WorldWideScience

Sample records for sauropodomorph dinosauria saurischia

  1. A basal sauropodomorph (Dinosauria: Saurischia from the Ischigualasto Formation (Triassic, Carnian and the early evolution of Sauropodomorpha.

    Directory of Open Access Journals (Sweden)

    Ricardo N Martinez

    Full Text Available BACKGROUND: The earliest dinosaurs are from the early Late Triassic (Carnian of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species. METHODOLOGY/PRINCIPAL FINDINGS: We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine. CONCLUSIONS/SIGNIFICANCE: We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic.

  2. A New Basal Sauropodomorph (Dinosauria: Saurischia) from Quebrada del Barro Formation (Marayes-El Carrizal Basin), Northwestern Argentina

    Science.gov (United States)

    Apaldetti, Cecilia; Martinez, Ricardo N.; Alcober, Oscar A.; Pol, Diego

    2011-01-01

    Background Argentinean basal sauropodomorphs are known by several specimens from different basins; Ischigualasto, El Tranquilo, and Mogna. The Argentinean record is diverse and includes some of the most primitive known sauropodomorphs such as Panphagia and Chromogisaurus, as well as more derived forms, including several massospondylids. Until now, the Massospondylidae were the group of basal sauropodomorphs most widely spread around Pangea with a record in almost all continents, mostly from the southern hemisphere, including the only record from Antarctica. Methodology/Principal Finding We describe here a new basal sauropodomorph, Leyesaurus marayensis gen. et sp. nov., from the Quebrada del Barro Formation, an Upper Triassic-Lower Jurassic unit that crops out in northwestern Argentina. The new taxon is represented by a partial articulated skeleton that includes the skull, vertebral column, scapular and pelvic girdles, and hindlimb. Leyesaurus is diagnosed by a set of unique features, such as a sharply acute angle (50 degrees) formed by the ascending process of the maxilla and the alveolar margin, a straight ascending process of the maxilla with a longitudinal ridge on its lateral surface, noticeably bulging labial side of the maxillary teeth, greatly elongated cervical vertebrae, and proximal articular surface of metatarsal III that is shelf-like and medially deflected. Phylogenetic analysis recovers Leyesaurus as a basal sauropodomorph, sister taxon of Adeopapposaurus within the Massospondylidae. Moreover, the results suggest that massospondylids achieved a higher diversity than previously thought. Conclusions/Significance Our phylogenetic results differ with respect to previous analyses by rejecting the massospondylid affinities of some taxa from the northern hemisphere (e.g., Seitaad, Sarahsaurus). As a result, the new taxon Leyesaurus, coupled with other recent discoveries, suggests that the diversity of massospondylids in the southern hemisphere was higher

  3. Pelvic and hind limb musculature of Staurikosaurus pricei (Dinosauria: Saurischia

    Directory of Open Access Journals (Sweden)

    Orlando N. Grillo

    2011-03-01

    Full Text Available The study of pelvic and hind limb bones and muscles in basal dinosaurs is important for understanding the early evolution of bipedal locomotion in the group. The use of data from both extant and extinct taxa placed into a phylogenetic context allowed to make well-supported inferences concerning most of the hind limb musculature of the basal saurischian Staurikosaurus pricei Colbert, 1970 (Santa Maria Formation, Late Triassic of Rio Grande do Sul, Brazil. Two large concavities in the lateral surface of the ilium represent the origin of the muscles iliotrochantericus caudalis plus iliofemoralis externus (in the anterior concavity and iliofibularis (in the posterior concavity. Muscle ambiens has only one head and originates from the pubic tubercle. The origin of puboischiofemoralis internus 1 possibly corresponds to a fossa in the ventral margin of the pré-acetabular iliac process. This could represent an intermediate stage prior to the origin of a true pré-acetabular fossa. Muscles caudofemorales longus et brevis were likely well developed, and Staurikosaurus is unique in bearing a posteriorly projected surface for the origin of caudofemoralis brevis.O estudo da musculatura pelvica e do membro posterior em dinossauros basais e importante para entender a evolução inicial do bipedalismo em dinossauros Saurischia. Empregando uma metodologia que tem como base dados obtidos a partir de taxons viventes e extintos posicionados em um contexto filogenetico, foi possivel fazer inferencias bem suportadas relativas a maior parte dos musculos do membro posterior do dinossauro Saurischia basal Staurikosaurus pricei Colbert, 1970 (Formação Santa Maria, Triassico Superior do Rio Grande do Sul, Brasil. Duas grandes concavidades na superficie lateral do ilio correspondem a origem dos musculos iliotrochantericus caudalis e iliofeoralis externus (compartilhando a concavidade anterior e para o musculo iliofibularis (na concavidade posterior. O musculo ambiens

  4. Dispersal and diversity in the earliest North American sauropodomorph dinosaurs, with a description of a new taxon

    OpenAIRE

    Rowe, Timothy B.; Sues, Hans-Dieter; Reisz, Robert R.

    2010-01-01

    Sauropodomorph dinosaurs originated in the Southern Hemisphere in the Middle or Late Triassic and are commonly portrayed as spreading rapidly to all corners of Pangaea as part of a uniform Late Triassic to Early Jurassic cosmopolitan dinosaur fauna. Under this model, dispersal allegedly inhibited dinosaurian diversification, while vicariance and local extinction enhanced it. However, apomorphy-based analyses of the known fossil record indicate that sauropodomorphs were absent in North America...

  5. Dispersal and diversity in the earliest North American sauropodomorph dinosaurs, with a description of a new taxon

    Science.gov (United States)

    Rowe, Timothy B.; Sues, Hans-Dieter; Reisz, Robert R.

    2011-01-01

    Sauropodomorph dinosaurs originated in the Southern Hemisphere in the Middle or Late Triassic and are commonly portrayed as spreading rapidly to all corners of Pangaea as part of a uniform Late Triassic to Early Jurassic cosmopolitan dinosaur fauna. Under this model, dispersal allegedly inhibited dinosaurian diversification, while vicariance and local extinction enhanced it. However, apomorphy-based analyses of the known fossil record indicate that sauropodomorphs were absent in North America until the Early Jurassic, reframing the temporal context of their arrival. We describe a new taxon from the Kayenta Formation of Arizona that comprises the third diagnosable sauropodomorph from the Early Jurassic of North America. We analysed its relationships to test whether sauropodomorphs reached North America in a single sweepstakes event or in separate dispersals. Our finding of separate arrivals by all three taxa suggests dispersal as a chief factor in dinosaurian diversification during at least the early Mesozoic. It questions whether a ‘cosmopolitan’ dinosaur fauna ever existed, and corroborates that vicariance, extinction and dispersal did not operate uniformly in time or under uniform conditions during the Mesozoic. Their relative importance is best measured in narrow time slices and circumscribed geographical regions. PMID:20926438

  6. Dispersal and diversity in the earliest North American sauropodomorph dinosaurs, with a description of a new taxon.

    Science.gov (United States)

    Rowe, Timothy B; Sues, Hans-Dieter; Reisz, Robert R

    2011-04-07

    Sauropodomorph dinosaurs originated in the Southern Hemisphere in the Middle or Late Triassic and are commonly portrayed as spreading rapidly to all corners of Pangaea as part of a uniform Late Triassic to Early Jurassic cosmopolitan dinosaur fauna. Under this model, dispersal allegedly inhibited dinosaurian diversification, while vicariance and local extinction enhanced it. However, apomorphy-based analyses of the known fossil record indicate that sauropodomorphs were absent in North America until the Early Jurassic, reframing the temporal context of their arrival. We describe a new taxon from the Kayenta Formation of Arizona that comprises the third diagnosable sauropodomorph from the Early Jurassic of North America. We analysed its relationships to test whether sauropodomorphs reached North America in a single sweepstakes event or in separate dispersals. Our finding of separate arrivals by all three taxa suggests dispersal as a chief factor in dinosaurian diversification during at least the early Mesozoic. It questions whether a 'cosmopolitan' dinosaur fauna ever existed, and corroborates that vicariance, extinction and dispersal did not operate uniformly in time or under uniform conditions during the Mesozoic. Their relative importance is best measured in narrow time slices and circumscribed geographical regions.

  7. A hyper-robust sauropodomorph dinosaur ilium from the Upper Triassic-Lower Jurassic Elliot Formation of South Africa: Implications for the functional diversity of basal Sauropodomorpha

    Science.gov (United States)

    McPhee, Blair W.; Choiniere, Jonah N.

    2016-11-01

    It has generally been held that the locomotory habits of sauropodomorph dinosaurs moved in a relatively linear evolutionary progression from bipedal through "semi-bipedal" to the fully quadrupedal gait of Sauropoda. However, there is now a growing appreciation of the range of locomotory strategies practiced amongst contemporaneous taxa of the latest Triassic and earliest Jurassic. Here we present on the anatomy of a hyper-robust basal sauropodomorph ilium from the Late Triassic-Early Jurassic Elliot Formation of South Africa. This element, in addition to highlighting the unexpected range of bauplan diversity throughout basal Sauropodomorpha, also has implications for our understanding of the relevance of "robusticity" to sauropodomorph evolution beyond generalized limb scaling relationships. Possibly representing a unique form of hindlimb stabilization during phases of bipedal locomotion, the autapomorphic morphology of this newly rediscovered ilium provides additional insight into the myriad ways in which basal Sauropodomorpha managed the inherited behavioural and biomechanical challenges of increasing body-size, hyper-herbivory, and a forelimb primarily adapted for use in a bipedal context.

  8. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time.

    Science.gov (United States)

    Mannion, Philip D; Upchurch, Paul; Carrano, Matthew T; Barrett, Paul M

    2011-02-01

    The accurate reconstruction of palaeobiodiversity patterns is central to a detailed understanding of the macroevolutionary history of a group of organisms. However, there is increasing evidence that diversity patterns observed directly from the fossil record are strongly influenced by fluctuations in the quality of our sampling of the rock record; thus, any patterns we see may reflect sampling biases, rather than genuine biological signals. Previous dinosaur diversity studies have suggested that fluctuations in sauropodomorph palaeobiodiversity reflect genuine biological signals, in comparison to theropods and ornithischians whose diversity seems to be largely controlled by the rock record. Most previous diversity analyses that have attempted to take into account the effects of sampling biases have used only a single method or proxy: here we use a number of techniques in order to elucidate diversity. A global database of all known sauropodomorph body fossil occurrences (2024) was constructed. A taxic diversity curve for all valid sauropodomorph genera was extracted from this database and compared statistically with several sampling proxies (rock outcrop area and dinosaur-bearing formations and collections), each of which captures a different aspect of fossil record sampling. Phylogenetic diversity estimates, residuals and sample-based rarefaction (including the first attempt to capture 'cryptic' diversity in dinosaurs) were implemented to investigate further the effects of sampling. After 'removal' of biases, sauropodomorph diversity appears to be genuinely high in the Norian, Pliensbachian-Toarcian, Bathonian-Callovian and Kimmeridgian-Tithonian (with a small peak in the Aptian), whereas low diversity levels are recorded for the Oxfordian and Berriasian-Barremian, with the Jurassic/Cretaceous boundary seemingly representing a real diversity trough. Observed diversity in the remaining Triassic-Jurassic stages appears to be largely driven by sampling effort. Late

  9. Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions.

    Science.gov (United States)

    Griebeler, Eva Maria; Klein, Nicole; Sander, P Martin

    2013-01-01

    Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp.) and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti). Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM), all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average mammals, but

  10. A new sauropodomorph dinosaur from the Early Jurassic of Patagonia and the origin and evolution of the sauropod-type sacrum.

    Directory of Open Access Journals (Sweden)

    Diego Pol

    2011-01-01

    Full Text Available The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic-Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods.A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina. The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda.The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are showing that the characteristic sauropod body plan evolved gradually

  11. Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions.

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp. and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti. Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM, all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average

  12. Feather development genes and associated regulatory innovation predate the origin of Dinosauria.

    Science.gov (United States)

    Lowe, Craig B; Clarke, Julia A; Baker, Allan J; Haussler, David; Edwards, Scott V

    2015-01-01

    The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. The first juvenile specimens of Plateosaurus engelhardti from Frick, Switzerland: isolated neural arches and their implications for developmental plasticity in a basal sauropodomorph

    Directory of Open Access Journals (Sweden)

    Rebecca Hofmann

    2014-07-01

    Full Text Available The dinosaur Plateosaurus engelhardti is the most abundant dinosaur in the Late Triassic of Europe and the best known basal sauropodomorph. Plateosaurus engelhardti was one of the first sauropodomorph dinosaurs to display a large body size. Remains can be found in the Norian stage of the Late Triassic in over 40 localities in Central Europe (France, Germany, and Switzerland and in Greenland. Since the first discovery of P. engelhardti no juvenile specimens of this species had been described in detail. Here we describe the first remains of juvenile individuals, isolated cervical and dorsal neural arches from Switzerland. These were separated postmortem from their respective centra because of unfused neurocentral sutures. However the specimens share the same neural arch morphology found in adults. Morphometric analysis suggests body lengths of the juvenile individuals that is greater than those of most adult specimens. This supports the hypothesis of developmental plasticity in Plateosaurus engelhardti that previously had been based on histological data only. Alternative hypotheses for explaining the poor correlation between ontogenetic stage and size in this taxon are multiple species or sexual morphs with little morphological variance or time-averaging of individuals from populations differing in body size.

  14. A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha

    Directory of Open Access Journals (Sweden)

    Kimberley E.J. Chapelle

    2018-01-01

    Full Text Available Massospondylus carinatus is a basal sauropodomorph dinosaur from the early Jurassic Elliot Formation of South Africa. It is one of the best-represented fossil dinosaur taxa, known from hundreds of specimens including at least 13 complete or nearly complete skulls. Surprisingly, the internal cranial anatomy of M. carinatus has never been described using computed tomography (CT methods. Using CT scans and 3D digital representations, we digitally reconstruct the bones of the facial skeleton, braincase, and palate of a complete, undistorted cranium of M. carinatus (BP/1/5241. We describe the anatomical features of the cranial bones, and compare them to other closely related sauropodomorph taxa such as Plateosaurus erlenbergiensis, Lufengosaurus huenei, Sarahsaurus aurifontanalis and Efraasia minor. We identify a suite of character states of the skull and braincase for M. carinatus that sets it apart from other taxa, but these remain tentative due to the lack of comparative sauropodomorph braincase descriptions in the literature. Furthermore, we hypothesize 27 new cranial characters useful for determining relationships in non-sauropodan Sauropodomorpha, delete five pre-existing characters and revise the scores of several existing cranial characters to make more explicit homology statements. All the characters that we hypothesized or revised are illustrated. Using parsimony as an optimality criterion, we then test the relationships of M. carinatus (using BP/1/5241 as a specimen-level exemplar in our revised phylogenetic data matrix.

  15. First evidence of dinosaurian secondary cartilage in the post-hatching skull of Hypacrosaurus stebingeri (Dinosauria, Ornithischia.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available Bone and calcified cartilage can be fossilized and preserved for hundreds of millions of years. While primary cartilage is fairly well studied in extant and fossilized organisms, nothing is known about secondary cartilage in fossils. In extant birds, secondary cartilage arises after bone formation during embryonic life at articulations, sutures and muscular attachments in order to accommodate mechanical stress. Considering the phylogenetic inclusion of birds within the Dinosauria, we hypothesized a dinosaurian origin for this "avian" tissue. Therefore, histological thin sectioning was used to investigate secondary chondrogenesis in disarticulated craniofacial elements of several post-hatching specimens of the non-avian dinosaur Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. Secondary cartilage was found on three membrane bones directly involved with masticatory function: (1 as nodules on the dorso-caudal face of a surangular; and (2 on the bucco-caudal face of a maxilla; and (3 between teeth as islets in the alveolar processes of a dentary. Secondary chondrogenesis at these sites is consistent with the locations of secondary cartilage in extant birds and with the induction of the cartilage by different mechanical factors - stress generated by the articulation of the quadrate, stress of a ligamentous or muscular insertion, and stress of tooth formation. Thus, our study reveals the first evidence of "avian" secondary cartilage in a non-avian dinosaur. It pushes the origin of this "avian" tissue deep into dinosaurian ancestry, suggesting the creation of the more appropriate term "dinosaurian" secondary cartilage.

  16. The origin and early evolution of dinosaurs.

    Science.gov (United States)

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  17. A revision of Sanpasaurus yaoi Young, 1944 from the Early Jurassic of China, and its relevance to the early evolution of Sauropoda (Dinosauria

    Directory of Open Access Journals (Sweden)

    Blair W. McPhee

    2016-10-01

    Full Text Available The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically ‘vulcanodontid’ character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod–eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution.

  18. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    Science.gov (United States)

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  19. Metabolism of dinosaurs as determined from their growth

    Science.gov (United States)

    Lee, Scott A.

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  20. Metabolism of dinosaurs as determined from their growth.

    Science.gov (United States)

    Lee, Scott A

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  1. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    Science.gov (United States)

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  2. The Venice specimen of Ouranosaurus nigeriensis (Dinosauria, Ornithopoda

    Directory of Open Access Journals (Sweden)

    Filippo Bertozzo

    2017-06-01

    Full Text Available Ouranosaurus nigeriensis is an iconic African dinosaur taxon that has been described on the basis of two nearly complete skeletons from the Lower Cretaceous Gadoufaoua locality of the Ténéré desert in Niger. The entire holotype and a few bones attributed to the paratype formed the basis of the original description by Taquet (1976. A mounted skeleton that appears to correspond to O. nigeriensis has been on public display since 1975, exhibited at the Natural History Museum of Venice. It was never explicitly reported whether the Venice specimen represents a paratype and therefore, the second nearly complete skeleton reported in literature or a third unreported skeleton. The purpose of this paper is to disentangle the complex history of the various skeletal remains that have been attributed to Ouranosaurus nigeriensis (aided by an unpublished field map of the paratype and to describe in detail the osteology of the Venice skeleton. The latter includes the paratype material (found in 1970 and collected in 1972, with the exception of the left femur, the right coracoid and one manus ungual phalanx I, which were replaced with plaster copies, and (possibly other manus phalanges. Some other elements (e.g., the first two chevrons, the right femur, the right tibia, two dorsal vertebrae and some pelvic bones were likely added from other individual/s. The vertebral column of the paratype was articulated and provides a better reference for the vertebral count of this taxon than the holotype. Several anatomical differences are observed between the holotype and the Venice specimen. Most of them can be ascribed to intraspecific variability (individual or ontogenetic, but some are probably caused by mistakes in the preparation or assemblage of the skeletal elements in both specimens. The body length of the Venice skeleton is about 90% the linear size of the holotype. Osteohistological analysis (the first for this taxon of some long bones, a rib and a dorsal neural spine reveals that the Venice specimen is a sub-adult; this conclusion is supported by somatic evidence of immaturity. The dorsal ‘sail’ formed by the elongated neural spines of the dorsal, sacral and proximal caudal vertebrae characterizes this taxon among ornithopods; a display role is considered to be the most probable function for this bizarre structure. Compared to the mid-1970s, new information from the Venice specimen and many iguanodontian taxa known today allowed for an improved diagnosis of O. nigeriensis.

  3. The Venice specimen of Ouranosaurus nigeriensis (Dinosauria, Ornithopoda).

    Science.gov (United States)

    Bertozzo, Filippo; Dalla Vecchia, Fabio Marco; Fabbri, Matteo

    2017-01-01

    Ouranosaurus nigeriensis is an iconic African dinosaur taxon that has been described on the basis of two nearly complete skeletons from the Lower Cretaceous Gadoufaoua locality of the Ténéré desert in Niger. The entire holotype and a few bones attributed to the paratype formed the basis of the original description by Taquet (1976). A mounted skeleton that appears to correspond to O. nigeriensis has been on public display since 1975, exhibited at the Natural History Museum of Venice. It was never explicitly reported whether the Venice specimen represents a paratype and therefore, the second nearly complete skeleton reported in literature or a third unreported skeleton. The purpose of this paper is to disentangle the complex history of the various skeletal remains that have been attributed to Ouranosaurus nigeriensis (aided by an unpublished field map of the paratype) and to describe in detail the osteology of the Venice skeleton. The latter includes the paratype material (found in 1970 and collected in 1972), with the exception of the left femur, the right coracoid and one manus ungual phalanx I, which were replaced with plaster copies, and (possibly) other manus phalanges. Some other elements (e.g., the first two chevrons, the right femur, the right tibia, two dorsal vertebrae and some pelvic bones) were likely added from other individual/s. The vertebral column of the paratype was articulated and provides a better reference for the vertebral count of this taxon than the holotype. Several anatomical differences are observed between the holotype and the Venice specimen. Most of them can be ascribed to intraspecific variability (individual or ontogenetic), but some are probably caused by mistakes in the preparation or assemblage of the skeletal elements in both specimens. The body length of the Venice skeleton is about 90% the linear size of the holotype. Osteohistological analysis (the first for this taxon) of some long bones, a rib and a dorsal neural spine reveals that the Venice specimen is a sub-adult; this conclusion is supported by somatic evidence of immaturity. The dorsal 'sail' formed by the elongated neural spines of the dorsal, sacral and proximal caudal vertebrae characterizes this taxon among ornithopods; a display role is considered to be the most probable function for this bizarre structure. Compared to the mid-1970s, new information from the Venice specimen and many iguanodontian taxa known today allowed for an improved diagnosis of O. nigeriensis.

  4. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus.

    Directory of Open Access Journals (Sweden)

    Mathew J Wedel

    Full Text Available Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula--those that leave few or no skeletal traces--in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy.

  5. Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia and Mussaurus patagonicus (Sauropodomorpha

    Directory of Open Access Journals (Sweden)

    Alejandro Otero

    2017-11-01

    Full Text Available Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa. Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism. Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus correspond to elevation/depression in Mussaurus. Muscle

  6. The muscle-powered bite of allosaurus (dinosauria; theropoda: an interpretation of cranio-dental morphology

    Directory of Open Access Journals (Sweden)

    Turner, A.

    2003-12-01

    Full Text Available The skull morphology of Allosaurus has been the subject of functional interpretations which imply a predatory behaviour radically different from that recorded in any predatory land vertebrate. Those interpretations imply the use of the skull and maxillary dentition as analogues of hand-held, man-made weapons, incorporating the inertia of the predator's dash toward prey to add to the effect of the impact, and using wide jaw gapes as a way to keep the mandible out of the way of such blows. We re-interpret the evident adaptations for gape and for recruitment of neck muscles in head depression of Allosaurus in terms of a muscle-powered bite directed at surfaces with moderate convexity, such as the bodies of very large pres. In our model, the forces leading to penetration of the teeth are generated in the context of the opposition between the maxillary and the mandible. This interpretation allows us to incorporate al1 the observed adaptations of the Allosaurus skull, while avoiding the problems created by previous models.La morfología craneal de Allosaurus ha sido objeto de interpretaciones funcionales que implican un comportamiento depredador radicalmente distinto para el inferido para cualquier vertebrado depredador terrestre. Esas interpretaciones implican el uso de la dentición superior e inferior como análogos de cuchillos o dagas manufacturadas por el hombre, incorporando la inercia del golpe del depredador contra la presa para añadir el efecto del impacto, y usando amplias aperturas mandibulares para mantener la mandíbula fuera de la línea de acción del impacto. Reinterpretamos las evidentes adaptaciones para amplias aberturas mandibulares, y para la utilización de la musculatura cervical en la depresih de la cabeza de Allosaurus en función de una mordida basada en la fuerza muscular dirigida a superficies moderadamente convexas, como el cuerpo de una gran presa. En nuestro modelo, las fuerzas que producen la penetración son generadas en el contexto de una oposición entre el maxilar y la mandíbula. Esta interpretación nos permite incorporar todas las adaptaciones observadas en el cráneo de Allosaurus, al mismo tiempo que se evitan los problemas creados por modelos alternativos.

  7. New insights into the lifestyle of Allosaurus (Dinosauria: Theropoda based on another specimen with multiple pathologies

    Directory of Open Access Journals (Sweden)

    Christian Foth

    2015-05-01

    Full Text Available Adult large-bodied theropods are often found with numerous pathologies. A large, almost complete, probably adult Allosaurus specimen from the Howe Stephens Quarry, Morrison Formation (Late Kimmeridgian–Early Tithonian, Wyoming, exhibits multiple pathologies. Pathologic bones include the left dentary, two cervical vertebrae, one cervical and several dorsal ribs, the left scapula, the left humerus, the right ischium, and two left pedal phalanges. These pathologies can be classified as follows: the fifth cervical vertebra, the scapula, several ribs and the ischium are probably traumatic, and a callus on the shaft of the left pedal phalanx II-2 is probably traumatic-infectious. Traumatically fractured elements exposed to frequent movement (e.g., the scapula and the ribs show a tendency to develop pseudarthroses instead of a callus. The pathologies in the lower jaw and a reduced extensor tubercle of the left pedal phalanx II-2 are most likely traumatic or developmental in origin. The pathologies on the fourth cervical are most likely developmental in origin or idiopathic, that on the left humerus could be traumatic, developmental, infectious or idiopathic, whereas the left pedal phalanx IV-1 is classified as idiopathic. With exception of the ischium, all as traumatic/traumatic-infectious classified pathologic elements show unambiguous evidences of healing, indicating that the respective pathologies did not cause the death of this individual. Alignment of the scapula and rib pathologies from the left side suggests that all may have been caused by a single traumatic event. The ischial fracture may have been fatal. The occurrence of multiple lesions interpreted as traumatic pathologies again underlines that large-bodied theropods experienced frequent injuries during life, indicating an active predatory lifestyle, and their survival perhaps supports a gregarious behavior for Allosaurus. Alternatively, the frequent survival of traumatic events could be also related to the presence of non-endothermic metabolic rates that allow survival based on sporadic food consumption or scavenging behavior. Signs of pathologies consistent with infections are scarce and locally restricted, indicating a successful prevention of the spread of pathogens, as it is the case in extant reptiles (including birds.

  8. A New Megaraptoran Dinosaur (Dinosauria, Theropoda, Megaraptoridae) from the Late Cretaceous of Patagonia

    Science.gov (United States)

    2016-01-01

    A skeleton discovered in the Upper Cretaceous Sierra Barrosa Formation (Turonian-Coniacian) of Neuquén Province, Argentina represents a new species of theropod dinosaur related to the long snouted, highly pneumatized Megaraptoridae. The holotype specimen of Murusraptor barrosaensis n.gen et n.sp. (MCF-PVPH-411) includes much of the skull, axial skeleton, pelvis and tibia. Murusraptor is unique in having several diagnostic features that include anterodorsal process of lacrimal longer than height of preorbital process, and a thick, shelf-like thickening on the lateral surface of surangular ventral to the groove between the anterior surangular foramen and the insert for the uppermost intramandibular process of the dentary. Other characteristic features of Murusraptor barrosaensis n.gen. et n. sp.include a large mandibular fenestra, distal ends of caudal neural spines laterally thickened into lateral knob-like processes, short ischia distally flattened and slightly expanded dorsoventrally. Murusraptor belongs to a Patagonian radiation of megaraptorids together with Aerosteon, Megaraptor and Orkoraptor. In spite being immature, it is a larger but more gracile animal than existing specimens of Megaraptor, and is comparable in size with Aerosteon and Orkoraptor. The controversial phylogeny of the Megaraptoridae as members of the Allosauroidea or a clade of Coelurosauria is considered analyzing two alternative data sets. PMID:27439002

  9. A New Sail-Backed Styracosternan (Dinosauria: Ornithopoda) from the Early Cretaceous of Morella, Spain.

    Science.gov (United States)

    Gasulla, José Miguel; Escaso, Fernando; Narváez, Iván; Ortega, Francisco; Sanz, José Luis

    2015-01-01

    A new styracosternan ornithopod genus and species is here described based on a partial postcranial skeleton and an associated dentary tooth of a single specimen from the Arcillas de Morella Formation (Early Cretaceous, late Barremian) at the Morella locality, (Castellón, Spain). Morelladon beltrani gen. et sp. nov. is diagnosed by eight autapomorphic features. The set of autapomorphies includes: very elongated and vertical neural spines of the dorsal vertebrae, midline keel on ventral surface of the second to fourth sacral vertebrae restricted to the anterior half of the centrum, a posterodorsally inclined medial ridge on the postacetabular process of the ilium that meets its dorsal margin and distal end of the straight ischial shaft laterally expanded, among others. Phylogenetic analyses reveal that the new Iberian form is more closely related to its synchronic and sympatric contemporary European taxa Iguanodon bernissartensis and Mantellisaurus atherfieldensis, known from Western Europe, than to other Early Cretaceous Iberian styracosternans (Delapparentia turolensis and Proa valdearinnoensis). The recognition of Morelladon beltrani gen. et sp. nov. indicates that the Iberian Peninsula was home to a highly diverse medium to large bodied styracosternan assemblage during the Early Cretaceous.

  10. A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of southern China.

    Science.gov (United States)

    Wang, Shuo; Sun, Chengkai; Sullivan, Corwin; Xu, Xing

    2013-01-01

    This paper describes a new oviraptorid dinosaur taxon, Ganzhousaurus nankangensis gen. et sp. nov., based on a specimen collected from the Upper Cretaceous Nanxiong Formation of Nankang County, Ganzhou City, Jiangxi Province, southern China. This new taxon is distinguishable from other oviraptorids based on the following unique combination of primitive and derived features: relatively shallow dentary; absence of fossa or pneumatopore on lateral surface of dentary; weakly downturned anterior mandibular end; shallow depression immediately surrounding anterior margin of external mandibular fenestra; external mandibular fenestra subdivided by anterior process of surangular; dentary posteroventral process slightly twisted and positioned on mandibular ventrolateral surface; shallow longitudinal groove along medial surface of dentary posteroventral process; angular anterior process wider transversely than deep dorsoventrally; sharp groove along ventrolateral surface of angular anterior process; ventral border of external mandibular fenestra formed mainly by angular; ventral flange along distal half of metatarsal II; and arctometatarsal condition absent. Phylogenetic analysis places Ganzhousaurus nankangensis gen. et sp. nov. in the clade Oviraptoridae, together with Oviraptor, Citipati, Rinchenia and the unnamed Zamyn Khondt oviraptorid.

  11. A New Megaraptoran Dinosaur (Dinosauria, Theropoda, Megaraptoridae from the Late Cretaceous of Patagonia.

    Directory of Open Access Journals (Sweden)

    Rodolfo A Coria

    Full Text Available A skeleton discovered in the Upper Cretaceous Sierra Barrosa Formation (Turonian-Coniacian of Neuquén Province, Argentina represents a new species of theropod dinosaur related to the long snouted, highly pneumatized Megaraptoridae. The holotype specimen of Murusraptor barrosaensis n.gen et n.sp. (MCF-PVPH-411 includes much of the skull, axial skeleton, pelvis and tibia. Murusraptor is unique in having several diagnostic features that include anterodorsal process of lacrimal longer than height of preorbital process, and a thick, shelf-like thickening on the lateral surface of surangular ventral to the groove between the anterior surangular foramen and the insert for the uppermost intramandibular process of the dentary. Other characteristic features of Murusraptor barrosaensis n.gen. et n. sp.include a large mandibular fenestra, distal ends of caudal neural spines laterally thickened into lateral knob-like processes, short ischia distally flattened and slightly expanded dorsoventrally. Murusraptor belongs to a Patagonian radiation of megaraptorids together with Aerosteon, Megaraptor and Orkoraptor. In spite being immature, it is a larger but more gracile animal than existing specimens of Megaraptor, and is comparable in size with Aerosteon and Orkoraptor. The controversial phylogeny of the Megaraptoridae as members of the Allosauroidea or a clade of Coelurosauria is considered analyzing two alternative data sets.

  12. A nomenclature for vertebral fossae in sauropods and other saurischian dinosaurs.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Wilson

    Full Text Available BACKGROUND: The axial skeleton of extinct saurischian dinosaurs (i.e., theropods, sauropodomorphs, like living birds, was pneumatized by epithelial outpocketings of the respiratory system. Pneumatic signatures in the vertebral column of fossil saurischians include complex branching chambers within the bone (internal pneumaticity and large chambers visible externally that are bounded by neural arch laminae (external pneumaticity. Although general aspects of internal pneumaticity are synapomorphic for saurischian subgroups, the individual internal pneumatic spaces cannot be homologized across species or even along the vertebral column, due to their variability and absence of topographical landmarks. External pneumatic structures, in contrast, are defined by ready topological landmarks (vertebral laminae, but no consistent nomenclatural system exists. This deficiency has fostered confusion and limited their use as character data in phylogenetic analysis. METHODOLOGY/PRINCIPAL FINDINGS: We present a simple system for naming external neural arch fossae that parallels the one developed for the vertebral laminae that bound them. The nomenclatural system identifies fossae by pointing to reference landmarks (e.g., neural spine, centrum, costal articulations, zygapophyses. We standardize the naming process by creating tripartite names from "primary landmarks," which form the zygodiapophyseal table, "secondary landmarks," which orient with respect to that table, and "tertiary landmarks," which further delineate a given fossa. CONCLUSIONS/SIGNIFICANCE: The proposed nomenclatural system for lamina-bounded fossae adds clarity to descriptions of complex vertebrae and allows these structures to be sourced as character data for phylogenetic analyses. These anatomical terms denote potentially homologous pneumatic structures within Saurischia, but they could be applied to any vertebrate with vertebral laminae that enclose spaces, regardless of their developmental

  13. A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria

    Science.gov (United States)

    Martínez, Rubén D. F.; Lamanna, Matthew C.; Novas, Fernando E.; Ridgely, Ryan C.; Casal, Gabriel A.; Martínez, Javier E.; Vita, Javier R.; Witmer, Lawrence M.

    2016-01-01

    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian—Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla—lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ‘tongue-like’ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ‘strut-like’ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ‘ghost lineage’ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies—such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward-facing snout—that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation. PMID:27115989

  14. Common functional correlates of head-strike behavior in the pachycephalosaur Stegoceras validum (Ornithischia, Dinosauria and combative artiodactyls.

    Directory of Open Access Journals (Sweden)

    Eric Snively

    Full Text Available BACKGROUND: Pachycephalosaurs were bipedal herbivorous dinosaurs with bony domes on their heads, suggestive of head-butting as seen in bighorn sheep and musk oxen. Previous biomechanical studies indicate potential for pachycephalosaur head-butting, but bone histology appears to contradict the behavior in young and old individuals. Comparing pachycephalosaurs with fighting artiodactyls tests for common correlates of head-butting in their cranial structure and mechanics. METHODS/PRINCIPAL FINDINGS: Computed tomographic (CT scans and physical sectioning revealed internal cranial structure of ten artiodactyls and pachycephalosaurs Stegoceras validum and Prenocephale prenes. Finite element analyses (FEA, incorporating bone and keratin tissue types, determined cranial stress and strain from simulated head impacts. Recursive partition analysis quantified strengths of correlation between functional morphology and actual or hypothesized behavior. Strong head-strike correlates include a dome-like cephalic morphology, neurovascular canals exiting onto the cranium surface, large neck muscle attachments, and dense cortical bone above a sparse cancellous layer in line with the force of impact. The head-butting duiker Cephalophus leucogaster is the closest morphological analog to Stegoceras, with a smaller yet similarly rounded dome. Crania of the duiker, pachycephalosaurs, and bighorn sheep Ovis canadensis share stratification of thick cortical and cancellous layers. Stegoceras, Cephalophus, and musk ox crania experience lower stress and higher safety factors for a given impact force than giraffe, pronghorn, or the non-combative llama. CONCLUSIONS/SIGNIFICANCE: Anatomy, biomechanics, and statistical correlation suggest that some pachycephalosaurs were as competent at head-to-head impacts as extant analogs displaying such combat. Large-scale comparisons and recursive partitioning can greatly refine inference of behavioral capability for fossil animals.

  15. Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria.

    Directory of Open Access Journals (Sweden)

    Akinobu Watanabe

    Full Text Available Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT imaging. Complementary examination of external and internal osteology reveals (1 highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2 anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3 apneumatic sacral vertebrae; and (4 a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity.

  16. Arcosaurios (Crocodilia, Dinosauria del Cretácico superior de la Conca de Tremp (Lleida, España

    Directory of Open Access Journals (Sweden)

    Buscalioni, A. D.

    1987-12-01

    Full Text Available The study of a great part of the material found during the excavation work carried out by a team of the «Institut de Paleontología de Sabadell» and other paleontologists of the universities of Madrid and Bellaterra, in the basin of Tremp (Maastrichtiense in 1984 and 1985 has made possible the recognition of: 1.º A large sized Crocodilian, attributable to an adult animal of the Alligatoridae family, comparable to Crocodilus affluvelensis. 2.° Dinosaur remains atributed to three difIerent families: Atlantosauridae (represented by a large sized Sauropod, probably Hypselosaurus; Iguanodontidae (afI. Rhabdodon, medium sized Omithopod; and Hadrosauridae (Ortbomerus, small sized. 3.° Dinosaur's footprints, not very well preserved, medium and large sized, attributable to biped Omithopod. The fauna remains were always found unconnected, scattered all over large areas and with no signs of depredation. The sort of materials found reveal a certain transport which caused a selective action over the remains. Later, the efIects of the orogenic processes suffered by this area in the Tertiary period would combine with this transport.El estudio de gran parte del material hallado en los trabajos de excavación realizados por un equipo del «Institut de Paleontología de Sabadell» y otros paleontólogos de las Universidades de Madrid y Bellaterra, en la cuenca de Tremp (Maastrichtiense, durante los años 1984 y 1985, ha permitido reconocer: 1.º Un crocodílido de gran talla, atribuible a un animal adulto de la familia Alligatoridae, comparable a Crocodilus affluvelensis. 2.° Restos de dinosaurios que se han atribuido a tres familias: Atlantosauridae (representada por un saurópodo de gran talla, probablemente Hypselosaurus; Iguanodontidae (afI. Rhabdodon, ornitópodo de talla media, y Hadrosauridae (Ortbomerus, de talla pequeña. 3.° Icnitas de dinosaurios, bastante mal conservadas, de tamaño medio y grande, atribuibles a omitópodos bípedos. Los restos faunísticos han sido hallados siempre inconexos, esparcidos en extensas superficies y sin señales de depredación. El tipo de material hallado indica, en principio, un cierto transporte, el cual ejerció una acción selectiva sobre los restos. Posteriormente, a este transporte se unirían los efectos de los procesos orogénicos que afectaron la zona durante el Terciario.

  17. A New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Late Cretaceous of Southern China and Its Paleobiogeographical Implications.

    Science.gov (United States)

    Lü, Junchang; Pu, Hanyong; Kobayashi, Yoshitsugu; Xu, Li; Chang, Huali; Shang, Yuhua; Liu, Di; Lee, Yuong-Nam; Kundrát, Martin; Shen, Caizhi

    2015-07-02

    The Ganzhou area of Jiangxi Province, southern China is becoming one of the most productive oviraptorosaurian localities in the world. A new oviraptorid dinosaur was unearthed from the uppermost Upper Cretaceous Nanxiong Formation of Ganzhou area. It is characterized by an anterodorsally sloping occiput and quadrate (a feature shared with Citipati), a circular supratemporal fenestra that is much smaller than the lower temporal fenestra, and a dentary in which the dorsal margin above the external mandibular fenestra is strongly concave ventrally. The position of the anteroventral corner of the external naris in relation to the posterodorsal corner of the antorbital fenestra provides new insight into the craniofacial evolution of oviraptorosaurid dinosaurs. A phylogenetic analysis recovers the new taxon as closely related to the Mongolian Citipati. Six oviraptorid dinosaurs from the Nanxiong Formation (Ganzhou and Nanxiong) are distributed within three clades of the family. Each of the three clades from the Nanxiong Formation has close relatives in Inner Mongolia and Mongolia, and in both places each clade may have had a specific diet or occupied a different ecological niche. Oviraptorid dinosaurs were geographically widespread across Asia in the latest Cretaceous and were an important component of terrestrial ecosystems during this time.

  18. A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian–Antarctic rift system

    Science.gov (United States)

    Hall, Michael; Cleeland, Michael

    2018-01-01

    A new small-bodied ornithopod dinosaur, Diluvicursor pickeringi, gen. et sp. nov., is named from the lower Albian of the Eumeralla Formation in southeastern Australia and helps shed new light on the anatomy and diversity of Gondwanan ornithopods. Comprising an almost complete tail and partial lower right hindlimb, the holotype (NMV P221080) was deposited as a carcass or body-part in a log-filled scour near the base of a deep, high-energy river that incised a faunally rich, substantially forested riverine floodplain within the Australian–Antarctic rift graben. The deposit is termed the ‘Eric the Red West Sandstone.’ The holotype, interpreted as an older juvenile ∼1.2 m in total length, appears to have endured antemortem trauma to the pes. A referred, isolated posterior caudal vertebra (NMV P229456) from the holotype locality, suggests D. pickeringi grew to at least 2.3 m in length. D. pickeringi is characterised by 10 potential autapomorphies, among which dorsoventrally low neural arches and transversely broad caudal ribs on the anterior-most caudal vertebrae are a visually defining combination of features. These features suggest D. pickeringi had robust anterior caudal musculature and strong locomotor abilities. Another isolated anterior caudal vertebra (NMV P228342) from the same deposit, suggests that the fossil assemblage hosts at least two ornithopod taxa. D. pickeringi and two stratigraphically younger, indeterminate Eumeralla Formation ornithopods from Dinosaur Cove, NMV P185992/P185993 and NMV P186047, are closely related. However, the tail of D. pickeringi is far shorter than that of NMV P185992/P185993 and its pes more robust than that of NMV P186047. Preliminary cladistic analysis, utilising three existing datasets, failed to resolve D. pickeringi beyond a large polytomy of Ornithopoda. However, qualitative assessment of shared anatomical features suggest that the Eumeralla Formation ornithopods, South American Anabisetia saldiviai and Gasparinisaura cincosaltensis, Afro-Laurasian dryosaurids and possibly Antarctic Morrosaurus antarcticus share a close phylogenetic progenitor. Future phylogenetic analysis with improved data on Australian ornithopods will help to test these suggested affinities. PMID:29340228

  19. The taxonomy of a new parvicursorine alvarezsauroid specimen IVPP V20341 (Dinosauria: Theropoda from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Michael Pittman

    2015-06-01

    Full Text Available A new parvicursorine alvarezsauroid theropod specimen IVPP V20341 from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner Mongolia, China is described. IVPP V20341 appears to be distinguishable amongst alvarezsauroids by possible cervical procoely and relatively larger semi-circular caudal neural canals, but these features are not proposed as autapomorphies because current knowledge of alvarezsauroid necks and tails remains sparse. IVPP V20341 is distinguishable from Linhenykus—the sole parvicursorine at Bayan Mandahu—by the location of the origination points of the anterior caudal transverse processes; in IVPP V20341 this is the anterodorsal corner of the centra, whereas in Linhenykus it is the posterior end of the prezygapophyses. A number of additional tentative differences between IVPP V20341 and Linhenykus are also identified, but cannot be confirmed until further details of anatomical variation along the neck and tail are revealed by future finds. Thus, following the study of IVPP V20341 there are still seven parvicursorine species from the Upper Cretaceous Gobi Basin, but future finds could increase this to eight species.

  20. An ornithomimid (Dinosauria) bonebed from the Late Cretaceous of Alberta, with implications for the behavior, classification, and stratigraphy of North American ornithomimids.

    Science.gov (United States)

    Cullen, Thomas M; Ryan, Michael J; Schröder-Adams, Claudia; Currie, Philip J; Kobayashi, Yoshitsugu

    2013-01-01

    Bonebeds can provide a wealth of anatomical, taphonomic, and ontogenetic information about the specimens preserved within them, and can provide evidence for inferred behavior. The material described here represents the first known bonebed of ornithomimids in North America, and the fourth record of an ornithomimosaur bonebed in the world. Partial skeletons representing three individuals are preserved in this assemblage, each comprising primarily portions of the posterior postcrania (pelvis, hind limbs and tail). All three individuals are morphologically similar, although one is larger in overall size. Given the stratigraphic position of the site, and the morphology of the postcrania, the preserved material represents a taxon from the clade containing Ornithomimus and Struthiomimus. Pedal ungual morphology is examined and found to be too variable to be useful in distinguishing these species taxonomically. This site provides additional evidence of gregarious behavior in ornithomimids and the first probable record of that behavior in North American forms.

  1. An ornithomimid (Dinosauria bonebed from the Late Cretaceous of Alberta, with implications for the behavior, classification, and stratigraphy of North American ornithomimids.

    Directory of Open Access Journals (Sweden)

    Thomas M Cullen

    Full Text Available Bonebeds can provide a wealth of anatomical, taphonomic, and ontogenetic information about the specimens preserved within them, and can provide evidence for inferred behavior. The material described here represents the first known bonebed of ornithomimids in North America, and the fourth record of an ornithomimosaur bonebed in the world. Partial skeletons representing three individuals are preserved in this assemblage, each comprising primarily portions of the posterior postcrania (pelvis, hind limbs and tail. All three individuals are morphologically similar, although one is larger in overall size. Given the stratigraphic position of the site, and the morphology of the postcrania, the preserved material represents a taxon from the clade containing Ornithomimus and Struthiomimus. Pedal ungual morphology is examined and found to be too variable to be useful in distinguishing these species taxonomically. This site provides additional evidence of gregarious behavior in ornithomimids and the first probable record of that behavior in North American forms.

  2. Cranial Anatomy of Wendiceratops pinhornensis gen. et sp. nov., a Centrosaurine Ceratopsid (Dinosauria: Ornithischia from the Oldman Formation (Campanian, Alberta, Canada, and the Evolution of Ceratopsid Nasal Ornamentation.

    Directory of Open Access Journals (Sweden)

    David C Evans

    Full Text Available The fossil record of ceratopsid dinosaurs between the occurrence of their proximate sister taxa in the Turonian and the beginning of their well-documented radiation from the late Campanian of North America onwards (approximately 90 and 77 Ma is poor, with only seven taxa described from this early period in their evolution. We describe a new taxon of a highly adorned basal centrosaurine, Wendiceratops pinhornensis gen. et sp. nov., from the lower part of the Oldman Formation (middle Campanian, approximately 78-79 Ma, Alberta, Canada. Over 200 bones derived from virtually all parts of the skeleton, including multiple well-preserved specimens of the diagnostic parietosquamosal frill, were collected from a medium-density monodominant bonebed, making the new taxon one of the best-represented early ceratopsids. The new taxon is apomorphic in having epiparietals at loci 2 and 3 developed as broad-based, pachyostotic processes that are strongly procurved anterodorsally to overhang the posterior and lateral parietal rami, and an ischium with a broad, rectangular distal terminus. Although the morphology of the nasal is incompletely known, Wendiceratops is inferred to have a large, upright nasal horn located close to the orbits, which represents the oldest occurrence of this feature in Ceratopsia. Given the phylogenetic position of the new taxon within Centrosaurinae, a enlarged nasal horn is hypothesized to have arisen independently at least twice in ceratopsid evolution.

  3. The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops (Dinosauria: Thyreophora from the Upper Jurassic Morrison Formation of Wyoming, U.S.A.

    Directory of Open Access Journals (Sweden)

    Susannah Catherine Rose Maidment

    Full Text Available Although Stegosaurus is one of the most iconic dinosaurs, well-preserved fossils are rare and as a consequence there is still much that remains unknown about the taxon. A new, exceptionally complete individual affords the opportunity to describe the anatomy of Stegosaurus in detail for the first time in over a century, and enables additional comparisons with other stegosaurian dinosaurs. The new specimen is from the Red Canyon Ranch Quarry, near Shell Wyoming, and appears to have been so well preserved because it was buried rapidly in a pond or body of standing water immediately after death. The quarry is probably located in the middle part of the Morrison Formation, which is believed to be Tithonian in age in this area. The specimen is referable to Stegosaurus stenops based on the possession of an edentulous anterior portion of the dentary and elevated postzygapophyses on the cervical vertebrae. New information provided by the specimen concerns the morphology of the vertebrae, the iliosacral block and dermal armor. Several aspects of its morphology indicate the individual was not fully skeletally mature at the time of death, corroborating a previous histological study.

  4. A Re-Evaluation of the Chasmosaurine Ceratopsid Genus Chasmosaurus (Dinosauria: Ornithischia) from the Upper Cretaceous (Campanian) Dinosaur Park Formation of Western Canada.

    Science.gov (United States)

    Campbell, James A; Ryan, Michael J; Holmes, Robert B; Schröder-Adams, Claudia J

    2016-01-01

    The chasmosaurine ceratopsid Chasmosaurus is known from the Upper Cretaceous (Campanian) Dinosaur Park Formation of southern Alberta and Saskatchewan. Two valid species, Chasmosaurus belli and C. russelli, have been diagnosed by differences in cranial ornamentation. Their validity has been supported, in part, by the reported stratigraphic segregation of chasmosaurines in the Dinosaur Park Formation, with C. belli and C. russelli occurring in discrete, successive zones within the formation. An analysis of every potentially taxonomically informative chasmosaurine specimen from the Dinosaur Park Formation indicates that C. belli and C. russelli have indistinguishable ontogenetic histories and overlapping stratigraphic intervals. Neither taxon exhibits autapomorphies, nor a unique set of apomorphies, but they can be separated and diagnosed by a single phylogenetically informative character-the embayment angle formed by the posterior parietal bars relative to the parietal midline. Although relatively deeply embayed specimens (C. russelli) generally have relatively longer postorbital horncores than specimens with more shallow embayments (C. belli), neither this horncore character nor epiparietal morphology can be used to consistently distinguish every specimen of C. belli from C. russelli. Kosmoceratops is purportedly represented in the Dinosaur Park Formation by a specimen previously referred to Chasmosaurus. The reassignment of this specimen to Kosmoceratops is unsupported here, as it is based on features that are either influenced by taphonomy or within the realm of individual variation for Chasmosaurus. Therefore, we conclude that Kosmoceratops is not present in the Dinosaur Park Formation, but is instead restricted to southern Laramidia, as originally posited.

  5. The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops (Dinosauria: Thyreophora) from the Upper Jurassic Morrison Formation of Wyoming, U.S.A.

    Science.gov (United States)

    Maidment, Susannah Catherine Rose; Brassey, Charlotte; Barrett, Paul Michael

    2015-01-01

    Although Stegosaurus is one of the most iconic dinosaurs, well-preserved fossils are rare and as a consequence there is still much that remains unknown about the taxon. A new, exceptionally complete individual affords the opportunity to describe the anatomy of Stegosaurus in detail for the first time in over a century, and enables additional comparisons with other stegosaurian dinosaurs. The new specimen is from the Red Canyon Ranch Quarry, near Shell Wyoming, and appears to have been so well preserved because it was buried rapidly in a pond or body of standing water immediately after death. The quarry is probably located in the middle part of the Morrison Formation, which is believed to be Tithonian in age in this area. The specimen is referable to Stegosaurus stenops based on the possession of an edentulous anterior portion of the dentary and elevated postzygapophyses on the cervical vertebrae. New information provided by the specimen concerns the morphology of the vertebrae, the iliosacral block and dermal armor. Several aspects of its morphology indicate the individual was not fully skeletally mature at the time of death, corroborating a previous histological study.

  6. Abelisauroidea e Carcharodontosauridae (Theropoda,Dinosauria na América do Sul durante do Cretáceo. Implicações Paleogeográficas e Geocronológicas

    Directory of Open Access Journals (Sweden)

    Agustín Guillermo Martinelli

    2005-12-01

    Full Text Available In this contribution an up-to-date list of abelisauroid ceratosaurians and carcharodontosauridallosaurians recognized in South America is presented. Abelisauroids and carcharodontosauridsin South America show rich species diversity and a wide range of temporal and geographicaldistribution. At least eight formally described species of Abelisauroidea are recognized in Argen-tina and only one in Brazil; in contrast, only one species of Carcharodontosauridae is known forall South America. The fossil record of abelisauroids and carcharodontosaurids in South Americashows a dominance of abelisauroids in the upper late Cretaceous, while the dominance ofcarcharodontosaurids as large predators was during the Cenomanian-Turonian. Although knowl-edge of the evolution of Abelisauroidea and Carcharodontasauridae in South America, as well asin the rest of Gondwana is still far for being complete, intensive explorations in recent years haveprovided greater insight into the composition of theropod faunas in the Cretaceous of Gondwana.

  7. Novel insight into the origin of the growth dynamics of sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Ignacio Alejandro Cerda

    Full Text Available Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.

  8. Novel insight into the origin of the growth dynamics of sauropod dinosaurs.

    Science.gov (United States)

    Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Powell, Jaime Eduardo; Martínez, Ricardo Nestor

    2017-01-01

    Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.

  9. A new sauropod dinosaur from the Middle Jurassic of the United Kingdom.

    Science.gov (United States)

    Manning, Phillip L; Egerton, Victoria M; Romano, Mike

    2015-01-01

    A new record of a sauropodomorph dinosaur is here described from the Middle Jurassic (Aalenian) Saltwick Formation of Whitby (Yorkshire), UK. A single caudal vertebra represents an early sauropodomorph and signifies the earliest recognised eusauropod dinosaur from the United Kingdom. The absence of pleurocoels and a narrow, dorsoventrally deep, but craniocaudally short centrum, suggests a primitive sauropodomorph. Distinct spinopostzygopophyseal laminae rise from the lateral margins of the postzygapophyses and pass caudally along what remains of the neural spine, a character unique to a subgroup of sauropods that includes Barapasaurus, Omeisaurus and other neosauropods and eusauropods. The lack of phylogenetically robust characters in sauropod caudal vertebrae usually makes it difficult to establish affinities, but the absence of mild procoely excludes this specimen from both Diplodocoidea and Lithostrotia. The vertebra cannot be further distinguished from those of a wide range of basal sauropods, cetiosaurids and basal macronarians. However, this plesiomorphic vertebra still signifies the earliest stratigraphic occurrence for a British sauropod dinosaur.

  10. A new sauropod dinosaur from the Middle Jurassic of the United Kingdom.

    Directory of Open Access Journals (Sweden)

    Phillip L Manning

    Full Text Available A new record of a sauropodomorph dinosaur is here described from the Middle Jurassic (Aalenian Saltwick Formation of Whitby (Yorkshire, UK. A single caudal vertebra represents an early sauropodomorph and signifies the earliest recognised eusauropod dinosaur from the United Kingdom. The absence of pleurocoels and a narrow, dorsoventrally deep, but craniocaudally short centrum, suggests a primitive sauropodomorph. Distinct spinopostzygopophyseal laminae rise from the lateral margins of the postzygapophyses and pass caudally along what remains of the neural spine, a character unique to a subgroup of sauropods that includes Barapasaurus, Omeisaurus and other neosauropods and eusauropods. The lack of phylogenetically robust characters in sauropod caudal vertebrae usually makes it difficult to establish affinities, but the absence of mild procoely excludes this specimen from both Diplodocoidea and Lithostrotia. The vertebra cannot be further distinguished from those of a wide range of basal sauropods, cetiosaurids and basal macronarians. However, this plesiomorphic vertebra still signifies the earliest stratigraphic occurrence for a British sauropod dinosaur.

  11. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania.

    Science.gov (United States)

    Nesbitt, Sterling J; Barrett, Paul M; Werning, Sarah; Sidor, Christian A; Charig, Alan J

    2013-02-23

    The rise of dinosaurs was a major event in vertebrate history, but the timing of the origin and early diversification of the group remain poorly constrained. Here, we describe Nyasasaurus parringtoni gen. et sp. nov., which is identified as either the earliest known member of, or the sister-taxon to, Dinosauria. Nyasasaurus possesses a unique combination of dinosaur character states and an elevated growth rate similar to that of definitive early dinosaurs. It demonstrates that the initial dinosaur radiation occurred over a longer timescale than previously thought (possibly 15 Myr earlier), and that dinosaurs and their immediate relatives are better understood as part of a larger Middle Triassic archosauriform radiation. The African provenance of Nyasasaurus supports a southern Pangaean origin for Dinosauria.

  12. Mesozoic plants and dinosaur herbivory

    OpenAIRE

    Sander, P M; Gee, C T; Hummel, J; Clauss, Marcus

    2010-01-01

    For most of their existence, herbivorous dinosaurs fed on a gymnospermdominated flora. Starting from a simple reptilian herbivory, ornithischian dinosaurs evolved complex chewing dentitions and mechanisms, while sauropodomorph dinosaurs retained the primitive condition of not chewing. Some advanced theropod dinosaurs evolved a bird-type herbivory with a toothless beak and a gastric mill. Dinosaur digestive tract remains, coprolites, and other trace fossils offer little evidence for dinosaur f...

  13. Asociacion faunistica de vertebrados mesozoicos de la localidad de Galve (Teruel

    Directory of Open Access Journals (Sweden)

    Sánchez Hemández, B.

    2002-12-01

    Full Text Available Sediments of Tithonian-Barremian of Iberian Basin in the surroundings of Galve (Teniel, Spain have a high content of vertebrate's remains. These ones have been studied since s. XX until today by different scientists. More than ninety taxons have been mentioned in these papers, distributed in Hybodontiformes, Squalomorpha, Batoidea, Rajiforms, Amphibia, Reptilia (Chelonia, Sauria, Crocodylia, Pterosauria, Ornithischia, Saurischia and Marnmalia.Los sedimentos del Tithónico-Barremiense de la Cuenca Ibérica aflorantes en los alrededores de la localidad de Galve (Teniel, son particularmente ricos en restos de vertebrados mesozoicos. Estos han sido estudiados por diferentes autores, desde principios del siglo xx hasta la actualidad. El objetivo del presente artículo es recopilar los distintos taxones que han sido citados para esta área, a lo largo del tiempo, recogiéndose más de noventa taxones distribuidos entre Hybodontiformes, Squalomorpha, Batoidea, Rajiformes, Amphibia, Reptilia (Testudines, Sauria, Crocodilia, Pterosauria, Ornithischia, Saurischia y Mammalia.

  14. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  15. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  16. New Insights into Non-Avian Dinosaur Reproduction and Their Evolutionary and Ecological Implications: Linking Fossil Evidence to Allometries of Extant Close Relatives

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondylus carinatus , all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently

  17. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass for extant phylogenetic brackets (birds, crocodiles and tortoises of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods or to the masses of reptiles (all other taxa. Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN. Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs. Our results provide new (testable hypotheses, especially for reproductive traits that are insufficiently

  18. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently documented

  19. Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains.

    Science.gov (United States)

    Reisz, Robert R; Huang, Timothy D; Roberts, Eric M; Peng, ShinRung; Sullivan, Corwin; Stein, Koen; LeBlanc, Aaron R H; Shieh, DarBin; Chang, RongSeng; Chiang, ChengCheng; Yang, Chuanwei; Zhong, Shiming

    2013-04-11

    Fossil dinosaur embryos are surprisingly rare, being almost entirely restricted to Upper Cretaceous strata that record the late stages of non-avian dinosaur evolution. Notable exceptions are the oldest known embryos from the Early Jurassic South African sauropodomorph Massospondylus and Late Jurassic embryos of a theropod from Portugal. The fact that dinosaur embryos are rare and typically enclosed in eggshells limits their availability for tissue and cellular level investigations of development. Consequently, little is known about growth patterns in dinosaur embryos, even though post-hatching ontogeny has been studied in several taxa. Here we report the discovery of an embryonic dinosaur bone bed from the Lower Jurassic of China, the oldest such occurrence in the fossil record. The embryos are similar in geological age to those of Massospondylus and are also assignable to a sauropodomorph dinosaur, probably Lufengosaurus. The preservation of numerous disarticulated skeletal elements and eggshells in this monotaxic bone bed, representing different stages of incubation and therefore derived from different nests, provides opportunities for new investigations of dinosaur embryology in a clade noted for gigantism. For example, comparisons among embryonic femora of different sizes and developmental stages reveal a consistently rapid rate of growth throughout development, possibly indicating that short incubation times were characteristic of sauropodomorphs. In addition, asymmetric radial growth of the femoral shaft and rapid expansion of the fourth trochanter suggest that embryonic muscle activation played an important role in the pre-hatching ontogeny of these dinosaurs. This discovery also provides the oldest evidence of in situ preservation of complex organic remains in a terrestrial vertebrate.

  20. A study on the relationship between iridium concentration in hen eggshell and iridium-enriched feed by NAA

    International Nuclear Information System (INIS)

    Yang Gaochuang; Mao Xueying; Wang Jinchun; Lu Yali; Ouyang Hong; Zhang Zhaohui; Chai Zhifang

    2001-01-01

    Four hens were fed by adding ammonium hexachloroiridate into their forage. After two weeks, Ir concentration in three fractions (eggshell, albumen, egg yolk) of their eggs were measured by instrumental neutron activation analysis (INAA). Ir was present in all the three parts of the eggs. Further, the highest concentration of Ir was found in the egg yolk fraction, about 10 times higher than that in the eggshell and albumen. Moreover, the longer the Ir-containing feed was used, the higher the Ir concentration in the egg fractions was. After 4-6 day feeding, the Ir concentration became stable. The experimental results indicated that the Ir concentration was about 2-7 x 10 -10 g/g in the eggshell fraction compared to 5.6 x 10 -7 g/g in feed. Therefore, the ratio from the feed over the eggshell via gastrointestinal pathway was estimated to be about 0.08%. The new result is useful to evaluate the iridium-enriched eggshell fossils of dinosauria and to interpret the origin of the mass extinction of dinosauria at the end of Cretaceous. (author)

  1. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea.

    Science.gov (United States)

    Martinez, Ricardo N; Sereno, Paul C; Alcober, Oscar A; Colombi, Carina E; Renne, Paul R; Montañez, Isabel P; Currie, Brian S

    2011-01-14

    Upper Triassic rocks in northwestern Argentina preserve the most complete record of dinosaurs before their rise to dominance in the Early Jurassic. Here, we describe a previously unidentified basal theropod, reassess its contemporary Eoraptor as a basal sauropodomorph, divide the faunal record of the Ischigualasto Formation with biozones, and bracket the formation with (40)Ar/(39)Ar ages. Some 230 million years ago in the Late Triassic (mid Carnian), the earliest dinosaurs were the dominant terrestrial carnivores and small herbivores in southwestern Pangaea. The extinction of nondinosaurian herbivores is sequential and is not linked to an increase in dinosaurian diversity, which weakens the predominant scenario for dinosaurian ascendancy as opportunistic replacement.

  2. The remedial conservation and support jacketing of the Massospondylus carinatus neotype

    OpenAIRE

    Graham, M; Choiniere, JN; Jirah, S; Barrett, PM

    2018-01-01

    0000-0002-1852-9709 Massopondylus carinatus Owen, 1854 is a non-sauropodan sauropodomorph (‘prosauropod’) dinosaur whose remains are abundant in the Upper Karoo Supergroup sediments of southern Africa (e.g. Owen, 1854; Seeley, 1895; Cooper, 1981; Gow, 1990; Gow et al., 1990; Sues et al., 2004; Barrett and Yates, 2006; Reisz et al., 2005). It occurs at numerous localities in the Upper Elliot and Clarens formations of South Africa and Lesotho, as well as in the Forest Sandstone Formation of ...

  3. Incubation times of dinosaur eggs via embryonic metabolism

    Science.gov (United States)

    Lee, Scott A.

    2016-08-01

    The incubation times for the eggs of 21 dinosaurs are determined from an estimate of their embyronic metabolic rate and the mass of the hatchlings via a mass growth model based on conservation of energy. Embryos in extant birds and crocodiles are studied in order to determine the best model for embryonic metabolism and growth. These results are used to develop a theoretical model that predicts the incubation times of an egg. This model is applied to dinosaur eggs and provides a unique window into dinosaur reproduction. The dinosaurs studied come from both Saurischia and Ornithischia. The incubation times vary from about 28 days for Archaeopteryx lithographica to about 76 days for Alamosaurus sanjuanensis.

  4. Biomechanical comments about Triassic dinosaurs from Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Delcourt

    2012-01-01

    Full Text Available Triassic dinosaurs of Brazil are found in Santa Maria and Caturrita formations, Rio Grande do Sul state, Brazil. There are three species known from the Santa Maria Formation (Staurikosaurus pricei, Saturnalia tupiniquim and Pampadromaeus barberenai, and two from Caturrita Formation (Guaibasaurus candelariensis and Unaysaurus tolentinoi. These dinosaur materials are, for the most part, well preserved and allow for descriptions of musculature and biomechanical studies. The lateral rotation of the Saturnalia femur is corroborated through calculations of muscle moment arms. The enhanced supracetabular crest of Saturnalia, Guaibasaurus, Staurikosaurus, Herrerasaurus ischigualastensis, Efraasia minor and Chormogisaurus novasi suggests that basal dinosaurs may have maintained an inclination of the trunk at least 20º on the horizontal axis. The pectoral girdle articulation of basal sauropodomorphs (Saturnalia and Unaysaurus was established using a new method, the Clavicular Ring, and the scapular blade remains near 60º on the horizontal axis. This is a plesiomorphic condition among sauropodomorphs and is also seen in the articulated plateosauridae Seitaad ruessi. The Brazilian basal dinosaurs were lightweight with a body mass estimated around 18.5 kg for Staurikosaurus, 6.5 kg for Saturnalia, and 17 kg for Guaibasaurus. Pampadromaeus probably weighed 2.5 kg, but measures of its femur are necessary to confirm this hypothesis. The Triassic dinosaurs from Brazil were diversified but shared some functional aspects that were important in an evolutionary context.

  5. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs.

    Science.gov (United States)

    Stein, Koen W H; Werner, Jan

    2013-01-01

    Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups.

  6. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Koen W H Stein

    Full Text Available Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups.

  7. A new basal sauropodiform dinosaur from the Lower Jurassic of Yunnan Province, China

    Science.gov (United States)

    Wang, Ya-Ming; You, Hai-Lu; Wang, Tao

    2017-02-01

    The Lufeng Formation in Lufeng Basin of Yunnan Province, southwestern China preserves one of the richest terrestrial Lower Jurassic vertebrate faunas globally, especially for its basal sauropodomorphs, such as Lufengosaurus and Yunnanosaurus. Here we report a new taxon, Xingxiulong chengi gen. et sp. nov. represented by three partial skeletons with overlapping elements. Xingxiulong possesses a number of autapomorphies, such as transversely expanded plate-like summit on top of the neural spine of posterior dorsal vertebrae, four sacral vertebrae, robust scapula, and elongated pubic plate approximately 40% of the total length of the pubis. Phylogenetic analysis resolves Xingxiulong as a basal member of Sauropodiformes, and together with another two Lufeng basal sauropodiforms Jingshanosaurus and Yunnanosaurus, they represent the basalmost lineages of this clade, indicating its Asian origin. Although being relatively primitive, Xingxiulong displays some derived features normally occurred in advanced sauropodiforms including sauropods, such as a four sacral-sacrum, a robust scapula, and a pubis with elongated pubic plate. The discovery of Xingxiulong increases the diversity of basal sauropodomorphs from the Lufeng Formation and indicates a more complicated scenario in the early evolution of sauropodiforms.

  8. Cross-species transmission and emergence of novel viruses from birds.

    Science.gov (United States)

    Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Yuen, Kwok-Yung

    2015-02-01

    Birds, the only living member of the Dinosauria clade, are flying warm-blooded vertebrates displaying high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system. Birds provide the natural reservoir for numerous viral species and therefore gene source for evolution, emergence and dissemination of novel viruses. The intrusions of human into natural habitats of wild birds, the domestication of wild birds as pets or racing birds, and the increasing poultry consumption by human have facilitated avian viruses to cross species barriers to cause zoonosis. Recently, a novel adenovirus was exclusively found in birds causing an outbreak of Chlamydophila psittaci infection among birds and humans. Instead of being the primary cause of an outbreak by jumping directly from bird to human, a novel avian virus can be an augmenter of another zoonotic agent causing the outbreak. A comprehensive avian virome will improve our understanding of birds' evolutionary dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dinosaur Reproduction and Parenting

    Science.gov (United States)

    Horner, John R.

    Non-avian dinosaur reproductive and parenting behaviors were mostly similar to those of extant archosaurs. Non-avian dinosaurs were probably sexually dimorphic and some may have engaged in hierarchical rituals. Non-avian coelurosaurs (e.g. Troodontidae, Oviraptorosauria) had two active oviducts, each of which produced single eggs on a daily or greater time scale. The eggs of non-coelurosaurian dinosaurs (e.g. Ornithischia, Sauropoda) were incubated in soils, whereas the eggs of non-avian coelurosaurs (e.g. Troodon, Oviraptor) were incubated with a combination of soil and direct parental contact. Parental attention to the young was variable, ranging from protection from predators to possible parental feeding of nest-bound hatchlings. Semi-altricial hadrosaur hatchlings exited their respective nests near the time of their first linear doubling. Some reproductive behaviors, once thought exclusive to Aves, arose first in non-avian dinosaurs. The success of the Dinosauria may be related to reproductive strategies.

  10. The Evolution and Extinction of the Dinosaurs

    Science.gov (United States)

    Fastovsky, David E.; Weishampel, David B.

    2005-02-01

    Written for non-specialists, this detailed survey of dinosaur origins, diversity, and extinction is designed as a series of successive essays covering important and timely topics in dinosaur paleobiology, such as "warm-bloodedness," birds as living dinosaurs, the new, non-flying feathered dinosaurs, dinosaur functional morphology, and cladistic methods in systematics. Its explicitly phylogenetic approach to the group is that taken by dinosaur specialists. The book is not an edited compilation of the works of many individuals, but a unique, cohesive perspective on Dinosauria. Lavishly illustrated with hundreds of new, specially commissioned illustrations by John Sibbick, world-famous illustrator of dinosaurs, the volume includes multi-page drawings as well as sketches and diagrams. First edition Hb (1996): 0-521-44496-9 David E. Fastovsky is Professor of Geosciences at the University of Rhode Island. Fastovsky, the author of numerous scientific publications dealing with Mesozoic vertebrate faunas and their ancient environments, is also scientific co-Editor of Geology. He has undertaken extensive fieldwork studying dinosaurs and their environments in Montana, North Dakota, Arizona, Mexico, and Mongolia. David B. Weishampel is a professor at the Center for Functional Anatomy and Evolution at Johns Hopkins University, School of Medicine. Weishampel is best known for discovering, researching, and naming several rare European dinosaur species. During the 1980s Weishampel gained fame for his work with American paleontologist Jack Horner and later named the famous plant-eating, egg-laying Orodromeus, Horner. Now, a decade after his pioneering studies with Horner, Weishampel is most widely known for his current work on the Romanian dinosaur fauna. He is the author and co-author of many titles, including The Dinosaur Papers, 1676-1906 (Norton, 2003); The Dinosauria, (University of California, 1990); and Dinosaurs of the East Coast, (Johns Hopkins University Press, 1996).

  11. The Braincase of the Basal Sauropod Dinosaur Spinophorosaurus and 3D Reconstructions of the Cranial Endocast and Inner Ear

    Science.gov (United States)

    Knoll, Fabien; Witmer, Lawrence M.; Ortega, Francisco; Ridgely, Ryan C.; Schwarz-Wings, Daniela

    2012-01-01

    Background Sauropod dinosaurs were the largest animals ever to walk on land, and, as a result, the evolution of their remarkable adaptations has been of great interest. The braincase is of particular interest because it houses the brain and inner ear. However, only a few studies of these structures in sauropods are available to date. Because of the phylogenetic position of Spinophorosaurus nigerensis as a basal eusauropod, the braincase has the potential to provide key evidence on the evolutionary transition relative to other dinosaurs. Methodology/Principal Findings The only known braincase of Spinophorosaurus (‘Argiles de l'Irhazer’, Irhazer Group; Agadez region, Niger) differs significantly from those of the Jurassic sauropods examined, except potentially for Atlasaurus imelakei (Tilougguit Formation, Morocco). The basisphenoids of Spinophorosaurus and Atlasaurus bear basipterygoid processes that are comparable in being directed strongly caudally. The Spinophorosaurus specimen was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. The endocast resembles that of most other sauropods in having well-marked pontine and cerebral flexures, a large and oblong pituitary fossa, and in having the brain structure obscured by the former existence of relatively thick meninges and dural venous sinuses. The labyrinth is characterized by long and proportionally slender semicircular canals. This condition recalls, in particular, that of the basal non-sauropod sauropodomorph Massospondylus and the basal titanosauriform Giraffatitan. Conclusions/Significance Spinophorosaurus has a moderately derived paleoneuroanatomical pattern. In contrast to what might be expected early within a lineage leading to plant-eating graviportal quadrupeds, Spinophorosaurus and other (but not all) sauropodomorphs show no reduction of the vestibular apparatus of the inner ear. This character-state is possibly a primitive retention in Spinophorosaurus, but due

  12. The braincase of the basal sauropod dinosaur Spinophorosaurus and 3D reconstructions of the cranial endocast and inner ear.

    Directory of Open Access Journals (Sweden)

    Fabien Knoll

    Full Text Available BACKGROUND: Sauropod dinosaurs were the largest animals ever to walk on land, and, as a result, the evolution of their remarkable adaptations has been of great interest. The braincase is of particular interest because it houses the brain and inner ear. However, only a few studies of these structures in sauropods are available to date. Because of the phylogenetic position of Spinophorosaurus nigerensis as a basal eusauropod, the braincase has the potential to provide key evidence on the evolutionary transition relative to other dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The only known braincase of Spinophorosaurus ('Argiles de l'Irhazer', Irhazer Group; Agadez region, Niger differs significantly from those of the Jurassic sauropods examined, except potentially for Atlasaurus imelakei (Tilougguit Formation, Morocco. The basisphenoids of Spinophorosaurus and Atlasaurus bear basipterygoid processes that are comparable in being directed strongly caudally. The Spinophorosaurus specimen was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. The endocast resembles that of most other sauropods in having well-marked pontine and cerebral flexures, a large and oblong pituitary fossa, and in having the brain structure obscured by the former existence of relatively thick meninges and dural venous sinuses. The labyrinth is characterized by long and proportionally slender semicircular canals. This condition recalls, in particular, that of the basal non-sauropod sauropodomorph Massospondylus and the basal titanosauriform Giraffatitan. CONCLUSIONS/SIGNIFICANCE: Spinophorosaurus has a moderately derived paleoneuroanatomical pattern. In contrast to what might be expected early within a lineage leading to plant-eating graviportal quadrupeds, Spinophorosaurus and other (but not all sauropodomorphs show no reduction of the vestibular apparatus of the inner ear. This character-state is possibly a primitive retention in

  13. Oology and the evolution of thermophysiology in saurischian dinosaurs: homeotherm and endotherm deinonychosaurians?

    Directory of Open Access Journals (Sweden)

    Gerald Grellet-Tinner

    2006-01-01

    Full Text Available The origin of avian endothermy is a long-held question the answer of which cannot be provided by first level observations. Oological and reproductive characters have collectively provided a new source of data useful for phylogenetic analyses and paleobiological inferences. In addition, the observations of reproductive and oological evolutionary trends in saurischian dinosaurs lead to the interpretation that not only, the thermophysiology of these dinosaurs progressively became more avian-like but after re-examination allows to infer that deinonychosaurians represented here by three troodontids and one dromaeosaurid might already have developed an avian-like endothermy, thus predating the rise of avians. These results based on reproductive traits are independently corroborated by the discoveries of troodontid dinosaurs 1 in high latitudes, 2 covered with feathers in Chinese Lagerstätten, and recently 3 fossilized in a death pose identical to an avian sleeping posture.A origem da endotermia nas aves é uma questão há muito discutida e sua resposta não pode ser encontrada através de observações superficiais. Caracteres oológicos e reprodutivos surgiram como uma nova fonte de dados relevantes tanto para análises filogenéticas quanto para inferências paleobiológicas dos dinossauros Saurischia. Além disso, as observações das tendências evolutivas reprodutivas e oológicas nos dinossauros Saurischia nos levam a inferir que não apenas, como anteriormente a termofisiologia deste grupo de dinossauros tornou-se progressivamente ornítica, mas um posterior reexame nos permitiu concluir que os deinonicossauros, representados aqui por dois troodontídeos e um dromeossaurídeo, provavelmente já haviam desenvolvido uma endotermia semelhante a das aves, anterior, portanto, ao seu surgimento. Estes resultados baseados em características reprodutivas são independentemente corroborados pela descoberta dos dinossauros troodontídeos 1 em altas

  14. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    Science.gov (United States)

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  15. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Science.gov (United States)

    D'Emic, Michael D; Whitlock, John A; Smith, Kathlyn M; Fisher, Daniel C; Wilson, Jeffrey A

    2013-01-01

    Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs.

  16. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Michael D D'Emic

    Full Text Available BACKGROUND: Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. METHODOLOGY/PRINCIPAL FINDINGS: We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days. Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. CONCLUSIONS/SIGNIFICANCE: Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size, and derived titanosaurs and

  17. On a dinosaur axis from one of the oldest dinosaur-bearing sites worldwide

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Müller

    2017-09-01

    Full Text Available The axial skeleton is proportionally underrepresented in the fossil record of early dinosaurs, when compared to other skeletal parts (e.g., pelvic girdle and hindlimb. For instance, the axis is poorly known in early dinosaurs, which precludes a better understanding of this important anatomical structure. Therefore, the present contribution fills an important gap with a description of the axis of a new early dinosaur (CAPPA/UFSM 0179. The specimen was collected at the Buriol outcrop, a Triassic fossiliferous locality from southern Brazil (Candelária Sequence, Santa Maria Supersequence biostratigraphically correlated to Carnian units, placing this specimen among the oldest dinosaurs worldwide. Notable features include the combination of a neural spine that bears an almost straight dorsal margin along its length and presence of an epipophysis. This axis arrangement is unique among Carnian dinosaurs, representing a new morphotype, though a similar morphology is observed in some early theropods. Indeed, a phylogenetic analysis nested the specimen within Theropoda. However, this outcome is probably biased by the large amount of missing data in CAPPA/UFSM 0179 and also due to the limited sampling of the axis in early dinosaurs, particularly among sauropodomorphs. As the specimen comes from the site that includes Buriolestes schultzi (an early sauropodomorph, it is quite plausible that CAPPA/UFSM 0179 might be referable to that taxon. If so, the specimen improves the anatomical knowledge of Buriolestes schultzi, given its axis is yet unknown. An alternative possibility to be considered is that the specimen would belong to a dinosaur not yet known in the Candelária Sequence, which would increase its dinosaur diversity for the outcrop, improving the Triassic dinosaurian record from Southern Brazil.

  18. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Directory of Open Access Journals (Sweden)

    John P Wilson

    Full Text Available Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  19. Mesozoic dinosaurs from Brazil and their biogeographic implications.

    Science.gov (United States)

    Bittencourt, Jonathas S; Langer, Max C

    2011-03-01

    The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.

  20. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds

    Science.gov (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.

    2016-12-01

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  1. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds.

    Science.gov (United States)

    Lloyd, G T; Bapst, D W; Friedman, M; Davis, K E

    2016-11-01

    Branch lengths-measured in character changes-are an essential requirement of clock-based divergence estimation, regardless of whether the fossil calibrations used represent nodes or tips. However, a separate set of divergence time approaches are typically used to date palaeontological trees, which may lack such branch lengths. Among these methods, sophisticated probabilistic approaches have recently emerged, in contrast with simpler algorithms relying on minimum node ages. Here, using a novel phylogenetic hypothesis for Mesozoic dinosaurs, we apply two such approaches to estimate divergence times for: (i) Dinosauria, (ii) Avialae (the earliest birds) and (iii) Neornithes (crown birds). We find: (i) the plausibility of a Permian origin for dinosaurs to be dependent on whether Nyasasaurus is the oldest dinosaur, (ii) a Middle to Late Jurassic origin of avian flight regardless of whether Archaeopteryx or Aurornis is considered the first bird and (iii) a Late Cretaceous origin for Neornithes that is broadly congruent with other node- and tip-dating estimates. Demonstrating the feasibility of probabilistic time-scaling further opens up divergence estimation to the rich histories of extinct biodiversity in the fossil record, even in the absence of detailed character data. © 2016 The Authors.

  2. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Science.gov (United States)

    Wilson, John P; Woodruff, D Cary; Gardner, Jacob D; Flora, Holley M; Horner, John R; Organ, Chris L

    2016-01-01

    Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  3. Lower limits of ornithischian dinosaur body size inferred from a new Upper Jurassic heterodontosaurid from North America

    Science.gov (United States)

    Butler, Richard J.; Galton, Peter M.; Porro, Laura B.; Chiappe, Luis M.; Henderson, Donald M.; Erickson, Gregory M.

    2010-01-01

    The extremes of dinosaur body size have long fascinated scientists. The smallest (dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65–75 cm in total body length and 0.5–0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade. PMID:19846460

  4. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.

    Science.gov (United States)

    Barrett, Paul M; Butler, Richard J; Mundil, Roland; Scheyer, Torsten M; Irmis, Randall B; Sánchez-Villagra, Marcelo R

    2014-09-22

    Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. The earliest bird-line archosaurs and the assembly of the dinosaur body plan.

    Science.gov (United States)

    Nesbitt, Sterling J; Butler, Richard J; Ezcurra, Martín D; Barrett, Paul M; Stocker, Michelle R; Angielczyk, Kenneth D; Smith, Roger M H; Sidor, Christian A; Niedźwiedzki, Grzegorz; Sennikov, Andrey G; Charig, Alan J

    2017-04-27

    The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.

  6. Bone cells in birds show exceptional surface area, a characteristic tracing back to saurischian dinosaurs of the late Triassic.

    Directory of Open Access Journals (Sweden)

    John M Rensberger

    Full Text Available Dinosaurs are unique among terrestrial tetrapods in their body sizes, which range from less than 3 gm in hummingbirds to 70,000 kg or more in sauropods. Studies of the microstructure of bone tissue have indicated that large dinosaurs, once believed to be slow growing, attained maturity at rates comparable to or greater than those of large mammals. A number of structural criteria in bone tissue have been used to assess differences in rates of osteogenesis in extinct taxa, including counts of lines of arrested growth and the density of vascular canals.Here, we examine the density of the cytoplasmic surface of bone-producing cells, a feature which may set an upper limit to the rate of osteogenesis. Osteocyte lacunae and canaliculi, the cavities in bone containing osteocytes and their extensions, were measured in thin-sections of primary (woven and parallel fibered bone in a diversity of tetrapods. The results indicate that bone cell surfaces are more densely organized in the Saurischia (extant birds, extinct Mesozoic Theropoda and Sauropodomorpha than in other tetrapods, a result of denser branching of the cell extensions. The highest postnatal growth rates among extant tetrapods occur in modern birds, the only surviving saurischians, and the finding of exceptional cytoplasmic surface area of the cells that produce bone in this group suggests a relationship with bone growth rate. In support of this relationship is finding the lowest cell surface density among the saurischians examined in Dinornis, a member of a group of ratites that evolved in New Zealand in isolation from mammalian predators and show other evidence of lowered maturation rates.

  7. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs.

    Science.gov (United States)

    Foth, Christian; Hedrick, Brandon P; Ezcurra, Martin D

    2016-01-01

    Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs

  8. Bone cells in birds show exceptional surface area, a characteristic tracing back to saurischian dinosaurs of the late Triassic.

    Science.gov (United States)

    Rensberger, John M; Martínez, Ricardo N

    2015-01-01

    Dinosaurs are unique among terrestrial tetrapods in their body sizes, which range from less than 3 gm in hummingbirds to 70,000 kg or more in sauropods. Studies of the microstructure of bone tissue have indicated that large dinosaurs, once believed to be slow growing, attained maturity at rates comparable to or greater than those of large mammals. A number of structural criteria in bone tissue have been used to assess differences in rates of osteogenesis in extinct taxa, including counts of lines of arrested growth and the density of vascular canals. Here, we examine the density of the cytoplasmic surface of bone-producing cells, a feature which may set an upper limit to the rate of osteogenesis. Osteocyte lacunae and canaliculi, the cavities in bone containing osteocytes and their extensions, were measured in thin-sections of primary (woven and parallel fibered) bone in a diversity of tetrapods. The results indicate that bone cell surfaces are more densely organized in the Saurischia (extant birds, extinct Mesozoic Theropoda and Sauropodomorpha) than in other tetrapods, a result of denser branching of the cell extensions. The highest postnatal growth rates among extant tetrapods occur in modern birds, the only surviving saurischians, and the finding of exceptional cytoplasmic surface area of the cells that produce bone in this group suggests a relationship with bone growth rate. In support of this relationship is finding the lowest cell surface density among the saurischians examined in Dinornis, a member of a group of ratites that evolved in New Zealand in isolation from mammalian predators and show other evidence of lowered maturation rates.

  9. A simulated bird gastric mill and its implications for fossil gastrolith authenticity

    Directory of Open Access Journals (Sweden)

    O. Wings

    2009-02-01

    Full Text Available A rock tumbler, stones, water, plant material, hydrochloric acid, and pepsin were used to simulate a bird gizzard in order to study abrasion rate and influence of stomach juices and foodstuff on gastrolith surface development. The experiment lasted for six months. Each week, the "stomach" was supplied with fresh grass and stomach juices. After the end of the experiment, the set of stones had a combined weight loss of 22.4%, with softer rock types showing higher abrasion rates. The combination of stomach juices and silica phytoliths within the grass had no visible effect on stone surface development: polish or pitting did not occur. A second experiment combined only pebbles with water in the tumbler. Results indicate that rock abrasion is mainly caused by contacts between moving stones. A comparison with authentic ostrich gastroliths showed that abrasion in the artificial stomach must have been lower than in a real gizzard, but still too high to maintain or develop surface polish. If high polish occasionally seen on sauropodomorph dinosaur gastroliths was indeed caused in a stomach environment, it implies digestive processes different from those of extant birds and the "artificial gizzard". Geologic origins of polish, such as transport in hyperconcentrated flows, wind blasting, or tectonic movements must be considered for polished fossil gastroliths and isolated clasts in fine-grained sediments (exoliths. doi:10.1002/mmng.200800013

  10. Limb bone allometry during postnatal ontogeny in non-avian dinosaurs

    Science.gov (United States)

    Kilbourne, Brandon M; Makovicky, Peter J

    2010-01-01

    Although the interspecific scaling of tetrapods is well understood, remarkably little work has been done on the ontogenetic scaling within tetrapod species, whether fossil or recent. Here the ontogenetic allometry of the femur, humerus, and tibia was determined for 23 species of non-avian dinosaur by regressing log-transformed length against log-transformed circumference for each bone using reduced major axis bivariate regression. The femora of large theropod species became more robust during ontogeny, whereas growth in the femora of sauropodomorphs and most ornithischians was not significantly different from isometry. Hadrosaur hindlimb elements became significantly more gracile during ontogeny. Scaling constants were higher in all theropods than in any non-theropod taxa. Such clear taxonomically correlated divisions were not evident in the ontogenetic allometry of the tibia and hindlimb bones did not scale uniformly within larger taxonomic groups. For taxa in which the ontogenetic allometry of the humerus was studied, only Riojasaurus incertus exhibited a significant departure from isometry. Using independent contrasts, the regression of femoral allometry against the log of adult body mass was found to have a significant negative correlation but such a relationship could not be established for other limb elements or growth parameters, mainly due to the small sample size. The intraspecific scaling patterns observed in dinosaurs and other amniotes do not support earlier hypotheses that intraspecific scaling differs between endothermic and ectothermic taxa. PMID:20557400

  11. Perennial Lakes as an Environmental Control on Theropod Movement in the Jurassic of the Hartford Basin

    Directory of Open Access Journals (Sweden)

    Patrick R. Getty

    2017-03-01

    Full Text Available Eubrontes giganteus is a common ichnospecies of large dinosaur track in the Early Jurassic rocks of the Hartford and Deerfield basins in Connecticut and Massachusetts, USA. It has been proposed that the trackmaker was gregarious based on parallel trackways at a site in Massachusetts known as Dinosaur Footprint Reservation (DFR. The gregariousness hypothesis is not without its problems, however, since parallelism can be caused by barriers that direct animal travel. We tested the gregariousness hypothesis by examining the orientations of trackways at five sites representing permanent and ephemeral lacustrine environments. Parallelism is only prominent in permanent lacustrine rocks at DFR, where trackways show a bimodal orientation distribution that approximates the paleoshoreline. By contrast, parallel trackways are uncommon in ephemeral lacustrine facies, even at sites with large numbers of trackways, and those that do occur exhibit differences in morphology, suggesting that they were made at different times. Overall, the evidence presented herein suggests that parallelism seen in Hartford Basin Eubrontes giganteus is better explained as a response to the lake acting as a physical barrier rather than to gregariousness. Consequently, these parallel trackways should not be used as evidence to support the hypothesis that the trackmaker was a basal sauropodomorph unless other evidence can substantiate the gregariousness hypothesis.

  12. Forearm posture and mobility in quadrupedal dinosaurs.

    Science.gov (United States)

    VanBuren, Collin S; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  13. Morphological Diversity and Evolution of the Jugal in Dinosaurs.

    Science.gov (United States)

    Sullivan, Corwin; Xu, Xing

    2017-01-01

    In dinosaurs, as in other reptiles, the homologue of the mammalian zygomatic bone is the jugal. The dinosaurian jugal was primitively triradiate, with posterior, dorsal and anterior processes that respectively contacted the quadratojugal, the postorbital, and the maxilla and lacrimal. However, the jugal evolved along different lines in the three major dinosaurian clades. In theropods this cranial element remained relatively conservative in morphology, apart from being reduced to a rod-like structure in most birds and a few non-avians. In sauropodomorphs the jugal eventually became small, plate-like and nearly restricted to the area below the orbit, even being excluded from the ventral margin of the skull in many derived taxa. Among ornithischians the jugal was highly variable, but in many cases became large and/or adorned with ornamental features such as horns, flanges, and rugosities. The jugal does not appear to have been a site of muscle attachment in most non-avian dinosaurs, but represented an important structural element in the akinetic dinosaurian skull. The conspicuous jugal ornaments seen in many ornithischian dinosaurs, like the less striking ones documented in some saurischians, may have played an important role in the social behavior of the species that possessed them. In many cases they have a weapon-like aspect suggesting use in aggressive displays, if not actual combat, adding to the evidence that agonistic behavior was likely widespread among ornithischians in particular. Anat Rec, 300:30-48, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Forearm posture and mobility in quadrupedal dinosaurs.

    Directory of Open Access Journals (Sweden)

    Collin S VanBuren

    Full Text Available Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination. Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  15. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    Science.gov (United States)

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  16. The Evolution of Reproduction within Testudinata as Evidenced by the Fossil Record

    Science.gov (United States)

    Lawver, Daniel Ryan

    Although known from every continent except Antarctica and having a fossil record ranging from the Middle Jurassic to the Pleistocene, fossil turtle eggs are relatively understudied. In this dissertation I describe four fossil specimens, interpret paleoecology and conduct cladistic analyses in order to investigate the evolution of turtle reproduction. Fossil eggshell descriptions primarily involve analysis by scanning electron and polarized light microscopy, as well as cathodoluminescence to determine the degree of diagenetic alteration. Carapace lengths and gas conductance are estimated in order to investigate the ecology of the adults that produced fossil turtle eggs and clutches, as well as their incubation environments, respectively. Cladistic analyses of turtle egg and reproductive characters permit assessment of the usefulness of these characters for determining phylogenetic relationships of fossil specimens and the evolution of reproduction in turtles. Specimens described here include 1) Testudoolithus oosp. from the Late Cretaceous of Madagascar, 2) a clutch of eggs (some containing late stage embryos and at least one exhibiting multilayer eggshell) from the Late Cretaceous Judith River Formation of Montana and named Testudoolithus zelenitskyae oosp. nov., 3) an egg contained within an adult Basilemys nobilis from the Late Cretaceous Kaiparowits Formation of Utah, and 4) a clutch of Meiolania platyceps eggs from the Pleistocene of Lord Howe Island, Australia. Meiolania platyceps eggs are named Testudoolithus lordhowensis oosp. nov. and provide valuable information on the origin of aragonite eggshell composition and nesting behaviors. Cladistic analyses utilizing egg and reproductive characters are rarely performed on taxa outside of Dinosauria. My analyses demonstrate that morphological data produces poorly resolved trees in which only the clades Adocia and Trionychia are resolved and all other turtles form a large polytomy. However, when combined with

  17. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    Science.gov (United States)

    Varricchio, David J; Balanoff, Amy M; Norell, Mark A

    2015-01-01

    Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  18. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    Directory of Open Access Journals (Sweden)

    David J Varricchio

    Full Text Available Embryonic remains within a small (4.75 by 2.23 cm egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  19. A new horned dinosaur reveals convergent evolution in cranial ornamentation in Ceratopsidae.

    Science.gov (United States)

    Brown, Caleb M; Henderson, Donald M

    2015-06-15

    Ceratopsid (horned) dinosaurs are an iconic group of large-bodied, quadrupedal, herbivorous dinosaurs that evolved in the Late Cretaceous and were largely restricted to western North America [1-5]. Ceratopsids are easily recognized by their cranial ornamentation in the form of nasal and postorbital horns and frill (capped by epiossifications); these structures show high morphological disparity and also represent the largest cranial display structures known to have evolved [2, 4]. Despite their restricted occurrence in time and space, this group has one of the best fossil records within Dinosauria, showing a rapid diversification in horn and frill morphology [1]. Here a new genus and species of chasmosaurine ceratopsid is described based on a nearly complete and three-dimensionally preserved cranium recovered from the uppermost St. Mary River Formation (Maastrichtian) of southwestern Alberta. Regaliceratops peterhewsi gen. et sp. nov. exhibits many unique characters of the frill and is characterized by a large nasal horncore, small postorbital horncores, and massive parietal epiossifications. Cranial morphology, particularly the epiossifications, suggests close affinity with the late Campanian/early Maastrichian taxon Anchiceratops, as well as with the late Maastrichtian taxon Triceratops. A median epiparietal necessitates a reassessment of epiossification homology and results in a more resolved phylogeny. Most surprisingly, Regaliceratops exhibits a suite of cranial ornamentations that are superficially similar to Campanian centrosaurines, indicating both exploration of novel display morphospace in Chasmosaurinae, especially Maastrichtian forms, and convergent evolution in horn morphology with the recently extinct Centrosaurinae. This marks the first time that evolutionary convergence in horn-like display structures has been demonstrated between dinosaur clades, similar to those seen in fossil and extant mammals [6]. Copyright © 2015 Elsevier Ltd. All rights

  20. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs

    Directory of Open Access Journals (Sweden)

    Christian Foth

    2016-01-01

    Full Text Available Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on

  1. The variability of inner ear orientation in saurischian dinosaurs: testing the use of semicircular canals as a reference system for comparative anatomy

    Directory of Open Access Journals (Sweden)

    Jesús Marugán-Lobón

    2013-08-01

    Full Text Available The vestibular system of the inner ear houses three semicircular canals—oriented on three nearly-orthogonal planes—that respond to angular acceleration stimuli. In recent years, the orientation of the lateral semicircular canal (LSC has been regularly used to determine skull orientations for comparative purposes in studies of non-avian dinosaurs. Such orientations have been inferred based on fixing the LSC to a common set of coordinates (parallel to the Earth’s horizon, given that the orientation to gravity of this sensory system is assumed constant among taxa. Under this assumption, the LSC is used as a baseline (a reference system both to estimate how the animals held their heads and to describe craniofacial variation among dinosaurs. However, the available data in living birds (extant saurischian dinosaurs suggests that the orientation of the LSC in non-avian saurischian dinosaurs could have been very variable and taxon-specific. If such were the case, using the LSC as a comparative reference system would cause inappropriate visual perceptions of craniofacial organization, leading to significant descriptive inconsistencies among taxa. Here, we used Procrustes methods (Geometric Morphometrics, a suite of analytical tools that compares morphology on the basis of shared landmark homology, to show that the variability of LSC relative to skull landmarks is large (ca. 50° and likely unpredictable, thus making it an inconsistent reference system for comparing and describing the skulls of saurischian (sauropodomorph and theropod dinosaurs. In light of our results, the lateral semicircular canal is an inconsistent baseline for comparative studies of craniofacial morphology in dinosaurs.

  2. Understanding Late Triassic low latitude terrestrial ecosystems: new insights from the Colorado Plateau Coring Project (CPCP)

    Science.gov (United States)

    Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.

    2017-12-01

    The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent

  3. First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition.

    Science.gov (United States)

    Chure, Daniel; Britt, Brooks B; Whitlock, John A; Wilson, Jeffrey A

    2010-04-01

    Sauropod dinosaur bones are common in Mesozoic terrestrial sediments, but sauropod skulls are exceedingly rare--cranial materials are known for less than one third of sauropod genera and even fewer are known from complete skulls. Here we describe the first complete sauropod skull from the Cretaceous of the Americas, Abydosaurus mcintoshi, n. gen., n. sp., known from 104.46 +/- 0.95 Ma (megannum) sediments from Dinosaur National Monument, USA. Abydosaurus shares close ancestry with Brachiosaurus, which appeared in the fossil record ca. 45 million years earlier and had substantially broader teeth. A survey of tooth shape in sauropodomorphs demonstrates that sauropods evolved broad crowns during the Early Jurassic but did not evolve narrow crowns until the Late Jurassic, when they occupied their greatest range of crown breadths. During the Cretaceous, brachiosaurids and other lineages independently underwent a marked diminution in tooth breadth, and before the latest Cretaceous broad-crowned sauropods were extinct on all continental landmasses. Differential survival and diversification of narrow-crowned sauropods in the Late Cretaceous appears to be a directed trend that was not correlated with changes in plant diversity or abundance, but may signal a shift towards elevated tooth replacement rates and high-wear dentition. Sauropods lacked many of the complex herbivorous adaptations present within contemporaneous ornithischian herbivores, such as beaks, cheeks, kinesis, and heterodonty. The spartan design of sauropod skulls may be related to their remarkably small size--sauropod skulls account for only 1/200th of total body volume compared to 1/30th body volume in ornithopod dinosaurs.

  4. The systematic relationships and biogeographic history of ornithischian dinosaurs

    Directory of Open Access Journals (Sweden)

    Clint A. Boyd

    2015-12-01

    Full Text Available The systematic relationships of taxa traditionally referred to as ‘basal ornithopods’ or ‘hypsilophodontids’ remain poorly resolved since it was discovered that these taxa are not a monophyletic group, but rather a paraphyletic set of neornithischian taxa. Thus, even as the known diversity of these taxa has dramatically increased over the past two decades, our knowledge of their placement relative to each other and the major ornithischian subclades remained incomplete. This study employs the largest phylogenetic dataset yet compiled to assess basal ornithischian relationships (255 characters for 65 species level terminal taxa. The resulting strict consensus tree is the most well-resolved, stratigraphically consistent hypothesis of basal ornithischian relationships yet hypothesized. The only non-iguanodontian ornithopod (=basal ornithopod recovered in this analysis is Hypsilophodon foxii. The majority of former ‘hypsilophodontid’ taxa are recovered within a single clade (Parksosauridae that is situated as the sister-taxon to Cerapoda. The Parksosauridae is divided between two subclades, the Orodrominae and the Thescelosaurinae. This study does not recover a clade consisting of the Asian taxa Changchunsaurus, Haya, and Jeholosaurus (=Jeholosauridae. Rather, the former two taxa are recovered as basal members of Thescelosaurinae, while the latter taxon is recovered in a clade with Yueosaurus near the base of Neornithischia.The endemic South American clade Elasmaria is recovered within the Thescelosaurinae as the sister taxon to Thescelosaurus. This study supports the origination of Dinosauria and the early diversification of Ornithischia within Gondwana. Neornithischia first arose in Africa by the Early Jurassic before dispersing to Asia before the late Middle Jurassic, where much of the diversification among non-cerapodan neornithischians occurred. Under the simplest scenario the Parksosauridae originated in North America, with at least

  5. The systematic relationships and biogeographic history of ornithischian dinosaurs.

    Science.gov (United States)

    Boyd, Clint A

    2015-01-01

    The systematic relationships of taxa traditionally referred to as 'basal ornithopods' or 'hypsilophodontids' remain poorly resolved since it was discovered that these taxa are not a monophyletic group, but rather a paraphyletic set of neornithischian taxa. Thus, even as the known diversity of these taxa has dramatically increased over the past two decades, our knowledge of their placement relative to each other and the major ornithischian subclades remained incomplete. This study employs the largest phylogenetic dataset yet compiled to assess basal ornithischian relationships (255 characters for 65 species level terminal taxa). The resulting strict consensus tree is the most well-resolved, stratigraphically consistent hypothesis of basal ornithischian relationships yet hypothesized. The only non-iguanodontian ornithopod (=basal ornithopod) recovered in this analysis is Hypsilophodon foxii. The majority of former 'hypsilophodontid' taxa are recovered within a single clade (Parksosauridae) that is situated as the sister-taxon to Cerapoda. The Parksosauridae is divided between two subclades, the Orodrominae and the Thescelosaurinae. This study does not recover a clade consisting of the Asian taxa Changchunsaurus, Haya, and Jeholosaurus (=Jeholosauridae). Rather, the former two taxa are recovered as basal members of Thescelosaurinae, while the latter taxon is recovered in a clade with Yueosaurus near the base of Neornithischia.The endemic South American clade Elasmaria is recovered within the Thescelosaurinae as the sister taxon to Thescelosaurus. This study supports the origination of Dinosauria and the early diversification of Ornithischia within Gondwana. Neornithischia first arose in Africa by the Early Jurassic before dispersing to Asia before the late Middle Jurassic, where much of the diversification among non-cerapodan neornithischians occurred. Under the simplest scenario the Parksosauridae originated in North America, with at least two later dispersals to

  6. Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.

    Directory of Open Access Journals (Sweden)

    William Ruger Porter

    Full Text Available Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange. Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana was investigated using a differential-contrast, dual-vascular injection (DCDVI technique and high-resolution X-ray microcomputed tomography (μCT. Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory

  7. Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.

    Science.gov (United States)

    Porter, William Ruger; Witmer, Lawrence M

    2015-01-01

    Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body) as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange). Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana) was investigated using a differential-contrast, dual-vascular injection (DCDVI) technique and high-resolution X-ray microcomputed tomography (μCT). Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory tissue temperature

  8. The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation.

    Science.gov (United States)

    Barta, Daniel E; Nesbitt, Sterling J; Norell, Mark A

    2018-01-01

    The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not

  9. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the 'reptile'-bird transition.

    Science.gov (United States)

    Benson, Roger B J; Butler, Richard J; Carrano, Matthew T; O'Connor, Patrick M

    2012-02-01

    Pneumatic (air-filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird-line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large-bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non-avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This 'common pattern' was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird-like feature among non-avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded

  10. Clavicles, interclavicles, gastralia, and sternal ribs in sauropod dinosaurs: new reports from diplodocidae and their morphological, functional and evolutionary implications.

    Science.gov (United States)

    Tschopp, Emanuel; Mateus, Octávio

    2013-03-01

    Ossified gastralia, clavicles and sternal ribs are known in a variety of reptilians, including dinosaurs. In sauropods, however, the identity of these bones is controversial. The peculiar shapes of these bones complicate their identification, which led to various differing interpretations in the past. Here we describe different elements from the chest region of diplodocids, found near Shell, Wyoming, USA. Five morphotypes are easily distinguishable: (A) elongated, relatively stout, curved elements with a spatulate and a bifurcate end resemble much the previously reported sauropod clavicles, but might actually represent interclavicles; (B) short, L-shaped elements, mostly preserved as a symmetrical pair, probably are the real clavicles, as indicated by new findings in diplodocids; (C) slender, rod-like bones with rugose ends are highly similar to elements identified as sauropod sternal ribs; (D) curved bones with wide, probably medial ends constitute the fourth morphotype, herein interpreted as gastralia; and (E) irregularly shaped elements, often with extended rugosities, are included into the fifth morphotype, tentatively identified as sternal ribs and/or intercostal elements. To our knowledge, the bones previously interpreted as sauropod clavicles were always found as single bones, which sheds doubt on the validity of their identification. Various lines of evidence presented herein suggest they might actually be interclavicles - which are single elements. This would be the first definitive evidence of interclavicles in dinosauromorphs. Previously supposed interclavicles in the early sauropodomorph Massospondylus or the theropods Oviraptor and Velociraptor were later reinterpreted as clavicles or furculae. Independent from their identification, the existence of the reported bones has both phylogenetic and functional significance. Their presence in non-neosauropod Eusauropoda and Flagellicaudata and probable absence in rebbachisaurs and Titanosauriformes shows a

  11. The Evolution of Diapsid Reproductive Strategy with Inferences about Extinct Taxa.

    Directory of Open Access Journals (Sweden)

    Jason R Moore

    Full Text Available Diapsids show an extremely wide range of reproductive strategies. Offspring may receive no parental care, care from only one sex, care from both parents, or care under more complex regimes. Young may vary from independent, super-precocial hatchlings to altricial neonates needing much care before leaving the nest. Parents can invest heavily in a few young, or less so in a larger number. Here we examine the evolution of these traits across a composite phylogeny spanning the extant diapsids and including the limited number of extinct taxa for which reproductive strategies can be well constrained. Generalized estimating equation(GEE-based phylogenetic comparative methods demonstrate the influences of body mass, parental care strategy and hatchling maturity on clutch volume across the diapsids. The influence of polygamous reproduction is not important despite a large sample size. Applying the results of these models to the dinosaurs supports the hypothesis of paternal care (male only in derived non-avian theropods, previously suggested based on simpler analyses. These data also suggest that sauropodomorphs did not care for their young. The evolution of parental-care occurs in an almost linear series of transitions. Paternal care rarely gives rise to other care strategies. Where hatchling condition changes, diapsids show an almost unidirectional tendency of evolution towards increased altriciality. Transitions to social monogamy from the ancestral state in diapsids, where both sexes are polygamous, are common. In contrast, once evolved, polygyny and polyandry are very evolutionarily stable. Polygyny and maternal care correlate, as do polyandry and paternal care. Ancestral-character estimation (ACE of these care strategies with the character transition likelihoods estimated from the original data gives good confidence at most important nodes. These analyses suggest that the basalmost diapsids had no parental care. Crocodilians independently evolved

  12. Biology of the sauropod dinosaurs: the evolution of gigantism

    Science.gov (United States)

    Sander, P Martin; Christian, Andreas; Clauss, Marcus; Fechner, Regina; Gee, Carole T; Griebeler, Eva-Maria; Gunga, Hanns-Christian; Hummel, Jürgen; Mallison, Heinrich; Perry, Steven F; Preuschoft, Holger; Rauhut, Oliver W M; Remes, Kristian; Tütken, Thomas; Wings, Oliver; Witzel, Ulrich

    2011-01-01

    extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia. An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat. Another crucial innovation inherited from basal dinosaurs was a high BMR. This is required for fueling the high growth rate necessary for a multi-tonne animal to survive to reproductive maturity. The retention of the plesiomorphic oviparous mode of reproduction appears to have been critical as well, allowing much faster population recovery than in megaherbivore mammals. Sauropods produced numerous but small offspring each season while land mammals show a negative correlation of reproductive output to body size. This permitted lower population densities in sauropods than in megaherbivore mammals but larger individuals. Our work on sauropod dinosaurs thus informs us about evolutionary limits to body size in other groups of herbivorous terrestrial tetrapods. Ectothermic reptiles are strongly limited by their low BMR, remaining small. Mammals are limited by their extensive mastication and their vivipary, while ornithsichian dinosaurs were only limited by their extensive mastication, having greater average body sizes than mammals. PMID:21251189

  13. Biology of the sauropod dinosaurs: the evolution of gigantism.

    Science.gov (United States)

    Sander, P Martin; Christian, Andreas; Clauss, Marcus; Fechner, Regina; Gee, Carole T; Griebeler, Eva-Maria; Gunga, Hanns-Christian; Hummel, Jürgen; Mallison, Heinrich; Perry, Steven F; Preuschoft, Holger; Rauhut, Oliver W M; Remes, Kristian; Tütken, Thomas; Wings, Oliver; Witzel, Ulrich

    2011-02-01

    extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia. An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat. Another crucial innovation inherited from basal dinosaurs was a high BMR. This is required for fueling the high growth rate necessary for a multi-tonne animal to survive to reproductive maturity. The retention of the plesiomorphic oviparous mode of reproduction appears to have been critical as well, allowing much faster population recovery than in megaherbivore mammals. Sauropods produced numerous but small offspring each season while land mammals show a negative correlation of reproductive output to body size. This permitted lower population densities in sauropods than in megaherbivore mammals but larger individuals. Our work on sauropod dinosaurs thus informs us about evolutionary limits to body size in other groups of herbivorous terrestrial tetrapods. Ectothermic reptiles are strongly limited by their low BMR, remaining small. Mammals are limited by their extensive mastication and their vivipary, while ornithsichian dinosaurs were only limited by their extensive mastication, having greater average body sizes than mammals. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  14. Mesozoic dinosaurs from Brazil and their biogeographic implications

    Directory of Open Access Journals (Sweden)

    Jonathas S. Bittencourt

    2011-03-01

    Full Text Available The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.O registro osteológico de dinossauros no Mesozóico brasileiro está restrito a rochas triássicas do Rio Grande do Sul e estratos cretáceos de várias partes do país. Isto inclui 21 espécies nominais, sendo duas referidas como nomina dubia, e 19 consensualmente classificadas como dinossauros. Oito táxons supraespecíficos adicionais baseados em material fragmentado e diversas pegadas são conhecidos no Brasil. De fato, a maior parte dos espécimes é composta de dentes isolados e vértebras. Apesar do aumento em trabalhos de campo na última