WorldWideScience

Sample records for saturn planet

  1. Saturn

    CERN Document Server

    Vescia, Monique

    2017-01-01

    Saturn is one of the most surreal of all the planets in our solar system. With this intriguing curriculum-correlated book, young readers can learn just why. Saturn has many unusual features, such as rings made of ice, ammonia storms, and methane rain. Its density is less than that of water so theoretically it could float on water. The features of its many moons are sometimes even stranger. The Pioneer and Voyager missions in 1970s and 1980s offered stunning images included in the book, which will allow readers to have an armchair experience of exploring this fascinating planet.

  2. KRONOSEISMOLOGY: USING DENSITY WAVES IN SATURN'S C RING TO PROBE THE PLANET'S INTERIOR

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, M. M.; Nicholson, P. D., E-mail: mmhedman@astro.cornell.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14850 (United States)

    2013-07-01

    Saturn's C ring contains multiple spiral patterns that appear to be density waves driven by periodic gravitational perturbations. In other parts of Saturn's rings, such waves are generated by Lindblad resonances with Saturn's various moons, but most of the wave-like C-ring features are not situated near any strong resonance with any known moon. Using stellar occultation data obtained by the Visual and Infrared Mapping Spectrometer on board the Cassini spacecraft, we investigate the origin of six unidentified C-ring waves located between 80,900 and 87,200 km from Saturn's center. By measuring differences in the waves' phases among the different occultations, we are able to determine both the number of arms in each spiral pattern and the speeds at which these patterns rotate around the planet. We find that all six of these waves have between two and four arms and pattern speeds between 1660 Degree-Sign day{sup -1} and 1861 Degree-Sign day{sup -1}. These speeds are too large to be attributed to any satellite resonance. Instead, they are comparable to the predicted pattern speeds of waves generated by low-order normal-mode oscillations within the planet. The precise pattern speeds associated with these waves should therefore provide strong constraints on Saturn's internal structure. Furthermore, we identify multiple waves with the same number of arms and very similar pattern speeds, indicating that multiple m = 3 and m = 2 sectoral (l = m) modes may exist within the planet.

  3. The Perihelion Precession of Saturn, Planet X/Nemesis and MOND

    Science.gov (United States)

    Iorio, Lorenzo

    2010-05-01

    We show that the retrograde perihelion precession of Saturn \\Delta\\dot\\varpi, recently estimated by different teams of astronomers by processing ranging data from the Cassini spacecraft and amounting to some milliarcseconds per century, can be explained in terms of a localized, distant body X, not yet directly discovered. From the determination of its tidal parameter K = GM_X/r_X^3 as a function of its ecliptic longitude \\lambda_X and latitude \\beta_X, we calculate the distance at which X may exist for different values of its mass, ranging from the size of Mars to that of the Sun. The minimum distance would occur for X located perpendicularly to the ecliptic, while the maximum distance is for X lying in the ecliptic. We find for rock-ice planets of the size of Mars and the Earth that they would be at about 80-150 au, respectively, while a Jupiter-sized gaseous giant would be at approximately 1 kau. A typical brown dwarf would be located at about 4 kau, while an object with the mass of the Sun would be at approximately 10 kau, so that it could not be Nemesis for which a solar mass and a heliocentric distance of about 88 kau are predicted. If X was directed towards a specific direction, i.e. that of the Galactic Center, it would mimick the action of a recently proposed form of the External Field Effect (EFE) in the framework of the MOdified Newtonian Dynamics (MOND).

  4. The perihelion precession of Saturn, planet X/Nemesis and MOND

    CERN Document Server

    Iorio, Lorenzo

    2009-01-01

    We show that the retrograde perihelion precession of Saturn \\Delta\\dot\\varpi, recently estimated by different teams of astronomers by processing ranging data from the Cassini spacecraft and amounting to some milliarcseconds per century, can be explained in terms of a localized, distant body X, not yet directly discovered. From the determination of its tidal parameter K = GM_X/r_X^3 as a function of its ecliptic longitude \\lambda_X and latitude \\beta_X, we calculate the distance at which X may exist for different values of its mass, ranging from the size of Mars to that of the Sun. The minimum distance would occur for X located perpendicularly to the ecliptic, while the maximum distance is for X lying in the ecliptic. We find for rock-ice planets of the size of Mars and the Earth that they would be at about 80-150 au, respectively, while a Jupiter-sized gaseous giant would be at approximately 1 kau. A typical brown dwarf would be located at about 4 kau, while an object with the mass of the Sun would be at appr...

  5. Open and partially closed models of the solar wind interaction with outer planet magnetospheres: the case of Saturn

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2017-12-01

    Full Text Available A wide variety of interactions take place between the magnetized solar wind plasma outflow from the Sun and celestial bodies within the solar system. Magnetized planets form magnetospheres in the solar wind, with the planetary field creating an obstacle in the flow. The reconnection efficiency of the solar-wind-magnetized planet interaction depends on the conditions in the magnetized plasma flow passing the planet. When the reconnection efficiency is very low, the interplanetary magnetic field (IMF does not penetrate the magnetosphere, a condition that has been widely discussed in the recent literature for the case of Saturn. In the present paper, we study this issue for Saturn using Cassini magnetometer data, images of Saturn's ultraviolet aurora obtained by the HST, and the paraboloid model of Saturn's magnetospheric magnetic field. Two models are considered: first, an open model in which the IMF penetrates the magnetosphere, and second, a partially closed model in which field lines from the ionosphere go to the distant tail and interact with the solar wind at its end. We conclude that the open model is preferable, which is more obvious for southward IMF. For northward IMF, the model calculations do not allow us to reach definite conclusions. However, analysis of the observations available in the literature provides evidence in favor of the open model in this case too. The difference in magnetospheric structure for these two IMF orientations is due to the fact that the reconnection topology and location depend on the relative orientation of the IMF vector and the planetary dipole magnetic moment. When these vectors are parallel, two-dimensional reconnection occurs at the low-latitude neutral line. When they are antiparallel, three-dimensional reconnection takes place in the cusp regions. Different magnetospheric topologies determine different mapping of the open-closed boundary in the ionosphere, which can be considered as a proxy for the

  6. Aerosol Constraints on the Atmosphere of the Hot Saturn-mass Planet WASP-49b

    Science.gov (United States)

    Cubillos, Patricio E.; Fossati, Luca; Erkaev, Nikolai V.; Malik, Matej; Tokano, Tetsuya; Lendl, Monika; Johnstone, Colin P.; Lammer, Helmut; Wyttenbach, Aurélien

    2017-11-01

    The strong, nearly wavelength-independent absorption cross section of aerosols produces featureless exoplanet transmission spectra, limiting our ability to characterize their atmospheres. Here, we show that even in the presence of featureless spectra, we can still characterize certain atmospheric properties. Specifically, we constrain the upper and lower pressure boundaries of aerosol layers, and present plausible composition candidates. We study the case of the bloated Saturn-mass planet WASP-49 b, where near-infrared observations reveal a flat transmission spectrum between 0.7 and 1.0 μm. First, we use a hydrodynamic upper-atmosphere code to estimate the pressure reached by the ionizing stellar high-energy photons at {10}-8 bar, setting the upper pressure boundary where aerosols could exist. Then, we combine HELIOS and Pyrat Bay radiative-transfer models to constrain the temperature and photospheric pressure of atmospheric aerosols, in a Bayesian framework. For WASP-49 b, we constrain the transmission photosphere (hence, the aerosol deck boundaries) to pressures above {10}-5 bar (100× solar metallicity), {10}-4 bar (solar), and {10}-3 bar (0.1× solar) as the lower boundary, and below {10}-7 bar as the upper boundary. Lastly, we compare condensation curves of aerosol compounds with the planet’s pressure-temperature profile to identify plausible condensates responsible for the absorption. Under these circumstances, we find these candidates: {{Na}}2{{S}} (at 100× solar metallicity); Cr and MnS (at solar and 0.1× solar) and forsterite, enstatite, and alabandite (at 0.1× solar).

  7. The Outer Planets and their Moons Comparative Studies of the Outer Planets prior to the Exploration of the Saturn System by Cassini-Huygens

    CERN Document Server

    Encrenaz, T; Owen, T. C; Sotin, C

    2005-01-01

    This volume gives an integrated summary of the science related to the four giant planets in our solar system. It is the result of an ISSI workshop on «A comparative study of the outer planets before the exploration of Saturn by Cassini-Huygens» which was held at ISSI in Bern on January 12-16, 2004. Representatives of several scientific communities, such as planetary scientists, astronomers, space physicists, chemists and astrobiologists have met with the aim to review the knowledge on four major themes: (1) the study of the formation and evolution processes of the outer planets and their satellites, beginning with the formation of compounds and planetesimals in the solar nebula, and the subsequent evolution of the interiors of the outer planets, (2) a comparative study of the atmospheres of the outer planets and Titan, (3) the study of the planetary magnetospheres and their interactions with the solar wind, and (4) the formation and properties of satellites and rings, including their interiors, surfaces, an...

  8. Size distribution of particles in planetary rings. [applied to Saturn and terrestrial planets

    Science.gov (United States)

    Greenberg, R.; Davis, D. R.; Hartmann, W. K.; Chapman, C. R.

    1977-01-01

    Harris (1975) has suggested that the maximum size of particles in a planetary ring is controlled by collisional fragmentation rather than tidal stress. While this conclusion is probably true, estimated radius limits must be revised upward from Harris' values of a few kilometers by at least an order of magnitude. Accretion of particles within the Roche limit is also possible. These considerations affect theories concerning the evolution of Saturn's rings, of the moon, and of possible former satellites of Mercury and Venus. In the case of Saturn's rings, comparison of various theoretical scenarios with available observational evidence suggests that the rings formed from the breakup of larger particles rather than from original condensation as small particles. This process implies a distribution of particle sizes in Saturn's rings possibly ranging up to about 100 km but with most of the cross section in centimeter-scale particles.

  9. The KELT-11b Opportunity: Measuring the Atmospheric Water Abundance for a Sub-Saturn-Mass Planet around a Metal-Rich Star

    Science.gov (United States)

    Colon, Knicole

    2017-08-01

    Measurements of exoplanet atmosphere composition provide an unparalleled window into planetary nature and origins. Water in particular is an important tracer of the planet formation process because it is a dominant component by mass of icy planetesimals. Exoplanets provide the opportunity to measure water abundance over a wide range of planet masses and thereby test predictions of planet population synthesis models. So far, however, precise constraints on water abundance have been limited to Jupiter-mass objects. Here we propose to measure the transmission spectrum of the recently discovered low density sub-Saturn KELT-11b with HST/WFC3. We will use this measurement to determine the planet's atmospheric water abundance. KELT-11b is one of the few Saturn-mass planets for which we can obtain constraints on the water abundance with a modest amount of telescope time. Our results will enable meaningful comparison with both objects in the Solar System and with the other few planets in the sub-Saturn population. This program will also be the first investigation of the metal enhancement of a planet with a metal-rich host star. Even if the atmosphere is cloudy, our data will be sufficiently precise to detect water above a 1 mbar cloud-deck, and will constrain cloud physics in a new regime of surface gravity. These measurements will set the stage for comparative planetology that will be possible with JWST.

  10. The perihelion precession of Saturn, planet X/Nemesis and MOND

    OpenAIRE

    Iorio, Lorenzo

    2009-01-01

    We show that the retrograde perihelion precession of Saturn \\Delta\\dot\\varpi, recently estimated by different teams of astronomers by processing ranging data from the Cassini spacecraft and amounting to some milliarcseconds per century, can be explained in terms of a localized, distant body X, not yet directly discovered. From the determination of its tidal parameter K = GM_X/r_X^3 as a function of its ecliptic longitude \\lambda_X and latitude \\beta_X, we calculate the distance at which X may...

  11. The Great Exoplanet Eclipse: Spitzer Observations of the Benchmark Sub-Saturn-Mass Planet KELT-11b

    Science.gov (United States)

    Colon, Knicole; Beatty, Thomas; Line, Michael; Kreidberg, Laura; Lopez, Eric; Stassun, Keivan; Rodriguez, Joseph; Pepper, Joshua; James, David

    2017-10-01

    KELT-11b is a unique sub-Saturn-mass planet with a super-Jupiter radius that is in orbit around a bright, metal-rich, sub-giant star. We propose to observe a single eclipse of KELT-11b with Spitzer in IRAC Channel 2, which will allow us to precisely constrain the orbital eccentricity of the planet, study atmospheric circulation in an as yet unexplored regime of planetary surface gravity and temperature, and perform comparative science with other exoplanets in order to explore the correlation between surface gravity and thermal structure. Spitzer is the only active facility capable of providing the high precision, continuous infrared eclipse photometry of KELT-11b that is required to reach these objectives. The Spitzer infrared eclipse combined with near-infrared transmission spectroscopy that we will obtain with WFC3 on the Hubble Space Telescope will ultimately enable a detailed investigation of the atmospheric properties of KELT-11b and will provide a benchmark for planning thermal observations of exoplanets with the James Webb Space Telescope.

  12. The Cassini-Huygens visit to Saturn an historic mission to the ringed planet

    CERN Document Server

    Meltzer, Michael

    2015-01-01

    Cassini-Huygens was the most ambitious and successful space journey ever launched to the outer Solar System. This book examines all aspects of the journey: its conception and planning; the lengthy political processes needed to make it a reality; the engineering and development required to build the spacecraft; its 2.2-billion mile journey from Earth to the Ringed Planet; and the amazing discoveries from the mission. The author traces how the visions of a few brilliant scientists matured, gained popularity, and eventually became a reality. Innovative technical leaps were necessary to assemble such a multifaceted spacecraft and reliably operate it while it orbited a planet so far from our own. The Cassini-Huygens spacecraft design evolved from other deep space efforts, most notably the Galileo mission to Jupiter, enabling the voluminous, paradigm-shifting scientific data collected by the spacecraft.  Some of these discoveries are absolute gems. A small satellite that scientists once thought of as a dead pi...

  13. Cassini at Saturn: The planet as we know it now and what we hope to discover in the final three years

    Science.gov (United States)

    Ingersoll, A. P.

    2014-12-01

    Saturn objectives for the remainder of the Cassini mission fall into four broad themes: (1) aftermath of a giant storm, (2) seasonal and temporal atmospheric change, (3) polar latitudes, and (4) Saturn's interior. We list of the questions that Cassini will address in order below. (1) Aftermath of a giant storm. Planet-encircling storms occur every 20-30 years. The latest was in 2010-2011. Smaller storms occur every few months. The questions are: How deep are the roots of the storms? What chemicals do they dredge up from below? Do they change the winds in their vicinity? How do storms lead to ammonia depletion and holes in the clouds? What is the depth of the lightning flashes, and is it related to the freezing level of the water cloud? How do storms in the troposphere heat the stratosphere? (2) Seasonal and temporal atmospheric change. The 30-year seasonal cycle and the 11-year solar activity cycle are externally driven. In addition, Saturn generates its own 15-year cycle of equatorial winds and temperatures. The questions are: What are the sources and sinks of trace species (water, CO2, acetylene, ethane, diacetylene)? Will the equatorial atmosphere continue to oscillate with a 15-year period? How does Saturn's atmosphere respond to the solar cycle and the solar maximum? (3) Polar latitudes are the sites of energetic auroral activity, and they have a giant hexagon-shaped cloud feature and hurricane "eyes" that are centered on the poles. The questions are: What maintains the northern hexagon for more than 30 years? Are hurricane-like features unique to the polar regions? Is the atmosphere "slipping" relative to the magnetosphere? What does the aurora tell us about coupling between the magnetic field and atmosphere? (4) Saturn's interior. The interior structure provides information about how the planet formed and evolved. The questions are: What does the gravity field reveal about the winds, composition, and equation of state of the interior? What does the internal

  14. MHD simulations of the interaction of the solar wind with a fast-rotating planet (e.g. Saturn or Uranus)

    Science.gov (United States)

    Griton, L.; Pantellini, F.

    2017-09-01

    We present 3D magnetohydrodynamics (MHD) simulations (on a spherical grid) of the interaction of the solar wind with a fast rotating magnetized planet, with arbitrary orientation of magnetic and spin axis. The large-scale flow in fast-rotating magnetospheres (e.g. the giant planets of the solar system) is described here for different orientations of the interplanetary magnetic field. We present in particular the effects of rotation on the configuration of the planet-connected magnetic field lines and on the flow pattern. We adapted the MPI-AMRVAC code to allow for any possible orientation of spin and magnetic axis using a background/residual decomposition of the magnetic field. The Saturn-like case is briefly discussed.

  15. OGLE-2013-BLG-0132Lb and OGLE-2013-BLG-1721Lb: Two Saturn-mass Planets Discovered around M-dwarfs

    Science.gov (United States)

    Mróz, Przemek; Udalski, A.; Bond, I. A.; Skowron, J.; Sumi, T.; Han, C.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Ulaczyk, K.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; The MOA Collaboration

    2017-11-01

    We present the discovery of two planetary systems consisting of a Saturn-mass planet orbiting an M-dwarf, which were detected in faint microlensing events OGLE-2013-BLG-0132 and OGLE-2013-BLG-1721. The planetary anomalies were covered with high cadence by Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA) photometric surveys. The light curve modeling indicates that the planet-to-host mass ratios are (5.15+/- 0.28)× {10}-4 and (13.18+/- 0.72)× {10}-4, respectively. Both events were too short and too faint to measure a reliable parallax signal and hence the lens mass. We therefore used a Bayesian analysis to estimate the masses of both planets: {0.29}-0.13+0.16 {M}{Jup} (OGLE-2013-BLG-0132Lb) and {0.64}-0.31+0.35 {M}{Jup} (OGLE-2013-BLG-1721Lb). Thanks to a high relative proper motion, OGLE-2013-BLG-0132 is a promising candidate for the high-resolution imaging follow-up. Both planets belong to an increasing sample of sub-Jupiter-mass planets orbiting M-dwarfs beyond the snow line.

  16. The Saturn System

    OpenAIRE

    Stone, E. C.; T.C. Owen

    1984-01-01

    Saturn is a giant planet surrounded by numerous rings, many satellites, and a large magnetosphere. Although the Saturn system bears a general resemblance to the Jovian system, it has many unique attributes which provide new insight into the formation and evolution of planetary systems. This introductory chapter provides an overview of the results of recent studies of the Saturn system which are described in detail in the following chapters.

  17. One last look from the dark side: Cassini's final views of Saturn's rings from with the planet's shadow

    Science.gov (United States)

    Hedman, Matthew M.; Burns, Joseph A.; Nicholson, Philip D.; Tiscareno, Matthew S.; Evans, Michael W.; Baker, Emily

    2017-10-01

    Around the start of Cassini's Grand Finale, the spacecraft passed a dozen times through Saturn's shadow, enabling its cameras and spectrometers to observe the ring system at extremely high phase angles. These opportunities yielded the best combination of signal-to-noise and resolution for many parts of Saturn's fainter dusty rings, and allowed the main rings to be viewed from previously inaccessible lighting geometries. We will highlight some of the surprising features found in the data obtained by Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) during these time periods, and discuss what they might be able to tell us about the structure and dynamics of Saturn's various ring systems. For example, ISS captured global views of the entire ring system that reveal previously unseen structures in dust-filled regions like the D ring and the zone between Saturn's F and G rings, as well as novel fine-scale structures in the core of the E ring near Enceladus' orbit. These structures provide new insights into the forces that sculpt these tenuous rings. ISS and VIMS also detected an unexpected brightening and highly unusual spectra of the main rings at extremely high phase angles. These data may provide novel information about the distribution of small grains and particles in these denser rings.

  18. Worlds Smaller than Saturn

    Science.gov (United States)

    2001-03-01

    Computerized animations show the following: (1) an artist's conception of a Saturn-like extrasolar planet; (2) star and planet motion; and (3) young stellar disk and planet formation. Footage shows the outside of the Mauna Kea Observatories in Hawaii and Geoff Marcy and Paul Butler inside while they are processing information. Then a press conference,'Worlds Smaller than Saturn', is seen. Anne Kinney, Origins Science Director, NASA Headquarters, introduces Geoff Marcy, Paul Butler, Alan Boss, and Heidi Hammel. They discuss the discovery of the two new Saturn-sized extrasolar planets that are orbiting the stars HD46375 and 79 Seti, giving details on the search technique and size distribution. They then answer questions from the press.

  19. Lessons from our Own Solar System: Generation Mechanisms of Radio Emissions from Earth, Saturn and Jupiter and Atmospheric Loss from Magnetized versus non-magnetized planets

    Science.gov (United States)

    Brandt, Pontus

    2017-05-01

    The understanding of the engines and mechanisms behind kilometric and decametric radio emissions from the planets in our own solar system have taken great leaps with missions such as the NASA/Cassini, IMAGE and Galileo missions. The periodic Saturn Kilometric Radiation (SKR), the Auroral Kilometric Radiation (AKR) at Earth and the periodic decametric radio emissions from Jupiter all point to the same generation mechanisms: very large-scale explosive plasma heating events in the magnetotail of each of the planets. The character and periodicity of the associated radio emissions not only tells us about the presence of a magnetic field but also about the plasma content and size of the planetary magnetosphere, and the nature of the interaction with the solar wind.The presence of a planetary magnetic field, as could be established for exoplanets by the positive detection of low-frequency exoplanetary radio emissions, has been thought to shield a planet from atmospheric loss to space. However, recent data from Mars Express, MAVEN, and Venus Express, together with the wealth of terrestrial measurements of atmospheric escape to space has brought a surprising question in to light: Does a planetary magnetic field suppress or enhance atmospheric loss? While at the non-magnetized planets such as Mars and Venus, the solar wind has a more direct access to the ionized upper atmosphere, these planets do set up self shielding currents that do limit escape. Furthermore, it is not clear if Mars have lost the majority of its atmosphere by condensation in to surface and sub-surface frost, or through atmospheric escape. At Earth, the geomagnetic field sets up a relatively large cross section to the solar wind, that allows the induced solar-wind electric field to transfer substantial energy to the upper ionosphere and atmosphere resulting in substantial loss. It is therefore not clear how a planetary magnetic field correlates to the atmospheric loss, or if it does at all.In this

  20. Requirements on Atmospheric Entry of Small Probes for Several Planets: Venus, Saturn, Neptune and Uranus in Preparation for the Future ESA Cosmic Vision Missions

    Science.gov (United States)

    Tomuta, D.; Rebuffat, D.; Larranaga, J.; Erd, C.; Bavdaz, M.; Falkner, P.

    2011-02-01

    In preparation for the ESA Cosmic Vision new call for medium class missions, a set of entry probes for inner and outer planets have been preliminary investigated by ESA using its Concurrent Design Facility. These Entry Probe missions are hypothetically assumed for launching time 2020-2035. A preliminary design of the probes arrived at a mass of about 300kg. In the following, the study is focused on the entry conditions for each of the planets Venus, Saturn, Neptune and Uranus with the aim to define the conditions for the Entry and Descent System (EDS) and its required technologies. For Venus case, two scenarios where considered: one where the entry probe is released during a typical gravity assist by a large interplanetary mission and another scenario featuring a stand alone mission targeted to Venus. During the entry in Venus atmosphere (mainly composed of CO2 (96.5%) and N2 (3.5%)), the probes are subjected to maximum heat fluxes of 60MW/m2, which is highly demanding in both scenarios. For the outer planet missions, only flyby scenarios with a targeted release of the probe were considered. The entry probes for the outer planets are subjected to heat fluxes above 100MW/m2, which is even more challenging the Thermal Protection Systems (TPS) and therefore requiring the use of special high temperature protection technology to prevent the destruction during the entry. ESA efforts for future missions are directed towards the development of an European Light Ablative Material (ELAM), though used in PEP study only for the Back Cover of the Entry Module. The TPS as well as both radiative and convective heat fluxes need simulations and verification by means of ground facility experiments. Based on the lessons learned from previous mission studies (mission to a near-Earth objects c.f. Marco Polo, Deimos Sample return), an Atmospheric Mars Sample Return is now under study. For sample return missions on return to Earth, a passive re-entry capsule delivering the sample

  1. Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star

    Science.gov (United States)

    Gandolfi, D.; Parviainen, H.; Fridlund, M.; Hatzes, A. P.; Deeg, H. J.; Frasca, A.; Lanza, A. F.; Prada Moroni, P. G.; Tognelli, E.; McQuillan, A.; Aigrain, S.; Alonso, R.; Antoci, V.; Cabrera, J.; Carone, L.; Csizmadia, Sz.; Djupvik, A. A.; Guenther, E. W.; Jessen-Hansen, J.; Ofir, A.; Telting, J.

    2013-09-01

    We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy from the Sandiford at McDonald and FIES at NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp = 0.430 ± 0.032 MJup, a radius of Rp = 0.960 ± 0.016 RJup, and a bulk density of ρp = 0.603 ± 0.055 g cm-3. It orbits a slowly rotating (Prot = 36 ± 6 days) G5 V star with M⋆ = 0.95 ± 0.04 M⊙, R⋆ = 0.99 ± 0.02 R⊙, Teff = 5520 ± 60 K, [M/H] = 0.20 ± 0.05 dex, that has an age of 7.5 ± 2.0 Gyr. The lack of detectable planetary occultation with a depth higher than ~10 ppm implies a planet geometric and Bond albedo of Ag ≤ 0.087 ± 0.008 and AB ≤ 0.058 ± 0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of ~0.5 min, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transitsobserved in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planet's passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions. Based on observations obtained with the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA.Based on observations obtained with the Nordic Optical Telescope, operated on the

  2. Saturn and How to Observe it

    CERN Document Server

    Benton, Julius L

    2005-01-01

    Saturn is the second largest planet in the solar system, and the only one with a spectacular ring system easily visible from Earth. Julius Benton's Saturn and How to Observe It provides a compendium of the latest information, amateur and professional images of Saturn. These images are followed by advice on how to observe Saturn using a variety of telescope apertures, color filters and magnifications. This text is a goldmine of information for all levels of amateur observers, from the beginner to the highly experienced. Brought to life by crisp color photographs, Saturn and How to Observe It is a modern comprehensive review of Saturn as a planet and its magnificent ring system. The book includes some of the latest detailed theories and physical descriptions of Saturn and its satellites. The techniques for observing Saturn are outlined in this book, giving the reader a thorough explanation of what they are viewing.

  3. Saturn's outer satellite, Phoebe

    Science.gov (United States)

    1981-01-01

    Voyager 2 took this photo of Saturn's outer satellite, Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles) away. The photo shows that Phoebe is about 200 kilometers (120 miles) in diameter, about twice the size of Earth-based measurements; and dark, with five percent reflectivity -- much darker than any other Saturnian satellite. That, and information from Earth-based observations, indicates Phoebe is almost certainly a captured asteroid, and did not form in the original Saturn nebula as Saturn's other satellites did. Phoebe is the only Saturnian satellite that does not always show the same face to Saturn: Its orbital period is 550 days. Its rotation period (length of day), determined from Voyager 2 observations, is nine to ten hours. Other ground-based observations that indicate that Phoebe is a captured asteroid: It orbits Saturn in the ecliptic plane (the plane in which Earth and most other planets orbit the Sun), rather than in Saturn's equatorial plane as the other Saturn satellites do. And Phoebe's orbit is retrograde -- in the direction opposite to that of the other satellites. Voyager is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  4. Saturn Nebula (NGC 7009)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    A planetary nebula in the constellation Aquarius, position RA 21 h 04.4 m, dec. -11° 22'. It measures 25'' and shines with a greenish hue. It is of eighth magnitude and for a planetary nebula has a high surface brightness. Two small lobes on either side give it the appearance of the planet Saturn....

  5. Mysterious Saturn--Some Ancient and Modern Views

    Science.gov (United States)

    Agarwal, Pankaj

    2011-01-01

    The familiar image of Saturn and its rings has come to symbolise our idea of a planet but there is still much about Saturn and its system that we do not understand. The history of our beliefs and knowledge about it, one of the most distant planets visible to the naked eye, is described, from the early myths, such as the Indian village that…

  6. A conceptual Saturn ring observer mission using standard radioisotope power systems

    Science.gov (United States)

    Abelson, Robert D.; Spilker, Thomas R.

    2006-01-01

    Saturn remains of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields.

  7. Black Saturn

    OpenAIRE

    Elvang, Henriette; Figueras, Pau

    2007-01-01

    Using the inverse scattering method we construct an exact stationary asymptotically flat 4+1-dimensional vacuum solution describing Black Saturn: a spherical black hole surrounded by a black ring. Angular momentum keeps the configuration in equilibrium. Black saturn reveals a number of interesting gravitational phenomena: (1) The balanced solution exhibits 2-fold continuous non-uniqueness for fixed mass and angular momentum; (2) Remarkably, the 4+1d Schwarzschild black hole is not unique, sin...

  8. Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to 1.7 μm with PlanetCam-UPV/EHU

    Science.gov (United States)

    Mendikoa, I.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; López-Santiago, J.

    2017-11-01

    Aims: We provide measurements of the absolute reflectivity of Jupiter and Saturn along their central meridians in filters covering a wide range of visible and near-infrared wavelengths (from 0.38 to 1.7 μm) that are not often presented in the literature. We also give measurements of the geometric albedo of both planets and discuss the limb-darkening behavior and temporal variability of their reflectivity values for a period of four years (2012-2016). Methods: This work is based on observations with the PlanetCam-UPV/EHU instrument at the 1.23 m and 2.2 m telescopes in Calar Alto Observatory (Spain). The instrument simultaneously observes in two channels: visible (VIS; 0.38-1.0 μm) and short-wave infrared (SWIR; 1.0-1.7 μm). We obtained high-resolution observations via the lucky-imaging method. Results: We show that our calibration is consistent with previous independent determinations of reflectivity values of these planets and, for future reference, provide new data extended in the wavelength range and in the time. Our results have an uncertainty in absolute calibration of 10-20%. We show that under the hypothesis of constant geometric albedo, we are able to detect absolute reflectivity changes related to planetary temporal evolution of about 5-10%. Tables A.1-A.4 and B.1-B.8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A72

  9. The Voyager encounters with Saturn

    Science.gov (United States)

    Stone, E. C.

    1984-04-01

    In 1972, the Voyager Program was undertaken by NASA as a major step in the exploration of the outer solar system. Recently the objectives of this program have been extended to include an investigation of Uranus and possibly Neptune. In connection with the present investigation, a brief description of the Voyager spacecraft is presented and an overview of the scientific results from the Saturn encounters is provided. Two essentially identical Voyager spacecraft were launched in 1977 toward encounters with the Jovian and Saturnian planetary systems. The Voyager 1 trajectory at Saturn was chosen to provide a close encounter with Titan, a planet-sized satellite with an atmosphere, and to provide an optimum geometry for dual-frequency radio occultation studies of Saturn's rings. The Voyager 2 trajectory provided improved viewing of the rings.

  10. Edges of Saturn's rings are fractal.

    Science.gov (United States)

    Li, Jun; Ostoja-Starzewski, Martin

    2015-01-01

    The images recently sent by the Cassini spacecraft mission (on the NASA website http://saturn.jpl.nasa.gov/photos/halloffame/) show the complex and beautiful rings of Saturn. Over the past few decades, various conjectures were advanced that Saturn's rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. Here we focus on four images sent by the Cassini spacecraft mission (slide #42 "Mapping Clumps in Saturn's Rings", slide #54 "Scattered Sunshine", slide #66 taken two weeks before the planet's Augus't 200'9 equinox, and slide #68 showing edge waves raised by Daphnis on the Keeler Gap) and one image from the Voyager 2' mission in 1981. Using three box-counting methods, we determine the fractal dimension of edges of rings seen here to be consistently about 1.63 ~ 1.78. This clarifies in what sense Saturn's rings are fractal.

  11. Seasonal Changes In Saturn's Clouds

    Science.gov (United States)

    Carroll, Patricia A.; Yanamandra-Fisher, P. A.; Momary, T. W.; Kim, J. H.; Baines, K. H.

    2008-09-01

    Previous investigations indicate that Saturn's atmosphere consists of many hydrocarbons and trace chemical species such as methane (CH4), ammonia (NH3), and phosphine (PH3). NIR observations acquired from 1995 to 2006, equivalent to half a Saturnian year, are reduced and analyzed to study seasonal changes in the global distribution of these species in Saturn's clouds. The data was acquired from ground-based NASA/InfraRed Telescope Facility with NSFCAM and NSFCAM2 (1995-2006) and spacecraft Cassini/VIMS (2004-2006). Global cylindrical maps of reflectivitiy (or I/F) were created to extract latitudinal and pole-to-pole profiles of the planet's albedo. Since 1995, as Saturn's south pole received increasing solar insolation, the albedo maps (for wavelengths shorter than 3.0-microns) exhibit an increase in reflectivity at mid-latitudes in the southern hemisphere, decreasing towards the equator and the south pole. Our preliminary results indicate that at deeper levels in the atmosphere probed at 5.2-microns, Saturn's south pole is brightest, displaying trends opposite to those observed at shorter wavelengths. Baines et al. (2007, BAAS 38, 488) report north-south atmospheric asymmetry at 5-microns, based on Cassini/VIMS data. Data acquired from IRTF in February 2004 are consistent with Cassini/VIMS July 2004 data. We use this intersection of 2004 data sets as a benchmark to extend cloud models to the last ring plane crossing of 1995. We will apply Momary et al.'s (2007, BAAS 38, 487) cloud model to both IRTF and Cassini/VIMS data of 2004. Any difference between model and data will be quantified by adjusting the model input parameters to better match model output with observation. This project is pertinent for understanding the changing nature of Saturn;s clouds - differences in the opacity of different species, as Saturn approachs equinox in the near future. This project was supported by the NASA/Undergraduate Student Research Program (USRP) office.

  12. Pioneer Saturn Encounter. [Pioneer 11 space probe

    Science.gov (United States)

    1979-01-01

    The Pioneer Saturn Spacecraft, which began its journey as Pioneer 11, provided the first close view of the rings of Saturn as well as its system of moons. Its payload of 11 operating instruments obtained or confirmed data about the mass, temperature, composition, radiation belts, and atmosphere of the planet and its larger satellite, Titan. It made photometric and polarization measurements of lapetus, Rhea, Dione, and Tethys, as well as discovered additional rings. Scientific highlights of the mission are summarized. Color imagery provided by the photopolarimeter is included along with illustrations of the planet's magnetic field and radiation belts.

  13. Saturn Systems.

    Science.gov (United States)

    U Rehman, Habib; McKee, Nida A; McKee, Michael L

    2016-01-15

    Several ring systems (Saturn systems) have been studied using DFT methods that include dispersion effects. Comparison with X-ray structures are made with three systems, and the agreement is quite good. Binding enthalpies and binding free energies in dichloromethane and toluene have been computed. The effect of an encapsulated lithium cation is accessed by comparing C60 @(C6 H4 )10 and [Li@C60 @(C6 H4 )10 ](+). The [Li@C60 ](+) cation is a much better acceptor than C60 which leads to greater donor-acceptor interactions and larger charge transfer from the ring to [Li@C60 ](+). © 2015 Wiley Periodicals, Inc.

  14. A giant thunderstorm on Saturn.

    Science.gov (United States)

    Fischer, G; Kurth, W S; Gurnett, D A; Zarka, P; Dyudina, U A; Ingersoll, A P; Ewald, S P; Porco, C C; Wesley, A; Go, C; Delcroix, M

    2011-07-06

    Lightning discharges in Saturn's atmosphere emit radio waves with intensities about 10,000 times stronger than those of their terrestrial counterparts. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres-comparable in size to a 'Great White Spot'-about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn's total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons, given that Saturn experienced vernal equinox in August 2009. ©2011 Macmillan Publishers Limited. All rights reserved

  15. Long term observations of Saturn's northern auroras

    Science.gov (United States)

    Nichols, Jonathan

    2011-10-01

    Auroral emissions are a vital tool in diagnosing the dynamics of planetary magnetospheres. While SaturnA?s southern UV auroras have been observed with high-sensitivity cameras onboard the Hubble Space Telescope {HST}, the northern auroras have only been observed at very oblique angles. Our understanding of SaturnA?s auroral emissions is thus only half complete. However, Saturn has now passed equinox and is moving toward summer in the northern hemisphere, such that the northern auroras are now visible from Earth, and recent results from HST have indicated that SaturnA?s northern auroras are not simply mirror images of the southern. The changing seasons are also expected to result in significant changes in magnetospheric phenomena related to the auroras. Observing these changes is a specific goal of the Cassini Solstice Mission {CSM} and, since joint HST-Cassini observations have repeatedly proved to be invaluable, CSM operations are currently being planned specifically with joint HST observations in mind. The observations proposed here will thus execute over Cycles 18-20, and will address the following science questions:What is the morphology of SaturnA?s northern auroras? Do SaturnA?s auroras change with the planetA?s season? How are the auroral emissions of different wavelengths related?The importance of long term HST observations of SaturnA?s northern auroras are highlighted by the fact that recent key discoveries would have been missed without the multiyear archive of observations of the planetA?s southern auroras. The opportunity to obtain HST images while Cassini makes specifically-tailored supporting observations is an extremely valuable opportunity, and HST is the only instrument capable of providing sustained, high time resolution observations of Saturns auroral emission.

  16. The interior structure of the giant planets

    Science.gov (United States)

    Zharkov, V. N.

    1991-12-01

    An overview of the principal ideas and data pertaining to the construction of models of the interior structure of Jupiter, Saturn, Uranus, and Neptune is presented. Topics discussed include: the concept of Jupiter and Saturn as planets with hydrogenic crusts; the theory of the figure of rotating planets in hydrostatic equilibrium; a gas-liquid dynamic model of the giant planets; analysis of observational data; abundances of elements and groups of cosmochemical substances; equations of state; and the role of Jupiter in the formation of the earth and the giant planets.

  17. An Infrared View of Saturn

    Science.gov (United States)

    1998-01-01

    In honor of NASA Hubble Space Telescope's eighth anniversary, we have gift wrapped Saturn in vivid colors. Actually, this image is courtesy of the new Near Infrared Camera and Multi-Object Spectrometer (NICMOS), which has taken its first peek at Saturn. The false-color image - taken Jan. 4, 1998 - shows the planet's reflected infrared light. This view provides detailed information on the clouds and hazes in Saturn's atmosphere.The blue colors indicate a clear atmosphere down to a main cloud layer. Different shadings of blue indicate variations in the cloud particles, in size or chemical composition. The cloud particles are believed to be ammonia ice crystals. Most of the northern hemisphere that is visible above the rings is relatively clear. The dark region around the south pole at the bottom indicates a big hole in the main cloud layer.The green and yellow colors indicate a haze above the main cloud layer. The haze is thin where the colors are green but thick where they are yellow. Most of the southern hemisphere (the lower part of Saturn) is quite hazy. These layers are aligned with latitude lines, due to Saturn's east-west winds.The red and orange colors indicate clouds reaching up high into the atmosphere. Red clouds are even higher than orange clouds. The densest regions of two storms near Saturn's equator appear white. On Earth, the storms with the highest clouds are also found in tropical latitudes. The smaller storm on the left is about as large as the Earth, and larger storms have been recorded on Saturn in 1990 and 1994.The rings, made up of chunks of ice, are as white as images of ice taken in visible light. However, in the infrared, water absorption causes various colorations. The most obvious is the brown color of the innermost ring. The rings cast their shadow onto Saturn. The bright line seen within this shadow is sunlight shining through the Cassini Division, the separation between the two bright rings. It is best observed on the left side, just

  18. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  19. The Hera Saturn entry probe mission

    Science.gov (United States)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Frampton, R.; Coustenis, A.; Reh, K.; Lebreton, J.-P.; Fletcher, L. N.; Hueso, R.; Amato, M. J.; Colaprete, A.; Ferri, F.; Stam, D.; Wurz, P.; Atreya, S.; Aslam, S.; Banfield, D. J.; Calcutt, S.; Fischer, G.; Holland, A.; Keller, C.; Kessler, E.; Leese, M.; Levacher, P.; Morse, A.; Muñoz, O.; Renard, J.-B.; Sheridan, S.; Schmider, F.-X.; Snik, F.; Waite, J. H.; Bird, M.; Cavalié, T.; Deleuil, M.; Fortney, J.; Gautier, D.; Guillot, T.; Lunine, J. I.; Marty, B.; Nixon, C.; Orton, G. S.; Sánchez-Lavega, A.

    2016-10-01

    The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.

  20. Drifting waves in Saturn's C ring, evidence for changes in Saturn's interior

    Science.gov (United States)

    Hedman, Matthew M.; El Moutamid, Maryame; Nicholson, Philip D.

    2017-06-01

    Recent analyses of spiral density waves in Saturn's C ring have revealed that many of these waves are generated by either normal-mode oscillations or asymmetries in Saturn's interior. The waves generated by normal-mode oscillations exhibit remarkably stable pattern speeds, indicating that the oscillations inside the planet that generate these waves have frequencies that remain constant for years to decades. However, close inspection of the waves with pattern speeds close to Saturn's rotation rate reveals that several of these waves have been moving inwards over the course of the Cassini mission at rates of around 1 kilometer per year. These "drifting waves" suggest that the frequencies of the relevant driving forces are increasing over time. Hence some aspect of Saturn's internal structure must be slowly changing on decadal timescales. Furthermore, since these waves are generated by forces that are not strictly periodic, they provide new opportunities to examine how disturbances propagate within dense rings.

  1. Saturn Ring Seismology: Evidence for Stable Stratification in the Deep Interior of Saturn

    Science.gov (United States)

    Fuller, J.

    2014-12-01

    Seismology allows for direct observational constraints on the interior structures of stars and planets. Recent observations of Saturn's ring system have revealed the presence of density waves within the rings excited by oscillation modes within Saturn, allowing for precise measurements of a limited set of the planet's mode frequencies. We construct interior structure models of Saturn, compute the corresponding mode frequencies, and compare them with the observed mode frequencies. The fundamental mode frequencies of our models match the observed frequencies (of the largest amplitude waves) to an accuracy of roughly 1%, confirming that these waves are indeed excited by Saturn's f-modes. The presence of the lower amplitude waves (finely split in frequency from the f-modes) can only be reproduced in models containing gravity modes that propagate in a stably stratified region of the planet. The stable stratification must exist deep within the planet near the large density gradients between the core and envelope. Our models cannot easily reproduce the observed fine splitting of the m=3 modes, suggesting that additional effects (e.g., significant latitudinal differential rotation) may be important.

  2. Illustration of Saturn's Rings

    Science.gov (United States)

    2001-01-01

    This illustration shows a close-up of Saturn's rings. These rings are thought to have formed from material that was unable to form into a Moon because of tidal forces from Saturn, or from a Moon that was broken up by Saturn's tidal forces.

  3. The Irregular Moons of Saturn

    Science.gov (United States)

    Denk, Tilmann; Mottola, Stefano; Tosi, Federico; Bottke, William; Hamilton, Douglas P.

    2017-10-01

    The 38 irregular moons of Saturn, all but Phoebe discovered between 2000 and 2007, outnumber the planet's classical satellites. Observations from the ground and from near-Earth space have revealed orbits, sizes, and colors and have hinted at the existence of dynamical families, indicative of collisional evolution and common progenitors. More recently, remote observations of many irregular satellites with the Cassini spacecraft produced lightcurves that helped determine rotational periods, coarse shape models, potential hemispheric color heterogeneities, and other basic properties.From Cassini, a total of 25 Saturnian irregulars have been observed with the ISS camera. Their rotational periods range from 5.45 h to 76.13 h. The absence of fast rotators is evident. Among main-belt asteroids of the same size range (~4 to ~45 km), one third of the objects have faster rotations, indicating that many irregulars should be low-density objects.While the origin of the irregulars is still debated, capture of comets via three-body interactions during giant planets encounters does the best job thus far at reproducing the observed prograde/retrograde orbits. Data from the ground, near-Earth spacecraft, and Cassini as well as modeling results suggest the population visible today has experienced substantial collisional evolution. It may be that only Phoebe has survived relatively intact. The small particle debris drifts toward Saturn by P-R drag, with most of it swept up by Titan. Only remnants of this process are visible today.Our current knowledge on the Saturnian irregulars will be summarized in a chapter [1] in the book "Enceladus and the Icy Moons of Saturn" [2]. The talk will give an overview on the chapter's content, which covers the following topics: Orbital "architecture" (a,e,i), sizes and colors, Cassini observations and results, Phoebe, origin, an outlook.[1] Denk, T., Mottola, S., Tosi, F., Bottke, W.F., Hamilton, D.P. (2018): The Irregular Satellites of Saturn. In

  4. Jovian-like aurorae on Saturn.

    Science.gov (United States)

    Stallard, Tom; Miller, Steve; Melin, Henrik; Lystrup, Makenzie; Cowley, Stan W H; Bunce, Emma J; Achilleos, Nicholas; Dougherty, Michele

    2008-06-19

    Planetary aurorae are formed by energetic charged particles streaming along the planet's magnetic field lines into the upper atmosphere from the surrounding space environment. Earth's main auroral oval is formed through interactions with the solar wind, whereas that at Jupiter is formed through interactions with plasma from the moon Io inside its magnetic field (although other processes form aurorae at both planets). At Saturn, only the main auroral oval has previously been observed and there remains much debate over its origin. Here we report the discovery of a secondary oval at Saturn that is approximately 25 per cent as bright as the main oval, and we show this to be caused by interaction with the middle magnetosphere around the planet. This is a weak equivalent of Jupiter's main oval, its relative dimness being due to the lack of as large a source of ions as Jupiter's volcanic moon Io. This result suggests that differences seen in the auroral emissions from Saturn and Jupiter are due to scaling differences in the conditions at each of these two planets, whereas the underlying formation processes are the same.

  5. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Gaudi, B; Bennett, D; Udalski, A; Gould, A; Christie, G; Maoz, D; Dong, S; McCormick, J; Szymanski, M; Tristram, P; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; DePoy, D; Han, C; Kaspi, S; Lee, C; Mallia, F; Natusch, T; Pogge, R; Park, B; Abe, F; Bond, I; Botzler, C; Fukui, A; Hearnshaw, J; Itow, Y; Kamiya, K; Korpela, A; Kilmartin, P; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N; Sako, T; Saito, T; Sato, S; Skuljan, L; Sullivan, D; Sumi, T; Sweatman, W; Yock, P; Albrow, M; Beaulieu, J; Burgdorf, M; Cook, K; Coutures, C; Dominik, M; Dieters, S; Fouque, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2007-11-08

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the first detection of a multiple-planet system with microlensing. We identify two planets with masses of {approx} 0.71 and {approx} 0.27 times the mass of Jupiter and orbital separations of {approx} 2.3 and {approx} 4.6 astronomical units orbiting a primary of mass {approx} 0.50 solar masses. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only 6 confirmed microlensing planet detections suggests that solar system analogs may be common.

  6. First determination of the tropospheric CO abundance in Saturn

    Science.gov (United States)

    Fouchet, Thierry; Lellouch, Emmanuel; Cavalié, Thibault; Bézard, Bruno

    2017-10-01

    In Giant Planets, CO has two potential origins: i) an external source in form of cometary impacts, infalling ring/satellite dust or/and interplanetary particles; ii) an internal origin that involves convective transport from the deep, dense, hot atmosphere where the thermodynamic equilibrium CO abundance is relatively large.In Saturn, submilimeter stratospheric CO emissions have been detected (Cavalié et al. A&A, 510, A88, 2010; Cavalié et al. Icarus, 203, 531, 2009), suggesting a cometary impact 200 years ago. In contrast, no observation was in position to confirm or rule out the presence of CO in Saturn's troposphere (Noll et al. Icarus, 89, 168, 1990).Here, we present CRIRES/ELT 5-μm observations of Saturn that definitely confirm the presence of CO in Saturn's troposphere. We will present the derived CO abundance and its implication for Saturn's tropospheric transport rate and water deep abundance.

  7. Saturn PRobe Interior and aTmosphere Explorer (SPRITE)

    Science.gov (United States)

    Simon, Amy; Banfield, D.; Atkinson, D.; Atreya, S.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L.; Guillot, T.; Hofstadter, M.; hide

    2016-01-01

    The Vision and Voyages Planetary Decadal Survey identified a Saturn Probe mission as one of the high priority New Frontiers mission targets[1]. Many aspects of the Saturn system will not have been fully investigated at the end of the Cassini mission, because of limitations in its implementation and science instrumentation. Fundamental measurements of the interior structure and noble gas abundances of Saturn are needed to better constrain models of Solar System formation, as well as to provide an improved context for exoplanet systems. The SPRITE mission will fulfill the scientific goals of the Decadal Survey Saturn probe mission. It will also provide ground truth for quantities constrained by Cassini and conduct new investigations that improve our understanding of Saturn's interior structure and composition, and by proxy, those of extrasolar giant planets.

  8. The Saturn System Through the Eyes of Cassini

    Science.gov (United States)

    Green, James

    2017-01-01

    More than 400 years ago, Galileo Galilei trained his homemade telescope on the night sky and observed that Saturn had two objects closely related to the planet extending on either side. At the time, in 1610, Galileo declared them to be moons. A few decades later, Saturn moon science accelerated at a dizzying pace. Christiaan Huygens first observed Saturn's largest moon Titan in 1655 and was the first to describe the extended moon-like features at Saturn as a disk of material sounding the planet. From 1671 to 1674, Giovanni Cassini discovered the moons lapetus, Rhea, Dione and Tethys. In 1675, Cassini discovered the gap in Saturn's rings that we now know as the Cassini Division. In the space age, before the Cassini-Huygens mission, we had only hints of the discoveries awaiting us at Saturn. Pioneer 11 and Voyagers 1 and 2 conducted flybys decades ago. But these quick encounters didn't allow time for more extensive research. NASA and the European Space Agency created a partnership to orbit a Saturn orbiter (Cassini) and a lander (Huygens) on Titan. Like its namesakes, the Cassini-Huygens mission not only discovered previously unknown moons, but it also helped us understand the science behind their formation, their interactions with the rings, and how truly diverse they are. The Cassini-Huygens mission revolutionized what we know about the Saturn system. The rings of Saturn, the moons, and the planet itself offer irresistible and inexhaustible subjects for intense study, and Cassini-Huygens did not disappoint. The Saturnian system proved to be a rich ground for science exploration and discoveries, and Cassini has been nothing short of a discovery machine. At the time Cassini plunged into Saturn at the end of its mission, it had observed the planet for a little less than half of a Saturn year. But it also orbited the gas giant 293 times, forever changing our understanding of the Saturn system and yielding tremendous insight for understanding the entire Solar System.

  9. A dynamic, rotating ring current around Saturn.

    Science.gov (United States)

    Krimigis, S M; Sergis, N; Mitchell, D G; Hamilton, D C; Krupp, N

    2007-12-13

    The concept of an electrical current encircling the Earth at high altitudes was first proposed in 1917 to explain the depression of the horizontal component of the Earth's magnetic field during geomagnetic storms. In situ measurements of the extent and composition of this current were made some 50 years later and an image was obtained in 2001 (ref. 6). Ring currents of a different nature were observed at Jupiter and their presence inferred at Saturn. Here we report images of the ring current at Saturn, together with a day-night pressure asymmetry and tilt of the planet's plasma sheet, based on measurements using the magnetospheric imaging instrument (MIMI) on board Cassini. The ring current can be highly variable with strong longitudinal asymmetries that corotate nearly rigidly with the planet. This contrasts with the Earth's ring current, where there is no rotational modulation and initial asymmetries are organized by local time effects.

  10. Outer planet probe navigation. [considering Pioneer space missions

    Science.gov (United States)

    Friedman, L.

    1974-01-01

    A series of navigation studies in conjunction with outer planet Pioneer missions are reformed to determine navigation requirements and measurement systems in order to target probes. Some particular cases are established where optical navigation is important and some cases where radio alone navigation is suffucient. Considered are a direct Saturn mission, a Saturn Uranus mission, a Jupiter Uranus mission, and a Titan probe mission.

  11. Formation of Outer Planets: Overview

    Science.gov (United States)

    Lissauer, Jack

    2003-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets is presented. The most detailed models are based upon observation of our own Solar System and of young stars and their environments. Terrestrial planets are believe to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk disspates. The primary questions regarding the core instability model is whether planets with small cores can accrete gaseous enveloples within the lifetimes of gaseous protoplanetary disks. The main alternative giant planet formation model is the disk instability model, in which gaseous planets form directly via gravitational instabilities within protoplanetary disks. Formation of giant planets via gas instability has never been demonstrated for realistic disk conditions. Moreover, this model has difficulty explaining the supersolar abundances of heavy elements in Jupiter and Saturn, and it does not explain the orgin of planets like Uranus and Neptune.

  12. Saturn Ring Seismology: Interpreting the Seismogram

    Science.gov (United States)

    Marley, Mark Scott

    2013-01-01

    Marley (1990) and Marley and Porco (1993) proposed that f-mode oscillations of Saturn could excite resonant density and bending waves in the inner C-ring. They hypothesized that certain wave features discovered by Rosen et al. (1991) that were not associated with known satellite resonances could be the result of such resonant interactions with the planetary oscillation modes. They also predicted that if this was the case the waves would be found to be density (and not bending) waves by Cassini and predicted the azimuthal wave number of the C-ring waves m. Employing Cassini VIMS stellar occultation data Hedman and Nicholson (2013) have now confirmed the predictions and demonstrated that at least some of the C-ring features identified by Rosen et al. are indeed likely caused by resonant oscillation modes of Saturn. Given this context we have taken a fresh look at the Saturn ring seismology. First we propose that an apparent bending wave denoted 'j' by Rosen may be a second order outer vertical resonance with the l=3, m=2 f-mode of Saturn and discuss the locations of other plausible second order resonances in the rings. Since only a handful of ring resonances have been identified, measuring even one or two additional planetary mode frequencies would substantially assist the process of inverting mode frequencies to constrain Saturn interior's structure. Using the available mode frequencies, modern inversion technique employed in stellar seismology, and a recent set of Saturn interior models we provide an initial estimation of what available mode frequencies are telling us about the interior structure of the planet. Since the f-modes are confined relatively closely to the planetary surface, most of the observed modes probe only the outermost layers of the planet that are already comparatively well understood. However the l = 2 mode does probe relatively deeply into the planet and we will discuss the potential the measurement of this mode frequency has for placing new

  13. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lykawka, Patryk Sofia [Astronomy Group, Faculty of Social and Natural Sciences, Kinki University, Shinkamikosaka 228-3, Higashiosaka-shi, Osaka 577-0813 (Japan); Ito, Takashi, E-mail: patryksan@gmail.com [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2013-08-10

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a {approx} 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  14. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    Science.gov (United States)

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  15. Armenian Names of the Planets

    Science.gov (United States)

    Harutyunian, Haik A.

    2007-08-01

    Striking similarities between the Armenian names of visible to the naked eye planets and their ancient Greek names used before 6 - 5 centuries BC are presented. Mercury, for instance, was called Stilbon in Greece which means “the Gleaming” and coincides with Armenian Paylatsou. One of the names of Venus was Phosphoros and in Armenia it is called Lusaber - both of these terms meaning the “Bringer of Light”. Ancient Greeks named the fourth planet Pyroeis meaning “fiery”. The Armenian name of this planet Hrat consists of the word “hur” meaning fire and a suffix “at”. Jupiter's and Saturn's ancient names are considered as well. Moreover, the term planet has its Armenian version being in the use more than 2500 years.

  16. Intense Harmonic Emissions Observed in Saturn's Ionosphere

    Science.gov (United States)

    Sulaiman, A. H.; Kurth, W. S.; Persoon, A. M.; Menietti, J. D.; Farrell, W. M.; Ye, S.-Y.; Hospodarsky, G. B.; Gurnett, D. A.; Hadid, L. Z.

    2017-12-01

    The Cassini spacecraft's first Grand Finale orbit was carried out in April 2017. This set of 22 orbits had an inclination of 63° with a periapsis grazing Saturn's ionosphere, thus providing unprecedented coverage and proximity to the planet. Cassini's Radio and Plasma Wave Science instrument repeatedly detected intense electrostatic waves and their harmonics near closest approach in the dayside equatorial topside ionosphere. The fundamental modes were found to both scale and trend best with the H+ plasma or lower hybrid frequencies, depending on the plasma composition considered. The fine-structured harmonics are unlike previous observations, which scale with cyclotron frequencies. We explore their generation mechanism and show strong evidence of their association with whistler mode waves, consistent with theory. The possibility of Cassini's presence in the ionosphere influencing the resonance and harmonics is discussed. Given their link to the lower hybrid frequency, these emissions may offer clues to constraining Saturn's ionospheric properties.

  17. Saturn chorus latitudinal variations

    National Research Council Canada - National Science Library

    Menietti, J. D; Hospodarsky, G. B; Shprits, Y. Y; Gurnett, D. A

    2014-01-01

    The variation of propagation properties of whistler mode chorus as a function of latitude is not well known at Saturn but is important for the calculation of pitch angle diffusion and nonlinear growth of chorus...

  18. Trojan twin planets

    Science.gov (United States)

    Dvorak, R.; Loibnegger, B.; Schwarz, R.

    2017-03-01

    The Trojan asteroids are moving in the vicinity of the stable Lagrange points L_4 and L_5 of the gas giants Jupiter, Uranus and Neptune. Their motion can be described and understood with the aid of the restricted three-body problem. As an extension of this problem we investigate how stable motion close to the Lagrange points of two massive bodies can exist. This configuration can be described as the Trojan Twin Problem when we regard the two additional bodies as having a mass significantly smaller than the the two primary bodies: a star in the center (m_1) and an additional Jupiter-like mass (m_2). Using this 4-body problem we have undertaken numerical investigations concerning possible stable "twin orbits". However, these two bodies (m_3 and m_4) in Trojan-like orbits may have quite different masses. We decided to choose 6 different scenaria for this problem: as primary body, m2, we have taken a Jupiter-like planet, a Saturn-like one, and a super-Earth with 10 Earthmasses (m_{Earth}) respectively. As quasi twin planets, we have used different mass ratios namely objects for m3 and m4 from 10m_{Earth} to Moon like ones. We found different stable configurations depending on the involved masses and the initial distances between the twins (always close to the Lagrange point). Although the formation of such a configuration seems to be not very probable we should not exclude that it exists regarding the huge number of planets even in our own galaxy. This model is of special interest when the most massive planet (m_2) is moving on an orbit in the habitable zone around a main sequence star. One can use our results of stable orbits of Trojan Twin Planets (or asteroids) for extrasolar systems having as second primary a Jupiter-like, a Saturn-like or a super-Earth like planet around a star similar to our Sun.

  19. The fractal theory of the Saturn Ring

    OpenAIRE

    Zelikin, Mikhail

    2015-01-01

    The true reason for partition of the Saturn ring as well as rings of other planets into great many of sub-rings is found. This reason is the theorem of Zelikin-Lokutsievskiy-Hildebrand about fractal structure of solutions to generic piece-wise smooth Hamiltonian systems. The instability of two-dimensional model of rings with continues surface density of particles distribution is proved both for Newtonian and for Boltzmann equations. We do not claim that we have solved the problem of stability...

  20. Saturn's Internal Structure: A View through its Natural Seismograph

    Science.gov (United States)

    Mankovich, Christopher; Marley, Mark S.; Fortney, Jonathan J.; Movshovitz, Naor

    2017-10-01

    Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to resolve long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit reasonably well with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. In particular, four observed bending waves (Nicholson et al., DPS 2016) align with outer vertical resonances for non-sectoral (m≠l) Saturn f-modes of relatively high angular degree, and we present preliminary identifications of these. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints and discuss what role a realistic helium distribution in the planet might play.

  1. Saturn's Rings are Fractal

    OpenAIRE

    Li, Jun; Ostoja-Starzewski, Martin

    2012-01-01

    Over the past few decades, various conjectures were advanced that Saturn's rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. We focus on the images sent by the Cassini spacecraft mission: slide #42 "Mapping Clumps in Saturn's Rings" and slide #54 "Scattered Sunshine". Using the box-counting method, we determine the fractal dimension of rings seen here (and in several other images from the same source) to be consistently about 1.6~1.7. This...

  2. Cloud forms on Saturn

    Science.gov (United States)

    Burke, J. J.; Gehrels, T.; Strickland, R. N.

    1980-01-01

    The imaging photopolarimeter on Pioneer Saturn provided spin-scan images of Saturn's cloudtops. Only subtle departures from a uniform brightness distribution were apparent, except in the polar regions. At other latitudes the images show only a few features; they primarily support the conclusion that the visible atmosphere is a deep haze. Belts and zones are seen, and some detail in a zone near + or - 60 deg latitude. The North Equatorial Belt consists of two dark belts separated by a brighter zone exhibiting longitudinal structure.

  3. Cassini observations of Saturn's southern polar cusp

    Science.gov (United States)

    Arridge, C. S.; Jasinski, J. M.; Achilleos, N.; Bogdanova, Y. V.; Bunce, E. J.; Cowley, S. W. H.; Fazakerley, A. N.; Khurana, K. K.; Lamy, L.; Leisner, J. S.; Roussos, E.; Russell, C. T.; Zarka, P.; Coates, A. J.; Dougherty, M. K.; Jones, G. H.; Krimigis, S. M.; Krupp, N.

    2016-04-01

    The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth has enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptune's cusp in 1989, but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly study the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturn's southern polar magnetosphere. Our main findings are that (i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, (ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and (iii) double cusp morphologies are consistent with the position of the cusp oscillating in phase with Saturn's global magnetospheric periodicities.

  4. Kepler-16: A Transiting Circumbinary Planet

    OpenAIRE

    Doyle, Laurance R.; Carter, Joshua A.; Fabrycky, Daniel C.; Slawson, Robert W.; Howell, Steve B.; Winn, Joshua N.; Orosz, Jerome A.; Prsa, Andrej; Welsh, William F.; Quinn, Samuel N.; Latham, David; Torres, Guillermo; Buchhave, Lars A.; Marcy, Geoffrey W.; Fortney, Jonathan J.

    2011-01-01

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size, and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20% and 69% as massive as the sun, and have an eccentric 41-...

  5. Planck intermediate results - LII. Planet flux densities

    DEFF Research Database (Denmark)

    Akrami, Y.; Ashdown, M.; Aumont, J.

    2017-01-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates...... of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic...... errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn’s rings to the planet’s total flux density suggests a best...

  6. In Situ Probe Science at Saturn

    Science.gov (United States)

    Atkinson, D.H.; Lunine, J.I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.; hide

    2014-01-01

    A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud

  7. Orbits of Saturn's Inner Moons and Other Observations Connected with the 1995-1996 Saturnian Ring Plane Crossing

    Science.gov (United States)

    1997-01-01

    Keck infrared observations of Saturn's E and G rings during Earth's 1995 Ring Plane Crossing are reported along with the NASA's Mauna Kea IR Telescope Facility (IRTF) observations of Saturn's faint outer rings and small moons in the Near-IR Astronomy Program. Observations of the rings and satellites with the 5-m Hale telescope at Palomar Observatory, following the solar crossing of Saturn's ring plane on 19 Nov. 1995, are also addressed. Images of Saturn at radio wavelengths, the data containing information on the structure and composition of the rings as well as the planet's deep atmosphere between the 1- and 10-bar pressure levels, are discussed.

  8. "Saturn" remains in orbit

    Directory of Open Access Journals (Sweden)

    Glushechenko E. N.

    2013-05-01

    Full Text Available The article is dedicated to scientific and production enterprise "Saturn" — since its foundation up to the present day. The authors describe the determining stages of its development and its team’s scientific and technological achievements over the 45-year history of the enterprise.

  9. Rings around Saturn.

    Science.gov (United States)

    Preskill, Hallie; And Others

    1994-01-01

    Describes difficulties of Saint Paul's Saturn School of Tomorrow from planner, implementor, and evaluator viewpoints. The plan for a citywide, ungraded, downtown middle school called for an extended school year and the latest technology in a completely redesigned building with 4 teachers, 4 interns, and 162 students. Teachers were overworked, test…

  10. The Voyager encounters with Saturn (Dryden Lectureship in Research)

    Science.gov (United States)

    Stone, E. C.

    1983-01-01

    In 1972, the Voyager Program was undertaken by NASA as a major step in the exploration of the outer solar system. Recently the objectives of this program have been extended to include an investigation of Uranus and possibly Neptune. In connection with the present investigation, a brief description of the Voyager spacecraft is presented and an overview of the scientific results from the Saturn encounters is provided. Two essentially identical Voyager spacecraft were launched in 1977 toward encounters with the Jovian and Saturnian planetary systems. The Voyager 1 trajectory at Saturn was chosen to provide a close encounter with Titan, a planet-sized satellite with an atmosphere, and to provide an optimum geometry for dual-frequency radio occultation studies of Saturn's rings. The Voyager 2 trajectory provided improved viewing of the rings.

  11. How Cassini can constrain tidal dissipation in Saturn

    Science.gov (United States)

    Luan, Jing; Fuller, Jim; Quataert, Eliot

    2018-02-01

    Tidal dissipation inside giant planets is important for the orbital evolution of their natural satellites. It is conventionally treated by parametrized equilibrium tidal theory, in which the tidal torque declines rapidly with distance, and orbital expansion was faster in the past. However, some Saturnian satellites are currently migrating outward faster than predicted by equilibrium tidal theory. Resonance locking between satellites and internal oscillations of Saturn naturally matches the observed migration rates. Here, we show that the resonance locking theory predicts dynamical tidal perturbations to Saturn's gravitational field in addition to those produced by equilibrium tidal bulges. We show that these perturbations can likely be detected during Cassini's proximal orbits if migration of satellites results from resonant gravity modes, but will likely be undetectable if migration results from inertial wave attractors or dissipation of the equilibrium tide. Additionally, we show that the detection of gravity modes would place constraints on the size of the hypothetical stably stratified region in Saturn.

  12. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    Science.gov (United States)

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  13. Cassini at Saturn Proximal Orbits - Attitude Control Challenges

    Science.gov (United States)

    Burk, Thomas A.

    2013-01-01

    The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.

  14. Extracting the Radial Profile of Saturn's Phoebe Ring

    Science.gov (United States)

    Tamayo, Daniel; Markham, Stephen R.; Hedman, Matthew M.; Burns, Joseph A.

    2014-11-01

    Saturn is famous for its dramatic main rings. Less well known is that two orders of magnitude further away from the planet, Saturn also hosts the solar system’s largest known circumplanetary ring. This Phoebe ring is likely sourced by collisions with Saturn’s largest irregular satellite Phoebe, and presents an important opportunity to learn more generally about the collisional evolution of this distant population of irregular satellites. Debris from such collisions is likely ultimately responsible for the dramatic two-faced coloration of the odd moon Iapetus.We present results from recent observations with the Cassini spacecraft (in orbit about Saturn) in scattered optical light. Using a novel observational technique that exploits the moving shadow cast by Saturn, we have been able to clearly extract the exceedingly faint Phoebe ring signal (line-of-sight optical depth ˜ 10e-9, surface brightness ˜ 27 mag/arcsec^2). Additionally, we present reconstructed radial profiles over the broad range of distances from Saturn spanned by our observations.

  15. The Atmospheric Dynamics of Jupiter, Saturn, and Titan

    Science.gov (United States)

    Flasar, F. M.

    2009-01-01

    Comparative studies of Jupiter and Saturn often emphasize their similarities, but recent observations have highlighted important differences. The stratospheres of both planets exhibit an equatorial oscillation reminiscent of that in Earth's middle atmosphere. Jupiter's oscillation has a 4-5 year period, not linked to its season, and it has been modeled as an analog to the terrestrial quasi-biennial oscillation, driven by the stresses associated with vertically propagating waves. Saturn's equatorial oscillation is nearly semiannual, but wave activity may still be a driver. Jupiter's internal rotation rate is inferred from its steady modulated radio emission. Saturn's internal rotation is more enigmatic. It has been inferred from the modulation of the body's kilometric radio emission, but this period has varied by 1% over the last 25 years. Saturn's equatorial winds are also puzzling, as those inferred from cloud tracking by Cassini and more recent HST observations are weaker than those from Voyager. Whether this is attributable to a difference in altitudes of the tracked clouds in winds with vertical shear or a real temporal change in the winds is not known. Both winter and summer poles of Saturn exhibit very compact circumpolar vortices with warm cores, indicating subsidence. Titan's middle atmosphere is characterized by global cyclostrophic winds, particularly the strong circumpolar vortex in the winter hemisphere. In many ways, the spatial distribution of temperature, gaseous constituents, and condensates is reminiscent of conditions in terrestrial winter vortices, albeit with different chemistry. The meridional contrast in Titan's tropospheric temperatures is small, only a few kelvins.

  16. Impact of saturn ring particles on pioneer 11.

    Science.gov (United States)

    Humes, D H; O'neal, R L; Kinard, W H; Alvarez, J M

    1980-01-25

    The particle flux measured by the meteoroid detectors on Pioneer 11 increased greatly while the spacecraft was near the rings of Saturn. The data suggest that the particles were associated with the rings and were not interplanetary meteoroids concentrated near the planet by gravitational focusing. The data also suggest that the E ring may be 1800 kilometers thick with an optical thickness greater than 10(-8).

  17. Sir John Herschel and the Stability of Saturn's Ring

    CERN Document Server

    Whiting, Alan B

    2011-01-01

    In a pioneering exposition of mathematical astronomy for the public, Sir John Herschel attributed the stability of the ring of Saturn to its being eccentric with respect to the planet and lopsided (asymmetric in mass) by a minute amount. Tracing the sources and effects of this error reveals several lessons of general relevance to science: on the formulation and interpretation of calculations, the use of cutting-edge observations and the combining of observations with theory. I emphasise the phenomenon of reinforcing errors.

  18. Magic Planet

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2009-01-01

    Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november......Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november...

  19. Saturn's Spectacular Ring System

    Science.gov (United States)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  20. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    Science.gov (United States)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  1. Saturn's largest ring.

    Science.gov (United States)

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  2. Using Saturn's Rings as a Diagnostic of its Internal Dierential Rotation

    Science.gov (United States)

    El Moutamid, Maryame; Hedman, Matthew M.; Nicholson, Philip D.

    2017-10-01

    This is the end; Cassini crashes into Saturn’s atmosphere, providing unique data and results thanks to the last orbits. Cassini have spent 13 years in orbit around Saturn, during this period, scientists from the world have collected data from many instruments and have learned a great deal about the planet itself, its rings and satellites, and the connection between them. I will present some of the results some dynamical structures on the main rings of Saturn and their dynamical connection with the interior of the planet.

  3. Numerical simulations for terrestrial planets formation

    Directory of Open Access Journals (Sweden)

    Ji J.

    2011-07-01

    Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.

  4. Cassini Can Constrain Tidal Dissipation in Saturn

    Science.gov (United States)

    Luan, Jing; Fuller, Jim; Quataert, Eliot

    2017-10-01

    Tidal dissipation inside giant planets is important for the orbital evolution of their natural satellites. It is conventionally treated by parameterized equilibrium tidal the- ory, in which the tidal torque declines rapidly with distance, and orbital expansion was faster in the past. However, Lainey et al. (2017) find that some Saturnian satellites are currently migrating outward faster than predicted by equilibrium tidal theory. Reso- nance locking between satellites and internal oscillations of Saturn, proposed by Fuller et al. (2016), naturally matches the observed migration rates. Here, we show that the resonance locking theory predicts dynamical tidal perturbations to Saturn’s gravita- tional field in addition to those produced by equilibrium tidal bulges. We show that these perturbations can likely be detected during Cassini’s proximal orbits if migra- tion of satellites results from resonant gravity modes, but will likely be undetectable if migration results from inertial wave attractors or dissipation of the equilibrium tide. Additionally, we show that the detection of gravity modes would place constraints on the size of the hypothetical stably stratified region in Saturn.

  5. About separation and collision of the Saturn rings particles

    Science.gov (United States)

    Tchernyi (Cherny), Vladimir

    There is no yet clear picture of the origin of Saturn's rings. We follow importance of electromag-netic idea that rings could originate and form from the frozen particles of the protoplanetary cloud after the appearance of the magnetic field of Saturn due to electromagnetic interaction of icy particles with the planetary magnetic field. The Sun heats the rings weakly, temperature in the area of the rings is about 70-110 K. It makes possible the existence of the superconduct-ing substance in the space behind the belt of asteroids. Theoretical electromagnetic modeling demonstrates that superconductivity can be the physical reason of the origin of the sombrero of rings of Saturn from the frozen particles of the protoplanetary cloud. The sombrero appears during some time after magnetic field of planet appears. Finally, all the Kepler's orbits of the superconducting particles are localizing as a sombrero disk of rings in the magnetic equator plane, where the energy of particles in the magnetic field of Saturn has a minimum value. Recently space probe "Cassini" discovered collisions and separation of the Saturn's rings parti-cles. It is also important fact that from electromagnetic modeling follows possibility of collide of the rings particles on the vertical direction within the width of the sombrero. It could be a reason for the formation of the particles of the bigger size due to coalescence, until gravity and centrifugal force will destroy them to the particles of smaller size again. From the solution of the electromagnetic problem we will demonstrate how rings of Saturn could be originated from the iced particles located within the protoplanetary cloud. Before appearance of the magnetic field of Saturn all particles within the protoplanetary cloud are located on such an orbit as Kepler's, where there is a balance of the force of gravity and the centrifugal force. With the occurrence of the magnetic field of the Saturn the superconducting particles of the protoplane

  6. Cassini Attitude and Articulation Control Subsystem Fault Protection Challenges During Saturn Proximal Orbits

    Science.gov (United States)

    Bates, David M.

    2015-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. As part of the final extended mission, Cassini will begin an aggressive and exciting campaign of high inclination low altitude flybys within the inner most rings of Saturn, skimming Saturn's outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, presents unique fault protection related challenges, the details of which are discussed in this paper.

  7. Skirting Saturn's Rings and Skimming Its Cloud Tops: Planning Cassini's End of Mission

    Science.gov (United States)

    Manor-Chapman, Emily; Magee, Kari; Brooks, Shawn; Edgington, Scott; Heventhal, William; Sturm, Erick

    2014-01-01

    In October 2010, the Cassini spacecraft embarked on the seven-year Solstice Mission. The mission will culminate with a spectacular series of orbits that bring Cassini between Saturn's innermost ring, the D ring, and the cloud tops of the planet. The spacecraft will make its closest passages ever to the planet allowing for unprecedented science to be collected on Saturn and its rings. These final orbits will expose the spacecraft to new environments, which presents a number of challenges to planning the final mission phase. While these challenges will require adaptations to planning processes and operations, they are not insurmountable. This paper describes the challenges identified and the steps taken to mitigate them to enable collection of unique Saturn system science.

  8. The Concentric Maclaurin Spheroid method with tides and a rotational enhancement of Saturn's tidal response

    Science.gov (United States)

    Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard

    2017-01-01

    We extend to three dimensions the Concentric Maclaurin Spheroid method for obtaining the self-consistent shape and gravitational field of a rotating liquid planet, to include a tidal potential from a satellite. We exhibit, for the first time, an important effect of the planetary rotation rate on tidal response of gas giants, whose shape is dominated by the centrifugal potential from rapid rotation. Simulations of planets with fast rotation rates like those of Jupiter and Saturn, exhibit significant changes in calculated tidal love numbers knm when compared with non-rotating bodies. A test model of Saturn fitted to observed zonal gravitational multipole harmonics yields k2 = 0.413 , consistent with a recent observational determination from Cassini astrometry data (Lainey et al., 2016.). The calculated love number is robust under reasonable assumptions of interior rotation rate, satellite parameters, and details of Saturn's interior structure. The method is benchmarked against several published test cases.

  9. Planck intermediate results. LII. Planet flux densities

    Science.gov (United States)

    Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Natoli, P.; Oxborrow, C. A.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wehus, I. K.; Zacchei, A.

    2017-11-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of βring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm

  10. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    Science.gov (United States)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  11. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  12. Saturn: atmosphere, ionosphere, and magnetosphere.

    Science.gov (United States)

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?

  13. Polarization of Saturn's moon Iapetus

    Science.gov (United States)

    Ejeta, C. T.; Boehnhardt, H.; Bagnulo, S.; Muinonen, K.; Kolokolova, L.; Tozzi, G.

    2012-12-01

    Iapetus' hemispheres, retrieved from this model, differ by a factor of five, i.e., 0.42 for the bright hemisphere, and 0.08 for the dark hemisphere. Apart from linear spectro-polarimetric measurements, we have also performed circular polarization measurements of Iapetus' two hemispheres at one phase angle for each, with the aim to detect chiral signatures of an optically active (organic) material on Iapetus [3]. Here we present our polarimetric observations accompanied by rigorous theoretical analysis for the physical interpretation of our measurements. References: [1] Mackowski, D., Mishchenko, M., 2011, A multiple sphere T-matrix Fortran code for use on parallel computer clusters, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 2182. [2] Muinonen, K., Tyynelä, J., Zubko, E., Videen, G., 2010, Scattering parameterization for interpreting asteroid polarimetric and photometric phase effects, Earth Planets Space, 62, 47. [3] Ejeta, C., Boehnhardt, H., Bagnulo, S., Tozzi, G. P., 2012, Spectro-polarimetry of the bright side of Saturn's moon Iapetus, A&A, 537, A23.

  14. Pluto: Planet or "Dwarf Planet"?

    Science.gov (United States)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  15. Saturn Ring Observer

    Science.gov (United States)

    Spilker, T. R.

    2001-01-01

    Answering fundamental questions about ring particle characteristics, and individual and group behavior, appears to require close-proximity (a few km) observations. Saturn's magnificent example of a ring system offers a full range of particle sizes, densities, and behaviors for study, so it is a natural choice for such detailed investigation. Missions implementing these observations require post-approach Delta(V) of approximately 10 km/s or more, so past mission concepts called upon Nuclear Electric Propulsion. The concept described here reduces the propulsive Delta(V) requirement to as little as 3.5 km/s, difficult but not impossible for high-performance chemical propulsion systems. Additional information is contained in the original extended abstract.

  16. Saturn's outer satellite - Phoebe

    Science.gov (United States)

    1999-01-01

    Voyager 2 took these images of Saturn's outer satellite Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles)away. This pair shows two different hemispheres of the satellite. The left image shows a bright mountain on the upper right edge reflecting the light of the setting sun. This mountain is possibly the central peak of a large impact crater taking up most of the upper right quadrant of Phoebe in this view. The right images shows a hemisphere with an intrinsically bright spot in the top portion of the image as well as the ridges appearing bright in the sunset light of the lower right. These images were processed by the Multimission Image Processing Laboratory of the Jet Propulsion Laboratory. The Jet Propulsion Laboratory manages the Voyager Project for NASA's Office of Space Science and Applications.

  17. Mass of Saturn's A ring

    Science.gov (United States)

    Horn, L. J.; Russell, C. T.

    1993-01-01

    The mass of Saturn's A ring is reestimated using the behavior of spiral density waves embedded in the ring. The Voyager photopolarimeter (PPS) observed the star delta-Scorpii as it was occulted by Saturn's rings during the Voyager 2 flyby of Saturn in 1981 producing a radial profile of the rings. We examined forty spiral density waves in the Voyager PPS data of the A ring including 10 weaker waves that have not been previously analyzed by means of an autoregressive power spectral technique called Burg. The strengths of this new method for ring studies are that weaker, less extended waves are easily detected and characterized. This method is also the first one which does not require precise knowledge of the resonance location and phase of the wave in order to calculate the surface mass density. Uncertainties of up to 3 km are present in the currently available radial scales for Saturn's rings.

  18. Cassini at Saturn Huygens results

    CERN Document Server

    Harland, David M

    2007-01-01

    "Cassini At Saturn - Huygens Results" will bring the story of the Cassini-Huygens mission and their joint exploration of the Saturnian system right up to date. Cassini is due to enter orbit around Saturn on the 1 July 2004 and the author will have 8 months of scientific data available for review, including the most spectacular images of Saturn, its rings and satellites ever obtained by a space mission. As the Cassini spacecraft approached its destination in spring 2004, the quality of the images already being returned by the spacecraft clearly demonstrate the spectacular nature of the close-range views that will be obtained. The book will contain a 16-page colour section, comprising a carefully chosen selection of the most stunning images to be released during the spacecraft's initial period of operation. The Huygens craft will be released by Cassini in December 2004 and is due to parachute through the clouds of Saturn's largest moon, Titan, in January 2005.

  19. Black Saturn with dipole ring

    OpenAIRE

    Yazadjiev, Stoytcho

    2007-01-01

    We present a new stationary, asymptotically flat solution of 5D Einstein-Maxwell gravity describing a Saturn-like black object: a rotating black hole surrounded by a rotating dipole black ring. The solution is generated by combining the vacuum black Saturn solution and the vacuum black ring solution with appropriately chosen parameters. Some basic properties of the solution are analyzed and the basic quantities are calculated.

  20. MeV proton flux predictions near Saturn's D ring.

    Science.gov (United States)

    Kollmann, P; Roussos, E; Kotova, A; Cooper, J F; Mitchell, D G; Krupp, N; Paranicas, C

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  1. A New Family of Planets ? "Ocean Planets"

    OpenAIRE

    Leger, A.; Selsis, F.; Sotin, C.; Guillot, T.; Despois, D.; Lammer, H.; Ollivier, M.; Brachet, F.; Labeque, A.; Valette, C.

    2003-01-01

    A new family of planets is considered which is between rochy terrestrial planets and gaseous giant ones: "Ocean-Planets". We present the possible formation, composition and internal models of these putative planets, including that of their ocean, as well as their possible Exobiology interest. These planets should be detectable by planet detection missions such as Eddington and Kepler, and possibly COROT (lauch scheduled in 2006). They would be ideal targets for spectroscopic missions such as ...

  2. The Saturn PRobe Interior and aTmosphere Explorer (SPRITE) Mission Concept

    Science.gov (United States)

    Atkinson, David H.; Simon, Amy; Banfield, Don

    2017-04-01

    The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission would measure the abundance of helium and the other noble gases, elemental and isotopic abundances, the clouds, dynamics, and processes within Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE would provide a significantly improved context for understanding the results from the Galileo Jupiter probe, and the formation and evolution of the gas giant planets, resulting in a paradigm shift in our understanding of the formation, evolution, and ultimately the present day structure of the solar system. The proposed SPRITE concept carries an instrument payload to measure Saturn's atmospheric structure, dynamics, composition, chemistry, and clouds to at least 10 bars. A Quadrupole Mass Spectrometer measures noble gases and noble gas isotopes to accuracies that exceed the Galileo probe measurements at Jupiter and allows for discrimination between competing theories of giant planet formation, evolution, and possible migration. Of particular importance are measurements of helium, key to understanding Saturn's thermal evolution. A Tunable Laser Spectrometer measures molecular abundances and isotope ratios to determine the chemical structure of Saturn's atmosphere, and disequilibrium species such as PH3 and CO which can be used to predict Saturn's deep water abundance. An Atmospheric Structure Instrument provides the pressure/temperature profile of Saturn's atmosphere to determine the altitude profile of static stability, and when combined with cloud measurements from the SPRITE Nephelometer, would elucidate processes that determine the location and structure of Saturn's multiple cloud layers. Coupled with the measurement of atmospheric vertical velocities from the Atmospheric Structure Instrument, a Doppler Wind Experiment provides a measure of the 3-dimensional dynamics of the Saturn atmosphere, including the profile of zonal winds with depth and vertical

  3. The Source of Planetary Period Oscillations in Saturn's Magnetosphere

    Science.gov (United States)

    Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.

    2017-04-01

    In this presentation, we resolve a three-decades old mystery of how Saturn is able to modulate its kilometric wave radiation and many field and plasma parameters at the planetary rotation period even though its magnetic field is extremely axisymmetric. Such waves emanating from the auroral regions of planets lacking solid surfaces have been used as clocks to measure the lengths of their days, because asymmetric internal magnetic fields spin-modulate wave amplitudes. A review by Carbary and Mitchell (2013, Periodicities in Saturn's magnetosphere, Reviews of Geophysics, 51, 1-30) on the topic summarized findings from over 200 research articles, on what the phenomena is, how it is manifested in a host of magnetospheric and auroral parameters; examined several proposed models and pointed out their shortcomings. The topic has now been explored in several topical international workshops, but the problem has remained unsolved so far. By quantitatively modeling the amplitudes and phases of these oscillations in the magnetic field observed by the Cassini spacecraft, we have now uncovered the generation mechanism responsible for these oscillations. We show that the observed oscillations are the manifestations of two global convectional conveyor belts excited in Saturn's upper atmosphere by auroral heating below its northern and southern auroral belts. We demonstrate that a feedback process develops in Saturn system such that the magnetosphere expends energy to drive convection in Saturn's upper stratosphere but gains back an amplified share in the form of angular momentum that it uses to enforce corotation in the magnetosphere and power its aurorae and radio waves. In essence, we have uncovered a new mechanism (convection assisted loss of angular momentum in an atmosphere) by which gaseous planets lose their angular momentum to their magnetospheres and outflowing plasma at rates far above previous predictions. We next show how the m = 1 convection system in the upper

  4. Comparative magnetotail flapping: an overview of selected events at Earth, Jupiter and Saturn

    Directory of Open Access Journals (Sweden)

    M. Volwerk

    2013-05-01

    Full Text Available A comparison of magnetotail flapping (the up-and-down wavy motion between the Earth and the two giant planets Jupiter and Saturn has been performed through investigation of the current sheet normal of the magnetotail. Magnetotail flapping is commonly observed in the Earth's magnetotail. Due to single spacecraft missions at the giant planets, the normal is determined through minimum variance analysis of magnetometer data during multiple intervals when the spacecraft crossed through the current sheet. It is shown that indeed a case can be made that magnetotail flapping also occurs at Jupiter and Saturn. Calculations of the wave period using generic magnetotail models show that the observed periods are much shorter than their theoretical estimates, and that this discrepancy can be caused by unknown input parameters for the tail models (e.g., current sheet thickness and by possible Doppler shifting of the waves in the spacecraft frame through the fast rotation of the giant planets.

  5. On what we have learned about the system of Saturn thanks to Cassini

    Science.gov (United States)

    El Moutamid, Maryame; Hedman, Matthew M.; Nicholson, Philip D.; Tiscareno, Matthew S.; Tajeddine, Radwan; Burns, Joseph A.

    2017-06-01

    This is the end; Cassini will crash into Saturn’s atmosphere within few months, providing unique data and results thanks to the last orbits. After losing contact with us, it will become part of the planet itself.By September 2017, Cassini will have spent 13 years in orbit around Saturn, during this period, scientists from the world have collected data from many instruments and have learned a great deal about the planet itself, its rings and satellites, and the connection between them. I will present some of the results on what we have learned about the evolution of the moons, on the main rings of Saturn and their dynamical connection with the interior of the planet.

  6. Giant Planets of Our Solar System Atmospheres, Composition, and Structure

    CERN Document Server

    Irwin, Patrick G. J

    2009-01-01

    This book reviews the current state of knowledge of the atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus, and Neptune. The current theories of their formation are reviewed and their recently observed temperature, composition and cloud structures are contrasted and compared with simple thermodynamic, radiative transfer and dynamical models. The instruments and techniques that have been used to remotely measure their atmospheric properties are also reviewed, and the likely development of outer planet observations over the next two decades is outlined. This second edition has been extensively updated following the Cassini mission results for Jupiter/Saturn and the newest ground-based measurements for Uranus/Neptune as well as on the latest development in the theories on planet formation.

  7. Seasonal variation of the position of the magnetodisc in Saturn's magnetosphere

    Science.gov (United States)

    Steckiewicz, Morgane; André, Nicolas; Génot, Vincent; Bouchemit, Myriam; Budnik, Elena; Bourrell, Nataliya; Biegun, Arnaud

    2015-04-01

    Seasonal periodicities in a planetary magnetosphere are driven by the obliquity of the planet which implies the existence of a non-zero magnetospheric tilt between the planet's spin axis and the solar wind direction which varies approximately sinusoidally with time between solstices. Saturn's obliquity is 26.7° which implies well-marked seasons which are reflected in the structure of its magnetosphere. In particular, the location of Saturn's plasmasheet is supposed to be very sensitive to the magnetospheric tilt. Away from equinox when the tilt angle is zero, the solar wind blows from above and below the equatorial plane of Saturn. This asymmetric interaction should result in a seasonal hinging of the magnetodisc at large distances where it should become parallel to the direction of the solar wind. The properties of this region are therefore very interesting to study in details in order to estimate the seasonal impact of the solar wind on Saturn magnetosphere. In the present study we use published Cassini magnetic field observations obtained from early 2005 (northern winter solstice) until late 2013 (northern summer solstice) that includes the transition to equinox in order to identify the seasonal warping of the magnetodisc. We will first show statistically that the magnetodisc is above the rotational equator before the equinox and below after and that the magnetodisc coincides with the rotational equator around the 11th April of 2010. We will then discuss potential implications of this result on the overall structure and dynamics of Saturn's magnetosphere.

  8. Cassini observations of ionospheric plasma in Saturn's magnetotail lobes.

    Science.gov (United States)

    Felici, M; Arridge, C S; Coates, A J; Badman, S V; Dougherty, M K; Jackman, C M; Kurth, W S; Melin, H; Mitchell, D G; Reisenfeld, D B; Sergis, N

    2016-01-01

    Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ≃ 2200 h Saturn local time at 36  R S from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 10 9 and (1.43 ± 0.21) × 10 10  cm -2  s -1 , 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×10 2 and 1.1 ×10 3  kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found during this event. It is not clear how

  9. Saturn's Rings: Pre-Cassini Status and Mission Goals

    Science.gov (United States)

    Cuzzi, Jeffrey N.; Colwell, J. E.; Esposito, L. W.; Porco, C. C.; Murray, C. D.; Nicholson, P. D.; Spilker, L.; Marouf, E. A.; French, R. C.; Rappaport, N.; hide

    2001-01-01

    Theoretical and observational progress in studies of Saturn's ring system since the mid-1980s is reviewed, focussing on advances in configuration and dynamics, composition and size distribution, dust and meteoroids, interactions of the rings with the planet and the magnetosphere, and relationships between the rings and various satellites. The Cassini instrument suite of greatest relevance to ring studies is also summarized, emphasizing how the individual instruments might work together to solve outstanding problems. The Cassini tour is described from the standpoint of ring studies, and major ring science goals are summarized.

  10. About separation and collision of Saturn rings particles

    Science.gov (United States)

    Tchernyi (Cherny), Vladimir

    There is no yet clear picture of the origin of Saturn's rings. We follow importance of electromag-netic idea that rings could originate and form from the frozen particles of the protoplanetary cloud after the appearance of the magnetic field of Saturn due to electromagnetic interaction of icy particles with the planetary magnetic field. The Sun heats the rings weakly, temperature in the area of the rings is about 70-110 K. It makes possible the existence of the superconduct-ing substance in the space behind the belt of asteroids. Theoretical electromagnetic modeling demonstrates that superconductivity can be the physical reason of the origin of the sombrero of rings of Saturn from the frozen particles of the protoplanetary cloud. The sombrero appears during some time after magnetic field of planet appears. Finally, all the Kepler's orbits of the superconducting particles are localizing as a sombrero disk of rings in the magnetic equator plane, where the energy of particles in the magnetic field of Saturn has a minimum value. Recently space probe "Cassini" discovered collisions and separation of the Saturn's rings parti-cles. It is also important fact that from electromagnetic modeling follows possibility of collide of the rings particles on the vertical direction within the width of the sombrero. It could be a reason for the formation of the particles of the bigger size due to coalescence, until gravity and centrifugal force will destroy them to the particles of smaller size again. From the solution of the electromagnetic problem we will demonstrate how rings of Saturn could be originated from the iced particles located within the protoplanetary cloud. Before appearance of the magnetic field of Saturn all particles within the protoplanetary cloud are located on such an orbit as Kepler's, where there is a balance of the force of gravity and the centrifugal force. With the occurrence of the magnetic field of the Saturn the superconducting particles of the protoplane

  11. Extended Bright Bodies - Flight and Ground Software Challenges on the Cassini Mission at Saturn

    Science.gov (United States)

    Sung, Tina S.; Burk, Thomas A.

    2016-01-01

    Extended bright bodies in the Saturn environment such as Saturn's rings, the planet itself, and Saturn's satellites near the Cassini spacecraft may interfere with the star tracker's ability to find stars. These interferences can create faulty spacecraft attitude knowledge, which would decrease the pointing accuracy or even trip a fault protection response on board the spacecraft. The effects of the extended bright body interference were observed in December of 2000 when Cassini flew by Jupiter. Based on this flight experience and expected star tracker behavior at Saturn, the Cassini AACS operations team defined flight rules to suspend the star tracker during predicted interference windows. The flight rules are also implemented in the existing ground software called Kinematic Predictor Tool to create star identification suspend commands to be uplinked to the spacecraft for future predicted interferences. This paper discusses the details of how extended bright bodies impact Cassini's acquisition of attitude knowledge, how the observed data helped the ground engineers in developing flight rules, and how automated methods are used in the flight and ground software to ensure the spacecraft is continuously operated within these flight rules. This paper also discusses how these established procedures will continue to be used to overcome new bright body challenges that Cassini will encounter during its dips inside the rings of Saturn for its final orbits of a remarkable 20-year mission at Saturn.

  12. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Duffell, Paul C.; Chiang, Eugene, E-mail: duffell@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley (United States)

    2015-10-20

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions.

  13. Auroral Morphologies of Jupiter and Saturn

    OpenAIRE

    Grodent, Denis

    2015-01-01

    We review the principal differences and similarities of the morphologies of Jupiter and Saturn's auroral emissions. We then show some examples of UV images that are expected to be acquired with Cassini UVIS at Saturn and Juno UVS at Jupiter.

  14. 7. Saturne study meeting; Septiemes journees d`etudes saturne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This Saturne workshop has welcomed 120 scientists. 3 sessions have been organized: accelerators, physics and miscellaneous. The most recent experiments realized or scheduled at Saturne have been presented and the discussions which followed showed the high scientific interest taken in that equipment and made the participants regret its definitive closing down. Presentations by european teams about existent equipment, machines under construction or new projects opened the way to new perspectives. A lot of contributions were dedicated to the realization of high intensity particle beams and to the applications of accelerators. (A.C.)

  15. Saturn's Misbegotten Moonlets

    Science.gov (United States)

    Spitale, Joseph N.

    2017-06-01

    Saturn's rings are interspersed with numerous narrow (tens of km wide) gaps. Two of the largest of these gaps -- Encke and Keeler -- contain satellites -- Pan and Daphnis -- that maintain their respective gaps via the classical Goldreich/Tremaine-style shepherding mechanism wherein angular momentum is transferred across the essentially empty gap via torques acting between the satellites and the ring. Other prominent gaps are shepherded by resonances with external satellites or planetary modes: Mimas shepherds the outer edge of the B ring, clearing the inner part of the Cassini Division, Titan shepherds the Columbo ringlet / gap, and the Maxwell ringlet / gap is likely maintained by a resonance with a planetary mode. Prior to Cassini, it was expected that all of the gaps would be shepherded in a similar manner.However, many small gaps do not correspond with known resonances, and no satellites were spotted within those gaps during Cassini's prime and extended mission. To address this issue, a series of Cassini imaging observations were planned to examine 11 gaps in the C ring and Cassini division at a resolution and longitudinal coverage sufficient to either discover the shepherds or rule out their presence. The survey discovered no embedded satellites. Longitudinal coverage was incomplete, but within longitudes covered by the survey, satellites are ruled out to sizes in the 100-m range, far too small keep the observed gaps open. It is possible (about even odds) that there could be a larger satellite residing at a longitude not covered in the survey, but the probability that the survey was unfortunate enough to miss significant satellites in all 11 gaps is exceedingly small (~0.002%). Moreover, these gaps appear in earlier imaging sequences, with some high-resolution coverage, so the true probability is smaller yet. Therefore, a new theory is likely needed to explain the presence of the gaps.

  16. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  17. An Explanation for Saturn's Hexagon

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a

  18. Saturn from Cassini-Huygens

    CERN Document Server

    Dougherty, Michele K; Krimigis, Stamatios M

    2009-01-01

    This book reviews our current knowledge of Saturn featuring the latest results obtained by the Cassini-Huygens mission. A global author team addresses the planet’s origin and evolution, internal structure, composition and chemistry, the atmosphere and ionosphere, the magnetosphere, as well as its ring system. Furthermore, Saturn's icy satellites are discussed. The book closes with an outlook beyond the Cassini-Huygens mission. Colorfully illustrated, this book will serve as a reference to researchers as well as an introduction for students.

  19. A belt of moonlets in Saturn's A ring.

    Science.gov (United States)

    Sremcević, Miodrag; Schmidt, Jürgen; Salo, Heikki; Seiss, Martin; Spahn, Frank; Albers, Nicole

    2007-10-25

    The origin and evolution of planetary rings is one of the prominent unsolved problems of planetary sciences, with direct implications for planet-forming processes in pre-planetary disks. The recent detection of four propeller-shaped features in Saturn's A ring proved the presence of large boulder-sized moonlets in the rings. Their existence favours ring creation in a catastrophic disruption of an icy satellite rather than a co-genetic origin with Saturn, because bodies of this size are unlikely to have accreted inside the rings. Here we report the detection of eight new propeller features in an image sequence that covers the complete A ring, indicating embedded moonlets with radii between 30 m and 70 m. We show that the moonlets found are concentrated in a narrow 3,000-km-wide annulus 130,000 km from Saturn. Compared to the main population of ring particles (radius s ring-moon of Pan size or larger, locally contributing new material to the older ring. This supports the theory of catastrophic ring creation in a collisional cascade.

  20. Cassini Begins Close-Up Examination of Saturn System

    Science.gov (United States)

    Showstack, Randy

    2004-07-01

    The international Cassini-Huygens mission to Saturn and Titan already has returned some initial results which will help to re-write science textbooks, and some astounding images. The spacecraft entered orbit around Saturn on 30 June following a successful 96-minute engine burn as the spacecraft flew between the planet's F and G rings. Robert Mitchell, the Cassini program manager with the Jet Propulsion Laboratory, said the spacecraft could have been damaged if it had been hit by a grain of dust the size of a pea while crossing through the ring plane. Prior to the burn, he said flight controllers would ``chew their nails'' in nervousness as they awaited indication that the Saturn orbit insertion was successful. Mitchell added that the spacecraft did not fly through the rings due to any sort of scientific preference, but rather that the flyby was ``a combination of getting close enough to make the propellant cost one we could afford, and still be in a region as safe as we could make it.''

  1. Small particles dominate Saturn's Phoebe ring to surprisingly large distances

    Science.gov (United States)

    Hamilton, Douglas P.; Skrutskie, Michael F.; Verbiscer, Anne J.; Masci, Frank J.

    2015-06-01

    Saturn's faint outermost ring, discovered in 2009 (ref. 1), is probably formed by particles ejected from the distant moon Phoebe. The ring was detected between distances of 128 and 207 Saturn radii (RS = 60,330 kilometres) from the planet, with a full vertical extent of 40RS, making it well over ten times larger than Saturn's hitherto largest known ring, the E ring. The total radial extent of the Phoebe ring could not, however, be determined at that time, nor could particle sizes be significantly constrained. Here we report infrared imaging of the entire ring, which extends from 100RS out to a surprisingly distant 270RS. We model the orbital dynamics of ring particles launched from Phoebe, and construct theoretical power-law profiles of the particle size distribution. We find that very steep profiles fit the data best, and that elevated grain temperatures, arising because of the radiative inefficiency of the smallest grains, probably contribute to the steepness. By converting our constraint on particle sizes into a form that is independent of the uncertain size distribution, we determine that particles with radii greater than ten centimetres, whose orbits do not decay appreciably inward over 4.5 billion years, contribute at most about ten per cent to the cross-sectional area of the ring's dusty component.

  2. 3-Dimensional simulations of storm dynamics on Saturn

    Science.gov (United States)

    Hueso, R.; Sanchez-Lavega, A.

    2000-10-01

    The formation and evolution of convective clouds in the atmosphere of Saturn is investigated using an anelastic three-dimensional time-dependent model with parameterized microphysics. The model is designed to study the development of moist convection on any of the four giant planets and has been previously used to investigate the formation of water convective storms in the jovian atmosphere. The role of water and ammonia in moist convection is investigated with varying deep concentrations. Results imply that most of the convective activity observed at Saturn may occur at the ammonia cloud deck while the formation of water moist convection may happen only when very strong constraints on the lower troposphere are met. Ammonia storms can ascend to the 300 mb level with vertical velocities around 30 ms-1. The seasonal effect on the thermal profile at the upper troposphere may have important effects on the development of ammonia storms. In the cases where water storms can develop they span many scale heights with peak vertical velocities around 160 ms-1 and cloud particles can be transported up to the 150 mb level. These predicted characteristics are similar to the Great White Spots observed in Saturn which, therefore, could be originated at the water cloud base level. This work has been supported by Gobierno Vasco PI 1997-34. R. Hueso acknowledges a PhD fellowship from Gobierno Vasco.

  3. Spallation neutron experiment at SATURNE

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    The double differential cross sections for (p,xn) reactions and the spectra of neutrons produced from the thick target have been measured at SATURNE in SACLAY from 1994 to 1997. The status of the experiment and the preliminary experimental results are presented. (author)

  4. Resistive Heating and Ion Drag in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess William; Koskinen, Tommi; Yelle, Roger V.

    2017-10-01

    One of the most puzzling observations of the jovian planets is that the thermospheres of Jupiter, Saturn, Uranus and Neptune are all several times hotter than solar heating can account for (Strobel and Smith 1973; Yelle and Miller 2004; Muller-Wodarg et al. 2006). On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. The most commonly proposed heating mechanisms are breaking gravity waves and auroral heating at the poles followed by redistribution of energy to mid-and low latitudes. Both of these energy sources are potentially important but also come with significant problems. Wave heating would have to be continuous and global to produce consistently elevated temperatures and the strong Coriolis forces coupled with polar ion drag appear to hinder redistribution of auroral energy (see Strobel et al. 2016 for review). Here we explore an alternative: wind-driven electrodynamics that can alter circulation and produce substantial heating outside of the auroral region. Smith (2013) showed this in-situ mechanism to be potentially significant in Jupiter’s thermosphere. We present new results from an axisymmetric, steady-state model that calculates resistive (Joule) heating rates through rigorous solutions of the electrodynamic equations for the coupled neutral atmosphere and ionosphere of Saturn. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). We calculate the current density under the assumption that it has no divergence and use it to calculate the resistive heating rates and ion drag. Our results suggest that resistive heating and ion drag at low latitudes likely

  5. Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings

    Science.gov (United States)

    Bates, David M.

    2016-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 which arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004–08), and has since been approved for a first and second extended mission through 2017. As part of the final extended missions, Cassini will begin an aggressive and exciting campaign of high inclination, low altitude flybys within the inner most rings of Saturn, skimming Saturn’s outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, requires a strategy for managing the Sun Sensor Assembly (SSA) health, the details of which are presented in this paper.

  6. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.

    Science.gov (United States)

    Canup, Robin M

    2010-12-16

    The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys.

  7. How tides get dissipated in Saturn? A question probably answerable by Cassni

    Science.gov (United States)

    Luan, Jing

    2017-06-01

    Tidal dissipation inside a giant planet is important in understanding the orbital evolutions of its natural satellites and perhaps some of the extrasolar giant planets. The tidal dissipation is conventionally parameterized by the tidal quality factor, Q. The corresponding tidal torque declines rapidly with distance adopting constant Q. However, the current fast migration rates of some Saturnian satellites reported by Lainey et al. (2015) conflict this conventional conceptual belief. Alternatively, resonance lock between a satellite and an internal oscillation mode or wave of Saturn, proposed by Fuller et al. (2016), could naturally match the observational migration rates. However, the question still remains to be answered what type of mode or wave is locked with each satellite. There are two candidates for resonance lock, one is gravity mode, and the other is inertial wave attractor. They generate very different gravity acceleration anomaly near the surface of Saturn, which may be distinguishable by the data to be collected by Cassini during its proximal orbits between April and September, 2017. Indicative information about the interior of Saturn may be extracted since the existence of both gravity mode and inertial wave attractor depends on the internal structure of Saturn.

  8. Bremsstrahlung x ray spectra of Jupiter and Saturn: Predictions for future planetary spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, D.D. (Univ. of California, Los Angeles (USA))

    1990-07-01

    Calculations of X ray spectra due to bremsstrahlung from precipitating auroral electrons at Jupiter and Saturn are presented. The model assumes that a field-aligned potential drop accelerates a primary beam of electrons into the atmosphere where a population of secondary electrons having a power law energy dependence is generated. The spectrum at Jupiter is normalized to the soft X ray observations of Metzger et al (1983) at the low-energy end and constrained at the high-energy end by UV auroral energy requirements. The spectrum at Saturn is constructed by analogy to the Jovian case allowing for variation of the beam energy, energy flux, and scale size of the Saturnian aurora. The resulting indicate that a significant flux of X rays is emanating from both planets which may serve as a basis for conducting planetary X ray astronomy as part of future spacecraft missions to the planets.

  9. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  10. The Faces of Saturn: Images and Texts from Augustus through Dürer to Galileo

    Science.gov (United States)

    Shank, M. H.

    2013-04-01

    This paper follows the thread(s) of Saturn in astrology and art from the Babylonians to Galileo, paying special attention to the planet's political importance from Augustus to the Medici and to its medical/psychological significance from Ficino through Dürer. In passing, I extend David Pingree's astrological interpretation of Dürer's Melencholia I and propose a very personal rationale for the engraving, namely as a memorial to his mother.

  11. Hera - an ESA M-class Saturn Entry Probe Mission Proposal

    Science.gov (United States)

    Atkinson, D. H.; Mousis, O.; Spilker, T. R.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K. R.

    2015-12-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems, and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ measurements is provided by measurements of Jupiter's noble gas abundances and helium mixing ratio by the Galileo probe. In situ measurements provide direct access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. Studies for a newly proposed Saturn atmospheric entry probe mission named Hera is being prepared for the upcoming European Space Agency Medium Class (M5) mission announcement of opportunity. A solar powered mission, Hera will take approximately 8 years to reach Saturn and will carry instruments to measure the composition, structure, and dynamics of Saturn's atmosphere. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, the Hera Saturn probe will provide critical measurements of composition

  12. Charged Grains In Saturn's F-Ring: Interaction With Saturn's Magnetic Field

    OpenAIRE

    Matthews, L. S.; Hyde, T. W.

    2003-01-01

    Saturn's dynamic F-Ring still presents a challenge for understanding and explaining the kinematic processes that lead to the changing structure visible in our observations of this ring. This study examines the effect of Saturn's magnetic field on the dynamics of micron-sized grains that may become electrically charged due to interaction with plasma in Saturn's rigidly corotating magnetosphere. The numerical model calculates the dynamics of charged dust grains and includes forces due to Saturn...

  13. Edge-on View of Saturn's Rings

    Science.gov (United States)

    1996-01-01

    TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  14. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    Science.gov (United States)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  15. IMF dependence of Saturn's auroras: modelling study of HST and Cassini data from 12–15 February 2008

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2010-08-01

    Full Text Available To gain better understanding of auroral processes in Saturn's magnetosphere, we compare ultraviolet (UV auroral images obtained by the Hubble Space Telescope (HST with the position of the open-closed field line boundary in the ionosphere calculated using a magnetic field model that employs Cassini measurements of the interplanetary magnetic field (IMF as input. Following earlier related studies of pre-orbit insertion data from January 2004 when Cassini was located ~ 1300 Saturn radii away from the planet, here we investigate the interval 12–15 February 2008, when UV images of Saturn's southern dayside aurora were obtained by the HST while the Cassini spacecraft measured the IMF in the solar wind just upstream of the dayside bow shock. This configuration thus provides an opportunity, unique to date, to determine the IMF impinging on Saturn's magnetosphere during imaging observations, without the need to take account of extended and uncertain interplanetary propagation delays. The paraboloid model of Saturn's magnetosphere is then employed to calculate the magnetospheric magnetic field structure and ionospheric open-closed field line boundary for averaged IMF vectors that correspond, with appropriate response delays, to four HST images. We show that the IMF-dependent open field region calculated from the model agrees reasonably well with the area lying poleward of the UV emissions, thus supporting the view that the poleward boundary of Saturn's auroral oval in the dayside ionosphere lies adjacent to the open-closed field line boundary.

  16. Saturn's equatorial jet structure from Cassini/ISS

    Science.gov (United States)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  17. The Saturn Probe Interior and aTmosphere Explorer (SPRITE) Mission

    Science.gov (United States)

    Simon, Amy; Banfield, Donald; Atkinson, David; SPRITE Science Team

    2018-01-01

    A key question in planetary science is how the planets formed in our Solar System, and, by extension, in exoplanet systems. The abundances of the noble gases (He, Ne, Ar, Kr, Xe), heavy elements (C, N, O, S), and their isotopes provide important forensic clues as to location and time of formation in the early Solar System. Jupiter and Saturn contain most of the planetary mass in our solar system, and their chemical fingerprints will distinguish between competing models of the formation of all the planets. After the end of the Cassini mission, some of these elements have only ambiguous values above the cloud tops, while others (particularly the noble gases) have not been measured at all. Resolving this requires direct in situ measurements. The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission delivers an instrumented entry probe from a carrier relay spacecraft that also provides context imaging. The powerful probe instrument suite is comprised of a Quadrupole Mass Spectrometer, a Tunable Laser Spectrometer, and an Atmospheric Structure Instrument including a Doppler Wind Experiment and a simple backscatter nephelometer. These instruments measure the elemental and isotopic abundances of helium, the heavier noble gases, and the major elements, as well as constraining cloud properties, 3-D atmospheric dynamics, and disequilibrium chemistry to at least 10 bars in Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE will provide a significantly improved context for interpreting the results from the Galileo probe, Juno, and Cassini missions. SPRITE will revolutionize our understanding of the formation and evolution of the gas giant planets, and ultimately the present-day structure of the Solar System.

  18. Analysis of Electric Propulsion System for Exploration of Saturn

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2009-01-01

    Full Text Available Exploration of the outer planets has experienced new interest with the launch of the Cassini and the New Horizons Missions. At the present time, new technologies are under study for the better use of electric propulsion system in deep space missions. In the present paper, the method of the transporting trajectory is used to study this problem. This approximated method for the flight optimization with power-limited low thrust is based on the linearization of the motion of a spacecraft near a keplerian orbit that is close to the transfer trajectory. With the goal of maximizing the mass to be delivered in Saturn, several transfers were studied using nuclear, radioisotopic and solar electric propulsion systems.

  19. How Long-Lived Are the Hypothetical Trojan Populations of Saturn, Uranus, and Neptune?

    Science.gov (United States)

    Nesvorný, D.; Dones, L.

    2002-12-01

    We investigate the possibility that fractions of the primordial populations at the triangular Lagrangian points of Saturn, Uranus, and Neptune have survived to the present and form (as yet unobserved) clusters of bodies coorbiting with these planets. Such leftovers would be analogs of the numerous objects (Trojans) leading and trailing the revolutions of Jupiter around the Sun. We focus on the dynamical stability of such populations over the age of the Solar System, assuming the current configuration of planets, and also discuss effects of the early radial migration of the outer planets. Our results suggest that, while Saturn's and Uranus' primordial Trojan populations should have been depleted by a factor of 100, Neptune may retain 50% of its original population of Trojans. A population of neptunian Trojans comparable to, or even larger than, Jupiter's Trojan population cannot be ruled out by existing observations. We compute the present-day sky densities of the hypothetical Trojans of the outer planets which can be used to guide observational surveys. Finally, we propose that the long-term instabilities that cause some jovian Trojans to escape the region of the Lagrange points at the present are due to three-body resonances.

  20. Formation of telluric planets and the origin of terrestrial water

    Directory of Open Access Journals (Sweden)

    Raymond Sean

    2014-02-01

    Full Text Available Simulations of planet formation have failed to reproduce Mars’ small mass (compared with Earth for 20 years. Here I will present a solution to the Mars problem that invokes large-scale migration of Jupiter and Saturn while they were still embedded in the gaseous protoplanetary disk. Jupiter first migrated inward, then “tacked” and migrated back outward when Saturn caught up to it and became trapped in resonance. If this tack occurred when Jupiter was at 1.5 AU then the inner disk of rocky planetesimals and embryos is truncated and the masses and orbits of all four terrestrial planet are quantitatively reproduced. As the giant planets migrate back outward they re-populate the asteroid belt from two different source populations, matching the structure of the current belt. C-type material is also scattered inward to the terrestrial planet-forming zone, delivering about the right amount of water to Earth on 10-50 Myr timescales.

  1. Tidal Response of Jupiter and Saturn from CMS calculationsTidal Response of Jupiter and Saturn from CMS calculations

    Science.gov (United States)

    Wahl, Sean; Hubbard, William B.; Militzer, Burkhard

    2016-10-01

    The Juno gravity science system promises to provide observational data from Jupiter's gravitational field at an unprecedented precision. Meanwhile, recent ab-initio simulations on mixtures of hydrogen and helium allow for the construction of realistic interior models. The concentric Maclaurin spheroid (CMS) numerical method has been developed for efficient, non-perturbative, self-consistent calculations of shape and gravitational field of a rotating liquid body to this desired precision. Here we present a generalization of the CMS method to three dimensions and included the effect of tides from a satellite. We have identified a number of unexpected features of the static tidal response in the case where a planet's shape is dominated by the rotational bulge. In the general case, there is state mixing of the spherical-harmonic components of the response to the corresponding components of the rotational and tidal excitations. This breaks the degeneracy of the tidal love numbers knm with m, and introduces a dependence of knm on the orbital distance of the satellite. Notably for Jupiter and Saturn, the predicted value of k2 is significantly higher when the planet's high rotation rates are taken into account: k2=0.413 for Saturn and k2=0.590 for Jupiter, accounting for an ~13% and 10% increase over the non-rotating case respectively. We have also done preliminary estimates for the off-resonance dynamic response, which may lead to an additional significant increase in k2. Accurate models of tidal response will be essential for interpreting gravity observations from Juno and future studies, particularly for when filtering for signals from interior dynamics in the observed field. This work was supported by NASA's Juno project. Sean Wahl and Burkhard Militzer acknowledge the support of the National Science Foundation (astronomy and astrophysics research grant 1412646).

  2. D/H Ratios on Saturn and Jupiter from Cassini CIRS

    Science.gov (United States)

    Pierel, J. D. R.; Nixon, C. A.; Lellouch, E.; Fletcher, L. N.; Bjoraker, G. L.; Achterberg, R. K.; Bézard, B.; Hesman, B. E.; Irwin, P. G. J.; Flasar, F. M.

    2017-11-01

    We present new measurements of the deuterium abundance on Jupiter and Saturn, showing evidence that Saturn’s atmosphere contains less deuterium than Jupiter’s. We analyzed far-infrared spectra from the Cassini Composite Infrared Spectrometer to measure the abundance of HD on both giant planets. Our estimate of the Jovian D/H = (2.95 ± 0.55) × 10-5 is in agreement with previous measurements by ISO/SWS: (2.25 ± 0.35) × 10-5, and the Galileo probe: (2.6 ± 0.7) × 10-5. In contrast, our estimate of the Saturn value of (2.10 ± 0.13) × 10-5 is somewhat lower than on Jupiter (by a factor of {0.71}-0.15+0.22), contrary to model predictions of a higher ratio: Saturn/Jupiter = 1.05-1.20. The Saturn D/H value is consistent with estimates for hydrogen in the protosolar nebula (2.1 ± 0.5) × 10-5, but its apparent divergence from the Jovian value suggests that our understanding of planetary formation and evolution is incomplete, which is in agreement with previous work.

  3. Saturn's moon Phoebe as a captured body from the outer Solar System.

    Science.gov (United States)

    Johnson, Torrence V; Lunine, Jonathan I

    2005-05-05

    The orbital properties of Phoebe, one of Saturn's irregular moons, suggest that it was captured by the ringed planet's gravitational field rather than formed in situ. Phoebe's generally dark surface shows evidence of water ice, but otherwise the surface most closely resembles that of C-type asteroids and small outer Solar System bodies such as Chiron and Pholus that are thought to have originated in the Kuiper belt. A close fly-by of Phoebe by the Cassini-Huygens spacecraft on 11 June 2004 (19 days before the spacecraft entered orbit around Saturn) provided an opportunity to test the hypothesis that this moon did not form in situ during Saturn's formation, but is instead a product of the larger protoplanetary disk or 'solar nebula'. Here we derive the rock-to-ice ratio of Phoebe using its density combined with newly measured oxygen and carbon abundances in the solar photosphere. Phoebe's composition is close to that derived for other solar nebula bodies such as Triton and Pluto, but is very different from that of the regular satellites of Saturn, supporting Phoebe's origin as a captured body from the outer Solar System.

  4. Development of a Net Flux Radiometer for the Hera Saturn Probe Mission

    Science.gov (United States)

    Aslam, Shahid; Amato, Michael; Atkinson, David; Mousis, Olivier; Nixon, Conor; Simon, Amy A.; Hera Probe Mission Team

    2016-10-01

    In situ exploration of all the giant planets in the outer solar system is an imperative and a Saturn probe is the next compelling step beyond Galileo's in situ exploration of Jupiter, the remote investigation of its interior, gravity, and magnetic fields by the Juno mission, and the Cassini spacecraft's similar orbital reconnaissance of Saturn. One such proposed future mission is "HERA: an international atmospheric probe to unveil the depths of Saturn" a nominal configuration is a combined ESA/Class-M probe mission accompanied by a launch vehicle and carrier relay spacecraft provided by NASA. One of the instruments being considered for inclusion on the probe is a Net Flux Radiometer (NFR) to unravel the vertical structure and properties of Saturn's cloud and haze layers. A NFR concept is presented that can be included in an atmospheric structure instrument suite for the Hera mission. The current design has two spectral channels i.e., a solar channel (0.4-to-5 µm) and a thermal channel (4-to-50 µm). The NFR is capable of viewing five distinct viewing angles during the descent. Non-imaging Winston cones with window and filter combinations define the spectral channels with a 5° Field-Of View (FOV). Uncooled thermopile detectors are used in each spectral channel and are read out using a custom designed radiation-hard Application Specific Integrated Circuit (ASIC).

  5. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    Science.gov (United States)

    Pendleton, Y. J.; Cruikshank, D. P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pendleton & Allamandola 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saurn. VIMS spaectral maps of PHoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and alophatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles (approximately 5-20 micrometer size) spiral inward toward Saturn. They encounter Iapetus and Hperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, ad in carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 approximately 4, which is larger than the value found in the diffuse ISM (approximately 2-2.5). In so far as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inventory, it can be key to understanding the content and degree of procesing of the nebular material. There are other Phoebe-like TNOs that are presently

  6. The 2010 Saturn's Great White Spot: Observations and models

    Science.gov (United States)

    Sanchez-Lavega, A.

    2011-12-01

    On December 5, 2010, a major storm erupted in Saturn's northern hemisphere at a planetographic latitude of 37.7 deg [1]. These phenomena are known as "Great White Spots" (GWS) and they have been observed once per Saturn year since the first case confidently reported in 1876. The last event occurred at Saturn's Equator in 1990 [2]. A GWS differs from similar smaller-scale storms in that it generates a planetary-scale disturbance that spreads zonally spanning the whole latitude band. We report on the evolution and motions of the 2010 GWS and its associated disturbance during the months following the outbreak, based mainly on high quality images obtained in the visual range submitted to the International Outer Planet Watch PVOL database [3], with the 1m telescope at Pic-du-Midi Observatory and the 2.2 m telescope at Calar Alto Observatory. The GWS "head source" extinguished by June 2011 implying that it survived about 6 months. Since this source is assumed to be produced by water moist convection, a reservoir of water vapor must exist at a depth of 10 bar and at the same time a disturbance producing the necessary convergence to trigger the ascending motions. The high temporal sampling and coverage allowed us to study the dynamics of the GWS in detail and the multi-wavelength observations provide information on its cloud top structure. We present non-linear simulations using the EPIC code of the evolution of the potential vorticity generated by a continuous Gaussian heat source extending from 10 bar to about 1 bar, that compare extraordinary well to the observed cloud field evolution. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07. The presentation is done on behalf of the team listed in Reference [1]. [1]Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011) [2]Sánchez-Lavega A., et al., Nature, 353, 397-401 (1991) [3]Hueso R., et al., Planet. Space Sci., 58, 1152-1159 (2010).

  7. The Hera Entry Probe Mission to Saturn, an ESA M-class mission proposal

    Science.gov (United States)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K.

    2015-10-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems,and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. Representing the only method providing ground-truth to connect the remote sensing inferences with physical reality, in situ measurements have only been accomplished twice in the history of outer solar system exploration, via the Galileo probe for Jupiter and the Huygens probe for Titan. In situ measurements provide access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. A proposal for a Saturn entry probe mission named Hera was recently submitted to the European Space Agency Medium Class mission announcement of

  8. Millimeter-wave spectra of the Jovian planets

    Science.gov (United States)

    Joiner, Joanna; Steffes, Paul G.

    1991-01-01

    The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets.

  9. Exploring planets and moons in our Solar System

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The lecture series comprises 5 lectures starting with the interplanetary medium, the solar wind and its interaction with magnetized planets. Knowledge on the magnetically dominated ‘spheres’ around the Giant Planets have been obtained by the Grand Tour of both Voyager spacecraft to Jupiter, Saturn, with the continuation of Voyager 2 to Uranus, and Neptune, in the late seventies and eighties of last century. These findings are now extensively supported and complemented by Cassini/Huygens to the Saturnian system. This will be discussed in detail in lecture 2. Specific aspects of magnetospheric physics, in particular radio emissions from the planets, observed in-situ and by remote sensing techniques, will be addressed in the following lecture 3. Of high importance are also the recent scientific results on planetary satellites, specifically those comprising active phenomena like volcanoes and geysirs, (as on Io, Enceladus, and Triton), with the explanation of some ring phenomena, to be addressed in lecture 4....

  10. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  11. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  12. Fluorescent hydroxyl emissions from Saturn's ring atmosphere.

    Science.gov (United States)

    Hall, D T; Feldman, P D; Holberg, J B; McGrath, M A

    1996-04-26

    Just before earth passed through Saturn's ring plane on 10 August 1995, the Hubble Space Telescope Faint Object Spectrograph detected ultraviolet fluorescent emissions from a tenuous atmosphere of OH molecules enveloping the rings. Brightnesses decrease with increasing distance above the rings, implying a scale height of about 0.45 Saturn radii (Rs). A spatial scan 0.28Rs above the A and B rings indicates OH column densities of about 10(13) cm(-2) and number densities of up to 700 cm(-3). Saturn's rings must produce roughly 10(25) to 10(29) OH molecules per second to maintain the observed OH distribution.

  13. How Planet Nine could change the fate of the Solar system

    Science.gov (United States)

    Veras, D.

    2017-09-01

    The potential existence of a distant planet ('Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

  14. The fates of Solar system analogues with one additional distant planet

    Science.gov (United States)

    Veras, Dimitri

    2016-12-01

    The potential existence of a distant planet (`Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here, I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

  15. Investigating Planet Formation and Evolution with KELT-11b: An Extremely Inflated Planet Transiting a Metal-Rich Subgiant Star

    Science.gov (United States)

    Colon, Knicole D.; KELT Collaboration

    2017-10-01

    KELT-11b is a recently discovered transiting planet orbiting a bright, metal-rich, subgiant star. The planet has a mass of just 0.2 Jupiter masses and a radius of 1.4 Jupiter radii, making it one of the most inflated planets known to date. We will review the discovery process for this unique exoplanet and present observations from the Spitzer Space Telescope that were used to refine the properties of the system. The high-precision photometry from Spitzer was also used to demonstrate the precision with which we can measure stellar and planetary parameters, when used in conjunction with to-be-released precise parallax measurements from Gaia. Such measurements are critical for detailed studies of exoplanets, such as our upcoming program to use the Hubble Space Telescope to study the atmosphere of KELT-11b via transmission spectroscopy. We will describe our upcoming Hubble program, which we anticipate will not only provide one of the first water abundance measurements for a sub-Saturn-mass planet but will also probe the metallicity of a planet with a metal-rich and evolved host star for the first time. We expect that the Hubble observations will enable meaningful comparison with objects in the Solar System as well as with the other few exoplanets known in the sub-Saturn population. Furthermore, such Hubble observations can be used to test predictions from planet formation models of inflated exoplanets. With such unique attributes, the KELT-11 system is poised to become a benchmark for the study of inflated exoplanets around evolved stars.

  16. Saturn's South Polar Vortex: A Possible Gas-Giant Analog to a Terrestrial Hurricane

    Science.gov (United States)

    Dyudina, Ulyana A.; Ingersoll, A. P.; Ewald, S. P.; Vasavada, A. R.; West, R. A.; Del Genio, A.; Barbara, J.; Porco, C. C.; Porco, C. C.; Achterberg, R. K.; Flasar, F. M.; Simon-Miller, A. A.; Fletcher, L. N.

    2007-10-01

    Observations made by the Cassini spacecraft reveal a large, long-lived vortex anchored to the south pole of Saturn that shares many properties with terrestrial hurricanes. Among these are: a central eye with cyclonic vorticity, an outer region where vorticity is near zero, a warm temperature anomaly within the eye, concentric eyewall clouds that extend two pressure scale heights above the clouds within the eye, numerous small clouds whose anticyclonic vorticity suggests a convective origin, and evidence, at high altitudes, of excess cyclonic rotation not balanced by the inward pressure force, implying outward flow. Besides differences of scale, the main distinctions between hurricanes on Earth and the one seen on Saturn are the static, polar location of the latter and the lack of a liquid ocean to support it. This is the first hurricane-like vortex detected on a planet other than Earth.

  17. NASA's Chandra Finds That Saturn Reflects X-rays From Sun

    Science.gov (United States)

    2005-05-01

    When it comes to mysterious X-rays from Saturn, the ringed planet may act as a mirror, reflecting explosive activity from the sun, according to scientists using NASA's Chandra X-ray Observatory. The findings stem from the first observation of an X-ray flare reflected from Saturn's low-latitudes - the region that correlates to Earth's equator and tropics. Led by Dr. Anil Bhardwaj, a planetary scientist at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., the study revealed that Saturn acts as a diffuse mirror for solar X-rays. Counting photons - particles that carry electromagnetic energy including X-rays - was critical to this discovery. For every few thousand X-ray photons Saturn receives from the sun, it reflects a single X-ray photon back. Previous studies revealed that Jupiter, with a diameter 11 times that of Earth, behaves in a similar fashion. Saturn is about 9.5 times as big as Earth, but is twice as far from Earth as Jupiter. "The bigger the planet and nearer to the Sun, the more solar photons it will intercept - resulting in more reflected X-rays," said Bhardwaj. "These results imply we could use giant planets like Jupiter and Saturn as remote-sensing tools. By reflecting solar activity back to us, they could help us monitor X-ray flaring on portions of the sun facing away from Earth's space satellites." Massive solar explosions called flares often accompany coronal mass ejections, which emit solar material and magnetic field. When directed toward the Earth, these ejections can wreak havoc on communication systems from cell phones to satellites. Even as the research appears to have solved one mystery - the source of Saturn's X-rays, it fueled longstanding questions about magnetic fields. Earth's magnetic field is the reason compasses work, since the field acts like a huge bar magnet, causing the magnetic north pole of a compass to point to the magnetic south pole of the Earth. In addition, migratory birds seem to sense the magnetic field

  18. Cassini CIRS Observations of Saturn's Rings

    Science.gov (United States)

    Spilker, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Brooks, Shawn M.; Edgington, Scott G.; Flasar, F. Michael; Pearl, John C.; Showalter, Mark R.; Ferrari, Cecile; Achterberg, Richard K.

    2005-01-01

    In the spring of 2004, during Cassini s approach to Saturn, the Cassini Composite Infrared Spectrometer (CIRS) began acquiring thermal spectra of Saturn s rings. CIRS is a Fourier-transform spectrometer that measures radiation in the thermal infrared from 7 microns to 1 millimeter (1400 to 10/cm). CIRS has a set of 21 detectors, consisting of two 1 x 10 linear arrays with a pixel size of 0.3 mrad, and one 4 mrad circular detector. Just after the completion of the Saturn orbit insertion (SOI) burn, CIRS performed an especially high spatial resolution scan of portions of Saturn s A, B and C rings. In the months following SOI, additional ring measurements have been obtained, including radial scans on the lit and unlit sides of the rings, and azimuthal scans across the shadowed regions of the A, B and C rings.

  19. SATURN. Studying Atmospheric Pollution in Urban Areas

    DEFF Research Database (Denmark)

    Moussiopoulos, N.; Hout, K. D. van den; Mestayer, P.

    SATURN is a subproject under EUROTRAC-2. (EUROTRAC-2 is the EUREKA Project on the Transport and Chemical Transformation of Environmentally Relevant Trace Constituents in the Troposphere over Europe; Second Phase)....

  20. Stable and habitable systems with two giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera; Orgovanyi, Judit [Eoetvoes University, Pazmany Peter setany 1/A, 1117 Budapest (Hungary); Nagy, Imre, E-mail: vera.zs.dobos@gmail.co [Physical Geodesy and Geodesical Research Group of the HAS, Technical University, Muegyetem rakpart 3, 1111 Budapest (Hungary)

    2010-03-01

    We have studied planetary systems which are similar to the Solar System and built up from three inner rocky planets (Venus, Earth, Mars) and two outer gas giants. The stability of the orbits of the inner planets is discussed in the cases of different masses of the gas planets. To demonstrate the results stability maps were made and it was found that Jupiter could be four times and Saturn could be three times more massive while the orbits of the inner planets stay stable. Similar calculations were made by changing the mass of the Sun. In this case the position of the rocky planets and the extension of the liquid water habitable and the UV habitable zones were studied for different masses of the Sun. It was found that the orbits of the planets were stable for values greater than 0.33 M{sub s}un where M{sub s}un is the mass of the Sun and at lower masses of the Sun (at about 0.8 M{sub s}un) only Venus, but for higher mass values (at about 1.2 Msun) Earth and also Mars are located in both habitable zones.

  1. Origin and Evolution of Saturn's Ring System

    OpenAIRE

    Charnoz, Sebastien; Dones, Luke; Esposito, Larry W.; Estrada, Paul R.; Hedman, Matthew M.

    2009-01-01

    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are...

  2. Sources of Mass and Energy Observed in Saturn's Rings

    Science.gov (United States)

    Riofrio, L. M.

    2005-12-01

    EVIDENCE from the laboratory of Saturn's Rings solves riddles of planet formation. Observations by Cassini and other spacecraft show conditions similiar to the birth of our Solar System. These observations lead to new theories of small-body accretion. Applications have benefits for physics and energy on Earth. There have been several open questions regarding the planets. Most puzzling is the formation of mountain-sized planetesimals from protostellar dust, for these objects could not form naturally. Power source of the "dynamo" generating planetary magnetic fields was also unknown. Internal heat generated by planets and even small moons is an additional mystery. These riddles may be explained by presence of primordial singularities in the Solar System's formation. Saturn's Rings are a field of ice in which the tracks of these objects may be seen. The Cassini spacecraft has returned many fascinating images of the Rings. We now know them to be home to massive unseen objects. Satellite objects glimpsed in the Encke and Keeler gaps show behaviour unlike moons of rock or ice. Discrete trails of dirt and molecular oxygen indicate radiation discharge emanating from these objects. Similiar trails photographed in Cassini's Division indicate massive objects where no large object has been sighted visually. We must consider whether the Rings could be a home to singularities. It is generally agreed the primordial singularities were created shortly after the Big Bang, and exist in unknown numbers today. Presence of these objects in the Solar System's formation would have seeded formation of planetesimals and larger bodies. Their hidden presence would explain both planetary magnetic fields and internal heat sources. They would also explain the Ring's presence and longetivity. The most convincing evidence for singularities would be radiation discharge. Observation of a polar "hot spot" on Enceladus can not be explained by old theories of radioactive decay. The only feasible source

  3. Searching for extragalactic planets

    OpenAIRE

    Baltz, Edward A.; Gondolo, Paolo

    1999-01-01

    Are there other planetary systems in our Universe? Indirect evidence has been found for planets orbiting other stars in our galaxy: the gravity of orbiting planets makes the star wobble, and the resulting periodic Doppler shifts have been detected for about a dozen stars. But are there planets in other galaxies, millions of light years away? Here we suggest a method to search for extragalactic planetary systems: gravitational microlensing of unresolved stars. This technique may allow us to di...

  4. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  5. A Long-lived Cyclone In Saturn's Atmosphere: Observations And Models

    Science.gov (United States)

    Del Rio Gaztelurrutia, Teresa; Legarreta, J.; Hueso, R.; Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2009-09-01

    The atmospheres of the Giant Planets Jupiter and Saturn possess large numbers of atmospheric vortices. On Jupiter, anticyclones are generally long-lived structures while cyclones survive a much shorter time. A long term survey of images of Saturn atmosphere obtained by the Cassini ISS camera has revealed the presence of a long-lived cyclone in Saturn's southern hemisphere during at least four years, making this vortex the longest lived cyclone on either Jupiter or Saturn. We find that the vortex drifts following the wind profile, with changes in velocity following changes of latitude. During the four years of our survey its size remained essentially constant, and there was no other structure of comparable size at its latitude. Internal circulation is cyclonic, with a maximum velocity of 20±5 m/s and an average vorticity of 4·10-5 s-1, an order of magnitude lower than planetary vorticity, but only slightly higher than the ambient vorticity. Photometric analysis shows that the vortex is located at a slightly lower altitude than its surroundings, at an average of 10-20 mbar below adjacent clouds. Finally, EPIC simulations of the vortex that reproduce its behavior imply a Rossby deformation radius of 2000 km in the weather layer (1 - 10 bar), consistent with the size of the cyclone. The long-lifetime of this cyclonic spot is surprising in view of its low tangential velocity and it suggests that low dissipation conditions prevail at mid-latitudes in Saturn's upper troposphere. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  6. Effect of hot injections on electromagnetic ion-cyclotron waves in inner magnetosphere of Saturn

    Science.gov (United States)

    Kumari, Jyoti; Kaur, Rajbir; Pandey, R. S.

    2018-02-01

    Encounter of Voyager with Saturn's environment revealed the presence of electromagnetic ion-cyclotron waves (EMIC) in Saturnian magnetosphere. Cassini provided the evidence of dynamic particle injections in inner magnetosphere of Saturn. Also inner magnetosphere of Saturn has highest rotational flow shear as compared to any other planet in our solar system. Hence during these injections, electrons and ions are transported to regions of stronger magnetic field, thus gaining energy. The dynamics of the inner magnetosphere of Saturn are governed by wave-particle interaction. In present paper we have investigated those EMIC waves pertaining in background plasma which propagates obliquely with respect to the magnetic field of Saturn. Applying kinetic approach, the expression for dispersion relation and growth rate has been derived. Magnetic field model has been used to incorporate magnetic field strength at different latitudes for radial distance of 6.18 R_{{s}} (1 R_{{s}}= 60{,}268 km). Various parameters affecting the growth of EMIC waves in cold bi-Maxwellian background and after the hot injections has been studied. Parametric analysis inferred that after hot injections, growth rate of EMIC waves increases till 10° and decreases eventually with increase in latitude due to ion density distribution in near-equatorial region. Also, growth rate of EMIC waves increases with increasing value of temperature anisotropy and AC frequency, but the growth rate decreases as the angle of propagation with respect to B0 (Magnetic field at equator) increases. The injection events which assume the Loss-cone distribution of particles, affect the lower wave numbers of the spectra.

  7. The mass of Saturn's B-ring from Cassini's Grand Finale orbits

    Science.gov (United States)

    Racioppa, Paolo; Durante, Daniele; Iess, Luciano

    2017-04-01

    Cassini is one of the most successful space missions of all times. Arrived at Saturn in 2004, it collected an enormous amount of scientific data on the atmosphere and the magnetosphere of the gas giant, its icy moons, and its rings. In the final part of journey, ending in a deliberate plunge into Saturn's atmosphere, the spacecraft will collect gravity and magnetic data from a distance as close as 3000 km from the cloud level. Those data are crucial to build interior models of the planet and to determine the depth of zonal winds. The Cassini radio science investigation will measure Saturn gravity field and the ring mass by means of range rate measurements enabled by the onboard X band (7.2-8.4 GHz) radio system and the antennas of NASA's Deep Space Network and ESA's tracking network. The gravity determination is obtained by fitting the radial velocity of the spacecraft at accuracies of about 0.05 mm/s (at a time scale of 60 s) through predictions obtained from a model of the orbital dynamics. Cassini orbital geometry is crucial for the gravity experiment. The highly eccentric 6-day orbit has a pericenter close to Saturn's clouds, within the inner edge of the rings. With Cassini passing between the rings and the planet, there is an excellent prospect to disentangle the strong acceleration due to Saturn's oblateness from that due to tiny pull of the rings. The mass of the rings (concentrated mostly in the B ring) remains uncertain. Its value, generally expressed in terms of Mimas masses, bears crucial information on how and when the rings formed, and their relation with Saturn and its moons. This work presents the final round of simulations of the gravity experiment in Cassini's Grand Finale orbits, using the latest trajectory, spacecraft configuration, and tracking coverage from ground. In particular, we will provide our current best estimate of the accuracy in the ring mass determination, just a few months prior to the actual measurements taking place in six orbits

  8. On the Formation of Rings around Giant Planets

    Science.gov (United States)

    Hyodo, Ryuki; Charnoz, Sebastien; Genda, Hidenori; Ohtsuki, Keiji

    2017-10-01

    The origin and age of the rings around giant planets are intensively debated. It has been proposed that Saturn's rings may form by tidal disruption of a Titan-sized primordial satellite that migrates inward due to the gas drag [1]. On the other hand, rings around giant planets may form by tidal disruption of a passing large Kuiper belt object during the late heavy bombardment [2].Recently, it is suggested that a proto-Rhea and a proto-Dione might have experienced a catastrophic collision (only 100 Myr ago) [3]. Following their arguments, we performed SPH simulations of impacts between such objects and found that the impact is indeed catastrophic [4]. Then, we investigated the long-term evolution of the debris by using N-body simulations and analytical arguments. We found that the debris quickly re-accrete into new generation of Rhea- or Dione-like satellite(s) as proposed by the previous work [3], but we didn't see any significant spreading of the debris to form Saturn's rings [4].In this work, we will discuss the current understanding of the origin of rings around giant planets by referring our recent papers [2,4].[1] Canup, R. 2010, Nature, 468, 943[2] Hyodo, R., Charnoz, S., Ohtsuki, K. & Genda, H. 2017, Icarus, 282, 195[3] Cuk, M., Dones, L., & Nesvorny, D. 2016, ApJ, 820, 97[4] Hyodo, R., & Charnoz, S. 2017, AJ, 154, 34

  9. Planetary Accretion in the Inner Solar System: Dependence on Nebula Surface Density Profile and Giant Planet Eccentricities

    Science.gov (United States)

    Chambers, J. E.; Cassen, P.

    2002-01-01

    We present 32 N-body simulations of planetary accretion in the inner Solar System, examining the effect of nebula surface density profile and initial eccentricities of Jupiter and Saturn on the compositions and orbits of the inner planets. Additional information is contained in the original extended abstract.

  10. UCLA, British astronomers discover wake of planet around nearby star. Strong evidence for solar system like ours

    CERN Multimedia

    2002-01-01

    "An international team of astronomers reports the first strong evidence for the existence of massive planets on wide orbits - like those of Saturn, Uranus and Neptune - around many stars. The new research provides some of the strongest evidence so far that solar systems similar to our own, or even larger, are likely to exist: (1 page).

  11. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T∞~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T∞~800 K at ~4° N and the auroral temperatures simultaneously. Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  12. Theory of Giant Planets

    Science.gov (United States)

    Hubbard, W. B.; Burrows, A.; Lunine, J. I.

    Giant planet research has moved from the study of a handful of solar system objects to that of a class of bodies with dozens of known members. Since the original 1995 discovery of the first extrasolar giant planets (EGPs), the total number of known examples has increased to ~80 (circa November 2001). Current theoretical studies of giant planets emphasize predicted observable properties, such as luminosity, effective temperature, radius, external gravity field, atmospheric composition, and emergent spectra as a function of mass and age. This review focuses on the general theory of hydrogen-rich giant planets; smaller giant planets with the mass and composition of Uranus and Neptune are not covered. We discuss the status of the theory of the nonideal thermodynamics of hydrogen and hydrogen-helium mixtures under the conditions found in giant-planet interiors, and the experimental constraints on it. We provide an overview of observations of extrasolar giant planets and our own giant planets by which the theory can be validated.

  13. STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lainey, Valery; Desmars, Josselin; Arlot, Jean-Eudes; Emelyanov, Nicolai; Remus, Francoise [IMCCE-Observatoire de Paris, UMR 8028 du CNRS, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris (France); Karatekin, Oezguer [Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Uccle, Bruxelles (Belgium); Charnoz, Sebastien; Mathis, Stephane [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/SAp Centre de Saclay, 91191 Gif-sur-Yvette (France); Le Poncin-Lafitte, Christophe [SyRTE-Observatoire de Paris, UMR 8630 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris (France); Tobie, Gabriel [Laboratoire de Planetologie et Geodynamique de Nantes, Universite de Nantes, CNRS, UMR 6112, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Zahn, Jean-Paul, E-mail: lainey@imcce.fr [LUTH-Observatoire de Paris, UMR 8102 du CNRS, 5 place Jules Janssen, 92195 Meudon Cedex (France)

    2012-06-10

    Tidal interactions between Saturn and its satellites play a crucial role in both the orbital migration of the satellites and the heating of their interiors. Therefore, constraining the tidal dissipation of Saturn (here the ratio k{sub 2}/Q) opens the door to the past evolution of the whole system. If Saturn's tidal ratio can be determined at different frequencies, it may also be possible to constrain the giant planet's interior structure, which is still uncertain. Here, we try to determine Saturn's tidal ratio through its current effect on the orbits of the main moons, using astrometric data spanning more than a century. We find an intense tidal dissipation (k{sub 2}/Q = (2.3 {+-} 0.7) Multiplication-Sign 10{sup -4}), which is about 10 times higher than the usual value estimated from theoretical arguments. As a consequence, eccentricity equilibrium for Enceladus can now account for the huge heat emitted from Enceladus' south pole. Moreover, the measured k{sub 2}/Q is found to be poorly sensitive to the tidal frequency, on the short frequency interval considered. This suggests that Saturn's dissipation may not be controlled by turbulent friction in the fluid envelope as commonly believed. If correct, the large tidal expansion of the moon orbits due to this strong Saturnian dissipation would be inconsistent with the moon formations 4.5 Byr ago above the synchronous orbit in the Saturnian subnebulae. But it would be compatible with a new model of satellite formation in which the Saturnian satellites formed possibly over a longer timescale at the outer edge of the main rings. In an attempt to take into account possible significant torques exerted by the rings on Mimas, we fitted a constant rate da/dt on Mimas' semi-major axis as well. We obtained an unexpected large acceleration related to a negative value of da/dt = -(15.7 {+-} 4.4) Multiplication-Sign 10{sup -15} AU day{sup -1}. Such acceleration is about an order of magnitude larger

  14. Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Hartle, R.; Simpson, D.; Johnson, R.; Thomsen, M.; Arridge, C.

    2011-01-01

    We present the present status of an investigation of the rotation rate of Saturn's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. for SOI and similar to that used by Thomsen et al.. This technique allows one to nearly cover the full energy range of the Cassini Plasma Spectrometer (CAPS) IMS from 1 V . E/Q frame, it does work during roll maneuvers. We make comparisons with the bi-Maxwellian fitting technique developed by Wilson et al. and the similar velocity moment technique by Thomsen et al. . We concentrate our analysis when ion composition data is available, which is used to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The chosen periods have high enough telemetry rates (4 kbps or higher) so that coincidence ion data, similar to that used by Sittler et al. for SOI is available. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. In the future we will then make comparisons with magnetic field observations, Saturn ionosphere conductivities as presently known and the field aligned currents necessary for the planet to enforce corotation of the rotating plasma.

  15. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    Science.gov (United States)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  16. Managing Cassini Safe Mode Attitude at Saturn

    Science.gov (United States)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  17. Trapped radiation belts of Saturn - First look

    Science.gov (United States)

    Fillius, W.; Ip, W. H.; Mcilwain, C. E.

    1980-01-01

    Data on the magnetosphere of Saturn obtained with the trapped radiation detector package on board the Pioneer 11 spacecraft is reported. Radiation belt profiles determined by the trapped radiation detectors on Pioneer 10 and 11 indicate that Saturn's magnetosphere is intermediate in size between those of the earth and Jupiter, with particle intensities similar to those of the earth. The outer region of the Saturn magnetosphere is found to contain particles of lower energy than the outer region, being strongly influenced by the time-varying solar wind. The moons and rings of Saturn are observed to be effective absorbers of trapped particles, confirming the discoveries of the F ring, the Pioneer ring division and the moon 1979 S 2. Particle diffusion rates are used to estimate a cross-sectional area of greater than 7 x 10 to the 13th sq cm and an opacity greater than 0.00001 for the F ring. It is suggested that cosmic-ray albedo neutron decay be studied as a possible source of energetic particles in the inner magnetosphere of Saturn.

  18. Planets a very short introduction

    CERN Document Server

    Rothery, David A

    2010-01-01

    Planets: A Very Short Introduction demonstrates the excitement, uncertainties, and challenges faced by planetary scientists, and provides an overview of our Solar System and its origins, nature, and evolution. Terrestrial planets, giant planets, dwarf planets and various other objects such as satellites (moons), asteroids, trans-Neptunian objects, and exoplanets are discussed. Our knowledge about planets has advanced over the centuries, and has expanded at a rapidly growing rate in recent years. Controversial issues are outlined, such as What qualifies as a planet? What conditions are required for a planetary body to be potentially inhabited by life? Why does Pluto no longer have planet status? And Is there life on other planets?

  19. Kepler's first rocky planet

    DEFF Research Database (Denmark)

    Batalha, N.M.; Borucki, W.J.; Bryson, S.T.

    2011-01-01

    NASA's Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were...... tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright...

  20. Hydrocarbons on the Icy Satellites of Saturn

    Science.gov (United States)

    Cruikshank, Dale P.

    2010-01-01

    The Visible-Infrared Mapping Spectrometer on the Cassini Spacecraft has obtained spectral reflectance maps of the satellites of Saturn in the wavelength region 0.4-5.1 micrometers since its insertion into Saturn orbit in late 2004. We have detected the spectral signature of the C-H stretching molecular mode of aromatic and aliphatic hydrocarbons in the low albedo material covering parts of several of Saturn's satellites, notably Iapetus and Phoebe (Cruikshank et al. 2008). The distribution of this material is complex, and in the case of Iapetus we are seeking to determine if it is related to the native grey-colored materials left as lag deposits upon evaporation of the ices, or represents in-fall from an external source, notably the newly discovered large dust ring originating at Phoebe. This report covers our latest exploration of the nature and source of this organic material.

  1. Nanograin densities outside Saturn's A-ring

    CERN Document Server

    Johnson, Robert E; Elrod, Meredith K; Persoon, Ann M

    2016-01-01

    The observed disparity between the radial dependence of the ion and electron densities measured by the Cassini plasma and radio science instruments are used to show that the region between the outer edge of Saturn's main rings and its tenuous G-ring is permeated with small charged grains (nanograins). These grains emanate from the edge of the A-ring and from the tenuous F-ring and G-ring. This is a region of Saturn's magnetosphere that is relatively unexplored, but will be a focus of Cassini's F-ring orbits prior to the end of mission in September 2017. Confirmation of the grain densities predicted here will enhance our ability to describe the formation and destruction of material in this important region of Saturn's magnetosphere.

  2. An evolving view of Saturn's dynamic rings.

    Science.gov (United States)

    Cuzzi, J N; Burns, J A; Charnoz, S; Clark, R N; Colwell, J E; Dones, L; Esposito, L W; Filacchione, G; French, R G; Hedman, M M; Kempf, S; Marouf, E A; Murray, C D; Nicholson, P D; Porco, C C; Schmidt, J; Showalter, M R; Spilker, L J; Spitale, J N; Srama, R; Sremcević, M; Tiscareno, M S; Weiss, J

    2010-03-19

    We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.

  3. Saturn facility oil transfer automation system

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector Ricardo.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  4. Mechanisms of Saturn's Near-Noon Transient Aurora: In Situ Evidence From Cassini Measurements

    Science.gov (United States)

    Yao, Z. H.; Radioti, A.; Rae, I. J.; Liu, J.; Grodent, D.; Ray, L. C.; Badman, S. V.; Coates, A. J.; Gérard, J.-C.; Waite, J. H.; Yates, J. N.; Shi, Q. Q.; Wei, Y.; Bonfond, B.; Dougherty, M. K.; Roussos, E.; Sergis, N.; Palmaerts, B.

    2017-11-01

    Although auroral emissions at giant planets have been observed for decades, the physical mechanisms of aurorae at giant planets remain unclear. One key reason is the lack of simultaneous measurements in the magnetosphere while remote sensing of the aurora. We report a dynamic auroral event identified with the Cassini Ultraviolet Imaging Spectrograph (UVIS) at Saturn on 13 July 2008 with coordinated measurements of the magnetic field and plasma in the magnetosphere. The auroral intensification was transient, only lasting for ˜30 min. The magnetic field and plasma are perturbed during the auroral intensification period. We suggest that this intensification was caused by wave mode conversion generated field-aligned currents, and we propose two potential mechanisms for the generation of this plasma wave and the transient auroral intensification. A survey of the Cassini UVIS database reveals that this type of transient auroral intensification is very common (10/11 time sequences, and ˜10% of the total images).

  5. On the evolution of Saturn's 'Spokes' - Theory

    Science.gov (United States)

    Morfill, G. E.; Gruen, E.; Goertz, C. K.; Johnson, T. V.

    1983-01-01

    Starting with the assumption that negatively charged micron-sized dust grains may be elevated above Saturn's ring plane by plasma interactions, the subsequent evolution of the system is discussed. The discharge of the fine dust by solar UV radiation produces a cloud of electrons which moves adiabatically in Saturn's dipolar magnetic field. The electron cloud is absorbed by the ring after one bounce, alters the local ring potential significantly, and reduces the local Debye length. As a result, more micron-sized dust particles may be elevated above the ring plane and the spoke grows. This process continues until the electron cloud has dissipated.

  6. Oxygen in the stratospheres of the giant planets and Titan

    Science.gov (United States)

    Feuchtgruber, H.; Lellouch, E.; Encrenaz, Th.; Bezard, B.; Coustenis, A.; Drossart, P.; Salama, A.; de Graauw, Th.; Davis, G. R.

    1999-03-01

    Infrared spectra of the Short-Wavelength Spectrometer (SWS) of ISO at wavelengths between 25 - 45 μm have provided the first detection of stratospheric H2O on all four giant planets and Titan. Together with SWS observations of CO2 at 14.98 μm, leading to first detections on Neptune, Saturn and Jupiter an external source of oxygen is required to explain the derived upper stratospheric mixing ratios of up to several ppb at mbar-μbar levels. We provide an overview on the required amounts of external oxygen fluxes and a detailed discussion on the various scenarios for the origin of CO2 in the stratospheres of the giant planets.

  7. Outer planet atmospheric entry probes - An overview of technology readiness

    Science.gov (United States)

    Vojvodich, N. S.; Reynolds, R. T.; Grant, T. L.; Nachtsheim, P. R.

    1975-01-01

    Entry probe systems for characterizing, by in situ measurements, the atmospheric properties, chemical composition, and cloud structure of the planets Saturn, Uranus, and Jupiter are examined from the standpoint of unique mission requirements, associated subsystem performance, and degree of commonality of design. Past earth entry vehicles (PAET) and current planetary spacecraft (Pioneer Venus probes and Viking lander) are assessed to identify the extent of potential subsystem inheritance, as well as to establish the significant differences, in both form and function, relative to outer planet requirements. Recent research results are presented and reviewed for the most critical probe technology areas, including: science accommodation, telecommunication, and entry heating and thermal protection. Finally presented is a brief discussion of the use of decision analysis techniques for quantifying various probe heat-shield test alternatives and performance risk.

  8. Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliūnas

    2008-06-01

    Full Text Available The quantitative significance for a planetary magnetosphere of plasma sources associated with a moon of the planet can be assessed only by expressing the plasma mass input rate in dimensionless form, as the ratio of the actual mass input to some reference value. Traditionally, the solar wind mass flux through an area equal to the cross-section of the magnetosphere has been used. Here I identify another reference value of mass input, independent of the solar wind and constructed from planetary parameters alone, which can be shown to represent a mass input sufficiently large to prevent corotation already at the source location. The source rate from Enceladus at Saturn has been reported to be an order of magnitude smaller (in absolute numbers than that from Io at Jupiter. Both reference values, however, are also smaller at Saturn than at Jupiter, by factors ~40 to 60; expressed in dimensionless form, the estimated mass input from Enceladus may be larger than that from Io by factors ~4 to 6. The magnetosphere of Saturn may thus, despite a lower mass input in kg s−1, intrinsically be more heavily mass-loaded than the magnetosphere of Jupiter.

  9. Dynamics Of Saturn'S Mid-scale Storms In The Cassini Era.

    Science.gov (United States)

    Del Rio Gaztelurrutia, Teresa; Hueso, R.; Sánchez-Lavega, A.

    2010-10-01

    Convective storms, similar to those in Earth, but of much larger scale, develop often in Saturn's atmosphere. During the Voyagers’ flybys of Saturn in 1981 mid-scale storms, with an horizontal extension of the order of 1000-3000 km were observed to occur mainly in a narrow tropical-latitude band in the Northern hemisphere at latitudes 38-40 deg North. Contrasting with the Voyagers’ era, since the starting of the Cassini mission in 2004, a similar mid-scale convective activity has concentrated in the so-called "storm alley", a narrow band at a symmetric Southern latitude of 38 deg.. In this work, we characterize this storm activity using available visual information provided by Cassini ISS cameras and the continuous survey from the Earth by the International Outer Planets Watch (IOPW) and its online database PVOL (Hueso et al., Planetary and Space Science, 2010). We study the frequency of appearance of storms with sizes above 2000 km, their characteristic size and life-time, as well as their interaction with surrounding dynamical features. In particular we examine the possibility that storms might provide a mechanism of injection of energy into Saturn's jets, the influence of storms in the generation of atmospheric vortices, and the analogies and differences of Voyagers’ and present day jet structure at the relevant latitudes. Acknowledgments: This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464

  10. Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliūnas

    2008-06-01

    Full Text Available The quantitative significance for a planetary magnetosphere of plasma sources associated with a moon of the planet can be assessed only by expressing the plasma mass input rate in dimensionless form, as the ratio of the actual mass input to some reference value. Traditionally, the solar wind mass flux through an area equal to the cross-section of the magnetosphere has been used. Here I identify another reference value of mass input, independent of the solar wind and constructed from planetary parameters alone, which can be shown to represent a mass input sufficiently large to prevent corotation already at the source location. The source rate from Enceladus at Saturn has been reported to be an order of magnitude smaller (in absolute numbers than that from Io at Jupiter. Both reference values, however, are also smaller at Saturn than at Jupiter, by factors ~40 to 60; expressed in dimensionless form, the estimated mass input from Enceladus may be larger than that from Io by factors ~4 to 6. The magnetosphere of Saturn may thus, despite a lower mass input in kg s−1, intrinsically be more heavily mass-loaded than the magnetosphere of Jupiter.

  11. BINARY MINOR PLANETS

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  12. Students Discover Unique Planet

    Science.gov (United States)

    2008-12-01

    Three undergraduate students, from Leiden University in the Netherlands, have discovered an extrasolar planet. The extraordinary find, which turned up during their research project, is about five times as massive as Jupiter. This is also the first planet discovered orbiting a fast-rotating hot star. Omega Centauri ESO PR Photo 45a/08 A planet around a hot star The students were testing a method of investigating the light fluctuations of thousands of stars in the OGLE database in an automated way. The brightness of one of the stars was found to decrease for two hours every 2.5 days by about one percent. Follow-up observations, taken with ESO's Very Large Telescope in Chile, confirmed that this phenomenon is caused by a planet passing in front of the star, blocking part of the starlight at regular intervals. According to Ignas Snellen, supervisor of the research project, the discovery was a complete surprise. "The project was actually meant to teach the students how to develop search algorithms. But they did so well that there was time to test their algorithm on a so far unexplored database. At some point they came into my office and showed me this light curve. I was completely taken aback!" The students, Meta de Hoon, Remco van der Burg, and Francis Vuijsje, are very enthusiastic. "It is exciting not just to find a planet, but to find one as unusual as this one; it turns out to be the first planet discovered around a fast rotating star, and it's also the hottest star found with a planet," says Meta. "The computer needed more than a thousand hours to do all the calculations," continues Remco. The planet is given the prosaic name OGLE2-TR-L9b. "But amongst ourselves we call it ReMeFra-1, after Remco, Meta, and myself," says Francis. The planet was discovered by looking at the brightness variations of about 15 700 stars, which had been observed by the OGLE survey once or twice per night for about four years between 1997 and 2000. Because the data had been made public

  13. The Demographics of Rocky Free-floating Planets and their Detectability by WFIRST

    Science.gov (United States)

    Barclay, Thomas; Quintana, Elisa V.; Raymond, Sean N.; Penny, Matthew T.

    2017-06-01

    Planets are thought to form via accretion from a remnant disk of gas and solids around a newly formed star. During this process, material in the disk either remains bound to the star as part of either a planet, a smaller celestial body, or makes up part of the the interplanetary medium; falls into the star; or is ejected from the system. Herein we use dynamical models to probe the abundance and properties of ejected material during late-stage planet formation and estimate their contribution to the free-floating planet population. We present 300 N-body simulations of terrestrial planet formation around a solar-type star, with and without giant planets present, using a model that accounts for collisional fragmentation. In simulations with Jupiter and Saturn analogs, about one-third of the initial (˜5 M ⊕) disk mass is ejected, about half in planets more massive than Mercury but with a mass lower than 0.3 M ⊕, and the remainder in smaller bodies. Most ejections occur within 25 Myr, which is shorter than the timescale typically required for Earth-mass planets to grow (30-100 Myr). When giant planets are omitted from our simulations, almost no material is ejected within 200 Myr and only about 1% of the initial disk is ejected by 2 Gyr. We show that about 2.5 terrestrial-mass planets are ejected per star in the Galaxy. We predict that the space-borne microlensing search for free-floating planets from the Wide-Field Infra-Red Space Telescope will discover up to 15 Mars-mass planets, but few free-floating Earth-mass planets.

  14. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  15. A Search for Transiting Hot Planets as Small as Neptune in the Open Cluster M37

    OpenAIRE

    Hartman, J. D.; Gaudi, B. S.; Holman, M. J.; McLeod, B. A.; Stanek, K. Z.; Barranco, J.

    2007-01-01

    We are conducting a transit survey of the open cluster M37 using the Megacam instrument on the 6.5 m Multiple-Mirror Telescope. We have obtained ~4500 images of this cluster over 18.5 nights and have achieved the precision necessary to detect planets smaller than Saturn. In this presentation we provide an overview of the project, describe the ongoing data reduction/analysis and present some of our preliminary results.

  16. A Search for Transiting Hot Planets as Small as Neptune in the Open Cluster M37

    Science.gov (United States)

    Hartman, J. D.; Gaudi, B. S.; Holman, M. J.; McLeod, B. A.; Stanek, K. Z.; Barranco, J.

    2007-07-01

    We are conducting a transit survey of the open cluster M37 using the Megacam instrument on the 6.5 m Multiple-Mirror Telescope. We have obtained ˜ 4500 images of this cluster over 18.5 nights and have achieved the precision necessary to detect planets smaller than Saturn. In this presentation we provide an overview of the project, describe the ongoing data reduction/analysis and present some of our preliminary results.

  17. Survival of Trojan-Type Companions of Neptune During Primordial Planet Migration

    OpenAIRE

    Kortenkamp, Steve; Malhotra, Renu; Michtchenko, Tatiana

    2003-01-01

    We investigate the survivability of Trojan-type companions of Neptune during primordial radial migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Loss of Neptune Trojans during planetary migration is not a random diffusion process. Rather, losses occur almost exclusively during discrete episodes when Trojan particles are swept by secondary resonances associated with mean-motion commensurabilities of Uranus with Neptune. The single greatest episode of loss ejects nearly 75% o...

  18. Magnetometer instrument team studies for the definition phase of the outer planets grand tour

    Science.gov (United States)

    Coleman, P. J., Jr.

    1973-01-01

    The work performed by the magnetic fields investigation team during the mission definition phases of the Outer Planets Grand Tour (OPGT) and the Mariner Jupiter Saturn (MJS) Missions is reported. This work involved three tasks: (1) defining the objectives of the magnetic fields investigations, (2) defining the magnetometer systems required to meet these objectives, and (3) developing and testing hardware elements in certain mission-specific areas.

  19. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    Science.gov (United States)

    Rubincam, David Parry

    2004-01-01

    The dimensions of Saturn's A and B rings may be determined by the seasonal Yarkovsky effect and the Yarkovsky-Schach effect; the two effects confine the rings between approximately 1.68 and approximately 2.23 Saturn radii, in reasonable agreement with the observed values of 1.525 and 2.267. The C ring may be sparsely populated because its particles are transients on their way to Saturn; the infall may create a luminous Ring of Fire around Saturn's equator. The ring system may be young: in the past heat flow from Saturn's interior much above its present value would not permit rings to exist.

  20. Peeking into Saturn's atmosphere: the HST low-phase angle view

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sanz-Requena, J. F.; Sanchez-Lavega, A.; Hueso, R.; del Río-Gaztelurrutia, T.; Rojas, J. F.; Simon, A. A.; Wong, M. H.; de Pater, I.; Irwin, P. G. J.; Irizar, I.

    2015-11-01

    Recent Hubble Space Telescope WFC3 observations of Saturn have provided a low-phase angle view of the planet that nicely complements the higher phase angles and increased spatial resolution view from the Cassini spacecraft. HST orbits were perfectly timed for observing an atmospheric perturbation at polar latitudes, but they serendipitously captured other interesting features at the Equatorial Zone (EZ). In this presentation we will discuss how the synergy between the Cassini/ISS and HST/WFC3 observations provides an excellent way for peeking into Saturn's atmosphere and analyze the vertical distribution and properties of the particles and aerosols located in the lower stratosphere and upper troposphere of the planet. We first discuss how Cassini/ISS observations at a variety of phase angles constrain particle properties and phase function, in particular at the Equatorial Zone. This had not been investigated since the early 1980s (Tomasko & Doose, 1984), more than a Saturnian year before the current work. We will also discuss the sizes and shapes of particles in the troposphere, as constrained by the retrieved phase function . With this information, the HST/WFC3 observations at 10 filters from near-ultraviolet to the near-infrared provide substantial information on the vertical cloud structure and composition: the filters in and out of the intermediate and deep methane bands at the near infrared give information on particle number density around the tropopause level (5-10 part/cm3) and down to the ammonia condensation level, while near-ultraviolet and blue filters characterize the absorption of unknown chromophores in Saturn's atmosphere. We will further show observations and radiative transfer models of selected atmospheric features that have important dynamical implications for understanding Saturn's atmospheric dynamics at the EZ and the Northern polar atmosphere. In particular, fast-moving features in the EZ with Voyager-era speeds seem to be located deeper (

  1. Trajectories to the outer planets using aero-gravity assist flybys of Venus and Mars

    Science.gov (United States)

    Bender, David F.

    1992-01-01

    The trajectory concept used here is to flyby Venus and then Mars with moderately high speeds expecting to use both gravity and aeroassisted (wave rider) turns in the atmospheres of the planets in order to form fast trajectories to the planets beyond Jupiter. The first part of the paper contains a description of the development of earth-Venus-Mars trajectories yielding the required speeds at Mars in the interval 2001 to 2015. The second part consists in identifying cases in which Mars is at the proper longitude for each target and obtaining trajectories. Trajectories to Saturn, Uranus, Neptune, and Pluto have been found.

  2. Saturn's Ionospheric Clock(s): A Concept for Generating and Maintaining Saturn's Observed Magnetospheric Periodicities

    Science.gov (United States)

    Mitchell, D. G.; Brandt, P. C.; Ukhorskiy, A. Y.

    2010-12-01

    Saturn’s 10.X hour periodicity, observed throughout the magnetosphere, remains a mystery. It has been observed in many regions, modulating many phenomena. During the Cassini mission most observations have shown a period at about 10.8 hours, expressed in Saturn kilometric radiation from the high latitude auroral zone, in magnetic field components (both equatorial and high latitude) from 3 to 12 Rs, in current sheet encounters in the outer magnetosphere and magnetotail, in energetic neutral atom emission from the equatorial magnetosphere, and in plasma and energetic particles throughout the magnetosphere. More recently, various authors have shown at least two dominant periods expressed (in SKR and in magnetic field components), with slightly different values in the southern and northern hemispheres. The cause of this behavior is still not accounted for. Although loosely associated with Saturn’s rotation, the variability in the period precludes a direct connection with Saturn’s interior (e.g., a magnetic anomaly). Other candidates that have been discussed by others are an ionospheric source (conductivity anomaly), a perturbation in the cold plasma circulation pattern, a magnetospheric cam, asymmetric ring current particle pressure, and/or a natural frequency of the magnetosphere (cavity mode or traveling wave front of some sort). In this paper we present a concept that derives its energy from the subcorotating cold, dense plasma (which exhibits a rotation period on the order of 13 to 14 hours throughout L-shells between ~3 and 20), but is triggered by a process linked with the ionosphere. Key components of the model include significant slippage between the ionosphere and the magnetosphere (with the ionosphere rotating at the expressed period in each hemisphere, only slightly more slowly than the planet interior), subcorotating cold dense plasma with a source in the inner magnetosphere, predominantly radial transport of the cold dense plasma in the rotational

  3. On the long-term variability of Jupiter and Saturn zonal winds

    Science.gov (United States)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.

    2012-12-01

    We present an analysis of the long-term variability of Jupiter and Saturn zonal wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and one Saturn years. We study the sensitivity and variability of the zonal wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).

  4. Neutral Atmospheres of the Giant Planets: An Overview of Composition Measurements

    Science.gov (United States)

    Encrenaz, Thér‘Se

    2005-01-01

    Measurements of the chemical composition of the giant planets provide clues of their formation and evolution processes. According to the currently accepted nucleation model, giant planets formed from the initial accretion of an icy core and the capture of the protosolar gas, mosly composed of hydrogen and helium. In the case of Jupiter and Saturn (the gaseous giants), this gaseous component dominates the composition of the planet, while for Uranus and Neptune (the icy giants) it is only a small fraction of the total mass. The measurement of elemental and isotopic ratios in the giant planets provides key diagnostics of this model, as it implies an enrichment in heavy elements (as well as deuterium) with respect to the cosmic composition.

  5. PAHs in the Ices of Saturn's Satellites: Connections to the Solar Nebula and the Interstellar Medium

    Science.gov (United States)

    Cruikshank, Dale P.; Pendleton, Yvonne J.

    2015-01-01

    Aliphatic hydrocarbons and PAHs have been observed in the interstellar medium (e.g., Allamandola et al. 1985, Pendleton et al. 1994, Pendleton & Allamandola 2002, Tielens 2013, Kwok 2008, Chiar & Pendleton 2008) The inventory of organic material in the ISM was likely incorporated into the molecular cloud in which the solar nebula condensed, contributing to the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Additional organic synthesis occurred in the solar nebula (Ciesla & Sandford 2012). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saturn (Johnson & Lunine 2005). VIMS spectral maps of Phoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and aliphatic hydrocarbon (=CH2, -CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles ((is) approximately 5-20 micrometers size) spiral inward toward Saturn (Verbiscer et al. 2009). They encounter Iapetus and Hyperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, and in carbonaceous meteorites (Cruikshank et al. 2014). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 (is) approximately 4, which is larger than the value found in the diffuse ISM ((is) approximately 2

  6. An isolated, bright cusp aurora at Saturn

    Science.gov (United States)

    Kinrade, J.; Badman, S. V.; Bunce, E. J.; Tao, C.; Provan, G.; Cowley, S. W. H.; Grocott, A.; Gray, R. L.; Grodent, D.; Kimura, T.; Nichols, J. D.; Arridge, C. S.; Radioti, A.; Clarke, J. T.; Crary, F. J.; Pryor, W. R.; Melin, H.; Baines, K. H.; Dougherty, M. K.

    2017-06-01

    Saturn's dayside aurora displays a number of morphological features poleward of the main emission region. We present an unusual morphology captured by the Hubble Space Telescope on 14 June 2014 (day 165), where for 2 h, Saturn's FUV aurora faded almost entirely, with the exception of a distinct emission spot at high latitude. The spot remained fixed in local time between 10 and 15 LT and moved poleward to a minimum colatitude of 4°. It was bright and persistent, displaying intensities of up to 49 kR over a lifetime of 2 h. Interestingly, the spot constituted the entirety of the northern auroral emission, with no emissions present at any other local time—including Saturn's characteristic dawn arc, the complete absence of which is rarely observed. Solar wind parameters from propagation models, together with a Cassini magnetopause crossing and solar wind encounter, indicate that Saturn's magnetosphere was likely to have been embedded in a rarefaction region, resulting in an expanded magnetosphere configuration during the interval. We infer that the spot was sustained by reconnection either poleward of the cusp or at low latitudes under a strong component of interplanetary magnetic field transverse to the solar wind flow. The subsequent poleward motion could then arise from either reconfiguration of successive open field lines across the polar cap or convection of newly opened field lines. We also consider the possible modulation of the feature by planetary period rotating current systems.

  7. Voyager: The grandest tour. The mission to the outer planets

    Science.gov (United States)

    1991-04-01

    A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.

  8. A Cloud Microphysics Model for the Gas Giant Planets

    Science.gov (United States)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  9. Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm

    Science.gov (United States)

    Fletcher, Leigh N.; Guerlet, Sandrine; Orton, Glenn S.; Cosentino, Richard G.; Fouchet, Thierry; Irwin, Patrick G. J.; Li, Liming; Flasar, F. Michael; Gorius, Nicolas; Morales-Juberías, Raúl

    2017-11-01

    The equatorial middle atmospheres of the Earth1, Jupiter2 and Saturn3,4 all exhibit a remarkably similar phenomenon—a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system1,5,6, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection7,8. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an 15-year period3,9) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 201010-12, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years13. Far from the storm, the Cassini temperature measurements showed a dramatic 10 K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.

  10. Protostars and Planets VI

    Science.gov (United States)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  11. Saturn Ring Data Analysis and Thermal Modeling

    Science.gov (United States)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  12. NH3, H2S, and the Radio Brightness Temperature Spectra of the Giant Planets

    Science.gov (United States)

    Spilker, Thomas R.

    1995-01-01

    Recent radio interferometer observations of Neptune enable comparisons of the radio brightness temperature (T(sub B)) spectra of all four giant planets. This comparison reveals evidence for fundamental differences in the compositions of Uranus' and Neptune's upper tropospheres, particularly in their ammonia (NH3) and hydrogen sulfide (H2S) mixing ratios, despite those planets' outward similarities. The tropospheric abundances of these constituents yield information about their deep abundances, and ultimately about the formation of the planets from the presolar nebula (Atreya et al.). Figures 1, 2, 3, and 4 show the T(sub B) spectra of Jupiter, Saturn, Uranus, and Neptune, respectively, from 0.1 to tens of cm wavelength. The data shown are collected from many observers. Data for Jupiter, Saturn, and Uranus are those cataloged by de Pater and Massie (1985), plus the Saturn Very Large Array (VLA) data by Grossman et al. Figure 3, Uranus, shows only data acquired since 1973. Before 1973 Uranus' T(sub B) increased steadily as its pole moved into view, causing significant scatter in those data. Neptune data at greater than 1 cm, all taken at the VLA, are collected from de Pater and Richmond, de Pater et al., and Hofstadter. For a variety of reasons, such as susceptibility to source confusion, single-dish data at those wavelengths are much noisier than the more reliable VLA data and have been ignored. Single-dish data by Griffin and Orton shortward of 0.4 cm are shown, along with the Owens Valley Radio Observatory (interferometer) datum at 0.266 cm by Muhleman and Berge. Spectra of Jupiter, Saturn, and Neptune share certain gross characteristics. In each spectrum, T(sub B) at 1.3 cm is approximately 120-140 K, less than approximately 30 K different from that at 0.1 cm. All three spectra show a break in slope at or near 1.3 cm, with T(sub B) increasing fairly rapidly with wavelength longward of 1.3 cm. Visible and IR spectroscopy show that NH3, whose strong inversion

  13. Planets in a Room

    Science.gov (United States)

    Giacomini, l.; Aloisi, F.; De Angelis, I.

    2017-09-01

    Teaching planetary science using a spherical projector to show the planets' surfaces is a very effective but usually very expensive idea. Whatsmore, it usually assumes the availability of a dedicated space and a trained user. "Planets in a room" is a prototypal low cost version of a small, spherical projector that teachers, museum, planetary scientists and other individuals can easily build and use on their own, to show and teach the planets The project of "Planets in a Room" was made by the italian non-profit association Speak Science with the collaboration of INAF-IAPS of Rome and the Roma Tre University (Dipartimento di Matematica e Fisica). This proposal was funded by the Europlanet Outreach Funding Scheme in 2016. "Planets in a room" will be presented during EPSC 2017 to give birth to the second phase of the project, when the outreach and research community will be involved and schools from all over Europe will be invited to participate with the aim of bringing planetary science to a larger audience.

  14. Final Report: "Recreating Planet Cores in the Laboratory"

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, Raymond [Univ. of California, Berkeley, CA (United States)

    2017-06-02

    The grant supported a combination of experimental and theoretical research characterizing materials at high pressures (above 0.1-1 TPa = 1-10 million atmospheres) and modest temperatures (below 20,000-100,000 K). This is the “warm dense” (sub-nuclear) regime relevant to understanding the properties of planets, and also to characterizing the chemical bonding forces between atoms. As such, the experiments provide important validation and extensions of theoretical simulations based on quantum mechanics, and offer new insights into the nature and evolution of planets, including the thousands of recently discovered extra-solar planets. In particular, our experiments have documented that: 1) helium can separate from hydrogen at conditions existing inside Jupiter and Saturn, providing much of these planets’ internal energy hence observed luminosities; 2) water ice is likely present in a superionic state with mobile protons inside Uranus and Neptune; 3) rock (oxides) can become metallic at conditions inside “super-Earths” and other large planets, thereby contributing to their magnetic fields; and 4) the “statistical atom” regime that provides the theoretical foundation for characterizing materials at planetary and astrophysical conditions is now accessible to experimental testing.

  15. Academic Training - Exploring Planets and Moons in our Solar System

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 6, 7, 8, 9 June 11:00-12:00. On the 8 June from 10:00 to 12:00 - Auditorium, bldg 500 Exploring Planets and Moons in our Solar System H.O. RUCKER / Space Research Institut, Graz The lecture series comprises 5 lectures starting with the interplanetary medium, the solar wind and its interaction with magnetized planets. Knowledge on the magnetically dominated 'spheres'around the Giant Planets have been obtained by the Grand Tour of both Voyager spacecraft to Jupiter, Saturn, with the continuation of Voyager 2 to Uranus, and Neptune, in the late seventies and eighties of last century. These findings are now extensively supported and complemented by Cassini/Huygens to the Saturnian system. This will be discussed in detail in lecture 2. Specific aspects of magnetospheric physics, in particular radio emissions from the planets, observed in-situ and by remote sensing techniques, will be addressed in the following lecture 3. Of high importance are also the rec...

  16. Recipes for planet formation

    Science.gov (United States)

    Meyer, Michael R.

    2009-11-01

    Anyone who has ever used baking soda instead of baking powder when trying to make a cake knows a simple truth: ingredients matter. The same is true for planet formation. Planets are made from the materials that coalesce in a rotating disk around young stars - essentially the "leftovers" from when the stars themselves formed through the gravitational collapse of rotating clouds of gas and dust. The planet-making disk should therefore initially have the same gas-to-dust ratio as the interstellar medium: about 100 to 1, by mass. Similarly, it seems logical that the elemental composition of the disk should match that of the star, reflecting the initial conditions at that particular spot in the galaxy.

  17. Location of Planet X

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, R.S.

    1988-10-01

    Observed positions of Uranus and Neptune along with residuals in right ascension and declination are used to constrain the location of a postulated tenth planet. The residuals are converted into residuals in ecliptic longitude and latitude. The results are then combined into seasonal normal points, producing average geocentric residuals spaced slightly more than a year apart that are assumed to represent the equivalent heliocentric average residuals for the observed oppositions. Such a planet is found to most likely reside in the region of Scorpius, with considerably less likelihood that it is in Taurus. 8 references.

  18. TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacklin, Savannah [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Lund, Michael B.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States)

    2015-07-15

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.

  19. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  20. Stratospheric Oxygen Chemistry on the Giant Planets from Dust Ablation and Comets

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-10-01

    The stratospheres of Jupiter, Saturn, Uranus, and Neptune all contain oxygen-bearing molecules that were supplied by comets, interplanetary dust particles, and/or local satellite/ring sources. We use recent dynamical model predictions for the dust velocity/mass distributions in the outer solar system and corresponding influx rates to the giant planets (Poppe, A.R., 2016, Icarus 264, 369) to investigate the dust ablation process on these planets and to model the resulting coupled oxygen-hydrocarbon neutral photochemistry. Model-data comparisons are then used to constrain the relative roles of the different sources in delivering external oxygen to the giant planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0 +2.2 -0.7 ×107 O atoms cm-2 s-1 to Jupiter, 7.4 +16 -5.1 ×104 cm-2 s-1 to Saturn, 8.9 +19 -6.1 ×104 cm-2 s-1 to Uranus, and 7.5 +16 -5.1 ×105 cm-2 s-1 to Neptune. The bulk of the oxygen ends up in the photochemically stable species CO, H2O, and CO2, which have been observed giant-planet stratospheres. Interplanetary dust grains contribute a major component of the external oxygen to Jupiter and Uranus but are insufficient to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results suggest that local sources such as Enceladus and/or the rings supply much of Saturn's stratospheric water, while large comets within the last few hundred years or so have delivered CO to Jupiter, Saturn, Neptune, and perhaps Uranus. The low background H2O abundance in Jupiter’s stratosphere, in combination with our high predicted dust influx rate, suggests effective conversion of meteoric oxygen to CO during or immediately after the ablation process —photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  1. Unstable Roche-Lobe Overflow of Gaseous Planets

    Science.gov (United States)

    Jackson, Brian

    provide a glimpse inside gas giants. If our study corroborates the unstable RLO hypothesis, the properties of USPs may represent those of gaseous planet cores, which are almost entirely unconstrained. Even in our own solar system, estimates of the core masses for Jupiter (between 0 and 14 Earth masses) and Saturn (between 8 and 25 Earth masses) have large uncertainties. The upcoming Juno mission will clarify the situation for Jupiter, but it's unclear whether these constraints will directly bear on other planetary systems. -The TESS mission will probably find hundreds of ultra-short-period planets. The Transiting Exoplanet Survey Satellite (TESS) will launch in 2017 and look for shortperiod rocky planets around 500,000 nearby stars. Roughly 0.1% of Sun-like stars host USPs, so TESS should find hundreds of USPs. These planets would be ideal for followup, and a clear framework for their origins would motivate and guide additional TESS observations. -Even if we show they are not remnants of gaseous planets, ultra-short-period planets may serve as probes of the innermost protoplanetary gas disk and betray the presence of additional planets in their host systems. As we discuss below, one other obvious origin scenario involves dynamical interactions in a multi-planet system. Many USPs do not have observed siblings, so this scenario requires that there are additional, unseen planets in those systems. The exact location of USPs may be set, in part, by the inner edge of their maternal gas disk, a sensitive function of the host star's youthful properties.

  2. Using the tools of the trade to understand plasma interactions at Jupiter and Saturn

    Science.gov (United States)

    Kivelson, Margaret G.

    2017-10-01

    For more than half a century, we have been learning how magnetospheres work. Fluid motions and electromagnetic interactions combine to produce the plasma and field environment of a planet. Kinetic responses often control the dynamics. Initial descriptions of the terrestrial magnetosphere were often theoretical (e.g., Chapman and Ferraro, Dungey) before an explosion of spacecraft data provided an atlas of the system and its temporal variations. The basic structure and dynamics of the terrestrial magnetosphere are now largely understood. A different situation exists for the magnetospheres of Jupiter, Saturn, and their moons. Data acquired from spacecraft flybys or from orbit have characterized many aspects of these systems, but measurements are far more limited than at Earth both in space and in time. Even after Cassini’s mission to Saturn and Juno’s prime mission at Jupiter have ended, large regions in the plasma environments of these planets will remain unexplored. No monitors are available to characterize the upstream solar wind. Theory is challenged by the complexity introduced by dynamical effects of the planets’ rapid rotation and the unfamiliar parameter regimes governing interactions with their large moons. Simulation has come to the rescue, providing computational models designed to incorporate the effects of rotation or to describe moon-magnetosphere interactions. Yet simulations must be viewed with appropriate skepticism as they invariably require some compromise with reality. This talk will describe a symbiotic approach to understanding the dynamics of giant planet magnetospheres and the plasma interactions between magnetospheric plasma and large moons. Data acquired along a spacecraft trajectory are compared with values extracted from a virtual spacecraft moving through the same path in the simulation. If results are similar, we use the simulation to identify the processes responsible for puzzling aspects of the signatures. If results differ

  3. Planets and satellites galore

    Science.gov (United States)

    Marsden, B. G.

    1980-10-01

    The facts and controversies surrounding the discoveries of Uranus, Neptune, Pluto and their satellites are reviewed. Earth-approaching and earth-crossing minor planets are discussed with attention to the work of Helin and Giclas. The problems attending satellite discoveries are examined, and the criteria for 1978 P 1 is evaluated.

  4. The Planet Formation Imager

    Science.gov (United States)

    Kraus, S.; Buscher, D. F.; Monnier, J. D.; PFI Science, the; Technical Working Group

    2014-04-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work is being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI and discuss how PFI could significantly advance our understanding of the architecture and potential habitability of planetary systems. We present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. Finally, we give an overview about the interferometric and non-interferometric technologies that we are investigating in order to meet the specifications.

  5. The Planet Venus

    Science.gov (United States)

    1979-01-01

    Physical features of the planet Venus, including its rotational characteristics and the surface properties observed by NASA's Deep Space Network radar scanner and Soviet spacecraft are examined. Atmospheric composition and circulation and the nature of the Venus clouds are also discussed in this instructional pamphlet. A reading list and student projects are included.

  6. Planets and Pucks.

    Science.gov (United States)

    Brueningsen, Christopher; Krawiec, Wesley

    1993-01-01

    Presents a simple activity designed to allow students to experimentally verify Kepler's second law, sometimes called the law of equal areas. It states that areas swept out by a planet as it orbits the Sun are equal for equal time intervals. (PR)

  7. Planetary radio astronomy: Earth, giant planets, and beyond

    Science.gov (United States)

    Rucker, H. O.; Panchenko, M.; Weber, C.

    2014-11-01

    The magnetospheric phenomenon of non-thermal radio emission is known since the serendipitous discovery of Jupiter as radio planet in 1955, opening the new field of "Planetary Radio Astronomy". Continuous ground-based observations and, in particular, space-borne measurements have meanwhile produced a comprehensive picture of a fascinating research area. Space missions as the Voyagers to the Giant Planets, specifically Voyager 2 further to Uranus and Neptune, Galileo orbiting Jupiter, and now Cassini in orbit around Saturn since July 2004, provide a huge amount of radio data, well embedded in other experiments monitoring space plasmas and magnetic fields. The present paper as a condensation of a presentation at the Kleinheubacher Tagung 2013 in honour of the 100th anniversary of Prof. Karl Rawer, provides an introduction into the generation mechanism of non-thermal planetary radio waves and highlights some new features of planetary radio emission detected in the recent past. As one of the most sophisticated spacecraft, Cassini, now in space for more than 16 years and still in excellent health, enabled for the first time a seasonal overview of the magnetospheric variations and their implications for the generation of radio emission. Presently most puzzling is the seasonally variable rotational modulation of Saturn kilometric radio emission (SKR) as seen by Cassini, compared with early Voyager observations. The cyclotron maser instability is the fundamental mechanism under which generation and sufficient amplification of non-thermal radio emission is most likely. Considering these physical processes, further theoretical investigations have been started to investigate the conditions and possibilities of non-thermal radio emission from exoplanets, from potential radio planets in extrasolar systems.

  8. Saturn ring particles as dynamic ephemeral bodies.

    Science.gov (United States)

    Davis, D R; Weidenschilling, S J; Chapman, C R; Greenberg, R

    1984-05-18

    Although Saturn's rings are within the Roche zone, the accretion of centimeter-sized particles into large aggregates many meters in diameter occurs readily, on a time scale of weeks. These aggregates are disrupted when tidal stresses exceed their very low strengths; thus most of the mass of the ring system is continually processed through a population of large "dynamic ephemeral bodies," which are continually forming and disintegrating. These large aggregates are not at all like the idealized ice spheres often used in modeling Saturn's ring dynamics. Their coefficient of restitution is low, hence they form a monolayer in the ring plane. The optically observable characteristics of the rings are dominated by the swarm of centimeter-sized particles.

  9. Size and shape of Saturn's moon Titan

    Science.gov (United States)

    Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan

    2009-01-01

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 ± 0.05 kilometers (km), 2574.36 ± 0.03 km, and 2574.91 ± 0.11 km, respectively; its mean radius is 2574.73 ± 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most—but not all—of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  10. Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Simpson, D.; Paterson, W.

    2012-01-01

    We present the present status of an investigation of the rotation rate of Saturn 's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. (2005) [1] for SOI and similar to that used by Thomsen et al. (2010). This technique allows one to nearly cover the full energy range of the CAPS IMS from 1 V less than or equal to E/Q less than 50 kV. Since our technique maps the observations into a local inertial frame, it does work during roll manoeuvres. We have made comparisons with Wilson et al. (2008) [2] (2005-358 and 2005-284) who performs a bi-Maxwellian fit to the ion singles data and our results are nearly identical. We will also make comparisons with results by Thomsen et al. (2010) [3]. Our analysis uses ion composition data to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. Since our analysis is a velocity moments technique it will work within the inner magnetosphere where pickup ions are important and velocity distributions are non-Maxwellian. So, we will present results inside Enceladus' L shell and determine if mass loading is important. In the future we plan to make comparisons with magnetic field observations, use Saturn ionosphere conductivities as

  11. South Polar Ammonia Clouds on Saturn°

    Science.gov (United States)

    Sromovsky, Lawrence A.; Baines, Kevin H.; Fry, Patrick M.

    2017-10-01

    Most of Saturn is covered by a thick cloud layer of unknown composition. Evidence of the underlying NH3 ice cloud (its strong 3-μm absorption signature) had so far been seen only in association with lightning storms, including the Great Storm of 2010-2011 (Sromovsky et al. 2013, Icarus 226, 402-418), near 35° N planetocentric latitude, and much smaller storms located near 36° S in the Storm Alley region (Baines et al. 2009, Planet. & Space Sci. 57, 1650-1658). In the Great Storm, NH3 ice reached the visible cloud tops. The Storm Alley clouds have more subtle 3-μm signatures, which is consistent with ammonia ice reaching into but not fully penetrating the upper cloud (Sromovsky et al. 2017, Icarus submitted). The presence of 3-μm absorption features in the south polar region is surprising because there is no associated lighting that would indicate deep convection. Radiation transfer modeling of October 2006 VIMS spectra of these features yields good fits with a stacked structure of a thin stratospheric haze, a physically thin and optically thin (~0.2 optical depths at 2 μm) layer of non-absorbing particles, a moderate layer of NH3 ice particles (r=2 μm, ~2 optical depths) near 550 mbar, then a clear region down to about 2 bars, which marks the top of a very optically thick layer of NH4SH particles, which provides a needed strong reduction in thermal emission in the 5-μm window. The structure of neighboring clouds differs dramatically in the NH4SH layer, which has a much lower optical depth and has a cloud top 1 bar deeper. But the ammonia layer is the main modulator of pseudo continuum I/F in reflected sunlight. That layer has an optical depth of about 1.3 in background clouds, but almost double that in the brightest clouds. What makes the 3-μm absorption of the NH3 ice layer more apparent in these polar clouds is the reduced optical depth of the upper cloud layer, which is an order of magnitude less than in other regions on Saturn, perhaps because of polar

  12. The DISTO Data Acquisition System at SATURNE

    OpenAIRE

    The DISTO Collaboration

    1997-01-01

    The DISTO collaboration has built a large-acceptance magnetic spectrometer designed to provide broad kinematic coverage of multi-particle final states produced in $pp$ scattering. The spectrometer has been installed in the polarized proton beam of the Saturne accelerator in Saclay to study polarization observables in the $\\vec{p} p \\to p K^{+} \\vec{Y}$ ($Y = \\Lambda, \\Sigma^{0}$ or $Y^{*}$) reaction and vector meson production ($\\phi, \\omega$ and $\\rho$) in $pp$ collisions. The data acquisiti...

  13. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/Vims

    Science.gov (United States)

    Baines, K.H.; Momary, T.W.; Buratti, B.J.; Matson, D.L.; Nelson, R.M.; Drossart, P.; Sicardy, B.; Formisano, V.; Bellucci, G.; Coradini, A.; Griffith, C.; Brown, R.H.; Bibring, J.-P.; Langevin, Y.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Combes, M.; Cruikshank, D.P.; Jaumann, R.; McCordt, T.B.; Mennella, V.; Nicholson, P.D.; Sotin, Christophe

    2006-01-01

    The wide spectral coverage and extensive spatial, temporal, and phase-angle mapping capabilities of the Visual Infrared Mapping Spectrometer (VIMS) onboard the Cassini-Huygens Orbiter are producing fundamental new insights into the nature of the atmospheres of Saturn and Titan. For both bodies, VIMS maps over time and solar phase angles provide information for a multitude of atmospheric constituents and aerosol layers, providing new insights into atmospheric structure and dynamical and chemical processes. For Saturn, salient early results include evidence for phosphine depletion in relatively dark and less cloudy belts at temperate and mid-latitudes compared to the relatively bright and cloudier Equatorial Region, consistent with traditional theories of belts being regions of relative downwelling. Additional Saturn results include (1) the mapping of enhanced trace gas absorptions at the south pole, and (2) the first high phase-angle, high-spatial-resolution imagery of CH4 fluorescence. An additional fundamental new result is the first nighttime near-infrared mapping of Saturn, clearly showing discrete meteorological features relatively deep in the atmosphere beneath the planet's sunlit haze and cloud layers, thus revealing a new dynamical regime at depth where vertical dynamics is relatively more important than zonal dynamics in determining cloud morphology. Zonal wind measurements at deeper levels than previously available are achieved by tracking these features over multiple days, thereby providing measurements of zonal wind shears within Saturn's troposphere when compared to cloudtop movements measured in reflected sunlight. For Titan, initial results include (1) the first detection and mapping of thermal emission spectra of CO, CO2, and CH3D on Titan's nightside limb, (2) the mapping of CH4 fluorescence over the dayside bright limb, extending to ??? 750 km altitude, (3) wind measurements of ???0.5 ms-1, favoring prograde, from the movement of a persistent

  14. The auroral footprint of Enceladus on Saturn.

    Science.gov (United States)

    Pryor, Wayne R; Rymer, Abigail M; Mitchell, Donald G; Hill, Thomas W; Young, David T; Saur, Joachim; Jones, Geraint H; Jacobsen, Sven; Cowley, Stan W H; Mauk, Barry H; Coates, Andrew J; Gustin, Jacques; Grodent, Denis; Gérard, Jean-Claude; Lamy, Laurent; Nichols, Jonathan D; Krimigis, Stamatios M; Esposito, Larry W; Dougherty, Michele K; Jouchoux, Alain J; Stewart, A Ian F; McClintock, William E; Holsclaw, Gregory M; Ajello, Joseph M; Colwell, Joshua E; Hendrix, Amanda R; Crary, Frank J; Clarke, John T; Zhou, Xiaoyan

    2011-04-21

    Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.

  15. Seeing ghosts - Photometry of Saturn's G Ring

    Science.gov (United States)

    Showalter, Mark R.; Cuzzi, Jeffrey N.

    1993-01-01

    Saturn's faint and narrow G Ring is only visible to the eye in two Voyager images, each taken at a rather high solar phase angle of about 160 deg. In this paper we introduce a new photometric technique for averaging across multiple Voyager images, and use it to detect the G Ring at several additional viewing geometries. The resultant phase curve suggests that the G Ring is composed of dust particles obeying a very steep power-law size distribution. The dust is generally smaller than that seen in other rings, ranging down to 0.03 micron. The G Ring occupies the region between orbital radii 166,000 and 173,000 km, and has a peak somewhat closer to the inner edge. Based on these limits, we demonstrate that Voyager 2 passed through and directly sampled this ring during its 1981 encounter with Saturn. Combined analysis of additional data sets suggests that a population of larger bodies is also present in the G Ring; these bodies occupy a narrower band near the observed peak and are likely the source for the visible dust. Based on some preliminary dynamical models, we propose that these larger bodies represent leftover debris from the collisional breakup of a small moon in Saturn's distant past.

  16. Whistler mode waves upstream of Saturn

    Science.gov (United States)

    Sulaiman, A. H.; Gurnett, D. A.; Halekas, J. S.; Yates, J. N.; Kurth, W. S.; Dougherty, M. K.

    2017-01-01

    Whistler mode waves are generated within and can propagate upstream of collisionless shocks. They are known to play a role in electron thermodynamics/acceleration and, under certain conditions, are markedly observed as wave trains preceding the shock ramp. In this paper, we take advantage of Cassini's presence at 10 AU to explore the importance of whistler mode waves in a parameter regime typically characterized by higher Mach number (median of 14) shocks, as well as a significantly different interplanetary magnetic field structure, compared to near Earth. We identify electromagnetic precursors preceding a small subset of bow shock crossings with properties which are consistent with whistler mode waves. We find these monochromatic, low-frequency, and circularly polarized waves to have a typical frequency range of 0.2-0.4 Hz in the spacecraft frame. This is due to the lower ion and electron cyclotron frequencies near Saturn, between which whistler waves can develop. The waves are also observed as predominantly right handed in the spacecraft frame, the opposite sense to what is typically observed near Earth. This is attributed to the weaker Doppler shift, owing to the large angle between the solar wind velocity and magnetic field vectors at 10 AU. Our results on the low occurrence of whistler waves upstream of Saturn also underpin the predominantly supercritical bow shock of Saturn.

  17. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  18. Stratospheric benzene and hydrocarbon aerosols observed in Saturn's upper atmosphere

    Science.gov (United States)

    Guerlet, S.; Koskinen, T.

    2017-09-01

    We review recent observations of benzene and hydrocarbon aerosols in Saturn's middle and upper atmosphere by Cassini/CIRS and Cassini/UVIS. These results support the link between the precipitation of energetic electrons (ion chemistry) and the production of benzene and aerosols in Saturn's polar regions, and that solar-driven ion chemistry could also play a significant role in producing benzene at low and mid-latitudes. We also evaluate the radiative impact of the haze on Saturn's stratospheric temperatures.

  19. Optimisation of Code_Saturne for Petascale Simulations

    OpenAIRE

    Moulinec, C.

    2012-01-01

    Some of the optimisations required to prepare Code_Saturne for petascale simulations are presented in this white paper, along with the performance of the code. A mesh multiplication package based on parallel global refinement of hexahedral meshes has been developed for Code_Saturne to handle meshes containing billions† of cells and to efficiently exploit PRACE Tier-0 system capabilities. Several parallel partitioning tools have been tested and Code_Saturne performance has been assessed up to ...

  20. Building the Terrestrial Planets: Constraining Planetary Accretion in the inner Solar System

    Science.gov (United States)

    Raymond, Sean N.; O'Brien, D. P.; Morbidelli, A.; Kaib, N. A.

    2008-05-01

    We present results of N-body simulations of planetary accretion with the goal of reproducing the inner Solar System. Planetary embryos and planetesimals evolve and grow under the influence of Jupiter and Saturn, which are assumed to have formed during the short gaseous phase of the Solar Nebula. We compare the results of these simulations to the current Solar System in order to constrain the configuration of Jupiter and Saturn at early times, analyzing cases that are both consistent and contrary to the 'Nice model.' We attempt to reproduce 1) the masses and orbits of Venus, Earth and Mars -- Mars' relatively small mass in particular has not been adequately reproduced in previous simulations; 2) the structure of the asteroid belt -- we show that a remnant embryo larger than the Moon is inconsistent with the main belt structure; and 3) the water content of the Earth, assuming that it was delivered in the form of water-rich primitive asteroidal material. We find that Jupiter and Saturn are the most important factor in the outcome, exciting asteroidal bodies via secular and mean motion resonances. A configuration with the giant planets on circular orbits can form a water-rich Earth and Venus but Mars' mass is too large by a factor of 5-10. A configuration with Jupiter and Saturn in their current locations but with slightly higher eccentricities produces Earth, Venus, Mars and the asteroid belt, but does not allow water delivery to Earth. Further simulations with a range of configurations of Jupiter and Saturn are currently underway in order to better reproduce all of the above characteristics of the inner Solar System. This will allow us to constrain Jupiter and Saturn's orbits at early times and test the validity of scenarios such as the 'Nice model.'

  1. Zonal flow magnetic field interaction in the semi-conducting region of giant planets

    Science.gov (United States)

    Cao, Hao; Stevenson, David J.

    2017-11-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the entire planet. The electrical conductivity increases rapidly yet smoothly as a function of depth inside Jupiter and Saturn. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. Here we investigate the interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. Assuming the peak amplitude of the dynamo α-effect to be 0.1 mm/s, deep zonal flows on the order of 0.1-1 m/s in the semi-conducting region of Jupiter and Saturn would generate poloidal magnetic perturbations on the order of 0.01%-1% of the background dipole field. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets.

  2. Classifying Planets: Nature vs. Nurture

    Science.gov (United States)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  3. HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, B.; Musielak, Z. E.; Cuntz, M., E-mail: billyq@uta.edu, E-mail: zmusielak@uta.edu, E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-05-01

    We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming in the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.

  4. Discovery and Mass Measurements of a Cold, Sub-Neptune Mass Planet and Its Host Star

    Science.gov (United States)

    Barry, Richard K., Jr.

    2011-01-01

    The gravitational microlensing exoplanet detection method is uniquely sensitive to cold, low-mass planets which orbit beyond the snow-line, where the most massive planets are thought to form. The early statistical results from microlensing indicate that Neptune-Saturn mass planets located beyond the snow-line are substantially more common than their counterparts in closer orbits that have found by the Doppler radial velocity method. We present the discovery of the planet MOA-2009-BLG-266Lb, which demonstrates that the gravitational microlensing method also has the capability to measure the masses of cold, low-mass planets. The mass measurements of the host star and the planet are made possible by the detection of the microlensing parallax signal due to the orbital motion or the Earth as well as observations from the EPOXI spacecraft in a Heliocentric orbit. The microlensing light curve indicates a planetary host star mass of M(sun) = 0.54 + / - 0.05M(sun) located at a distance of DL= 2.94 _ 0.21 kpc, orbited by a planet of mass mp= 9.8 +/-1.1M(Earth) with a semi-major axis of a = 3.1(+1.9-0.4)MAU.

  5. The CIRS Investigation on Cassini after Six Years at Saturn

    Science.gov (United States)

    Jennings, Donald

    2010-01-01

    The CIRS investigation designed to provide: 1) infrared spectroscopy of thermal emission from atmospheres, rings, and surfaces in 10 +/- 1450 cm(exp -1) (1000 +/- 7 micron) region; 2) global mapping in atmospheres of three dimensional and temporal variation of gas composition, temperatures, dynamics, and aerosols and clouds; and 3) mapping of rings and icy satellite surfaces for composition and thermal properties. Topics include: optical and mechanical layouts, instrument description, preparation for launch, Saturn's rings in the light spectrum, Saturn brightness temperature spectrum, and views of Saturn's surface, rings, and Saturn's moons and their atmospheres.

  6. Correction terms for the thermodynamics of a black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of)

    2015-12-17

    In this paper, we will analyze the effects of thermal fluctuations on the stability of a black Saturn. The entropy of the black Saturn will get corrected due to these thermal fluctuations. We will demonstrate that the correction term generated by these thermal fluctuations is a logarithmic term. Then we will use this corrected value of the entropy to obtain bounds for various parameters of the black Saturn. We will also analyze the thermodynamical stability of the black Saturn in presence of thermal fluctuations, using this corrected value of the entropy.

  7. Corrections Terms for the Thermodynamics of a Black Saturn

    CERN Document Server

    Faizal, Mir

    2015-01-01

    In this paper, we will analyze the effects of thermal fluctuations on the stability of a black Saturn. The entropy of the black Saturn will get corrected due to these thermal fluctuations. We will demonstrate that the correction term generated by these thermal fluctuations is a logarithmic term. Then we will use this corrected value of the entropy to obtain bounds for various parameters of the black Saturn. We will also analyze the thermodynamical stability of the black Saturn in presence of thermal fluctuations, using this corrected value of the entropy.

  8. Disruption of Saturn's Equatorial Stratospheric Oscillation by the Great Storm of 2011

    Science.gov (United States)

    Fletcher, Leigh; Guerlet, Sandrine; Orton, Glenn; Cosentino, Richard; Fouchet, Thierry; Irwin, Patrick; Li, Liming

    2017-04-01

    Saturn's equatorial stratosphere exhibits at pattern of periodic oscillations in temperatures and zonal winds with a 15-year period (Fouchet et al., 2008, doi:10.1038/nature06912; Orton et al., 2008, doi:10.1038/nature06897). This pattern is analogous to Earth's Quasi-Biennial Oscillation (QBO) and Jupiter's Quasi-Quadrennial Oscillation (QQO), and may be driven by interaction of the mean zonal flow with waves spawned by tropospheric meteorology. Inversions of Cassini Composite Infrared Spectrometer (CIRS) limb and nadir spectra allowed the construction of a time series of Saturn's equatorial temperatures from 2004 to 2016, revealing the slow downward propagation of the temperature/wind pattern in the 0.1-100 mbar range. However, this pattern was spectacularly disrupted in 2011 at the same time as a large tropospheric storm system and associated stratospheric vortex (the 'beacon') were both active in the Saturn's northern springtime hemisphere (Fletcher et al., 2012, doi: 10.1016/j.icarus.2012.08.024). Temperatures were perturbed throughout Saturn's tropical stratosphere (30N-30S), with substantial cooling (10-K at 1 mbar) at 10N and 10S by 2012. This coincided with the removal of bright near-equatorial bands of methane emission observed from ground-based observatories at 7.8 µm. 1-mbar temperatures at 10N/10S did not recover to their pre-storm levels until 2014-15, when the familiar temperature/wind pattern of Saturn's equatorial oscillation was re-established and had resumed its downward propagation. The 2011 Saturnian storm therefore had a dramatic impact on the equatorial oscillation, shifting it into a new phase whose temporal period is yet to be determined. Horizontally and vertically propagating waves, emanating from both the storm and the beacon near 40N, could have transported momentum into the equatorial wind system to drive temperature changes across the equatorial region. Similar disruption associated with the 1990 equatorial storm could explain why

  9. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    Science.gov (United States)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  10. Planet formation around millisecond pulsars

    Science.gov (United States)

    Banit, Menashe; Ruderman, Malvin; Shaham, Jacob

    1993-01-01

    We present a model for the formation of planets in circular orbits around millisecond pulsars. We propose that the planets originate from a circumbinary excretion disk around a binary millisecond pulsar and show how physical conditions in such a disk lead to the eventual formation of planets.

  11. Extrasolar Planets in the Classroom

    Science.gov (United States)

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  12. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs

    Science.gov (United States)

    Saumon, Didier; Hubbard, William B.; Chabrier, Gilles; Van Horn, Hugh M.

    1992-01-01

    An equation of state for hydrogen which predicts a molecular-metallic phase transition at finite temperatures has become available recently. The effect of this phase transition on the cooling histories of these two giant planets and of substellar brown dwarfs is studied. The phase transition alters the present age of Jupiter and of Saturn by a few percent. Interestingly, the cooling of brown dwarfs is most strongly affected at the time when the interior adiabat crosses the critical point of the phase transition.

  13. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  14. Search and Study of Storm Activity on Saturn and Other Planets of the Solar System

    Science.gov (United States)

    Mylostna, K. Y.; Zakharenko, V. V.

    2013-03-01

    This paper analyzes the available results of planetary thunderstorm, researches in order to assess the possibility of recording, and studying them by low-frequency ground-based radio telescopes,, such as the UTR-2, radio interferometer system URAN,, and also LOFAR (Low Frequency Array), LWA (Long Wavelength, Array) and GURT (Giant Ukrainian Radio Telescope).

  15. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  16. Observability of forming planets and their circumplanetary discs - I. Parameter study for ALMA

    Science.gov (United States)

    Szulágyi, J.; Plas, G. van der; Meyer, M. R.; Pohl, A.; Quanz, S. P.; Mayer, L.; Daemgen, S.; Tamburello, V.

    2018-01-01

    We present mock observations of forming planets with Atacama Large Millimeter Array (ALMA). The possible detections of circumplanetary discs (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 au from their star. The radiative, 3D hydrodynamic simulations were then post-processed with RADMC3D and the ALMA observation simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit; therefore, the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as band 9 (440 μm). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup gas-giant, due to temperature-weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disc leading to a less efficient cooling there. A test was made for a 52 au orbital separation, which showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>5 h). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; secondly, the beam convolution makes the gap shallower and at least 25 per cent narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.

  17. A Strong High Altitude Narrow Jet At Saturn'S Equator From Cassini/ISS Images

    Science.gov (United States)

    Garcia-Melendo, Enrique; Sánchez-Lavega, A.; Legarreta, J.; Pérez-Hoyos, S.; Hueso, R.

    2010-10-01

    The intense equatorial eastward jets observed at cloud level in Jupiter and Saturn, represent a major challenge for geophysical fluid dynamics. Saturn's equatorial jet is of particular interest in view of its three dimensional structure, suspected large temporal variability, and related stratospheric semiannual oscillation. Here we report the discovery at the upper cloud level of an extremely narrow and strong jet centered in the middle of the broad equatorial jet. Previously published works on Saturn's equatorial winds at cloud level provided only a partial coverage. Automatic correlation of brightness scans and manually tracked cloud features, retrieved from images obtained by the Cassini Imaging Science Subsystem (ISS), show that the jet reaches 430 ms-1 with a peak speed difference of 180 ms-1 relative to nearby latitudes at 60 mbar and 390 ms-1 at depths > 500 mbar. Images were obtained in two filters: MT3, centred at the 889nm strong methane absorption band, and CB3 centred at the near infrared 939nm continuum, which are sensitive to different altitude levels at the upper clouds and hazes. Contrarily to what is observed in other latitudes, its velocity increases with altitude. Our findings helps to extend the view we have of the equatorial stratospheric dynamics of fast rotating planets beyond the best known terrestrial environment, and extract more general consequences of the interaction between waves and mean flow. It remains to be known if this equatorial jet structure, now determined in detail in three dimensions, is permanent or variable with the seasonal solar insolation cycle, including the variable shadow cast by the rings. EGM, ASL, JL, SPH, and RH have been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and ASL, JL, SPH, and RH by Grupos Gobierno Vasco IT-464-07

  18. Kronoseismology III: An update on Saturn-driven waves in the C ring

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Hedman, Matthew M.

    2016-05-01

    In previous work (Hedman & Nicholson [2013] Astron. J. 146, 12; Ibid [2014] MNRAS 444, 1369; French et al. [2016] Icarus, in press) we have identified 9 inward-propagating density waves in Saturn's C ring with outer Lindblad resonances (OLRs) generated by internal oscillations in Saturn. The oscillations involved are sectoral f-modes (ie., fundamental modes with l = m) with m = 1, 2, 3, 4 and 10. In addition, 5 outward-propagating waves between radii of 84,800 and 86,600 km have been identified as density waves driven by 3:2 tesseral resonances with fixed gravitational anomalies within the planet. (See Hedman et al., this conference.)We have now examined additional C ring waves from the catalog of Baillie et al. [2011], in an attempt to identify several weaker and shorter-wavelength waves in the inner C ring. We use a modified version of our previous wavelet-based technique to coadd phase-corrected spectra from multiple occultations, using trial values of `m` and the pattern speed to predict their relative phases. This enables us to detect waves too weak to see in individual occultations. To date, 6 new waves have been identified. Two appear to be due to additional saturnian f-modes, with m = 2 and m = 9. The other 4 waves appear to be a new variety: outward-propagating bending waves driven at outer vertical resonances (OVRs) with Saturn internal oscillations with l = m + 1. We find waves with m = 4, 7, 8 & 9. All of the newly-identified waves are at radii less than 77,000 km and only the m = 4 OVR is near the location predicted by Marley & Porco [1993].

  19. An Objective Classification of Saturn Cloud Features from Cassini ISS Images

    Science.gov (United States)

    Del Genio, Anthony D.; Barbara, John M.

    2016-01-01

    A k -means clustering algorithm is applied to Cassini Imaging Science Subsystem continuum and methane band images of Saturn's northern hemisphere to objectively classify regional albedo features and aid in their dynamical interpretation. The procedure is based on a technique applied previously to visible- infrared images of Earth. It provides a new perspective on giant planet cloud morphology and its relationship to the dynamics and a meteorological context for the analysis of other types of simultaneous Saturn observations. The method identifies 6 clusters that exhibit distinct morphology, vertical structure, and preferred latitudes of occurrence. These correspond to areas dominated by deep convective cells; low contrast areas, some including thinner and thicker clouds possibly associated with baroclinic instability; regions with possible isolated thin cirrus clouds; darker areas due to thinner low level clouds or clearer skies due to downwelling, or due to absorbing particles; and fields of relatively shallow cumulus clouds. The spatial associations among these cloud types suggest that dynamically, there are three distinct types of latitude bands on Saturn: deep convectively disturbed latitudes in cyclonic shear regions poleward of the eastward jets; convectively suppressed regions near and surrounding the westward jets; and baro-clinically unstable latitudes near eastward jet cores and in the anti-cyclonic regions equatorward of them. These are roughly analogous to some of the features of Earth's tropics, subtropics, and midlatitudes, respectively. This classification may be more useful for dynamics purposes than the traditional belt-zone partitioning. Temporal variations of feature contrast and cluster occurrence suggest that the upper tropospheric haze in the northern hemisphere may have thickened by 2014. The results suggest that routine use of clustering may be a worthwhile complement to many different types of planetary atmospheric data analysis.

  20. X-Rays from Saturn and its Rings

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  1. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    Science.gov (United States)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; hide

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  2. In Situ Surveying of Saturn's Rings

    Science.gov (United States)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C.

    2004-01-01

    The Saturn Autonomous Ring Array (SARA) mission concept is a new application for the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm being developed for exploration of high surface area and/or multibody targets to minimize costs and maximize effectiveness of survey operations. Systems designed with ANTS architecture are built from potentially very large numbers of highly autonomous, yet socially interactive, specialists, in approximately ten specialist classes. Here, we analyze requirements for such a mission as well as specialized autonomous operations which would support this application.

  3. A photometric study of Saturn's F Ring

    Science.gov (United States)

    Showalter, Mark R.; Pollack, James B.; Ockert, Maureen E.; Doyle, Laurance R.; Dalton, J. B.

    1992-01-01

    The Saturn F Ring's radially integrated brightness has been measured over a wide range of phase angles from Voyager images; in order to model the resultant phase curve, the ring population has been divided into a dust regime and one of larger bodies, and while single scattering properties of small particles are modeled by semiempirical nonspherical/randomly oriented particles, those of large bodies are based on the photometric behavior of satellites. It is suggested that the dust in the envelope arises from micrometeoroid impacts into the large core particles, and then migrates inward.

  4. Oxygen ions observed near Saturn's A ring.

    Science.gov (United States)

    Waite, J H; Cravens, T E; Ip, W-H; Kasprzak, W T; Luhmann, J G; McNutt, R L; Niemann, H B; Yelle, R V; Mueller-Wodarg, I; Ledvina, S A; Scherer, S

    2005-02-25

    Ions were detected in the vicinity of Saturn's A ring by the Ion and Neutral Mass Spectrometer (INMS) instrument onboard the Cassini Orbiter during the spacecraft's passage over the rings. The INMS saw signatures of molecular and atomic oxygen ions and of protons, thus demonstrating the existence of an ionosphere associated with the A ring. A likely explanation for these ions is photoionization by solar ultraviolet radiation of neutral O2 molecules associated with a tenuous ring atmosphere. INMS neutral measurements made during the ring encounter are dominated by a background signal.

  5. Infrared thermal models for Saturn's ring

    Science.gov (United States)

    Price, M. J.

    1976-01-01

    Infrared (10 and 20 microns) thermal emission data for Saturn's rings are discussed in terms of simple isothermal radiative transfer models of finite optical thickness. Recent brightness temperature measurements, corresponding to essentially maximum ring tilt, indicate that optical single scattering albedos less than 0.75 are required to provide sufficient heating of the ring material. Reconciliation with analyses of the optical scattering properties of the ring requires the backscattering efficiency to be even higher than for a macroscopic sphere. Historical brightness temperature measurements are used to show that no unique isothermal ring model exists. Instead, a temperature gradient perpendicular to the ring plane appears to be present.

  6. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy.

    Science.gov (United States)

    Clark, Roger N; Brown, Robert H; Jaumann, Ralf; Cruikshank, Dale P; Nelson, Robert M; Buratti, Bonnie J; McCord, Thomas B; Lunine, J; Baines, K H; Bellucci, G; Bibring, J-P; Capaccioni, F; Cerroni, P; Coradini, A; Formisano, V; Langevin, Y; Matson, D L; Mennella, V; Nicholson, P D; Sicardy, B; Sotin, C; Hoefen, Todd M; Curchin, John M; Hansen, Gary; Hibbits, Karl; Matz, K-D

    2005-05-05

    The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

  7. Swept Forward Magnetic Field Variability in High-Latitude Regions of Saturn's Magnetosphere

    Science.gov (United States)

    Davies, E. H.; Masters, A.; Dougherty, M. K.; Hansen, K. C.; Coates, A. J.; Hunt, G. J.

    2017-12-01

    Swept forward field is the term given to configurations of magnetic field wherein the field lines deviate from the meridional planes of a planet in the direction of its rotation. Evidence is presented for swept-forward field configurations on Cassini orbits around Saturn from the first half of 2008. These orbits were selected on the basis of high inclination, spatial proximity, and temporal proximity, allowing for the observation of swept-forward field and resolution of dynamic effects using data from the Cassini magnetometer. Nine orbits are surveyed; all show evidence of swept-forward field, with typical sweep angle found to be 23°. Evidence is found for transient events that lead to temporary dramatic increases in sweep-forward angle. The Michigan Solar Wind Model is employed to investigate temporal correlation between the arrivals of solar wind shocks at Saturn with these transient events, with two shown to include instances corresponding with solar wind shock arrivals. Measurements of equatorial electron number density from anode 5 of the Cassini Plasma Spectrometer instrument are investigated for evidence of magnetospheric compression, corresponding with predicted shock arrivals. Potential mechanisms for the transfer of momentum from the solar wind to the magnetosphere are discussed.

  8. Saturn's UV aurora: the (high latitude) point of view of Cassini (Invited)

    Science.gov (United States)

    Grodent, D. C.; Bonfond, B.; Gustin, J.; Radioti, A.; Gerard, J. M.; Pryor, W. R.

    2013-12-01

    The high latitude vantage point of Cassini and its short distance to Saturn give rise to a unique opportunity for obtaining exceptional spectral images of the aurorae, along with in situ observations of the associated particles and magnetic field. Cassini's T83 flyby of Titan significantly changed the inclination of the spacecraft's orbit and marked the beginning of the XXM inclined phase 1 which will last until March 16, 2015. We will give an overview of the auroral emissions observed so far with the UVIS camera on board Cassini. In particular we will link the morphology of the aurora with specific magnetospheric processes, such as dayside reconnection and auroral bifurcations, nightside reconnection, hot plasma injections. We will also take advantage of the view from nearly above the poles to describe the overall shape and size of the aurora, which are expected to respond to the solar wind conditions. Moreover, this presentation will focus on small-scale features, which can only be observed by an instrument close enough to the planet. We will also present movies of these observations, allowing us to explore the auroral dynamics at various timescales. This information will be used to identify the various mechanisms at play in Saturn's magnetosphere.

  9. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  10. A statistical state dynamics based theory for the formation and equilibration of Saturn's North Polar Jet

    CERN Document Server

    Farrell, Brian F

    2016-01-01

    Coherent jets containing most of the kinetic energy of the flow are a common feature in observations of atmospheric turbulence. In the gaseous planets these jets are maintained by incoherent turbulence excited by small scale convection. Large scale coherent waves are sometimes observed to coexist with the jets; a prominent example being Saturns hexagonal north polar jet (NPJ). Observations of the large scale jet/wave coexistence regime raises the question of identifying the mechanism responsible for forming and maintaining this turbulent state. The coherent planetary scale component of the turbulence arises and is maintained by interaction with the incoherent small-scale turbulence component. It follows that theoretical understanding of the dynamics of the jet/wave/turbulence coexistence regime is facilitated by employing a statistical state dynamics (SSD) model in which the interaction between coherent and incoherent components is explicitly represented. In this work a second order closure implementation of ...

  11. Almost All of Kepler's Multiple-planet Candidates Are Planets

    OpenAIRE

    Lissauer, Jack J.; Marcy, Geoffrey W.; Rowe, Jason F.; Bryson, Stephen T.; Adams, Elisabeth; Buchhave, Lars A.; Ciardi, David R.; Cochran, William D.; Fabrycky, Daniel C.; Ford, Eric B.; Fressin, Francois; Geary, John; Gilliland, Ronald L.; Holman, Matthew J.; Howell, Steve B.

    2012-01-01

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detect...

  12. Comparative geology of the satellites of the giant planets

    Science.gov (United States)

    Masson, P.

    1984-08-01

    The geologic evolution of the Jovian and Saturnian satellites is reviewed with regard to the major discoveries of the Voyager 1 and 2 encounters with Jupiter and Saturn. Nearly 40 satellites are now identified in the Jovian and Saturnian systems. Three of these satellites (Ganymede, Titan, and Callisto) are larger than Mercury, two (Io and Europa) have sizes similar to the moon, and four others (Rhea, Iapetus, Dione, and Tethys) are larger than the largest asteroids. They all have experienced different geologic evolutions related to their composition and to their location in the two systems. The present emphasis is upon the cratering record of their surfaces, and on their thermal evolution, with regard to the tidal effects produced by the giant planets. The small satellites are presented with no attempt to review their geologic record, since they are only known from their orbital properties.

  13. The Evolution and Fate of Saturn's Stratospheric Vortex: Infrared Spectroscopy from Cassini

    Science.gov (United States)

    Fletcher, Leigh N.; Hesman, B. E.; Arhterberg, R. K.; Bjoraker, G.; Irwin, P. G. J.; Hurley, J.; Sinclair, J.; Gorius, N.; Orton, G. S.; Read, P. L.; hide

    2012-01-01

    The planet-encircling springtime storm in Saturn's troposphere (December 2010-July 2011) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Observations from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based imaging from the VISIR instrument on the Very Large Telescope,is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and the present day. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35N (one residing directly above the convective storm head) between January-April 2011, moving westward with different zonal velocities; (II) the merging of the warm airmasses to form the large single 'stratospheric beacon' near 40N between April and June 2011, dissociated from the storm head and at a higher pressure (2 mbar) than the original beacons; and (III) the mature phase characterized by slow cooling and longitudinal shrinkage of the anticyclone since July 2011, moving west with a near-constant velocity of 2.70+/-0.04 deg/day (-24.5+/-0.4 m/s at 40N). Peak temperatures of 220 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. Thermal winds hear calculations in August 2011 suggest clockwise peripheral velocities of 200400 mls at 2 mbar, defining a peripheral collar with a width of 65 degrees longitude (50,000 km in diameter) and 25 degrees latitude. Stratospheric acetylene (C2H2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C2H6) remained unaffected. We will discuss the thermal and chemical characteristics of Saturn's beacon in its mature phase, and implications for stratospheric vortices on other giant planets.

  14. Source mechanism of Saturn narrowband emission

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2010-04-01

    Full Text Available Narrowband emission (NB is observed at Saturn centered near 5 kHz and 20 kHz and harmonics. This emission appears similar in many ways to Jovian kilometric narrowband emission observed at higher frequencies, and therefore may have a similar source mechanism. Source regions of NB near 20 kHz are believed to be located near density gradients in the inner magnetosphere and the emission appears to be correlated with the occurrence of large neutral plasma clouds observed in the Saturn magnetotail. In this work we present the results of a growth rate analysis of NB emission (~20 kHz near or within a probable source region. This is made possible by the sampling of in-situ wave and particle data. The results indicate waves are likely to be generated by the mode-conversion of directly generated Z-mode emission to O-mode near a density gradient. When the local hybrid frequency is close n fce (n is an integer and fce is the electron cyclotron frequency with n=4, 5 or 6 in our case, electromagnetic Z-mode and weak ordinary (O-mode emission can be directly generated by the cyclotron maser instability.

  15. Source mechanism of Saturn narrowband emission

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2010-04-01

    Full Text Available Narrowband emission (NB is observed at Saturn centered near 5 kHz and 20 kHz and harmonics. This emission appears similar in many ways to Jovian kilometric narrowband emission observed at higher frequencies, and therefore may have a similar source mechanism. Source regions of NB near 20 kHz are believed to be located near density gradients in the inner magnetosphere and the emission appears to be correlated with the occurrence of large neutral plasma clouds observed in the Saturn magnetotail. In this work we present the results of a growth rate analysis of NB emission (~20 kHz near or within a probable source region. This is made possible by the sampling of in-situ wave and particle data. The results indicate waves are likely to be generated by the mode-conversion of directly generated Z-mode emission to O-mode near a density gradient. When the local hybrid frequency is close n fce (n is an integer and fce is the electron cyclotron frequency with n=4, 5 or 6 in our case, electromagnetic Z-mode and weak ordinary (O-mode emission can be directly generated by the cyclotron maser instability.

  16. Doppler effects on periodicities in Saturn's magnetosphere

    Science.gov (United States)

    Carbary, J. F.

    2015-11-01

    The magnetosphere of Saturn exhibits a wide variety of periodic phenomena in magnetic fields, charged particles, and radio emissions. The periodicities are observed from a moving spacecraft, so an issue arises about the periodicities being influenced by the Doppler effects. Doppler effects can be investigated using models of the periodicities and then flying the spacecraft through the model, effectively measuring any Doppler phenomena with the simulation. Using 200 days of typical elliptical orbits from the Cassini mission at Saturn, three models were tested: an azimuthal wave (or "searchlight") model, a radial wave (or "pond ripple") model, and a model of an outwardly traveling spiral wave. The azimuthal wave model produced virtually no Doppler effects in the periodicities because its wave vector is nearly perpendicular to the spacecraft trajectory. The radial wave model generated strong Doppler effects of an upshifted and a downshifted signal (a dual period) on either side of the true period, because the wave vector is either parallel or antiparallel to the spacecraft trajectory. Being intermediate to the searchlight and radial waves, the spiral wave produced Doppler effects but only for low wave speeds (<10 RS/h). For higher wave speeds the Doppler effects were not as clear. The Doppler effects can be mitigated by employing only observations beyond ~15 RS where the spacecraft speed is low compared to the wave speed. The observed periodicities over the same 200 day interval do not show evidence of Doppler effects but generally display a single feature at the expected ~10.7 h period.

  17. Stars and Planets

    Science.gov (United States)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  18. Planet X - Fact or fiction?

    Science.gov (United States)

    Anderson, John

    1988-01-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  19. Planet X - ract or fiction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.

    1988-08-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  20. The hunt for Planet X

    Energy Technology Data Exchange (ETDEWEB)

    Croswell, Ken

    1990-12-29

    This article examines the hypothesis that an, as yet unobserved, planet, beyond the orbit of Pluto is responsible for peculiarities in the orbits of Uranus and Neptune. A brief overview of the discovery and observation of the outer planets is offered. The evidence for and against the proposition is noted, and the work of two present day scientists, is mentioned both of whom agree with the idea, and are searching for optical proof of the planet's existence. U.K.

  1. Planet X - Fact or fiction?

    Science.gov (United States)

    Anderson, John

    1988-08-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  2. Professor: The Animal Planet Optimization

    OpenAIRE

    Satish Gajawada

    2014-01-01

    This paper is dedicated to everyone who is interested in making this planet a better place to live. In the past, researchers have explored behavior of several animals separately. But there is scope to explore in the direction where various artificial animals together solve the optimization problem. In this paper, Satish Gajawada proposed The AnimalPlanet Optimization. The concept of this paper is to imitate all the animals on this planet. The idea is to solve the optimization problem where al...

  3. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  4. Giant Planet Formation and Migration

    Science.gov (United States)

    Paardekooper, Sijme-Jan; Johansen, Anders

    2018-02-01

    Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery.

  5. Weird planets and odd relations: Atmospheric Circulation on Hot Jupiters

    Science.gov (United States)

    Zhang, Michael; Knutson, Heather; Kataria, Tiffany; Burrows, Adam; Fortney, Jonathan

    2018-01-01

    We extract phase curves from Spitzer photometry for the highly irradiated hot Jupiter WASP-33b and the unusually dense Saturn-mass planet HD 149026b. To do so, we develop a new variant of Pixel Level Decorrelation that is effective at removing intrapixel sensitivity variations for long observations (> 10 hours) where the position of the star can vary by a significant fraction of a pixel. Using this algorithm, we derive eclipse depths, phase amplitudes, and phase offsets for both planets at 3.6 um and 4.5 um. We use a simple toy model to show that WASP-33b's phase offset, albedo, and heat recirculation efficiency are largely similar to those of other hot Jupiters despite its very high irradiation. On the other hand, our fits for HD 149026b prefer a very high albedo and an unusually high recirculation efficiency. We also compare our results to predictions from GCM models, and find that while neither provide a good match to the data, the discrepancies for HD 149026b are unusually large. We speculate that this may be related to its high bulk metallicity, which could lead to enhanced atmospheric opacities and the formation of reflective cloud layers in localized regions of the atmosphere. We then place these two planets in a broader context by exploring relationships between the temperatures, albedos, efficiencies, and phase offsets of all planets with published thermal phase curves. We find a striking relationship between phase offset and irradiation temperature--the former dips with temperature until around 3300 K, and rises thereafter. Although some aspects of this trend are mirrored in GCM models, there are notable differences that provide important clues for future modeling efforts.

  6. Optimization of Saturn paraboloid magnetospheric field model parameters using Cassini equatorial magnetic field data

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2016-07-01

    Full Text Available The paraboloid model of Saturn's magnetosphere describes the magnetic field as being due to the sum of contributions from the internal field of the planet, the ring current, and the tail current, all contained by surface currents inside a magnetopause boundary which is taken to be a paraboloid of revolution about the planet-Sun line. The parameters of the model have previously been determined by comparison with data from a few passes through Saturn's magnetosphere in compressed and expanded states, depending on the prevailing dynamic pressure of the solar wind. Here we significantly expand such comparisons through examination of Cassini magnetic field data from 18 near-equatorial passes that span wide ranges of local time, focusing on modelling the co-latitudinal field component that defines the magnetic flux passing through the equatorial plane. For 12 of these passes, spanning pre-dawn, via noon, to post-midnight, the spacecraft crossed the magnetopause during the pass, thus allowing an estimate of the concurrent subsolar radial distance of the magnetopause R1 to be made, considered to be the primary parameter defining the scale size of the system. The best-fit model parameters from these passes are then employed to determine how the parameters vary with R1, using least-squares linear fits, thus providing predictive model parameters for any value of R1 within the range. We show that the fits obtained using the linear approximation parameters are of the same order as those for the individually selected parameters. We also show that the magnetic flux mapping to the tail lobes in these models is generally in good accord with observations of the location of the open-closed field line boundary in Saturn's ionosphere, and the related position of the auroral oval. We then investigate the field data on six passes through the nightside magnetosphere, for which the spacecraft did not cross the magnetopause, such that in this case we compare the

  7. Identification of Saturn-driven bending waves in Saturn's inner C ring

    Science.gov (United States)

    French, Richard; Colwell, Joshua; Nicholson, Phillip; Marouf, Essam; McGhee-French, Colleen; Hedman, Matthew

    2016-07-01

    Saturn's C ring is host to more than a dozen wavelike features whose detailed nature has been a mystery since their discovery in high-resolution Voyager radio occultations of the rings. Rosen et al. (1991 Icarus 93, 25) enumerated several of these, and the list was augmented by Baillié et al. (2011 Icarus 216, 292), based on a detailed analysis of Cassini UVIS stellar occultation profiles. Recently, Hedman and Nicholson (2013 Astron. J. 146, 12; 2014 MNRAS 444, 1369) were able to identify the wavenumbers and pattern speeds for several of the waves. They showed that several Outer Lindblad Resonances (OLR) density waves had properties that were in general quite consistent with the predictions of Marley and Porco (1993 Icarus, 106, 508) and Marley (2014 Icarus, 234, 194) that Saturn's acoustic oscillations had pattern speeds with corresponding resonance radii in the C ring. Hedman and Nicholson also identified a set of Inner Lindblad Resonance density waves with pattern speeds very close to Saturn's rotation period. Finally, French et al. (2016 Icarus, in press) identified an inward-propagating m=2 wave in the Maxwell Ringlet. These new identifications ushered in the field of Kronoseismology -- the probing of the nature of Saturn's interior from the analysis of Saturn-driven waves in the rings. Here, we report the identification of six additional wave features, all in the inner C ring, from Cassini occultation measurements. Two of the waves are OLRs: Baillié feature #5 (B1 = W76.022 (i.e., r=76022 km)) with wavenumber m=-9, and Baillié #9 (B9 = W76.435) with m=-2. The first of these is presumably Saturn-driven, but of unknown origin; W76.435 fits very nicely in the pattern predicted by Marley (2014) for an m=l-2, q=2 internal oscillation. We also report the identification of a new class of Saturn-driven waves: B1 (W74.666), B3 (W74.936), B4 (W74.941), and B6 (W76.234) are all bending waves at Outer Vertical Resonances (OVR) with wavenumbers between m=-4 and m=-9

  8. Search for planet X

    Science.gov (United States)

    Harrington, Robert S.

    1991-01-01

    The observation of the region of the sky in which it is believed Planet X should now be, based on perturbations observed in the motions of Uranus and Neptune, was determined, and there was no reason to update that determination. A limited area of that region was photographed, and that will be continued. A given area is photographed with the twin 20 cm astrograph in New Zealand on two successive nights near the time that area is in opposition, and these plates are blinked in Washington to identify anything that has moved. The predicted region is in the south, which requires observations from a southern station, and it is in opposition in the April to June period, which means observations have not yet started for the year. Blinking will be done as soon as the plates are received in Washington.

  9. Saturn's Inner Satellites at True Opposition

    Science.gov (United States)

    Verbiscer, Anne

    2004-07-01

    We request one HST orbit to observe Janus, Epimetheus, Mimas, and Enceladus with WFPC2 exactly at opposition, when the Earth transits the center of the solar disk seen from Saturn on UT 13/14 January 2005. Data obtained at this unique viewing geometry are essential to determining physical properties of the moon's surface, related to its emplacement and evolution, and critical for the interpretation of photometric data obtained by Cassini at higher phase angles. This single observation will be the capstone of 9 years of legacy HST WFPC2 observations of the saturnian system {Cycles 6-12, R. French, PI} from which we have constructed precise, multiwavelength phase curves which demonstrate how the reflectance of these satellites varies with solar phase angle from 0.07 to 6.4 degrees. Each satellite exhibits a dramatic increase in brightness, or "opposition effect", as phase angles decrease below 1 degree. Since 1998 {Cycle 7} the minimum observable phase angle at opposition has decreased each year to 0.07 degrees in Cycle 12; however, the absolute minimum observable phase angle, about 0.02 degrees {limited by the angular size of the Sun viewed from Saturn}, has not been accessible until Cycle 13. Using the same set of broadband filters for continuity with our previous programs, we will place observations made during the Earth transit on the existing UVBRI phase curves and establish the amplitude of each satellite's opposition surge. From these observations we will determine surface properties such as porosity, grain size distribution and particle opacity using radiative transfer models. While the Cassini spacecraft will obtain images at larger phase angles, it will miss entirely the narrow brightness surge near opposition due to orbital constraints. Because these inner satellites will be either lost in or contaminated by the glare of the fully open rings, they are not accessible to ground-based telescopes. The 2005 opposition prese nts the only opportunity for HST to

  10. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  11. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Directory of Open Access Journals (Sweden)

    Behnam Pourhassan

    2016-04-01

    Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  12. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2016-04-10

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  13. Cassini Imaging Science: initial results on Saturn's atmosphere.

    Science.gov (United States)

    Porco, C C; Baker, E; Barbara, J; Beurle, K; Brahic, A; Burns, J A; Charnoz, S; Cooper, N; Dawson, D D; Del Genio, A D; Denk, T; Dones, L; Dyudina, U; Evans, M W; Giese, B; Grazier, K; Helfenstein, P; Ingersoll, A P; Jacobson, R A; Johnson, T V; McEwen, A; Murray, C D; Neukum, G; Owen, W M; Perry, J; Roatsch, T; Spitale, J; Squyres, S; Thomas, P; Tiscareno, M; Turtle, E; Vasavada, A R; Veverka, J; Wagner, R; West, R

    2005-02-25

    The Cassini Imaging Science Subsystem (ISS) began observing Saturn in early February 2004. From analysis of cloud motions through early October 2004, we report vertical wind shear in Saturn's equatorial jet and a maximum wind speed of approximately 375 meters per second, a value that differs from both Hubble Space Telescope and Voyager values. We also report a particularly active narrow southern mid-latitude region in which dark ovals are observed both to merge with each other and to arise from the eruptions of large, bright storms. Bright storm eruptions are correlated with Saturn's electrostatic discharges, which are thought to originate from lightning.

  14. Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    CERN Document Server

    Pourhassan, Behnam

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  15. Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion

    OpenAIRE

    Andre, N; Blanc, M; Maurice, S.; Schippers, P.; Pallier, E.; Gombosi, T. I.; Hansen, K. C.; Young, D. T.; Crary, F. J.; Bolton, S; Sittler, E. C.; Smith, H.T.; Johnson, R E; Baragiola, R. A.; Coates, A J

    2008-01-01

    Saturn's magnetosphere is currently studied from the microphysical to the global scale by the Cassini-Huygens mission. During the first half of 2004, in the approach phase, remote sensing observations of Saturn's magnetosphere gave access to its auroral, radio, UV, energetic neutral atom, and dust emissions. Then, on 1 July 2004, Cassini Saturn orbit insertion provided us with the first in situ exploration of Saturn's magnetosphere since Voyager. To date, Saturn orbit insertion is the only Ca...

  16. COMPOSITIONS AND ORIGINS OF OUTER PLANET SYSTEMS: INSIGHTS FROM THE ROCHE CRITICAL DENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Tiscareno, Matthew S.; Hedman, Matthew M. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Burns, Joseph A. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Castillo-Rogez, Julie [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States)

    2013-03-10

    We consider the Roche critical density ({rho}{sub Roche}), the minimum density of an orbiting object that, at a given distance from its planet, is able to hold itself together by self-gravity. It is directly related to the more familiar ''Roche limit,'' the distance from a planet at which a strengthless orbiting object of given density is pulled apart by tides. The presence of a substantial ring requires that transient clumps have an internal density less than {rho}{sub Roche}. Conversely, in the presence of abundant material for accretion, an orbiting object with density greater than {rho}{sub Roche} will grow. Comparing the {rho}{sub Roche} values at which the Saturn and Uranus systems transition rapidly from disruption-dominated (rings) to accretion-dominated (moons), we infer that the material composing Uranus' rings is likely more rocky, as well as less porous, than that composing Saturn's rings. From the high values of {rho}{sub Roche} at the innermost ring moons of Jupiter and Neptune, we infer that those moons may be composed of denser material than expected, or more likely that they are interlopers that formed farther from their planets and have since migrated inward, now being held together by internal material strength. Finally, the ''Portia group'' of eight closely packed Uranian moons has an overall surface density similar to that of Saturn's A ring. Thus, it can be seen as an accretion-dominated ring system, of similar character to the standard ring systems except that its material has a characteristic density greater than the local {rho}{sub Roche}.

  17. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  18. Chemical kinetics on extrasolar planets.

    Science.gov (United States)

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately planets.

  19. Wandering stars. About planets and exo-planets: an introductory notebook

    Science.gov (United States)

    Cole, George H. A.

    solar/cosmic abundance of the elements. 8.2. The formation of molecules. 8.3. The compositions of terrestrial materials. 8.4. The moon. 8.5. Venus. 8.6. The material of the Solar System. 8.7. Material in orbit. 9. Finding the ages of rocks: geochronology. 9.1. Atoms and radioactive decay. 9.2. Nuclear reactions. 9.3. An elementary method for dating rocks. 9.4. The closure temperature. 9.5. Selecting a particular decay mode. 9.6. Dating using nuclear reactors. 10. Surfaces and interiors. 10.1. The surface figure. 10.2. The interior. 10.3. The near-surface interior region. 10.4. Free body oscillations. 10.5. Empirical equations of state. 10.6. Fluid bodies. 11. The solid earth. 11.1. General parameters. 11.2. The interior seismic structure. 11.3. An active structure. 11.4. Plates and plate tectonics. 11.5. The inner and outer cores. 11.6. A dynamic earth. 11.7. Comments on the atmosphere. 12. The planets: Mercury and Mars. 12.1. Rotation and temperature. 12.2. Surface details. 12.3. Internal structure of mercury. 12.4. The Mercury atmosphere. 12.5. The general topology of Mars. 12.6. Martian geology. 12.7. Thermal Mars. 12.8. The internal structure of Mars. 12.9. The atmosphere of Mars. 12.10. A tentative history of Mars. 13. Planet Venus. 13.1. First views of the surface. 13.2. Surface details. 13.3. The Venus interior. 13.4. Venus atmosphere. 14. The planets: Jupiter and Saturn. 14.1. Surface features. 14.2. The heat budgets. 14.3. Visible surface compositions. 14.4. General comments on internal conditions. 14.5. Detailed model interiors. 14.6. Comment on interior heat flow. 14.7. Intrinsic magnetic fields. 15. The planets: Uranus and Neptune. 15.1. Surface features. 15.2. Heat budgets. 15.3. Visible surface compositions. 15.4. Internal structure and conditions. 15.5. Comment on interior heat flow. 15.6. Intrinsic magnetism. 16. Satellites of the Solar System. 16.1. The moon. 16.2. The satellites of Mars. 16.3. The larger satellites. 16.4. The smaller satellites. 16

  20. Pickering Membranes Stabilized by Saturn Particles.

    Science.gov (United States)

    Krejca, Matthias M; Wüstner, Cornell; Goedel, Werner A

    2017-10-17

    We report on a novel method to synthesize particles-called by us Saturn particles-having two hydrophobic caps that oppose each other and are separated from each other by a hydrophilic belt that encircles the particle. Mixtures of these particles with water and air, without the usage of low molar mass surfactants, easily form Pickering foams and Pickering membranes that are stable for days. These Pickering membranes are composed of a thin film of water into which the particles are embedded in such a way that the belt is surrounded by the water and the caps protrude out of the water into the air at the top and bottom side of the water film. As expected for a liquid membrane, these Pickering membranes are permeable for gases, with the permeance being proportional to the solubility and diffusion coefficient of the gas considered. Experimentally obtained permeance values agree reasonably well with theoretical calculations.

  1. Very energetic protons in Saturn's radiation belt

    Science.gov (United States)

    Fillius, W.; Mcilwain, C.

    1980-01-01

    Very energetic protons are trapped in the inner Saturnian radiation belt. The University of California at San Diego instrument on Pioneer 11 has definitely identified protons of energy greater than 80 MeV on channel M3 and has tentatively detected protons of energy greater than 600 MeV on channel C3. The spatial distribution of the protons is distinct from that of the trapped electrons, the main difference being that the protons are strongly absorbed by the innermost moons and that the electrons are not. The source strength for injecting protons by the decay of cosmic ray albedo neutrons generated in the rings of Saturn has been estimated. The required proton lifetime is approximately 20 years.

  2. Voyager Photometry of Saturn's A Ring

    Science.gov (United States)

    Dones, Luke; Cuzzi, Jeffrey N.; Showalter, Mark R.

    1993-01-01

    Saturn's A Ring samples a wide range of dynamical environments, from the relatively unperturbed, optically thick inner region to the outer part of the ring, which contains numerous density waves. We analyze Voyager images of the A Ring to determine how the reflectivity of different radial regions varies with lighting and viewing geometry. We model our data with a classical radiative transfer code that includes the illumination of the rings by the Sun and Saturn. The particles in the inner and mid-A Ring have Bond albedos near 0.5 and are more backscattering than satellites of comparable albedo. The region outside the Encke Gap becomes progressively less backscattering with increasing radius. Particle properties change abruptly outside the Keeler Gap; particles here have an albedo near 0.6 and a Lambert-like phase function. In contrast with previous suggestions, the abundance of free, submicrometer "dust" is small throughout the entire A Ring; this conclusion holds even in the outermost A Ring, which is strongly perturbed by density waves. Models derived from low-phase data, assuming only macroscopic particles, correctly predict the highphase reflectivity of the outer A Ring and individual strong density waves in the mid-A Ring. However, the inner and mid-A Ring are typically darker at high phase by a factor of two than our models predict. This discrepancy may be due to the reduced multiple scattering from a layer in which the particles are more closely packed. We have also studied the quadrupole azimuthal brightness asymmetry of the A Ring. The asymmetry has a full amplitude of 35% in the mid-A Ring in low-phase Voyager 2 images. We present results on its behavior and possible implications for the structure of the rings. Finally, we compare our results with studies using other data sets to synthesize our current understanding of the nature of the A Ring.

  3. IR spectra of Saturn's ring spokes and multiple shines in the Saturn-rings system

    Science.gov (United States)

    D'Aversa, Emiliano; Bellucci, Giancarlo; Filacchione, Gianrico; Cerroni, Priscilla; Nicholson, Phil D.; Carrozzo, Filippo G.; Altieri, Francesca; Oliva, Fabrizio; Geminale, Anna; Sindoni, Giuseppe; Hedman, Matthew M.

    2017-04-01

    During the last Saturn equinox, in 2009 August, spokes on the Saturn's B ring have been observed for the first time spectroscopically, at visible and infrared wavelengths. Measurements were obtained by Cassini-VIMS (Visual and Infrared Mapping Spectrometer) instrument in the 0.35-5.1 micron range. Spokes are either dark or bright features appearing on the B ring straddling the equinoxes, round to elongated in shape, lasting for minutes to hours, and moving partially pushed by Saturn's magnetic field. Previous spokes observations date back to the Voyager (1980 equinox,[1]), followed by a HST campaign (1995 equinox,[2]), and more recently Cassini-ISS images (2009 equinox,[3]). Theoretical models of spoke formation and evolution have been developed based on those observations, but there is not unanimous consensus on them. The most spread model considers the spoke as a cloud of very fine particles electrostatically levitating from the regolith of ring's boulders, and hovering on the ring plane while interacting with the ambient plasma until complete charge neutralization. The process triggering the grain charging is not yet clear (meteoroid bombardment, impacts of Saturn's lightnings electrons, etc.) but in any case a very small grain mass (high charge-to-mass ratio) is needed to allow electrostatic repulsion. From the observational point of view, small grain sizes (0.3-0.5 micron) have been retrieved by modeling the spoke reflectance in the visible spectral range (both Voyager, HST, and Cassini were equipped with multispectral imaging cameras). However, a first VIMS spoke observation ([4]) inferred a more spread size distribution (0.3 to 2.5 microns) to explain the high spoke contrast measured in the infrared. Here we will report about an analysis of two selected sets of spokes observed by VIMS. This selection aimed to include both high and low phase angle observations, and to take advantage from the highest spatial resolution data achieved in the infrared. We will

  4. Origins and Destinations: Tracking Planet Composition through Planet Formation Simulations

    Science.gov (United States)

    Chance, Quadry

    2017-10-01

    There are now several thousand confirmed exoplanets, a number which far exceeds our resources to study them all in detail. In particular, planets around M dwarfs provide the best opportunity for in-depth study of their atmospheres by telescopes in the near future. The question of which M dwarf planets most merit follow-up resources is a pressing one, given that NASA’s TESS mission will soon find hundreds of such planets orbiting stars bright enough for both ground and spaced-based observation.Our work aims to predict the approximate composition of planets around these stars through n-body simulations of the last stage of planet formation. With a variety of initial disk conditions, we investigate how the relative abundances of both refractory and volatile compounds in the primordial planetesimals are mapped to the final planet outcomes. These predictions will serve to provide a basis for making an educated guess about (a) which planets to observe with precious resources like JWST and (b) how to identify them based on dynamical clues.

  5. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Izidoro, A.; Winter, O. C. [UNESP, Univ. Estadual Paulista - Grupo de Dinâmica Orbital and Planetologia, Guaratinguetá, CEP 12.516-410, São Paulo (Brazil); Haghighipour, N. [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Tsuchida, M., E-mail: izidoro@feg.unesp.br, E-mail: nader@ifa.hawaii.edu [UNESP, Univ. Estadual Paulista, DCCE-IBILCE, São José do Rio Preto, CEP 15.054-000, São Paulo (Brazil)

    2014-02-10

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.

  6. Noncircular features in Saturn's rings IV: Absolute radius scale and Saturn's pole direction

    Science.gov (United States)

    French, Richard G.; McGhee-French, Colleen A.; Lonergan, Katherine; Sepersky, Talia; Jacobson, Robert A.; Nicholson, Philip D.; Hedman, Mathew M.; Marouf, Essam A.; Colwell, Joshua E.

    2017-07-01

    We present a comprehensive solution for the geometry of Saturn's ring system, based on orbital fits to an extensive set of occultation observations of 122 individual ring edges and gaps. We begin with a restricted set of very high quality Cassini VIMS, UVIS, and RSS measurements for quasi-circular features in the C and B rings and the Cassini Division, and then successively add suitably weighted additional Cassini and historical occultation measurements (from Voyager, HST and the widely-observed 28 Sgr occultation of 3 Jul 1989) for additional non-circular features, to derive an absolute radius scale applicable across the entire classical ring system. As part of our adopted solution, we determine first-order corrections to the spacecraft trajectories used to determine the geometry of individual occultation chords. We adopt a simple linear model for Saturn's precession, and our favored solution yields a precession rate on the sky n^˙P = 0.207 ± 0 .006‧‧yr-1 , equivalent to an angular rate of polar motion ΩP = 0.451 ± 0 .014‧‧yr-1 . The 3% formal uncertainty in the fitted precession rate is approaching the point where it can provide a useful constraint on models of Saturn's interior, although realistic errors are likely to be larger, given the linear approximation of the precession model and possible unmodeled systematic errors in the spacecraft ephemerides. Our results are largely consistent with independent estimates of the precession rate based on historical RPX times (Nicholson et al., 1999 AAS/Division for Planetary Sciences Meeting Abstracts #31 31, 44.01) and from theoretical expectations that account for Titan's 700-yr precession period (Vienne and Duriez 1992, Astronomy and Astrophysics 257, 331-352). The fitted precession rate based on Cassini data only is somewhat lower, which may be an indication of unmodeled shorter term contributions to Saturn's polar motion from other satellites, or perhaps the result of inconsistencies in the assumed

  7. VOYAGER 1 SATURN PLASMA DERIVED ION FITS 96 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONTAINS THE ION PARAMETERS IN THE PLS VOLTAGE RANGE (10-5950 EV/Q) WITH FORMAL 1 SIGMA ERRORS OBTAINED FROM VOYAGER 1 DATA AT SATURN BY FITTING THE...

  8. VOYAGER 1 SATURN PLASMA DERIVED ION FITS BROWSE 96 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONTAINS THE ION DENSITIES, TEMPERATURES, AND VELOCITIES OBTAINED FROM VOYAGER 1 PLS DATA (VOLTAGE RANGE 10-5950 EV/Q) AT SATURN BY FITTING THE...

  9. VOYAGER 2 SATURN PLASMA DERIVED ELECTRON BROWSE 96 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONTAINS THE THERMAL ELECTRON DENSITY AND TEMPERATURE IN THE PLS ENERGY RANGE (10-5950 EV) FROM VOYAGER 2 AT SATURN DERIVED BY FITTING THE LOW ENERGY...

  10. VOYAGER 1 SATURN PLASMA DERIVED ELECTRON BROWSE 96 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONTAINS THE THERMAL ELECTRON DENSITY AND TEMPERATURE IN THE PLS ENERGY RANGE (10-5950 EV) FROM VOYAGER 1 AT SATURN DERIVED BY FITTING THE LOW ENERGY...

  11. Ring-Ringlet Interactions in Saturn's C Ring

    Science.gov (United States)

    Rappaport, N. J.

    1997-01-01

    The overall obejective of this work is to derive a theoretical model for the formation of gaps harboring isolated ringlets in order to explain the presence of such features in Saturn's C ring and Cassini division.

  12. VOYAGER 2 SATURN MAGNETOMETER RESAMPLED DATA 48.0 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Saturn encounter magnetometer data that have been resampled at a 48.0 second sample rate. The data set is composed of 6 columns: 1)...

  13. VOYAGER 1 SATURN MAGNETOMETER RESAMPLED DATA 1.92 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Saturn encounter magnetometer data that have been resampled at a 1.92 second sample rate. The data set is composed of 6 columns: 1)...

  14. VOYAGER 2 SATURN MAGNETOMETER RESAMPLED DATA 9.60 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Saturn encounter magnetometer data that have been resampled at a 9.6 second sample rate. The data set is composed of 6 columns: 1)...

  15. VOYAGER 1 SATURN MAGNETOMETER RESAMPLED DATA 48.0 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Saturn encounter magnetometer data that have been resampled at a 48.0 second sample rate. The data set is composed of 6 columns: 1)...

  16. VOYAGER 2 SATURN MAGNETOMETER RESAMPLED DATA 1.92 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Saturn encounter magnetometer data that have been resampled at a 1.92 second sample rate. The data set is composed of 6 columns: 1)...

  17. VOYAGER 1 SATURN POSITION RESAMPLED DATA 48.0 SECONDS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Saturn encounter position data that have been generated at a 48.0 second sample rate using the NAIF SPICE kernals. The data set is...

  18. VOYAGER 2 SATURN POSITION RESAMPLED DATA 48.0 SECONDS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Saturn encounter position data that have been generated at a 48.0 second sample rate using the NAIF SPICE kernals. The data set is...

  19. VOYAGER 1 SATURN MAGNETOMETER RESAMPLED DATA 9.60 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Saturn encounter magnetometer data that have been resampled at a 9.6 second sample rate. The data set is composed of 6 columns: 1)...

  20. VOYAGER 2 SATURN PLASMA DERIVED ION FITS 96 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONTAINS THE ION PARAMETERS IN THE PLS VOLTAGE RANGE (10-5950 EV/Q) WITH FORMAL 1 SIGMA ERRORS OBTAINED FROM VOYAGER 2 DATA AT SATURN BY FITTING THE...

  1. Cassini discovers a kinematic spiral ring around Saturn.

    Science.gov (United States)

    Charnoz, S; Porco, C C; Déau, E; Brahic, A; Spitale, J N; Bacques, G; Baillie, K

    2005-11-25

    Since the time of the Voyager flybys of Saturn in 1980-1981, Saturn's eccentric F ring has been known to be accompanied on either side by faint strands of material. New Cassini observations show that these strands, initially interpreted as concentric ring segments, are in fact connected and form a single one-arm trailing spiral winding at least three times around Saturn. The spiral rotates around Saturn with the orbital motion of its constituent particles. This structure is likely the result of differential orbital motion stretching an initial cloud of particles scattered from the dense core of the F ring. Different scenarios of formation, implying ringlet-satellite interactions, are explored. A recently discovered moon candidate, S/2004 S6, is on an orbit that crosses the F-ring core at the intersection of the spiral with the ring, which suggests a dynamical connection between S/2004 S6 and the spiral.

  2. VOYAGER 1 SATURN PLASMA DERIVED ION MOMENTS 96 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONTAINS ESTIMATES OF THE ION MOMENT DENSITY IN THE PLS VOLTAGE RANGE (10-5950 EV/Q) AT SATURN DURING THE VOYAGER 1 ENCOUNTER. RIGID COROTATION IS...

  3. VOYAGER 2 SATURN PLASMA DERIVED ION MOMENTS 96 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONTAINS ESTIMATES OF THE ION MOMENT DENSITY IN THE PLS VOLTAGE RANGE (10-5950 EV/Q) AT SATURN DURING THE VOYAGER 2 ENCOUNTER. RIGID COROTATION IS...

  4. Comparative Examination of Plasmoid Ejection at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.; Jackman, Caitriona M.; Vogt, Marissa F.

    2011-01-01

    The onset of magnetic reconnection in the near-tail of Earth, long known to herald the fast magnetospheric convection that leads to geomagnetic storms and substorms, is very closely associated with the formation and down-tail ejection of magnetic loops or flux ropes called plasmoids. Plasmoids form as a result of the fragmentation of preexisting cross-tail current sheet as a result of magnetic reconnection. Depending upon the number, location, and intensity of the individual reconnection X-lines and how they evolve, some of these loop-like or helical magnetic structures may also be carried sunward. At the inner edge of the tail they are expected to "re-reconnect' with the planetary magnetic field and dissipate. Plasmoid ejection has now been observed in the magnetotails of Mercury, Earth, Jupiter, and Saturn. These magnetic field and charged particle measurements have been taken by the MESSENGER, Voyager, Galileo, Cassini, and numerous Earth missions. Here we present a comparative examination of the structure and dynamics of plasmoids observed in the magnetotails of these 5 planets. The results are used to learn more about how these magnetic structures form and to assess similarities and differences in the nature of magnetotail reconnection at these planets.

  5. Galactic Exoplanet Survey Telescope (GEST): A Proposed Space-Based Microlensing Survey for Terrestrial Extra-Solar Planets

    Science.gov (United States)

    Bennett, D.; Rhie, S. H.

    We present a conceptual design for a space based Galactic Exoplanet Survey Telescope (GEST) which will use the gravitational microlensing technique to detect extra solar planets with masses as low as that of Mars at all separations >~ 1 AU. The microlensing data would be collected by a diffraction limited, wide field imaging telescope of ~ 1.5m aperture equipped with a large array of red-optimized CCD detectors. Such a system would be able to monitor $\\sim 2\\times 10^8$ stars in $\\sim 6$ square degrees of the Galactic bulge at intervals of 20-30 minutes, and it would observe $\\sim 12000$ microlensing events in three bulge seasons. If planetary systems like our own are common, GEST should be able to detect $\\sim 5000$ planets over a 2.5 year lifetime. If gas giants like Jupiter and Saturn are rare, then GEST would detect $\\sim 1300$ planets in a 2.5 year mission if we assume that most planetary systems are dominated by planets of about Neptune's' mass. Such a mission would also discover $\\sim 100$ planets of an Earth mass or smaller if such planets are common. This is a factor of $\\sim 50$ better than the most ambitious ground based programs that have been proposed. GEST will also be sensitive to planets which have been separated from their parent stars.

  6. Planet-Planet Scattering and White Dwarf Pollution

    Science.gov (United States)

    Joasil, Arielle; Payne, Matthew John; Veras, Dimitri

    2017-01-01

    About one-quarter to one-half of white dwarfs are observed to have polluted atmospheres. White dwarfs (WD) are expected to be chemically stratified, with heavy elements rapidly sinking. The frequent observation of heavy element pollution in WD atmospheres indicates that there must be a copious and frequent supply of rocky material from remnant planetary systems acting as a pollutant. Recently, the white dwarf WD 1145+017 has been observed to have been transited by a rocky body apparently in the process of disintegrating (Vanderburg et al. 2015).Post-main sequence expansion may render the planetary system unstable (Veras 2016). Planets orbiting the white dwarf may perturb and scatter one another. If this scattering happens, any moons can be scattered about the system. As such, one possible source of the material polluting WDs is destabilized exomoons (Payne et al. 2016a, 2016b). Moons offer a plausible source of pollution due to their large total mass (in the Solar system), and their generally rocky composition that matches that found in the atmospheric pollution of WDs. During a planet-planet scattering event, the probability that a moon will be ejected from its parent planet is a function of the velocity of the perturbing planet and the distance between the perturbed moon and the perturbing planet (as well as the initial orbit of the moon). We review the results of Payne et al. (2016a, 2016b) and present new results illustrating the probability of moon ejection as a function of these key parameters. We demonstrate the utility of these results for (a) the pollution and WDs, and for (b) general planet-planet scattering scenarios around main-sequence stars.

  7. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Science.gov (United States)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a

  8. Dictionary of Minor Planet Names

    CERN Document Server

    Schmadel, Lutz D

    2007-01-01

    Dictionary of Minor Planet Names, Fifth Edition, is the official reference for the field of the IAU, which serves as the internationally recognised authority for assigning designations to celestial bodies and any surface features on them. The accelerating rate of the discovery of minor planets has not only made a new edition of this established compendium necessary but has also significantly altered its scope: this thoroughly revised edition concentrates on the approximately 10,000 minor planets that carry a name. It provides authoritative information about the basis for all names of minor planets. In addition to being of practical value for identification purposes, this collection provides a most interesting historical insight into the work of those astronomers who over two centuries vested their affinities in a rich and colorful variety of ingenious names, from heavenly goddesses to more prosaic constructions. The fifth edition serves as the primary reference, with plans for complementary booklets with newl...

  9. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  10. AB initio free energy calculations of the solubility of silica in metallic hydrogen and application to giant planet cores

    Energy Technology Data Exchange (ETDEWEB)

    González-Cataldo, F. [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Wilson, Hugh F.; Militzer, B., E-mail: fgonzalez@lpmd.cl [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 (United States)

    2014-05-20

    By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.

  11. Evolution of Earth Like Planets

    Science.gov (United States)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  12. Jets, eddies & waves in Saturn's troposphere and stratosphere from multi-annual high-resolution Global Climate Modeling

    Science.gov (United States)

    Spiga, Aymeric; Guerlet, Sandrine; Meurdesoif, Yann; Indurain, Mikel; Millour, Ehouarn; Sylvestre, Melody; Dubos, Thomas; Fouchet, Thierry

    2016-10-01

    A mission as richly instrumented as Cassini has brought a new impulse to the studies of Saturn's atmospheric fluid dynamics, to be further extended to Jupiter by the Juno mission.We recently built an innovative Global Climate Model (GCM) for giant planets by coupling our complete seasonal radiative model [Guerlet Icarus 2014] with a new hydrodynamical solver using an original icosahedral mapping of the planetary sphere to ensure excellent conservation and scalability properties in massively parallel computing resources [Dubos GMD 2015].Here we describe the insights gained from GCM simulations for Saturn with both unprecedented horizontal resolutions (reference at 1/2° latitude/longitude, and tests at 1/4° and 1/8°), integrated time (up to ten simulated Saturn years), and large vertical extent (from the troposphere to the stratosphere).Starting from a windless initial state, our 10-year-long GCM simulation for Saturn reproduce alterned tropospheric mid-latitude jets bearing similarities with the observed jet system (numbering, intensity, width). We demonstrate that those jets are eddy-driven with a conversion rate from eddies to mean flow in agreement with Cassini estimates. Before reaching equilibrium, mid-latitude jets experience poleward migration, which can be ascribed to a self-destabilization of the jets by barotropic and baroclinic instabilities.Our Saturn GCM also predicts in the equator the presence of eastward-propagating Rossby-gravity (Yanai) and westward-propagating Rossby waves, reminiscent of similar waves in the terrestrial tropics. Furthermore, our GCM simulations exhibit a stratospheric meridional circulation from one tropic to the other, with a seasonal reversal, which allows us to investigate the possible dynamical control on the observed variations of hydrocarbon species.In contrast to observations, in our GCM simulations the equatorial jet is only weakly super-rotating and the polar jet is strongly destabilized by meandering. Moreover, in

  13. A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134

    Science.gov (United States)

    Johnson, Marshall C.; Endl, Michael; Cochran, William D.; Meschiari, Stefano; Robertson, Paul; MacQueen, Phillip J.; Brugamyer, Erik J.; Caldwell, Caroline; Hatzes, Artie P.; Ramírez, Ivan; Wittenmyer, Robert A.

    2016-04-01

    The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. and Vogt et al. to host several planets, the innermost of which is transiting. We present 27 years of radial velocity (RV) observations of this star from the McDonald Observatory Planet Search program, and 19 years of stellar activity data. We detect a long-period activity cycle measured in the Ca II SHK index, with a period of 4230 ± 100 days (11.7 years), very similar to the 11 year solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al., suggesting that this RV signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our RVs allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer period planets in the system, excluding to 1σ objects with M{sin}I\\gt 0.36{M}J at 12 years (corresponding to the orbital period of Jupiter) and M{sin}I\\gt 0.72{M}J at a period of 16.4 years (assuming a circular orbit for an outer companion).

  14. Habitability potential of satellites around Jupiter and Saturn

    Science.gov (United States)

    Coustenis, Athena; Raulin, Francois; Encrenaz, Therese; Grasset, Olivier; Solomonidou, Anezina

    2016-07-01

    In looking for habitable conditions in the outer solar system recent research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally conceived. The outer solar system satellites provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the development and/or maintenance of life. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the cores of orbiting icy moons. Europa and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [2] which, in the case of Europa [3], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in geysers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated environments to look for

  15. Irregular Wavelike Structure in Saturn's Rings

    Science.gov (United States)

    Pollard, Benjamin J.

    2005-01-01

    We have searched Saturn's A, B, and C rings for irregular wavelike structure using Voyager Photopolarimeter (PPS), Ultraviolet Spectrometer (UVS), and Radio Science (RSS) occultation datasets, as well as ring reflectivity profiles derived from Voyager images. A maximum entropy technique for conducting spectral analysis was used to estimate wave frequency power in relation to radial location for each dataset. Using this method we have found irregular structure in the PPS and UVS inner B Ring occultation datasets previously identified in Voyager imaging data. Both finer structure, with a wavelength of around 20 km, and large structure with wavelengths of 200 to 1000 km, are visible in the occultation data and appear similar to that seen in the imaging data. After removing ringlets from the C-Ring data, we have identified what appears to be a 1000-km wave sustained throughout the ring. The large dominant wavelength appears in all datasets; however, tests are currently being conducted in an attempt to verify its existence. Irregular structure with a wavelength of approximately 20 km has been observed in the C Ring reflectivity profiles, but not within the occultation datasets. This leads us to doubt it is caused by ring surface mass density fluctuations detectable by the occultation experiments.

  16. Unraveling the strands of Saturn's F ring

    Science.gov (United States)

    Murray, C.D.; Gordon, M.K.; Giuliatti, Winter S.M.

    1997-01-01

    Several high-resolution Voyager 2 images of Saturn's F ring show that it is composed of at least four separate, non-intersecting strands extending ~45?? in longitude. Voyager 1 images show that the two brightest strands appear to intersect, giving rise to a "braided" morphology. From a study of all available Voyager images the detectable radial structure is cataloged and reviewed. Previous indications that there is fine material interior to the orbit of the F ring are confirmed. Evidence is presented that a model of four strands with comparable eccentricities and nearly aligned perichrones is consistent with all the Voyager observations. The observed perichrone offset of the two brightest strands suggests a minimum radial separation of ~20 km, which implies intersection of these strands when their finite radial widths are taken into account. The longitude range of such an intersection includes that observed in the Voyager 1 "braid" images. The proximity of these two strands at some longitudes may account for the apparent differences in the ring between the Voyager encounters, as well as provide a source for the short-lived features detected in the Hubble Space Telescope images of the F ring. There is no evidence that the locations of the individual strands are determined by resonant perturbations with known satellites. It is proposed that the radial structure is formed by the localized action of small satellites orbiting within the strand region. ?? 1997 Academic Press.

  17. Cassini plasma observations of Saturn's magnetospheric cusp

    Science.gov (United States)

    Jasinski, Jamie M.; Arridge, Christopher S.; Coates, Andrew J.; Jones, Geraint H.; Sergis, Nick; Thomsen, Michelle F.; Reisenfeld, Daniel B.; Krupp, Norbert; Waite, J. Hunter

    2016-12-01

    The magnetospheric cusp is a funnel-shaped region where shocked solar wind plasma is able to enter the high-latitude magnetosphere via the process of magnetic reconnection. The plasma observations include various cusp signatures such as ion energy dispersions and diamagnetic effects. We present an overview analysis of cusp plasma observations at the Saturnian magnetosphere from the Cassini spacecraft era. A comparison of the observations is made as well as classification into groups due to varying characteristics. The locations of the reconnection site are calculated and shown to vary along the subsolar magnetopause. We show the first in situ evidence for lobe reconnection that occurred at nearly the same time as dayside reconnection for one of the cusp crossings. Evidence for "bursty" and more "continuous" reconnection signatures is observed at different cusp events. The events are compared to solar wind propagation models, and it is shown that magnetic reconnection and plasma injection into the cusp can occur for a variety of upstream conditions. These are important results because they show that Saturn's magnetospheric interaction with the solar wind and the resulting cusp signatures are dynamic and that plasma injection in the cusp occurs due to a variety of solar wind conditions. Furthermore, reconnection can proceed at a variety of locations along the magnetopause.

  18. Voyager 2 Movie of Saturn's Moon: Phoebe

    Science.gov (United States)

    2000-01-01

    Voyager 2 took this photo sequence of Saturn's outer satellite, Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles) away. The top image is the normal version and the bottom is an enhanced version to increase resolution. This sequence lasts 23.4 hours and contains 35 images. The early images were taken about 43 minutes apart, while the later ones are about 29 minutes apart. There are two significant gaps in the sequence: images 7 and 8 are separated by 2.3 hours and images 19 and 20 are separated by 2.8 hours.Because the sunlight is coming from the left, mountains and ridges can best be seen as they reflect the sunlight near the terminator (right side of Phoebe). Other intrinsically bright spots can be seen rotating across the whole disk. In this time-lapse sequence, Phoebe appears to be a lumpy spheroid with possible large mountains sometimes showing on the limb (left side of Phoebe). The photos show that Phoebe is about 220 kilometers (132 miles) in diameter. Its rotation period (length of day) was determined from this set of images to be 9.4 hours (see Thomas, P., et al, 'Phoebe: Voyager 2 Observations', Journal of Geophysical Research, vol. 88, p. 8736, 1 November 1983).These images were processed by the Multimission Image Processing Laboratory of the Jet Propulsion Laboratory. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory.

  19. [Biochemical principles of early saturnism recognition].

    Science.gov (United States)

    Tsimakuridze, M P; Mansuradze, E A; Zurashvili, D G; Tsimakuridze, M P

    2009-03-01

    The aim of the work is to determine the major sensitive criteria of biochemical indicators that allow timely discovery of negative influence of lead on organism and assist in early diagnosis of primary stages of saturnism. The workers of Georgian typographies, performing technological processes of letterpress printing were observed. Professional groups having contact with lead aerosols (main group of 66 people) and the workers of the same typography not being in touch with the poison (control group of 24 people) were studied. It was distinguished that, protracted professional contact with lead causes moderate increase of lead, coproporphyrin and DALA in daily urine in most cases; it is more clearly evidenced in the professional groups of lead smelters and lino operators and less clearly among typesetter and printers. Upon the checkup of people, having a direct contact with lead, biochemical analysis of urine should be given a preference, especially the determination of quantitative content of lead and coproporphyrin in urine with the aim of revealing the lead carrier, which is one of the first signals for occupational lookout and medical monitoring of the similar contingent.

  20. The Evolution of Hydrocarbons in Saturn's Northern Storm Region

    Science.gov (United States)

    Bjoraker, Gordon; Hesman, B. E.; Achterberg, R. K.; Romani, P. N.

    2012-01-01

    The massive storm at 40N on Saturn that began in December 2010 has produced significant and lasting effects in the northern hemisphere on temperature and species abundances (Fletcher et aL 2011). The northern storm region was observed on several occasions between March 2011 and April 2012 by Cassini's Composite Infrared Spectrometer (CIRS) at a spectral resolution (0.5/cm) which permits the study of trace species in Saturn's stratosphere. During this time period, stratospheric temperatures in regions referred to as "beacons" (warm regions at specific longitudes at the latitude of the storm) became significantly warmer than pre-storm values of 140K, peaking near 220K, and subsequently cooling. These warm temperatures led to greatly enhanced infrared emission due to C4H2, C3H4, C2H2, and C2H6 in the stratosphere as well as the first detection of C2H4 on Saturn in the thermal infrared (Hesman et al. 2012). Using CH4 as a thermometer of Saturn's stratosphere in the beacon regions, we can derive the mixing ratios of each of these molecules. The most common hydrocarbons (C2H2 and C2H6) serve as dynamical tracers on Saturn and their abundances may constrain vertical motion in the stratosphere. All of these hydrocarbons are products of methane photolysis. Since many of the photochemical reactions that produce heavier hydrocarbons such as C4H2 and C3H4 are temperature sensitive, the beacon region provides a natural laboratory for studying these reactions on Saturn. We will discuss the time evolution of the abundances of each of these hydrocarbons from their pre-storm values, through the period of maximum heating , and during the period of cooling that is taking place in Saturn's stratosphere.

  1. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Directory of Open Access Journals (Sweden)

    Gaulme Patrick

    2017-01-01

    Full Text Available For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the

  2. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Science.gov (United States)

    Gaulme, Patrick

    2017-10-01

    For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are

  3. Cassini Thermal Observations of Saturn's Main Rings: Implications for Particle Rotation and Vertical Mixing

    Science.gov (United States)

    Spilkera, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Pearl, John C.; Cuzzi, Jeffrey N.; Brooks, Shawn M.; Altobelli, Nicolas; Edgington, Scott G.; Showalter, Mark; Flasar, F. Michael; hide

    2006-01-01

    In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, (alpha), on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with (alpha), and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes. The temperatures of the A and B rings are correlated with their optical depth, (tau), when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest (tau), these temperatures are also the same at both low and high a, suggesting that little sunlight is penetrating these regions. The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.

  4. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan)

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity of accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.

  5. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS

    Science.gov (United States)

    Baines, K.H.; Momary, T.W.; Fletcher, L.N.; Showman, A.P.; Roos-Serote, M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    localized upwelling. Many dozens of discrete, circular cloud features dot the polar region, with typical diameters of 300-700 km. Equatorward of 87.8??N, their compact nature in the high-wind polar environment suggests that vertical shear in horizontal winds may be modest on 1000 km scales. These circular clouds may be anticyclonic vortices produced by baroclinic instabilities, barotropic instabilities, moist convection or other processes. The existence of cyclones at both poles of Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant atmospheres. ?? 2009 Elsevier Ltd. All rights reserved.

  6. A 5 Micron of beta Pictoris B at a Sub-Jupiter Projected Separation: Evidence for a Misalignment Between the Planet and the Inner, Warped Disk

    Science.gov (United States)

    Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc

    2011-01-01

    We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk

  7. Homes for extraterrestrial life: extrasolar planets.

    Science.gov (United States)

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  8. Linear prediction studies for the solar wind and Saturn kilometric radiation

    Directory of Open Access Journals (Sweden)

    U. Taubenschuss

    2006-11-01

    Full Text Available The external control of Saturn kilometric radiation (SKR by the solar wind has been investigated in the frame of the Linear Prediction Theory (LPT. The LPT establishes a linear filter function on the basis of correlations between input signals, i.e. time profiles for solar wind parameters, and output signals, i.e. time profiles for SKR intensity. Three different experiments onboard the Cassini spacecraft (RPWS, MAG and CAPS yield appropriate data sets for compiling the various input and output signals. The time period investigated ranges from DOY 202 to 326, 2004 and is only limited due to limited availability of CAPS plasma data for the solar wind. During this time Cassini was positioned mainly on the morning side on its orbit around Saturn at low southern latitudes. Four basic solar wind quantities have been found to exert a clear influence on the SKR intensity profile. These quantities are: the solar wind bulk velocity, the solar wind ram pressure, the magnetic field strength of the interplanetary magnetic field (IMF and the y-component of the IMF. All four inputs exhibit nearly the same level of efficiency for the linear prediction indicating that all four inputs are possible drivers for triggering SKR. Furthermore, they act at completely different lag times ranging from ~13 h for the ram pressure to ~52 h for the bulk velocity. The lag time for the magnetic field strength is usually beyond ~40 h and the lag time for the y-component of the magnetic field is located around 30 h. Considering that all four solar wind quantities are interrelated in a corotating interaction region, only the influence of the ram pressure seems to be of reasonable relevance. An increase in ram pressure causes a substantial compression of Saturn's magnetosphere leading to tail collapse, injection of hot plasma from the tail into the outer magnetosphere and finally to an intensification of auroral dynamics and SKR emission. So, after the onset of magnetospheric

  9. Linear prediction studies for the solar wind and Saturn kilometric radiation

    Directory of Open Access Journals (Sweden)

    U. Taubenschuss

    2006-11-01

    Full Text Available The external control of Saturn kilometric radiation (SKR by the solar wind has been investigated in the frame of the Linear Prediction Theory (LPT. The LPT establishes a linear filter function on the basis of correlations between input signals, i.e. time profiles for solar wind parameters, and output signals, i.e. time profiles for SKR intensity. Three different experiments onboard the Cassini spacecraft (RPWS, MAG and CAPS yield appropriate data sets for compiling the various input and output signals. The time period investigated ranges from DOY 202 to 326, 2004 and is only limited due to limited availability of CAPS plasma data for the solar wind. During this time Cassini was positioned mainly on the morning side on its orbit around Saturn at low southern latitudes. Four basic solar wind quantities have been found to exert a clear influence on the SKR intensity profile. These quantities are: the solar wind bulk velocity, the solar wind ram pressure, the magnetic field strength of the interplanetary magnetic field (IMF and the y-component of the IMF. All four inputs exhibit nearly the same level of efficiency for the linear prediction indicating that all four inputs are possible drivers for triggering SKR. Furthermore, they act at completely different lag times ranging from ~13 h for the ram pressure to ~52 h for the bulk velocity. The lag time for the magnetic field strength is usually beyond ~40 h and the lag time for the y-component of the magnetic field is located around 30 h. Considering that all four solar wind quantities are interrelated in a corotating interaction region, only the influence of the ram pressure seems to be of reasonable relevance. An increase in ram pressure causes a substantial compression of Saturn's magnetosphere leading to tail collapse, injection of hot plasma from the tail into the outer magnetosphere and finally to an intensification of auroral dynamics and SKR emission. So, after the onset of magnetospheric

  10. On the dynamical nature of Saturn's North Polar hexagon

    Science.gov (United States)

    Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric

    2017-11-01

    An explanation of long-lived Saturn's North Polar hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at Saturn's South Pole is explained similarly. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (;jet-only; configuration), and (2) including (;jet + vortex; configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ;jet+vortex; system produces a long-living structure akin to the observed hexagon, which is not the case of the ;jet-only; system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's North Polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.

  11. Saturn's aurora in the January 2004 events

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2006-07-01

    Full Text Available Differences in the solar wind interaction with the magnetosphere of Saturn relative to the Earth result from the decrease in the solar wind plasma density and magnetic field strength with distance from the Sun, and from the change in the average angle of the IMF at Saturn's orbit. Other reasons are related to Saturn's rapid rotation and internal magnetospheric plasma sources. Moreover, the IMF structure observed by Cassini in 2003–2004 during the approach to Saturn is consistent with corotating interaction regions (CIRs existing during the declining phase of the solar cycle. Two cases on 16 and 26 January 2004 are considered when disturbances in the solar wind passed Cassini and then Saturn. After the solar wind shock encountered the kronian magnetosphere, the auroral oval became brighter (especially at dawn with a reduced radius. In these cases the auroral power was anti-correlated with the radius of the oval. Possible mechanisms responsible for such unexpected behavior are presented and discussed in detail.

  12. Saturn's Great Storm of 2010-2011: Cloud particles containing ammonia and water ices indicate a deep convective origin. (Invited)

    Science.gov (United States)

    Sromovsky, L. A.; Baines, K. H.; Fry, P.

    2013-12-01

    Saturn's Great Storm of 2010-2011 was first detected by amateur astronomers in early December 2010 and later found in Cassini Imaging Science Subsystem (ISS) images taken on 5 December, when it took the form of a 1000 km wide bright spot. Within a week the head of the storm grew by a factor of ten in width and within a few months created a wake that encircled the planet. This is the sixth Great Saturn Storm in recorded history, all having appeared in the northern hemisphere, and most near northern summer solstice at intervals of roughly 30 years (Sanchez-Lavega et al. 1991, Nature 353, 397-401). That the most recent storm appeared 10 years early proved fortunate because Cassini was still operating in orbit around Saturn and was able to provide unique observations from which we could learn much more about these rare and enormous events. Besides the dramatic dynamical effects displayed at the visible cloud level by high-resolution imaging observations (Sayanagi et al. 2013, Icarus 223, 460-478), dramatic thermal changes also occurred in the stratosphere above the storm (Fletcher et al. 2011, Science 332, 1413), and radio measurements of lightning (Fischer et al., 2011, Nature 475, 75-77) indicated strong convective activity at deeper levels. Numerical models of Saturn's Giant storms (Hueso and Sanchez-Lavega 2004, Icarus 172, 255-271) suggest that they are fueled by water vapor condensation beginning at the 10-12 bar level, some 250 km below the visible cloud tops. That idea is also supported by our detection of water ice near the cloud tops (Sromovsky et al. 2013, Icarus 226, 402-418). From Cassini VIMS spectral imaging taken in February 2011, we learned that the storm's cloud particles are strong absorbers of sunlight at wavelengths from 2.8 to 3.1 microns. Such absorption is not seen on Saturn outside of storm regions, implying a different kind of cloud formation process as well as different cloud composition inside the storm region. We found compelling evidence

  13. Exploration of the Saturn System by the Cassini Mission: Observations with the Cassini Infrared Spectrometer

    Science.gov (United States)

    Abbas, Mian M.

    2014-01-01

    Outline: Introduction to the Cassini mission, and Cassini mission Objectives; Cassini spacecraft, instruments, launch, and orbit insertion; Saturn, Rings, and Satellite, Titan; Composite Infrared Spectrometer (CIRS); and Infrared observations of Saturn and titan.

  14. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2018-01-01

    Full Text Available To better understand Earth's present tectonic style–plate tectonics–and how it may have evolved from single plate (stagnant lid tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment (plate motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes; any other tectonic style is usefully called “stagnant lid” or “fragmented lid”. In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects, which we informally call “planetoids” and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice (Jupiter, Saturn, Uranus, and Neptune and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m3 or greater from 20 icy planetoids (including the gaseous and icy giant planets with ρ = 2200 kg/m3 or less. We define the “Tectonic Activity Index” (TAI, scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing (inferred from impact crater density. Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate (rocky planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is

  15. Tectonic evolution of terrestrial planets

    Science.gov (United States)

    Head, J. W.; Solomon, S. C.

    1981-01-01

    The tectonic style of each terrestrial planet, referring to the thickness and division of its lithosphere, can be inferred from surface features and compared to models of planetary thermal history. Factors governing planetary tectonic evolution are planet diameter, chemistry, and external and internal heat sources, all of which determine how a planet generates and rids itself of heat. The earth is distinguished by its distinct, mobile plates, which are recycled into the mantle and show large-scale lateral movements, whereas the moon, Mars, and Mercury are single spherical shells, showing no evidence of destruction and renewal of the lithospheric plates over the latter 80% of their history. Their smaller volume to surface area results in a more rapid cooling, formation, and thickening of the lithosphere. Vertical tectonics, due to lithospheric loading, is controlled by the local thickness and rheology of the lithosphere. Further studies of Venus, which displays both the craterlike surface features of the one-plate planets, and the rifts and plateaus of earth, may indicate which factors are most important in controlling the tectonic evolution of terrestrial planets.

  16. Dictionary of Minor Planet Names

    CERN Document Server

    Schmadel, Lutz

    2012-01-01

    The quantity of numbered minor planets has now well exceeded a quarter million. The new sixth edition of the Dictionary of Minor Planet Names, which is the IAU’s official reference work for the field, now covers more than 17,000 named minor planets. In addition to being of practical value for identification purposes, the Dictionary of Minor Planet Names provides authoritative information on the basis of the rich and colorful variety of ingenious names, from heavenly goddesses to artists, from scientists to Nobel laureates, from historical or political figures to ordinary women and men, from mountains to buildings, as well as a variety of compound terms and curiosities. This sixth edition of the Dictionary of Minor Planet Names has grown by more than 7,000 entries compared to the fifth edition and by more than 2,000 compared to the fifth edition, including its two addenda published in 2006 and 2009. In addition, there are many  corrections, revisions and updates to the entries published in earlier editions....

  17. Saturn's rings thickness with the shadow hiding

    Science.gov (United States)

    Deau, Estelle; Brahic, André; Porco, Carolyn

    Using the Hapke shadow hiding model on various curves phases of ISS/Cassini, we were able to compute the thickness of Saturn's rings through the photometric filling factor. Our results show that diffuse rings (C ring and Cassini Division) are distributed in a monolayer with a thickness from a few centimeters to 5 meters. This seems to suggest that the layer is smaller than the larger particles. For the A and B rings, we find a thickness ranging from 10 to 20 meters, then leading to multiple layers of particles. Our results for the A ring are systematically lower than the values derived by density waves (Tiscareno et al., 2007) and dynamical simulations of Salo and Kaarjalainen (2003). For the first one, this can be explain by the fact the vertical height of the density waves are the upper limit of the real height. Indeed, the wakes (Julian & Toomre, 1966; Salo 1995) conduce the viscosity in the A ring (Daisaka et al., 2001), and produce random speeds greater in the ring plane than in the vertical direction (Daisaka & Ida, 1999), thereby reducing the thickness given by the vertical random speed used to compute the vertical height. However, for the latter one, simulations lead in all the cases (A and B rings such as C ring and Cassini Division) to vertical height of few meters. This constancy can be explained by the fact that simulations take a size distribution too truncated, and a coefficient of restitution rather simple (indeed, rings reflect different surface conditions related to the optical depth, thus the Bridges' law could not promote only one type of collisions). Finally, our results prefer monolayer (layer smaller than the larger particles which allow multilayer of smaller particules) for the faint rings (C ring and Cassini Division) and multilayer for the A and B rings.

  18. Hydrocarbons on Saturn's satellites Iapetus and Phoebe

    Science.gov (United States)

    Cruikshank, D.P.; Wegryn, E.; Dalle, Ore C.M.; Brown, R.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Nicholson, P.D.; Pendleton, Y.J.; Owen, T.C.; Filacchione, G.; Coradini, A.; Cerroni, P.; Capaccioni, F.; Jaumann, R.; Nelson, R.M.; Baines, K.H.; Sotin, Christophe; Bellucci, G.; Combes, M.; Langevin, Y.; Sicardy, B.; Matson, D.L.; Formisano, V.; Drossart, P.; Mennella, V.

    2008-01-01

    Material of low geometric albedo (pV ??? 0.1) is found on many objects in the outer Solar System, but its distribution in the saturnian satellite system is of special interest because of its juxtaposition with high-albedo ice. In the absence of clear, diagnostic spectral features, the composition of this low-albedo (or "dark") material is generally inferred to be carbon-rich, but the form(s) of the carbon is unknown. Near-infrared spectra of the low-albedo hemisphere of Saturn's satellite Iapetus were obtained with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft at the fly-by of that satellite of 31 December 2004, yielding a maximum spatial resolution on the satellite's surface of ???65 km. The spectral region 3-3.6 ??m reveals a broad absorption band, centered at 3.29 ??m, and concentrated in a region comprising about 15% of the low-albedo surface area. This is identified as the C{single bond}H stretching mode vibration in polycyclic aromatic hydrocarbon (PAH) molecules. Two weaker bands attributed to {single bond}CH2{single bond} stretching modes in aliphatic hydrocarbons are found in association with the aromatic band. The bands most likely arise from aromatic and aliphatic units in complex macromolecular carbonaceous material with a kerogen- or coal-like structure, similar to that in carbonaceous meteorites. VIMS spectra of Phoebe, encountered by Cassini on 11 June 2004, also show the aromatic hydrocarbon band, although somewhat weaker than on Iapetus. The origin of the PAH molecular material on these two satellites is unknown, but PAHs are found in carbonaceous meteorites, cometary dust particles, circumstellar dust, and interstellar dust. ?? 2007 Elsevier Inc. All rights reserved.

  19. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States)

    2013-08-20

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H{sub 2}O, MgO, and SiO{sub 2} dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures.

  20. Dictionary of minor planet names

    CERN Document Server

    Schmadel, Lutz D

    1997-01-01

    Until recently, minor planet name citations were scattered in the astronomical literature, and the origin of many names remained obscure In 1988 the IAU Commission 20 established a study group to elucidate the meanings of asteroid names Later on the author continued in collecting and indexing all new relevant data This book contains the names, and their meanings, of all - as yet 5252 - named minor planets It informs about the discoverers as well as the circumstances of the discovery of all 7041 minor planets that were numbered up to June 1996 In addition to being of practical value for identification purposes, the collection provides a most interesting historical insight into the work of those astronomers who over two centuries vested their affinities in a rich and colourful variety of ingenious names, from heavenly goddesses to more prosaic constructions This third, revised and enlarged edition comprises about 40% more information than was provided with the first one of 1992

  1. Characterizing K2 Planet Discoveries

    Science.gov (United States)

    Vanderburg, Andrew; Montet, Benjamin; Johnson, John; Buchhave, Lars A.; Zeng, Li; Bieryla, Allyson; Latham, David W.; Charbonneau, David; Harps-N Collaboration, The Robo-Ao Team

    2015-01-01

    We present an effort to confirm the first planet discovered by the two-wheeled Kepler mission. We analyzed K2 photometry, correcting for nonuniform detector response as a function of the spacecraft's pointing, and detected a transiting planet candidate. We describe our multi-telescope followup observing campaign, consisting of photometric, spectroscopic, and high resolution imaging observations, including over 40 HARPS-N radial velocity measurements. The new planet is a super-Earth orbiting a bright star amenable to followup observations. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  2. Saturn's Helium Abundance from Cassini CIRS and RSS Data

    Science.gov (United States)

    Achterberg, Richard K.; Schinder, Paul J.; Flasar, F. Michael

    2016-10-01

    The ratio of helium to hydrogen in Saturn's atmosphere provides an important constraint on models of Saturn's formation and evolution, but has been poorly constrained by available data. Measurements combining Voyager infrared and radio data [1] gave a He/H2 mole ratio of 0.034 ± 0.024, far below the protosolar value and requiring either significant helium loss or sequestration in the interior. Prompted by discrepancies between the Voyager infrared/radio and Galileo probe measurements of helium on Jupiter, Conrath and Gautier [2] reevaluated the helium abundance on Saturn from Voyager infrared data only, obtaining a He/H2 mole ratio of 0.135 ± 0.025, inconsistent with the previous results. Because of this discrepancy, estimating Saturn's atmospheric helium abundance has been a major goal of the Cassini mission.We are estimating the He/H2 mole ratio in Saturn's atmosphere using a combination of data from the Cassini Radio Science Subsystem (RSS) and Composite InfraRed Spectrometer (CIRS). Radio occultations, in which a carrier signal is observed as Cassini passed behind Saturn as seen from antennas on Earth, give a vertical profile of atmospheric refractivity, which can be converted to temperature as a function of pressure assuming a mean molecular weight. The assumed molecular weight is adjusted until synthetic thermal infrared spectra match spectra observed by CIRS at the same latitude and time. Preliminary results from a set of eleven near-equatorial occultations taken in 2005 give He/H2 mole ratios varying between ~0.060 and 0.085.[1] Conrath, B. J., et al., 1984, Ap. J., 282:807-815[2] Conrath, B. J. and D. Gautier, 2000, Icarus, 144:124-134

  3. Habitable planets with high obliquities.

    Science.gov (United States)

    Williams, D M; Kasting, J F

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  4. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    Science.gov (United States)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  5. Dynamical evidence for Planet X

    Science.gov (United States)

    Anderson, John D.; Standish, E. Myles, Jr.

    1986-01-01

    The dynamical evidence for a planet beyond the orbit of Neptune is reviewed. Three years of radio tracking data from Pioneer 10 can be fit to the noise level with no evidence for unmodelled acceleration at a level higher than 5 x 10 to the -14th km/sq s. The evidence does not place severe limits on the Planet X model, but does place a firm limit of five earth masses on a hypothetical comet belt just beyond the orbit of Neptune.

  6. Exploring Mercury: The Iron Planet

    OpenAIRE

    Stevenson, David J.

    2004-01-01

    Planet Mercury is both difficult to observe and difficult to reach by spacecraft. Just one spacecraft, Mariner 10, flew by the planet 30 years ago. An upcoming NASA mission, MESSENGER, will be launched this year and will go into orbit around Mercury at the end of this decade. A European mission is planned for the following decade. It's worth going there because Mercury is a strange body and the history of planetary exploration has taught us that strangeness gives us insight into planetary ori...

  7. Guldlok og de nye planeter

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke

    2007-01-01

    De såkaldte exoplaneter, som er planeter i andre solsystemer, beskrivelse af de de betingelser, der skal være opfyldt, før man kan gøre sig håb om at finde liv på dem og de metoder astronomer bruger til at finde planeterne.......De såkaldte exoplaneter, som er planeter i andre solsystemer, beskrivelse af de de betingelser, der skal være opfyldt, før man kan gøre sig håb om at finde liv på dem og de metoder astronomer bruger til at finde planeterne....

  8. Evolution of Saturn's mid-sized icy moons

    Science.gov (United States)

    Neveu, M.; Rhoden, A. R.

    2017-09-01

    We aim to reproduce the orbits (semi-major axes and eccentricities), and interiors (core radii, oceans) of the mid-sized moons of Saturn (Mimas, Enceladus, Tethys, Dione, and Rhea) as constrained by data from the Cassini spacecraft. We numerically model the coupled geophysical and orbital evolution of all moons, assuming they formed late from Saturn's rings. Our results closely reproduce observations, but only if Enceladus is initially warmer than what heating from impacts during its formation would provide. Notably, our models reconcile the moons' dynamical youth and geological diversity. We discuss next steps in improving the fidelity of our models.

  9. Habitable zone limits for dry planets.

    Science.gov (United States)

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  10. Atmospheric dynamics of tidally synchronized extrasolar planets.

    Science.gov (United States)

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  11. What confines the rings of Saturn?

    Science.gov (United States)

    Tajeddine, Radwan; Nicholson, Philip D.; El Moutamid, Maryame; Longaretti, Pierre-Yves; Burns, Joseph A.

    2017-10-01

    The viscous spreading of planetary rings is believed to be counteracted by satellite torques, either through an individual resonance or through overlapping resonances (when the satellite is close to the ring edge). For the A ring of Saturn, it has been commonly believed that the satellite Janus alone can prevent the ring from spreading via its 7:6 Lindblad resonance. We discuss this common misconception and show that, in reality, the A ring is confined by the contributions from the group of satellites Pan, Atlas, Prometheus, Pandora, Janus, Epimetheus, and Mimas, whose resonances gradually decrease the angular momentum flux transported outward through the ring via density and bending waves. We further argue that this decrease in angular momentum flux occurs through the mechanism of ‘flux reversal’.We find that the Janus 7:6 torque is relatively feeble, as is the comparable torque of the nearby small satellite Atlas, each amounting to less than one-tenth of the angular momentum transport carried by the A ring. But the cumulative torques of the many other satellite resonances in the A ring sufficiently reduce the angular momentum flux through the rings so that the torques due to Janus and Atlas are effective in confining the outer edge of the ring.Furthermore, we use the magnitude of the satellites’ resonance torques to estimate the effective viscosity profile across the A ring, showing that it decreases from ~50 cm2 s-1 at the inner edge to less than ~11 cm2 s-1 at the outer edge. The gradual estimated decrease of the angular momentum flux and effective viscosity are roughly consistent with results obtained by balancing the shepherding torques from Pan and Daphnis with the viscous torque at the edges of the Encke and Keeler gaps, as well as the edge of the A ring.On the other hand, the Mimas 2:1 Lindblad resonance alone seems to be capable of confining the edge of the B ring, and contrary to the situation in the A ring, we show that the effective viscosity

  12. Finding Spring on Planet X

    Science.gov (United States)

    Simoson, Andrew J.

    2007-01-01

    For a given orbital period and eccentricity, we determine the maximum time lapse between the winter solstice and the spring equinox on a planet. In addition, given an axial precession path, we determine the effects on the seasons. This material can be used at various levels to illustrate ideas such as periodicity, eccentricity, polar coordinates,…

  13. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  14. MEMS AO for Planet Finding

    Science.gov (United States)

    Rao, Shanti; Wallace, J. Kent; Shao, Mike; Schmidtlin, Edouard; Levine, B. Martin; Samuele, Rocco; Lane, Benjamin; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; hide

    2008-01-01

    This slide presentation reviews a method for planet finding using microelectromechanical systems (MEMS) Adaptive Optics (AO). The use of a deformable mirror (DM) is described as a part of the instrument that was designed with a nulling interferometer. The strategy that is used is described in detail.

  15. Tracking Planets around the Sun

    Science.gov (United States)

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  16. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  17. Venus and Mercury as Planets

    Science.gov (United States)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  18. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.; Tinney, C. G.; Bailey, J. [Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Tuomi, Mikko; Zhang, Z. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); O' Toole, S. J. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Carter, B. D. [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Jenkins, J. S. [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Vogt, S. S.; Rivera, Eugenio J., E-mail: rob@phys.unsw.edu.au [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  19. First Results of ISO-SWS Grating Observations of Saturn

    NARCIS (Netherlands)

    de Graauw, Th.; Encrenaz, Th.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, A.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davies, G. R.; Naylor, D. A.

    1996-01-01

    The spectrum of Saturn has been recorded between 2.3 and 15 mu m, on June 13, 1996, with the grating mode of the Short-Wavelength Spectrometer of ISO (Infrared Space Observatory). The resolving power is about 1500 and the sensitivity is better than 1 Jy. As compared to Jupiter, the spectrum of

  20. Survey of Saturn electrostatic cyclotron harmonic wave intensity

    Science.gov (United States)

    Menietti, J. D.; Averkamp, T. F.; Kurth, W. S.; Ye, S.-Y.; Gurnett, D. A.; Cecconi, B.

    2017-08-01

    We conduct a survey of electrostatic electron cyclotron harmonic (ECH) emissions observed at Saturn by the radio and plasma wave science investigation on board the Cassini spacecraft. These emissions are known to be effective at interacting with electrons in the terrestrial inner magnetosphere, producing electron scattering into the loss cone and acceleration (cf. Horne and Thorne, 2000; Thorne et al., 2010). At Saturn ECH emission occurs with high probability and at strong intensity near the magnetic equator, outside the Enceladus torus in the range 5 < L < 10. Inside the inner boundary of the torus, ECH emissions are also observed near the equator and at higher latitude. Intensity levels of ECH emission are comparable to those observed at Earth, higher than Saturn chorus and Z-mode emission, and are likely to scatter electrons into the loss cone as at Earth. ECH waves are particularly intense and extend to higher harmonics within some plasma injection regions. We present results for a survey of over 8 years of Saturn data for fundamental and up to three harmonics of fce, the electron cyclotron frequency.

  1. IMF dependence of the open-closed field line boundary in Saturn's ionosphere, and its relation to the UV auroral oval observed by the Hubble Space Telescope

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2007-06-01

    Full Text Available We study the dependence of Saturn's magnetospheric magnetic field structure on the interplanetary magnetic field (IMF, together with the corresponding variations of the open-closed field line boundary in the ionosphere. Specifically we investigate the interval from 8 to 30 January 2004, when UV images of Saturn's southern aurora were obtained by the Hubble Space Telescope (HST, and simultaneous interplanetary measurements were provided by the Cassini spacecraft located near the ecliptic ~0.2 AU upstream of Saturn and ~0.5 AU off the planet-Sun line towards dawn. Using the paraboloid model of Saturn's magnetosphere, we calculate the magnetospheric magnetic field structure for several values of the IMF vector representative of interplanetary compression regions. Variations in the magnetic structure lead to different shapes and areas of the open field line region in the ionosphere. Comparison with the HST auroral images shows that the area of the computed open flux region is generally comparable to that enclosed by the auroral oval, and sometimes agrees in detail with its poleward boundary, though more typically being displaced by a few degrees in the tailward direction.

  2. The Earth: A Changing Planet

    Science.gov (United States)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  3. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  4. INMS measures an influx of molecules from Saturn's rings

    Science.gov (United States)

    Perry, Mark E.; Cassini INMS Team

    2017-10-01

    In 1984, Connerney and Waite proposed water influx from Saturn's rings to explain the low electron densities measured during Pioneer and Voyager radio occultation experiments. Charge exchange with this minor species depleted the H+ ions and provided a faster path to electron recombination. With ice the primary constituent of the rings, water was the most likely in-falling molecule.During the Grand Finale orbits, Cassini's Ion and Neutral Mass Spectrometer (INMS) detected and quantified an influx from the rings. Unexpectedly, the primary influx molecules are CH4 and a heavier carbon-bearing species. Water was detected, but quantities were factors of ten lower than these other species.Distribution in both altitude and latitude are consistent with a ring influx. The concentration of the minor species in Saturn's atmosphere shows that they enter Saturn's atmosphere from the top. Both molecules have their highest concentrations at the highest altitudes, with concentrations >0.4% at 3,500 km altitude and only 0.02% at 2,700 km. Molecules from the rings deorbit to Saturn's atmosphere at altitudes near 4,000 km, consistent with the INMS measurements.The latitudinal dependence of the minor species indicates that their source is near the equatorial plane. At high altitudes, the minor species were observed primarily at zero latitude, where the 28u species was six times more concentrated than at 5° latitude. At lower altitudes, the peaking ratio was 1, indicating that the species had diffused and was fully mixed into Saturn's H2 atmosphere. The lighter molecule, CH4, diffuses more rapidly than the 28u species. INMS also detected both of these species during the earlier F-ring passes, finding that the neutrals were centered at the ring plane and extended 3,000 km (half width, half max) north and south.

  5. Saturn's Ring: Pre-Cassini Status and Mission Goals

    Science.gov (United States)

    Cuzzi, Jeff N.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    In November 1980, and again in August 1981, identical Voyager spacecraft flew through the Saturn system, changing forever the way we think about planetary rings. Although Saturn's rings had been the only known ring system for three centuries, a ring system around Uranus had been discovered by stellar occultations from Earth in 1977, and the nearly transparent ring of Jupiter was imaged by Voyager in 1979 (the presence of material there had been inferred from charged particle experiments on Pioneer 10 and 11 several years earlier). While Saturn had thus temporarily lost its uniqueness as having the only ring system, with Voyager it handily recaptured the role of having the most fascinating one. The Voyager breakthroughs included spiral density and bending waves such as cause galactic structure; ubiquitous fine-scale radial 'irregular' structure, with the appearance of record-grooves; regional and local variations in particle color; complex, azimuthally variable ring structure; empty gaps in the rings, some containing very regular, sharp-edged, elliptical rings and one containing both a small moonlet and incomplete arcs of dusty material; and shadowy 'spokes' that flicker across the main rings. One of the paradigm shifts of this period was the realization that many aspects of planetary rings, and even the ring systems themselves, could be 'recent' on geological timescales. These early results are reviewed and summarized in the Arizona Space Science series volumes 'Saturn'. (An excellent review of ring dynamics at a formative stage is by Goldreich and Tremaine.) From the mid 1980's to the time of this writing, progress has been steady, while at a less heady pace, and some of the novel ring properties revealed by Voyager 1 and 2 are beginning to be better understood. It is clearly impossible to cite, much less review, every advance over the last decade; however, below we summarize the main advances in understanding of Saturn's rings since the mid 1980's, in the context

  6. Planet Detection Algorithms for the Terrestrial Planet Finder-C

    Science.gov (United States)

    Kasdin, N. J.; Braems, I.

    2005-12-01

    Critical to mission planning for the terrestrial planet finder coronagraph (TPF-C) is the ability to estimate integration times for planet detection. This detection is complicated by the presence of background noise due to local and exo-zodiacal dust, by residual speckle due optical errors, and by the dependence of the PSF shape on the specific coronagraph. In this paper we examine in detail the use of PSF fitting (matched filtering) for planet detection, derive probabilistic bounds for the signal-to-noise ratio by balancing missed detection and false alarm rates, and demonstrate that this is close to the optimal linear detection technique. We then compare to a Bayesian detection approach and show that for very low background the Bayesian method offers integration time improvements, but rapidly approaches the PSF fitting result for reasonable levels of background noise. We confirm via monte-carlo simulations. This work was supported under a grant from the Jet Propulsion Laboratory and by a fellowship from the Institut National de Recherche en Informatique et Automatique (INRIA).

  7. Growing and moving planets in disks

    NARCIS (Netherlands)

    Paardekooper, Sijme-Jan

    2006-01-01

    Planets form in disks that are commonly found around young stars. The intimate relationship that exists between planet and disk can account for a lot of the exotic extrasolar planetary systems known today. In this thesis we explore disk-planet interaction using numerical hydrodynamical simulations.

  8. The Use of Planisphere to Locate Planets

    Science.gov (United States)

    Kwok, Ping-Wai

    2013-01-01

    Planisphere is a simple and useful tool in locating constellations of the night sky at a specific time, date and geographic location. However it does not show the planet positions because planets are not fixed on the celestial sphere. It is known that the planet orbital planes are nearly coplanar and close to the ecliptic plane. By making…

  9. Ground-based measurements of the 1.3 to 0.3 millimeter spectrum of Jupiter and Saturn, and their detailed calibration.

    Science.gov (United States)

    Pardo, Juan R; Serabyn, Eugene; Wiedner, Martina C; Moreno, Raphäel; Orton, Glenn

    2017-07-01

    One of the legacies of the now retired Caltech Submillimeter Observatory (CSO) is presented in this paper. We measured for the first time the emission of the giant planets Jupiter and Saturn across the 0.3 to 1.3 mm wavelength range using a Fourier Transform Spectrometer mounted on the 10.4-meter dish of the CSO at Mauna Kea, Hawaii, 4100 meters above sea level. A careful calibration, including the evaluation of the antenna performance over such a wide wavelength range and the removal of the Earth's atmosphere effects, has allowed the detection of broad absorption lines on those planets' atmospheres. The calibrated data allowed us to verify the predictions of standard models for both planets in this spectral region, and to confirm the absolute radiometry in the case of Jupiter. Besides their physical interest, the results are also important as both planets are calibration references in the current era of operating ground-based and space-borne submillimeter instruments.

  10. MESSENGER: Exploring the Innermost Planet

    Science.gov (United States)

    Solomon, S. C.

    2011-12-01

    One of Earth's closest planetary neighbors, Mercury remained comparatively unexplored for the more than three decades that followed the three flybys of the innermost planet by the Mariner 10 spacecraft in 1974-75. Mariner 10 imaged 45% of Mercury's surface at about 1 km/pixel average resolution, confirmed Mercury's anomalously high bulk density and implied large fractional core size, discovered Mercury's internal magnetic field, documented that H and He are present in the planet's tenuous exosphere, and made the first exploration of Mercury's magnetosphere and solar wind environment. Ground-based astronomers later reported Na, K, and Ca in Mercury's exosphere; the presence of deposits in the floors of polar craters having radar characteristics best matched by water ice; and strong evidence from the planet's forced libration amplitude that Mercury has a fluid outer core. Spacecraft exploration of Mercury resumed with the selection for flight, under NASA's Discovery Program, of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. Launched in 2004, MESSENGER flew by the innermost planet three times in 2008-2009 en route to becoming the first spacecraft to orbit Mercury in March of this year. MESSENGER's first chemical remote sensing measurements of Mercury's surface indicate that the planet's bulk silicate fraction differs from those of the other inner planets, with a low-Fe surface composition intermediate between basalts and ultramafic rocks and best matched among terrestrial rocks by komatiites. Moreover, surface materials are richer in the volatile constituents S and K than predicted by most planetary formation models. Global image mosaics and targeted high-resolution images (to resolutions of 10 m/pixel) reveal that Mercury experienced globally extensive volcanism, including large expanses of plains emplaced as flood lavas and widespread examples of pyroclastic deposits likely emplaced during explosive eruptions of volatile

  11. The case against Planet X.

    Science.gov (United States)

    Goldreich, P.; Ward, W. R.

    1972-01-01

    The dynamical consequences of the hypothetical trans-Plutonian planet suggested by Brady (1972) are considered. It is concluded that the combination of large mass and unusual orbital inclination would have two serious effects on the solar system. The angle between the solar axis and the normal to the ecliptic would suffer large variations with a period of a few times ten million years, and the coplanar configuration of the outer solar system would be disrupted on a time scale of 1 m.y. The large residuals in the orbit of Halley's comet which prompted the suggestion of a trans-Plutonian planet can be explained in terms of nongravitation forces and the weak orbital binding energy of this object.

  12. Lagrange L4/L5 points and the origin of our Moon and Saturn's moons and rings.

    Science.gov (United States)

    Gott, J Richard

    2005-12-01

    (Telesto and Calypso) at both L(4) and L(5) Lagrange points. Epimetheus is in a horseshoe orbit relative to Janus that is exactly like the horseshoe orbit expected for an object that has been perturbed from a location at L(4)/L(5). We propose that the rings of Saturn visible today are all that remains of this original disk; they lie inside the Roche limit where tidal forces have simply prevented the formation of large moons by accretion. Further out, the icy particles have accumulated into icy moons. Objects in external solar systems on horseshoe orbits (like those of Epimetheus relative to Janus) could be detected by a slow sinusoidal variation with time of the calculated mass of a planet from radial velocity measurements.

  13. Observational biases for transiting planets

    Science.gov (United States)

    Kipping, David M.; Sandford, Emily

    2016-12-01

    Observational biases distort our view of nature, such that the patterns we see within a surveyed population of interest are often unrepresentative of the truth we seek. Transiting planets currently represent the most informative data set on the ensemble properties of exoplanets within 1 au of their star. However, the transit method is inherently biased due to both geometric and detection-driven effects. In this work, we derive the overall observational biases affecting the most basic transit parameters from first principles. By assuming a trapezoidal transit and using conditional probability, we infer the expected distribution of these terms both as a joint distribution and in a marginalized form. These general analytic results provide a baseline against which to compare trends predicted by mission-tailored injection/recovery simulations and offer a simple way to correct for observational bias. Our results explain why the observed population of transiting planets displays a non-uniform impact parameter distribution, with a bias towards near-equatorial geometries. We also find that the geometric bias towards observed planets transiting near periastron is attenuated by the longer durations which occur near apoastron. Finally, we predict that the observational bias with respect to ratio-of-radii is super-quadratic, scaling as (RP/R⋆)5/2, driven by an enhanced geometric transit probability and modestly longer durations.

  14. The Giant Planet Satellite Exospheres

    Science.gov (United States)

    McGrath, M. A.

    2014-12-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., Io, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  15. Celestial mechanics of planet shells

    Science.gov (United States)

    Barkin, Yu V.; Vilke, V. G.

    2004-06-01

    The motion of a planet consisting of an external shell (mantle) and a core (rigid body), which are connected by a visco-elastic layer and mutually gravitationally interact with each other and with an external celestial body (considered as a material point), is studied (Barkin, 1999, 2002a,b; Vilke, 2004). Relative motions of the core and mantle are studied on the assumption that the centres of mass of the planet and external body move on unperturbed Keplerian orbits around the general centre of mass of the system. The core and mantle of the planet have axial symmetry and have different principal moments of inertia. The differential action of the external body on the core and mantle cause the periodic relative displacements of their centres of mass and their relative turns. An approximate solution of the problem was obtained on the basis of the linearization, averaging and small-parameter methods. The obtained analytical results are applied to the study of the possible relative displacements of the core and mantle of the Earth under the gravitational action of the Moon. For the suggested two-body Earth model and in the simple case of a circular (model) lunar orbit the new phenomenon of periodic translatory-rotary oscillations of the core with a fortnightly period the mantle was observed. The more remarkable phenomenon is the cyclic rotation with the same period (13.7 days) of the core relative to the mantle with a ‘large’ amplitude of 152 m (at the core surface).The results obtained confirm the general concept described by Barkin (1999, 2002a,b) that induced relative shell oscillations can control and dictate the cyclic and secular processes of energization of the planets and satellites in definite rhythms and on different time scales.The results obtained mean that giant moments and forces produce energy which causes in particular deformations of the viscoelastic layer between planet shells. This process is realized with different intensities on different time

  16. Planets, pluralism, and conceptual lineage

    Science.gov (United States)

    Brusse, Carl

    2016-02-01

    Conceptual change can occur for a variety of reasons; some more scientifically significant than others. The 2006 definition of 'planet', which saw Pluto reclassified as a dwarf planet, is an example toward the more mundane end of the scale. I argue however that this case serves as a useful example of a related phenomenon, whereby what appears to be a single kind term conceals two or more distinct concepts with independent scientific utility. I examine the historical background to this case, as a template for developing additional evidence for pluralist approaches to conceptual disputes within science and elsewhere. "I would like to note that the two speakers who have spoken so far have both done the same extremely insulting gaffe," he said. "They have used the expression 'a physical definition of a planet' - by implication, suggesting that a dynamical definition is not physics!" He said he felt he had to teach the panel "something you should know": that dynamics was indeed physics, and in fact was addressed before solid-state physics in every textbook ever written." (Boyle, 2010, p. 126)

  17. Atmospheric Dynamics of Irradiated Planets

    Science.gov (United States)

    Dobbs-Dixon, Ian

    2009-09-01

    Close-in gas giant planets are now familiar members of the growing family of extra-solar planets. Their short period orbits and proclivity for transiting has made them the target of numerous observational campaigns, and our knowledge of their structure and composition has increased dramatically over the past few years. However, despite their prevalence and important role in constraining a wide range of planetary models, fundamental questions about the dynamical behavior of their atmospheres remain, crucial for interpreting observations. I will discuss three-dimensional radiative hydrodynamical simulations of atmospheric flows on a wide variety of such objects, ranging from the well-known HD209458b to the more exotic rapidly rotating or highly eccentric objects. Such objects exhibit a range of unusual behavior including supersonic winds, shocks and instabilities, and time dependent behavior. I will review the results from models we have developed to study these processes with the goal of both explaining individual objects and the observed diversity among this class of planets.

  18. Towards the Rosetta Stone of planet formation

    Directory of Open Access Journals (Sweden)

    Schmidt T.O.B.

    2011-02-01

    Full Text Available Transiting exoplanets (TEPs observed just ~10 Myrs after formation of their host systems may serve as the Rosetta Stone for planet formation theories. They would give strong constraints on several aspects of planet formation, e.g. time-scales (planet formation would then be possible within 10 Myrs, the radius of the planet could indicate whether planets form by gravitational collapse (being larger when young or accretion growth (being smaller when young. We present a survey, the main goal of which is to find and then characterise TEPs in very young open clusters.

  19. Evolution of Motion of a Binary Planet

    Science.gov (United States)

    Vil'ke, V. G.; Shatina, A. V.

    2001-05-01

    A model of a binary planet, consisting of a material point of small mass and a deformable viscoelastic sphere, is suggested. The center of mass of the binary planet moves in the gravitational field of a central body in the plane, which contains planets forming the binary planet. A deformable spherical planet rotates around the axis orthogonal to the plane of planetary motion. Planet deformations are described by the linear theory of viscoelasticity. It is shown that with an appropriate approximation of the gravitational potential, there is a class of quasicircular orbits, when the eccentricities of an orbit of the center of mass of a binary planet and an orbit, describing mutual planet motion, are equal to zero. The further evolution of motion is investigated in this class of orbits with the use of the canonical Poincare-Andoyer variables. Corresponding averaged equations are found, and phase pictures are constructed; the stability of stationary solutions is investigated on the basis of equations in variations. For the Solar system planets with their satellites, forming binary planets, the application of the presented model allows us to conclude that satellites sooner or later will fall on the corresponding planets.

  20. Seeding life on the moons of the outer planets via lithopanspermia.

    Science.gov (United States)

    Worth, R J; Sigurdsson, Steinn; House, Christopher H

    2013-12-01

    Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.

  1. Dawn Auroral Breakup at Saturn Initiated by Auroral Arcs: UVIS/Cassini Beginning of Grand Finale Phase

    Science.gov (United States)

    Radioti, A.; Grodent, D.; Yao, Z. H.; Gérard, J.-C.; Badman, S. V.; Pryor, W.; Bonfond, B.

    2017-12-01

    We present Cassini auroral observations obtained on 11 November 2016 with the Ultraviolet Imaging Spectrograph at the beginning of the F-ring orbits and the Grand Finale phase of the mission. The spacecraft made a close approach to Saturn's southern pole and offered a remarkable view of the dayside and nightside aurora. With this sequence we identify, for the first time, the presence of dusk/midnight arcs, which are azimuthally spread from high to low latitudes, suggesting that their source region extends from the outer to middle/inner magnetosphere. The observed arcs could be auroral manifestations of plasma flows propagating toward the planet from the magnetotail, similar to terrestrial "auroral streamers." During the sequence the dawn auroral region brightens and expands poleward. We suggest that the dawn auroral breakup results from a combination of plasma instability and global-scale magnetic field reconfiguration, which is initiated by plasma flows propagating toward the planet. Alternatively, the dawn auroral enhancement could be triggered by tail magnetic reconnection.

  2. The Detection and Characterization of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Ken Rice

    2014-09-01

    Full Text Available We have now confirmed the existence of > 1800 planets orbiting stars other thanthe Sun; known as extrasolar planets or exoplanets. The different methods for detectingsuch planets are sensitive to different regions of parameter space, and so, we are discoveringa wide diversity of exoplanets and exoplanetary systems. Characterizing such planets isdifficult, but we are starting to be able to determine something of their internal compositionand are beginning to be able to probe their atmospheres, the first step towards the detectionof bio-signatures and, hence, determining if a planet could be habitable or not. Here, Iwill review how we detect exoplanets, how we characterize exoplanetary systems and theexoplanets themselves, where we stand with respect to potentially habitable planets and howwe are progressing towards being able to actually determine if a planet could host life or not.

  3. Venus Express en route to probe the planet's hidden mysteries

    Science.gov (United States)

    2005-11-01

    mechanics of the planetary atmosphere in general terms. With Mars Express, we are studying the Martian atmosphere. With Huygens, we have explored that of Saturn's satellite Titan. And now with Venus Express, we are going to add a further specimen to our collection. Originally, Venus and the Earth must have been very similar planets. So we really do need to understand why and how they eventually diverged to the point that one became a cradle for life while the other developed into a hostile environment." The Venus Express mission is planned to last at least two Venusian days (486 Earth days) and may be extended, depending on the spacecraft's operational state of health. Twin sister of Mars Express Venus Express largely reuses the architecture developed for Mars Express. This has reduced manufacturing cycles and halved the mission cost, while still targeting the same scientific goals. Finally approved in late 2002, Venus Express was thereby developed fast, indeed in record time, to be ready for its 2005 launch window. However, Venusian environmental conditions are very different to those encountered around Mars. Solar flux is four times higher and it has been necessary to adapt the spacecraft design to this hotter environment, notably by entirely redesigning the thermal insulation. Whereas Mars Express sought to retain heat to enable its electronics to function properly, Venus Express will in contrast be aiming for maximum heat dissipation in order to stay cool. The solar arrays on Venus Express have been completely redesigned. They are shorter and are interspersed with aluminium strips to help reject some solar flux to protect the spacecraft from temperatures topping 250ºC. It has even been necessary to protect the rear of the solar arrays - which normally remain in shadow - in order to counter heat from solar radiation reflected by the planet's atmosphere. An atmosphere of mystery Following on from the twenty or so American and Soviet missions to the planet carried out

  4. Erratum: Voyager Color Photometry of Saturn's Main Rings

    Science.gov (United States)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Showalter, Mark R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    We correct a calibration error in our earlier analysis of Voyager color observations of Saturn's main rings at 14 deg phase angle and present thoroughly revised and reanalyzed radial profiles of the brightness of the main rings in Voyager G, V, and UV filters, and ratios of these brightnesses. These results are consistent with more recent HST results at 6 deg phase angle, once allowance is made for plausible phase reddening of the rings. Unfortunately, the Voyager camera calibration factors are simply not sufficiently well known for a combination of the Voyager and HST data to be used to constrain the phase reddening quantitatively. However, some interesting radial variations in reddening between 6-14 deg phase angles are hinted at. We update a ring-and-satellite color vs. albedo plot from Cuzzi and Estrada in several ways. The A and B rings are still found to be in a significantly redder part of color-albedo space than Saturn's icy satellites.

  5. Observations of ejecta clouds produced by impacts onto Saturn's rings.

    Science.gov (United States)

    Tiscareno, Matthew S; Mitchell, Colin J; Murray, Carl D; Di Nino, Daiana; Hedman, Matthew M; Schmidt, Jürgen; Burns, Joseph A; Cuzzi, Jeffrey N; Porco, Carolyn C; Beurle, Kevin; Evans, Michael W

    2013-04-26

    We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system.

  6. Dust characteristics of dusty plasma ring of Saturn

    Science.gov (United States)

    Morooka, M.; Wahlund, J.-E.; Ye, S.-Y.; Persoon, A. M.; Kurth, W. S.

    2017-09-01

    During the Ring Grazing orbit, starting from December 2016, Cassini carried out twenty of the faint Saturn ring crossing observations at the distance of 2.45-2.51 RS (1RS 60,268 km) from Saturn center. We will show the electron and the ion density measurements of the RPWS/Langmuir Probe (LP) during these orbits. In most of the orbits significant ion/electron density differences have been observed, which indicates the presence of the charged nm and µm sized grains. The relationship between the observed charge densities and the electrical potential of the grains shows that the grains and the ambient electrons and ions are electro dynamical ensemble, a dusty plasma. The results show that characteristic dust size changes depending on the distance from the ring center. The result suggests that a dusty plasma state is related to the dynamics of the grain sizes.

  7. Photometric changes on Saturn's Titan: Evidence for active cryovolcanism

    Science.gov (United States)

    Nelson, R.M.; Kamp, L.W.; Lopes, R.M.C.; Matson, D.L.; Kirk, R.L.; Hapke, B.W.; Wall, S.D.; Boryta, M.D.; Leader, F.E.; Smythe, W.D.; Mitchell, K.L.; Baines, K.H.; Jaumann, R.; Sotin, Christophe; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Lunine, J.I.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Irwin, P.G.J.; Pearl, J.C.

    2009-01-01

    We report infrared spectrophotometric variability on the surface of Saturn's moon Titan detected in images returned by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Saturn Orbiter. The changes were observed at 7??S, 138??W and occurred between October 27, 2005 and January 15, 2006. After that date the surface was unchanged until the most recent observation, March 18, 2006. We previously reported spectrophotometric variability at another location (26??S, 78??W). Cassini Synthetic Aperture RADAR (SAR) images find that the surface morphology at both locations is consistent with surface flows possibly resulting from cryovolcanic activity (Wall et al., companion paper, this issue). The VIMS-reported time variability and SAR morphology results suggest that Titan currently exhibits intermittent surface changes consistent with present ongoing surface processes. We suggest that these processes involve material from Titan's interior being extruded or effiised and deposited on the surface, as might be expected from cryovolcanism. ?? 2009.

  8. The electrons and ion characteristics of Saturn's plasma disk inside the Enceladus orbit

    Science.gov (United States)

    Morooka, Michiko; Wahlund, Jan-Erik; Ye, Sheng-Yi; Kurth, William; Persoon, Ann; Holmberg, Mika

    2017-04-01

    Cassini observations revealed that Saturn's icy moon Enceladus and surrounding E ring are the significant plasma source of the magnetosphere. However, the observations sometimes show the electron density enhancement even inside the Enceladus orbiting distance, 4RS. Further plasma contribution from the inner rings, the G and the F rings and main A ring are the natural candidate as an additional plasma source. The Cassini/RPWS Langmuir Probe (LP) measurement provides the characteristics of the electrons and ions independently in a cold dense plasma. The observations near the center of the E ring showed that the ion density being larger than the electron density, indicating that there is additional particle as a negative charge carrier. Those are the small nm and μm sized dust grains that are negatively charged by the electron attachments. The faint F and G rings, located at R=2RS and 3RS, consist of small grains and similar electron/ion density discrepancies can be expected. We will show different types of the LP observations when Cassini traveled the equator region of the plasma disk down to 3RS. One with the electron density increasing inside 4RS, and another with the electron density decreasing inside 4RS. During the orbit 016 (2005 doy-284/285), the electron density continued to increase toward the planet. On the other hand, the ion currents, the LP measured currents from the negative bias voltage, turn to decreasing inside 4RS, implying the density decrease of the ions. By comparing the observed LP ion current characteristics and the modeled values using the obtained electron density, we found that the characteristic ion mass can be several times larger than the water ions (AMU=18) that we expected in this region. During the orbit 015 (2005 doy-266/267), on the other hand, the LP observed sharp electron density drop near 3RS. The dust signals from the RPWS antenna showed the density enhancement of the μm sized grains coincide the electron density drop and we

  9. Detection and Behavior of Pan Wakes in Saturn's A Ring

    Science.gov (United States)

    Horn, L. J.; Showalter, M. R.; Russell, C. T.

    1996-01-01

    Six previously unseen Pan wakes are found interior and exterior to the Encke gap in Saturn's A ring, one in the Voyager 2 photopolarimeter (PPS) stellar occultation data and five in the Voyager 1 radio science (RSS) Earth occultation data. Pan orbits at the center of the Encke gap and maintains it...The detection of Pan wakes at longitudes greater than 360(deg) demonstrates that wakes persist for much longer than originally hypothesized and may interact with one another.

  10. Dust Transport from Enceladus to the moons of Saturn

    Science.gov (United States)

    Juhasz, A.; Hsu, H. W.; Kempf, S.; Horanyi, M.

    2016-12-01

    Saturn's vast E-ring engulfs the satellites Mimas, Enceladus, Tethys, Dione, and Rea, reaching even beyond Titan, while its inner edge is adjacent with the outskirts of the A-ring. The E-ring is comprised of characteristically micron and submicron sized particles, originating mainly from the active plumes of Enceladus, and possibly the other moons as well due to their continual bombardment by interplanetary dust particles. The dynamics of the E-ring grains can be surprising as in addition to the gravity of Saturn and its moons, their motion is governed by radiation pressure, plasma drag, and electromagnetic forces as they collect charges interacting with the magnetospheric plasma environment of Saturn. Due to sputtering, their mass is diminishing and, hence, their charge-to-mass ratio is increasing in time. A "young" gravitationally dominated micron-sized particle will "mature" into a nanometer-sized grain whose motion resembles that of a heavy ion. Simultaneously with their mass loss, the dust particles are pushed outwards by plasma drag. Time to time, their evolving orbits intersect the orbits of the Saturnian moons and the E-ring particles can be deposited onto their surfaces, possibly altering their makeup and spectral properties. Using the Cassini magnetospheric observations, we have followed the orbital evolution of E-ring particles, through their entire life, starting at Enceladus, ending in: a) a collision with the A-ring or any of the satellites; or b) losing all their mass due to sputtering; or c) leave the magnetosphere of Saturn. This presentation will focus on the deposition rates and maps of E-ring particles to the surfaces of the moons.

  11. Extended Survey of Saturn Z/O-mode Wave Intensity

    Science.gov (United States)

    Menietti, J. D.; Averkamp, T. F.; Ye, S.; Kurth, W. S.

    2016-12-01

    The role of Z-mode emission in the diffusive scattering and resonant acceleration of electrons is believed to be important. A survey of the "5 kHz" component of this emission at Saturn indicates strong intensity in the lower density regions where fp/fc spatial coordinates. The goal is to parameterize these data for use in quasilinear models requiring thecalculation of pitch angle and momentum diffusion coefficients. In this report we present our initial results.

  12. On-line optimization code used at Saturne

    Science.gov (United States)

    Lagniel, J. M.; Lemaire, J. L.

    A computer code has been developped in order to make the tuning of the injection process easier in the Saturne synchrotron accelerator and search for sets of new values of parameters leading to the optimum of any criterion. The usual criterion being mainly the beam intensity given by current transformers or any non-destructive measurement device. Acquisition of the criterion is made at each cycle of the acceleration. The technique used has many advantages

  13. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  14. Ray-tracing temperatures of the Main Rings of Saturn

    Science.gov (United States)

    Flandes, Alberto; García, Ángel; Deau, Estelle; Spilker, Linda

    2017-10-01

    The temperature of the main rings of Saturn is strongly dependent upon the distribution and the general structure of the ensembles of particles that compose them, mainly due to shadowing effects that modulate how much energy reaches the individual particles granted that the direct solar energy is the main driver of the rings' temperature-. In this work we separate the main rings (A, CD, B and C) in 13 different regions along the radial direction and, based on the average properties of the structure of these regions derived from the Cassini UVIS observations, we simulate them using lambertian spherical particles. These simulations are then used to derive their shadowed/non-shadowed fractional areas as the solar elevation angle varies and then their temperature variation with the same angle. For this purpose we use a semi-analytical model where four energy sources are considered (solar direct and Saturn reflected energy, Saturn thermal energy and particles' thermal energies). The synthetic temperature results are compared to the Cassini measured temperatures (from -22 deg to equinox) with good agreement.

  15. Quasiperiodic ULF-pulsations in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Kleindienst

    2009-02-01

    Full Text Available Recent magnetic field investigations made onboard the Cassini spacecraft in the magnetosphere of Saturn show the existence of a variety of ultra low frequency plasma waves. Their frequencies suggest that they are presumably not eigenoscillations of the entire magnetospheric system, but excitations confined to selected regions of the magnetosphere. While the main magnetic field of Saturn shows a distinct large scale modulation of approximately 2 nT with a periodicity close to Saturn's rotation period, these ULF pulsations are less obvious superimposed oscillations with an amplitude generally not larger than 3 nT and show a package-like structure. We have analyzed these wave packages and found that they are correlated to a certain extent with the large scale modulation of the main magnetic field. The spatial localization of the ULF wave activity is represented with respect to local time and Kronographic coordinates. For this purpose we introduce a method to correct the Kronographic longitude with respect to a rotation period different from its IAU definition. The observed wave packages occur in all magnetospheric regions independent of local time, elevation, or radial distance. Independent of the longitude correction applied the wave packages do not occur in an accentuated Kronographic longitude range, which implies that the waves are not excited or confined in the same selected longitude ranges at all times or that their lifetime leads to a variable phase with respect to the longitudes where they have been exited.

  16. On the Edgeworth-Kuiper Belt dust flux to Saturn

    Science.gov (United States)

    Poppe, A. R.; Horanyi, M.

    2012-09-01

    The Edgeworth-Kuiper Belt (EKB) produces approximately 3 × 107 tons/year of dust grains with radii between 0.1 and 10.0 μm through a combination of mutual collisions and bombardment by interstellar dust grains [1]. These grains migrate inward through the outer solar system under the combination of gravity, solar radiation pressure, solar wind drag, and the electromagnetic Lorentz force, forming a tenuous dust halo extending from the orbit of Jupiter out past the classical EKB, and in turn, EKB-generated grains are believed to be the dominant species of dust from Saturn outward [2]. In this talk, we present calculations of the EKB influx into Saturn using a dynamical dustgrain tracing model that is absolutely calibrated to both New Horizons Student Dust Counter and Pioneer 10 meteoroid detector measurements. We discuss the differences of our model with previous estimates of EKB influx to Saturn, and the implications that these differences may have on a variety of phenomena in the saturnian system.

  17. Constraints on Non-Standard Gravitomagnetism by the Anomalous Perihelion Precession of the Planets

    Directory of Open Access Journals (Sweden)

    Luis Acedo

    2014-09-01

    Full Text Available In 2008, a team of astronomers reported an anomalous retrograde precession of the perihelion of Saturn amounting to \\(\\Delta \\dot{\\omega}_{\\mathrm{SATURN}}=-0.006(2\\ arcsec per century (arcsec cy\\(^{-1}\\. This unexplained precession was obtained after taking into account all classical and relativistic effects in the context of the highly refined EPM2008 ephemerides. More recent analyzes have not confirmed this effect, but they have found similar discrepancies in other planets. Our objective in this paper is to discuss a non-standard model involving transversal gravitomagnetism generated by the Sun as a possible source of these potential anomalies, to be confirmed by further data analyses. In order to compute the Lense–Thirring perturbations induced by the suggested interaction, we should consider the orientation of the Sun's rotational axis in Carrington elements and the inclination of the planetary orbits with respect to the ecliptic plane. We find that an extra component of the gravitomagnetic field not predicted by General Relativity could explain the reported anomalies without conflicting with the Gravity Probe B experiment and the orbits of the geodynamics satellites.

  18. No planet for HD 166435

    OpenAIRE

    Queloz, D.; Henry, G. W.; Sivan, J. P.; Baliunas, S. L.; Beuzit, J. L.; Mayor, R. A. Donahue M.; Naef, D.; Perrier, C.; Udry, S.

    2001-01-01

    The G0V star HD166435 has been observed by the fiber-fed spectrograph ELODIE as one of the targets in the large extra-solar planet survey that we are conducting at the Observatory of Haute-Provence. We detected coherent, low-amplitude, radial-velocity variations with a period of 3.7987days, suggesting a possible close-in planetary companion. Subsequently, we initiated a series of high-precision photometric observations to search for possible planetary transits and an additional series of CaII...

  19. Planet earth a beginner's guide

    CERN Document Server

    Gribbin, John

    2012-01-01

    In this incredible expedition into the origins, workings, and evolution of our home planet, John Gribbin, bestselling author of In Search of Schrödinger's Cat, The Scientists, and In Search of the Multiverse, does what he does best: taking four and a half billion years of mind-boggling science and digging out the best bits. From the physics of Newton and the geology of Wegener, to the environmentalism of Lovelock, this is a must read for Earth's scientists and residents alike. Trained as an astrophysicist at Cambridge University, John Gribbin is currently Visiting Fellow in Astronomy at the University of Sussex, England.

  20. Coupling dynamical and collisional evolution of small bodies:. an application to the early ejection of planetesimals from the Jupiter-Saturn region

    Science.gov (United States)

    Charnoz, Sébastien; Morbidelli, Alessandro

    2003-11-01

    We present a new algorithm designed to compute the collisional erosion of a population of small bodies undergoing a complex and rapid dynamical evolution induced by strong gravitational perturbations. Usual particle-in-a-box models have been extensively and successfully used to study the evolution of asteroids or KBOs. However, they cannot track the evolution of small bodies in rapid dynamical evolution, due to their oversimplified description of the dynamics. Our code is based on both (1) a direct simulation of the dynamical evolution which is used to compute local encounter rates and (2) a classical fragmentation model. Such a code may be used to track the erosional evolution of the planetesimal disk under the action of newly formed giant-planets, a passing star or a population of massive planetary-embryos. We present here an application to a problem related to the formation of the Oort cloud. The usually accepted formation scenario is that planetesimals, originally formed in the giant planet region, have been transported to the Oort cloud by gravitational scattering. However, it has been suggested that, during the initial transport phase, the mutual large encounter velocities might have induced a rapid and intense collisional evolution of the planetesimal population, potentially causing a significant reduction of the Oort cloud formation process. This mechanism is explored with our new algorithm. Because the advantages of our new approach are better highlighted for a population undergoing a violent dynamical evolution, we concentrate in this paper on the planetesimals originally in the Jupiter-Saturn region, although it is known that they are only minor contributors to the final Oort cloud population. A wide range of parameters is explored (mass of the particle disk, initial size-distribution, material strength): depending upon the assumed parameter values, we find that from 15 to 90% of the mass contained in bodies larger than 1 km survives the collisional

  1. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets.

    Science.gov (United States)

    Alexander, C M O'D; Bowden, R; Fogel, M L; Howard, K T; Herd, C D K; Nittler, L R

    2012-08-10

    Determining the source(s) of hydrogen, carbon, and nitrogen accreted by Earth is important for understanding the origins of water and life and for constraining dynamical processes that operated during planet formation. Chondritic meteorites are asteroidal fragments that retain records of the first few million years of solar system history. The deuterium/hydrogen (D/H) values of water in carbonaceous chondrites are distinct from those in comets and Saturn's moon Enceladus, implying that they formed in a different region of the solar system, contrary to predictions of recent dynamical models. The D/H values of water in carbonaceous chondrites also argue against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system. The bulk hydrogen and nitrogen isotopic compositions of CI chondrites suggest that they were the principal source of Earth's volatiles.

  2. Seismology with a Fourier-transform spectrometer: applications to giant planets and stars.

    Science.gov (United States)

    Maillard, J P

    1996-06-01

    A method to detect the acoustic oscillation spectrum of giant planets and stars exploits the multiplex properties of a Fourier-transform spectrometer (FTS). It is based on measurement of the small Doppler shift related to the oscillation of the atmosphere measured from all the lines in a portion of the planetary or the stellar spectrum directly from the interferogram. The resulting amplitude modulation of the output signal is recorded continuously over several consecutive nights at a fixed path difference selected from criteria of optimum efficiency. Hence the Fourier transform of this signal yields the pressure-mode spectrum of the object. Applications to Jupiter, Saturn, and Procyon, observed in this mode with the step-scan FTS installed in the Canada-France-Hawaii Telescope, are presented. Future projects are discussed.

  3. Flight characteristics of probes in the atmospheres of Mars, Venus, and the outer planets

    Science.gov (United States)

    Intrieri, P. F.; Derose, C. E.; Kirk, D. B.

    1976-01-01

    Density, pressure, and temperature profiles of an unknown planetary atmosphere can be obtained from the high-speed entry of a probe provided the aerodynamic characteristics of the probe in this atmosphere are accurately known. An investigation of the effect of gas composition on probe aerodynamics has been conducted in the Ames Hypersonic Free Flight Facility by gun launching small-scale models into atmospheres representative of Mars, Venus, Jupiter, and Saturn. Aerodynamic data at conditions matching the velocity and Reynolds number at a number of points on the Viking trajectory (Mars) were obtained in both air and carbon dioxide and significant differences were noted. Aerodynamic data are also presented from tests in hydrogen and hydrogen-helium mixtures, gases which characterize the atmospheres of the outer planets.

  4. Low-energy charged particles in Saturn's magnetosphere - Results from Voyager 1

    Science.gov (United States)

    Krimigis, S. M.; Bostrom, C. O.; Keath, E. P.; Carbary, J. F.; Roelof, E. C.; Armstrong, T. P.; Axford, W. I.; Gloeckler, G.; Hamilton, D. C.; Lanzerotti, L. J.

    1981-01-01

    The Voyager 1 low-energy charged particle instrument measured electrons and ions with energies below 26 and 40 kiloelectron volts, respectively, in the Saturn magnetosphere. Spectra of all ion species were found to have an energy cutoff at levels greater than 2 million electron volts. In contrast to the magnetospheres of Jupiter and earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. One novel feature of the Saturn magnetosphere is a pervasive population of energetic molecular hydrogen.

  5. Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn

    Science.gov (United States)

    Atreya, S. K.; Donahue, T. M.; Nagy, A. F.; Waite, J. H., Jr.; Mcconnell, J. C.

    1984-01-01

    The structure and composition of the thermosphere, exosphere, and ionosphere of saturn have been determined from observations at optical and radio wavelengths mainly by instruments aboard Voyager spacecraft. Techniques for determining the vertical profiles of temperature and density and the atmospheric vertical mixing in the upper Saturn atmosphere are discussed. Radio occultation measurements and theoretical models of Saturn's ionosphere are reviewed, and attempts to interpret the measurements using the models are discussed. Finally, mechanisms of thermospheric heating are examined.

  6. VOYAGER 1&2 SATURN IRIS DERIVED NORTH/SOUTH PARAMETERS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set contains Saturn atmospheric parameters derived from spectra obtained with the Voyager infrared interferometer spectrometer (IRIS). The data set is...

  7. Telecommunications and data acquisition systems support for Voyager missions to Jupiter and Saturn, 1972-1981, prelaunch through Saturn encounter

    Science.gov (United States)

    Traxler, M. R.; Beauchamp, D. F.

    1983-01-01

    The Deep Space Network has supported the Voyager Project for approximately nine years, during which time implementation, testing, and operational support was provided. Four years of this time involved testing prior to launch; the final five years included network operations support and additional network implementation. Intensive and critical support intervals included launch and four planetary encounters. The telecommunications and data acquisition support for the Voyager Missions to Jupiter and Saturn are summarized.

  8. Our Solar System Features Eight Planets

    Science.gov (United States)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto. This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  9. Extrasolar planets searches today and tomorrow

    CERN Multimedia

    2000-01-01

    So far the searches for extrasolar planets have found 40 planetary companions orbiting around nearby stars. In December 1999 a transit has been observed for one of them, providing the first independent confirmation of the reality of close-in planets as well as a measurement of its density. The techniques used to detect planets are limited and the detection threshold is biased but a first picture of the planet diversity and distribution emerges. Results of the search for extra-solar planets and their impacts on planetary formation will be reviewed. Future instruments are foreseen to detect Earth-like planets and possible signatures of organic activity. An overview of these future projects will be presented and more particularly the Darwin-IRSI mission studied by ESA for Horizon 2015.

  10. All for the Planet, the Planet for everyone!

    Science.gov (United States)

    Drndarski, Marina

    2014-05-01

    The Eco-Musketeers are unique voluntary group of students. They have been established in Belgrade, in Primary school 'Drinka Pavlović'. Since the founding in year 2000, Eco-Musketeers have been involved in peer and citizens education guided by motto: All for the planet, the planet for all! Main goals of this group are spreading and popularization of environmental approach as well as gaining knowledge through collaborative projects and research. A great number of students from other schools in Serbia have joined Eco-Musketeers in observations aiming to better understand the problem of global climate change. In the past several years Eco-Musketeers have also participated in many national and international projects related to the active citizenship and rising the awareness of the importance of biodiversity and environment for sustainable development of society. In this presentation we will show some of the main activities, eco-performances and actions of our organization related to the environment, biodiversity, conservation and recycling, such as: spring cleaning the streets of Belgrade, cleaning the Sava and the Danube river banks, removing insect moth pupae in the area of Lipovica forest near Belgrade. Also, Eco-Musketeers worked on education of employees of Coca-Cola HBC Serbia about energy efficiency. All the time, we have working on raising public awareness of the harmful effects of plastic bags on the environment, too. In order to draw attention on rare and endangered species in Serbia and around the globe, there were several performing street-plays about biodiversity and also the plays about the water ecological footprint. Eco-Musketeers also participated in international projects Greenwave-signs of spring (Fibonacci project), European Schools For A Living Planet (WWF Austria and Erste stiftung) and Eco Schools. The eco dream of Eco-Musketeers is to influence the Government of the Republic of Serbia to determine and declare a 'green habits week'. This should

  11. Space based microlensing planet searches

    Directory of Open Access Journals (Sweden)

    Tisserand Patrick

    2013-04-01

    Full Text Available The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: “Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes”. They also add: “This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters”. We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020–2025.

  12. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    Science.gov (United States)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  13. X-Ray Spectroscopy of Optically Bright Planets using the Chandra Observatory

    Science.gov (United States)

    Ford, P. G.; Elsner, R. F.

    2005-01-01

    Since its launch in July 1999, Chandra's Advanced CCD Imaging Spectrometer (ACIS) has observed several planets (Venus, Mars, Jupiter and Saturn) and 6 comets. At 0.5 arc-second spatial resolution, ACIS detects individual x-ray photons with good quantum efficiency (25% at 0.6 KeV) and energy resolution (20% FWHM at 0.6 KeV). However, the ACIS CCDs are also sensitive to optical and near-infrared light, which is absorbed by optical blocking filters (OBFs) that eliminate optical contamination from all but the brightest extended sources, e.g., planets. .Jupiter at opposition subseconds approx.45 arc-seconds (90 CCD pixels.) Since Chandra is incapable of tracking a moving target, the planet takes 10 - 20 kiloseconds to move across the most sensitive ACIS CCD, after which the observatory must be re-pointed. Meanwhile, the OBF covering that CCD adds an opt,ical signal equivalent to approx.110 eV to each pixel that lies within thc outline of the Jovian disk. This has three consequences: (1) the observatory must be pointed away from Jupiter while CCD bias maps are constructed; (2) most x-rays from within the optical image will be misidentified as charged-particle background and ignored; and (3) those x-rays that are reported will bc assigned anomalously high energies. The same also applies to thc other planets, but is less serious since they are either dimmer at optical wavelengths, or they show less apparent motion across the sky, permitting reduced CCD exposure times: the optical contamination from Saturn acids approx.15 eV per pixel, and from Mars and Venus approx.31 eV. After analyzing a series of short .Jupiter observations in December 2000, ACIS parameters were optimized for the February 2003 opposition. CCD bias maps were constructed while Chandra pointed away from Jupiter, and the subsequent observations employed on-board software to ignore any pixel that contained less charge than that expected from optical leakage. In addition, ACIS was commanded to report 5 x 5

  14. Limits to the presence of transiting circumbinary planets in CoRoT Data

    Science.gov (United States)

    Klagyivik, P.; Deeg, H. J.; Cabrera, J.; Csizmadia, Sz.; Almenara, J. M.

    2017-06-01

    Aims: During its flight phase, from 2007-2012, the CoRoT mission delivered light curves for over 2000 eclipsing binaries. Data from the Kepler mission have proven the existence of several transiting circumbinary planets. While light curves from CoRoT typically have lower precision and shorter coverage, the number of CoRoT targets is similar to that of Kepler and some of the known circumbinary planets could potentially be detected in CoRoT data as well. The aim of this work was to reanalyse the entire CoRoT Data set to search for the presence of circumbinary planets and to derive limits on the abundances of such planets. Methods: We developed a code that removes the signatures of eclipsing binaries from the light curves, and searches for quasi-periodic, transit-like features in the light curves after removal of binary eclipses and instrumental features. The code requires little information on sample systems and can also be used for other space missions, such as Kepler, K2, TESS, and PLATO. The code is broad in the requirements leading to detections, but was tuned to deliver an amount of detections that are manageable in a subsequent, mainly visual, assessment of their origin. Results: We identified three planet candidates in the CoRoT sample whose transits would have arisen from a single pass across the central binary; however, no candidates with transit events from multiple planetary orbits remained. We calculated the upper limits for the number of Jupiter, Saturn-, and Neptune-sized planets in co-planar orbits for different orbital period ranges. We found that there are much fewer giant planets in short periodic orbits around close binary systems than around single stars. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A117

  15. Pathway to the galactic distribution of planets

    DEFF Research Database (Denmark)

    Novati, S. Calchi; Gould, A.; Udalski, A.

    2015-01-01

    distance estimates for each lens, with error bars that are small compared to the Sun's Galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle it is possible to compare this distribution against a set of planets detected in the same...... experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated....

  16. Planet X and the origins of the shower and steady state flux of short-period comets

    Energy Technology Data Exchange (ETDEWEB)

    Matese, J.J.; Whitmire, D.P.

    1986-01-01

    An extensive analysis of the planet X model is presented. Unlike prior analyses, it takes into account the fact that only those comets scattered directly into the zones of influence (ZOI) of Saturn and Jupiter can contribute to a shower whose duration is in agreement with observation. It is predicted that some of the comets scattered directly into ZOI of Uranus and Neptune wiwll evolve on time scales of about 100 million years into the steady state flux of short-period comets. The absolute numbers of shower and steady state comets were found to be comparable with the known terrestrial cratering rate, assuming the existence of long-lived extinct comet cores. Canonical planet X model parameters are given, and it is suggested that planet X, in its present orbit, can create the requisite density gradient of comets near perihelion and aphelion during the lifetime of the solar system. It is concluded that the existence of planet X and the comet disk can explain the origin of the steady state flux of short-period comets over a wide range of parameters. 43 references

  17. Planet Detection: The Kepler Mission

    Science.gov (United States)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  18. Extrasolar planets formation, detection and dynamics

    CERN Document Server

    Dvorak, Rudolf

    2008-01-01

    This latest, up-to-date resource for research on extrasolar planets covers formation, dynamics, atmospheres and detection. After a look at the formation of giant planets, the book goes on to discuss the formation and dynamics of planets in resonances, planets in double stars, atmospheres and habitable zones, detection via spectra and transits, and the history and prospects of ESPs as well as satellite projects.Edited by a renowned expert in solar system dynamics with chapters written by the leading experts in the method described -- from the US and Europe -- this is an ideal textbook for g

  19. Direct Imaging of Warm Extrasolar Planets

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  20. On the Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve

    Science.gov (United States)

    Seager, S.; Mallén-Ornelas, G.

    A unique analytical solution of planet and star parameters can be derived from an extrasolar planet transit light curve under a number of assumptions. This analytical solution can be used to choose the best planet transit candidates for radial velocity follow-up measurements. In practice, high photometric precision (Ornelas (2003) for full details.

  1. Global stratigraphy. [of planet Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  2. Chemistry of the outer planets

    Science.gov (United States)

    Scattergood, Thomas W.

    1992-05-01

    Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.

  3. A septet of Earth-sized planets

    Science.gov (United States)

    Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team

    2017-10-01

    Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.

  4. Planet map generation by tetrahedral subdivision

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2010-01-01

    We present a method for generating pseudo-random, zoomable planet maps for games and art.  The method is based on spatial subdivision using tetrahedrons.  This ensures planet maps without discontinuities caused by mapping a flat map onto a sphere. We compare the method to other map...

  5. Detecting planets around stars in nearby galaxies

    NARCIS (Netherlands)

    Covone, G; de Ritis, R; Dominik, M; Marino, AA

    The only way to detect planets around stars at distances greater than or similar to several kpc is by (photometric or astrometric) microlensing (mu L) observations. In this paper, we show that the capability of photometric mu L extends to the detection of signals caused by planets around stars in

  6. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    It was only 17 years ago that the first planet outside of our own solar system was detected in the form of 51 Pegasi b. This planet is unlike anything in our own solar system. In fact, this planet was the first representative of a class of planets later known as “hot Jupiters”– gas giants......, i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... common such planets are in our galaxy. There are a few other known methods for detecting exoplanets which have very different bias patterns. This thesis has been divided into two parts, treating two of these other methods. Part I is dedicated to the method of gravitational microlensing, a method...

  7. Double Planet Meets Triple Star

    Science.gov (United States)

    2002-08-01

    High-Resolution VLT Image of Pluto Event on July 20, 2002 A rare celestial phenomenon involving the distant planet Pluto has occurred twice within the past month. Seen from the Earth, this planet moved in front of two different stars on July 20 and August 21, respectively, providing observers at various observatories in South America and in the Pacific area with a long awaited and most welcome opportunity to learn more about the tenuous atmosphere of that cold planet. On the first date, a series of very sharp images of a small sky field with Pluto and the star was obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory. With a diameter of about 2300 km, Pluto is about six times smaller than the Earth. Like our own planet, it possesses a relatively large moon, Charon , measuring 1200 km across and circling Pluto at a distance of about 19,600 km once every 6.4 days. In fact, because of the similarity of the two bodies, the Pluto-Charon system is often referred to as a double planet . At the current distance of nearly 4,500 million km from the Earth, Pluto's disk subtends a very small angle in the sky, 0.107 arcsec. It is therefore very seldom that Pluto - during its orbital motion - passes exactly in front of a comparatively bright star. Such events are known as "occultations" , and it is difficult to predict exactly when and where on the Earth's surface they are visible. Stellar occultations When Pluto moves in front of a star, it casts a "shadow" on the Earth's surface within which an observer cannot see the star, much like the Earth's Moon hides the Sun during a total solar eclipse. During the occultation event, Pluto's "shadow" also moves across the Earth's surface. The width of this shadow is equal to Pluto's diameter, i.e. about 2300 km. One such occultation event was observed in 1988, and two others were expected to occur in 2002, according to predictions published in 2000 by

  8. Journey to a Star Rich with Planets

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Journey to a Star Rich with Planets This artist's animation takes us on a journey to 55 Cancri, a star with a family of five known planets - the most planets discovered so far around a star besides our own. The animation begins on Earth, with a view of the night sky and 55 Cancri (flashing dot), located 41 light-years away in the constellation Cancer. It then zooms through our solar system, passing our asteroids and planets, until finally arriving at the outskirts of 55 Cancri. The first planet to appear is the farthest out from the star -- a giant planet, probably made of gas, with a mass four times that of Jupiter. This planet orbits its star every 14 years, similar to Jupiter's 11.9-year orbit. As the movie continues, the three inner planets are shown, the closest of which is about 10 to 13 times the mass of Earth with an orbital period of less than three days. Zooming out, the animation highlights the newest member of the 55 Cancri family - a massive planet, likely made of gas, water and rock, about 45 times the mass of Earth and orbiting the star every 260 days. This planet is the fourth out from the star, and lies in the system's habitable zone (green). A habitable zone is the place around a star where liquid water would persist. Though the newest planet probably has a thick gaseous envelope, astronomers speculate that it could have one or more moons. In our own solar system, moons are common, so it seems likely that they also orbit planets in other solar systems. If such moons do exist, and if they are as large as Mars or Earth, astronomers speculate that they would retain atmospheres and surface liquid water that might make interesting environments for the development of life. The animation ends with a comparison between 55 Cancri and our solar system. The colors of the illustrated planets were chosen to resemble those of our own solar system. Astronomers do not know what the

  9. Searching for Seasonal Changes in Saturn's A Ring

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S. H.; Edgington, S. G.; Wallis, B. D.; Altobelli, N.; Ferrari, C.

    2005-12-01

    An intriguing result from Cassini's first observations of Saturn's A ring from Saturn Orbit Insertion (SOI), was the lack of a temperature contrast between the ring's illuminated and unilluminated sides [1]. Determined from observations taken by Cassini's Composite Infrared Spectrometer (CIRS), this lack of contrast was unexpected, as direct solar heating is the largest factor in maintaining the rings' heat budget. Observations taken with the Infrared Radiometer and Spectrometer (IRIS) onboard Voyager 1, however, yield a temperature difference of ~ 5 - 10 K . CIRS observations would easily have revealed such a difference. Additionally, Voyager 1 temperatures are some 15 - 25 K colder than those measured at SOI. One explanation for this is seasonal changes in solar insolation. In 1980 Voyager 1 flew past Saturn after northern vernal equinox, when the solar inclination angle was just 4° . At SOI the Sun was 24° above the ring plane. Since then the Sun has dropped ~ 3° lower. Temperature contrasts have appeared in data taken since April 2005. However, whereas unlit ring temperatures are lower, lit side ring temperatures are now higher, suggesting that solar inclination angle is not the only factor involved. Indeed, observations taken since SOI have clearly shown that the observed temperature profile of the rings is a strong function of observing geometry. The temperature profile changes with phase angle, emission angle and local hour angle. Yet, the large temperature differences between SOI and the Voyager flybys seem most likely due to the change in Saturnian season. We will interpret CIRS A ring observations in the context of Voyager IRIS observations. And, we will attempt to determine to what extent the observed ring temperatures have been driven by the changing solar inclination angle, using ring thermal models and recent Cassini observations to sort out the effects of observation geometry. [1] F.M. Flasar, et al. 2005. ``Science'', vol. 307, pgs. 1247-1251.

  10. The Cassini-Huygens Mission to Saturn and Titan

    Science.gov (United States)

    Lunine, Jonathan I.; Pappalardo, R. T.; Matson, D. L.

    2008-09-01

    The Cassini-Huygens exploration of Saturn has completed its prime mission and is now entering a two-year phase called the Equinox Mission. During its four-year tour of Saturn, the Cassini Orbiter found intricate dynamical structures hidden below the haze of Saturn's atmosphere, a previously unseen inner radiation belt, unexpected "channel" structures in the B-ring where opacity changes dramatically over just a few kilometers, an active Enceladus with plumes that are the source of the E-ring and the engine supplying particles to the Saturnian magnetosphere, and a methane hydrologic cycle on Titan that is a remarkable analog of the Earth's. The epic descent of the Huygens probe to a landing on Titan's surface in 2005 provided vistas of dendritic channels presumably carved by methane in ice hills, and key data on nitrogen and noble gases that bespeak an active past in which ammonia was converted to the molecular nitrogen we see today. Cassini's two year Equinox mission will allow for key scientific objectives to be pursued that follow from discoveries made during the prime mission. For example, the source of the Enceladus plumes may be either liquid water or warm ice, given what is known at present. Liquid water has important implications for the potential for life under Enceladus' surface, since both water and organic molecules are present in the plumes. Seven flybys will provide an opportunity to address this problem. For Titan, being able to observe the northern hemisphere lakes in sunlight affords the possibility of detecting ethane in the lakes, as has recently been done in the south, and of observing changes as the seasons proceed. An opportunity to see the rings at low solar incidence angle will allow the three-dimensional structure to be inferred. Seasonal and solar cycle changes in the Saturnian aurora are expected and will be tracked.

  11. Saturn ring temperature changes before and after ring equinox

    Science.gov (United States)

    Spilker, Linda; Flandes, Alberto; Morishima, Ryuji; Leyrat, Cedric; Altobelli, Nicolas; Ferrari, Cecile; Brooks, Shawn; Pilorz, Stu

    2010-05-01

    The Cassini Composite infrared spectrometer (CIRS) retrieved the temperatures of Saturn's main rings at solar elevations ranging from 24 degrees to zero degrees at equinox (August 2009) as the sun traversed from the south to north side of the rings. Over this broad range of solar elevation the CIRS data show that the ring temperatures vary as much as 29K- 38K for the A ring, 22K-34K for the B ring and 18K-23K for the C ring. Interestingly the unlit sides of the rings show a similar decrease in temperature with the decreasing solar elevation. As equinox approached, the main rings cooled to their lowest temperatures measured to date. At equinox the solar input is very small and the primary heat sources for the rings are Saturn thermal and visible energy. Temperatures are almost identical for similar geometries on the north and south sides of the rings. The ring temperatures at equinox were: C ring, 55-75 K; B ring, 45-60 K; Cassini Division, 45 - 58 K; and A ring, 43 - 52 K. After Saturn equinox the solar elevation angle began to increase again and the temperatures on both the lit (north) and unlit (south) sides of the rings have begun to increase as well. Ring thermal models developed by Flandes and Morishima are able to reproduce most of the equinox temperatures observed by CIRS. Results before and after equinox will be presented. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA and at CEA Saclay supported by the "Programme National de Planetologie". Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  12. The Pole Orientation, Pole Precession, and Moment of Inertia Factor of Saturn

    Science.gov (United States)

    Jacobson, R. A.; French, R. G.; Nicholson, P. D.; Hedman, M.; Colwell, J. E.; Marouf, E.; Rappaport, N.; McGhee, C.; Sepersky, T.; Lonergan, K.

    2011-01-01

    This paper discusses our determination of the Saturn's pole orientation and precession using a combination of Earthbased and spacecraft based observational data. From our model of the polar motion and the observed precession rate we obtain a value for Saturn's polar moment of inertia

  13. Analysis of Stellar Occultation and Imaging Data for the Rings of Saturn and Uranus

    Science.gov (United States)

    Nicholson, Philip D.

    1998-01-01

    The principal goals of this research were as follows: 1. To carry out photometric modelling of Saturn's B Ring; 2. To re-examine dynamical perturbations of the Uranian c ring, 'While delivering relevant occultation data to the PDS Rings Node; and 3. Prepare data from the Saturn ring-plane crossing observations for delivery to the Rings Node.

  14. A report of advancements in structural dynamic technology resulting from Saturn 5 programs

    Science.gov (United States)

    1970-01-01

    Two volume report on practical aspects of structural dynamic analysis in Saturn 5 program is described. Volume 1 is oriented toward program managers of future structural dynamic programs. Volume 2, oriented toward technical leaders of programs, discusses methods and procedures used in Saturn 5 program.

  15. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  16. Reflected eclipses on circumbinary planets

    Directory of Open Access Journals (Sweden)

    Deeg H.J.

    2011-02-01

    Full Text Available A photometric method to detect planets orbiting around shortperiodic binary stars is presented. It is based on the detection of eclipse-signatures in the reflected light of circumbinary planets. Amplitudes of such ’reflected eclipses’ will depend on the orbital configurations of binary and planet relative to the observer. Reflected eclipses will occur with a period that is distinct from the binary eclipses, and their timing will also be modified by variations in the light-travel time of the eclipse signal. For the sample of eclipsing binaries found by the Kepler mission, reflected eclipses from close circumbinary planets may be detectable around at least several dozen binaries. A thorough detection effort of such reflected eclipses may then detect the inner planets present, or give solid limits to their abundance.

  17. Orbits of Saturn's Inner Moons and Other Observations Connected within the 1995-1996 Saturnian Ring Plane Crossing

    Science.gov (United States)

    Lissauer, Jack J.

    2001-01-01

    We reduced and analyzed radio images of Saturn taken in 1990-1995 at 0.35, 2.0, 3.6 and 6.1 cm wavelength. The latitudinal brightness distribution varies substantially over time. Detailed modeling of these data shows that NH4SH condenses at the thermochemical equilibrium temperature of 235.5 K only at Northern mid-latitudes. Over most of the planet, condensation does not occur until the gas cools to 190 +/- 5 K. Supersaturation may also cause the dark equatorial region seen in 1995 at 6.1 cm. Observations of the rings show that the West (dusk) ansa is brighter than the East (dawn) ansa by factors up to 2. The magnitude of the asymmetry increases with increasing wavelength and with decreasing distance to the planet. This East-West asymmetry may be due to multiple scattering in gravitational wakes. We improved the Monte Carlo scattering code used to model the microwave emission from Saturn's rings at multiple wavelengths. The basic code outlined in Dunn, Molnar, and Fix describes the rings as a uniform, infinite layer of ice spheres with a finite vertical extent. The particle sizes follow a power law distribution and scatter light according to a linear combination of Mie and isotropic phase functions. These parameters may be adjusted to reflect the physical properties in the scattering properties of the ring particles. This is used to construct a model which can be directly compared to Very Large Array data. The code has been extended by including anisotropic particle distributions, primarily in the form of the wake structures that are likely to exist in the enhancements. The vertical extent of the wakes equals that of the ring layer. Between the wakes are regions of diminished density so that the optical depth integrated over many wakes matches that of the Voyager occultation experiments. This allows us to model the brightness temperature as a function of azimuth and look for asymmetric scattering behavior in the rings. By changing the width and relative density of

  18. Energetic electron fluxes at Saturn from Cassini observations

    Science.gov (United States)

    Tang, Rongxin; Summers, Danny

    2012-06-01

    Energetic electron fluxes (18 keV-21 MeV) observed by the MIMI/LEMMS instrument on the Cassini mission during 2004 to 2008 are analyzed. We consider all 101 orbits and we select portions of the orbits that lie within 0.5 RS of the magnetic equatorial plane, where RS is Saturn's radius. We determine the average electron differential flux and integral flux at specified L-shells in the range 4.5 Kennel-Petschek theory. We find that at lower L-shells, L Kennel-Petschek limit; and at larger L-shells, 7 Kennel-Petschek limit.

  19. Regolith Growth and Darkening of Saturn Ring Particles

    Science.gov (United States)

    Esposito, L. W.; Elliott, J. P.

    2009-04-01

    Markov chain simulations compare the regolith growth and darkening on 1 m and 10m particles in Saturn's rings. Our results show that pollution of the larger ring particles is ten times slower, allowing the rings to be ancient and still meet strict upper limits on fractional pollution by meteoroid infall. Example UV spectra are shown. Our results indicate that regolith stirring by higher velocity collisions can mix the ring particle regolith, creating brighter haloes around strong density waves, as observed by Cassini VIMS and UVIS. Unfortunately, our incomplete knowledge of meteoritic bombardment rates, particle adhesion and size/velocity distributions do not allow an age estimate.

  20. Regolith Growth and Darkening of Saturn's Ring Particles

    Science.gov (United States)

    Esposito, L. W.; Elliott, J. P.; Albers, N.

    2008-12-01

    Markov chain simulations compare the regolith growth and darkening on 1 m and 10m particles in Saturn's rings. Our results show that pollution of the larger ring particles is ten times slower, allowing the rings to be ancient and still meet strict upper limits on fractional pollution by meteoroid infall. Example UV spectra are shown. Our results indicate that regolith stirring by higher velocity collisions can mix the ring particle regolith, creating brighter haloes around strong density waves, as observed by Cassini VIMS and UVIS. Unfortunately, our incomplete knowledge of meteoritic bombardment rates, particle adhesion and size/velocity distributions do not allow an age estimate.

  1. Saturn's rings - Particle size distributions for thin layer model

    Science.gov (United States)

    Zebker, H. A.; Marouf, E. A.; Tyler, G. L.

    1985-01-01

    A model incorporating limited interaction between the incident energy and particles in the ring is considered which appears to be consistent with the multiple scattering process in Saturn's rings. The model allows for the small physical thickness of the rings and can be used to relate Voyager 1 observations of 3.6- and 13-cm wavelength microwave scatter from the rings to the ring particle size distribution function for particles with radii ranging from 0.001 to 20 m. This limited-scatter model yields solutions for particle size distribution functions for eight regions in the rings, which exhibit approximately inverse-cubic power-law behavior.

  2. JANNAF Lessons Learned Panel: Selected Saturn V History

    Science.gov (United States)

    Urquhart, Skip

    2010-01-01

    Pogo occurs when the natural frequency of a propellant feed line comes close to a readily excited rocket longitudinal structural vibration natural frequency. Maximum Pogo response corresponds to close tuning of the structural and hydraulic frequencies. On Saturn V, accelerations up to 17 g's (Zero To Peak) at the Launch Vehicle/Payload Interface and up to 34 g's at an Engine have been observed. Nicknamed Pogo because it causes the Rocket to stretch and compress like a Pogo stick. First recognized with the Titan II in 1962, Pogo remains a prime consideration in design of launch vehicles today

  3. Direct detection of gaps in Saturn's A ring

    Science.gov (United States)

    Rehnberg, Morgan E.; Brown, Zarah L.; Esposito, Larry W.; Albers, Nicole

    2017-11-01

    Indirect observations spanning decades have indicated that Saturn's A ring is populated with a plethora of self-gravity wakes, small wavelike structures that arise from the gravitational attraction between ring particles. We present the direct detection of the gaps that represent the minima between the denser wakes. Through a statistical test, we analyze a series of seven high-resolution stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph to identify nearly half a million discrete regions with an optical depth less than a quarter of the surrounding ring. These gaps correlate strongly with previous observations of the A-ring brightness asymmetry.

  4. Large and small-scale structures in Saturn's rings

    Science.gov (United States)

    Albers, N.; Rehnberg, M. E.; Brown, Z. L.; Sremcevic, M.; Esposito, L. W.

    2017-09-01

    Observations made by the Cassini spacecraft have revealed both large and small scale structures in Saturn's rings in unprecedented detail. Analysis of high-resolution measurements by the Cassini Ultraviolet Spectrograph (UVIS) High Speed Photometer (HSP) and the Imaging Science Subsystem (ISS) show an abundance of intrinsic small-scale structures (or clumping) seen across the entire ring system. These include self-gravity wakes (50-100m), sub-km structure at the A and B ring edges, and "straw"/"ropy" structures (1-3km).

  5. A wave dynamical interpretation of Saturn's polar hexagon

    Science.gov (United States)

    Allison, M.; Godfrey, D. A.; Beebe, R. F.

    1990-01-01

    The hexagonal, pole-centered cloud feature in Saturn's northern atmosphere, as revealed in Voyager close-encounter imaging mosaics, may be interpreted as a stationary Rossby wave. The wave is embedded within a sharply peaked eastward jet (of 100 meters per second) and appears to be perturbed by at least one anticyclonic oval vortex immediately to the south. The effectively exact observational determination of the horizontal wave number and phase speed, applied to a simple model dispersion relation, suggests that the wave is vertically trapped and provides a diagnostic template for further modeling of the deep atmospheric stratification.

  6. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  7. Sharp Edges in Saturn's Rings: Radial Structure and Longitudinal Variability

    Science.gov (United States)

    Colwell, Joshua E.; Jerousek, R. G.; Esposito, L. W.

    2010-10-01

    The Cassini Ultraviolet Imaging Spectrograph has observed more than 100 occultations of stars by Saturn's rings with a typical ring plane radial resolution of preventing a fit from our smooth model. We find that the radial scale, characterized by a sigmoid function, over which the ring optical depth declines is typically 10-20 m. We are unable to place a tight constraint on the vertical thickness of the ring, however, because the light curve is dominated by the scale of the radial variation. We find large variability in the structure of the edges with no clear correlation to known possible perturbers in the system.

  8. Comprehensive wide-band magnitudes and albedos for the planets, with applications to exo-planets and Planet Nine

    Science.gov (United States)

    Mallama, Anthony; Krobusek, Bruce; Pavlov, Hristo

    2017-01-01

    Complete sets of reference magnitudes in all 7 Johnson-Cousins bands (U, B, V, R, I, RC and IC) and the 5 principal Sloan bands (u', g', r', i', and z') are presented for the 8 planets. These data are accompanied by illumination phase functions and other formulas which characterize the instantaneous brightness of the planets. The main source of Johnson-Cousins magnitudes is a series of individualized photometric studies reported in recent years. Gaps in that dataset were filled with magnitudes synthesized in this study from published spectrophotometry. The planetary Sloan magnitudes, which are established here for the first time, are an average of newly recorded Sloan filter photometry, synthetic magnitudes and values transformed from the Johnson-Cousins system. Geometric albedos derived from these two sets of magnitudes are consistent within each photometric system and between the systems for all planets and in all bands. This consistency validates the albedos themselves as well as the magnitudes from which they were derived. In addition, a quantity termed the delta stellar magnitude is introduced to indicate the difference between the magnitude of a planet and that of its parent star. A table of these delta values for exo-planets possessing a range of physical characteristics is presented. The delta magnitudes are for phase angle 90° where a planet is near the greatest apparent separation from its star. This quantity may be useful in exo-planet detection and observation strategies when an estimate of the signal-to-noise ratio is needed. Likewise, the phase curves presented in this paper can be used for characterizing exo-planets. Finally, magnitudes for the proposed Planet Nine are estimated, and we note that P9 may be especially faint at red and near-IR wavelengths.

  9. Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system

    Science.gov (United States)

    Clark, R.N.; Curchin, J.M.; Jaumann, R.; Cruikshank, D.P.; Brown, R.H.; Hoefen, T.M.; Stephan, K.; Moore, Johnnie N.; Buratti, B.J.; Baines, K.H.; Nicholson, P.D.; Nelson, R.M.

    2008-01-01

    Cassini VIMS has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. A very close fly-by of Dione provided key information for solving the riddle of the origin of the dark material in the Saturn system. The Dione VIMS data show a pattern of bombardment of fine, sub-0.5-??m diameter particles impacting the satellite from the trailing side direction. Multiple lines of evidence point to an external origin for the dark material on Dione, including the global spatial pattern of dark material, local patterns including crater and cliff walls shielding implantation on slopes facing away from the trailing side, exposing clean ice, and slopes facing the trailing direction which show higher abundances of dark material. Multiple spectral features of the dark material match those seen on Phoebe, Iapetus, Hyperion, Epimetheus and the F-ring, implying the material has a common composition throughout the Saturn system. However, the exact composition of the dark material remains a mystery, except that bound water and, tentatively, ammonia are detected, and there is evidence both for and against cyanide compounds. Exact identification of composition requires additional laboratory work. A blue scattering peak with a strong UV-visible absorption is observed in spectra of all satellites which contain dark material, and the cause is Rayleigh scattering, again pointing to a common origin. The Rayleigh scattering effect is confirmed with laboratory experiments using ice and 0.2-??m diameter carbon grains when the carbon abundance is less than about 2% by weight. Rayleigh scattering in solids is also confirmed in naturally occurring terrestrial rocks, and in previously published reflectance studies. The spatial pattern, Rayleigh scattering effect, and spectral properties argue that the dark material is only a thin coating on Dione's surface, and by extension is only a thin coating on Phoebe, Hyperion, and Iapetus, although the dark material abundance

  10. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  11. Analysis of plasma waves observed in the inner Saturn magnetosphere

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2008-09-01

    Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 RS outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T⊥/T||>1 of the warmer plasma population.

  12. Analysis of plasma waves observed in the inner Saturn magnetosphere

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2008-09-01

    Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 RS outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T/T||>1 of the warmer plasma population.

  13. Low-energy hot plasma and particles in Saturn's magnetosphere

    Science.gov (United States)

    Krimigis, S. M.; Bostrom, C. O.; Keath, E. P.; Carbary, J. F.; Roelof, E. C.; Armstrong, T. P.; Axford, W. I.; Gloeckler, G.; Hamilton, D. C.; Lanzerotti, L. J.

    1982-01-01

    Results of the low-energy charged particle experiment carried by Voyager 2 in the Saturn magnetosphere are presented. Measurements of ions of energy greater than 28 keV and electrons of energies greater than 22 keV revealed the presence of a region containing an extremely hot (30-50 keV) plasma extending from the orbit of Tethys past the orbit of Rhea, and a low-energy ion mantle inside the dayside and nightside magnetospheres. H, H2, H3, He, C and O at energies greater than 200 keV/n were found to be important constituents of the Saturn magnetosphere, at relative abundances suggestive of a solar wind origin. Low-energy electron flux enhancements were observed between the L shells of Rhea and Tethys which were absent during the Voyager 1 encounter, and persistent asymmetric electron pitch-angle distributions were noted in the outer magnetosphere in conjunction with the hot ion plasma torus. Signatures of the passage of Tethys and Enceladus through the magnetosphere were found, although not at the positions predicted by dipole magnetic field models.

  14. Stellar Occultation by Saturn's Rings in the UV

    Science.gov (United States)

    Becker, Tracy

    2017-08-01

    We propose to capitalize on the unique opportunity to observe the July 2018 stellar occultation of the star HD 168233 by Saturn's rings using the COS G230L mode on HST. Our program will characterize the particle size distribution of the rings through analyses of the starlight diffracted by the ring particles. It will also define the shape and structure of the rings through measurements of the optical depth of the variable F ring, the characterization of the self-gravity wakes, and by constraining the A ring edge dynamics six months after the radial swap of the co-orbital moons Janus and Epimetheus, which maintain the ring's outer edge. Saturn's rings are very dark at UV wavelengths; therefore, stellar occultations in the UV have a significantly lower background signal from the ring-reflected sunlight than at longer wavelengths. Furthermore, occultations at UV wavelengths are sensitive to the smallest particles in the rings. The geometry and wavelengths of the stellar occultation from HST COS will complement and extend the science return from the Cassini spacecraft nearly one year after the mission's end.

  15. Shock Radiation Tests for Saturn and Uranus Entry Probes

    Science.gov (United States)

    Cruden, Brett A.; Bogdanoff, David W.

    2014-01-01

    This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen/Helium mixtures (89:11 by mole) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. No shock layer radiation is detected below 25 km/s, a finding consistent with predictions for Uranus entries. Between 25-30 km/s, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-alpha and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and distributions are demonstrated to be non-Boltzmann. Radiation data are compared to simulations of Decadal survey entries for Saturn and shown to be significantly lower than predicted with the Boltzmann radiation model.

  16. DSMC Shock Simulation of Saturn Entry Probe Conditions

    Science.gov (United States)

    Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.

    2016-01-01

    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.

  17. Elusive Ethylene Detected in Saturns Northern Storm Region

    Science.gov (United States)

    Hesman, B. E.; Bjoraker, G. L.; Sada, P. V.; Achterberg, R. K.; Jennings, D. E.; Romani, P. N.; Lunsford, A. W.; Fletcher, L. N.; Boyle, R. J.; Simon-Miller, A. A.; hide

    2013-01-01

    The massive eruption at 40 deg. N (planetographic latitude) on Saturn in 2010 December has produced significant and lasting effects in the northern hemisphere on temperature and species abundances. The northern storm region was observed on many occasions in 2011 by Cassini's Composite Infrared Spectrometer (CIRS). In 2011 May, temperatures in the stratosphere greater than 200 K were derived from CIRS spectra in the regions referred to as "beacons" (warm regions in the stratosphere). Ethylene has been detected in the beacon region in Saturn's northern storm region using CIRS. Ground-based observations using the high-resolution spectrometer Celeste on the McMath-Pierce Telescope on 2011 May 15 were used to confirm the detection and improve the altitude resolution in the retrieved profile. The derived ethylene profile from the CIRS data gives a C2H4 mole fraction of 5.9 +/- 4.5 x 10(exp -7) at 0.5 mbar, and from Celeste data it gives 2.7 +/- 0.45 x 10(exp -6) at 0.1 mbar. This is two orders of magnitude higher than the amount measured in the ultraviolet at other latitudes prior to the storm. It is also much higher than predicted by photochemical models, indicating that perhaps another production mechanism is required or a loss mechanism is being inhibited.

  18. Feasibility and benefits of pulsar planet characterization

    Science.gov (United States)

    Nekola Novakova, J.; Petrasek, T.

    2017-09-01

    Planet orbiting neutron stars seem to be rare, but all the more interesting for science due to their origins. Characterizing the composition of pulsar planets could elucidate processes involved in supernova fallback disks, accretion of companion star material, potential survival of planetary cores in the post-MS phase of their stars, and more. However, the small size and unusual spectral distribution of neutron stars make any spectroscopic measurements very difficult if not impossible in the near future. We set to estimate the feasibility of spectroscopy of planets orbiting specifically pulsars, and to review other possible methods of characterization of the planets, such as emissions caused by aurorae. We conclude that spectroscopic characterization of pulsar planets is unlikely to be achieved in the near future, though not entirely impossible, but possible auroral emissions and thermal emissions present more feasible means of at least roughly characterizing planets in pulsar systems. Moreover, they could in theory reveal planets around young pulsars where there is too much timing noise compared to "recycled" millisecond pulsars. While researching pulsar planetary systems could hardly be further from the popular search for "Earth 2.0", it could yield extremely valuable data for planetary science, radio astronomy, astrophysics and other fields, and it could help us answer some fundamental questions about exoplanetary origins and evolutions. For these reasons, we think it worthwhile to pursue this topic.

  19. No Snowball on Habitable Tidally Locked Planets

    Science.gov (United States)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin-orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  20. Exploring the planets a memoir

    CERN Document Server

    Taylor, Fred

    2016-01-01

    This book is an informal, semi-autobiographical history, from the particular viewpoint of someone who was involved, of the exploration of the Solar System using spacecraft. The author is a Northumbrian, a Liverpudlian, a Californian, and an Oxford Don with half a century of experience of devising and deploying experiments to study the Earth and the planets, moons, and small bodies of the Solar System. Along with memories and anecdotes about his experiences as a participant in the space programme from its earliest days to the present, he describes in non-technical terms the science goals that drove the projects as well as the politics, pressures, and problems that had to be addressed and overcome on the way. The theme is the scientific intent of these ambitious voyages of discovery, and the joys and hardships of working to see them achieved. The narrative gives a first-hand account of things like how Earth satellites came to revolutionize weather forecasting, starting in the 1960s; how observations from space ...

  1. Used planet: a global history.

    Science.gov (United States)

    Ellis, Erle C; Kaplan, Jed O; Fuller, Dorian Q; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H

    2013-05-14

    Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human-environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects.

  2. Constraining the interior density profile of a Jovian planet from precision gravity field data

    Science.gov (United States)

    Movshovitz, Naor; Fortney, Jonathan J.; Helled, Ravit; Hubbard, William B.; Thorngren, Daniel; Mankovich, Chris; Wahl, Sean; Militzer, Burkhard; Durante, Daniele

    2017-10-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properly interpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about the formation mechanism of the planet. Planetary gravity fields are usually described by the coefficients in an expansion of the gravitational potential. Recently, high precision measurements of these coefficients for Jupiter and Saturn have been made by the radio science instruments on the Juno and Cassini spacecraft, respectively.The resulting coefficients come with an associated uncertainty. And while the task of matching a given density profile with a given set of gravity coefficients is relatively straightforward, the question of how best to account for the uncertainty is not. In essentially all prior work on matching models to gravity field data, inferences about planetary structure have rested on imperfect knowledge of the H/He equation of state and on the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet, constrained only by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also bayesian, in that

  3. The Evaporation Valley in the Kepler Planets

    Science.gov (United States)

    Owen, James E.; Wu, Yanqin

    2017-09-01

    A new piece of evidence supporting the photoevaporation-driven evolution model for low-mass, close-in exoplanets was recently presented by the California-Kepler Survey. The radius distribution of the Kepler planets is shown to be bimodal, with a “valley” separating two peaks at 1.3 and 2.6 R ⊕. Such an “evaporation valley” had been predicted by numerical models previously. Here, we develop a minimal model to demonstrate that this valley results from the following fact: the timescale for envelope erosion is the longest for those planets with hydrogen/helium-rich envelopes that, while only a few percent in weight, double its radius. The timescale falls for envelopes lighter than this because the planet’s radius remains largely constant for tenuous envelopes. The timescale also drops for heavier envelopes because the planet swells up faster than the addition of envelope mass. Photoevaporation therefore herds planets into either bare cores (˜1.3 R ⊕), or those with double the core’s radius (˜2.6 R ⊕). This process mostly occurs during the first 100 Myr when the stars’ high-energy fluxes are high and nearly constant. The observed radius distribution further requires the Kepler planets to be clustered around 3 M ⊕ in mass, born with H/He envelopes more than a few percent in mass, and that their cores are similar to the Earth in composition. Such envelopes must have been accreted before the dispersal of the gas disks, while the core composition indicates formation inside the ice line. Lastly, the photoevaporation model fails to account for bare planets beyond ˜30-60 days; if these planets are abundant, they may point to a significant second channel for planet formation, resembling the solar system terrestrial planets.

  4. Extrasolar planets : - From gaseous giant planets to rocky planets. - Steps towards the detection of life biomarkers.

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Today, great efforts are made to detect Earth-mass rocky planets in the so-called habitable zone of their host stars. What are the difficulties, the instrumental projects  and the already detected interesting systems ?

  5. Limits On Undetected Planets in the Six Transiting Planets Kepler-11 System

    Science.gov (United States)

    Lissauer, Jack

    2017-01-01

    The Kepler-11 has five inner planets ranging from approx. 2 - 1 times as massive Earth in a tightly-packed configuration, with orbital periods between 10 and 47 days. A sixth planet, Kepler-11 g, with a period of118 days, is also observed. The spacing between planets Kepler-11 f and Kepler-11 g is wide enough to allow room for a planet to orbit stably between them. We compare six and seven planet fits to measured transit timing variations (TTVs) of the six known planets. We find that in most cases an additional planet between Kepler-11 f and Kepler-11 g degrades rather than enhances the fit to the TTV data, and where the fit is improved, the improvement provides no significant evidence of a planet between Kepler-11 f and Kepler-11 g. This implies that any planet in this region must be low in mass. We also provide constraints on undiscovered planets orbiting exterior to Kepler-11 g. representations will be described.

  6. Radio emission of the sun and planets

    CERN Document Server

    Zheleznyakov, V V

    1970-01-01

    International Series of Monographs in Natural Philosophy, Volume 25: Radio Emission of the Sun and Planets presents the origin of the radio emission of the planets. This book examines the outstanding triumphs achieved by radio astronomy of the solar system. Comprised of 10 chapters, this volume begins with an overview of the physical conditions in the upper layers of the Sun, the Moon, and the planets. This text then examines the three characteristics of radio emission, namely, the frequency spectrum, the polarization, and the angular spectrum. Other chapters consider the measurements of the i

  7. The Planets Approach to Migration Tools

    DEFF Research Database (Denmark)

    Zierau, Eld; van Wijk, Caroline

    2008-01-01

    This paper discusses the Planets approach to migration tool development. The approach consists of enhancing existing migration tools rather than developing tools from scratch. This pragmatic approach is based on the Planets view of the current situation for migration tools and two claims. The first...... claim is that the market will cover the required tools for commonly used formats. The second claim is that in the long term less tools will be required due to growing use of archiving standard formats. The Planets view on the current situation, the scope of tool development and the claims stated are...

  8. BINARY MINOR PLANETS V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  9. Planet Earth”is ours

    Science.gov (United States)

    Hartung, Jack

    Planet Earth” belongs to us. In this case, I'm not referring to the planet, earth, on which we live and which we consider our home in space. Instead, I'm saying that the upcoming television series, “Planet Earth,” belongs to us, the earth and space science community.Several years ago the AGU Council voted to provide $10,000 as “seed money” to initiate what was to become “Planet Earth.” To be sure, the series would not have happened without support from the Annenberg Foundation ($3,000,000) and the IBM Corporation ($1,000,000), but we were there, up front, where a little bit meant a lot.

  10. Symbiotic planet: a new look at evolution

    National Research Council Canada - National Science Library

    Margulis, Lynn

    1998-01-01

    ...." "In Symbiotic Planet, renowned scientist Lynn Margulis shows that symbiosis, which simply means members of different species living in physical contact with each other, is crucial to the origins...

  11. The origin of planets orbiting millisecond pulsars

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1992-01-01

    A model for the formation of planets around millisecond pulsar which no longer have stellar companions is suggested. Detailed hydrodynamical models are presented which suggest that planet formation can occur either in a low-mass X-ray binary progenitor to a progenitor of a star-vaporizing millisecond pulsar when the neutron star is accreting material driven off its companion by X-ray irradiation or after a pulsar has formed and is vaporizing its companion. In both cases a circumbinary disk is created in which planets can form on a timescale of 10 exp 5 to 10 exp 6 yrs and the planets can survive a second phase in which the companion star moves toward the pulsar and is completely vaporized.

  12. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  13. BINARY MINOR PLANETS V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  14. BINARY MINOR PLANETS V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  15. BINARY MINOR PLANETS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a data table giving basic physical and orbital parameters for known binary minor planets in the Solar System (and Pluto/Charon) based on published...

  16. Thermal escape from extrasolar giant planets.

    Science.gov (United States)

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  17. Characterizing Cool Giant Planets in Reflected Light

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  18. Astronomy: Ring detected around a dwarf planet

    Science.gov (United States)

    Sickafoose, Amanda A.

    2017-10-01

    Observations of the distant dwarf planet Haumea constrain its size, shape and density, and reveal an encircling planetary ring. The discovery suggests that rings are not as rare in the Solar System as previously thought. See Letter p.219

  19. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  20. BINARY MINOR PLANETS V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...