cabernet Sauvignon from the Ankaran location, while in Merlot 1280 mg/L was detected in a sample from the Prade area. The tone of colour and its intensity reached full maturity in Cabernet Sauvignon. Merlot from the Kortina location reached the highest colour density of 1.57, while in a sample of Cabernet Sauvignon from Hrvatini colour density was 2.89. Only small differences were detected in colour quality between Merlot and Cabernet Sauvignon.

  14. Efeito do ácido tartárico nos valores de potássio, acidez titulável e pH durante a vinificação de uvas Cabernet Sauvignon Effect of tartaric acid upon potassium, total acidity and pH, during the vinification of Cabernet Sauvignon grapes

    Directory of Open Access Journals (Sweden)

    Carlos Eugenio Daudt

    2008-11-01

    H values are usually made from grapes with high potassium values and can bring serious problems to the wine. This high potassium comes, usually, from mistakes with the vines management. While the right management has being tried, in the vineyard, and aiming to find a fast solution for the problem inside the winery a pilot scale fermentation was made with Cabernet Sauvignon. The must was submitted to three different treatments with tartaric acid: zero, 1gL-1 and 2gL-1,all in duplicate. The pattern of fermentation was the normal SO2, pectinolitic enzymes and yeasts addition to the musts; skins and seeds were removed from the must after 10 days of fermentation and malolactic fermentation occurred spontaneously. Potassium (by flame spectrometry, total acidity (by titulometry and pH (by pH meter were analyzed in the musts during fermentation and in the wines; skins and lees were digested previously the analysis. Values found, in the wines, for potassium (gL-1, total acidity (g% and pH were respectively: samples from zero tartaric acid 1,98, 0.61, 3,68; from 1gL-1:1,72, 0.70 e 3,63; from 2gL-1:1,41, 0,73 e 3,50. Values found in the skins and lees with the same treatments were, respectively: 24,91 and 69.30, 21,85 and 75.11, 16,20 and 85.38g kg-1 of the Dry Matter. The effect of tartaric acid addition was noted mainly in the lees (69.3, 75.11 and 85.38, in which the potassium found showed a close relationship with the acid added in the must. It should be noted, though, that this addition is just for the moment because the real correction should be made in the vineyard, as it is now.

  15. Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Casanovas, J. A.; Agelet-Fernandez, J.; Arno, J.; Ramos, M. C.

    2012-11-01

    The objective of research was to analyse the potential of Normalized Difference Vegetation Index (NDVI) maps from satellite images, yield maps and grapevine fertility and load variables to delineate zones with different wine grape properties for selective harvesting. Two vineyard blocks located in NE Spain (Cabernet Sauvignon and Syrah) were analysed. The NDVI was computed from a Quickbird-2 multi-spectral image at veraison (July 2005). Yield data was acquired by means of a yield monitor during September 2005. Other variables, such as the number of buds, number of shoots, number of wine grape clusters and weight of 100 berries were sampled in a 10 rows × 5 vines pattern and used as input variables, in combination with the NDVI, to define the clusters as alternative to yield maps. Two days prior to the harvesting, grape samples were taken. The analysed variables were probable alcoholic degree, pH of the juice, total acidity, total phenolics, colour, anthocyanins and tannins. The input variables, alone or in combination, were clustered (2 and 3 Clusters) by using the ISODATA algorithm, and an analysis of variance and a multiple rang test were performed. The results show that the zones derived from the NDVI maps are more effective to differentiate grape maturity and quality variables than the zones derived from the yield maps. The inclusion of other grapevine fertility and load variables did not improve the results. (Author) 36 refs.

  16. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes.

    Science.gov (United States)

    Ziliotto, Fiorenza; Corso, Massimiliano; Rizzini, Fabio Massimo; Rasori, Angela; Botton, Alessandro; Bonghi, Claudio

    2012-10-09

    Auxins act as repressors of ripening inception in grape (véraison), while ethylene and abscisic acid (ABA) play a positive role as inducers of the syndrome. Despite the increasing amount of information made available on this topic, the complex network of interactions among these hormones remains elusive. In order to shed light on these aspects, a holistic approach was adopted to evaluate, at the transcriptomic level, the crosstalk between hormones in grape berries, whose ripening progression was delayed by applying naphtalenacetic acid (NAA) one week before véraison. The NAA treatment caused significant changes in the transcription rate of about 1,500 genes, indicating that auxin delayed grape berry ripening also at the transcriptional level, along with the recovery of a steady state of its intracellular concentration. Hormone indices analysis carried out with the HORMONOMETER tool suggests that biologically active concentrations of auxins were achieved throughout a homeostatic recovery. This occurred within 7 days after the treatment, during which the physiological response was mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) and action (IAA4- and IAA31-like). A strong antagonistic effect between auxin and ethylene was also observed, along with a substantial 'synergism' between auxins and ABA, although to a lesser extent. This study suggests that, in presence of altered levels of auxins, the crosstalk between hormones involves diverse mechanisms, acting at both the hormone response and biosynthesis levels, creating a complex response network.

  17. Water stress and ripeness effects on the volatile composition of Cabernet Sauvignon wines.

    Science.gov (United States)

    Talaverano, Inmaculada; Ubeda, Cristina; Cáceres-Mella, Alejandro; Valdés, María Esperanza; Pastenes, Claudio; Peña-Neira, Álvaro

    2018-02-01

    Controlled water deficits affect grape berry physiology and the resulting wines, with volatile composition being the one of the affected parameters. However, there is a potential disconnect between aromatic maturity and sugar accumulation. Accordingly, the effects of three different water status levels over two growing seasons (2014 and 2015) and two different harvest dates on the aroma compounds from Cabernet Sauvignon wines were studied. Volatile compounds were determined using headspace solid phase microextraction coupled with gas chromatoghraphy/mass spectrometry. Around 45 volatile compounds were determined in the wines and, among these, esters were affected the most, presenting lower concentrations when the most restrictive water treatment was applied in both years. By contrast, volatile acids presented the highest concentrations when the lowest level of irrigation was applied. On the other hand, a delay in harvesting produced an increase in the total amount of volatile compounds in samples from the most restrictive water treatment. These results are coincident with a principal component analysis that indicated a great separation between years, deficit irrigation treatments and harvest dates. The results of the present study suggest that a low water supply had a negative effect on the aromatic potential of wines at a similar ripening stage. However, this effect could be countered by harvesting at a later date. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil.

    Science.gov (United States)

    Shi, Pengbao; Song, Changzheng; Chen, Haiju; Duan, Bingbing; Zhang, Zhenwen; Meng, Jiangfei

    2018-07-01

    Flavonoids are important compounds for grape and wine quality. Foliar fertilization with iron compounds has been reported to have a substantial impact on grape composition in the grapevines growing in calcareous soil. However, much less is known about its real impact on flavonoid composition. In the present study, Ferric ethylenediamine di (O-hydroxyphenylacetic) acid (Fe-EDDHA) was foliar applied to Merlot (Vitis vinifera L.) grapevines growing in calcareous soil over two consecutive vintages in order to study its effect on grape flavonoid composition. Fe-EDDHA foliar supply tended to increase grape sugar, anthocyanin and flavonol content, decrease acid content and enhance the juice pH when compared to the control. Principal component analysis showed that the vintage also had influence on grape quality. The results suggested that Fe-EDDHA foliar application had an enhancement effect on grape secondary metabolism, and the effect increased the nutritional value of the consequent grapes and wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Chronological development of element concentrations in grapes during growth and ripeness and during fermentation of must determined by instrumental neutron-activation analyses

    International Nuclear Information System (INIS)

    Feige, Markus; Hampel, Gabriele; Kratz, Jens Volker; Wiehl, Norbert

    2014-01-01

    The chronological development of element concentrations during growth and ripeness of grapes described in the literature has only been concerned with the macro elements Mg, K, and Ca. Concentrations of trace elements in must are only described as a snapshot at the end of the ripeness. Therefore, the motivation for the present work was to accompany the growth and the ripening process of grapes successively by systematically determining element concentrations in grapes of Riesling and Cabernet Sauvignon by neutron-activation analyses. While for a number of elements, the concentrations in the grapes increased as a function of grape development (e.g., Na, K, Rb, Al), other concentrations decreased (e.g., Mg, Ca, Mn). These decreases are not only to be attributed to a dilution by an increasing uptake of water during growth, but also by an active transport of the cations out of the berries. Furthermore, the interest focused on the influence of mineral substances on the process of fermentation and on the uptake of trace elements by the yeasts. (orig.)

  20. Chronological development of element concentrations in grapes during growth and ripeness and during fermentation of must determined by instrumental neutron-activation analyses

    Energy Technology Data Exchange (ETDEWEB)

    Feige, Markus; Hampel, Gabriele; Kratz, Jens Volker; Wiehl, Norbert [Mainz Univ. (Germany). Inst. fuer Kernchemie; Koenig, Helmut [Mainz Univ. (Germany). Inst. fuer Mikrobiologie und Weinforschung; Wagner, Andreas [Weingut Wagner, Essenheim (Germany)

    2014-07-01

    The chronological development of element concentrations during growth and ripeness of grapes described in the literature has only been concerned with the macro elements Mg, K, and Ca. Concentrations of trace elements in must are only described as a snapshot at the end of the ripeness. Therefore, the motivation for the present work was to accompany the growth and the ripening process of grapes successively by systematically determining element concentrations in grapes of Riesling and Cabernet Sauvignon by neutron-activation analyses. While for a number of elements, the concentrations in the grapes increased as a function of grape development (e.g., Na, K, Rb, Al), other concentrations decreased (e.g., Mg, Ca, Mn). These decreases are not only to be attributed to a dilution by an increasing uptake of water during growth, but also by an active transport of the cations out of the berries. Furthermore, the interest focused on the influence of mineral substances on the process of fermentation and on the uptake of trace elements by the yeasts. (orig.)

  1. Exogenously applied abscisic acid to Yan73 (V. vinifera) grapes enhances phenolic content and antioxidant capacity of its wine.

    Science.gov (United States)

    Xi, Zhu-Mei; Meng, Jiang-Fei; Huo, Shan-Shan; Luan, Li-Ying; Ma, Li-Na; Zhang, Zhen-Wen

    2013-06-01

    Yan73 is a 'teinturier' red wine variety cultivated in China and widely used in winemaking to strengthen red wine colour. The objective of this study was to evaluate the effect of exogenous abscisic acid (ABA) applied to the grapevine cluster on the antioxidant capacity and phenolic content of the wine made from Yan73. Two hundred mg/l ABA was applied on Yan73 grapevine cluster during veraison. As they mature, these ABA-treated and untreated grape berries were transformed into wines, respectively, and the phenolic content and antioxidant capacity of these wines were compared. The results showed that phenolic content (total phenolics, tannins, flavonoids and anthocyanins) and antioxidant capacity were higher in the wine produced with ABA-treated Yan73 grapes than those in the wine from untreated grapes. Compared to Cabernet Sauvignon wine, Yan73 wine had higher phenolic content and stronger antioxidant capacity. These strongly suggest that exogenously applied ABA to Yan73 grapes can enhance phenolic content and antioxidant capacity of its wine, and Yan73 wine has the higher utilization value and potential for development.

  2. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid.

    Science.gov (United States)

    Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén

    2016-12-01

    High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Shoot growth of Merlot and Cabernet Sauvignon grapevine varieties

    Directory of Open Access Journals (Sweden)

    Marcelo Borghezan

    2012-02-01

    Full Text Available The objective of this work was to evaluate shoot growth of the grapevine varieties Merlot and Cabernet Sauvignon, during 2006/2007, and Cabernet Sauvignon, during 2008/2009, in São Joaquim, SC, Brazil. The experiment was carried out in a commercial vineyard trained on a vertical trellis system. The shoots of the central part of the plants were selected, and the lengths from the base to the apex of 20 shoots per cultivar were evaluated. In 2006/2007, monitoring began at pruning, on 9/15/2006, and ended on 2/6/2007, totalizing 144 days of evaluation. During the 2008/2009 cycle, phenology and shoot growth for 'Cabernet Sauvignon' were assessed from grape development (1/13/2009 (pea-sized grapes until shoot vegetative growth had ceased. Budburst occurred in the second half of September, and shoot-growth cessation occurred during ripening. Higher growth rates (about 4 cm per day were observed in pre- and post-flowering, followed by reduction due to the competition for photosynthates for the formation of flowers and bunches. Temperature and photoperiod induce grapevine shoots to cease growth in the highland regions of Santa Catarina State, Brazil.

  4. Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice.

    Science.gov (United States)

    Genova, Giuseppe; Tosetti, Roberta; Tonutti, Pietro

    2016-01-30

    Grape juice is an important dietary source of health-promoting antioxidant molecules. Different factors may affect juice composition and nutraceutical properties. The effects of some of these factors (harvest time, pre-processing ethylene treatment of grapes and juice thermal pasteurization) were here evaluated, considering in particular the phenolic composition and antioxidant capacity. Grapes (Vitis vinifera L., red-skinned variety Sangiovese) were collected twice in relation to the technological harvest (TH) and 12 days before TH (early harvest, EH) and treated with gaseous ethylene (1000 ppm) or air for 48 h. Fresh and pasteurized (78 °C for 30 min) juices were produced using a water bath. Three-way analysis of variance showed that the harvest date had the strongest impact on total polyphenols, hydroxycinnamates, flavonols, and especially on total flavonoids. Pre-processing ethylene treatment significantly increased the proanthocyanidin, anthocyanin and flavan-3-ol content in the juices. Pasteurization induced a significant increase in anthocyanin concentration. Antioxidant capacity was enhanced by ethylene treatment and pasteurization in juices from both TH and EH grapes. These results suggest that an appropriate management of grape harvesting date, postharvest and processing may lead to an improvement in nutraceutical quality of juices. Further research is needed to study the effect of the investigated factors on juice organoleptic properties. © 2015 Society of Chemical Industry.

  5. Influence of UV and Ozonised Water Treatment on Trans-resveratrol Content in Berry Skins and Juices of Franc and Green Veltliner Grapes

    Czech Academy of Sciences Publication Activity Database

    Landfeld, A.; Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Totušek, J.; Lefnerová, D.; Híc, P.; Tománková, E.; Halama, R.; Houška, M.

    2015-01-01

    Roč. 33, č. 3 (2015), s. 267-276 ISSN 1212-1800 R&D Projects: GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : grape juices * stilbens content * UV irradiation * ozonisation Subject RIV: GM - Food Processing Impact factor: 0.728, year: 2015

  6. Biodiversity of wine grapes: less than we thought

    Directory of Open Access Journals (Sweden)

    Pinder RM

    2011-07-01

    Full Text Available Roger M PinderInternational Journal of Wine Research, York, UKThe Editor of the International Journal of Wine Research has had a long-standing interest in the genetics of wine grape varieties. Two publications, in particular, piqued the interest from both the scientific and consumer point of view. Cabernet Sauvignon is the offspring of a chance cross-pollination of Sauvignon Blanc and Cabernet Franc in western France several centuries ago.

  7. Berry Phenolics of Grapevine under Challenging Environments

    Directory of Open Access Journals (Sweden)

    Hernâni Gerós

    2013-09-01

    Full Text Available Plant phenolics have been for many years a theme of major scientific and applied interest. Grape berry phenolics contribute to organoleptic properties, color and protection against environmental challenges. Climate change has already caused significant warming in most grape-growing areas of the world, and the climatic conditions determine, to a large degree, the grape varieties that can be cultivated as well as wine quality. In particular, heat, drought and light/UV intensity severely affect phenolic metabolism and, thus, grape composition and development. In the variety Chardonnay, water stress increases the content of flavonols and decreases the expression of genes involved in biosynthesis of stilbene precursors. Also, polyphenolic profile is greatly dependent on genotype and environmental interactions. This review deals with the diversity and biosynthesis of phenolic compounds in the grape berry, from a general overview to a more detailed level, where the influence of environmental challenges on key phenolic metabolism pathways is approached. The full understanding of how and when specific phenolic compounds accumulate in the berry, and how the varietal grape berry metabolism responds to the environment is of utmost importance to adjust agricultural practices and thus, modify wine profile.

  8. Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter.

    Science.gov (United States)

    Sun, Run-Ze; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun

    2015-12-01

    Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening.

    Science.gov (United States)

    Böttcher, Christine; Keyzers, Robert A; Boss, Paul K; Davies, Christopher

    2010-08-01

    In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.

  10. Assessing Spatial Variability of Grape Skin Flavonoids at the Vineyard Scale Based on Plant Water Status Mapping.

    Science.gov (United States)

    Brillante, Luca; Martínez-Luscher, Johann; Yu, Runze; Plank, Cassandra M; Sanchez, Luis; Bates, Terrence L; Brenneman, Charles; Oberholster, Anita; Kurtural, S Kaan

    2017-07-05

    Plant water stress affects grape (Vitis vinifera L. cv. Cabernet Sauvignon) berry composition and is variable in space due to variations in the physical environment at the growing site. We monitored the natural variability of grapevine water stress by stem water potential (Ψ stem ) and leaf gas exchange in an equi-distant grid in a commercial vineyard. Spatial differences were measured and related to topographical variation by modeling. Geospatial analysis and clustering allowed researchers to differentiate the vineyard block into two distinct zones having severe and moderate water stress where it varied by 0.2 MPa. Differences in stem water potential affected stomatal conductance, net carbon assimilation, and intrinsic water use efficiency that were different in all measurement dates. The two zones were selectively sampled at harvest for measurements of berry chemistry. The water status zones did not affect berry mass or yield per vine. Significant difference in total soluble solids was observed (3.56 Brix), and in titratable acidity, thus indicating a direct effect of water stress on ripening acceleration. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased high-performance liquid chromatography (HPLC). The anthocyanins were most affected by the two water stress zones. The dihydroxylated anthocyanins were more affected than trihydroxylated; therefore, the ratio of the two forms increased. Flavonols were different in total amounts, but hydroxylation patterns were not affected. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins showed the least significant difference, although (+)-catechin terminal subunits were important predictors in a partial least square model used to summarize the multivariate relationships, predicting Ψ stem or the management zone. The results provide fundamental information on vineyard

  11. Oligosaccharides of Cabernet Sauvignon, Syrah and Monastrell red wines.

    Science.gov (United States)

    Apolinar-Valiente, Rafael; Romero-Cascales, Inmaculada; Williams, Pascale; Gómez-Plaza, Encarna; López-Roca, José María; Ros-García, José María; Doco, Thierry

    2015-07-15

    Wine oligosaccharides were recently characterized and their concentrations, their composition and their roles on different wines remain to be determined. The concentration and composition of oligosaccharides in Cabernet Sauvignon, Syrah and Monastrell wines was studied. Oligosaccharide fractions were isolated by high resolution size-exclusion chromatography. The neutral and acidic sugar composition was determined by gas chromatography. The MS spectra of the oligosaccharides were performed on an AccuTOF mass spectrometer. Molar-mass distributions were determined by coupling size exclusion chromatography with a multi-angle light scattering device (MALLS) and a differential refractive index detector. Results showed significant differences in the oligosaccharidic fraction from Cabernet Sauvignon, Syrah and Monastrell wines. This study shows the influence that the grape variety seems have on the quantity, composition and structure of oligosaccharides in the finished wine. To our knowledge, this is the first report to research the oligosaccharides composition of Cabernet Sauvignon, Syrah and Monastrell wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Complexity and Dynamics of the Winemaking Bacterial Communities in Berries, Musts, and Wines from Apulian Grape Cultivars through Time and Space.

    Directory of Open Access Journals (Sweden)

    Marinella Marzano

    Full Text Available Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.

  13. Complexity and Dynamics of the Winemaking Bacterial Communities in Berries, Musts, and Wines from Apulian Grape Cultivars through Time and Space.

    Science.gov (United States)

    Marzano, Marinella; Fosso, Bruno; Manzari, Caterina; Grieco, Francesco; Intranuovo, Marianna; Cozzi, Giuseppe; Mulè, Giuseppina; Scioscia, Gaetano; Valiente, Gabriel; Tullo, Apollonia; Sbisà, Elisabetta; Pesole, Graziano; Santamaria, Monica

    2016-01-01

    Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.

  14. Microcalorimetric monitoring of grape withering

    International Nuclear Information System (INIS)

    Morozova, Ksenia; Romano, Andrea; Lonardi, Francesco; Ferrarini, Roberto; Biasioli, Franco; Scampicchio, Matteo

    2016-01-01

    Highlights: • Microcalorimetry was applied to monitor grape withering. • Heat flow was used to estimate rate of respiration. • Calorimetry was coupled with analysis of volatile compounds. • Data analysis showed three steps of withering. - Abstract: This work aimed at monitoring the metabolic activity of grapes during withering by microcalorimetry. Samples of Corvina grapes, a cultivar used in the production of Amarone wine, were dehydrated for about 120 days at an industrial scale plants (fruttaia). Single berries, sampled in the course of the withering process, were closed in ampoules and maintained at constant temperature. As biochemical events (i.e. berry respiration, microbial growth, etc.) are always accompanied by the production of heat (q), the heat-flow (dq/dt) emitted by berries enclosed in the ampoules was used to monitor their metabolic activity during withering, i.e. respiration. For each sampling time, the heat rate production of the berries at 298 K was monitored till a steady state signal was achieved (within 60 h). Such heat flow value was used as marker during the entire withering process (120 days). Its trend allowed to characterize the changes in the metabolic activity of the grape berries along the withering process. To understand the origin of such changes, the emission of volatile organic compounds (VOCs) were also measured by proton transfer mass spectrometry (PTR-MS). The use of microcalorimetry associated with the analysis of specific VOCs fragments offered a valuable information to describe the withering process.

  15. Microcalorimetric monitoring of grape withering

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, Ksenia; Romano, Andrea [Free University of Bozen-Bolzano, Faculty of Science and Technology, piazza Università 1, 39100 Bolzano (Italy); Lonardi, Francesco; Ferrarini, Roberto [PerfectWine s.r.l., Via della Pieve 70, 37029 S. Floriano (Italy); Biasioli, Franco [Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige (Italy); Scampicchio, Matteo, E-mail: matteo.scampicchio@unibz.it [Free University of Bozen-Bolzano, Faculty of Science and Technology, piazza Università 1, 39100 Bolzano (Italy)

    2016-04-20

    Highlights: • Microcalorimetry was applied to monitor grape withering. • Heat flow was used to estimate rate of respiration. • Calorimetry was coupled with analysis of volatile compounds. • Data analysis showed three steps of withering. - Abstract: This work aimed at monitoring the metabolic activity of grapes during withering by microcalorimetry. Samples of Corvina grapes, a cultivar used in the production of Amarone wine, were dehydrated for about 120 days at an industrial scale plants (fruttaia). Single berries, sampled in the course of the withering process, were closed in ampoules and maintained at constant temperature. As biochemical events (i.e. berry respiration, microbial growth, etc.) are always accompanied by the production of heat (q), the heat-flow (dq/dt) emitted by berries enclosed in the ampoules was used to monitor their metabolic activity during withering, i.e. respiration. For each sampling time, the heat rate production of the berries at 298 K was monitored till a steady state signal was achieved (within 60 h). Such heat flow value was used as marker during the entire withering process (120 days). Its trend allowed to characterize the changes in the metabolic activity of the grape berries along the withering process. To understand the origin of such changes, the emission of volatile organic compounds (VOCs) were also measured by proton transfer mass spectrometry (PTR-MS). The use of microcalorimetry associated with the analysis of specific VOCs fragments offered a valuable information to describe the withering process.

  16. Pre-fermentation addition of grape tannin increases the varietal thiols content in wine.

    Science.gov (United States)

    Larcher, Roberto; Tonidandel, Loris; Román Villegas, Tomás; Nardin, Tiziana; Fedrizzi, Bruno; Nicolini, Giorgio

    2015-01-01

    The recent finding that grape tannin may contain significant amount of S-glutathionylated (GSH-3MH) and S-cysteinylated (Cys-3MH) precursors of the varietal thiols 3-mercapto-1-hexanol and 3-mercaptohexyl acetate, characteristic of Sauvignon blanc wines, offers new opportunities for enhancing the tropical aroma in fermented beverages. In this study this new hypothesis was investigated: Müller Thurgau (17 samples) and Sauvignon blanc (15 samples) grapes were fermented with and without addition of a selected grape tannin. As expected, the tannin-added juices were higher in precursors, and they produced wines with increased free thiols. Preliminary informal sensory tests confirmed that in particular the Sauvignon wines produced with the tannin addition were often richer with increased "fruity/green" notes than the corresponding reference wines. This outcome confirms that grape tannin addition prior to fermentation can fortify the level of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: identification of key aroma compounds.

    Science.gov (United States)

    Barata, André; Campo, Eva; Malfeito-Ferreira, Manuel; Loureiro, Virgílio; Cacho, Juan; Ferreira, Vicente

    2011-03-23

    In the present work, the aroma profiles of wines elaborated from sound and sour rot-infected grapes as raw material have been studied by sensory analysis, gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS), with the aim of determining the odor volatiles most likely associated with this disease. The effect of sour rot was tested in monovarietal wines produced with the Portuguese red grape variety Trincadeira and in blends of Cabernet Sauvignon and sour rotten Trincadeira grapes. Wines produced from damaged berries exhibited clear honey-like notes not evoked by healthy samples. Ethyl phenylacetate (EPhA) and phenylacetic acid (PAA), both exhibiting sweet honey-like aromas, emerged as key aroma compounds of sour rotten wines. Their levels were 1 order of magnitude above those found in controls and reached 304 and 1668 μg L(-1) of EPhA and PAA, respectively, well above the corresponding odor thresholds. Levels of γ-nonalactone also increased by a factor 3 in sour rot samples. Results also suggest that sour rot exerts a great effect on the secondary metabolism of yeast, decreasing the levels of volatiles related to fatty acids and amino acid synthesis. The highest levels of γ-decalactone of up to 405 μg L(-1) were also found in all of the samples, suggesting that this could be a relevant aroma compound in Trincadeira wine aroma.

  18. Secondary Aroma Compounds in Fresh Grape Marc Distillates as a Result of Variety and Corresponding Production Technology

    OpenAIRE

    Borislav Miličević; Mara Banović; Srećko Tomas; Sanja Radeka; Đordano Peršurić; Igor Lukić

    2011-01-01

    In order to investigate the composition of secondary aroma compounds of fresh grape marc distillates as a result of variety and production technology, 30 samples (6 varieties×5 samples) were analysed. White grape marc samples from Malvazija istarska, Chardonnay and Muscat Blanc were obtained as by-products in standard white wine production, while red grape marc samples from Teran and Cabernet Sauvignon were obtained after standard red wine production procedures. Marc from red grape variety Mu...

  19. Characterisation of Vranec, Cabernet sauvignon and Merlot wines based on their chromatic and anthocyanin profiles

    OpenAIRE

    Dimitrovska Maja; Tomovska Elena; Bocevska Mirjana

    2013-01-01

    Wines of three different grape varieties, Vranec, Cabernet Sauvignon and Merlot were examined for their characterisation in terms of anthocyanin and chromatic profiles, total polyphenols and antioxidant potential. Total, monomeric, polymeric and copigmented anthocyanins were determined by spectrophotometry and the individual anthocyanin compounds were quantified using HPLC-DAD. Chromatic profile was evaluated according to colour density, hue, % red, % blue, % yellow and brilliance (% dA...

  20. The taste of soil: chemical investigation of soil, grape and wine in the Sopron wine region (Hungary)

    Science.gov (United States)

    Hofmann, Tomás; Horvàth, Imre; Bidló, András; Hofmann, Eszther

    2015-04-01

    The taste of soil: chemical investigation of soil, grape and wine in the Sopron wine region (Hungary) The Sopron wine region is one of the most significant and historical wine-producing regions of Hungary. 1800 hectares out of the total area of 4300 hectares of the wine region are used for grape cultivation. Kékfrankos (Blue Frankish) is the most frequent grape variety (60%) nevertheless other varieties are also grown here (including Zweigelt, Merlot, Cabernet Franc, Portugieser and Sauvignon Blanc). In this study preliminary results of the chemical analyses involving soil, grape and wine are presented, which could provide a future basis for a comprehensive terroir research in the wine region. As soil is the premanent home of grapevine, its quality is highly influencing for the growth of the plants and grape berries, and also determines future organoleptic characteristics of the wines. The investigated basic soil parameters included humus content, transition, soil structure, compactness, roots, skeletal percent, color, physical assortment, concretion, soil defects. Laboratory measurements involved the determination of pH, carbonated lime content, humus content, ammonium lactate-acetic acid soluble P and K content, KCl soluble Ca and Mg content, EDTA and DTPA soluble Cu, Fe, Mn and Zn content. Soil samples were also investigated for heavy metal contents using ICP-OES method (Thermo Scientific iCAP 7000 Series). By the use of thermoanalytical measurements (Mettler Toledo TGA/DSC 1 type thermogravimeter, 5°C/min, air atmosphere, 25-1000°C) the mineral composition of the soils was evaluated. Regarding major aroma compounds in grape berries and wine, the concentrations of organic acids (tartaric-, acetic-, succinic-, malic-, lactic acid), methanol, ethanol, glycerine, glucose and fructose were determined by high performance liquid chromatography (Shimadzu LC-20 HPLC equipment with DAD and RID detection). The density, titratable acidity, pH and total extractive

  1. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc

    Directory of Open Access Journals (Sweden)

    Florian Lacroux

    2008-09-01

    Significance and impact of the study: Vine nitrogen deficiency can negatively impact on grape aroma potential. Soil nitrogen application can increase vine nitrogen status, but it has several drawbacks: it increases vigour and enhances Botrytis susceptibility. This study shows that foliar N and foliar N + S applications can improve vine nitrogen status and enhance aroma expression in Sauvignon blanc wines without the negative impact on vigour and Botrytis susceptibility. Although this study was carried out on Sauvignon blanc vines, it is likely that foliar N or foliar N + S applications will have similar effects on other grapevine varieties containing volatile thiols (Colombard, Riesling, Petit Manseng and Sémillon.

  2. The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders.

    Science.gov (United States)

    Olas, Beata

    2017-09-01

    Diet and nutrition have an important influence on the prophylaxis and progression of cardiovascular disease; one example is the inhibition of blood platelet functions by specific components of fruits and vegetables. Garlic, onion, ginger, dark chocolate and polyunsaturated fatty acids all reduce blood platelet aggregation. A number of fruits contain a range of cardioprotective antioxidants and vitamins, together with a large number of non-nutrient phytochemicals such as phenolic compounds, which may possess both antioxidant properties and anti-platelet activity. Fresh berries and berry extracts possess high concentrations of phenolic compounds, i.e. phenolic acid, stilbenoids, flavonoids and lignans. The aim of this review article is to provide an overview of current knowledge of the anti-platelet activity of berries, which form an integral part of the human diet. It describes the effects of phenolic compounds present in a number of berries, i.e. black chokeberries - aronia berries (Aronia melanocarpa), blueberries (Vaccinium myrtillus), cranberries (Vaccinium sect. Oxycoccus), sea buckthorn berries (Hippophae rhamnoides) and grapes (Vitis), as well as various commercial products from berries (i.e. juices), on platelets and underlying mechanisms. Studies show that the effects of berries on platelet activity are dependent on not only the concentrations of the phenolic compounds in the berries or the class of phenolic compounds, but also the types of berry and the form (fresh berry, juice or medicinal product). Different results indicate that berries may play a role in the prevention of cardiovascular disorders, but the development of well-controlled clinical studies with berries is encouraged.

  3. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2009-01-01

    The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y...

  4. Reguladores vegetais influenciando número e tamanho de células das bagas da uva 'Niagara Rosada' Plant regulators influencing number and size of berry cells of 'Niagara Rosada' grapes

    Directory of Open Access Journals (Sweden)

    Cássia Regina Yuriko Ide Vieira

    2008-03-01

    Full Text Available O objetivo do trabalho foi avaliar o efeito do ácido giberélico, thidiazuron e quinmerac na anatomia das bagas de uvas cultivar 'Niagara Rosada', provenientes de vinhedo localizado em Dourados - MS. Realizaram-se três experimentos. No primeiro ensaio, utilizaram-se soluções aquosas de ácido giberélico (AG3 0; 15; 30; 45; 60; 75 e 90 mg.l-1, aplicadas no florescimento e repetidas aos 14 dias após (E1E2 e, no outro tratamento, o mesmo composto e doses aplicados uma única vez aos 14 dias após o florescimento (E2; no segundo experimento, thidiazuron (TDZ 0; 5; 10; 15; 20; 25 e 30 mg.l-1, aplicados quatro dias antes da antese e repetidos aos seis dias após o florescimento (E1E2; e no outro tratamento, o mesmo composto e doses aplicados uma única vez aos seis dias após o florescimento (E2; e, no terceiro, quinmerac 0; 10; 20; 30; 40; 50 e 60 mg.l-1, aplicados no florescimento e repetidos aos 14 dias após (E1E2, e, no outro tratamento, o mesmo composto e doses aplicados uma única vez, 14 dias após o florescimento (E2. As variáveis avaliadas foram: número e dimensões das células das bagas. Pelos resultados obtidos, verificou-se que duas aplicações de ácido giberélico, thidiazuron e quinmerac promoveram a divisão celular, enquanto a expansão celular foi observada com uma única aplicação de thidiazuron e quinmerac.The objective of this investigation was to evaluate the effect of the gibberellic acid, thidiazuron and quinmerac on grape berries anatomy of grapevine 'Niagara Rosada', in a vineyard located in Dourados - MS. Three trials were carried out. In the first trial, it was used gibberellic acid (AG3 0, 15, 30, 45, 60, 75 and 90 mg.l-1, applied in the bloom and repeated 14 days later (E1E2 and in the other treatment, the same compound and doses applied only once, 14 days after the bloom (E2; in the second experiment, thidiazuron (TDZ 0, 5, 10, 15, 20, 25 and 30 mg.l-1, applied four days before antesis and repeated six days

  5. Effect of commercial enzymes on berry cell wall deconstruction in the context of intravineyard ripeness variation under winemaking conditions

    DEFF Research Database (Denmark)

    Gao, Yu; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2016-01-01

    Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking...... positively influence the consistency of winemaking and provides a foundation for further research into the relationship between grape berry cell wall architecture and enzyme formulations....

  6. Influence of skin hardness on dehydration kinetics of wine grapes.

    Science.gov (United States)

    Rolle, Luca; Caudana, Alberto; Giacosa, Simone; Gerbi, Vincenzo; Río Segade, Susana

    2011-02-01

    Knowledge of the influence of initial mechanical properties on the evolution of the weight loss of berries through the drying process is scarce. Therefore, the main purpose of this work was to investigate the effect of skin hardness at two different physiological stages of off-vine drying kinetics of grapes. Skin hardness was evaluated as the berry skin-break force parameter, measured by the texture analysis test. The decrease of berry weight as a function of the drying time was linear, indicating that the drying rates were constant within each cultivar studied (Moscato bianco and Erbaluce), and for each ripening stage and berry skin hardness. The drying rates decreased as berry skin hardness increased for the ripest grapes in the cultivars studied. The study allowed the assessment of the correlation between the skin hardness of fresh berries and the weight loss determined for different drying days. 2010 Society of Chemical Industry.

  7. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).

    Science.gov (United States)

    de la Cerda-Carrasco, Aarón; López-Solís, Remigio; Nuñez-Kalasic, Hugo; Peña-Neira, Álvaro; Obreque-Slier, Elías

    2015-05-01

    Phenolic compounds are widely distributed secondary metabolites in plants usually conferring them with unique taste, flavour and health-promoting properties. In fruits of Vitis vinifera L., phenolic composition is highly dependent on grape variety. Differential extraction of these compounds from grapes during winemaking is critically associated with wine quality. By-products of winemaking, such as grape pomace, can contain significant amounts of polyphenols. However, information concerning the varietal effect on wine grape pomace is scarce. In this study, pomaces from Sauvignon Blanc (SB), Chardonnay (CH), Cabernet Sauvignon (CS) and Carménère (CA) grape varieties were characterized spectroscopically and by HPLC-DAD analysis. White grape pomaces (SB and CH) presented higher antioxidant capacities and higher contents of total phenols and total proanthocyanidins compared with red grape pomaces (CS and CA), whereas the latter showed much higher anthocyanin levels and colour intensities. Concentrations of monomeric proanthocyanidins and low-molecular-weight phenols in the four grape pomace varieties were significantly different. Grape pomaces from four varieties showed high but diverse contents of polyphenols and antioxidant capacities. Thus grape pomaces represent an important potential source of polyphenols, which could be useful for nutritional and/or pharmacological purposes. © 2014 Society of Chemical Industry.

  8. The effect of grape ripening stage on red wine color

    Directory of Open Access Journals (Sweden)

    Ana Belén Bautista-Ortín

    2006-03-01

    Full Text Available The physico-chemical and chromatic characteristics of grapes (Vitis vinifera L. cv. Monastrell harvested at six different degree of ripeness (from August 16 to October 24, 2002 and that of the wines obtained from these grapes have been studied. The grape anthocyanins content (mg/kg of berry fresh weight was maximum in those grapes harvested on September 11 and 16 (804.1 and 822.6 mg/kg, respectively and decreased for grapes harvested in October. However, the results showed that the grapes with the highest anthocyanin concentration did not lead to the highest colored wines. The wines elaborated from grapes harvested on October 16 (671.9 mg of anthocyanins per kg of berry fresh weight had the best chromatic characteristics and better withstood aging in the bottle; the extent of cell wall degradation in overly matured grapes probably facilitated the extraction of phenolic compounds from skins. However, the chromatic quality of wines made from grapes harvested one week later (October 24, the most mature grapes was lower than that from October 16, with lower color intensity (13%lower in the wine elaborated from grapes harvested in October 24 and a percentage of yellow color 6 % higher in this wine.

  9. Caracterização fenológica e produtiva das videiras 'Cabernet Sauvignon' e 'Alicante' (Vitis vinifera L. produzidas fora de época, no norte do Paraná Phenological and productive characterization out of season of 'Cabernet Sauvignon' and 'Alicante' (Vitis vinifera L. grapevines in the north of Paraná

    Directory of Open Access Journals (Sweden)

    Bruno da Silva Jubileu

    2010-06-01

    Full Text Available Este trabalho objetivou caracterizar a fenologia e a produção das videiras 'Cabernet Sauvignon' e 'Alicante' (Vitis vinifera L. produzidas fora de época, no norte do Paraná, para a elaboração de vinho tinto. A área experimental foi instalada em uma propriedade comercial pertencente à Vinícola Intervin®, em Maringá-PR. As videiras foram conduzidas em latada sobre o 'IAC 766 Campinas'. As avaliações tiveram início a partir das podas de frutificação para a produção fora de época, durante dois anos consecutivos, realizadas no fim de janeiro de 2007 e 2008, onde foram utilizadas 20 plantas representativas de cada variedade. Avaliou-se a duração, em dias, das principais fases fenológicas das videiras, bem como estimadas a produção por planta e a produtividade de cada variedade. A evolução de maturação das uvas foi determinada pela análise semanal do teor de sólidos solúveis totais (SST, acidez titulável (AT e índice de maturação (SST/AT. A duração média do ciclo da videira 'Cabernet Sauvignon' foi de 128 dias, enquanto da 'Alicante' foi de 131 dias, sendo consideradas tardias ambas as variedades para a região norte do Paraná. As estimativas da produção por planta e produtividade foram de 12,4 kg e 22,3 t.ha-1 para a uva 'Cabernet Sauvignon' e 11,9 kg e 19,8 t.ha-1 para a 'Alicante'. Os teores médios de SST, AT e SST/AT foram de 19,2 °Brix, 1,8% de ácido tartárico e 11,6 para a uva 'Cabernet Sauvignon', e 19,1 °Brix, 1,3% de ácido tartárico e 14,1, para a 'Alicante'. Ambas as variedades apresentam elevadas produtividades e matéria-prima adequada para processamento quando produzidas fora de época no norte do Paraná.This study aimed to characterize the phenology and the production of 'Cabernet Sauvignon' and 'Alicante' (Vitis vinifera L. grapes produced out of season in the north of Paraná State for red wine elaboration. The experimental area was located in a commercial property belonging to the

  10. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. I

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The distribution of photosynthetates, originating in leaves of different parts of the shoot of Vitis vinifera L. cv Cabernet Sauvignon at berry set, pea size, veraison and ripeness stages, was investigated. Specific photosynthetic activity of the 14 CO 2 -treated leaves gradually decreased during the season. Photosynthetates were hoarded in the leaves at berry set, but were increasingly diverted to the bunches after that. The apical leaves displayed the highest photosynthesis. The leaves opposite and below the bunches accumulated very little photosynthetates, especially from veraison to ripeness. Redistribution of photosynthetates among the basal, middle and apical leaves was generally very restricted at all stages. Multidirectional distribution from the site of application of 14 CO 2 occurred at berry set stage, while from pea size to ripeness photosynthetates were mainly translocated basipetally. Highest accumulation in the bunches occurred at veraison, while the basal leaves were primarily used to nourish the bunch

  11. Comparison of total polyphenols content and antioxidant potential of wines from ‘Welschriesling’ and ‘Sauvignon Blanc’ varieties during ageing on fine lees

    Directory of Open Access Journals (Sweden)

    Jasna Lužar

    2016-10-01

    Full Text Available Phenolic compounds are key components of wine, since they contribute to wine characteristics such as colour, astringency and bitterness. They also act like antioxidants, with mechanisms involving free-radical scavenging that could prevent cardiovascular diseases and cancer. The aim of the present work was to compare the obtained results of total polyphenols content and antioxidant potential (AOP of several white wines (welschriesling and sauvignon blanc during ageing on fine lees. The total polyphenols content decreased in average for 16.1 % in welschriesling wines and for 18.7 % in sauvignon blanc wines in the period of three months of wine ageing on lees. In the same period AOP of wines decreased in average for 16.0 % in welschriesling wines and for 8.0 % in sauvignon blanc wines. Expectedly, the samples with added oak chips in grape must had higher antioxidant potential than others.

  12. Characterisation of Vranec, Cabernet sauvignon and Merlot wines based on their chromatic and anthocyanin profiles

    Directory of Open Access Journals (Sweden)

    Dimitrovska Maja

    2013-01-01

    Full Text Available Wines of three different grape varieties, Vranec, Cabernet Sauvignon and Merlot were examined for their characterisation in terms of anthocyanin and chromatic profiles, total polyphenols and antioxidant potential. Total, monomeric, polymeric and copigmented anthocyanins were determined by spectrophotometry and the individual anthocyanin compounds were quantified using HPLC-DAD. Chromatic profile was evaluated according to colour density, hue, % red, % blue, % yellow and brilliance (% dA. The established data were submitted to analysis of variance and principle component analysis in order to evaluate their potential for differentiation of wines according to variety and vintage. Vranec wines have shown distinctive characteristics, with the highest content of anthocyanins and values of colour intensity, % red and % dA, compared to the other two studied varieties. The content of petunidin-3-glucoside, peonindin-3-glucoside and anthocyanin acetates were established as possible markers for differentiation of Vranec wines from Cabernet Sauvignon and Merlot wines. However, none of the assayed parameters could be used for differentiation of Cabernet Sauvignon from Merlot wines. It was observed that wine age limits successful classification of the wines by variety according to anthocyanins. The chromatic parameters allowed distinguishing of young (aged up to 1 year from old Vranec wines.

  13. Berry Phenolic Antioxidants – Implications for Human Health?

    Science.gov (United States)

    Olas, Beata

    2018-01-01

    Antioxidants present in the diet may have a significant effect on the prophylaxis and progression of various diseases associated with oxidative stress. Berries contain a range of chemical compounds with antioxidant properties, including phenolic compounds. The aim of this review article is to provide an overview of the current knowledge of such phenolic antioxidants, and to discuss whether these compounds may always be natural gifts for human health, based on both in vitro and in vivo studies. It describes the antioxidant properties of fresh berries (including aronia berries, grapes, blueberries, sea buckthorn berries, strawberries and other berries) and their various products, especially juices and wines. Some papers report that these phenolic compounds may sometimes behave like prooxidants, and sometimes demonstrate both antioxidant and prooxidant activity, while others note they do not behave the same way in vitro and in vivo. However, no unwanted or toxic effects (i.e., chemical, hematological or urinary effect) have been associated with the consumption of berries or berry juices or other extracts, especially aronia berries and aronia products in vivo, and in vitro, which may suggest that the phenolic antioxidants found in berries are natural gifts for human health. However, the phenolic compound content of berries and berry products is not always well described, and further studies are required to determine the therapeutic doses of different berry products for use in future clinical studies. Moreover, further experiments are needed to understand the beneficial effects reported so far from the mechanistic point of view. Therefore, greater attention should be paid to the development of well-controlled and high-quality clinical studies in this area. PMID:29662448

  14. Sunlight Modulates Fruit Metabolic Profile and Shapes the Spatial Pattern of Compound Accumulation within the Grape Cluster.

    Science.gov (United States)

    Reshef, Noam; Walbaum, Natasha; Agam, Nurit; Fait, Aaron

    2017-01-01

    Vineyards are characterized by their large spatial variability of solar irradiance (SI) and temperature, known to effectively modulate grape metabolism. To explore the role of sunlight in shaping fruit composition and cluster uniformity, we studied the spatial pattern of incoming irradiance, fruit temperature and metabolic profile within individual grape clusters under three levels of sunlight exposure. The experiment was conducted in a vineyard of Cabernet Sauvignon cv. located in the Negev Highlands, Israel, where excess SI and midday temperatures are known to degrade grape quality. Filtering SI lowered the surface temperature of exposed fruits and increased the uniformity of irradiance and temperature in the cluster zone. SI affected the overall levels and patterns of accumulation of sugars, organic acids, amino acids and phenylpropanoids, across the grape cluster. Increased exposure to sunlight was associated with lower accumulation levels of malate, aspartate, and maleate but with higher levels of valine, leucine, and serine, in addition to the stress-related proline and GABA. Flavan-3-ols metabolites showed a negative response to SI, whereas flavonols were highly induced. The overall levels of anthocyanins decreased with increased sunlight exposure; however, a hierarchical cluster analysis revealed that the members of this family were grouped into three distinct accumulation patterns, with malvidin anthocyanins and cyanidin-glucoside showing contrasting trends. The flavonol-glucosides, quercetin and kaempferol, exhibited a logarithmic response to SI, leading to improved cluster uniformity under high-light conditions. Comparing the within-cluster variability of metabolite accumulation highlighted the stability of sugars, flavan-3-ols, and cinnamic acid metabolites to SI, in contrast to the plasticity of flavonols. A correlation-based network analysis revealed that extended exposure to SI modified metabolic coordination, increasing the number of negative

  15. Effect of sodium chloride on the growth and fruiting of Cabernet Sauvignon vines

    Energy Technology Data Exchange (ETDEWEB)

    Hawker, J.S.; Walker, R.R.

    1978-01-01

    Sodium chloride was supplied to rooted cuttings of Vitis vinifera cv Cabernet Sauvignon grown in a porous growth medium at concentrations of 0, 20, 50 and 75 mM. Shoot and leaf growth and berry set and development were reduced by NaCl, the severity of the effects depending on both NaCl concentration and the age of the plants receiving the treatment. Shoots were not affected by 20 mM NaCl supplied 10 days after flowering but 50 and 75 mM NaCl caused severe stunting of shoots and 75 mM NaCl had a marked effect on berry growth and development. When NaCl was supplied to vines 10 days before flowering, 20, 50 and 75 mM NaCl inhibited shoot growth and reduced berry size and sugar content. Although NaCl caused a decrease in the rate of growth of both leaves and berries, no changes in invertase or pectin methylesterase activities were found in these organs from plants supplied with NaCl.

  16. Transcriptional analysis of late ripening stages of grapevine berry

    Science.gov (United States)

    2011-01-01

    Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7), harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl

  17. Transcriptional analysis of late ripening stages of grapevine berry

    Directory of Open Access Journals (Sweden)

    Guillaumie Sabine

    2011-11-01

    Full Text Available Abstract Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7, harvest (TH, and 10-days after harvest (TH+10. Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S

  18. Phenolic Content of Blends of Tempranillo with Graciano or Cabernet Sauvignon Wines Produced in Spain

    Directory of Open Access Journals (Sweden)

    María Monagas

    2006-01-01

    Full Text Available The effect of Graciano (GRA, Spanish valuable variety of limited production in Mediterranean countries vs. Cabernet Sauvignon (CS, world-wide known French variety on the phenolic content [total polyphenols (TP, total anthocyanins (TA, catechins (CAT and proanthocyanidins (PRO] of Tempranillo wines (TEM-BASE, a largely cultivated Spanish variety was studied in blends prepared with 25 and 10 % of each variety after 4, 6, 9, 16.5 and 23 months of bottle ageing. Significant differences among wines (blends and base wine according to the »blend« factor were observed for CAT and TA. Besides, although the evolution trend during wine ageing of different families of phenolic compounds studied was similar in the blends and base wine, different blends presented a faster anthocyanin disappearance kinetics than the base wine, probably due to their higher CAT content, which may favour the progress of certain anthocyanin condensation reactions during ageing in the bottle. This effect was slightly more pronounced in the TEM-GRA blends than in the TEM-CS ones. A further study of the phenolic composition of the monovarietal wines used for blending, as well as of the grapes (skins and seeds from which these wines were elaborated, revealed that the blending effect on CAT could be associated with higher concentration of these compounds in Graciano and Cabernet Sauvignon grape seeds in comparison with Tempranillo. Finally, the findings of this work scientifically confirm that, in terms of the phenolic content, Graciano wines possess properties similar to Cabernet Sauvignon for blending with Tempranillo.

  19. Pruning affects the vegetative balance of the wine grape (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Pedro José Almanza-Merchán

    2014-08-01

    Full Text Available Grape cultivation for wine production at altitudes between 2,200 and 2,600 m a.s.l. started in the department of Boyaca in 1982. Quality wines are produced by the AinKarim Vineyard in Ricaurte High. Wine grapes have to possess suitable organoleptic compounds at harvest in order to guarantee quality grape must that can be converted into wine. Therefore, it is necessary to maintain a suitable ratio the sources and the sinks and to guarantee production, quality and vegetative sustainability over time, conserving the equilibrium and benefiting the productive potential of the vineyard. The aim of this study was to evaluate the productive and vegetative balance effect in the wine grape varieties Cabernet Sauvignon and Sauvignon Blanc in Sutamarchan-Boyaca, considering different pruning types (short, long, and mixed. A bifactorial, completely random statistical design was used. At the time of harvest, the fruit production and pruned wood were evaluated. The long-pruned vines showed the best behavior and the most balanced source/sink relationship,, while Sauvignon Blanc demonstrated a better productive yield. Meanwhile, the short and mixed prunings had the better values for the Ravaz index (balance between fruit production and vegetative growth, indicating that they are more suitable for the conditions of the region, allowing for sustainability during the productive cycles of the wine grapes.

  20. Response of grape cultivars to nitrogen and phosphorus grown with water harvesting

    International Nuclear Information System (INIS)

    Janat, M.M.; Stroehlein, J.L.; Pessarakli, M.

    1994-01-01

    Two fertilizer studies were conducted on mature vineyards established with a water harvesting system on a White House sandy 10 am (fine, mixed, thermic, Ustollic Haplargid) soil at the University of Arizona Oracle Agricultural Center. In one study, two grape (Vitis viinifera L.) cultivars, 'Cabernet Sauvignon' and 'Sauvignon blanc', were treated with different levels of 15 N and P fertilizer and tested for tissue NO 3 -N and total-P content. In the second study, eleven grape varieties were treated with three levels of N. Tissue samples were analysed for total P and NO 3 -N content, and the ratio of petiole-P to leaf blade-P was determined. When sufficient quantities of both nutrients were provided, N and P interacted positively resulting in increased grape yields. The petiole-P to leaf blade-P ratio correctly monitored the P status of the vines. (author). 20 refs., 6 tabs

  1. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. II

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The effect of partial defoliation of Vitis vinifera L. cv Cabernet Sauvignon on the distribution of photosynthetates, originating in leaves in different positions on the shoot at berry set, pea size, veraison and ripeness stages, was investigated. Partial defoliation (33% and 66%) resulted in a higher apparent photosynthetic effectivity for all the remaining leaves on the shoot. The pattern of distribution of photosynthetates would seem to stay the same between the defoliation treatments. The control vines were found to carry excess foliage. Optimal photosynthetic activity of all the leaves on the vine was therefore not reached

  2. Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp.

    Science.gov (United States)

    Walker, Robert P; Battistelli, Alberto; Moscatello, Stefano; Técsi, László; Leegood, Richard C; Famiani, Franco

    2015-12-01

    Glycolysis from sugars is necessary at all stages of development of grape pericarp, and this raises the question as to why gluconeogenesis from malate occurs. Phosphoenolpyruvate carboxykinase (PEPCK) is required for gluconeogenesis in grape pericarp. In this study we determined the abundance of PEPCK protein and activity in different parts of grape pericarp during its development. Both PEPCK protein and activity were present throughout development, however, in both the skin and the flesh their abundance increased greatly at the start of ripening. This coincided with the onset of the decrease in the malate content of the berry. The location of PEPCK in the pericarp at different stages of development was determined using both immunohistochemistry and dissection. We provide a possible explanation for the occurrence of gluconeogenesis in grape pericarp. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Biodiversity and ochratoxin A profile of Aspergillus section Nigri populations isolated from wine grapes in Cyprus vineyards.

    Science.gov (United States)

    Pantelides, Iakovos S; Aristeidou, Efi; Lazari, Maria; Tsolakidou, Maria-Dimitra; Tsaltas, Dimitris; Christofidou, Maria; Kafouris, Demetris; Christou, Eftychia; Ioannou, Nicolas

    2017-10-01

    The objective of this study was to evaluate the biodiversity of Aspergillus section Nigri populations from Cyprus vineyards by morphological, toxigenic and phylogenetic analysis. Aspergillus section Nigri populations were isolated from grapes of the varieties 'Maratheftiko' and 'Cabernet Sauvignon' originating from six growing regions of Cyprus during 2010 and 2011 years. The isolation frequency of Aspergillus section Nigri from grape samples was 43.3% and a total of 284 isolates were selected for further analyses based on the macroscopic characteristics of black aspergilli. The isolates were characterized by sequencing analysis of the calmodulin gene in order to identify species responsible for ochratoxin A (OTA) production. The phylogenetic analysis showed that the isolates were grouped in three major clusters. The A. tubingensis cluster included 262 isolates (92.25%), the A. niger cluster included 15 isolates identified as A. niger (5.3%) and 6 isolates identified as A. welwitschiae (2.1%). One isolate was classified as A. carbonarius (0.35%) and was grouped in a cluster together with the reference isolates of A. carbonarius, A. sclerotioniger, A. sclerotiocarbonarius and A. ibericus. All the isolates were evaluated for their ochratoxigenic ability by HPLC coupled with a fluorescence detector (HPLC-FLD) and the positive isolates were re-examined using ultra high-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). The Aspergillus carbonarius isolate produced an average quantity of 1436.1 ng OTA/g Czapek Yeast Agar (CYA); From the A. niger strains three isolates (20%) produced OTA and only one isolate from A. welwitschiae (16.7%) was proved ochratoxigenic with toxin production average at 23.9 ng/g and 9.1 ng/g CYA respectively. Grape must samples derived from the collected berries were also analyzed for OTA and none of the samples were found contaminated with the mycotoxin. The results showed that the geographic area and the

  4. Phenol profiles and antioxidant properties of white skinned grapes and their coloured genotypes during growth

    Directory of Open Access Journals (Sweden)

    Shengyang Niu

    2017-01-01

    Full Text Available Anthocyanins are natural pigments that exhibit a wide range of protective effects with potential benefits for human health related to their antioxidant activities. Grape berries are rich anthocyanins, and these compounds have considerable influence on wine quality. However, these pigments are known to only be present in coloured grape berries. In the present study, we investigated three distinctive grapes, in which only a few reports of mutant strains on the skin colour of the grape berry were reported. Anthocyanin and non-anthocyanin phenolic profiles of grape berry skin, pulp, and seeds at different growth stages were analysed using high performance liquid chromatography of flight mass spectrometry (HPLC-ESI-MS/MS. Meanwhile, grape antioxidant properties were evaluated at growth stages, including the early stage, veraison, and mature stage. The results showed that some anthocyanins contents, such as malvidin 3-O-glucoside, are significantly different between white skin grapes and their corresponding coloured genotypes, with high content in coloured but not in white skin grapes. However, other anthocyanins, such as delphinidin 3-O-glucoside, showed no significant differences between white skin grapes and their corresponding coloured genotypes. Moreover, non-anthocyanin phenolic profiles and antioxidant properties, except cultivars Pinot Blanc and Pinot Noir, showed no significant differences between white skin grapes and their corresponding coloured genotypes at any growth stage, including the pulp and seeds. However, significant differences were noted between different cultivars, for example, white-ciputao and Pinot Noir, Pinot Blanc and Muscat Rouge, and coloured-ciputao and Muscat Blanc, showing that the antioxidant capacity was not always in correlation with skin colour of grape berries.

  5. Efeito do porta-enxerto no teor de nutrientes em tecidos da videira "cabernet sauvignon" Effect of rootstock on nutrient content of 'cabernet sauvignon' grapevine tissues

    Directory of Open Access Journals (Sweden)

    Alberto Miele

    2009-12-01

    Full Text Available A nutrição mineral da videira constitui-se em importante fator para a qualidade dos vinhos. Devido a isso, avaliou-se o efeito de porta-enxertos no teor de nutrientes em diferentes tecidos da videira 'Cabernet Sauvignon' (Vitis vinifera L. na Serra Gaúcha. o experimento foi conduzido durante o ciclo vegetativo de 2004/2005, com os porta-enxertos Rupestris du lot, 101-14, 3309, 420A, Kober 5BB, 161-49, So4 e Paulsen 1103, enxertados em 1993 com a cv. 'Cabernet Sauvignon'. o delineamento experimental foi em blocos ao acaso, com oito tratamentos e três repetições, sendo quatro plantas/parcela. Coletaram-se folhas - separando-se os pecíolos dos limbos -, cachos - separando-se as bagas das ráquis - e ramos, os quais foram posteriormente secados em estufa e pesados. Analisaram-se os nutrientes n, P, K, Ca e Mg. os resultados mostram que houve efeito significativo do porta-enxerto nos teores de N, P, K, Ca e Mg no limbo, pecíolo, ráquis e baga da videira 'Cabernet Sauvignon' e que este efeito variou em função do nutriente e do tecido considerado. Entretanto, não houve efeito significativo do porta-enxerto no teor desses nutrientes no ramo da videira. Além disso, a ordem de grandeza do teor dos nutrientes variou em função do tecido avaliado. Assim, os teores de n e de Ca foram maiores no limbo; os de P e K, na ráquis; e o de Mg, no pecíolo.Grapevine mineral nutrition is an important factor influencing wine quality. For this, the effect of rootstocks on the nutrient content in different tissues of 'Cabernet Sauvignon' grapevines (Vitis vinifera L. grown in the Serra Gaúcha region was evaluated. The experiment was carried out during the 2004/2005 vegetative cycle with the rootstocks Rupestris du Lot, 101-14, 3309, 420A, Kober 5BB, 161-49, SO4, and Paulsen 1103. The experimental design was in randomized blocks, with eight treatments, three replicates, four plants/plot. leaves - petioles were separated from the limbs -, clusters - berries

  6. Grape Expectations.

    Science.gov (United States)

    Rye, James A.

    1997-01-01

    Details an investigation concerned with the composition of a grape to illustrate how food and nutrition topics can drive inquiry-oriented science learning. Students design experiments that surround the development of a fictitious new beverage. (DDR)

  7. Determination of major anthocyanin pigments and flavonols in red grape skin of some table grape varieties (Vitis vinifera sp. by high-performance liquid chromatography–photodiode array detection (HPLC-DAD

    Directory of Open Access Journals (Sweden)

    Farida Benmeziane

    2016-09-01

    Significance and impact of the study: To the best of our knowledge, this is the first report on the identification of different anthocyanins and flavonols in berry skin from some red grape varieties largely cultivated in this region of Algeria.

  8. Comparison of analytical methods for prediction of prefermentation nutritional status of grape juice

    OpenAIRE

    Gump, B. H.; Zoecklein, B. W.; Fugelsang, K. C.; Whiton, R. S.

    2002-01-01

    Five methods for evaluating nitrogen status were compared using 70 Cabernet Sauvignon juice samples: nitrogen by o-phthaldialdehyde (NOPA), arginine NOPA, enzymatic ammonia, Formol, and high-performance liquid chromatography (HPLC). Parallel recovery studies using model solutions of various amino acids and ammonia, presented singly and in combination, were also conducted. The results from two fruit-processing methods were compared using immature and mature berries. NOPA measurements were sign...

  9. Evaluation of Tannins and Anthocyanins in Marquette, Frontenac, and St. Croix Cold-Hardy Grape Cultivars

    Directory of Open Access Journals (Sweden)

    Somchai Rice

    2017-09-01

    Full Text Available Cold-hardy grape cultivars have become popular in northern regions. Wines from these cultivars are low in tannins and lighter in color compared to Vitis vinifera. The northern regions are striving to enhance desired ″full body″ and red color qualities in the wine produced from cold-hardy grapes. The objective of this study was to compare tannin and pigment content in skins and seeds of three cold-hardy red grape cultivars, at two time points, from two locations, using the Adams-Harbertson (A-H assay. The A-H assay is based on protein precipitation and spectrophotometry. Total tannin concentrations detected in Frontenac, Marquette, and St. Croix berries, ranged from 0.29 to 0.66 mg/berry catechin equivalents (CE. Bitter seed tannins were most abundant in Marquette berries (0.54 ± 0.66 mg/berry CE. Softer skin tannins were most abundant in St. Croix berries (0.24 ± 0.19 mg/berry CE. Monomeric anthocyanins contributed to over 60% of the total color at pH 4.9 and were highest in St. Croix skins (74.21% of the total color at pH 4.9. Varying amounts of short polymeric pigments and long polymeric pigments were present in grape skins, indicating that pigmented tannins had already formed by harvest. This is the first evaluation of tannins and pigments in Frontenac, Marquette, and St. Croix berries.

  10. Influence of choice of yeasts on volatile fermentation-derived compounds, colour and phenolics composition in Cabernet Sauvignon wine.

    Science.gov (United States)

    Blazquez Rojas, Inmaculada; Smith, Paul A; Bartowsky, Eveline J

    2012-12-01

    Wine colour, phenolics and volatile fermentation-derived composition are the quintessential elements of a red wine. Many viticultural and winemaking factors contribute to wine aroma and colour with choice of yeast strain being a crucial factor. Besides the traditional Saccharomyces species S. cerevisiae, S. bayanus and several Saccharomyces interspecific hybrids are able to ferment grape juice to completion. This study examined the diversity in chemical composition, including phenolics and fermentation-derived volatile compounds, of an Australian Cabernet Sauvignon due to the use of different Saccharomyces strains. Eleven commercially available Saccharomyces strains were used in this study; S. cerevisiae (7), S. bayanus (2) and interspecific Saccharomyces hybrids (2). The eleven Cabernet Sauvignon wines varied greatly in their chemical composition. Nine yeast strains completed alcoholic fermentation in 19 days; S. bayanus AWRI 1375 in 26 days, and S. cerevisiae AWRI 1554 required 32 days. Ethanol concentrations varied in the final wines (12.7-14.2 %). The two S. bayanus strains produced the most distinct wines, with the ability to metabolise malic acid, generate high glycerol concentrations and distinctive phenolic composition. Saccharomyces hybrid AWRI 1501 and S. cerevisiae AWRI 1554 and AWRI 1493 also generated distinctive wines. This work demonstrates that the style of a Cabernet Sauvignon can be clearly modulated by choice of commercially available wine yeast.

  11. FILAMENTOUS FUNGI ON GRAPES IN CENTRAL SLOVAK WINE REGION

    Directory of Open Access Journals (Sweden)

    Ľubomír Rybárik

    2014-02-01

    Full Text Available The concern about filamentous fungi in the vineyards has traditionally been linked to spoilage of grapes due to fungal growth. The aims of this study were to monitor the mycobiota in Central Slovak wine region. The Central Slovak wine region is divided into seven different subregions. In this work we had ten grape samples from seven various wine growing subregions and eight different villages. Five of these samples were from white grape berries and five were from red grape berries. The sample nr. 7 was without chemical protection (interspecific variety and three samples (nr. 8, 9, 10 were from bio-production. In the samples were determined exogenous contamination (direct platting method and endogenous contamination (surface-disinfected grapes. The exogenous mycobiota was determined by the method that each sample of 50 grape berries without visible damage was direct plated on to a DRBC agar medium. In exogenous contamination was detected 17 different genera Alternaria, Arthrinium, Aspergillus, Bipolaris, Botrytis, Cladosporium, Cunninghamella, Epicoccum, Fusarium, Geotrichum, Chaetomium, Mucor, Penicillium, Phoma, Rhizopus, Sordaria, Trichoderma and group Mycelia sterilia in which we included all colony of filamentous fungi that after incubation did not create fruiting bodies necessary for identification to genera level. By the endogenous contamination was each sample of 50 grape berries was surface-disinfected with sodium hypochlorite solution (1% for 1 min, rinsed in sterile distilled water three times and plated onto a DRBC (Dichloran Rose Bengal Chloramphenicol medium, Merck, Germany. The plates were incubated at 25±1 ºC for 7 days in the dark. By the endogenous plating method was identified 15 different genera from all ten samples Alternaria, Arthrinium, Aspergillus, Botrytis, Cladosporium, Epicoccum, Fusarium, Geotrichum, Gelasinospora, Chaetomium, Mucor, Penicillium, Phoma, Rhizopus, Trichoderma and Mycelia sterilia.

  12. A S-cysteine conjugate, precursor of aroma of White Sauvignon

    Directory of Open Access Journals (Sweden)

    Takatoshi Tominaga

    1995-12-01

    Full Text Available 4-mercapto-4-methylpentan-2-one (4-MMP, a strongly odorant compound responsible for the « boxtree » or « broom plant » odour of the Sauvignon wines, can be enzymaticaly released in vitro from an odourless must extract. The enzyme source used is a cell-free extract of the gastrointestinal bacterium Eubacterium limosum. This crude preparation exhibits a cysteine β-lyase activity which requires the presence of pyridoxal phosphate. The release of 4-MMP is inhibited when the substrate is previously treated with N-hydroxysuccimide acetate which reacts with a primary amine. The same bacterial extract is also able to release 4-MMP, pyruvic acid and ammonium, from S-(4-méthylpentan-2-one-L-cysteine. On the other hand, the cleavage of S-(4-méthylpentan-2-oneD,L-homocysteine and S-(4-méthylpentan-2-one- glutathione is very limited. These results suggest that the precursor of 4-MMP in Sauvignon must is a S-cysteine conjugate. Such an aroma precursor in grapes or in other fruits has never been round berore.

  13. Free Radical Scavenging Activity and Anthocyanin Profile of Cabernet Sauvignon Wines from the Balkan Region

    Directory of Open Access Journals (Sweden)

    Blaga Radovanović

    2010-06-01

    Full Text Available The present study is focused on anthocyanin derivatives characterizing the antioxidant activity of Cabernet Sauvignon wines produced from different vineyard regions in the Balkans. These bioactive compounds were quantified with a high performance liquid chromatography (HPLC-diode array detection (DAD method. The antiradical activity was estimated by the ability of the wine to scavenge the stable 2,2`-diphenyl-1-picrylhydrazyl free radical (DPPH·. The results show that the total anthocyanin content varied from 205.88 to 1940.28 mg/L, depending on agroclimatic factors and the enological practices of the corresponding vineyard region. The most prominent antocyanin in all investigated Cabernet Sauvignon wines was malvidin-3-O-monoglucoside, which accounted for 50.57% of total content, followed by its acetyl derivatives, 15.45%, and p-coumaryl derivatives 5.66%. The relationship between the anthocyanin derivatives and free radical scavenging activity is discussed. A high correlation between total anthocyanin content and DPPH· scavenging ability of tested wines was confirmed (r2 = 0.9619. The significant correlations were obtained between antiradical activity and the sum of 3-monoglucoside (r2 = 0.95594, the sum of 3-acetyl-3-glucoside (r2 = 0.9728 and the sum of p-coumaryl-3-glucoside (r2 = 0.8873 of wine samples. It can be concluded that, the anthocyanin composition can be used as biochemical marker for the authenticity of red grape cultivar and their corresponding single-cultivar wine.

  14. Early detection of gray mold in grape using conventional and ...

    African Journals Online (AJOL)

    Botrytis cinerea affects grape quality and yield, and can be difficult to manage due in part to non-symptomatic, quiescent infection in berry development. The aim of this study was to develop a dual system for the detection, isolation and quantification of B. cinerea. After three days of samples replication on the modified ...

  15. Counter-radiation efficacy of Enoviton granules produced from Cabernet Sauvignon wine

    International Nuclear Information System (INIS)

    Fartzov, K.; Hadjiski, L.; Aljakov, M.

    1993-01-01

    Following the accident in the nuclear power station at Chernobyl, a need arose for radionuclide decontamination means capable of being used for a prolonged period of time without any side-effects on the human body. The probability of contamination with radionuclides in such emergencies, combined with external radiation, makes it necessary for the protective agents used to have a favourable effect on the protective force of the organism. The phenol compounds, anthocyanins, are the major plant pigments and are present in considerable amounts in red grapes and wines. Under relevant conditions in plants, phenolics protect hereditary cell mechanisms from mutagenic agents, such as ionising irradiation and UV rays. This ability of plant phenolics directed us towards the creation and use of the anthocyanin preparation Enoviton as a radioprotective means in investigations with animals. The Enoviton preparation was made on the basis of an anthocyanin colouring substance derived from specially isolated and purified anthocyanins from Cabernet Sauvignon wine. (Author)

  16. Influence of Temperature and Carbon Dioxide on Fermentation of Cabernet Sauvignon Must

    Directory of Open Access Journals (Sweden)

    Jan Mavri

    2003-01-01

    Full Text Available In the process of wine fermentation temperature and the amount of carbon dioxide present represent parameters that can be easily monitored and controlled. The influence of variation of the process temperature and the fluxes of additional inlet gaseous carbon dioxide in Saccharomyces bayanus fermentation of Cabernet Sauvignon grape must on the accumulation of biomass and production of metabolites was studied. All experiments with temperature and redox potential control on-line were performed in a 10-litre laboratory stirred tank reactor. Metabolites of Saccharomyces bayanus fermentation comprising higher alcohols (1-propanol, 2-butanol, isoamyl alcohol, as well as reducing sugars, were measured off-line by gas and high pressure liquid chromatography.

  17. Counter-radiation efficacy of Enoviton granules produced from Cabernet Sauvignon wine

    Energy Technology Data Exchange (ETDEWEB)

    Fartzov, K. (National Wine Research and Control Inst., Sofia (Bulgaria)); Hadjiski, L.; Aljakov, M. (Sofia Medical Univ. (Bulgaria))

    1993-01-01

    Following the accident in the nuclear power station at Chernobyl, a need arose for radionuclide decontamination means capable of being used for a prolonged period of time without any side-effects on the human body. The probability of contamination with radionuclides in such emergencies, combined with external radiation, makes it necessary for the protective agents used to have a favourable effect on the protective force of the organism. The phenol compounds, anthocyanins, are the major plant pigments and are present in considerable amounts in red grapes and wines. Under relevant conditions in plants, phenolics protect hereditary cell mechanisms from mutagenic agents, such as ionising irradiation and UV rays. This ability of plant phenolics directed us towards the creation and use of the anthocyanin preparation Enoviton as a radioprotective means in investigations with animals. The Enoviton preparation was made on the basis of an anthocyanin colouring substance derived from specially isolated and purified anthocyanins from Cabernet Sauvignon wine. (Author).

  18. Produção e qualidade da videira 'Superior Seedless' sob restrição hídrica na fase de maturação Production and quality of 'Superior Seedless' grapes under irrigation restrictions during berry maturation

    Directory of Open Access Journals (Sweden)

    Lígia Borges Marinho

    2009-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito das condições de deficit hídrico, na fase de maturação da uva, sobre a produção e qualidade da uva 'Superior Seedless' entre julho e novembro de 2007. O experimento foi realizado em delineamento de blocos ao acaso, com quatro repetições, em arranjo fatorial (3x3 + 1: três épocas de alteração da aplicação das lâminas de irrigação (21, 13 e 5 dias antes da colheita; três lâminas de irrigação (100, 50 e 0% da evapotranspiração da cultura; e um tratamento controle (manejo de irrigação adotado pelo produtor. As épocas de irrigação e as lâminas de irrigação utilizadas influenciaram a firmeza das bagas e a acidez titulável. A interrupção da irrigação, aos 13 ou 21 dias antes da colheita, resultou em produtividade, qualidade de frutos e eficiência do uso da água semelhante às obtidas pelo produtor, assim, pode ser adotada para economia da água de irrigação na Região do Submédio do Vale do São Francisco.The objective this work was to evaluate the effect of water deficit conditions, during the maturation phase of grapes, on the production and quality of the 'Superior Seedless', between July and November of 2007. The experiment was carried out in a randomized block design, with four replicates, in a (3x 3 + 1 factorial arrangement: three times of alteration of the irrigation depths (21, 13 e 5 days before harvest; three irrigation depths (100, 50 e 0% of crop evapotranspiration; and a control treatment, which was the producer's irrigation management scheme. Irrigation timing and depth influenced berry firmness and titrable acidity. The management with cut-off irrigation depths at 13 or 21 days before harvesting and the control had the same yield, grape quality and water use efficiency, and may be adopted to save water for irrigation in the São Francisco Valley region.

  19. ROOTSTOCK-SCION INTERACTION: 1. EFFECT ON THE YIELD COMPONENTS OF CABERNET SAUVIGNON GRAPEVINE

    Directory of Open Access Journals (Sweden)

    ALBERTO MIELE

    Full Text Available ABSTRACT The interaction between rootstock, scion and environment can induce different responses to the grapevine physiology. Thus, the aim of this study was to determine the rootstock effect on the yield components of Cabernet Sauvignon (CS grapevine grown in the Serra Gaúcha viticultural region. The experimental design was completely randomized blocks, with 15 treatments, three replicates and ten vines per plot. The results show that all variables evaluated were significantly affected by the year and the rootstock. The CS/Solferino was among other combinations influenced by the year and had higher significant yield/ vine. Indeed, it was higher than that CS/Rupestris du Lot, CS/101-14 Mgt., CS/3309 C, CS/5BB K, CS/161- 49 C, CS/1103 P. and CS/Isabel. The number of clusters/bud, per burst bud and per vine and the weight of clusters were affected by the rootstock as well. Pruning weight/vine, yield/pruning weight, leaf area/vine, leaf area index and leaf area/fresh fruit weight are variables related to the physiology of grapevine which were also affected by the rootstock. In general, rootstocks had adapted well to the environment where the experiment was carried out, giving vigor and high yield to Cabernet Sauvignon grapevine, which means that they may be used by grape growers in this region. However, the choice of the right rootstock depends on various aspects, such as those related to the soil characteristics, climate conditions, grape varieties, and even clones, and production purposes.

  20. The Berry's connection

    International Nuclear Information System (INIS)

    Le Tourneux, J.

    1989-01-01

    A course on the Berry's connection is presented. The main steps leading to the Berry's discovery are reviewed and the obtained equations are examined. Some applications of Berry's formulation are presented. They include diatomic molecules, dipole-quadrupole interaction in spherical mucleus and diabolic pair transfer. The experimental results presented are the spectrum of the Na 3 molecule, the propagation of photons in an helical optical fiber and the neutron spin rotation. Non-abelian problems and the Aharonow-Anandan phase are discussed [fr

  1. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    Science.gov (United States)

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  2. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals

    Science.gov (United States)

    Georgiev, Vasil; Ananga, Anthony; Tsolova, Violeta

    2014-01-01

    Grape is one of the oldest fruit crops domesticated by humans. The numerous uses of grape in making wine, beverages, jelly, and other products, has made it one of the most economically important plants worldwide. The complex phytochemistry of the berry is characterized by a wide variety of compounds, most of which have been demonstrated to have therapeutic or health promoting properties. Among them, flavonoids are the most abundant and widely studied, and have enjoyed greater attention among grape researchers in the last century. Recent studies have shown that the beneficial health effects promoted by consumption of grape and grape products are attributed to the unique mix of polyphenolic compounds. As the largest group of grape polyphenols, flavonoids are the main candidates considered to have biological properties, including but not limited to antioxidant, anti-inflammatory, anti-cancer, antimicrobial, antiviral, cardioprotective, neuroprotective, and hepatoprotective activities. Here, we discuss the recent scientific advances supporting the beneficial health qualities of grape and grape-derived products, mechanisms of their biological activity, bioavailability, and their uses as nutraceuticals. The advantages of modern plant cell based biotechnology as an alternative method for production of grape nutraceuticals and improvement of their health qualities are also discussed. PMID:24451310

  3. Effects of soil characteristics on grape juice nutrient concentrations and other grape quality parameters in Shiraz

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, Maria Paz

    2017-04-01

    This study investigated the response of grapes to soil properties in the variety Shiraz (SH) cultivated in the Costers de Segre Designation of Origin (NE, Spain). The research was carried out in two areas with differences in vigor, which was examined using the Normalized Difference Vegetation Index (NDVI). Soil properties such as organic matter content, pH, electrical conductivity and nutrients (N, P, K, Ca, Mg, Cu, Zn and Mn) were analysed in the two areas. Soil analyses were limited to the upper 40 cm. Soil N-NO3 was measured in 2M KCl extracts. Assimilable phosphorus was analysed by extraction with 0.5 M NaHCO3 at pH 8.5 using the Olsen method. The available K, Ca and Mg were evaluated in hemaaxinecobalt trichloride extracts and the available fraction of Cu, Zn, Mn and Fe in DTPA- trietanolamine extracts, by spectroscopy atomic emission/absorption. Berry grapes were collected at maturity. Nutrients in grape juice (K, Ca, Mg Cu, Zn, Mn and Fe) were determined after a microwave hydrogen peroxide digestion in a closed vessel microwave digestion system and measured by spectroscopy. Other grape properties that determine grape quality such as pH, berry weight and sugar content were analysed using the methods proposed by the OIV. Differences in soil properties were observed between plots, which determined the differences in vigour. The vines with lower vigour were grown in the soils with higher pH, electrical conductivity and silt content, which had in addition higher Ca, Mg and K available levels as well as higher levels of Fe and Mn than the soil in which vines had higher vigour. However, the available fraction of Cu and Zn was smaller. Similar differences in nutrient concentration in the berry were observed for all nutrients except for Cu. Grape juice pH and total soluble solids (°Brix) were higher in the most vigorous vines. However, the differences in berry weight and total acidity at ripening were not significant. Keywords: acidity; berry weight; nutrients; p

  4. 75 FR 77561 - Regulations Issued Under the Export Grape and Plum Act; Revision to the Minimum Requirements

    Science.gov (United States)

    2010-12-13

    ... amount of product sold and an increase in returns to producers, shippers, exporters, and carriers... additional 2 percent tolerance for sealed berry cracks on the Exotic grape variety. This action was... minimum size and quality requirements for export shipments of any variety of vinifera species table grapes...

  5. The impact of cluster thinning on fertility and berry and wine composition of 'Blauer Portugieser' (Vitis vinifera L. grapevine variety

    Directory of Open Access Journals (Sweden)

    Jan Reščič

    2015-12-01

    Full Text Available Aim: Two different yield reductions based on cluster thinning (CT were performed to determine their impact on vine growth, yield, and grape and wine composition of 'Blauer Portugieser' grapevine variety. Methods and results: Two levels of cluster thinning (limited CT1 – 20-30 % and severe CT2 – 40-50 % cluster reduction were applied at the pea-size berry (BBCH 75 phenological stage in 2007, 2008 and 2011. The potential impact of CT was determined by measurements of vine growth and fertility potential, berry weight, berry colour, soluble solids content, titratable acidity, pH and total phenolics. Additionally, for the first time, individual phenolic compounds were identified and quantified in berry skin and wine by HPLC-MS. In general, CT of 'Blauer Portugieser' significantly decreased titratable acidity in grape and wine, and increased pH and chromatic parameters in grape and alcohol content and volatile acidity in wine. A significant decrease in yield per vine (of 0.92 kg of grape/vine, together with an increase in soluble solids (of 2.8 °Brix in grape and pH and total extract content in wine was only observed in severe CT (CT2. Furthermore, CT2 significantly increased the content of total anthocyanins, flavonols and hydroxycinnamic acids, but not total flavanols, in grape and wine. CT2 significantly increased the content and proportion of p-coumaroyl pentose in grape and wine, catechin in grape, epicatechin in wine, quercetin-3-glucuronide (the main flavonol in 'Blauer Portugieser' in grape and wine, the content of myricetin-3-glucoside in grape, and the content of 3-glucosides of laricitrin, myricetin and quercetin in wine. Finally, CT2 increased the content and the proportion of 3-glucosides of delphinidin, petunidin and peonidin but decreased the proportion of malvidin-3-glucoside in grape and wine. Conclusion: A significant impact on yield and grape and wine composition was observed, particularly in the CT2 treatment, in which the

  6. Filamentous fungi associated with natural infection of noble rot on withered grapes.

    Science.gov (United States)

    Lorenzini, M; Simonato, B; Favati, F; Bernardi, P; Sbarbati, A; Zapparoli, G

    2018-05-02

    The effects of noble rot infection of grapes on the characteristics of different types of wine, including Italian passito wine, are well known. Nevertheless, there is still little information on filamentous fungi associated with noble-rotten grapes. In this study, withered Garganega grapes for passito wine production, naturally infected by noble rot, were analyzed and compared to sound grapes. Skin morphology and fungal population on berry surfaces were analyzed. Scanning electron microscopy analysis revealed microcracks, germination conidia and branched hyphae on noble-rotten berries. Penicillium, Aureobasidium and Cladosporium were the most frequent genera present. Analysis of single berries displayed higher heterogeneity of epiphytic fungi in those infected by noble-rot than in sound berries. Penicillium adametzoides, Cladosporium cladospoirioides and Coniochaeta polymorpha were recovered. These, to the best of our knowledge, had never been previously isolated from withered grapes and, for C. polymorpha, from grapevine. This study provided novel data on noble rot mycobiota and suggests that fungi that co-habit with B. cinerea could have an important role on grape and wine quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    Science.gov (United States)

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  8. Assessing the aromatic potential of Cabernet Sauvignon and Merlot musts used to produce rose wine by assaying the cysteinylated precursor of 3-mercaptohexan-1-ol.

    Science.gov (United States)

    Murat, M L; Tominaga, T; Dubourdieu, D

    2001-11-01

    The development of a method for assaying S-3-(hexan-1-ol)-L-cysteine, the cysteinylated precursor of 3-mercaptohexan-1-ol (P-3MH), in must has made it possible to study its impact on the aromatic potential of Merlot and Cabernet Sauvignon grape varieties used to produce rose wines in Bordeaux. The original feature of this method is the purification of very small volumes of must (500 microL) containing P-3MH by affinity chromatography and gas-phase chromatography coupled with mass spectrometry of the purified precursor in trimethylsilylated derivative form. Assays of the cysteinylated precursor in Merlot and Cabernet Sauvignon grapes showed that it was mainly located in the grape skins (60%). Prolonged juice-skin contact increased the must's P-3MH content, and this phenomenon was more marked at higher temperatures. Assessment of the aromatic potential of must used to produce rose wines by chemical analysis of an S-cysteine conjugate is mentioned for the first time.

  9. Comparing Wild American Grapes with Vitis vinifera: A Metabolomics Study of Grape Composition.

    Science.gov (United States)

    Narduzzi, Luca; Stanstrup, Jan; Mattivi, Fulvio

    2015-08-05

    We analyzed via untargeted UHPLC-ESI-Q-TOF-MS the metabolome of the berry tissues (skin, pulp, seeds) of some American Vitis species (Vitis cinerea, Vitis californica, Vitis arizonica), together with four interspecific hybrids, and seven Vitis vinifera cultivars, aiming to find differences in the metabolomes of the American Vitis sp. versus Vitis vinifera. Apart from the known differences, that is, more complex content of anthocyanins and stilbenoids in the American grapes, we observed higher procyanidin accumulation (tens to hundreds of times) in the vinifera skin and seeds in comparison to American berries, and we confirmed this result via phloroglucinolysis. In the American grapes considered, we did not detect the accumulation of pleasing aroma precursors (terpenoids, glycosides), whereas they are common in vinifera grapes. We also found accumulation of hydrolyzable tannins and their precursors in the skin of the wild American grapes, which has never been reported earlier in any of the species under investigation. Such information is needed to improve the design of new breeding programs, lowering the risk of retaining undesirable characteristics in the chemical phenotype of the offspring.

  10. Proteome analysis of muscadine grape leaves

    Directory of Open Access Journals (Sweden)

    Sheikh M Basha

    2009-04-01

    Full Text Available Sheikh M Basha1, Ramesh Katam1, Hemanth Vasanthaiah1, Frank Matta21Center for Viticulture and Small Fruit Research, Florida A and M University, Tallahassee, FL, USA; 2Plant and Soil Science Department, Mississippi State University, Mississippi State, MS, USAAbstract: Muscadine grapes are native to the southeastern United States and are used for making wine and consumed as fresh fruit. Grape berries, as ‘sink organs,’ rely on the use of available carbohydrate resources produced by photosynthesis to support their development and composition. A high throughput two-dimensional gel electrophoresis (2-DE was conducted on muscadine (Vitis rotundifolia grape leaf proteins to document complexity in their composition and to determine protein identity and function for enhancing photosynthetic efficiency of muscadine grape. 2-DE resolved muscadine leaf proteins into >258 polypeptides with pIs between 3.5 and 8.0 and molecular weight between 12,000 to 15,0000 Daltons. The consistently expressed proteins were excised and subjected to sequencing. Homology search of protein sequences showed 84% identity with Viridi plantae database. Identity of some of these proteins included RuBisCO, glutamine synthetase, pathogenesis-related protein, glyoxisomal malate dehydrogenase, ribonucleoprotein, chloroplast precursor, oxygen evolving enhancer protein. Comparative analysis of 10 muscadine cultivars showed quantitative differences in expression of 39 polypeptides among these genotypes. The results suggested that the polypeptide composition of muscadine grape leaf is complex, and polypeptide number and amount vary widely among muscadine genotypes, and these variations may be responsible for differences in their physiology, berry and stress tolerance characteristics.Keywords: grapevine, leaves, muscadine, proteins, sequencing, 2-DE

  11. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L. Cultivar.

    Directory of Open Access Journals (Sweden)

    Olufemi J Alabi

    Full Text Available Grapevine leafroll disease (GLD is an economically important virus disease affecting wine grapes (Vitis vinifera L., but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.

  12. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.

    Science.gov (United States)

    Alabi, Olufemi J; Casassa, L Federico; Gutha, Linga R; Larsen, Richard C; Henick-Kling, Thomas; Harbertson, James F; Naidu, Rayapati A

    2016-01-01

    Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.

  13. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar

    Science.gov (United States)

    Gutha, Linga R.; Larsen, Richard C.; Henick-Kling, Thomas; Harbertson, James F.; Naidu, Rayapati A.

    2016-01-01

    Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease. PMID:26919614

  14. Effect of postharvest dehydration on the composition of pinot noir grapes (Vitis vinifera L.) and wine.

    Science.gov (United States)

    Moreno, Jorge J; Cerpa-Calderón, Fiorella; Cohen, Seth D; Fang, Yu; Qian, Michael; Kennedy, James A

    2008-08-15

    This study was conducted in order to improve our understanding of how phenolics and aroma compounds change in wine grapes during postharvest dehydration. Pinot noir grapes grown in the Willamette Valley of Oregon were harvested at 22.0 and 24.0°Brix. Grapes harvested at 22.0°Brix were divided into three equal lots with one lot immediately used for wine production, and the remaining two lots placed inside an air tunnel with an air speed of 1.0-1.8ms(-1), 38% relative humidity and a temperature of 22°C. The soluble solids content and weight loss were measured daily and wines were made from grapes when they reached 24.8 and 26.7°Brix. The soluble solids of grapes increased about 1°Brix per day; therefore, on the third and fourth day the berries reached the desired concentration; weight loss was 14 and 16%, respectively. Results from berry phenolic analysis indicated that per berry anthocyanin amount remained unchanged during dehydration. The composition of proanthocyanidins isolated from berries changed during dehydration. Volatile compounds in wines made from dehydrated grapes contained more terpenes and norisoprenoids (β-ionone, β-damascenone) when compared to wine made from the original fruit. Wines made from increasingly dehydrated grapes tended to resemble the composition and flavour profile of wines made from grapes left on the vine (i.e. with extended ripening). The results of this study suggest that postharvest flavour changes consistent with changes during fruit ripening can occur in grapes when harvested early and allowed to dehydrate under controlled conditions prior to fermentation. Copyright © 2008 Elsevier Ltd. All rights reserved.

  15. Características dos cachos e bagas de uvas ‘Centennial Seedless’ tratadas com thidiazuron e ácido giberélico / Characteristics of clusters and berries of ‘Centennial Seedless’ table grapes treated with thidiazuron and giberellic acid

    Directory of Open Access Journals (Sweden)

    Willian Rodrigues Macedo

    2010-12-01

    Full Text Available Com o objetivo de avaliar os efeitos das doses de ácido giberélico (AG3 e do thidiazuron (TDZ nas características dos cachos e bagas da uva ‘Centennial Seedless’, um experimento foi realizado em um vinhedo comercial em São Miguel Arcanjo (SP. Os tratamentos consistiram de AG3 nas doses de 0 e 5 mg L-1 associados às doses de 0, 2, 4, 6, 8 e 10 mg L-1 de TDZ, sendo estes reguladores vegetais aplicados aos 15 dias após o pleno florescimento, via pulverização direta nos cachos. Foram avaliadas as variáveis diâmetro do pedicelo, índice de esbagoamento, massa, comprimento e largura dos cachos, bagas e engaços; teores de sólidos solúveis, pH, acidez titulável e relação SS/AT do mosto. A dose de 8 mg L-1 de TDZ associada a 5 mg L-1 de AG3, resultou em maiores médias de massa, comprimento e largura dos cachos, sendo que esta interação não alterou o pH, a relação SS/AT e o índice de esbagoamento dos cachos. O TDZ promoveu aumentos lineares sobre a massa e largura das bagas e reduziu os teores de sólidos solúveis, sendo que do ponto de vista agronômico a dose de 8 mg L-1, apresentou-se mais promissora para uso comercial.Abstract With the objective of evaluating the effects of gibberellic acid (GA3 and thidiazuron (TDZ on the physicochemical characteristics of ‘Centennial Seedless’ table grapes a trial was carried out in a commercial vineyard located in São Miguel Arcanjo (SP, Brazil. The treatments consisted of GA3 on the doses at 0 and 5 mg L-1 associated to 0, 2, 4, 6, 8 and 10 mg L-1 of thidiazuron, applied 15 days after full bloom, sprayed directly to the clusters. The following variables were evaluated: pedicel diameter, drop index, weight, length and width of clusters, berries and rachis; soluble solutes content, pH, titratable acidity and ratio SS/TA of the juice. The dose at 8 mg L-1 of TDZ associated to 5 mg L-1 of AG3 resulted in the highest means of cluster weight, length and width, this interaction did not

  16. Double maturation raisonnée: the impact of on-vine berry dehydration on the berry and wine composition of Merlot (Vitis vinifera L.).

    Science.gov (United States)

    Rusjan, Denis; Mikulic-Petkovsek, Maja

    2017-11-01

    Double maturation raisonnée (DMR) is a potential canopy measure that affects grape and wine composition. The aim of this work was to study for the first time the DMR impact on the physical, biochemical and sensorial characteristics of the berries and wines of Merlot, one of the world's fastest-expanding grapevine varieties. DMR significantly increased the content of soluble solids (1.2-fold), free amino nitrogen (1.8-fold) and acidity in berries but decreased the weight of 100 berries on harvest (approx. 28%). Irrespective of the vintage, DMR-treated grapes had a significantly higher content of non-astringent tannins (0.73-0.78 mg L -1 ) and anthocyanin extractability (34.7-36.4%) but a lower index of astringency (31.2-33.7) when compared to the control. Consequently, the DMR wines achieved higher alcohol, total acidity and extract, hydroxycinnamic acids, flavanol and flavonol contents, whereas the content of anthocyanins was similar to that of the control. Sensorial evaluation showed that DMR wines were not rated higher and would not be appreciated more than control wines. Changes in berries during DMR altered the wine characteristics only in terms of primary metabolites. A reduced accumulation of phenolics, especially anthocyanin content, in the berry skin of DMR-treated grapes was not reflected in their presence in wines. To the best of our knowledge, this is the first paper that has reported an impact of DMR on the grape and wine composition of Merlot, as one of the most promising red varieties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. BlackBerry For Dummies

    CERN Document Server

    Kao, Robert

    2010-01-01

    Get the most juice out of your BlackBerry handheld!. Feature-rich and complex, the BlackBerry is the number one smartphone in the corporate world is among the most popular handhelds for business users. This new and updated edition includes all the latest and greatest information on new and current BlackBerry mobile devices. Covering a range of valuable how-to topics, this helpful guide explores the BlackBerry's most useful features, techniques for getting the most out of your BlackBerry, and practical information about power usage.: Covers all aspects of the number one smartphone in the corpor

  18. Geographical and Cultivar Features Differentiate Grape Microbiota in Northern Italy and Spain Vineyards

    Directory of Open Access Journals (Sweden)

    Valerio Mezzasalma

    2018-05-01

    Full Text Available Recent studies have highlighted the role of the grapevine microbiome in addressing a wide panel of features, ranging from the signature of field origin to wine quality. Although the influence of cultivar and vineyard environmental conditions in shaping the grape microbiome have already been ascertained, several aspects related to this topic, deserve to be further investigated. In this study, we selected three international diffused grapevine cultivars (Cabernet Sauvignon, Syrah, and Sauvignon Blanc at three germplasm collections characterized by different climatic conditions [Northern Italy (NI, Italian Alps (AI, and Northern Spain (NS]. The soil and grape microbiome was characterized by 16s rRNA High Throughput Sequencing (HTS, and the obtained results showed that all grape samples shared some bacterial taxa, regardless of sampling locality (e.g., Bacillus, Methylobacterium, Sphingomonas, and other genera belonging to Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. However, some Operational Taxonomic Units (OTUs could act as geographical signatures and in some cases as cultivar fingerprint. Concerning the origin of the grape microbiome, our study confirms that vineyard soil represents a primary reservoir for grape associated bacteria with almost 60% of genera shared between the soil and grape. At each locality, grapevine cultivars shared a core of bacterial genera belonging to the vineyard soil, as well as from other local biodiversity elements such as arthropods inhabiting or foraging in the vineyard. Finally, a machine learning analysis showed that it was possible to predict the geographical origin and cultivar of grape starting from its microbiome composition with a high accuracy (9 cases out of 12 tested samples. Overall, these findings open new perspectives for the development of more comprehensive and integrated research activities to test which environmental variables have an effective role in shaping the microbiome

  19. A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance

    Directory of Open Access Journals (Sweden)

    Scalabrin Simone

    2008-06-01

    Full Text Available Abstract Background Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. Results The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32% were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. Conclusion Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and

  20. Evaluating the Polyphenol Profile in Three Segregating Grape (Vitis vinifera L. Populations

    Directory of Open Access Journals (Sweden)

    Alberto Hernández-Jiménez

    2013-01-01

    Full Text Available This paper explores the characteristics of the anthocyanin and flavonol composition and content in grapes from plants resulting from intraspecific crosses of Vitis vinifera varieties Monastrell × Cabernet Sauvignon, Monastrell × Syrah, and Monastrell × Barbera, in order to acquire information for future breeding programs. The anthocyanin and flavonol compositions of twenty-seven hybrids bearing red grapes and 15 hybrids bearing white grapes from Monastrell × Syrah, 32 red and 6 white from Monastrell × Cabernet Sauvignon, and 13 red from Monastrell × Barbera have been studied. Among the intraspecific crosses, plants with grapes presenting very high concentrations of anthocyanins and flavonols were found, indicating a transgressive segregation for this character, and this could lead to highly colored wines with an increased benefits for human health. As regards the qualitative composition of anthocyanins and flavonols, the hydroxylation pattern of the hybrids that also may influence wine color hue and stability presented intermediate values to those of the parentals, indicating that values higher than that showed by the best parental in this respect will be difficult to obtain. The results presented here can be helpful to acquire information for future breeding efforts, aimed at improving fruit quality through the effects of flavonoids.

  1. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.

    Science.gov (United States)

    Fernández, Katherina; Kennedy, James A; Agosin, Eduardo

    2007-05-02

    A formal compositional study of the proanthocyanidins of Vitis vinifera L. cv. Carménère was conducted in this work. We first characterized the polymeric proanthocyanidins of Carménère skins, seeds, and wines. In addition, the wine astringency was analyzed and compared with Cabernet Sauvignon. Although Carménère wines had a higher proanthocyanidin concentration and mean degree of polymerization than Cabernet Sauvignon wines, the former wines were perceived as less astringent. The low seed/skin proportion in Carménère wines as compared to other varieties, as evidenced by the reduced number of seeds per berry and the higher amount of epigallocatechin subunits of Carménère wine proanthocyanidins, could explain this apparent paradox.

  2. Amino acids and volatile compounds in wines from Cabernet Sauvignon and Tempranillo varieties subjected to malolactic fermentation in barrels.

    Science.gov (United States)

    Hernández-Orte, P; Peña, A; Pardo, I; Cacho, J; Ferreira, V

    2012-04-01

    The aim of the present paper is to compare the behaviour of industrial lactic bacteria and indigenous bacteria of the cellar when malolactic fermentation was carried out in barrels. The effects of these bacteria on the concentration of metabolised amino acids during malolactic fermentation and on the composition of volatile compounds both before and after malolactic fermentation are studied. The experiment was performed with wines of the Tempranillo and Cabernet Sauvignon varieties. An analysis has been made of the easily extractable volatile compounds of the wood and the compounds from the grapes, and the action of the yeasts during the alcoholic fermentation. Acetoin and diacetyl decreased during the malolactic fermentation in barrels and the concentrations of furfural and its derivatives were up to 100 times higher in wines not subjected to malolactic fermentation. Most of the volatile phenols increased during the malolactic fermentation in wines of the Tempranillo variety, while only guaiacol (p < 0.05) and t-isoeugenol increased in the Cabernet Sauvignon wines. The decrease in amino acids during the malolactic fermentation depends much more on the variety than on the bacterial strain which carries out the malolactic fermentation.

  3. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    Directory of Open Access Journals (Sweden)

    John Overall

    2017-02-01

    Full Text Available Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins, black raspberry (acylated mono-glycosylated cyanidins, blackcurrant (mono- and di-glycosylated cyanidins and delphinidins, maqui berry (di-glycosylated delphinidins, Concord grape (acylated mono-glycosylated delphinidins and petunidins, and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health.

  4. Berry phase and supersymmetry

    International Nuclear Information System (INIS)

    Sonner, Julian; Tong, David

    2009-01-01

    We study the constraints of supersymmetry on the non-Abelian holonomy given by U = Pexp (i∫A), the path-ordered exponential of a connection A. For theories with four supercharges, we show that A satisfies the tt* equations if it is a function of chiral multiplets. In contrast, when A is a function of vector multiplets, it satisfies the Bogomolnyi monopole equations. We describe applications of these results to the Berry connection in supersymmetric quantum mechanics.

  5. Array of biosensors for discrimination of grapes according to grape variety, vintage and ripeness

    International Nuclear Information System (INIS)

    Medina-Plaza, C.; Saja, J.A. de; Fernández-Escudero, J.A.; Barajas, E.; Medrano, G.; Rodriguez-Mendez, M.L.

    2016-01-01

    A bioelectronic tongue based on nanostructured biosensors specific for the simultaneous detection of sugars and phenols has been developed. The array combined oxidases and dehydrogenases immobilized on a lipidic layer prepared using the Langmuir-Blodgett technique where Glucose oxidase, D-Fructose dehydrogenase, Tyrosinase or Laccase were imbibed. A phthalocyanine was co-immobilized in the sensing layer and used as electron mediator. The array thus formed has been used to analyze grapes and provides global information about the samples while providing specific information about their phenolic and their sugar content. Using Principal Component Analysis (PCA) the array of voltammetric biosensors has been successfully used to discriminate musts prepared from different varieties of grapes (Tempranillo, Garnacha, Cabernet-Sauvignon, Prieto Picudo and Mencía). Differences could be also detected between grapes of the same variety and cultivar harvested in two successive vintages (2012 and 2013). Moreover, the ripening of grapes could be monitored from veraison to maturity due to the changes in their phenolic and sugar content. Using Partial Least Squares (PLS-1) analysis, excellent correlations have been found between the responses provided by the array of biosensors and classical parameters directly related to phenols (total polyphenol index, TPI) and sugar concentration (degree Brix) measured by chemical methods with correlation coefficients close to 1 and errors close to 0. It is also worthy to notice the good correlations found with parameters associated with the pH and acidity that can be explained by taking into account the influence of the pH in the oxidation potentials of the phenols and in the enzymatic activity. This bioelectronic tongue can assess simultaneously the sugar and the phenolic content of grapes and could be used to monitor the maturity of the fruit and could be adapted easily to field analysis. - Graphical abstract: A bioelectronic tongue based on

  6. Array of biosensors for discrimination of grapes according to grape variety, vintage and ripeness

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid, 47011 Valladolid (Spain); Saja, J.A. de [Department of Condensed Matter Physics, Faculty of Sciences, Universidad de Valladolid, 47011 Valladolid (Spain); Fernández-Escudero, J.A. [Estacion Enologica de Castilla y Leon, Rueda (Spain); Barajas, E. [ITACYL, Valladolid (Spain); Medrano, G. [Bodega Cooperativa de Cigales, Valladolid (Spain); Rodriguez-Mendez, M.L., E-mail: mluz@eii.uva.es [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid, 47011 Valladolid (Spain)

    2016-12-01

    A bioelectronic tongue based on nanostructured biosensors specific for the simultaneous detection of sugars and phenols has been developed. The array combined oxidases and dehydrogenases immobilized on a lipidic layer prepared using the Langmuir-Blodgett technique where Glucose oxidase, D-Fructose dehydrogenase, Tyrosinase or Laccase were imbibed. A phthalocyanine was co-immobilized in the sensing layer and used as electron mediator. The array thus formed has been used to analyze grapes and provides global information about the samples while providing specific information about their phenolic and their sugar content. Using Principal Component Analysis (PCA) the array of voltammetric biosensors has been successfully used to discriminate musts prepared from different varieties of grapes (Tempranillo, Garnacha, Cabernet-Sauvignon, Prieto Picudo and Mencía). Differences could be also detected between grapes of the same variety and cultivar harvested in two successive vintages (2012 and 2013). Moreover, the ripening of grapes could be monitored from veraison to maturity due to the changes in their phenolic and sugar content. Using Partial Least Squares (PLS-1) analysis, excellent correlations have been found between the responses provided by the array of biosensors and classical parameters directly related to phenols (total polyphenol index, TPI) and sugar concentration (degree Brix) measured by chemical methods with correlation coefficients close to 1 and errors close to 0. It is also worthy to notice the good correlations found with parameters associated with the pH and acidity that can be explained by taking into account the influence of the pH in the oxidation potentials of the phenols and in the enzymatic activity. This bioelectronic tongue can assess simultaneously the sugar and the phenolic content of grapes and could be used to monitor the maturity of the fruit and could be adapted easily to field analysis. - Graphical abstract: A bioelectronic tongue based on

  7. Berry Fermi liquid theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Yuan, E-mail: chjy@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States); Stanford Institute for Theoretical Physics, Stanford University, CA 94305 (United States); Son, Dam Thanh, E-mail: dtson@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States)

    2017-02-15

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current–current correlator exactly matches with the result obtained from the kinetic theory. - Highlights: • We extend Landau’s kinetic theory of Fermi liquid to incorporate Berry phase. • Berry phase effects in Fermi liquid take exactly the same form as in Fermi gas. • There is a new “emergent electric dipole” contribution to the anomalous Hall effect. • Our kinetic theory is matched to field theory to all orders in Feynman diagrams.

  8. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine.

    Science.gov (United States)

    Araujo, Leandro Dias; Vannevel, Sebastian; Buica, Astrid; Callerot, Suzanne; Fedrizzi, Bruno; Kilmartin, Paul A; du Toit, Wessel J

    2017-08-01

    Elemental sulfur is a fungicide traditionally used to control Powdery Mildew in the production of grapes. The presence of sulfur residues in grape juice has been associated with increased production of hydrogen sulfide during fermentation, which could take part in the formation of the varietal thiol 3-mercaptohexanol. This work examines whether elemental sulfur additions to Sauvignon blanc juice can increase the levels of sought-after varietal thiols. Initial trials were performed in South Africa and indicated a positive impact of sulfur on the levels of thiols. Further experiments were then carried out with New Zealand Sauvignon blanc and confirmed a positive relationship between elemental sulfur additions and wine varietal thiols. The formation of hydrogen sulfide was observed when the addition of elemental sulfur was made to clarified juice, along with an increase in further reductive sulfur compounds. When the addition of sulfur was made to pressed juice, prior to clarification, the production of reductive sulfur compounds was drastically decreased. Some mechanistic considerations are also presented, involving the reduction of sulfur to hydrogen sulfide prior to fermentation. Copyright © 2016. Published by Elsevier Ltd.

  9. Grape juice, berries and walnuts affect brain aging and behavior

    Science.gov (United States)

    Numerous studies have indicated that individuals consuming a diet containing high amounts of fruits and vegetables exhibit fewer age-related diseases such as Alzheimer Disease (AD). A recent report has indicated that individuals who consumed a diet containing 2.5 servings of fruit and vegetables/day...

  10. Are Epiphytic Microbial Communities in the Carposphere of Ripening Grape Clusters (Vitis vinifera L.) Different between Conventional, Organic, and Biodynamic Grapes?

    Science.gov (United States)

    Kecskeméti, Elizabeth; Berkelmann-Löhnertz, Beate; Reineke, Annette

    2016-01-01

    Using barcoded pyrosequencing fungal and bacterial communities associated with grape berry clusters (Vitis vinifera L.) obtained from conventional, organic and biodynamic vineyard plots were investigated in two subsequent years at different stages during berry ripening. The four most abundant operational taxonomic units (OTUs) based on fungal ITS data were Botrytis cinerea, Cladosporium spp., Aureobasidium pullulans and Alternaria alternata which represented 57% and 47% of the total reads in 2010 and 2011, respectively. Members of the genera Sphingomonas, Gluconobacter, Pseudomonas, Erwinia, and Massilia constituted 67% of the total number of bacterial 16S DNA reads in 2010 samples and 78% in 2011 samples. Viticultural management system had no significant effect on abundance of fungi or bacteria in both years and at all three sampling dates. Exceptions were A. alternata and Pseudomonas spp. which were more abundant in the carposphere of conventional compared to biodynamic berries, as well as Sphingomonas spp. which was significantly less abundant on conventional compared to organic berries at an early ripening stage in 2011. In general, there were no significant differences in fungal and bacterial diversity indices or richness evident between management systems. No distinct fungal or bacterial communities were associated with the different maturation stages or management systems, respectively. An exception was the last stage of berry maturation in 2011, where the Simpson diversity index was significantly higher for fungal communities on biodynamic compared to conventional grapes. Our study highlights the existence of complex and dynamic microbial communities in the grape cluster carposphere including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on grape production. Such knowledge is particularly relevant for development, selection and application of effective control measures against economically important

  11. Shoot growth of Merlot and Cabernet Sauvignon grapevine varieties

    OpenAIRE

    Marcelo Borghezan; Olavo Gavioli; Hamilton Justino Vieira; Aparecido Lima da Silva

    2012-01-01

    The objective of this work was to evaluate shoot growth of the grapevine varieties Merlot and Cabernet Sauvignon, during 2006/2007, and Cabernet Sauvignon, during 2008/2009, in São Joaquim, SC, Brazil. The experiment was carried out in a commercial vineyard trained on a vertical trellis system. The shoots of the central part of the plants were selected, and the lengths from the base to the apex of 20 shoots per cultivar were evaluated. In 2006/2007, monitoring began at pruning, on 9/15/2006, ...

  12. Grape Seed Extract

    Science.gov (United States)

    ... Greece people have used grapes, grape leaves, and sap for health purposes. Grape seed extract was developed ... sharing research results, and educating the public. Its resources include publications (such as Dietary ... Department of Health & Human Services, National Institutes of Health, National Center for ...

  13. Promoting Effect of Foliage Sprayed Zinc Sulfate on Accumulation of Sugar and Phenolics in Berries of Vitis vinifera cv. Merlot Growing on Zinc Deficient Soil

    Directory of Open Access Journals (Sweden)

    Chang-Zheng Song

    2015-02-01

    Full Text Available The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  14. Yeast species associated with wine grapes in China.

    Science.gov (United States)

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine

  15. Coffee berry disease in Kenya

    NARCIS (Netherlands)

    Vermeulen, H.

    1979-01-01

    Data are presented on research in Kenya in 1964 - 1969 on anatomical, mycological, epidemiological, chemical control and cultural aspects of coffee berry disease, Colletotrichum coffeanum Noack, of Coffea arabica L. The pathogen causes flower and berry

  16. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    Science.gov (United States)

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.

  17. Antioxidant activity, phenolic content and colour of the Slovak cabernet sauvignon wines

    Directory of Open Access Journals (Sweden)

    Daniel Bajčan

    2016-01-01

    Full Text Available Antioxidants are specific substances that oxidize themselves and in this way they protect other sensitive bioactive food components against destruction. At the same time, they restrict the activity of free radicals and change them to less active forms. Grapes and wine are a significant source of antioxidants in human nutrition. One of the most important group occuring in grapes and wines are polyphenols. Many of phenolic compounds have been reported to have multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant and antiradical activity. Therefore, it is important to know the content of polyphenols and their antioxidant effects in foods and beverages. Twenty-eight Cabernet Sauvignon wine samples, originated from different Slovak vineyard regions, were analyzed using spectrophotometry for the content of total polyphenols, content of total anthocyanins, antioxidant activity and wine colour density. Determined values of antioxidant activity in observed wines were within the interval 69.0 - 84.2% inhibition of DPPH (average value was 78.8% inhibition of DPPH and total polyphenol content ranged from 1,218 to 3,444 mg gallic acid per liter (average content was 2,424 mg gallic acid.L-1. Determined total anthocyanin contents were from 68.6 to 430.7 mg.L-1 (average content was 220.6 mg.L-1 and values of wine colour density ranged from 0.756 to 2.782 (average value was 1.399. The statistical evaluation of the obtained results did not confirm any linear correlations between total polyphenol content, resp. total anthocyanin content and antioxidant activity. The correlations between total polyphenol content and total anthocyanin content, resp. the content of total anthocyanins and wine colour density were strong. The results confirmed very strong correlations between wine colour density and total polyphenol content, resp. antioxidant

  18. A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties

    Directory of Open Access Journals (Sweden)

    Manuel Aleixandre

    2015-04-01

    Full Text Available Two novel applications using a portable and wireless sensor system (e-nose for the wine producing industry—The recognition and classification of musts coming from different grape ripening times and from different grape varieties—Are reported in this paper. These applications are very interesting because a lot of varieties of grapes produce musts with low and similar aromatic intensities so they are very difficult to distinguish using a sensory panel. Therefore the system could be used to monitor the ripening evolution of the different types of grapes and to assess some useful characteristics, such as the identification of the grape variety origin and to prediction of the wine quality. Ripening grade of collected samples have been also evaluated by classical analytical techniques, measuring physicochemical parameters, such as, pH, Brix, Total Acidity (TA and Probable Grade Alcoholic (PGA. The measurements were carried out for two different harvests, using different red (Barbera, Petit Verdot, Tempranillo, and Touriga and white (Malvar, Malvasía, Chenin Blanc, and Sauvignon Blanc grape musts coming from the experimental cellar of the IMIDRA at Madrid. Principal Component Analysis (PCA and Probabilistic Neural Networks (PNN have been used to analyse the obtained data by e-nose. In addition, and the Canonical Correlation Analysis (CCA method has been carried out to correlate the results obtained by both technologies.

  19. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference.

    Science.gov (United States)

    Bindon, Keren; Holt, Helen; Williamson, Patricia O; Varela, Cristian; Herderich, Markus; Francis, I Leigh

    2014-07-01

    A series of five Vitis vinifera L. cv Cabernet Sauvignon wines were produced from sequentially-harvested grape parcels, with alcohol concentrations between 12% v/v and 15.5% v/v. A multidisciplinary approach, combining sensory analysis, consumer testing and detailed chemical analysis was used to better define the relationship between grape maturity, wine composition and sensory quality. The sensory attribute ratings for dark fruit, hotness and viscosity increased in wines produced from riper grapes, while the ratings for the attributes red fruit and fresh green decreased. Consumer testing of the wines revealed that the lowest-alcohol wines (12% v/v) were the least preferred and wines with ethanol concentration between 13% v/v and 15.5% v/v were equally liked by consumers. Partial least squares regression identified that many sensory attributes were strongly associated with the compositional data, providing evidence of wine chemical components which are important to wine sensory properties and consumer preferences, and which change as the grapes used for winemaking ripen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Comportamento vegetativo e produtivo de videiras 'Cabernet sauvignon' cultivadas sob cobertura plástica Vegetative growth and yield of 'Cabernet sauvignon' grapevine under overhead plastic covering

    Directory of Open Access Journals (Sweden)

    Clenilso Sehnen Mota

    2008-03-01

    Full Text Available O uso de cobertura plástica no cultivo de videira encontra-se em expansão no Rio Grande do Sul, por ser uma alternativa que visa a proteger as plantas da precipitação pluvial e do granizo. O objetivo deste estudo foi avaliar os impactos de uma cobertura plástica translúcida e impermeável sobre a fenologia, o crescimento (de ramos, folhas, cachos e bagas e a produtividade em videiras 'Cabernet Sauvignon' (Vitis vinifera L., com cinco anos de idade, conduzidas em sistema 'Y', sobre porta-enxerto Paulsen 1103. O experimento, conduzido no município de Caxias do Sul-RS, seguiu o delineamento em blocos ao acaso, tendo os tratamentos sem e com cobertura plástica, com quatro repetições de 15 plantas (unidade experimental. As alterações microclimáticas impostas pela cobertura plástica não foram expressivas para alterar a fenologia da videira. As plantas cultivadas sob cobertura plástica apresentaram maiores valores de comprimento e massa fresca de ramos e de área, e massa seca foliar em comparação às plantas descobertas. O peso e o diâmetro de bagas foram superiores nas videiras cobertas apenas no início do ciclo e não diferiram próximo da colheita. As demais variáveis analisadas não foram afetadas pela cobertura plástica. A cobertura plástica interferiu no crescimento vegetativo das plantas, mas não afetou a produção.There is an increasing adoption of overhead plastic covering for grapevines in the State of Rio Grande do Sul, Southern Brazil, to protect the plants from rain and hail storms. This study was carried out to evaluate the impacts of overhead plastic covering with a translucent and water-proof plastic film on phenological, growth (of branch, leaves, clusters, and berries, and yield attributes of five years old 'Cabernet Sauvignon' grapevines (Vitis vinifera L. on Paulsen 1103 rootstock raised as 'Y' management system. The experiment was carried out in Caxias do Sul, State of Rio Grande do Sul, and followed a

  1. Linkage of within vineyard soil properties, grapevine physiology, grape composition and sensory characteristics in a premium wine grape vineyard.

    Science.gov (United States)

    Smart, David; Hess, Sallie; Ebeler, Susan; Heymann, Hildegarde; Plant, Richard

    2014-05-01

    Analysis of numerous vineyards has revealed a very high degree of variation exists at the within vineyard scale and may outweigh in some cases broader mesoclimatic and geological factors. For this reason, selective harvest of high quality wine grapes is often conducted and based on subjective field sensory analysis (taste). This is an established practice in many wine growing regions. But the relationships between these subjective judgments to principle soil and grapevine physiological characteristics are not well understood. To move toward greater understanding of the physiological factors related to field sensory evaluation, physiological data was collected over the 2007 and 2008 growing seasons in a selectively harvested premium production Napa Valley estate vineyard, with a history of selective harvesting based on field sensory evaluation. Data vines were established and remained as individual study units throughout the data gathering and analysis phase, and geographic information systems science (GIS) was used to geographically scale physiological and other data at the vineyard level. Areas yielding grapes with perceived higher quality (subjective analysis) were characterized by vines with 1) statistically significantly lower (P grape berry diameter (R2 = 0.616 in 2007 and 0.413 in 2008) and similar strong correlations existed for berry weight (R2 = 0.626 in 2007 and 0.554 in 2008). A trained sensory panel performed a sensory analysis and characterized fruit using and a multivariate, principal components, analysis (PCA). This approach indicated that grapes from vines with lowest midday leaf water potential at veraison (grapes from vines of > -1.5 MPa were characterized by vegetal flavors and astringent and bitter seeds and skins. Data from vines were grouped into vines experiencing MD at veraison of -1.5 MPa and subjected to single factor analysis of variance. This analysis revealed statistically significant differences (P less than 0.05) in many of the above

  2. Evaluation of oenological potential on clonal selections of cv. Cabernet Sauvignon from Chile

    Directory of Open Access Journals (Sweden)

    Ceppi de Lecco C.

    2014-01-01

    Full Text Available 13 clonal selections of cv Cabernet Sauvignon, established in Nancagua VI Region, Chile (34.39 °S 71.17 °W. The genetic identity of the vines was confirmed by ampelography and microsatellite markers (SSR. Evaluations in the 2012–2013 season include: performance, analytical and sensorial parameters on the wines made by microvinification. The results were statistically analyzed with the Statgraphics Plus program and multiple comparison test of Tukey at 95% confidence level. Sensorially, the wines were evaluated by a panel of 12 experts. The results were likewise analyzed by testing principal components (PCA with covariance matrix without rotation. In the season studied the selection 108 highlighted with a high yield (kg/plant, in the composition of the wine selections generally highlighted for contents of total polyphenols and anthocyanins over average. The results show typical sensory characteristics of wines from that grape variety, and it was possible to group the selections by their attributes (PCA with cherry red wines at different intensities, but without significant differences, with fruity and vegetal aromas, interesting complex flavors and with structured tannins.

  3. Changes in aromatic compounds of cabernet sauvignon wines ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... headspace solid phase microextraction (HS-SPME) and gas chromatography mass ... profiles of all the aroma compounds for cabernet sauvignon wines were increasingly diverse. The ... fermented in 30 T stainless steel tanks with activated dry yeast ..... volatile organic acids during yeast fermentation is.

  4. A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins.

    Science.gov (United States)

    Rinaldi, A; Jourdes, M; Teissedre, P L; Moio, L

    2014-12-01

    The flavan-3-ol and proanthocyanidin composition of Aglianico seeds and skins were for the first time determined by HPLC-MS in comparison with the international grapes Merlot and Cabernet Sauvignon. Monomers [(+)-catechin C, (-)-epicatechin EC, (-)-epicatechin-3-O-gallate, ECG] and oligomers [B1, B2, B3, B4 dimers and trimer C1] were identified and quantified in grape extracts. In order to evaluate the reactivity towards salivary proteins of model wine solutions of seeds and skins monomeric/oligomeric and polymeric fractions, the Saliva Precipitation Index (SPI) was carried out. Fractions were also analyzed for their mean degree of polymerization (mDP), percentage of galloylation (%G) and of prodelphinidin (%P) by phloroglucinolysis. Aglianico was the most effective in precipitating proteins than Merlot and Cabernet Sauvignon, mainly for the high percentage of galloylation of grape fractions. The mDP and the percentage of ECG in terminal units resulted to significantly contribute to the precipitation of salivary proteins by grape proanthocyanidins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    Directory of Open Access Journals (Sweden)

    Zhi-Jing Ni

    2016-01-01

    Full Text Available Hydrogen sulfide (H2S has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA, hydrogen peroxide (H2O2, and superoxide anion (O2∙- in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX and catalase (CAT and decreased those of lipoxygenase (LOX in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation.

  6. Phenolic profile and free radical-scavenging activity of Cabernet Sauvignon wines of different geographical origins from the Balkan region.

    Science.gov (United States)

    Radovanović, Blaga C; Radovanović, Aleksandra N; Souquet, Jean-Marc

    2010-11-01

    The phenolic profile, determined by the relative proportions of different phenolic compounds, is characteristic for each grape variety and its corresponding wine. The aim of this study was to determine the phenolic and hydroxycinnamate acid, flavan-3-ol and flavonol contents and free radical-scavenging activity of single-cultivar (Cabernet Sauvignon) wines from selected Balkan vineyard regions by spectrophotometric methods and high-performance liquid chromatography with photodiode array and fluorescence detection. The contents of phenolic compounds varied depending on the agroclimatic factors and oenological practices of the vineyard region. The antioxidant activity of wine samples was estimated by their ability to scavenge the stable 2,2'-diphenyl-1-picrylhydrazyl free radical (DPPH). All wines showed high DPPH-scavenging activity (70.03-83.53%, mean 73.76%). Significant correlations between catechin (R(2) = 0.8504) and quercetin (R(2) = 0.8488) concentrations and DPPH-scavenging ability of the wines were found. The concentrations of the main components catechin and quercetin can be used as biochemical markers for the authentication of red grape cultivars and their corresponding single-cultivar wines. 2010 Society of Chemical Industry

  7. Consumer Acceptability of Fresh-Market Muscadine Grapes.

    Science.gov (United States)

    Brown, Kelly; Sims, Charles; Odabasi, Asli; Bartoshuk, Linda; Conner, Patrick; Gray, Dennis

    2016-10-14

    The objective of this research was to investigate the acceptability of muscadine grape (Vitis rotundifolia) genotypes (cultivars and selections) and to correlate overall liking to other quality measurements to determine the main drivers of liking. Twenty-two genotypes grown at the Univ. of Georgia-Tifton Campus were evaluated. Four retail commercial grape genotypes (Vitis vinifera and "Concord") were also evaluated for comparison. Panelists familiar with muscadine grapes used the hedonic general labeled magnitude scale (HgLMS, -100 = strongest disliking of any kind ever experienced, +100 = strongest liking of any kind ever experienced) to rate overall liking and the liking of appearance, flavor, pulp texture, and skin texture. Puncture testing was done to assess grape berry texture, and compositional attributes soluble solids and pH were also measured. The sensory results indicated that the grapes were variable with overall liking scores from 12.2 to 39.6. The factors highly correlated with overall liking scores were muscadine flavor, pulp and skin liking, while a significant negative correlation was found between skin liking and skin texture and mechanical texture measures. The muscadine grapes with the highest overall liking scores were Ga. 5-1-34 and Ga. 2-8-21. Principal component analysis confirmed that grapes with a thinner skin and a higher pH tended to group around overall liking and flavor points. These results indicate that even among panelists familiar with muscadine grapes, skin thickness is a negative characteristic. Breeding for thinner skins may be a positive step in muscadines gaining a more widespread appeal in the fresh fruit market. © 2016 Institute of Food Technologists®.

  8. Observations on the influence of vine covering by means of a transparent plastic sheet on berry ripening and wine quality (Saint-Emilion, 1995 and 1996

    Directory of Open Access Journals (Sweden)

    Cornelis van Leeuwen

    1998-09-01

    On the covered plots, yields were higher. In 1996, on BT, the vines carried more bunches, the bunches carried more berries and berry weight was higher. The control vines were significantly more affected by Botrytis compared to BS ; BT showed almost no rot. Berries on the covered plots showed a tendancy of having more sugar and total phenolics, and less malic acid. Separate microvinifications were done with 50 kg of grapes from each plot. Wine from BT was preferred over BS. Wine from the control plot was the least appreciated.

  9. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, D.; Bandyopadhyay, P.

    2005-11-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them results the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states. (author)

  10. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, Dipti; Bandyopadhyay, Pratul

    2006-01-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has a spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them allows the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states

  11. Exogenous 24-Epibrassinolide Interacts with Light to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Cabernet Sauvignon (Vitis vinifera L.).

    Science.gov (United States)

    Zhou, Yali; Yuan, Chunlong; Ruan, Shicheng; Zhang, Zhenwen; Meng, Jiangfei; Xi, Zhumei

    2018-01-09

    Anthocyanins and proanthocyanidins (PAs) are crucial factors that affect the quality of grapes and the making of wine, which were stimulated by various stimuli and environment factors (sugar, hormones, light, and temperature). The aim of the study was to investigate the influence of exogenous 24-Epibrassinolide (EBR) and light on the mechanism of anthocyanins and PAs accumulation in grape berries. Grape clusters were sprayed with EBR (0.4 mg/L) under light and darkness conditions (EBR + L, EBR + D), or sprayed with deionized water under light and darkness conditions as controls (L, D), at the onset of veraison. A large amount of anthocyanins accumulated in the grape skins and was measured under EBR + L and L treatments, whereas EBR + D and D treatments severely suppressed anthocyanin accumulation. This indicated that EBR treatment could produce overlay effects under light, in comparison to that in dark. Real-time quantitative PCR analysis indicated that EBR application up-regulated the expression of genes ( VvCHI1 , VvCHS2 , VvCHS3 , VvDFR , VvLDOX , VvMYBA1 ) under light conditions. Under darkness conditions, only early biosynthetic genes of anthocyanin biosynthesis responded to EBR. Furthermore, we also analyzed the expression levels of the BR-regulated transcription factor VvBZR1 (Brassinazole-resistant 1) and light-regulated transcription factor VvHY5 (Elongated hypocotyl 5). Our results suggested that EBR and light had synergistic effects on the expression of genes in the anthocyanin biosynthesis pathway.

  12. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses

    Directory of Open Access Journals (Sweden)

    Alejandra Serrano

    2017-09-01

    Full Text Available Grapevine fruit development is a dynamic process that can be divided into three stages: formation (I, lag (II, and ripening (III, in which physiological and biochemical changes occur, leading to cell differentiation and accumulation of different solutes. These stages can be positively or negatively affected by multiple environmental factors. During the last decade, efforts have been made to understand berry development from a global perspective. Special attention has been paid to transcriptional and metabolic networks associated with the control of grape berry development, and how external factors affect the ripening process. In this review, we focus on the integration of global approaches, including proteomics, metabolomics, and especially transcriptomics, to understand grape berry development. Several aspects will be considered, including seed development and the production of seedless fruits; veraison, at which anthocyanin accumulation begins in the berry skin of colored varieties; and hormonal regulation of berry development and signaling throughout ripening, focusing on the transcriptional regulation of hormone receptors, protein kinases, and genes related to secondary messenger sensing. Finally, berry responses to different environmental factors, including abiotic (temperature, water-related stress and UV-B radiation and biotic (fungi and viruses stresses, and how they can significantly modify both, development and composition of vine fruit, will be discussed. Until now, advances have been made due to the application of Omics tools at different molecular levels. However, the potential of these technologies should not be limited to the study of single-level questions; instead, data obtained by these platforms should be integrated to unravel the molecular aspects of grapevine development. Therefore, the current challenge is the generation of new tools that integrate large-scale data to assess new questions in this field, and to support

  13. Effects of Thymus vulgaris Essential Oil on Decay Resistance and Quality of Iranian Table Grape

    Directory of Open Access Journals (Sweden)

    Mahsa GERANSAYEH

    2012-11-01

    Full Text Available Because of greater consumer awareness and concern regarding synthetic chemical additives, foods preserved with natural additives have become popular. Medicinal plants have been used by human being since ages in traditional medicine due to their therapeutic potential and the search on medicinal plants have led the discovery of novel drug candidates used against diverse diseases. Therefore Thymus vulgaris essential oil was applied in Bidaneh Qermez grape cultivar at six concentrations (0, 100, 200, 300, 400 and 500 ?l/l in water. Quality characteristics (pH, decay, vitamin C, reducing sugars, weight loss, berry abscission, dehydration of rachis, berry cracking and sensory analyses were evaluated. The results showed that treated fruits with essential oil had lower decay percentage, dehydration of rachis, berry abscission, berry cracking and higher pH, reducing sugars and storage quality compared to control. As a general result, essential oil treatment caused lower decay incident and longer storability.

  14. Effects of Thymus vulgaris Essential Oil on Decay Resistance and Quality of Iranian Table Grape

    Directory of Open Access Journals (Sweden)

    Mahsa GERANSAYEH

    2012-11-01

    Full Text Available Because of greater consumer awareness and concern regarding synthetic chemical additives, foods preserved with natural additives have become popular. Medicinal plants have been used by human being since ages in traditional medicine due to their therapeutic potential and the search on medicinal plants have led the discovery of novel drug candidates used against diverse diseases. Therefore Thymus vulgaris essential oil was applied in �Bidaneh Qermez� grape cultivar at six concentrations (0, 100, 200, 300, 400 and 500 ?l/l in water. Quality characteristics (pH, decay, vitamin C, reducing sugars, weight loss, berry abscission, dehydration of rachis, berry cracking and sensory analyses were evaluated. The results showed that treated fruits with essential oil had lower decay percentage, dehydration of rachis, berry abscission, berry cracking and higher pH, reducing sugars and storage quality compared to control. As a general result, essential oil treatment caused lower decay incident and longer storability.

  15. Changes in sugar content and related enzyme activities in table grape (Vitis vinifera L.) in response to foliar selenium fertilizer.

    Science.gov (United States)

    Zhu, Shuaimeng; Liang, Yinli; An, Xiaojuan; Kong, Fanchao; Gao, Dekai; Yin, Hongfei

    2017-09-01

    Spraying selenium (Se) fertilizer is an effective method for Se-enriched fruit production. Sugar content in fruit is the major factor determining berry quality. However, changes in sugar metabolism in response to Se fertilizer are unclear. Hence, this study was conducted to identify the effects of Se fertilizer on sugar metabolism and related enzyme activities of grape berries. Additionally, production of leaves with and without Se fertilizer was also investigated. Acid invertase (AI) activity, total soluble sugar and Se content in berries, and photosynthetic rate in leaves produced under Se fertilizer treatments were higher than that of control. Glucose and fructose were the primary sugars in berries, with a trace of sucrose. In both berries and leaves, neutral invertase activity was lower than AI, there was no significant difference in neutral invertase, sucrose synthase and sucrose phosphate synthase between Se fertilizer-treated and control. In berries, AI showed a significant positive correlation with glucose and fructose; also Se content was significantly correlated with sugar content. AI played an important role in the process of sugar accumulation in berries; high AI activity in berries and photosynthetic rate in leaves could explain the mechanism by which Se fertilizer affected sugar accumulation in berries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Resveratrol, pterostilbene, and piceatannol in vaccinium berries.

    Science.gov (United States)

    Rimando, Agnes M; Kalt, Wilhelmina; Magee, James B; Dewey, Jim; Ballington, James R

    2004-07-28

    A study was conducted to determine the presence of resveratrol, pterostilbene, and piceatannol in Vaccinium berries. Samples representing selections and cultivars of 10 species from Mississippi, North Carolina, Oregon, and Canada were analyzed by gas chromatography/mass spectrometry. Resveratrol was found in Vaccinium angustifolium (lowbush blueberry), Vaccinium arboretum (sparkleberry), Vaccinium ashei (rabbiteye blueberry), Vaccinium corymbosum (highbush blueberry), Vaccinium elliottii (Elliott's blueberry), Vaccinium macrocarpon (cranberry), Vaccinium myrtillus (bilberry), Vaccinium stamineum (deerberry), Vaccinium vitis-ideae var. vitis-ideae (lingonberry), and Vaccinium vitis-ideae var. minor (partridgeberry) at levels between 7 and 5884 ng/g dry sample. Lingonberry was found to have the highest content, 5884 ng/g dry sample, comparable to that found in grapes, 6471 ng/g dry sample. Pterostilbene was found in two cultivars of V. ashei and in V. stamineum at levels of 99-520 ng/g dry sample. Piceatannol was found in V. corymbosum and V. stamineum at levels of 138-422 ng/g dry sample. These naturally occurring stilbenes, known to be strong antioxidants and to have cancer chemopreventive activities, will add to the purported health benefits derived from the consumption of these small fruits. Copyright 2004 American Chemical Society

  17. Composition and content analysis of sugars and organic acids for 45 grape cultivars from northeast region of china

    International Nuclear Information System (INIS)

    Zaozhu, G.N.; Jia, Z.; Zhihu, R.; Zuhui, Z.; Quan, G.; Hongyan, G.; Xiuwu, G.

    2017-01-01

    The qualitative and quantitative analysis of sugars and acids of grape cultivars from northeast region of China was carried out for quality evaluation and variety improvement of grape. Analysis of major sugars and organic acids for 45 grape berries was carried out using High Performance Liquid Chromatography (HPLC). The result showed that glucose and fructose were the major sugars, beside that, some grape cultivars also contained sucrose. The quantity of glucose and fructose was almost equal in most of grape berries. A significant positive correlation existed between them, glucose content ranged from 53.24 mg/ml to 124.18mg/ml and fructose content ranged from 48.39 mg/ml to118.84 mg/ml. Tartaric acid, malic acid, citric acid and oxalic acid were organic acids and tartaric acid was the main constituent in most grape berries and its concentration was higher than the other organic acids. However, in some grape cultivars, malic acid and citric acid were two highest organic acids while oxalic acid content was the lowest and even in some cultivars it could not be detected. Tartaric acid ranged from 1.28mg/ml to 6.82 mg/ml, malic acid ranged from 0.09mg/ml to 3.95 mg/ml, citric acid ranged from 0.08mg/ml to 4.43 mg/ml, oxalic acid ranged from mg/ml to 0.370 mg/ml. Thirty-four grape cultivars out of 45 cultivars accounted more than 50% tartic acid of the total organic acid contents. However, in cultivars Bixiang Wuhe and Shennong Jinhuanghou citric acid was the main organic acid. Malic acid and citric acid were significantly positively related with total acid. In 43 grape cultivars, the soluble sugars were glucose and fructose. Besides glucose and fructose, sucrose was also observed in cultivars of LN33 and Cayuga white. (author)

  18. Influence of radiation processing of grapes on wine quality

    International Nuclear Information System (INIS)

    Gupta, Sumit; Padole, Rupali; Variyar, Prasad S.; Sharma, Arun

    2015-01-01

    Grapes (Var. Shiraz and Cabernet) were subjected to radiation processing (up to 2 kGy) and wines were prepared and matured (4 months, 15 °C). The wines were analyzed for chromatic characteristics, total anthocyanin (TA), phenolic (TP) and total antioxidant (TAC) content. Aroma of wines was analyzed by GC/MS and sensory analysis was carried out using descriptive analysis. TA, TP and TAC were 77, 31 and 37 percent higher for irradiated (1500 Gy) Cabernet wines, while irradiated Shiraz wines demonstrated 47, 18 and 19 percent higher TA, TP and TAC, respectively. HPLC-DAD analysis revealed that radiation processing of grapes resulted in increased extraction of phenolic constituents in wine with no qualitative changes. No major radiation induced changes were observed in aroma constituents of wine. Sensory analysis revealed that 1500 Gy irradiated samples had higher fruity and berry notes. Thus, radiation processing of grapes resulted in wines with improved organoleptic and antioxidant properties. - Highlights: • Grapes were subjected to radiation processing before wine making. • Wines from irradiated grapes had higher antioxidant and phenolics compared to control. • HPLC analysis confirmed improved extraction of phenolics due to radiation processing. • Aroma profile and sensory quality of control and irradiated wines were similar

  19. Disentangling dormancy and cold-hardiness in wine grape cultivars Cabernet Sauvignon and Chardonnay

    Science.gov (United States)

    Cold-hardiness of bud and cane tissue was monitored throughout para, endo and ecodormancy in field-grown vines using differential thermal analysis to generate lethal temperature exotherms (LTE). Deacclimation and re-acclimation rates were measured during ecodormancy to determine the depth of dorm...

  20. Effect of Pre-Bloom Gibberellic Acid Application on Seedlessness and Some Fruit Traits of Three Iranian Seeded Grape Cultivars

    Directory of Open Access Journals (Sweden)

    Hamed Doulati Baneh

    2017-10-01

    Full Text Available Introduction: The basic characteristic of modern table grape production is its adaptation to the requirements of the market aiming to improve grape quality, such as equal cluster size, equal size and shape of the berry, and equal coloration of all the berries in the cluster. Furthermore, an important attribute of the grape berry quality is seedlessness. Seedless cultivars are characterized with small berries, which can be increased by using some management techniques. Plant hormones may play an important role in the growth and development of grape berries. Gibberellic acid (GA3 is known to stimulate development of parthenocarpic fruit in grapes and other fruits. The exogenous pre-bloom application of GA3 to grapevine is commonly used to induce seedlessness, accelerate early ripening, and enhance berry size in seedless cultivars. Although there are a large number of studies on seedless grape varieties, no previous research has been performed on the effect of GA3 on the seeded grape cultivars. Differences in the types of berry set affect the growth of berries and their size. It is well known that there is an important relationship between seed development and berry growth, which has been attributed to hormones such as auxins, gibberellins and cytokinins. Materials and Methods: To study the effects of 100 mg/L pre-bloom (7 and 14 days before blooming GA3 application on the induction of seedlessness and some berry and cluster characteristics of three seeded Iranian cultivars, Qzl ouzum, Rish babab Qermez and Khalili Qermez, this research was conducted as a factorial experiment based on Randomized Complete Block Design (RCBD with five replications. The vines of each cultivar were selected in the vineyard of Horticultural Research Center in West Azarbaijan Agriculture and Natural Resources Research Center, Urmia, Iran. The vines were 13 years old and bi-lateral cordon system had been used as their training system. Pollen germination test was performed

  1. Sensory profiling and quality assessment of research Cabernet Sauvignon and Chardonnay wines; quality discrimination depends on greater differences in multiple modalities.

    Science.gov (United States)

    Niimi, Jun; Boss, Paul K; Bastian, Susan E P

    2018-04-01

    The sensory profiles of Cabernet Sauvignon and Chardonnay research wines were determined and analysed together with wine quality scores of expert judges. Research Cabernet Sauvignon and Chardonnay wines from three and two vintages, respectively, were evaluated. Wines of both varieties were produced with grapes harvested from across South Australian wine making regions throughout 2013-2016 vintages. Wines within varieties were vinified identically across samples and also across vintages. Wines were profiled in triplicate using descriptive analysis with a panel of trained assessors (n=9-11) and graded for quality in triplicate by winemakers (n=6-9) using a sorting task based on similarity of quality and with the aid of definitions formed by the winemakers prior to sorting. The data sets were analysed using canonical variate analysis (CVA) and multidimensional scaling (MDS). The scores from CVA and MDS per variety per vintage were analysed using Generalised Procrustes Analysis (GPA). Differences in Cabernet Sauvignon samples by provenance were determined, where associations with regions by sensory attributes were observed in all vintages. These wines were consistently sorted based on quality by the winemakers, evident from GPA. Chardonnay in comparison were poorly discriminated in both sensory profiles and quality. The combination of descriptive sensory analysis with sorting was complimentary to each other and was able to uncover additional information about the sensory properties of wines when the two methods were used in concert, such as balance and complexity. However the red wine variety had more intrinsic characteristics that lead to better discrimination based on sensory properties and hence quality than the white wine variety. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  2. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    Science.gov (United States)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  3. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira.

    Science.gov (United States)

    Agudelo-Romero, Patricia; Ali, Kashif; Choi, Young H; Sousa, Lisete; Verpoorte, Rob; Tiburcio, Antonio F; Fortes, Ana M

    2014-01-01

    Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Combining color chart, colorimetric measurement and chemical compounds for postharvest quality of white wine grapes.

    Science.gov (United States)

    Sollazzo, Marco; Baccelloni, Simone; D'Onofrio, Claudio; Bellincontro, Andrea

    2018-01-03

    This paper provides data for the potential use of a color chart to establish the best quality of white wine grapes destined for postharvest processing. Grechetto, Vermentino and Muscat of Alexandria white wine grape varieties were tested by sampling berries at different dates during their quality attribute evolution. A color chart and reflectance spectrocolorimeter were used in combination with analyses of total carotenoids and chlorophylls in all three varieties and of volatile organic compounds (VOCs) in Grechetto alone. Total carotenoids decreased from 0.85 to 0.76 µg g -1 in Grechetto berries and from 0.70 to 0.46 µg g -1 in Vermentino berries while increased from 0.70 to 0.80 µg g -1 in Muscat berries during ripening. Total chlorophylls decreased in all varieties, and a strict correlation was found between hue angle (measured by color chart or spectrocolorimeter) and chlorophyll disappearance, with R 2 ranging from 0.81 to 0.95 depending on the variety. VOCs were only measured in Grechetto grapes, and a significant increase in glycosylation was found with ripening. The concentration of different classes of VOCs exhibited a clear decrease during ripening, except for terpenoids and esters which showed a peak at the beginning. The benzenoid class reached the highest concentration, which was almost 50% of the total. Cluster analysis using Ward's method enabled the best grape quality to be identified. This experimental work highlights that a color chart is cheap and easy to use to define the right quality stage for white wine grapes. The color chart enabled the enochemical features to be matched with the VOC results for the aromatic maturity of Grechetto. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Combination Chemoprevention with Grape Antioxidants

    OpenAIRE

    Singh, Chandra K.; Siddiqui, Imtiaz A.; El-Abd, Sabah; Mukhtar, Hasan; Ahmad, Nihal

    2016-01-01

    Antioxidant ingredients present in grape have been extensively investigated for their cancer chemopreventive effects. However, much of the work has been done on individual ingredients, especially focusing on resveratrol and quercetin. Phytochemically, whole grape represents a combination of numerous phytonutrients. Limited research has been done on the possible synergistic/additive/antagonistic interactions among the grape constituents. Among these phytochemical constituents of grapes, resver...

  6. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.

    Science.gov (United States)

    Sun, Yongjiang; Geng, Qingwei; Du, Yuanpeng; Yang, Xinghong; Zhai, Heng

    2017-03-01

    Photosystem II (PSII) in plants is susceptible to high temperatures. The cyclic electron flow (CEF) around PSI is thought to protect both PSII and PSI from photodamage. However, the underlying physiological mechanisms of the photosynthetic electron transport process and the role of CEF in grape at high temperatures remain unclear. To investigate this issue, we examined the responses of PSII energy distribution, the P700 redox state and CEF to high temperatures in grape leaves. After exposing 'Cabernet Sauvignon' leaves to various temperatures (25, 30, 35, 40 and 45°C) in the light (600μmol photons m -2 s -1 ) for 4h, the maximum quantum yield of PSII (Fv/Fm) significantly decreased at high temperatures (40 and 45°C), while the maximum photo-oxidizable P700 (Pm) was not affected. As the temperature increased, higher initial rates of increase in post-illumination Chl fluorescence were detected, which were accompanied by an increase in high energy state quenching (qE). The chloroplast NAD(P)H dehydrogenase-dependent CEF (NDH-dependent CEF) activities were different among grape cultivators. 'Gold Finger' with greater susceptibility to photoinhibition, exhibited lower NDH-dependent CEF activities under acute heat stress than a more heat tolerant 'Cabernet Sauvignon'. These results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSII, while the stimulation of CEF in grape played an important role in the photoprotection of PSII and PSI at high temperatures through contributing to the generation of a proton gradient. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Secondary Aroma Compounds in Fresh Grape Marc Distillates as a Result of Variety and Corresponding Production Technology

    Directory of Open Access Journals (Sweden)

    Borislav Miličević

    2011-01-01

    Full Text Available In order to investigate the composition of secondary aroma compounds of fresh grape marc distillates as a result of variety and production technology, 30 samples (6 varieties×5 samples were analysed. White grape marc samples from Malvazija istarska, Chardonnay and Muscat Blanc were obtained as by-products in standard white wine production, while red grape marc samples from Teran and Cabernet Sauvignon were obtained after standard red wine production procedures. Marc from red grape variety Muškat ruža porečki was obtained during the production of rosé wines. All fermented marc samples were distilled using a traditional copper alembic. The obtained distillates were subjected to GC/MS and GC/FID analyses. Malvazija istarska distillates exhibited exceptionally high methanol content. Distillates from white grape varieties were found to be characterized by higher C6 alcohol and 1-propanol concentrations, while red grape distillates contained higher amounts of the majority of alcohols, acids, and esters. In Muškat ruža distillates intermediate concentrations of many important aroma compounds were found. It was concluded that differences in the production technology parameters, depending on the variety, resulted in differences in secondary aroma profiles, most evident between distillates from white and red varieties. These findings were confirmed applying stepwise linear discriminant analysis (SLDA, which resulted in 100 % correct classification of distillates according to the variety and corresponding production technology.

  8. Induction of fruit calcium assimilation and its influence on the quality of table grapes

    OpenAIRE

    Alcaraz-López, C.; Botía, M.; Alcaraz, C.F.; Riquelme, F.

    2005-01-01

    Sprays containing soluble Ca, polypeptidic N and Ti ascorbate in several combinations were applied to cv. Crimson table grape vines (Vitis vinifera L.). Foliar spraying resulted in the accumulation of N, P, K, Ca, Mg, Fe, Zn, Cu and Ti in the leaves, but not of Na, Cl or Mn. In the berries, Ca, Fe, Zn and Cu concentrations increased in the skin and flesh. These berries were also larger than controls, firmer, had a deeper external red colour, and their weight loss during postharvest storage wa...

  9. 7 CFR 51.904 - Shot berries.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... berries means very small berries resulting from insufficient pollination, usually seedless in those...

  10. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature.

    Science.gov (United States)

    Movahed, Nooshin; Pastore, Chiara; Cellini, Antonio; Allegro, Gianluca; Valentini, Gabriele; Zenoni, Sara; Cavallini, Erika; D'Incà, Erica; Tornielli, Giovanni Battista; Filippetti, Ilaria

    2016-05-01

    Anthocyanin levels decline in some red grape berry varieties ripened under high-temperature conditions, but the underlying mechanism is not yet clear. Here we studied the effects of two different temperature regimes, representing actual Sangiovese (Vitis vinifera L.) viticulture regions, on the accumulation of mRNAs and enzymes controlling berry skin anthocyanins. Potted uniform plants of Sangiovese were kept from veraison to harvest, in two plastic greenhouses with different temperature conditions. The low temperature (LT) conditions featured average and maximum daily air temperatures of 20 and 29 °C, respectively, whereas the corresponding high temperature (HT) conditions were 22 and 36 °C, respectively. The anthocyanin concentration at harvest was much lower in HT berries than LT berries although their profile was similar under both conditions. Under HT conditions, the biosynthesis of anthocyanins was suppressed at both the transcriptional and enzymatic levels, but peroxidase activity was higher. This suggests that the low anthocyanin content of HT berries reflects the combined impact of reduced biosynthesis and increased degradation, particularly the direct role of peroxidases in anthocyanin catabolism. Overexpression of VviPrx31 decreased anthocyanin contents in Petunia hybrida petals under heat stress condition. These data suggest that high temperature can stimulate peroxidase activity thus anthocyanin degradation in ripening grape berries.

  11. Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines.

    Science.gov (United States)

    Maturano, Y Paola; Mestre, M Victoria; Esteve-Zarzoso, Braulio; Nally, María Cristina; Lerena, María Cecilia; Toro, María Eugenia; Vazquez, Fabio; Combina, Mariana

    2015-04-16

    Prefermentative cold soak is a widely used technique in red wine production, but the impact on the development of native yeast species is hardly described. The aim of this work was to analyse the dynamics and diversity of yeast populations during prefermentative cold soak in red wines. Three different temperatures (14 ± 1 °C; 8 ± 1 °C and 2.5 ± 1 °C) were used for prefermentative cold soak in Cabernet Sauvignon and Malbec grape musts. Saccharomyces and non-Saccharomyces populations during cold soak and alcoholic fermentation were analysed. In addition, the impact on chemical and sensory properties of the wines was examined. Yeast dynamics during prefermentative cold soak were temperature dependent. At 14 ± 1 °C, the total yeast population progressively increased throughout the cold soak period. Conversely, at 2.5 ± 1 °C, the yeast populations maintained stable during the same period. Prefermentative cold soak conducted at 14±1°C favoured development of Hanseniospora uvarum and Candida zemplinina, whereas cold soak conducted at 8 ± 1 °C favoured growth of Saccharomyces cerevisiae. At 2.5 ± 1 °C, no changes in yeast species were recorded. Acidity and bitterness, two sensory descriptors, appear to be related to wines produced with prefermentative cold soak carried out at 14 ± 1 °C. This fact could be associated with the increase in non-Saccharomyces during the prefermentation stage. Our results emphasise the importance of the temperature as a determinant factor to allow an increase in non-Saccharomyces population during prefermentative cold soak and consequently to modify sensorial attributes of wines as well as their sensorial impact. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Determinations of adaptation level of wine grape varieties in terms of climatic data in wine growing regions of turkey

    Directory of Open Access Journals (Sweden)

    Ateş Fadime

    2017-01-01

    Full Text Available Wine grapes are adapted to a wide range of climate; the best production occurs in regions that meet certain specific climatic conditions. Temperatures during the growing season can affect grape quality and viability. Beneficial climatic conditions will improve the wine's quality. In this study it is aimed that to determine suitable wine grape varieties for the cultivation in some areas of Southeastern Anatolia Region, Eastern Anatolia, Central Anatolia Region, Central Black Sea Region, Aegean Region and Marmara Region in Turkey with related to climate requirements. For this reason, long-term climatic data were collected by meteorological stations including, Diyarbakır (Çermik, Çüngüş, Central-Elazığ, Nevşehir (Central and Ürgüp, Ankara (Kalecik Tokat (Central, Erbaa, Niksar, İzmir (Seferihisar, Menderes, Urla ve Denizli (Çal ve Güney, Çanakkale (Bozcaada, Bayramiç, Tekirdağ. In this study heliotermic and hdyrothermic indices were calculated and evaluated for appropriate viticultural practice in this region. It was found that Boğazkere and Öküzgözü in Southeastern Anatolia Region and Eastern Anatolia Region; Kalecik Karası, Dimrit and Narince in Central Anatolia Region and Emir in Central Black Sea Region; Bornova Misketi, Cabernet Sauvignon, Syrah, Alicante Bouschet, Carignane, Kalecik Karası, Merlot, Öküzgözü, Çal Karası, Boğazkere, Sultani Çekirdeksiz in Aegean Region; Karasakız,Karalahana, Vasilaki, Cabernet Sauvignon, Merlot, Syrah, Alicante Bouschet, Semillion, Cinsaut, Yapıncak, Gamay, Merlot, Cabernet Sauvignon can be adapted and grown well in terms of climatic conditions in Marmara Region respectively.

  13. Characterization of maturity and quality of Brazilian apirenic grapes in the São Francisco river Valley

    Directory of Open Access Journals (Sweden)

    Robson de Jesus Mascarenhas

    2012-03-01

    Full Text Available The objective of this study was to characterize and correlate maturity and quality of the first varieties of Brazilian seedless grapes 'BRS Clara', 'BRS Linda', 'BRS Morena', and 'Advanced Selection 8' compared with the American variety 'Crimson Seedless' in compliance with the Brazilian Normative/2002 and export standards Advanced Selection 8' is dark reddish, has large clusters, and is a very large ellipsoid berry; 'BRS Morena' is black with medium sized clusters and large berry shaped as ellipsoid to globoid; 'BRS Linda' is light green and has large sized clusters; 'Crimson' is pink and has small clusters with berries varying from medium to large sizes and ellipsoid shaped; and 'BRS Clara' is green yellowish has medium sized clusters and small berry of elongated ellipsoid shape. All varieties evaluated meet the standard for domestic market established as berry size minimum diameter 12 mm. 'BRS Clara' does not meet the export requirements of diameter. Berries of the red grapes 'BRS Morena' and 'Crimson Seedless' are firmer. The pH, titratable acidity, and soluble solids meet the official standards. Larger clusters are less acidic and present higher soluble solids/titratable acidity ratios implying that they are the sweetest type when ripe.

  14. In vitro and in vivo evaluation of the antioxidant and prooxidant activity of phenolic compounds obtained from grape (Vitis vinifera) pomace.

    Science.gov (United States)

    Cotoras, Milena; Vivanco, Herman; Melo, Ricardo; Aguirre, María; Silva, Evelyn; Mendoza, Leonora

    2014-12-16

    The antioxidant and/or prooxidant ability of extracts obtained from wine waste were analyzed using in vitro and in vivo assays. Cyclic voltammetry was used as the in vitro assay to determine the antioxidant and/or prooxidant properties and, the in vivo effect on mycelial growth of the fungus Botrytis cinerea was evaluated. In addition, the prooxidant activity was evaluated by intracellular oxidation of compound 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) in B. cinerea. The extracts used in this study were obtained from grape pomace of Cabernet Sauvignon, Carménère and Syrah varieties from the Misiones de Rengo Vineyard by simple extraction, using methanol/HCl 1% (v/v), ethanol 70% (v/v), or Soxhlet extraction. According to the results obtained, gallic acid was the most represented phenolic compound independent of grape variety and extraction method. In addition, vanillic acid; protocatechuic acid, syringic acid, quercetin and kaempferol were found in the extracts. From this study it was possible concluded that, depending of the method of extraction of the grape residues and the grape variety (Cabernet Sauvignon, Carménère and Syrah), the extracts showed antioxidant and/or prooxidant activity. However, no correlation can be established between the anodic oxidation potentials of the extracts and their effect on the fungus B. cinerea.

  15. In Vitro and in Vivo Evaluation of the Antioxidant and Prooxidant Activity of Phenolic Compounds Obtained from Grape (Vitis vinifera Pomace

    Directory of Open Access Journals (Sweden)

    Milena Cotoras

    2014-12-01

    Full Text Available The antioxidant and/or prooxidant ability of extracts obtained from wine waste were analyzed using in vitro and in vivo assays. Cyclic voltammetry was used as the in vitro assay to determine the antioxidant and/or prooxidant properties and, the in vivo effect on mycelial growth of the fungus Botrytis cinerea was evaluated. In addition, the prooxidant activity was evaluated by intracellular oxidation of compound 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA in B. cinerea. The extracts used in this study were obtained from grape pomace of Cabernet Sauvignon, Carménère and Syrah varieties from the Misiones de Rengo Vineyard by simple extraction, using methanol/HCl 1% (v/v, ethanol 70% (v/v, or Soxhlet extraction. According to the results obtained, gallic acid was the most represented phenolic compound independent of grape variety and extraction method. In addition, vanillic acid; protocatechuic acid, syringic acid, quercetin and kaempferol were found in the extracts. From this study it was possible concluded that, depending of the method of extraction of the grape residues and the grape variety (Cabernet Sauvignon, Carménère and Syrah, the extracts showed antioxidant and/or prooxidant activity. However, no correlation can be established between the anodic oxidation potentials of the extracts and their effect on the fungus B. cinerea.

  16. Efficacy of gaseous ozone to counteract postharvest table grape sour rot.

    Science.gov (United States)

    Pinto, L; Caputo, L; Quintieri, L; de Candia, S; Baruzzi, F

    2017-09-01

    This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m -3 ) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preliminary trials of Genotype-by-Environment Interactions for Sugars, Organic Acids, and Amino Acids of Table Grape Varieties in Japan

    OpenAIRE

    Shiraishi, Mikio; Shiraishi, Shin-ichi; 白石, 美樹夫; 白石, 眞一

    1997-01-01

    For the period of two successive years, biochemical quality traits of four table grape varieties were evaluated at the eight locations in southwestern part of Japan, especially in Kyushu district. Of quality traits considered, Brix, reducing sugar content, a ratio, free acid content, β ratio, amino acid content, and γ ratio were determined on all grape berries tested. By two techniques (I: coefficient of variability, CV and II : analyses of variance), genotype-byenvironment interaction was la...

  18. Influence of manganese fertilizer on efficiency of grapes on sandy soils of the Chechen Republic

    Directory of Open Access Journals (Sweden)

    Batukaev A.A.

    2014-01-01

    Full Text Available As a result of the studies, there has been obtained new information about the manganese influence on productivity of grape plantations, on sandy soils of the Chechen Republic. Manganese fertilizing of 4 kg active ingredient per 1 ha, against the background of nitrogen 90 kg, phosphorus 90 kg and potassium 90 kg/ha, made it into a phase of grape sap flow, which contributes to higher yields, increase of the sugar content of the berries and a significant decrease in juice acidity, in comparison with other options.

  19. Control of Ochratoxin A Production in Grapes

    Directory of Open Access Journals (Sweden)

    Sofía Chulze

    2012-05-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin commonly present in cereals, grapes, coffee, spices, and cocoa. Even though the main objective of the food and feed chain processors and distributors is to avoid the extended contamination of plant-derived foods and animal feeds with mycotoxins, until now, complete OTA removal from foods and feedstuffs is not feasible. Prevention through pre-harvest management is the best method for controlling mycotoxin contamination. However, in the case that the contamination occurs after this stage, the hazards associated with OTA must be managed through post-harvest strategies. Due to the increasing number of fungal strains resistant to chemical fungicides and the impact of these pesticides on the environment and human health, maximum levels of chemical residues have been regulated in many products. Alternative methods are necessary to substitute or complement treatments with fungicides to control fungi under field or storage conditions. Yeasts are considered one of the most potent biocontrol agents due to their biology and non-toxic properties. Epiphytic yeasts are the major component of the microbial community on the surface of grape berries and they are evolutionarily adapted to this ecological niche. Nowadays, several yeast species included in different genera are considered as potential biocontrol agents to control both, growth of ochratoxigenic Aspergillus species and OTA accumulation.

  20. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas.

    Science.gov (United States)

    Torchio, Fabrizio; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca

    2010-02-15

    Phenolic compounds, extractable from grape skins and seeds, have a notable influence on the quality of red wines. Many studies have clearly demonstrated the relationship between the phenolic composition of the grape at harvest time and its influence on the phenolic composition of the red wine produced. In many previous works the evolution of phenolic composition and relative extractability was normally studied on grapes sampled at different times during ripening, but at the same date the physiological characteristics of grape berries in a vineyard are often very heterogeneous. Therefore, the main goal of the study is to investigate the differences among mechanical properties, phenolic composition and relative extractability of Vitis vinifera L. cv Barbera grape berries, harvested at the same date from several vineyards, and calibrated according to their density at three levels of soluble solids (A=235+/-8, B=252+/-8 and C=269+/-8 g L(-1) sugar) with the aim of studying the influence of ripeness stages and growing locations on these parameters. Results on mechanical properties showed that the thickness of the berry skin (Sp(sk)) was the parameter most affected by the different level of sugars in the pulp, while different skin hardnesses, evaluated by the break skin force (F(sk)), were related to the cultivation sites. The latter were also observed to influence the mechanical characteristics of seeds. Generally, the anthocyanin content increased with the level of soluble solids, while the increase in the tannin content of the berry skin and seeds was less marked. However, significant changes in flavanols reactive to vanillin in the seeds were found. The cellular maturity index (EA%) was little influenced by the soluble solids content of grapes. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Modificação parcial do ambiente de cultivo da videira 'Cabernet Sauvignon' sobre diferentes porta-enxertos: efeito sobre a produção e o teor de sólidos solúveis Crop partially modified environment on different rootstocks of 'Cabernet Sauvignon' grapevine: effect on yield and sugar concentration

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Ferreira

    2004-12-01

    Full Text Available Nas regiões onde existe ocorrência de chuvas durante o desenvolvimento e a maturação dos frutos justifica-se a busca de alternativas de cultivo protegido de uvas para vinho visando atenuar esse impacto sobre a qualidade da produção. Um experimento com a cultivar Cabernet Sauvignon sobre os porta-enxertos 'IAC 766', 'IAC 572' e 'Ripária do Traviú',cultura videira foi conduzido em Jundiaí (SP, sob cultivo protegido (cobertura com plástico e laterais abertas, objetivando estudar as alterações microclimáticas ocorridas no ambiente de cultivo do vinhedo e avaliar o impacto dessa prática sobre a produção e o teor de sólidos solúveis, em relação ao cultivo em ambiente a céu aberto. A proteção por polietileno no cultivo da 'Cabernet Sauvignon' diminuiu o nível de radiação solar para 85,4% e aumentou as temperaturas máximas em 1,3 ºC. Nos ambientes analisados separadamente, as maiores produções por planta e teor de sólidos solúveis foram obtidas na 'Cabernet Sauvignon' sobre porta-enxertos 'IAC 766' e 'IAC 572' que superaram o 'Ripária do Traviú'. Na comparação entre os ambientes a céu aberto e parcialmente modificado não foram encontradas diferenças de produção, porém o teor de sólidos solúveis foi superior no ambiente a céu aberto.In the traditional regions of grape growers, where the incidence of rain is concentrated on the stage of fruit development and maturation, the search for improved crop management strategies is justified, aiming at attenuate the impact of it on yield quality. An experiment with grapevine "Cabernet Sauvignon" cultivated on rootstocks IAC 766, IAC 572 and Ripária do Traviú was carried out in Jundiaí, São Paulo State, Brazil, under plastic greenhouse. The search was focused on the microclimate modification in the environment of cultivated grapes from its conduction in partially modified crop cultivation environment (plastic cover with open sides, as well as evaluates the impact on

  2. Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture.

    Science.gov (United States)

    Martins, Viviana; Teixeira, António; Bassil, Elias; Blumwald, Eduardo; Gerós, Hernâni

    2014-09-01

    Since the development of Bordeaux mixture in the late 1800's, copper-based fungicides have been widely used against grapevine (Vitis vinifera L.) diseases, mainly in organic but also in conventional viticulture; however their intensive use has raised phytotoxicity concerns. In this study, the composition of grape berries and leaves upon Bordeaux mixture treatment was investigated during the fructification season by a metabolomic approach. Four applications of Bordeaux mixture till 3 weeks before harvest were performed following the regular management practices of organic viticulture. Results showed that the copper-based treatment affected the content in sugars, organic acids, lipids and flavan-3-ols of grapes and leaves at specific developmental stages. Nonetheless, the levels of sucrose, glucose and fructose, and of tartaric and malic acids were not significantly affected in mature grapes. In contrast, a sharp decrease in free natural amino acids was observed, together with a reduction in protein content and in mineral nitrogen forms. The treatment with Bordeaux mixture increased by 7-fold the copper levels in tissue extracts from surface-washed mature berries. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Potential Grape-Derived Contributions to Volatile Ester Concentrations in Wine

    Directory of Open Access Journals (Sweden)

    Paul K. Boss

    2015-04-01

    Full Text Available Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L−1 β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L−1 β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L−1 required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  4. Potential grape-derived contributions to volatile ester concentrations in wine.

    Science.gov (United States)

    Boss, Paul K; Pearce, Anthony D; Zhao, Yanjia; Nicholson, Emily L; Dennis, Eric G; Jeffery, David W

    2015-04-29

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L(-1) β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L(-1) β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L(-1) required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  5. Polyphenol, antioxidant and antimicrobial potential of six different white and red wine grape processing leftovers.

    Science.gov (United States)

    Trošt, Kajetan; Klančnik, Anja; Mozetič Vodopivec, Branka; Sternad Lemut, Melita; Jug Novšak, Katja; Raspor, Peter; Smole Možina, Sonja

    2016-11-01

    During winemaking, grape polyphenols are only partly extracted, and consequently unexploited. The main aim was to characterize the phenolic content of freeze-dried grape skin and seed (FDSS) extracts obtained from Slovenian and international grape varieties and to evaluate their antioxidant, antimicrobial and anti-adhesive activities. FDSS of six Vitis vinifera L. grapevine cultivars from Vipava Valley region (Slovenia) underwent extraction and sonification under different conditions. Flavonols were the predominant content of extracts from white 'Zelen' and 'Sauvignon Blanc' grape varieties, with strong antimicrobial activities against Gram-negative bacteria. 'Pinot Noir' FDSS extracted with 50% aqueous ethanol extraction produced a high phenolic content in the final extract, which was further associated with strong antioxidant and antimicrobial activities against all tested bacteria. Bacterial adhesion to stainless steel surfaces with minimal and maximal surface roughness was significantly inhibited (up to 60%) across a wide FDSS concentration range, with lower concentrations also effective with two types of stainless steel surfaces. FDSS extracts from winery by-products show interesting phenolic profiles that include flavonols, catechins, anthocyanins and hydroxycinnamic acids, with yields influenced by grapevine cultivar and extraction conditions. The antioxidant, antimicrobial and anti-adhesive activities of 50% aqueous ethanol 'Pinot Noir' FDSS extract reveals potential applications in food, pharmaceutical and cosmetic industries for these bioactive residues. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Lead content of roadside fruit and berries

    Energy Technology Data Exchange (ETDEWEB)

    Fowles, G W.A.

    1976-01-01

    Blackberries, elderberries, hawthorn berries, holly berries and rose hips have been examined for their lead content, which has been shown to be directly related to the proximity of the growing fruit and berries to roads, the traffic density and the time of exposure. The maximum levels found (in ppm for undried fruit and berries) were blackberries 0.85, elderberries 6.77, hawthorn berries 23.8, holly berries 3.5 and rose hips 1.45. Very thorough washing with water removed 40-60% of the lead from heavily contaminated fruit and berries. When elderberries were used for winemaking over 60% of the lead was extracted and remained in solution in the wine. 25 references, 4 tables.

  7. Consumer preferences in respect of processed fruit and berry products

    Directory of Open Access Journals (Sweden)

    Gribova N. А.

    2017-09-01

    Full Text Available Nowadays fruits, berries and processed products are an indispensable component of the human diet throughout the year. Frozen fruits and berries are widely distributed on the Russian market and are part of the food industry worldwide. Frozen products become popular among consumers for home use due to the minimal cooking time. Consumer evaluation is the most relevant and significant for identifying preferences and evaluating quality products in Russian markets. In this regard, a qualitative analysis of marketing research has been carried out and preferences have been identified according to which criteria consumers buy quick-frozen products. Some methods of sensory analysis have been used (consumer evaluation, the profile method, and pairwise comparison method. The dominant factor in choosing a brand of quick-frozen products is the combination of an acceptable price and quality, and to a lesser extent, the recommendation of acquaintances, the type of packaging and advertising of products. The research is aimed at identifying organoleptic properties that affect the consumer evaluation of the quality of frozen, thawed grapes in comparison with the reference product. Fruits and berries freeze for hours and even minutes, but are stored for a long time. The problem arises in rehydration – the return of the product to its original state, close to fresh natural raw material. The main goal of the research is aimed at identifying some rational method of defrosting, corresponding to organoleptic and consumer properties. With the help of organoleptic evaluation the best ways of defrosting have been identified – the microwave oven and the freezer. These methods allow obtaining thawed foods with the finest quality and identical to natural raw materials. The storage time after defrosting has been revealed: in the microwave oven – 60 min; at the room temperature – 80 min; in the coldstore – 100 min. The obtained information can be useful for consumers

  8. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain).

    Science.gov (United States)

    Portillo, Maria del Carmen; Franquès, Judit; Araque, Isabel; Reguant, Cristina; Bordons, Albert

    2016-02-16

    Epiphytic bacteria on grape berries play a critical role in grape health and quality, which decisively influence the winemaking process. Despite their importance, the bacteria related with grape berry surface remain understudied and most previous work has been based on culture-dependent methods, which offer a limited view of the actual diversity. Herein, we used high-throughput sequencing to investigate the bacterial diversity on the surface from two grape varieties, Grenache and Carignan, and compared them across five vineyards included within the Priorat region (Spain). We could detect up to 14 bacterial phyla with Firmicutes (37.6% Bacillales and 14% Lactobacillales), Proteobacteria (16.8% Pseudomonadales and 11.6% Enterobacteriales) and Actinobacteria (3.4% Actinomycetales) being the most abundant. Bacterial community was different at each vineyard being grape varietal, geographical situation and orientation related with changes in bacterial populations. The most abundant bacterial taxa and those driving differences between the vineyards and grape varietals were identified. This study indicates that bacterial community heterogeneities can be influenced by geographic factors like orientation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Use of gamma irradiation for control of postharvest Botrytis cinerea bunch rot of table grapes in cold storage

    International Nuclear Information System (INIS)

    De Kock, P.J.; Holz, G.

    1991-01-01

    The feasibility of employing gamma irradiation for the control of postharvest Botrytis bunch rot of table grapes in cold storage was studied. Table grape cultivars from commercial vineyards in the Paarl and Hex River Valley areas were packed as for export in vented corrugated cartons. The cartons were irradiated at 0; 1,5; 2,0 or 3,0 kGy. After irradiation, grapes were kept for 4 weeks at -0,5 degrees C, followed by another week at 10 degrees C. Less decay was observed when table grapes were irradiated soon after picking than after a storage period. Irradiation at 1,5; 2,0 and 3,0 kGy reduced the effects of Botrytis cinerea on Barlinka grapes stored without sulphur dioxide. Irradiation of Waltham Cross and Barlinka grapes at a dose of 2,0 kGy, combined with reduced SO 2 treatments, resulted in similar control as with the standard practice of enclosing an SO 2 generator. Browning of Waltham Cross berries and bacterial and yeast growth occurred on the surface of berries irradiated at a dose of 3,0 kGy. Irradiation had no adverse effect on other aspects of quality. 25 refs., 3 tabs

  10. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    Science.gov (United States)

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  11. Antimutagenic Acivity of Raw Materials and By- Products from Production of Grape Wines

    Czech Academy of Sciences Publication Activity Database

    Totušek, J.; Lefnerová, D.; Kyseláková, M.; Balík, J.; Veverka, J.; Tříska, Jan; Vrchotová, Naděžda

    2008-01-01

    Roč. 26, special (2008), s. 55-59 ISSN 1212-1800. [Quality of Moravian and Czech Wines and their Future. Lednice, 11.09.2008-12.09.2008] R&D Projects: GA ČR(CZ) GA525/06/1757 Institutional research plan: CEZ:AV0Z60870520 Keywords : wine * grape berries * polyphenolic compounds * antimutagenicity Subject RIV: GM - Food Processing Impact factor: 0.472, year: 2008

  12. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.

    Science.gov (United States)

    Agudelo-Romero, Patricia; Erban, Alexander; Rego, Cecília; Carbonell-Bejerano, Pablo; Nascimento, Teresa; Sousa, Lisete; Martínez-Zapater, José M; Kopka, Joachim; Fortes, Ana Margarida

    2015-04-01

    Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email

  13. The Synthesis and Accumulation of Resveratrol Are Associated with Veraison and Abscisic Acid Concentration in Beihong (Vitis vinifera × Vitis amurensis) Berry Skin

    Science.gov (United States)

    Wang, Junfang; Wang, Shuqin; Liu, Guotian; Edwards, Everard J.; Duan, Wei; Li, Shaohua; Wang, Lijun

    2016-01-01

    Resveratrols are polyphenolic secondary metabolites that can benefit human health, and only occur in a few plant families including Vitaceae. It has been reported that abscisic acid (ABA) can induce veraison (the onset of grape berry ripening) and may induce the accumulation of resveratrol in berry skin. However, the relationships between ABA, veraison, the accumulation of anthocyanins and the accumulation of resveratrol in the berry are poorly understood. This study attempted to answer this question through an investigation of the effect of applied ABA and fluridone (a synthetic inhibitor of ABA) on the biosynthesis and accumulation of ABA, anthocyanin, and resveratrol in Beihong (Vitis vinifera × Vitis amurensis) berry skin. Under natural conditions, resveratrol concentration was very low before 91 DAA (days after anthesis), i.e., 2 weeks after veraison, however, it increased sharply from this point to 126 DAA (maturity). Exogenous ABA applications all resulted in an increase in berry skin ABA and anthocyanin concentration, irrespective of the developmental stage at which the treatment occurred (20 and 10 days pre-veraison, veraison or 7 days post-veraison), thereby advancing veraison. In contrast, resveratrol concentration increased only when ABA was applied at 10 days pre-veraison or at veraison. As a result, the accumulation of resveratrol was associated with veraison in grape berry skin and this accumulation, together with that of anthocyanins, was associated with ABA concentration. The response of resveratrol biosynthesis in the berry skin to manipulation of ABA varied during berry development and was less sensitive to ABA than the response of anthocyanin biosynthesis. PMID:27857716

  14. The synthesis and accumulation of resveratrol are associated with veraison and abscisic acid concentration in Beihong (Vitis vinifera × Vitis amurensis berry skin

    Directory of Open Access Journals (Sweden)

    Junfang Wang

    2016-11-01

    Full Text Available Resveratrols are polyphenolic secondary metabolites that can benefit human health, and only occur in a few plant families including Vitaceae. It has been reported that abscisic acid (ABA can induce veraison (the onset of grape berry ripening and may induce the accumulation of resveratrol in berry skin. However, the relationships between ABA, veraison, the accumulation of anthocyanins and the accumulation of resveratrol in the berry are poorly understood. This study attempted to answer this question through an investigation of the effect of applied ABA and fluridone (a synthetic inhibitor of ABA on the biosynthesis and accumulation of ABA, anthocyanin and resveratrol in Beihong (Vitis vinifera × Vitis amurensis berry skin. Under natural conditions, resveratrol concentration was very low before 91 DAA (days after anthesis, i.e. 2 weeks after veraison, however, it increased sharply from this point to 126 DAA (maturity. Exogenous ABA applications all resulted in an increase in berry skin ABA and anthocyanin concentration, irrespective of the developmental stage at which the treatment occurred (20 and 10 d pre-veraison,veraison or 7 d post-veraison, thereby advancing veraison. In contrast, resveratrol concentration increased only when ABA was applied at 10 d pre-veraison or at veraison. As a result, the accumulation of resveratrol was associated with veraison in grape berry skin and this accumulation, together with that of anthocyanins, was associated with ABA concentration. The response of resveratrol biosynthesis in the berry skin to manipulation of ABA varied during berry development and was less sensitive to ABA than the response of anthocyanin biosynthesis.

  15. Impact of grape cluster defoliation on TDN potential in cool climate Riesling wines

    Directory of Open Access Journals (Sweden)

    Schüttler Armin

    2015-01-01

    Full Text Available Many cool climate grape vine growing regions are and will be affected by the global climate change. It is likely that increasing temperatures, as well as changing precipitation pattern will impact the wines’ composition and wine styles. In the last decades the sensory concept of German Riesling wines was considered to represent fresh and fruity notes. However, aged wines of this variety are characterized by petrol like aroma, which is not appreciated in modern Riesling wines. The C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN is considered to be the marker compound for this undesired sensory impression. The biogenesis of this compound is impacted by grape vine growth conditions. Wines made from Riesling grapes grown in warmer climates have higher concentrations of TDN. Therefore “TDN management” will be one of the most challenging tasks in viticulture in Riesling growing regions in general and particularly in cool climate regions. Two approaches considered are the canopy management of the grape vines as well as an appropriate selection of yeast strain for alcoholic fermentation. Therefore, the aim of this project was to study the impact of grape zone defoliation on potential TDN concentrations in grapes, must and finished wines under cool climate conditions, in example of regional conditions of the landmark Hessische Bergstraße, in com- bination with the usage of two commercially available yeast strains during alcoholic fermentation. The experiment consisted of four treatments in a balanced incomplete block design, grape zone defoliation at berry set on the eastern side of the canopy, grape zone defoliation at berry set on eastern and western side of the canopy, grape zone defoliation at veraison on eastern and western side of the canopy, and a non-defoliated treatment. The treatments and repetitions were harvested separately, pressed, and then fermented with two different commercial Saccharomyces cerevisiae strains. Grape

  16. Study of the contribution of massoia lactone to the aroma of Merlot and Cabernet Sauvignon musts and wines.

    Science.gov (United States)

    Pons, Alexandre; Allamy, Lucile; Lavigne, Valérie; Dubourdieu, Denis; Darriet, Philippe

    2017-10-01

    Organic extracts of musts and red wines marked by dried fruit and cooked fruit aromas were analyzed by gas chromatography coupled to olfactometry and mass spectrometry. Thanks to this analytical approach we identified a fragrant lactone corresponding to an odorant zone reminiscent of coconut and dried figs as 5,6-dihydro-6-pentyl-2H-pyran-2-one (C10 massoia lactone). Using chiral GC-GC-MS, we show that only the (R)-C10 massoia lactone is found in musts and wines. Its detection thresholds were 10µg/L and 11µg/L in must and wine model solution, respectively. In Merlot and Cabernet Sauvignon musts marked by dried fruit flavors from overripe grapes, its concentration reached 68µg/L. In contrast, in wines marked by these flavors, it never exceeded 20µg/L. We show that (R)-C10 massoia lactone is reduced to (R)-δ-decalactone during alcoholic fermentation. In addition, we underline the contribution of temperature during the growing season on its level in old red wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Impact of cover crops in vineyard on the aroma compounds of Vitis vinifera L. cv Cabernet Sauvignon wine.

    Science.gov (United States)

    Xi, Zhu-Mei; Tao, Yong-Sheng; Zhang, Li; Li, Hua

    2011-07-15

    This study compared the influence of different cover crops with clean tillage on wine aroma compounds of 5-year-old Cabernet Sauvignon vines. White clover, alfalfa, and tall fescue were used in the vineyard and compared with clean tillage. Aroma compounds of wine were analysed by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS). Forty-seven volatile compounds were identified and quantified. Wines made from grapes grown with various cover crops had higher levels of aroma compounds. Ethyl acetate, isoamyl acetate, ethyl octanoate, ethyl hexanoate, phenylethyl acetate, isoamyl alcohol, linalool, citronellol, β-damascenone, α-ionone, and 5-amyl-dihydro-2(3H)-furan were the impact odorants of sample wines. Wines from cover crop also had higher contents of these impact odorants than the control. For different cover crops, alfalfa sward yielded the highest levels, followed by the tall fescue treatment. According to the data analysis of aroma compounds and sensory assess, permanent cover crop may have the potential to improve wine quality. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  18. Partial shading of Cabernet Sauvignon and Shiraz vines altered wine color and mouthfeel attributes, but increased exposure had little impact.

    Science.gov (United States)

    Joscelyne, Venetia L; Downey, Mark O; Mazza, Marica; Bastian, Susan E P

    2007-12-26

    Few studies have investigated the impact of vine shading on the sensory attributes of the resultant wine. This study examines the effects of canopy exposure levels on phenolic composition plus aroma, flavor, and mouthfeel aspects in wine. Wines were made from Cabernet Sauvignon and Shiraz grapes (Vitis vinifera L.) subjected to different levels of canopy exposure in a commercial vineyard in the Sunraysia region, Victoria, Australia. Canopy exposure treatments included control (standard vineyard practice), exposed (achieved with a foliage wire 600 mm above the top cordon), highly exposed (using a foliage wire with leaf plucking in the fruit zone), and shaded treatment (using 70% shade-cloth). Spectral and descriptive analyses showed that levels of anthocyanins, other phenolics, and perceived astringency were lower in wines made from shaded fruit; however, the reverse was generally not observed in wines of exposed and highly exposed fruit. Descriptive analysis also showed wines from the shaded fruit were different from other treatments for a number of flavor and aroma characters. These findings have implications for vineyard management practices.

  19. Repercussion of the phytosanitary treatments on various models of foliage management in a Cabernet Sauvignon Vineyard (I note).

    Science.gov (United States)

    Spera, G; Moretti, S; Casadei, G

    2004-01-01

    This study is the first communication about the repercussion of several phytosanitary treatments in three different training systems, differently managed in foilage, in relation to the usual phytopatologies: botrytis, acid rot, grape mildew and oldium. Particular attention to residuals of the products supplied on the foilage and present in ground and wine is paid. The considered foilage management systems are among those more spread and effective ones for a good quality wine production for Cabernet Sauvignon variety (clone R5). 11. Cordon Spur of Conegliano (C.S.C); 12. Simple Free Espalier Curtain (S.C.S.L); 13. Lyra (Lyra). The phytosanitary interventions for the foilage management systems have been compared between the company's ordinary plan and one with various and numerous active principles. The CG-ECD with Multiresidual analysis has determined the active principles residuals in the ground and in the wines. The characteristics of the wines have been determined by physical- chemical analysis; their organoleptic quality has been valued by panels of producers, oenologists, consumers and restaurant staff. The results point out a difference among the trials for the different presence of residuals. The foilage management justifies the diversity of the analytical composition of the wines. There is a substantial uniformity of judgements for the organoleptic quality. In conclusion, in this prove the judgement on the economic quality highlights the uselessness of the use of more incisive and radical active principles.

  20. Exogenous 24-Epibrassinolide Interacts with Light to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Cabernet Sauvignon (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Yali Zhou

    2018-01-01

    Full Text Available Anthocyanins and proanthocyanidins (PAs are crucial factors that affect the quality of grapes and the making of wine, which were stimulated by various stimuli and environment factors (sugar, hormones, light, and temperature. The aim of the study was to investigate the influence of exogenous 24-Epibrassinolide (EBR and light on the mechanism of anthocyanins and PAs accumulation in grape berries. Grape clusters were sprayed with EBR (0.4 mg/L under light and darkness conditions (EBR + L, EBR + D, or sprayed with deionized water under light and darkness conditions as controls (L, D, at the onset of veraison. A large amount of anthocyanins accumulated in the grape skins and was measured under EBR + L and L treatments, whereas EBR + D and D treatments severely suppressed anthocyanin accumulation. This indicated that EBR treatment could produce overlay effects under light, in comparison to that in dark. Real-time quantitative PCR analysis indicated that EBR application up-regulated the expression of genes (VvCHI1, VvCHS2, VvCHS3, VvDFR, VvLDOX, VvMYBA1 under light conditions. Under darkness conditions, only early biosynthetic genes of anthocyanin biosynthesis responded to EBR. Furthermore, we also analyzed the expression levels of the BR-regulated transcription factor VvBZR1 (Brassinazole-resistant 1 and light-regulated transcription factor VvHY5 (Elongated hypocotyl 5. Our results suggested that EBR and light had synergistic effects on the expression of genes in the anthocyanin biosynthesis pathway.

  1. Environmental variables in packing houses and their effects on the quality of grapes

    Directory of Open Access Journals (Sweden)

    Osvaldo C. Vasconcelos

    Full Text Available ABSTRACT The aim of this study was to characterize the thermal environment in the selection and packing areas of a packing house and its effects on the quality of table grapes produced in the São Francisco Valley, Brazil. The thermal environment was monitored during the winter and summer seasons. The highest value of air temperature (Tair and the lowest relative humidity (RH observed in the packing house were 35 °C and 40.0%, respectively, obtained during the summer, for 8 h. After observing the thermal environment data of the packing house, simulations were performed to evaluate the effect of the ideal environmental storage conditions and observed thermal conditions on the postharvest quality of “Thompson” grapes. Grapes were harvested and stored directly at the ideal temperature and RH of 0 °C and 90%, respectively, or previously exposed to a temperature of 35 °C and RH of 40% for 8 h, the thermal environment observed in the evaluated packing house, followed by storage at 0 °C and 90% RH. Fruit exposure to high temperature and low RH before the ideal storage conditions resulted in higher loss of berry firmness and weight, along with increased soluble solids and dry matter content of rachis and berry. Based on these results, the environmental conditions observed in the packing house result in berry dehydration, which accelerates the loss of fruit quality during storage.

  2. Improvement berry color skin profile by exogenous cyanocobalamin treatment of ‘Crimson seedless’ grapevines

    Directory of Open Access Journals (Sweden)

    A.A. Lo'ay

    2017-09-01

    Full Text Available The experiment was conducted to study the effect of cyanocobalamin (B12 treatments (0, 3, 6, and 9 mM B12 on Vitis vinifera L. ‘Crimson seedless’ which conducted during two seasons 2014 and 2015. The study aims to regenerate berry color during growth and preserve it during shelf-life at room temperature for four days. The results showed that B12 treatments were significantly effective in reducing weight loss. Berry shatter, rachis browning index, while it preserved another quality parameter high such as berry firmness, separation force, total phenol content (TPC, total sugar content (TSC, total anthocyanin content (TAC, B-Carotene, ascorbic acid (AA and color hue angle during shelf-life for four days. The previous results were significantly observed with B12 at 9 mM compared to control and other B12 concentrations. However, total solid content (SSC%, titratable acidity (TA%, and SSC/TA ratio were significantly affected by B12 at 9 mM up to end the shelf-life period. In contrast, the lowest values of total chlorophyll (Chlab content during shelf-life compared with other B12 concentrations. Therefore, cyanocobalamin (B12 is an effective vitamin for improving or generating berry color at harvest time and maintaining cluster quality of ‘Crimson seedless’ grapes during shelf-life (marketing.

  3. Pesticide residues in berries harvested from South-Eastern Poland (2009-2011).

    Science.gov (United States)

    Matyaszek, Aneta; Szpyrka, Ewa; Podbielska, Magdalena; Słowik-Borowiec, Magdalena; Kurdziel, Anna

    2013-01-01

    Poland is a leading grower/producer of berries in Europe that are either eaten raw or processed. As well as berries this includes fruit such as grapes, strawberries and other small fruits. Testing for the presence of active substances in Plant Protection Products, (PPP), in such fruit is however important, as part of measures taken to minimise human intake. To determine the incidence of pesticide residues in berries harvested from South-Eastern Poland in 2009-2011. . Chromatographic separation followed by analytical detection was performed on 250 samples of various test fruits using an accredited methodology: GC/ECD/NPD, together with spectrophotometric detection wherever necessary, according to PN-EN ISO/IEC 17025. As part of previous monitoring, 126 active substances were identified in 2009, 132 in 2010 and 153 in 2011; levels were compared to Maximum Residue Limits (MRLs). RESULTS;. Analyses showed that 46.4% of samples contained PPPs of which 4% exceeded the MRL. The most were found in raspberries, (58.8% of all tested), followed by 58.3% redcurrants, and gooseberries as well as 50% grapes. The most frequently found active substances of PPPs were pyrimethanil (15.6%), dithiocarbamates (12.4%), procymidone (8%), cyprodinil (5.6%) and difenoconazole (5.2%). The highest MRL exceedances were found in blackcurrants. Testing also revealed many examples of pesticides not recommended for the protection of specific crops: propiconazole in gooseberries, cyprodinil, flusilazole, iprodione, pyrimethanil in blackcurrants and folpet and captan in raspberries. Furthermore, active substances whose use in PPPs have been forbidden since 2008 were also detected, ie. endosulfan in blackcurrants and strawberries, fenitrothion in black and red currants as well as procymidone in raspberries, blackcurrants and strawberries. These data are consistent to those obtained from the whole of Poland and the European Union (EU). Most pesticides were present in raspberries, redcurrants

  4. Brotação e produção das videiras 'Cabernet Sauvignon' e 'Pinot Noir' submetidas a diferentes concentrações de cianamida hidrogenada Shoot growth and production of Cabernet Sauvignon and Pinot Noir grapevines sprayed with different concentrations of hydrogen cyanamide

    Directory of Open Access Journals (Sweden)

    Gilmar Arduino Bettio Marodin

    2006-12-01

    Full Text Available A ausência de frio invernal na videira produz efeitos adversos, como o atraso e desuniformidade de brotação das gemas, dificuldades de manejo fitossanitário, produção escalonada e de baixa qualidade. O trabalho foi realizado no município de Garibaldi, na região da Encosta Superior do Nordeste do Estado do Rio Grande do Sul, com 640 metros de altitude, com objetivo de testar concentrações de cianamida hidrogenada de 0; 0,5; 1,0; 1,5; 2,0 e 2,5% nas cultivares viníferas Cabernet Sauvignon e Pinot Noir. Os melhores resultados para brotação de gemas de vara foram de 1,75 e 2,0 % em 'Cabernet Sauvignon' e 'Pinot Noir', respectivamente. Concentrações superiores a 1,5 % ocasionaram uniformidade de brotação, independentemente do ano. A maior produtividade foi obtida com cianamida.hidrogenada 2,0% nas duas cultivares, com elevação média de cinco ton/ha. Houve maior fertilidade nas gemas de vara do que em esporão. Os aspectos qualitativos das uvas não foram afetados pela cianamida hidrogenada, com exceção do peso médio dos cachos na 'Pinot Noir', na safra de 2004.The lack of chilling for grapevines produces adverse effects such as the delay and unevenness of budburst; difficulties for phytosanitary procedures, extension of the harvesting period and low fruit quality. The work was carried out close to Garibaldi, at an altitude of 640 meters in the region of "Encosta Superior" Northern of the State of Rio Grande do Sul. The objective of this work was to test concentrations of hydrogen Cyanamid varying from 0; 0,5; 1,0; 1,5 ; 2,0 and 2.5% sprayed onto Cabernet Sauvignon and Pinot Noir cultivars. The best shoot growth results were obtained from sprays of 1.75% and 2.0% in Cabernet Sauvignon and Pinot Noir, respectively. Concentrations beyond to 1.5% promoted shoot growth uniformity, independent of the year. The highest productivity was obtained with 2.0% hydrogen Cyanamid in both cultivars, with an average increase of 5 ton/ha. There

  5. Tiamina e riboflavina: evolução com a maturação de Cabernet Sauvignon e comportamento durante a fermentação com diferentes níveis de anidrido sulfuroso adicionado Thiamine and riboflavin: evolution during ripening of Cabernet Sauvignon and during fermentation with different levels of so2 added

    Directory of Open Access Journals (Sweden)

    Carlos Eugenio Daudt

    1995-01-01

    Full Text Available O objetivo do trabalho foi estudar o comportamento das vitaminas,tiamina (vitamina B1 e riboflavina (vitamina B2,durante a maturação de Vitis vinifera cultivar Cabemet Sauvignon e durante a fermentação do mosto, usando diferentes quantidades de SO2. Os valores mínimos encontrados para tiamina e riboflavina foram respectivamente (ug/100nd: 7,67 e 6,85 com 5,5 °Brix e os máximos foram, respectivamente, 19,35 (na colheita e 15,75 com 12,8 °Brix. A tiamina foi quase totalmente consumida antes da fermentação inicial, aparecendo novamente ao final da mesma. A riboflavina, ao contrário aumentou durante a fermentação. Ambas as vitaminas aumentaram durante a maturação de Cabemet Sauvignon, estando a tiamina presente em maior quantidade. O aumento das quantidades de SO2 adicionado ao mosto, afetou a tiamina numa proporção direta, mas não teve nenhum efeito sobre a riboflavina. A tiamina diminuiu durante a fermentação, ao mesmo tempo em que ocorreu um aumento da riboflavina.The aim of the work was to follow the behaviour of both vitamins, thiamine and riboflavin, during ripening of Vitis vinifera Cabemet Sauvignon and during fermentation of the must using different amounts of SO2. Minimum values for thiamine and riboflavin were, respectivelly, (ug/100ml: 7.67 and 6.85 at 5.5 °Brix and the maximum values were, respectivelly, 19.35 (at harvest and 15.75 at 12.87 °Brix. Thiamine was almost completelly consumed before the start of fermentation showing up again at the end of the process; riboflavin, on the contrary, increased during fermentation. Both vitamins increased during ripening of Cabemet Sauvignon but -in grapes- the amount of thiamine was greater than riboflavin. Fermentation procedures, as increasing levels of SO2, affected thiamine in a direct proportion but did not have any effect upon riboflavin. Thiamine decreased during fermentation and riboflavin increased.

  6. Berry phase in Heisenberg representation

    Science.gov (United States)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  7. Berry phase in entangled systems

    International Nuclear Information System (INIS)

    Bertlmann, R.A.; Hasegawa, Y.; Hiesmayr, B.C.; Durstberger, C.

    2005-01-01

    Full text: The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the 'spin-echo' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a CHSH-Bell inequality. Furthermore, we suggest an experimental realization of our setup within neutron interferometry. It is possible to create entanglement between different degrees of freedom (spin and spatial degree of freedom) for a single neutron. The influence of the geometrical phase on the entangled neutron state is tested experimentally which is work in progress. (author)

  8. EFTIHIYA – THE NEWEST WINE AROMATIC VARIETY WITH PINK COLORED BERRY

    OpenAIRE

    Zamanidi P. C.; Troshin L. P.; Radchevskiy P. P.

    2014-01-01

    The newest wine grape variety Eftihiya with aromatic pink colored skin (in Greek the name means “happi-ness”) was breed with hybridization at the Athens In-stitute of Viticulture by P. Zamanidi, L. Troshin and P. Radchevskiy in 2005 by crossing the Greek varieties and Malaguzya with Eurasian Traminer pink. Dura-tion of production period from bud burst to harvest 146-155 days. Yields are very high: 25-30 t / ha. Modal mass of clusters is 250 g. Bunch is conical, me-dium density. Berry is mediu...

  9. Quantitative determination of 4-mercapto-4-methylpentan-2-0ne in Sauvignon wines

    Directory of Open Access Journals (Sweden)

    Patricia Bouchilloux

    1996-03-01

    Full Text Available 4-mercapto-4-methylpentan-2-one (4MMP, a powerful aromatic component from Sauvignon variety, is present at trace levels in the wines from this cultivar. A method is proposed ta measure the amount of 4MMP in Sauvignon wines. It combines the extraction of wines volatile constituents using a dynarnic headspace technique and the selective reaction between thiols and p-hydroxymercuribenzoatc (pHMB. This combination is reversible in presence of an excess of cystein or glutathione. Finally, the organic extract is injected on agas chromatograph coupled with a flame photometric detector. Using this method, 4MMP content in Sauvignon wines can be determined with good repetability and sensitivity. These results enable us to evalue the incidence of viticultural and oenological aspects on the level of this aromatic component in Sauvignon wines.

  10. Changes in Wine Aroma Composition According to Botrytized Berry Percentage: A Preliminary Study on Amarone Wine

    Directory of Open Access Journals (Sweden)

    Bruno Fedrizzi

    2011-01-01

    Full Text Available The aim of this study is to evaluate the impact of Botrytis cinerea, a noble rot, on the aroma components of Amarone, a dry red wine produced from withered grapes. A comparative analysis of wines obtained from manually selected healthy and botrytized grapes was done. Aroma analysis revealed that most compounds varied significantly according to the percentage of botrytized berries utilized. Botrytized wines contained less fatty acids and more fruity acetates than healthy wines. A positive correlation between the content of N-(3-methylbutylacetamide, sherry lactone and an unidentified compound and the level of fungal infection was also observed. The results indicate that noble rot can significantly modify important aroma components of Amarone wine.

  11. From Sugar of Grape to Alcohol of Wine: Sensorial Impact of Alcohol in Wine

    Directory of Open Access Journals (Sweden)

    António M. Jordão

    2015-11-01

    Full Text Available The quality of grapes, as well as wine quality, flavor, stability, and sensorial characteristics depends on the content and composition of several different groups of compounds from grapes. One of these groups of compounds are sugars and consequently the alcohol content quantified in wines after alcoholic fermentation. During grape berry ripening, sucrose transported from the leaves is accumulated in the berry vacuoles as glucose and fructose. The wine alcohol content continues to be a challenge in oenology, as it is also the study of the role of chemosensory factors in alcohol intake and consumer preferences. Several technical and scientific advances have occurred in recent years, such as identification of receptors and other important molecules involved in the transduction mechanisms of flavor. In addition, consumers know that wines with high alcohol content can causes a gustatory disequilibrium affecting wine sensory perceptions leading to unbalanced wines. Hence, the object of this review is to enhance the knowledge on wine grape sugar composition, the alcohol perception on a sensorial level, as well as several technological practices that can be applied to reduce the wine alcohol content.

  12. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape.

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    Full Text Available Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS, total flavonoids (TF, total phenols (TPh, trans-resveratrol (Res and activities of phenylalanine ammonia-lyase (PAL, in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp. and CXC-13 (Fusarium sp. conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape.

  13. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening.

    Science.gov (United States)

    Fortes, Ana M; Agudelo-Romero, Patricia; Silva, Marta S; Ali, Kashif; Sousa, Lisete; Maltese, Federica; Choi, Young H; Grimplet, Jerome; Martinez-Zapater, José M; Verpoorte, Robert; Pais, Maria S

    2011-11-02

    Grapes (Vitis vinifera L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses. Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through véraison and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen® genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These

  14. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome.

    Science.gov (United States)

    Akaberi, Maryam; Hosseinzadeh, Hosein

    2016-04-01

    Metabolic syndrome is associated with several disorders, including hypertension, diabetes, hyperlipidemia as well as cardiovascular diseases and stroke. Plant-derived polyphenols, compounds found in numerous plant species, play an important role as potential treatments for components of metabolic syndrome. Studies have provided evidence for protective effects of various polyphenol-rich foods against metabolic syndrome. Fruits, vegetables, cereals, nuts, and berries are rich in polyphenolic compounds. Grapes (Vitis vinifera), especially grape seeds, stand out as rich sources of polyphenol potent antioxidants and have been reported helpful for inhibiting the risk factors involved in the metabolic syndrome such as hyperlipidemia, hyperglycemia, and hypertension. There are also many studies about gastroprotective, hepatoprotective, and anti-obesity effects of grape polyphenolic compounds especially proanthocyanidins in the literature. The present study investigates the protective effects of grape seeds in metabolic syndrome. The results of this study show that grape polyphenols have significant effects on the level of blood glucose, lipid profile, blood pressure, as well as beneficial activities in liver and heart with various mechanisms. In addition, the pharmacokinetics of grape polyphenols is discussed. More detailed mechanistic investigations and phytochemical studies for finding the exact bioactive component(s) and molecular signaling pathways are suggested. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Research on the quality of the wine grapes in corridor area of China

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2015-03-01

    Full Text Available The corridor area of Gansu Province is one of the most important wine grape growing regions in China, and this strip of land results in a significant difference in terms of terroir between its regions. Chemical composition and antioxidant capacity of the main wine grape varieties (Vitis vinifera L. cultivated in the corridor area of Gansu Province in northwest China were compared. Three regions (Zhangye, Wuwei, and Jiayuguan were selected to explain the influence of soil and climate conditions on the quality of wine grapes. This study aims to investigate the effect of different regions on berry composition and antioxidant capacity, providing a general evaluation of red and white wine grapes quality in the corridor area of China. The results showed that ‘Merlot’ grapes grown in Zhangye had the best quality among the different varieties in the three regions of Gansu evaluated. The moderate temperature and nitrogen deficiency were associated with improved fruit quality. It was identified that the most suitable grape variety from Zhangye is ‘Merlot’, and that ‘Cabernet Sauvignon’ and ‘Italian Resling’ are the most suitable varieties from Wuwei and Jiayuguan, respectively.

  16. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption.

    Science.gov (United States)

    Parker, Mango; Capone, Dimitra L; Francis, I Leigh; Herderich, Markus J

    2018-03-14

    Pioneering investigations into precursors of fruity and floral flavors established the importance of terpenoid and C 13 -norisoprenoid glycosides to the flavor of aromatic wines. Nowadays flavor precursors in grapes and wine are known to be structurally diverse, encompassing glycosides, amino acid conjugates, odorless volatiles, hydroxycinnamic acids, and many others. Flavor precursors mainly originate in the grape berry but also from oak or other materials involved in winemaking. Flavors are released from precursors during crushing and subsequent production steps by enzymatic and nonenzymatic transformations, via microbial glycosidases, esterases, C-S lyases, and decarboxylases, and through acid-catalyzed hydrolysis and chemical rearrangements. Flavors can also be liberated from glycosides and amino acid conjugates by oral microbiota. Hence, it is increasingly likely that flavor precursors contribute to retronasal aroma formation through in-mouth release during consumption, prompting a shift in focus from identifying aroma precursors in grapes to understanding aroma precursors present in bottled wine.

  17. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Directory of Open Access Journals (Sweden)

    Camila M.P.B.S. de Ponzzes-Gomes

    2014-06-01

    Full Text Available The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  18. ETHEPHON AND CALCIUM CHLORIDE, A COMBINATION THAT IMPROVES SKIN COLOR OF ‘RUBI’ TABLE GRAPE

    Directory of Open Access Journals (Sweden)

    Joseane Scavroni

    2018-02-01

    Full Text Available ABSTRACT ‘Rubi’ table grape has wide acceptance of the consumer market due to its affordable price and attractive color as a function of the accumulation of anthocyanins. However, environmental conditions do not always favor the suitable accumulation of these pigments, resulting in commercial devaluation and nutritional depreciation of fruits. Thus, the present study aimed to investigate the effect of application of different ethephon concentrations, associated or not with CaCl2 application, on the skin color and quality of ‘Rubi’ grape berries. First, specific traits of berries treated with 0, 200, 400, 600, 800 mg L-1 ethephon associated with 1.5% CaCl2 solution were evaluated and pH, titratable acidity (TA, soluble solids (SS, berry firmness, total and reducing soluble sugars, and anthocyanin and flavonol levels were analyzed. This first stage of evaluation revealed no changes in total sugar levels, firmness, SS, TA, SS/TA ratio, and flavonol levels, while changes were detected regarding reducing sugar and anthocyanin levels. Thus, in the second stage, the following variables were evaluated: SS, TA, reducing sugar levels, anthocyanin levels, phenylalanine ammonia lyase (PAL and glutathione S-transferase (GST activity of ‘Rubi’ grape berries treated with 0, 200, 400, 600, 800 mg L-1 ethephon, associated or not with 1.5% CaCl2 solution. The results of the present study indicate that ethephon associated with CaCl2 can contribute to improve the post-harvest quality of ‘Rubi’ grape, since this association increased the accumulation of anthocyanins due to the higher activity of PAL and GST, related to biosynthesis and storage of antocyanins, respectively, and increased the levels of reducing sugars (at low ethephon concentrations, not changing other quality aspects. Therefore, a single ethephon application from 200 mg L-1 associated with the application of 1.5% CaCl2 at the final ripening stage, when bunches present from 30 to 50

  19. Interactive effects of deficit irrigation and berry exposure aspect on Merlot and Cabernet Sauvignon in an arid climate.

    Science.gov (United States)

    Deficit irrigation is used to control vine vigor and enhance water use efficiency yet few studies have compared cultivar response to water deficit in a warm, arid climate with a high amount of solar radiation and measured the interactive effects of water deficit, cultivar and fruit canopy location. ...

  20. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?

    Science.gov (United States)

    Grangeteau, Cédric; Gerhards, Daniel; Rousseaux, Sandrine; von Wallbrunn, Christian; Alexandre, Hervé; Guilloux-Benatier, Michèle

    2015-09-01

    Isolated yeast populations of Chardonnay grape must during spontaneous fermentation were compared to those isolated on grape berries and in a winery environment before the arrival of the harvest (air, floor, winery equipment) and in the air through time. Two genera of yeast, Hanseniaspora and Saccharomyces, were isolated in grape must and in the winery environment before the arrival of the harvest but not on grape berries. The genus Hanseniaspora represented 27% of isolates in the must and 35% of isolates in the winery environment. The isolates of these two species were discriminated at the strain level by Fourier transform infrared spectroscopy. The diversity of these strains observed in the winery environment (26 strains) and in must (12 strains) was considerable. 58% of the yeasts of the genus Hanseniaspora isolated in the must corresponded to strains present in the winery before the arrival of the harvest. Although the proportion and number of strains of the genus Hanseniaspora decreased during fermentation, some strains, all from the winery environment, subsisted up to 5% ethanol content. This is the first time that the implantation in grape must of populations present in the winery environment has been demonstrated for a non-Saccharomyces genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations.

    Directory of Open Access Journals (Sweden)

    Guilherme Martins

    Full Text Available Despite its importance in plant health and crop quality, the diversity of epiphytic bacteria on grape berries and other plant parts, like leaves and bark, remains poorly described, as does the role of telluric bacteria in plant colonization. In this study, we compare the bacterial community size and structure in vineyard soils, as well as on grapevine bark, leaves and berries. Analyses of culturable bacteria revealed differences in the size and structure of the populations in each ecosystem. The highest bacteria population counts and the greatest diversity of genera were found in soil samples, followed by bark, grapes and leaves. The identification of isolates revealed that some genera - Pseudomonas, Curtobacterium, and Bacillus - were present in all ecosystems, but in different amounts, while others were ecosystem-specific. About 50% of the genera were common to soil and bark, but absent from leaves and grapes. The opposite was also observed: grape and leaf samples presented 50% of genera in common that were absent from trunk and soil. The bacterial community structure analyzed by T-RFLP indicated similarities between the profiles of leaves and grapes, on the one hand, and bark and soil, on the other, reflecting the number of shared T-RFs. The results suggest an interaction between telluric bacterial communities and the epiphytic bacteria present on the different grapevine parts.

  2. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation

    Directory of Open Access Journals (Sweden)

    Florian Rist

    2018-03-01

    Full Text Available Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r2 = 0.95 for berry number compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  3. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.

    Science.gov (United States)

    Rist, Florian; Herzog, Katja; Mack, Jenny; Richter, Robert; Steinhage, Volker; Töpfer, Reinhard

    2018-03-02

    Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg) was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r² = 0.95 for berry number) compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  4. Influence of Grape Seeds and Stems on Wine Composition and Astringency.

    Science.gov (United States)

    Pascual, Olga; González-Royo, Elena; Gil, Mariona; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando

    2016-08-31

    The aim of this paper is to study the real influence of seeds and stems on wine composition, astringency, and bitterness. A decolored grape juice and a grape juice macerated for 4 days from the same Cabernet Sauvignon grapes were fermented with or without supplementation with 100% seeds, 300% seeds, or 100% stems. Once alcoholic fermentation had finished, the wines were analyzed and tasted. The presence of seeds and stems increased the concentration of flavan-3-ol monomers with respect to the controls. However, the seeds mainly released (+)-catechin and (-)-epicatechin, whereas the stems mainly released (+)-catechin and (+)-gallocatechin. The seeds and stems also released proanthocyanidins; those from seeds have a lower mDP and a high percentage of galloylation, whereas those from stems have a higher mDP and a relatively high percentage of prodelphinidins. The presence of seeds and stems brought about a slight but significant increase in pH and lowered titratable acidity and ethanol content. The presence of seeds boosted color intensity, whereas stems had the opposite effect. Finally, both seeds and stems increased wine astringency and bitterness.

  5. Characterization and differentiation of monovarietal grape marc distillates on the basis of varietal aroma compound composition.

    Science.gov (United States)

    Lukić, Igor; Milicević, Borislav; Banović, Mara; Tomas, Srećko; Radeka, Sanja; Persurić, Dordano

    2010-06-23

    To investigate the varietal aroma compound composition of monovarietal grape marc distillates made from six different varieties (Vitis vinifera L.) in the region of Istria (Croatia), 30 samples were subjected to GC/MS and GC/FID analysis. A total of 73 compounds were identified: 45 monoterpenes, 20 sesquiterpenes, 3 diterpenes, and 5 C(13)-norisoprenoids. The largest number and the highest concentration of monoterpenes were found in Muscat Blanc, followed by Rose Muscat of Porec (Muskat ruza porecki) distillates, which were both characterized as highly aromatic. Lower, but still significant monoterpenol content was determined in distillates made from Istrian Malvasia (Malvazija istarska) grape marc. Chardonnay, Cabernet Sauvignon, and Teran distillates exhibited poorer monoterpene profiles, while Teran distillates contained elevated sesquiterpene concentrations. It was concluded that investigated monovarietal grape marc distillates significantly differ in varietal aroma compound composition. Stepwise linear discriminant analysis provided efficient discrimination models, and extracted various monoterpenes, sesquiterpenes and C(13)-norisoprenoids as important differentiators of distillates according to varietal origin.

  6. CORRELATION OF ANTIOXIDANT ACTIVITY OF DRIED BERRY ...

    African Journals Online (AJOL)

    berry fruits dietary intake are linked to their high polyphenols content. As a consequence, a .... 60% berry fruits (aronia, black currant, apple, rose hip, raspberry) .... This is probably due to the fact that fruit juices are produced from fresh fruits ..... acid, and sugar contents of citrus species and mandarin hybrids. Turk. J. Agric.

  7. Coupling effect on the Berry phase

    Directory of Open Access Journals (Sweden)

    Lijing Tian

    2016-11-01

    Full Text Available The Berry phase has universal applications in various fields. Here, we explore the coupling effect on the Berry phase of a two-level system adiabatically driven by a rotating classical field and interacting with a single quantized mode. Our simulations clearly reveal that the Berry phase change is quadratic proportional to the coupling constant if it is less than the level spacing between neighboring instantaneous eigenstates. Remarkably, if the nearest neighbouring level spacing is comparable with the coupling constant, this simple quadratic dependence is lost. Around this resonance, the Berry phase can be significantly tuned by slightly adjusting the parameters, such as the coupling constant, the frequency of the quantized mode, and the transition frequency. These numerical results, agreeing well with the perturbation theory calculations, provide an alternative approach to tune the Berry phase near the resonance, which is useful in quantum information science, i.e. designing quantum logic gates.

  8. OTA-Grapes: A Mechanistic Model to Predict Ochratoxin A Risk in Grapes, a Step beyond the Systems Approach

    Directory of Open Access Journals (Sweden)

    Battilani Paola

    2015-08-01

    Full Text Available Ochratoxin A (OTA is a fungal metabolite dangerous for human and animal health due to its nephrotoxic, immunotoxic, mutagenic, teratogenic and carcinogenic effects, classified by the International Agency for Research on Cancer in group 2B, possible human carcinogen. This toxin has been stated as a wine contaminant since 1996. The aim of this study was to develop a conceptual model for the dynamic simulation of the A. carbonarius life cycle in grapes along the growing season, including OTA production in berries. Functions describing the role of weather parameters in each step of the infection cycle were developed and organized in a prototype model called OTA-grapes. Modelling the influence of temperature on OTA production, it emerged that fungal strains can be shared in two different clusters, based on the dynamic of OTA production and according to the optimal temperature. Therefore, two functions were developed, and based on statistical data analysis, it was assumed that the two types of strains contribute equally to the population. Model validation was not possible because of poor OTA contamination data, but relevant differences in OTA-I, the output index of the model, were noticed between low and high risk areas. To our knowledge, this is the first attempt to assess/model A. carbonarius in order to predict the risk of OTA contamination in grapes.

  9. Ultraviolet radiation (UV-C) on the post harvest control of Colletotrichum gloeosporioides in 'niagara rosada' grapes;Radiacao ultravioleta no controle pos-colheita de Colletotrichum gloeosporides em uva 'niagara rosada'

    Energy Technology Data Exchange (ETDEWEB)

    Cia, Patricia; Sanches, Juliana, E-mail: pcia@iac.sp.gov.b [Instituto Agronomico de Campinas (IAC), Jundiai, SP (Brazil). Centro de Engenharia e Automacao; Benato, Eliane Aparecida; Valentini, Silvia Regina de Toledo; Anjos, Valeria Delgado de Almeida [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil). Grupo de Engenharia e Pos-Colheita; Ponzo, Francine Scolfaro [Instituto Agronomico de Campinas (IAC), SP (Brazil); Terra, Maurilo Monteiro [Instituto Agronomico de Campinas (IAC), SP (Brazil). Centro de Ecofisiologia e Biofisica

    2009-07-01

    Most of the post harvest losses of 'Niagara Rosada' grapes are caused by rot and detached berries. Recently, many researches on alternative methods, such as physical treatments, have been carried out in order to control rots and extend the shelf life of fruits. The objective of this research was to evaluate the effect of ultraviolet radiation (UV-C) on the control of C. gloeosporioides in 'Niagara Rosada' grapes stored at room condition and under refrigeration. Clusters of 'Niagara Rosada' grapes were inoculated with the pathogen and submitted 2 hours later to different doses of UV-C, 0, 1.05, 2.09, 4.18, and 8.35 kJ m{sup -}2, during the periods of 0, 1, 2, 4, and 8 min, respectively. Then, the clusters were stored under two conditions: 25 +- 1 deg C / 80 +- 5 % RH for 7 days, and at 1 +- 1 deg C / 90 +- 5 % RH for 16 days followed by storage at 25 +- 1 deg C / 80 +- 5 %RH for 5 more days. The grapes were evaluated for rot incidence, stem browning, color of the berries, percentage of detached berries, titratable acidity, total soluble solids, and ratio. It was observed that UV-C radiation was effective in reducing the incidence of C. gloeosporioides on inoculated 'Niagara Rosada' grapes and did not change the physicochemical characteristics of the grapes. (author)

  10. Effect of terrains on the volatiles of Cabernet Sauvignon wines ...

    African Journals Online (AJOL)

    user

    2012-04-24

    Apr 24, 2012 ... grape metabolism, many factors (including soil, terrain, climate, etc.) can influence the ... and Stefano, 1988); in Canada, Reynolds et al. (1996) ... nological maturity, as judged by indices of sugar and acid content in. 2009. ... for each compound were prepared using the method described by. Ferreira et al.

  11. Yeast diversity isolated from grape musts during spontaneous fermentation from a Brazilian winery.

    Science.gov (United States)

    Bezerra-Bussoli, Carolina; Baffi, Milla Alves; Gomes, Eleni; Da-Silva, Roberto

    2013-09-01

    Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR-RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality.

  12. Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3',5'-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols.

    Science.gov (United States)

    Lücker, Joost; Martens, Stefan; Lund, Steven T

    2010-09-01

    At ripening initiation in red grapevine (Vitis vinifera) berries, the exocarp turns color from green to red and then to purple due to the accumulation and extent of methylation of anthocyanins. The accumulation of transcripts encoding an O-methyltransferase was recently shown to be closely correlated with the onset of ripening and the degree of blue/purple pigmentation in grapevine berries; however, the biochemical function of this gene has remained uncharacterized. In this study, an O-methyltransferase cDNA that showed a distinct expression pattern when compared to closely related sequences was expressed in Escherichia coli and enzyme assays were carried out with a broad array of anthocyanin and other flavonoid substrates. We demonstrate that this enzyme carries out 3',5'-O-methylation of anthocyanins and flavonol compounds in vitro, which are known to be present in grape berries, with a preference for glycosylated substrates. The highest relative specific activity for the enzyme was found with delphinidin 3-O-glucoside as substrate. The enzyme is not able to methylate flavan type skeletons with chiral centers, such as either catechins or dihydroquercetin. The enzyme showed negligible specific activity for caffeoyl-CoA, compared to flavonol and anthocyanin substrates. Phylogenetic analysis of the O-methyltransferase suggests that it may be a member of a distinct subclass of Type 2 bivalent metal-dependent S-adenosyl-methionine O-methyltransferases. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  13. Differentiation of the aromas of Merlot and Cabernet Sauvignon wines using sensory and instrumental analysis.

    Science.gov (United States)

    Kotseridis, Y; Razungles, A; Bertrand, A; Baumes, R

    2000-11-01

    The aromas of six Merlot and three Cabernet Sauvignon wines of the 1996 vintage from the Bordeaux region were evaluated by sensory analysis. A panel of selected enology students was trained to assess 20 attributes previously generated for these wines by enologists of Bordeaux. Using statistical methods, this 20-attribute list was reduced to a 12-attribute list. The aroma profiles of the wines of Merlot and Cabernet Sauvignon were very close. Differentiation of the wines of these two varieties was significant only for the caramel descriptor, which was rated higher in the Merlot wines. Gas chromatography/olfactometry (GC/O) and GC/MS analyses were used to detect and identify the potent odorants with the caramel odor in the two most differentiated samples for this attribute, a Merlot wine and a Cabernet Sauvignon wine. Two odorant zones with this odor resulted in identification of 4-hydroxy-2,5-dimethylfuran-3(2H)-one (HDMF) and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methylfuran-3(2H)-one (HEMF). Aroma extract dilution analysis (AEDA) method showed a higher dilution factor (FD) for HDMF in the Merlot wine extract than in the Cabernet Sauvignon extract. The HDMF levels determined in the wines studied using a stable isotope dilution assay (SIDA) method were consistent with the results found by sensory analysis and GC/O; i.e., higher HDMF levels were present in the Merlot wines than in the Cabernet Sauvignon wines.

  14. The importance of pruning to the quality of wine grape fruits (Vitis vinifera L. cultivated under high-altitude tropical conditions

    Directory of Open Access Journals (Sweden)

    Pedro José Almanza-Merchán

    2014-12-01

    Full Text Available Since 1998, the Ain-Karim Vineyard has been growing different grape varieties for the production of high-altitude tropical wines in the municipality of Sutamarchan, located in the Alto Ricaurte region of Boyaca (Colombia. Pruning is used to limit the number and length of branches, generating a suitable balance between plant vigor and production; thereby, regulating fruit quantity and quality and ensuring reserves for the subsequent production. This study aimed to evaluate the effect of three pruning types (short = two buds on two spurs; long = five buds on three spurs and mixed = combination of short and long pruning types on the fruit quality of V. vinifera, Cabernet Sauvignon and Sauvignon Blanc varieties. To accomplish this, a completely randomized two-factor design was used. Physicochemical variables of fruit quality (fresh cluster weight, water content, total soluble solids (TSS, total titratable acidity (TTA, technical maturity index (TMI, and pH were determined at harvest. The long pruning type presented the highest values for the fresh cluster weight and TSS of the fruits from both varieties and a higher TMI in the Cabernet Sauvignon variety. These results indicate that, under the conditions of the vineyard, long pruning is the most suitable.

  15. Beneficial effects of non-alcoholic grape-derived products on human health: A literature review

    Directory of Open Access Journals (Sweden)

    Di Lorenzo Chiara

    2015-01-01

    Full Text Available Vine is widely cultivated due to the economic value of wine and other grape derivatives. The grape berry is character- ized by the presence of a wide variety of flavonoids, which have been investigated for their health promoting properties. Several epidemiological studies have shown that a moderate consumption of wine is associated with a J-shaped effect on some risk fac- tors for chronic diseases. On the other hand, the wine market has shown a decreasing trend due to the frequent abuse of alcoholic beverages also by young people, as denounced by WHO. Accordingly, the scientific research in the field of non-alcoholic grape products has been further stimulated. The aim of this paper was a preliminary collection of data on human studies supporting the beneficial properties of unfermented grape products. The most convincing positive effects, observed in humans, consisted in the reduction of risk factors for cardiovascular diseases, such as hypertension and oxidative stress. Other human trials have been published in the area of: immune system, diabetes, cognitive functions, oral health, and cancer. Generally speaking, the findings listed in this review support the use of non-alcoholic grape derivatives, as a source of beneficial compounds for the human diet, even though further studies are necessary.

  16. Induction of resveratrol biosynthesis in skins of three grape cultivars by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Takayanagi, Tsutomu; Okuda, Tohru; Mine, Yohei; Yokotsuka, Koki

    2004-01-01

    Resveratrol production and expression of the genes related to resveratrol biosynthesis were investigated in the skins of three Vitis vinifera cultivars Chardonnay, Koshu and an American hybrid grape, Muscat Bailey A (Bailey x Muscat Hamburg). Resveratrol concentration in the skins of all the grapes increased significantly when exposed to ultraviolet (UV-C, 254 nm) irradiation. The UV-induced resveratrol concentration in the grape skins was lower after veraison (onset of ripening) than before it. The maximum concentration of the UV-induced resveratrol in 'Muscat Bailey A' was higher than those in the other two cultivars. The relative mRNA expression levels of stilebene synthase (STS), phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) genes in grape skins 8 hr after UV irradiation were determined by quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results revealed that STS- and PAL-mRNA expressions were significantly increased by UV irradiation. STS-mRNA expressions in 'Muscat Bailey A' were higher than those in 'Chardonnay' throughout berry development. The UV-induced CHS-mRNA expression in the grape skins decreased before veraison and subsequently increased. (author)

  17. Non-Destructive Optical Monitoring of Grape Maturation by Proximal Sensing

    Directory of Open Access Journals (Sweden)

    Gwendal Latouche

    2010-11-01

    Full Text Available A new, commercial, fluorescence-based optical sensor for plant constituent assessment was recently introduced. This sensor, called the Multiplex® (FORCE-A, Orsay, France, was used to monitor grape maturation by specifically monitoring anthocyanin accumulation. We derived the empirical anthocyanin content calibration curves for Champagne red grape cultivars, and we also propose a general model for the influence of the proportion of red berries, skin anthocyanin content and berry size on Multiplex® indices. The Multiplex® was used on both berry samples in the laboratory and on intact clusters in the vineyard. We found that the inverted and log-transformed far-red fluorescence signal called the FERARI index, although sensitive to sample size and distance, is potentially the most widely applicable. The more robust indices, based on chlorophyll fluorescence excitation ratios, showed three ranges of dependence on anthocyanin content. We found that up to 0.16 mg cm−2, equivalent to approximately 0.6 mg g−1, all indices increase with accumulation of skin anthocyanin content. Excitation ratio-based indices decrease with anthocyanin accumulation beyond 0.27 mg cm−2. We showed that the Multiplex® can be advantageously used in vineyards on intact clusters for the non-destructive assessment of anthocyanin content of vine blocks and can now be tested on other fruits and vegetables based on the same model.

  18. Non-Destructive Optical Monitoring of Grape Maturation by Proximal Sensing

    Science.gov (United States)

    Ben Ghozlen, Naïma; Cerovic, Zoran G.; Germain, Claire; Toutain, Sandrine; Latouche, Gwendal

    2010-01-01

    A new, commercial, fluorescence-based optical sensor for plant constituent assessment was recently introduced. This sensor, called the Multiplex® (FORCE-A, Orsay, France), was used to monitor grape maturation by specifically monitoring anthocyanin accumulation. We derived the empirical anthocyanin content calibration curves for Champagne red grape cultivars, and we also propose a general model for the influence of the proportion of red berries, skin anthocyanin content and berry size on Multiplex® indices. The Multiplex® was used on both berry samples in the laboratory and on intact clusters in the vineyard. We found that the inverted and log-transformed far-red fluorescence signal called the FERARI index, although sensitive to sample size and distance, is potentially the most widely applicable. The more robust indices, based on chlorophyll fluorescence excitation ratios, showed three ranges of dependence on anthocyanin content. We found that up to 0.16 mg cm−2, equivalent to approximately 0.6 mg g−1, all indices increase with accumulation of skin anthocyanin content. Excitation ratio-based indices decrease with anthocyanin accumulation beyond 0.27 mg cm−2. We showed that the Multiplex® can be advantageously used in vineyards on intact clusters for the non-destructive assessment of anthocyanin content of vine blocks and can now be tested on other fruits and vegetables based on the same model. PMID:22163456

  19. Technological approaches to the vinification of Dornfelder grape variety cultivated in Romania

    Directory of Open Access Journals (Sweden)

    Antoce Arina Oana

    2015-01-01

    Full Text Available In Romania, Dornfelder is a rare grape variety which started to become popular among some wine producers due to the intense colour of its wines. However, it is mostly used in blends and therefore varietal wines of Dornfelder are not found too often. In this paper we present some technological approaches suitable for the production of varietal wines of Dornfelder, some of them novel for the Romanian wine industry. The experimental samples include a classical red wine made by the usual technol- ogy using freshly harvested grapes (DW = Dornfelder wine and two variants made with dried grapes (DR and DWDR. The DR variant (Dornfelder raisin wine is produced by a straw-wine type technology, by fermenting a must obtained from grapes dried for 7 weeks. The DWDR is a variant obtained by fermenting a mixture of crushed dried grapes and new Dornfelder wine, the ratio of crushed raisins to wine being 1:1 in weight. The wines were analysed both physico-chemically and sensorially. After one year of aging in bottles, the variant DWDR of wine, produced by fermenting dried berries in already finished wine, proved to be the most balanced in taste, with an intense and complex aroma of berries and red fruit, also displaying good aging potential and stability. The variant DR appeared dense and intense, but with a less complex fruity aroma, with a dominant note of blueberries and black currants. Both straw wines are preferable to the classic varietal wine, which is vinous, but lacks structure and displays a dissociated acidity and a simple aromatic profile, with dominant sour cherry, mineral and vegetal notes.

  20. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).

    Science.gov (United States)

    Wang, Shanshan; Saito, Takanori; Ohkawa, Katsuya; Ohara, Hitoshi; Shishido, Masahiro; Ikeura, Hiromi; Takagi, Kazuteru; Ogawa, Shigeyuki; Yokoyama, Mineyuki; Kondo, Satoru

    2016-03-15

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Berry's Phase and Fine Structure

    CERN Document Server

    Binder, B

    2002-01-01

    Irrational numbers can be assigned to physical entities based on iterative processes of geometric objects. It is likely that iterative round trips of vector signals include a geometric phase component. If so, this component will couple back to the round trip frequency or path length generating an non-linear feedback loop (i.e. induced by precession). In this paper such a quantum feedback mechanism is defined including generalized fine structure constants in accordance with the fundamental gravitomagnetic relation of spin-orbit coupling. Supported by measurements, the general relativistic and topological background allows to propose, that the deviation of the fine structure constant from 1/137 could be assigned to Berry's phase. The interpretation is straightforward: spacetime curvature effects can be greatly amplified by non-linear phase-locked feedback-loops adjusted to single-valued phase relationships in the quantum regime.

  2. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Diego Lijavetzky

    Full Text Available BACKGROUND: Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar 'Muscat Hamburg' to determine tissue-specific as well as common developmental programs. METHODOLOGY/PRINCIPAL FINDINGS: Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. CONCLUSIONS/SIGNIFICANCE: A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are

  3. Study of Morphological, Phenological and Variation of Fruit Traits During Berry Growth Phases of QzlouzumGrapevine Cultivar

    Directory of Open Access Journals (Sweden)

    Hamed Doulati Baneh

    2017-02-01

    quantitative traits, TSS (total soluble solids, TA (titrable acidity, pH, berry weight and diameter, seed length and weight from the beginning of the berry formation to harvest time of clusters in 15-day interval were measured. Results and discussion: The results of this study showed that flowers of Qzlouzum are female with reflexed stamens. The results also determined that none of pollens germinated on both liquid and solid media culture. Based on reflexed stamens and none pollen germination, Qzlouzum grape cultivar proves to be male sterile (physiological substance. This cultivar needs 1483 degree days (above 10°C from bud break till ripening. The changes in TA and TSS were reversed. Amount of acid reduced and sugar content increased with time and berry development. Veraision period was approximately started 55 days after full bloom. At this stage, which is also known as berry softening, acid concentration is reduced and the amount of sugar was increased. Acid content and pH of the fruit were opposite together and by reducing the amount of acid, the pH levels increased. Several studies have confirmed that after changing the color of the grape varieties,sugar can often increase. Conversely, acid reduction in berries is the first happensbefore color change in berries. The berry weight and size changes were described as Double Sigmoid Curve. In the first phase, berry diameter and weight increased rapidly and lasted 60 days. In the second phase or delay phase, berry weight and diameter changedvery slowly while seed weight reached themaximum in this stage. After this phase, the third phase which was associated began with veraision, sugar content increased and the amount of aciddecreased. At this stage berry reached its maximum size and weight. Conclusion: Uniform planting of Qzlouzum red grapes is not recommended because of male sterility and suitable pollinizers should be used. Male sterility, without emasculation will be suitable for grape breeding programs. In areas with

  4. Distribution of major sugars, acids, and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development

    Energy Technology Data Exchange (ETDEWEB)

    Sabir, A.; Kafkas, E.; Tangolar, S.

    2010-07-01

    The juices of five grapevine cultivars cultivated in a typical Mediterranean climate were analyzed for sugars, organic acids, and phenols at four distinct stages of berry development. When the unripe berries were almost in full size, the glucose and fructose contents, based on HPLC detection, ranged from 13.3 to 30.7 g L{sup -}1 and from 8.3 to 23.7 g L{sup -}1 for Muscat of Alexandria and Muscat of Hamburg, respectively. At this stage, tartaric acid concentration was between 10.3 (Italia) and 12.3 g L{sup -}1 (Muscat of Alexandria), while the level of total phenols was low. Up to veraison, there were slight reductions in organic acids, while sugar content increased slightly. However, dramatic changes in all genotypes were apparent after veraison. Slight reductions were determined in the glucose and fructose levels of Italia prior to final analysis, possibly indicating this cultivars sensitivity to late harvest. In the final analysis, glucose and fructose content varied from 86.4 (Italia) to 107.0 g L-1 (Muscat of Hamburg), and from 73.1 (Italia) to 94.1 g L{sup -}1 (Alphonse Lavallee), respectively. Tartaric acid content of ripe berries was between 3.8 (Alphonse Lavallee) and 5.2 g L{sup -}1 (Isabella) with a mean value of 4.6 g L{sup -}1, and phenol content of mature berries ranged from 2253 to 2847 mg L{sup -}1. This study provides valuable information for further understanding the sugar, acid and total phenol changes that occur in some grape cultivars during berry maturation. Therefore, these results will be useful for future research on the biochemistry of the grape berry. (Author) 22 refs.

  5. Postharvest evaluation of soilless-grown table grape during storage in modified atmosphere.

    Science.gov (United States)

    Cefola, Maria; Pace, Bernardo; Buttaro, Donato; Santamaria, Pietro; Serio, Francesco

    2011-09-01

    Soilless growth systems, developed mainly for vegetables and ornamental crops, have also been used recently as an alternative to soil culture for table grape in order to achieve optimal production performance. In this study, sensory, physical and chemical parameters were analysed in table grapes obtained from soil and soilless growth systems at harvest and during storage in air or modified atmosphere. At harvest, soilless-grown berries were 30% firmer than those grown in soil. Moreover, they showed 60% higher antioxidant activity and total phenol content than soil-grown fruits. Modified atmosphere storage resulted in a better quality of table grapes compared with those stored in air. Furthermore, soilless growth was more suitable than soil growth for preserving visual quality and controlling rachis browning and weight loss. Since the soilless system produces berries that are cleaner and of higher quality than those grown in soil, the implementation of soilless growth for the production of health-promoting and convenience fruits is suggested. Copyright © 2011 Society of Chemical Industry.

  6. Combination chemoprevention with grape antioxidants.

    Science.gov (United States)

    Singh, Chandra K; Siddiqui, Imtiaz A; El-Abd, Sabah; Mukhtar, Hasan; Ahmad, Nihal

    2016-06-01

    Antioxidant ingredients present in grape have been extensively investigated for their cancer chemopreventive effects. However, much of the work has been done on individual ingredients, especially focusing on resveratrol and quercetin. Phytochemically, whole grape represents a combination of numerous phytonutrients. Limited research has been done on the possible synergistic/additive/antagonistic interactions among the grape constituents. Among these phytochemical constituents of grapes, resveratrol, quercetin, kaempferol, catechin, epicatechin, and anthocyanins (cyanidin and malvidin) constitute more than 70% of the grape polyphenols. Therefore, these have been relatively well studied for their chemopreventive effects against a variety of cancers. While a wealth of information is available individually on cancer chemopreventive/anti-proliferative effects of resveratrol and quercetin, limited information is available regarding the other major constituents of grape. Studies have also suggested that multiple grape antioxidants, when used in combination, alone or with other agents/drugs show synergistic or additive anti-proliferative response. Based on strong rationale emanating from published studies, it seems probable that a combination of multiple grape ingredients alone or together with other agents could impart 'additive synergism' against cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantitative Prediction of Cell Wall Polysaccharide Composition in Grape (Vitis vinifera L.) and Apple (Malus domestica) Skins from Acid Hydrolysis Monosaccharide Profiles

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2009-01-01

    On the basis of monosaccharide analysis after acid hydrolysis of fruit skin samples of three wine grape cultivars, Vitis vinifera L. Cabernet Sauvignon, Merlot, and Shiraz, and of two types of apple, Malus domestica Red Delicious and Golden Delicious, an iterative calculation method is reported...... for the quantitative allocation of plant cell wall monomers into relevant structural polysaccharide elements. By this method the relative molar distribution (mol %) of the different polysaccharides in the red wine grape skins was estimated as 57-62 mol % homogalacturonan, 6.0-14 mol % cellulose, 10-11 mol % xyloglucan......, 7 mol % arabinan, 4.5-5.0 mol % rhamnogalacturonan I, 3.5-4.0 mol % rhamnogalacturonan II, 3 mol % arabinogalactan, and 0.5-1.0 mol % mannans; the ranges indicate minor variations in the skin composition of the three different cultivars. These cell wall polysaccharides made up similar to 43...

  8. Mesoporous materials as fining agents in variety Cabernet Sauvignon wines

    Directory of Open Access Journals (Sweden)

    Dumitriu Georgiana-Diana

    2016-01-01

    Full Text Available Innovative oenological products and techniques constantly need to be optimized in order to produce high quality wines that are able to fulfill the demanding consumers, with a pleasant colour, astringency, bitterness and a balanced organoleptic profile. New mesoporous materials with viability and environmental safety characteristics, might be a feasible alternative to the use of bentonite, while nowadays in the winemaking there is a major challenge caused by wastes derivate mainly from wine clarification stages. This study was aimed at investigating the influence of conventional (bentonite and activated coal and alternative (MCM-41, SBA-15, KIT-6 fining agents on enological parameters, colour, as well as on the antioxidant activity of a Cabernet Sauvignon wines. Our results show that mesoporous materials, KIT-6 and SBA-15 (6 g/L present the highest reduction on antioxidant activity with 23.08% and 24.41%, while bentonite and activated coal (1.5 g/L reduced with 20.72%, respectively 33.18%. Cluster analysis performed with the values of antioxidant activity differentiated wines treated with activated carbon from other wines.

  9. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.: photosynthetic tissues and berries

    Directory of Open Access Journals (Sweden)

    Michael James Considine

    2015-02-01

    Full Text Available Research on sulfite metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils and questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/ sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the ‘ambient’ environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO¬2 fumigation may extend for several months.

  10. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  11. Starting from grape cultivation.

    Science.gov (United States)

    Yoshida, A

    1992-06-01

    Rapid population growth can only be stopped by lowering the fertility rate. The UNFPA recommends improving the employment opportunities for women as the single best way of achieving this reduction. An example of this phenomenon is the grape cultivation in the Nordeste (Northeastern) region of Brazil. This area is the poorest part of Brazil and has the highest proportion of indigent people. These people have been deforesting the Amazon in search of a better life. What they have done is sterilize the land and turned a tropical rain forest into a desert. In an effort to reverse this trend, grape cultivation has been introduced in an area called Petrolina. The area is very dry with less than 500 mm of precipitation annually. They do have access to a 5000 square kilometer artificial lake (the largest in the world) and the 3rd largest river in Brazil (the Sao Francisco). In an effort to avoid using agricultural medicines, the vines are fertilized with organic matter created on the farm and little or no pesticides are used since pests do not live in such an arid region. It has taken 20 years of trial and error, but the quality of the grapes is now very high and is competitive on the world market. Because of climate and location, harvesting is done year round which increases the productivity of the land. The farm managers have found that married women make the best workers and have the highest level of productivity. Age at 1st marriage averages 24-25, compared with 15-16 for unemployed women in the same area. The fertility rate averages 50% of that for unemployed women in the same area. Agricultural development offers the best opportunity for the women of developing countries. It can pay a high wage, reduce fertility, and replant desert areas.

  12. Effects of modified atmosphere packing and honey dip treatments on quality maintenance of minimally processed grape cv. Razaki (V. vinifera L.) during cold storage.

    Science.gov (United States)

    Sabır, Ali; Sabır, Ferhan K; Kara, Zeki

    2011-06-01

    Increasing pressure in food conservation sector to replace chemical applications has urged researchers to focus on studying new strategies of extending the postharvest life of produces. In such efforts, numerous materials have been tested for their effectiveness as well as suitability in organic consumption. In this study, effects of modified atmosphere packing (MAP) and honey solution dip on maintenance of quality of minimally processed table grape cv. Razaki were investigated. During the storage at 0 °C with relative humidity of 90%, MAP, honey dip, and their combined applications significantly retarded the weight loss of berries that retained about 2 mm of cap stem. Soluble solid contents of all berries slightly increased, while their acid amounts decreased, resulting in consecutive rises of maturity index. With respect to the sensory score, calculated as mean of ten panelists, honey treatment alone was ranked the highest while control berries had significantly lower value. Overall, MAP, honey solution dip or their combination significantly maintained the general quality of minimally processed grape by delaying quality loss and berry decay. Therefore, honey solution dip yielded promising results to use as an edible organic coating barrier to moisture and resist to water vapor diffusion during the cold storage, offering a good adherence to berry surface.

  13. Effects of gamma irradiation on chemical and sensory evaluation of Cabernet Sauvignon wine

    International Nuclear Information System (INIS)

    Caldwell, C.L.; Spayed, S.E.

    1989-01-01

    Cabernet Sauvignon wines received gamma irradiation doses of 0, 0.6, 1.2 or 2.4 KGy and were stored at 21°C for up to 18 months. As radiation dose and storage time increased, total anthocyanin concentration decreased, while color density, hue and color age increased. Acetaldehyde concentration increased with increasing radiation dose and decreased as storage time increased. Sensory evaluation indicated no difference in color or astringency, but off-flavors were detected in wines given a 2.4 KGy dose. Use of gamma irradiation to rapid age Cabernet Sauvignon wines did not appear to be feasible

  14. Efeito do porta-enxerto no teor de nutrientes em tecidos da videira "cabernet sauvignon"

    OpenAIRE

    Miele,Alberto; Rizzon,Luiz Antenor; Giovannini,Eduardo

    2009-01-01

    A nutrição mineral da videira constitui-se em importante fator para a qualidade dos vinhos. Devido a isso, avaliou-se o efeito de porta-enxertos no teor de nutrientes em diferentes tecidos da videira 'Cabernet Sauvignon' (Vitis vinifera L.) na Serra Gaúcha. o experimento foi conduzido durante o ciclo vegetativo de 2004/2005, com os porta-enxertos Rupestris du lot, 101-14, 3309, 420A, Kober 5BB, 161-49, So4 e Paulsen 1103, enxertados em 1993 com a cv. 'Cabernet Sauvignon'. o delineamento exper...

  15. Effect of rootstock on nutrient content of 'cabernet sauvignon' grapevine tissues

    OpenAIRE

    Miele, Alberto; Rizzon, Luiz Antenor; Giovannini, Eduardo

    2009-01-01

    A nutrição mineral da videira constitui-se em importante fator para a qualidade dos vinhos. Devido a isso, avaliou-se o efeito de porta-enxertos no teor de nutrientes em diferentes tecidos da videira 'Cabernet Sauvignon' (Vitis vinifera L.) na Serra Gaúcha. o experimento foi conduzido durante o ciclo vegetativo de 2004/2005, com os porta-enxertos Rupestris du lot, 101-14, 3309, 420A, Kober 5BB, 161-49, So4 e Paulsen 1103, enxertados em 1993 com a cv. 'Cabernet Sauvignon'. o delineamento exper...

  16. Aspects of Berry phase in QFT

    Energy Technology Data Exchange (ETDEWEB)

    Baggio, Marco [Institute for Theoretical Physics, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Niarchos, Vasilis [Department of Mathematical Sciences and Center for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Papadodimas, Kyriakos [Theory Group, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-04-11

    When continuous parameters in a QFT are varied adiabatically, quantum states typically undergo mixing — a phenomenon characterized by the Berry phase. We initiate a systematic analysis of the Berry phase in QFT using standard quantum mechanics methods. We show that a non-trivial Berry phase appears in many familiar QFTs. We study a variety of examples including free electromagnetism with a theta angle, and certain supersymmetric QFTs in two and four spacetime dimensions. We also argue that a large class of QFTs with rich Berry properties is provided by CFTs with non-trivial conformal manifolds. Using the operator-state correspondence we demonstrate in this case that the Berry connection is equivalent to the connection on the conformal manifold derived previously in conformal perturbation theory. In the special case of chiral primary states in 2d N=(2,2) and 4d N=2 SCFTs the Berry phase is governed by the tt{sup ∗} equations. We present a technically useful rederivation of these equations using quantum mechanics methods.

  17. Impact of phenylalanine and urea applications to Tempranillo and Monastrell vineyards on grape amino acid content during two consecutive vintages.

    Science.gov (United States)

    Garde-Cerdán, Teresa; Gutiérrez-Gamboa, Gastón; Portu, Javier; Fernández-Fernández, José Ignacio; Gil-Muñoz, Rocío

    2017-12-01

    Nitrogen plays a key role in the fermentation and secondary metabolites formation. The aim was to study the influence of vine nitrogen applications on grape amino acid composition. Nitrogen sources applied to Tempranillo and Monastrell grapevines were phenylalanine and urea, during two seasons. Results showed that the application of these compounds had little effect on grape amino acid composition, regardless of variety and vintage. This could be due to the fact that vineyards did not present nitrogenous requirements. Thus, variety was the determining factor in Asp, Glu, Gln, Cit, Met, Gly, Gaba, Val, Ile, and Leu while season was the factor that most affected Thr, Arg, Ala, and Lys due its implication on berry ripening. The concentration of the remaining amino acids was influenced by two or three of the factors studied. Therefore, when the vineyard has adequate nitrogen nutritional status, grape amino acid content was determined by variety and vintage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Occurrence of a number of enzymes involved in either gluconeogenesis or other processes in the pericarp of three cultivars of grape (Vitis vinifera L.) during development.

    Science.gov (United States)

    Famiani, Franco; Moscatello, Stefano; Ferradini, Nicoletta; Gardi, Tiziano; Battistelli, Alberto; Walker, Robert P

    2014-11-01

    It is uncertain whether the enzymes pyruvate orthophosphate dikinase (PPDK) or isocitrate lyase (ICL) are present in the pericarp of grape, in which they could function in gluconeogenesis. The occurrence of these and other enzymes was investigated in the pericarp of three cultivars of grape (Vitis vinifera L.). In particular, the abundance of the enzymes aldolase, glutamine synthase (GS), acid invertase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), PPDK and ICL were determined during the development of the pericarp of the cultivars Cabernet Sauvignon, Chardonnay and Zibibbo. PPDK and ICL were not detected at any stage of development. Each of the other enzymes showed different changes in abundance during development. However, for a given enzyme its changes in abundance were similar in each cultivar. In the ripe pericarp of Cabernet Sauvignon, PEPC, cytosolic GS and aldolase were equally distributed between the vasculature and parenchyma cells of the flesh and skin. The absence or very low abundance of PPDK provides strong evidence that any gluconeogenesis from malate utilises phosphoenolpyruvate carboxykinase (PEPCK). The absence or very low abundance of ICL in the pericarp precludes any gluconeogenesis from ethanol. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. BlackBerry for Work Productivity for Professionals

    CERN Document Server

    Mittal, K

    2010-01-01

    The BlackBerry is cool, and the BlackBerry is fun, but the BlackBerry also means serious business. For those of you who bought your BlackBerry to help get your life organized and free yourself from the ball-and-chain of desktop computing, BlackBerry at Work: Productivity for Professionals is the book to show you how. There are plenty of general-purpose BlackBerry guides, but this book shows you how to complete all the traditional smartphone tasks, like to-dos, calendars, and email, and become even more efficient and productive. You'll learn mechanisms for developing effective workflows specifi

  20. BlackBerry All-in-One for Dummies

    CERN Document Server

    Sarigumba, Dante; Petz, William

    2010-01-01

    Go beyond BlackBerry basics and get everything your BlackBerry can deliver. BlackBerry is the leading smartphone for business users, and its popularity continues to explode. When you discover the amazing array of BlackBerry possibilities in this fun and friendly guide, you'll be even happier with your choice of smartphones. BlackBerry All-in-One For Dummies explores every feature and application common to all BlackBerry devices. It explains the topics in depth, with tips, tricks, workarounds, and includes detailed information about cool new third-party applications, accessories, and downloads

  1. CrackBerry The Tales of BlackBerry Use and Abuse

    CERN Document Server

    Michaluk, Kevin J; Trautschold, Martin

    2011-01-01

    A delayed train, a dip in the conversation, an early morning hour with no sleep - during these moments, do you feel an overwhelming urge to grab your BlackBerry? Do you know someone else who does? If the answer is yes, then look no further than this one-of-a-kind book...CrackBerry: True Tales of Blackberry Use and Abuse covers the phenomenon of "BlackBerry Addiction," offering true-life accounts of BlackBerry dependence and mishaps. You'll find comfort and humor in the unbelievable tales of BlackBerry abuse and also learn some valuable tips along the way. * The definitive guide to respons

  2. Influence of yeast strain, canopy management, and site on the volatile composition and sensory attributes of cabernet sauvignon wines from Western Australia.

    Science.gov (United States)

    Robinson, Anthony L; Boss, Paul K; Heymann, Hildegarde; Solomon, Peter S; Trengove, Robert D

    2011-04-13

    Understanding what factors are the major influences on wine composition will assist in the successful management of grape composition in the vineyard and/or variables in the winery to produce wines with specific sensory attributes. A recently developed analytical method [headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry] was employed to analyze over 350 volatile compounds in research scale wines and was combined with descriptive sensory analysis. Both compositional and sensory results showed significant differences among the wines, and in many cases, multiple factors influenced the abundance of wine volatile compounds. Site had the most significant influence on sensory scores and wine composition, followed by canopy management. Unexpectedly, yeast strain had no significant sensory effect despite the fact that a number of volatile compounds were significantly different in the wines made from different strains. PLS analysis, combining the sensory and chemical analyses, also supports the concept of volatile compound interactions contributing to the aroma characteristics of Cabernet Sauvignon wine.

  3. Impact of extended maceration and regulated deficit irrigation (RDI) in Cabernet Sauvignon wines: characterization of proanthocyanidin distribution, anthocyanin extraction, and chromatic properties.

    Science.gov (United States)

    Casassa, L Federico; Larsen, Richard C; Beaver, Christopher W; Mireles, Maria S; Keller, Markus; Riley, William R; Smithyman, Russell; Harbertson, James F

    2013-07-03

    The impact of extended maceration (EM) was studied in Cabernet Sauvignon grapes sourced from a vineyard subjected to four regulated deficit irrigation (RDI) treatments: (I) 100% replenishment of crop evapotranspiration (100% ETc), (II) 70% ETc, (III) 25% ETc until véraison, followed by 100% ETc until harvest, and IV) 25% ETc. Each vineyard replicate was made into wine with two replicates designated as controls (10-day skin contact) and two as extended maceration (EM, 30-day skin contact). The mean degree of polymerization (mDP), size distribution, concentration, and composition of wine proanthocyanidins (PAs) and monomeric flavan-3-ols of 90 fractions were characterized by preparative and analytical HPLC techniques. The maceration length imparted a larger effect on most chemical parameters. The RDI treatment had no effect on the extraction patterns of anthocyanins, PAs, and/or on the origin of the PAs extracted into the wines. Conversely, EM led to anthocyanin losses and increased PA extraction during maceration, with ~73% of seed-derived PAs. Accordingly, the concentration of monomeric flavan-3-ols, oligomeric (2 ≤ mDP < 5) and polymeric PAs (mDP ≥ 5) was higher in EM wines. The size distribution of the wines' PAs revealed two major peaks as a function of concentration at mDP 2 (22-27% of total PAs mass) and at mDP 6-7 (12-17% of total PAs mass) and was found to follow a non-normal Rayleigh-type distribution.

  4. Classification of Argentinean Sauvignon blanc wines by UV spectroscopy and chemometric methods.

    Science.gov (United States)

    Azcarate, Silvana Mariela; Cantarelli, Miguel Ángel; Pellerano, Roberto Gerardo; Marchevsky, Eduardo Jorge; Camiña, José Manuel

    2013-03-01

    Argentina is an important worldwide wine producer. In this country, there are several recognizable provinces that produce Sauvignon blanc wines: Neuquén, Río Negro, Mendoza, and San Juan. The analysis of the provenance of these white wines is complex and requires the use of expensive and time-consuming techniques. For this reason, this work discusses the determination of the provenance of Argentinean Sauvignon blanc wines by the use of UV spectroscopy and chemometric methods, such as principal component analysis (PCA), cluster analysis (CA), linear discriminant analysis (LDA), and partial least square discriminant analysis (PLS-DA). The proposed method requires low-cost equipment and short-time analysis in comparison with other techniques. The results are in very good agreement with results based on the geographical origin of Sauvignon blanc wines. This manuscript describes a method to determine the geographical origin of Sauvignon wines from Argentina. The main advantage of this method is the use of nonexpensive techniques, such as UV-Vis spectroscopy. © 2013 Institute of Food Technologists®

  5. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses.

    Science.gov (United States)

    Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I

    2015-12-15

    The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination. Copyright © 2015. Published by Elsevier B.V.

  6. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Schmidt, Andrew J.; Hart, Todd R.; Billing, Justin M.

    2017-05-13

    Wet waste feedstocks present an apt opportunity for biomass conversion to fuels by hydrothermal processing. In this study, grape pomace slurries from two varieties, Montepulciano and cabernet sauvignon, have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale, continuous-flow reactor system. Carbon conversion to gravity-separable biocrude product up to 56 % was accomplished at relatively low temperature (350 C) in a pressurized (sub-critical liquid water) environment (20 MPa) when using grape pomace feedstock slurry with a 16.8 wt% concentration of dry solids processed at a liquid hourly space velocity of 2.1 h-1. Direct oil recovery was achieved without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup using a Ru on C catalyst in a fixed bed producing a gas composed of methane and carbon dioxide from water soluble organics. Conversion of 99.8% of the chemical oxygen demand (COD) left in the aqueous phase was demonstrated. As a result, high conversion of grape pomace to liquid and gas fuel products was found with residual organic contamination in byproduct water reduced to <150 mg/kg COD.

  7. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  8. Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines.

    Science.gov (United States)

    Liu, Jing; Arneborg, Nils; Toldam-Andersen, Torben B; Petersen, Mikael A; Bredie, Wender Lp

    2017-08-01

    There has been an increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. In this work, three non-Saccharomyces yeast strains (Metschnikowia viticola, Metschnikowia fructicola and Hanseniaspora uvarum) indigenously isolated in Denmark were used in sequential fermentations with S. cerevisiae on three cool-climate grape cultivars, Bolero, Rondo and Regent. During the fermentations, the yeast growth was determined as well as key oenological parameters, volatile compounds and sensory properties of finished rosé wines. The different non-Saccharomyces strains and cool-climate grape cultivars produced wines with a distinctive aromatic profile. A total of 67 volatile compounds were identified, including 43 esters, 14 alcohols, five acids, two ketones, a C13-norisoprenoid, a lactone and a sulfur compound. The use of M. viticola in sequential fermentation with S. cerevisiae resulted in richer berry and fruity flavours in wines. The sensory plot showed a more clear separation among wine samples by grape cultivars compared with yeast strains. Knowledge on the influence of indigenous non-Saccharomyces strains and grape cultivars on the flavour generation contributed to producing diverse wines in cool-climate wine regions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Effects of Grapevine Leafroll associated Virus 3 (GLRaV-3) and duration of infection on fruit composition and wine chemical profile of Vitis vinifera L. cv. Sauvignon blanc.

    Science.gov (United States)

    Montero, R; Mundy, D; Albright, A; Grose, C; Trought, M C T; Cohen, D; Chooi, K M; MacDiarmid, R; Flexas, J; Bota, J

    2016-04-15

    In order to determine the effects of Grapevine Leafroll associated Virus 3 (GLRaV-3) on fruit composition and chemical profile of juice and wine from Vitis vinifera L. cv. Sauvignon blanc grown in New Zealand, composition variables were measured on fruit from vines either infected with GLRaV-3 (established or recent infections) or uninfected vines. Physiological ripeness (20.4°Brix) was the criterion established to det