WorldWideScience

Sample records for saturation flow

  1. Power flow control using distributed saturable reactors

    Science.gov (United States)

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  2. Site-Scale Saturated Zone Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca

  3. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  4. Estimation of Saturation Flow Rates at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Chang-qiao Shao

    2012-01-01

    Full Text Available The saturation flow rate is a fundamental parameter to measure the intersection capacity and time the traffic signals. However, it is revealed that traditional methods which are mainly developed using the average value of observed queue discharge headways to estimate the saturation headway might lead to underestimate saturation flow rate. The goal of this paper is to study the stochastic nature of queue discharge headways and to develop a more accurate estimate method for saturation headway and saturation flow rate. Based on the surveyed data, the characteristics of queue discharge headways and the estimation method of saturated flow rate are studied. It is found that the average value of queue discharge headways is greater than the median value and that the skewness of the headways is positive. Normal distribution tests were conducted before and after a log transformation of the headways. The goodness-of-fit test showed that for some surveyed sites, the queue discharge headways can be fitted by the normal distribution and for other surveyed sites, the headways can be fitted by lognormal distribution. According to the queue discharge headway characteristics, the median value of queue discharge headways is suggested to estimate the saturation headway and a new method of estimation saturation flow rates is developed.

  5. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  6. Saturated Zone Flow and Transport Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, Kevin J.; Perman, Roseanne C.

    1998-01-01

    This report presents results of the Saturated Zone Flow and Transport Expert Elicitation (SZEE) project for Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The DOE's Yucca Mountain Site Characterization Project (referred to as the YMP) is intended to evaluate the suitability of the site for construction of a mined geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The SZEE project is one of several that involve the elicitation of experts to characterize the knowledge and uncertainties regarding key inputs to the Yucca Mountain Total System Performance Assessment (TSPA). The objective of the current project was to characterize the uncertainties associated with certain key issues related to the saturated zone system in the Yucca Mountain area and downgradient region. An understanding of saturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the saturated flow processes, including uncertainty in both the models used to represent the physical processes controlling saturated zone flow and transport, and the parameter values used in the models. So that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and

  7. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    Science.gov (United States)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  8. FLASH: A finite element computer code for variably saturated flow

    Energy Technology Data Exchange (ETDEWEB)

    Baca, R.G.; Magnuson, S.O.

    1992-05-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A.

  9. Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale

    Directory of Open Access Journals (Sweden)

    Yan ZHU

    2011-12-01

    Full Text Available A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.

  10. Simulation of partially saturated - saturated flow in the Caspar Creek E-road groundwater system

    Science.gov (United States)

    Jason C. Fisher

    2000-01-01

    Abstract - Over the past decade, the U.S. Forest Service has monitored the subsurface hillslope flow of the E-road swale. The swale is located in the Caspar Creek watershed near Fort Bragg, California. In hydrologic year 1990 a logging road was built across the middle section of the hillslope followed by a total clearcut of the area during the following year....

  11. Saturation overland flow estimated by TOPMODEL for the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This 5-kilometer resolution raster (grid) dataset for the conterminous United States represents the average percentage of saturation overland flow in total...

  12. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  13. High flow rates during modified ultrafiltration decrease cerebral blood flow velocity and venous oxygen saturation in infants.

    Science.gov (United States)

    Rodriguez, Rosendo A; Ruel, Marc; Broecker, Lothar; Cornel, Garry

    2005-07-01

    The intracranial hemodynamic effects of modified ultrafiltration in children are unknown. We investigated the effects of different blood flow rates during modified ultrafiltration on the cerebral hemodynamics of children with weights above and below 10 kg. Thirty-one children (weights: 10 kg, n = 10) undergoing cardiopulmonary bypass were studied. Middle-cerebral artery blood flow velocities and cerebral mixed venous oxygen saturations were measured before, five minutes from the beginning, and at the end of ultrafiltration. Patients were classified according to their blood flow rates during ultrafiltration in three groups: high (> or = 20 mL/kg/min), moderate (10-19 mL/kg/min), and low flow rates (flow rates of ultrafiltration and the decline in mean cerebral blood flow velocity (r = - 0.48; p = 0.005) and cerebral oxygen saturation (r = - 0.49; p = 0.005) or hematocrit increase (r = 0.59; p = 0.001). Infants exposed to high flow rates had greater reduction of cerebral blood flow velocity and regional mixed venous saturation and higher hematocrit at the end of ultrafiltration compared with those subjected to moderate and low flow rates (p flow rates through the ultrafilter during modified ultrafiltration transiently decrease the cerebral circulation in young infants compared with lower blood flow rates. These effects may be related to an increased diastolic runoff from the aorta into the ultrafiltration circuit that leads to a "stealing" effect from the intracranial circulation, which may be important in infants with dysfunctional cerebral autoregulation.

  14. Finite analytic method for modeling variably saturated flows.

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Gong, Chengcheng; Yeh, Tian-Chyi Jim; Wang, Zhoufeng; Wang, Yu-Li; Chen, Li

    2017-11-13

    This paper develops a finite analytic method (FAM) for solving the two-dimensional Richards' equation. The FAM incorporates the analytic solution in local elements to formulate the algebraic representation of the partial differential equation of unsaturated flow so as to effectively control both numerical oscillation and dispersion. The FAM model is then verified using four examples, in which the numerical solutions are compared with analytical solutions, solutions from VSAFT2, and observational data from a field experiment. These numerical experiments show that the method is not only accurate but also efficient, when compared with other numerical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Saturated and unsaturated flow through sloped compost filter beds of different particle sizes.

    Science.gov (United States)

    Petrell, R J; Gumulia, Anastasia

    2013-01-01

    Little is known about the hydraulics of sloped compost beds having active free and non-flowing zones, and used for runoff erosion and volume control, and heavy metal removal. Water sorption tests on yard waste compost indicated that water transfer between the two zones would be slow (6 hr for a 0.04 m rise). The free flowing zone in ≈1 m long sloped (15°) beds increased in depth (0.01-0.08 m) with decreasing particle size and increasing flow. Particle size and flow (0.08-0.3 L/s/m) affected bed stability. Drainage volume increased with flow while drainage time remained fairly constant. Saturated flow occurred depending on the particle size above 0.02-0.165 L/s/m. Data indicate that sheet runoff from low intensity storms would most likely create unsaturated but stable bed conditions. Concentrated flows as from downspouts would likely create saturated conditions and have to be managed to prevent washout. A model based on porous media theory indicated that flow regime under saturated flow is turbulent. Results can be used to design compost beds for various runoff rates and to develop a heavy metal sorption model.

  16. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  17. Partially-saturated transient groundwater flow model theory and numerical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A.E.; Cearlock, D.B.; Bryan, C.A.

    1975-01-01

    A description is presented of the mathematical development of a computer model, the Partially-Saturated Transient Flow Model (PST), used to test the formulation for simulating isothermal, unsaturated, liquid flow in heterogeneous porous media. The fundamental equations and assumptions applying to the model are discussed. Problems encountered in modeling the flow in soils with water contents less than saturation are also delineated. Because of the nonlinearities of the descriptive equations, finite difference approximation and an iterative technique were used to obtain solutions. The model, when tested, was computationally slow and impractical as a management tool but did demonstrate that the equation could be solved for flow entering relatively dry soils. Several methods of dealing with the sediment hydraulic characteristics were tested.

  18. The effect of saturation on resin flow in injection pultrusion: a preliminary numerical study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Larsen, Martin; R. Rodríguez, Rosa

    In this study, a 2-D Darcy’s law based numerical model is developed in order to investigate the effect of saturation on the propagation of the resin in the die chamber of a pultrusion line. The numerical model is established using the finite volume method and alternating direction implicit scheme....... The implemented saturation and relative permeability curves are adopted from relationships presented in the literature. The results of the numerical model highlights the importance of accurately determining thesaturation curve when included in a numerical solver that is used to predict the resin flow in injection...... pultrusion. Further research is planned within this field in order to identify realistic saturation curves for fiber reinforcements used in resin injection pultrusion....

  19. The rate dependence of the saturation flow stress of Cu and 1100 Al

    Energy Technology Data Exchange (ETDEWEB)

    Preston, D.L.; Tonks, D.L.; Wallace, D.C.

    1991-01-01

    The strain-rate dependence of the saturation flow stress of OFHC Cu and 1100 Al from 10{sup {minus}3}s{sup {minus}1} to nearly to 10{sup 12}s{sup {minus}1} is examined. The flow stress above 10{sup 9}s{sup {minus}1} is estimated using Wallace's theory of overdriven shocks in metals. A transition to the power-law behavior {Psi} {approximately} {tau}{sub s}{sup 5} occurs at a strain rate of order 10{sup 5}s{sup {minus}1}. 10 refs., 2 figs.

  20. Numerical study of saturation steam/water mixture flow and flashing initial sub-cooled water flow inside throttling devices

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this work, a Computational Fluid-Dynamics (CFD) approach to model this phenomenon inside throttling devices is proposed. To validate CFD results, different nozzle geometries are analyzed, comparing numerical results with experimental data. Two cases are studied: Case 1: saturation steam/water mixture flow inside 2D convergent-divergent nozzle (inlet, outlet and throat diameter of nozzle are 0.1213m, 0.0452m and 0.0191m respectively). In this benchmark, a range of total inle...

  1. Identifying variably saturated water-flow patterns in a steep hillslope under intermittent heavy rainfall

    Science.gov (United States)

    El-Kadi, A. I.; Torikai, J.D.

    2001-01-01

    The objective of this paper is to identify water-flow patterns in part of an active landslide, through the use of numerical simulations and data obtained during a field study. The approaches adopted include measuring rainfall events and pore-pressure responses in both saturated and unsaturated soils at the site. To account for soil variability, the Richards equation is solved within deterministic and stochastic frameworks. The deterministic simulations considered average water-retention data, adjusted retention data to account for stones or cobbles, retention functions for a heterogeneous pore structure, and continuous retention functions for preferential flow. The stochastic simulations applied the Monte Carlo approach which considers statistical distribution and autocorrelation of the saturated conductivity and its cross correlation with the retention function. Although none of the models is capable of accurately predicting field measurements, appreciable improvement in accuracy was attained using stochastic, preferential flow, and heterogeneous pore-structure models. For the current study, continuum-flow models provide reasonable accuracy for practical purposes, although they are expected to be less accurate than multi-domain preferential flow models.

  2. Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers

    Science.gov (United States)

    Reimann, T.; Geyer, T.; Shoemaker, W.B.; Liedl, R.; Sauter, M.

    2011-01-01

    Well-developed karst aquifers consist of highly conductive conduits and a relatively low permeability fractured and/or porous rock matrix and therefore behave as a dual-hydraulic system. Groundwater flow within highly permeable strata is rapid and transient and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The characterization of karst aquifers is a necessary and challenging task because information about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid (coupled discrete continuum) models. Since existing hybrid models are simplifications of the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with stable transition between free-surface and pressurized flow and correct storage representation, (3) water exchange between matrix and variably filled conduits, and (4) discharge routing through branched and intermeshed conduit networks. Subsequently, ModBraC is applied to an idealized catchment to investigate the significance of free-surface flow representation. A parameter study is conducted with two different initial conditions: (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern representing the transition from pressurized to free-surface flow, and (3) a reduced conduit-matrix interaction during free-surface flow. Copyright 2011 by the American Geophysical Union.

  3. A free boundary problem describing the saturated-unsaturated flow in a porous medium

    Directory of Open Access Journals (Sweden)

    Gabriela Marinoschi

    2004-01-01

    Full Text Available This paper presents a functional approach to a nonlinear model describing the complete physical process of water infiltration into an unsaturated soil, including the saturation occurrence and the advance of the wetting front. The model introduced in this paper involves a multivalued operator covering the simultaneous saturated and unsaturated flow behaviors and enhances the study of the displacement of the free boundary between these two flow regimes. The model resides in Richards' equation written in pressure form with an initial condition and boundary conditions which in this work express the inflow due to the rain on the soil surface on the one hand, and characterize a certain permeability corresponding to the underground boundary, on the other hand. Existence, uniqueness, and regularity results for the transformed model in diffusive form, that is, for the moisture of the soil, and the existence of the weak solution for the pressure form are proved in the 3D case. The main part of the paper focuses on the existence of the free boundary between the saturated and unsaturated parts of the soil, and this is proved, in the 1D case, for certain stronger assumptions on the initial data and boundary conditions.

  4. Benchmarking variable-density flow in saturated and unsaturated porous media

    Science.gov (United States)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  5. Effect of flow on bacterial transport and biofilm formation in saturated porous media

    Science.gov (United States)

    Rusconi, R.

    2016-12-01

    Understanding the transport of bacteria in saturated porous media is crucial for many applications ranging from the management of pumping wells subject to bio-clogging to the design of new bioremediation schemes for subsurface contamination. However, little is known about the spatial distribution of bacteria at the pore scale, particularly when small-scale heterogeneities - always present even in seemingly homogeneous aquifers - lead to preferential pathways for groundwater flow. In particular, the coupling of flow and motility has recently been shown to strongly affect bacterial transport1, and this leads us to predict that subsurface flow may strongly affect the dispersal of bacteria and the formation of biofilms in saturated aquifers. I present here microfluidic experiments combined with numerical simulations to show how the topological features of the flow correlate with bacterial concentration and promote the attachment of bacteria to specific regions of the pore network, which will ultimately influence the formations of biofilms. These results highlight the intimate link between small-scale biological processes and transport in porous media.

  6. Venous saturation and blood flow behavior during laser-induced photodissociation of oxyhemoglobin

    Science.gov (United States)

    Mamilov, S. A.; Yesman, S. S.; Asimov, M. M.; Gisbrecht, A. I.

    2013-03-01

    The value of relative oxyhemoglobin concentration (saturation) in arterial (SаO2) and venous blood (SvO2) plays a significant role in the oxygen exchange in tissue and is used as criterion of delivery of oxygen adequate to the needs of tissue cells. Reduction of the volume of blood flows as well as reduction of oxygen concentration in arterial blood causes hypoxia - deficit of oxygen in tissue. One of the main mechanisms of elimination of hypoxia is based on compensation of the oxygen deficit by increasing the oxygen extraction from arterial blood, which leads to reduction of oxygen in the venous blood 1. In this report two optical techniques for measurement of venous blood saturation are presented. The first one is based on the pulseoximetry with artificial mechanical modulation of the tissue volume and the second one on the spectrophotometry of human respiratory rhythm. Good correlation between the results obtained with both techniques is observed.

  7. Trans monounsaturated fatty acids and saturated fatty acids have similar effects on postprandial flow-mediated vasodilation

    NARCIS (Netherlands)

    de Roos, NM; Siebelink, E; Bots, ML; van Tol, A; Katan, MB

    Objective: Several studies suggest that a fatty meal impairs flow-mediated vasodilation (FMD), a measure of endothelial function. We tested whether the impairment was greater for trans fats than for saturated fats. We did this because we previously showed that replacement of saturated fats by trans

  8. Trans monounsaturated fatty acids and saturated fatty acids have similar effects on postprandial flow-mediated vasodilation

    NARCIS (Netherlands)

    Roos, de N.M.; Siebelink, E.; Bots, M.L.; Tol, van A.; Schouten, E.G.; Katan, M.B.

    2002-01-01

    Objective: Several studies suggest that a fatty meal impairs flow-mediated vasodilation (FMD), a measur9e of endothelial function. We tested whether the impairment was greater for trans fats than for saturated fats. We did this because we previously showed that replacement of saturated fats by trans

  9. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  10. a New Saturated Zone Site-Scale Flow Model for Yucca Mountain

    Science.gov (United States)

    Eddebbarh, A.; James, S. C.; Doherty, J.; Zyvoloski, G.; Arnold, B. W.

    2007-12-01

    A saturated zone site scale flow model was developed for Yucca Mountain, Nevada, to incorporate new data and analyses including new stratigraphic and water level data from Nye County wells, single and multiple well hydraulic testing data, and new hydrochemistry data. New analyses include use of data from the 2004 transient Death Valley Regional (ground water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500 to 250 m grid spacing), and (5) use of new data. The flow model was completed using the three dimensional, finite element heat and mass transfer computer code, FEHM V2.24. The SZ site scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to evaluate the impact of alternative models on flow paths and specific discharge predictions. Model confidence was built by comparing: (1) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water chemistry data. Uncertainties in the SZ site scale flow model were quantified because all uncertainty contributes to inaccuracy in system representation and response. Null space

  11. A saturated zone site-scale flow model for Yucca mountain

    Energy Technology Data Exchange (ETDEWEB)

    Eddebbarh, Al Aziz [Los Alamos National Laboratory

    2008-01-01

    A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system

  12. Magnetic resonance sounding measurements for modeling of water flow transport in variably saturated porous media

    Science.gov (United States)

    Legchenko, Anatoly; Legout, Cédric; Descloitres, Marc

    2017-04-01

    Numerical modeling of water flow in partly saturated porous media requires knowledge of hydraulic properties of the media. The straightforward approach consists of directly measuring K(teta) and h(teta), which is challenging in many practically important applications. In-situ non-invasive measurements of K(teta) and h(teta) are even more difficult and probably impossible. Additionally, K(teta) and h(teta) are both scale dependent parameters. Under favorable conditions, surface geophysical methods may allow non-invasive identification of different geological formations and estimate of the porosity. A few papers report hydrogeological modeling considering water-saturated formations with integrated geophysical data (aquifer geometry, K and teta at saturation). However, modeling of water transport in partly saturated subsurface is more difficult task because it requires more extensive knowledge of soil hydraulic properties. We use Magnetic Resonance Sounding (MRS) method for non-invasive time-lapse measurements of the water content as an input into numerical modeling tool for hydrogeological modeling. However, MRS is not able to provide h(teta), which rest inaccessible. We propose an approach, which consists of performing infiltration tests (or observation of natural infiltration and monitoring rain water) and measuring corresponding variation of the water content in the subsurface. Then, we use a data base of soils with accurately known hydraulic properties. We try different soils for modeling water transport under our conditions (reproducing our experiment) and select one, which allows fitting experimentally observed variations in the water content. When such a soil is found we obtain K(teta) and h(teta). Thus, instead of looking for true hydraulic characteristics of the subsurface we obtain some equivalent media that allows reproducing our observations. We demonstrate the feasibility of our approach using simple 1-D models and commercially available software

  13. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, Karsten

    2000-08-08

    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  14. Mixed Convection Boundary Layer Flow Embedded in a Thermally Stratified Porous Medium Saturated by a Nanofluid

    Directory of Open Access Journals (Sweden)

    Mohd Hafizi Mat Yasin

    2013-01-01

    Full Text Available We present the numerical investigation of the steady mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium saturated by a nanofluid. The governing partial differential equations are reduced to the ordinary differential equations, using the similarity transformations. The similarity equations are solved numerically for three types of metallic or nonmetallic nanoparticles, namely, copper (Cu, alumina (Al2O3, and titania (TiO2, in a water-based fluid to investigate the effect of the solid volume fraction or nanoparticle volume fraction parameter φ of the nanofluid on the flow and heat transfer characteristics. The skin friction coefficient and the velocity and temperature profiles are presented and discussed.

  15. Pyrite oxidation in saturated and Unsaturated Porous Media Flow: AComparison of alternative mathematical modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; White, Stephen P.; Pruess, Karsten

    1998-02-15

    Pyrite (FeS{sub 2}) is one of the most common naturally occurring minerals that is present in many subsurface environments. It plays an important role in the genesis of enriched ore deposits through weathering reactions, is the most abundant sulfide mineral in many mine tailings, and is the primary source of acid drainage from mines and waste rock piles. The pyrite oxidation reaction serves as a prototype for oxidative weathering processes with broad significance for geoscientific, engineering, and environmental applications. Mathematical modeling of these processes is extremely challenging because aqueous concentrations of key species vary over an enormous range, oxygen inventory and supply are typically small in comparison to pyrite inventory, and chemical reactions are complex, involving kinetic control and microbial catalysis. We present the mathematical formulation of a general multi-phase advective-diffusive reactive transport model for redox processes. Two alternative implementations were made in the TOUGHREACT and TOUGH2-CHEM simulation codes which use sequential iteration and simultaneous solution, respectively. The simulators are applied to reactive consumption of pyrite in (1) saturated flow of oxidizing water, and (2) saturated-unsaturated flow in which oxygen transport occurs in both aqueous and gas phases. Geochemical evolutions predicted from different process models are compared, and issues of numerical accuracy and efficiency are discussed.

  16. Hydrogeologic Framework Model for the Saturated-Zone Site-Scale Flow

    Energy Technology Data Exchange (ETDEWEB)

    Z. Peterman

    2003-03-05

    Yucca Mountain is being evaluated as a potential site for development of a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Ground water is considered to be the principal means for transporting radionuclides that may be released from the potential repository to the accessible environment, thereby possibly affecting public health and safety. The ground-water hydrology of the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow in the Yucca Mountain region generally can be described as consisting of two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick, generally deep-lying, Paleozoic carbonate rock sequence. Locally within the potential repository area, the flow is through a vertical sequence of welded and nonwelded tuffs that overlie the carbonate aquifer. Downgradient from the site, these tuffs terminate in basin fill deposits that are dominated by alluvium. Throughout the system, extensive and prevalent faults and fractures may control ground-water flow. The purpose of this Analysis/Modeling Report (AMR) is to document the three-dimensional (3D) hydrogeologic framework model (HFM) that has been constructed specifically to support development of a site-scale ground-water flow and transport model. Because the HFM provides the fundamental geometric framework for constructing the site-scale 3D ground-water flow model that will be used to evaluate potential radionuclide transport through the saturated zone (SZ) from beneath the potential repository to down-gradient compliance points, the HFM is important for assessing potential repository system performance. This AMR documents the progress of the understanding of the site-scale SZ ground-water flow system framework at Yucca Mountain based on data through July 1999. The

  17. TRUST: A Computer Program for Variably Saturated Flow in Multidimensional, Deformable Media

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A. E.; Key, K. T.; Narasimhan, T. N.; Nelson, R. W.

    1982-01-01

    The computer code, TRUST. provides a versatile tool to solve a wide spectrum of fluid flow problems arising in variably saturated deformable porous media. The governing equations express the conservation of fluid mass in an elemental volume that has a constant volume of solid. Deformation of the skeleton may be nonelastic. Permeability and compressibility coefficients may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may include hysteresis. The code developed by T. N. Narasimhan grew out of the original TRUNP code written by A. L. Edwards. The code uses an integrated finite difference algorithm for numerically solving the governing equation. Narching in time is performed by a mixed explicit-implicit numerical procedure in which the time step is internally controlled. The time step control and related feature in the TRUST code provide an effective control of the potential numerical instabilities that can arise in the course of solving this difficult class of nonlinear boundary value problem. This document brings together the equations, theory, and users manual for the code as well as a sample case with input and output.

  18. Elasticity/saturation relationships using flow simulation from an outcrop analogue for 4D seismic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Kirstetter, O.; Corbett, P.; Somerville, J.; MacBeth, C. [Heriot-Watt Institute of Petroleum Engineering, Edinburgh (United Kingdom)

    2006-07-01

    Three production scenarios have been simulated for three displacement mechanisms using three lithofacies models built at two scales (fine and coarse) from a 2D outcrop analogue. Analysis of the flow simulation results and the associated seismic modelling investigate the dependence of the time-lapse response on the lithofacies model and the vertical grid block size. Elastic attribute quantification from coarse-grid models requires a decision on the type of fluid saturation distribution (uniform or patchy) within the coarse-grid blocks. Here, empirical relations for scaling up the fluid bulk modulus are developed which, when inserted into standard Gassmann calculations, permit calibration of the response for the coarse-grid block model from the finer-scale model. At the coarse scale, fluid saturation changes during water injection and pressure depletion can be represented adequately by these relations but, for gas injection, it appears necessary to refer back to the fine-scale models. For the case of gas injection they cannot be generalized readily for each different lithofacies model and are thus observed to be outcrop dependent. (author)

  19. Slip-Flow and Heat Transfer in a Porous Microchannel Saturated with Power-Law Fluid

    Directory of Open Access Journals (Sweden)

    Yazan Taamneh

    2013-01-01

    Full Text Available This study aims to numerically examine the fluid flow and heat transfer in a porous microchannel saturated with power-law fluid. The governing momentum and energy equations are solved by using the finite difference technique. The present study focuses on the slip flow regime, and the flow in porous media is modeled using the modified Darcy-Brinkman-Forchheimer model for power-law fluids. Parametric studies are conducted to examine the effects of Knudsen number, Darcy number, power law index, and inertia parameter. Results are given in terms of skin friction and Nusselt number. It is found that when the Knudsen number and the power law index decrease, the skin friction on the walls decreases. This effect is reduced slowly while the Darcy number decreases until it reaches the Darcy regime. Consequently, with a very low permeability the effect of power law index vanishes. The numerical results indicated also that when the power law index decreases the fully-developed Nusselt number increases considerably especially, in the limit of high permeability, that is, nonDarcy regime. As far as Darcy regime is concerned the effects of the Knudsen number and the power law index of the fully-developed Nusselt number is very little.

  20. Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube

    Science.gov (United States)

    Halpern, David; Grotberg, James B.

    2003-10-01

    In this paper, the stability of core annular flows consisting of two immiscible fluids in a cylindrical tube with circular cross-section is examined. Such flows are important in a wide range of industrial and biomedical applications. For example, in secondary oil recovery, water is pumped into the well to displace the remaining oil. It is also of relevance in the lung, where a thin liquid film coats the inner surface of the small airways of the lungs. In both cases, the flow is influenced by a surface-tension instability, which may induce the breakup of the core fluid into short plugs, reducing the efficiency of the oil recovery, or blocking the passage of air in the lung thus inducing airway closure. We consider the stability of a thin film coating the inner surface of a rigid cylindrical tube with the less viscous fluid in the core. For thick enough films, the Rayleigh instability forms a liquid bulge that can grow to eventually create a plug blocking the tube. The analysis explores the effect of an oscillatory core flow on the interfacial dynamics and particularly the nonlinear stabilization of the bulge. The oscillatory core flow exerts tangential and normal stresses on the interface between the two fluids that are simplified by uncoupling the core and film analyses in the thin-film high-frequency limit of the governing equations. Lubrication theory is used to derive a nonlinear evolution equation for the position of the air liquid interface which includes the effects of the core flow. It is shown that the core flow can prevent plug formation of the more viscous film layer by nonlinear saturation of the capillary instability. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stoke and shear turn around. To be successful, the leading film thickness ahead of the bulge must be smaller than the

  1. Pore-Scale Simulations Of Flow And Heat Transport In Saturated Permeable Media

    Science.gov (United States)

    Zegers, G. R., Sr.; Herrera, P. A.

    2015-12-01

    The study of heat transport in porous media is important for applications such as the use of temperature as environmental tracer, geothermal energy, fuel cells, etc. In recent years, there have been several advances in computational techniques that have allowed to investigate different processes in porous media at the pore-scale through detailed numerical simulations that considered synthetic porous media formed by regular grains and pore bodies arranged in different geometrical configurations. The main objective of this research is to investigate the influence of pore configurations on flow velocity and heat transport in 2D saturated porous media. We use OpenFOAM to solve flow and heat transport equations at the pore-scale. We performed detailed pore-scale numerical simulations in synthetic 2D porous media generated from regularly placed and randomly distributed circular solid grains. For each geometrical configuration we performed numerical simulations to compute the flow field in order to calculate properties such as as tortuosity, mean velocity and hydraulic conductivity, and to identify Lagrangian coherent structures to charaterize the velocity fields. We then perform heat transport simulations to relate the properties of the velocity fields and the main heat transport mechanisms. The analysis of the simulations results showed that in all the simulated configurations effective flow properties become valid at scales of 10 to 15 pore bodies. For the same porosity and boundary conditions we obtained that as expected tortuosity in the random structure is higher than in the regular configurations, while hydraulic conductivity is smaller for the random case. The results of heat transport simulations show significant differences in temperature distribution for the regular and random pore structures. For the simulated boundary and initial conditions, heat transport is more efficient in the random structure than in the regular geometry. This result indicates that the

  2. Processes, mechanisms, parameters, and modeling approaches for partially saturated flow in soil and rock media; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Narasimhan, T.N. [Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times.

  3. Border control! Capillary pressure / saturation relationships in a diphasic flow in a random medium: Influence of the boundary conditions

    Science.gov (United States)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Moura, Marcel; Jankov, Mihailo; Schäfer, Gerhard; Jørgen Måløy, Knut

    2013-04-01

    Solving problems involving biphasic flows in porous media, at a scale larger than the pore one, normally requires the use of relationships between pressure and saturation. These allow the closure of generalized Darcy flow models for two phases, commonly used in hydrology or large scale problems of diphasic flow in porous media. There are mathematical models which approximate experimental records with curve-fitting equations. The two most common models are the Brooks-Corey and van Genüchten ones, they are used to complete a system of generalized Darcy equations. The purpose of the current study is the influence of the boundary conditions on the relationship between pressure and saturation. We perform numerical simulations of drainage experiments. Water is the wetting fluid and air is the non wetting fluid. The results highlight the fact that a filter which allows only water to flow at the exit face of the system modifies both the shape of the curve and the value of the residual saturation. The pressure of the models that are commonly used does not match with the pressure of real flows since there is no filter to cross, to flow from an elementary volume to another. Experiments performed in transparent Hele-Shaw cells exhibit the same features, showing the influence of the semi permeable boundary conditions on the pressure-saturation measures obtained. This effect corresponding to the formation of localized plugging clusters at the boundaries, is obtained in slow flow conditions, and is independent of any dynamic fingering, also known to affect such relations (1,2,3). Modeling flows in open media thus would require to use the central part of the curves pressure saturation where the effect of the boundaries is the least important, or to modify properly these relationships to extract the behavior unaffected by boundaries. References: (1) Two-phase flow: structure, upscaling, and consequences for macroscopic transport properties Renaud Toussaint ; Knut Jørgen M

  4. Nonlinear saturation of Rayleigh-Taylor instability and generation of shear flow in equatorial spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti

    2001-01-01

    Full Text Available An analysis of low order mode coupling equations is used to describe the nonlinear behaviour of the Rayleigh-Taylor (RT instability in the equatorial ionosphere. The nonlinear evolution of RT instability leads to the development of shear flow. It is found that there is an interplay between the nonlinearity and the shear flow which compete with each other and saturate the RT mode, both in the collisionless and collisional regime. However, the nonlinearly saturated state, normally known as vortices or bubbles, may not be stable. Under certain condition these bubbles are shown to be unstable to short scale secondary instabilities that are driven by the large gradients which develop within these structures. Some understanding of the role of collisional nonlinearity in the  shear flow generations is also discussed.

  5. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to Constructed Wetlands.

    Science.gov (United States)

    Samsó, Roger; García, Joan; Molle, Pascal; Forquet, Nicolas

    2016-01-01

    Horizontal subsurface Flow Constructed Wetlands (HF CWs) are biofilters planted with aquatic macrophytes within which wastewater is treated mostly through contact with bacterial biofilms. The high concentrations of organic carbon and nutrients being transported leads to high bacterial biomass production, which decreases the flow capacity of the porous material (bioclogging). In severe bioclogging scenarios, overland flow may take place, reducing overall treatment performance. In this work we developed a mathematical model using COMSOL Multiphysics™ and MATLAB(®) to simulate bioclogging effects in HF CWs. Variably saturated subsurface flow and overland flow were described using the Richards equation. To simplify the inherent complexity of the processes involved in bioclogging development, only one bacterial group was considered, and its growth was described using a Monod equation. Bioclogging effects on the hydrodynamics were taken into account by using a conceptual model that affects the value of Mualem's unsaturated relative permeability. Simulation results with and without bioclogging were compared to showcase the impact of this process on the overall functioning of CWs. The two scenarios rendered visually different bacteria distributions, flow and transport patterns, showing the necessity of including bioclogging effects on CWs models. This work represents one of the few studies available on bioclogging in variably saturated conditions, and the presented model allows simulating the interaction between overland and subsurface flow occurring in most HF CWs. Hence, this work gets us a step closer to being able to describe CWs functioning in an integrated way using mathematical models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Site-Scale Saturated Zone Flow Model for Yucca Mountain

    Science.gov (United States)

    Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.

    2006-12-01

    This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the

  7. Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow.

    Science.gov (United States)

    Rod, Kenton A; Um, Wooyong; Flury, Markus

    2010-11-01

    We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.

  8. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    Science.gov (United States)

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  9. Flow Properties in Saturated Soils from Differing Behaviour of Dispersive Seismic Velocity and Attenuation

    NARCIS (Netherlands)

    Ghose, R.; Zhubayev, A.

    2012-01-01

    A careful look into the pertinent models of poroelasticity reveals that in water-saturated sediments or soils, the seismic (P and S wave) velocity dispersion and attenuation in the low field-seismic frequency band (20-200 Hz) have a contrasting behaviour in the porosity-permeability domain.Taking

  10. Dye Tracer Technique and Color Image Analysis For Describing Saturation State and 3d Axi-symmetrical Flow Pattern

    Science.gov (United States)

    Abriak, N. E.; Gandola, F.; Haverkamp, R.

    Dye tracer techniques have been widely used for visualising water flow pattern in soils and particularly, for determining the volumetric water content in a one dimensional and two dimensional laboratory experiments. The present study deals a 3 dimensional laboratory experiment (axi-symmetrical condition) using color visualisation technique and the image analysis technique for determining the spatial distribution of the water content. The infiltration of a dye (fluorescein) mixed with water is achieved under ax- isymmetrical condition in a Plexiglas tank (50t'50t'60cm) filled with a low saturated sand. Both infiltration and drainage processes are visualised under blue light condi- tion and recorded on videotape. The image analysis technique used for determining the saturation state is based on the use of a limited colors palette which allows to quan- tify the evolution of the saturation state in the sand. Simultaneously, nine tensiometers connected to a data acquisition system, are used to determine the negative water pres- sure in the sand. The measurement of the succion values confirms the existence of a second water wetting front (after the dye flow) due to the initial mobile water content in the sand.

  11. Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach

    Directory of Open Access Journals (Sweden)

    J. Kordilla

    2012-10-01

    Full Text Available The objective of this work is the simulation of saturated and unsaturated flow in a karstified aquifer using a double continuum approach. The HydroGeoSphere code (Therrien et al., 2006 is employed to simulate spring discharge with the Richards equations and van Genuchten parameters to represent flow in the (1 fractured matrix and (2 conduit continuum coupled by a linear exchange term. Rapid vertical small-scale flow processes in the unsaturated conduit continuum are accounted for by applying recharge boundary conditions at the bottom of the saturated model domain. An extensive sensitivity analysis is performed on single parameters as well as parameter combinations. The transient hydraulic response of the karst spring is strongly controlled by the matrix porosity as well as the van Genuchten parameters of the unsaturated matrix, which determine the head dependent inter-continuum water transfer when the conduits are draining the matrix. Sensitivities of parameter combinations partially reveal a non-linear dependence over the parameter space. This can be observed for parameters not belonging to the same continuum as well as combinations, which involve the exchange parameter, showing that results of the double continuum model may depict a certain degree of ambiguity. The application of van Genuchten parameters for simulation of unsaturated flow in karst systems is critically discussed.

  12. Mathematical and experimental modelling of flow of air-saturated water through a convergent-divergent nozzle

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2016-01-01

    Full Text Available In hydraulic elements an under-pressure is generated during fluid flow around sharp edges or changing the flow cross-section (e.g. for valves, switchgear, nozzles. In these locations air suction by leakages or release of air from the liquid during cavitation may occur. When flow modelling using classical mathematical model of cavitation at higher flow rates there is disagreement in the measured and calculated hydraulic variables before and behind hydraulic element. Therefore, it is necessary to use a mathematical model of cavitation applied to the three-phase flow (water, vapour, air. Nowadays it is necessary to look for mathematical approaches, which are suitable for quick engineering use in sufficiently precision numerical calculations. The article is devoted to theoretical investigation of multiphase mathematical model of cavitation and its verification using a laboratory experiment. At first case the k-ε RNG turbulent mathematical model with cavitation was chosen in accordance [9] and was applied on water flow with cavitation (water and vapour in a convergent-divergent nozzle. In other cases a solution of water flow with cavitation and air saturation was investigated. Subsequently, the results of mathematical modelling and experimental investigation focused on monitoring of air content and its impact on the value of hydraulic parameters and the size of the cavitation area were verified.

  13. On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    Directory of Open Access Journals (Sweden)

    X. Liang

    2017-03-01

    established with special consideration of the coupled unsaturated–saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace–finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant in unconfined aquifers affected from above by the unsaturated flow process.

  14. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  15. Daily and seasonal variability of CO2 saturation and evasion in a free flowing and in a dammed river reach

    Directory of Open Access Journals (Sweden)

    Monica Pinardi

    2014-05-01

    Full Text Available The daily and seasonal evolution of O2 and CO2 saturation, water-atmosphere fluxes and budgets were measured in two fluvial reaches of the Mincio River (Italy. The northern reach is free flowing and is dominated by macrophytes while the southern reach is dammed, hypertrophic and phytoplankton dominated. We hypothesized short term regulation of gas saturation and fluxes by primary producers and the reversal of CO2 off-gassing in the southern reach. Results indicated that both reaches were always CO2 supersaturated. Higher CO2 evasion rates in the northern compared to the southern reach depended on reaeration coefficient, in turn depending on water velocity. In the northern reach dissolved inorganic carbon (DIC production was one order of magnitude higher than oxygen consumption, likely due to a combination of anoxic heterotrophic activity in the hyporheic zone and carbonate dissolution. The activity of macrophytes influenced CO2 saturation on short time scales. A net summer abatement of DIC occurred in the southern reach, probably due to fixation by phytoplankton, which attenuated supersaturation but not reversed CO2 efflux. This study demonstrates how in small rivers CO2 evasion can undergo rapid and significant changes due to eutrophication, altered hydrology and shift in primary producer communities.

  16. MHD oscillatory flow through a porous channel saturated with porous medium

    Directory of Open Access Journals (Sweden)

    J.A. Falade

    2017-03-01

    Full Text Available In this paper, we investigate the effect of suction/injection on the unsteady oscillatory flow through a vertical channel with non-uniform wall temperature. The fluid is subjected to a transverse magnetic field and the velocity slip at the lower plate is taken into consideration. Exact solutions of the dimensionless equations governing the fluid flow are obtained and the effects of the flow parameters on temperature, velocity profiles, skin friction and rate of heat transfer are discussed and shown graphically. It is interesting to note that skin friction increases on both channel plates as injection increases on the heated plate.

  17. High-frequency photoacoustic imaging of erythrocyte aggregation and oxygen saturation: probing hemodynamic relations under pulsatile blood flow

    Science.gov (United States)

    Bok, Tae-Hoon; Hysi, Eno; Kolios, Michael C.

    2015-03-01

    In this paper, we investigate the feasibility of high-frequency photoacoustic (PA) imaging to study the shear rate dependent relationship between red blood cell (RBC) aggregation and oxygen saturation (SO2) in a simulated blood flow system. The PA signal amplitude increased during the formation of aggregates and cyclically varied at intervals corresponding to the beat rate (30, 60, 120, 180 and 240 bpm) for all optical wavelengths of illumination (750 and 850 nm).The SO2 also cyclically varied in phase with the PA signal amplitude for all beat rates. In addition, the mean blood flow velocity cyclically varied at the same interval of beat rate, and the shear rate (i.e. the radial gradient of flow velocity) also cyclically varied. On the other hand, the phase of the cyclic variation in the shear rate was reversed compared to that in the PA signal amplitude. This study indicates that RBC aggregation induced by periodic changes in the shear rate can be correlated with the SO2 under pulsatile blood flow. Furthermore, PA imaging of flowing blood may be capable of providing a new biomarker for the clinical application in terms of monitoring blood viscosity, oxygen delivery and their correlation.

  18. A new stochastic hydraulic conductivity approach for modeling one-dimensional vertical flow in variably saturated porous media.

    Science.gov (United States)

    Vrettas, M. D.; Fung, I. Y.

    2014-12-01

    The degree of carbon climate feedback by terrestrial ecosystems is intimately tied to the availability of moisture for photosynthesis, transpiration and decomposition. The vertical distribution of subsurface moisture and its accessibility for evapotranspiration is a key determinant of the fate of ecosystems and their feedback on the climate system. A time series of five years of high frequency (every 30 min) observations of water table at a research site in Northern California shows that the water tables, 18 meters below the surface, can respond in less than 8 hours to the first winter rains, suggesting very fast flow through micro-pores and fractured bedrock. Not quite as quickly as the water table rises after a heavy rain, the elevated water level recedes, contributing to down-slope flow and stream flow. The governing equation of our model uses the well-known Richards' equation, which is a non-linear PDE, derived by applying the continuity requirement to Darcy's law. The most crucial parameter of this PDE is the hydraulic conductivity K(θ), which describes the speed at which water can move in the underground. We specify a saturation profile as a function of depth (i.e. Ksat(z)) and allow K(θ) to vary not only with the soil moisture saturation but also include a stochastic component which mimics the effects of fracture flow and other naturally occurring heterogeneity, that is evident in the subsurface. A large number of Monte Carlo simulation are performed in order to identify optimal settings for the new model, as well as analyze the results of this new approach on the available data. Initial findings from this exploratory work are encouraging and the next steps include testing this new stochastic approach on data from other sites and also apply ensemble based data assimilation algorithms in order to estimate model parameters with the available measurements.

  19. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

    Science.gov (United States)

    Kreituss, Imants; Bode, Jeffrey W.

    2017-05-01

    Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

  20. Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.

    Science.gov (United States)

    Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal

    2017-07-01

    French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m2/P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter® is one of the solutions developed in France by Epur Nature. Biho-Filter® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO3-N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.

  1. Inert Carbon Nanoparticles for the Assessment of Preferential Flow in Saturated Dual-Permeability Porous Media

    KAUST Repository

    Yao, Chuanjin

    2017-06-07

    Knowledge of preferential flow in heterogeneous environments is essential for enhanced hydrocarbon recovery, geothermal energy extraction, and successful sequestration of chemical waste and carbon dioxide. Dual tracer tests using nanoparticles with a chemical tracer could indicate the preferential flow. A dual-permeability model with a high permeable core channel surrounded by a low permeable annulus was constructed and used to determine the viability of an inert carbon nanoparticle tracer for this application. A series of column experiments were conducted to demonstrate how this nanoparticle tracer can be used to implement the dual tracer tests in heterogeneous environments. The results indicate that, with the injection rate selected and controlled appropriately, nanoparticles together with a chemical tracer can assess the preferential flow in heterogeneous environments. The results also implement the dual tracer tests in heterogeneous environments by simultaneously injecting chemical and nanoparticle tracers.

  2. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions

    Directory of Open Access Journals (Sweden)

    Farrokhian Firouzi Ahmad

    2015-06-01

    Full Text Available Study of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.

  3. Too big to grow: self-consistent model for nonlinear saturation in open shear flows

    OpenAIRE

    Mantič Lugo, Vladislav

    2015-01-01

    Open flows, such as wakes, jets, separation bubbles, mixing layers, boundary layers, etc., develop in domains where fluid particles are continuously advected downstream. They are encountered in a wide variety of situations, ranging from nature to technology. Such configurations are characterised by the development of strong instabilities resulting in observable unsteady dynamics. They can be categorised as oscillators which present intrinsic dynamics through self-sustained oscillations, or as...

  4. Massively parallel simulation of flow and transport in variably saturated porous and fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Zhang, Keni; Pruess, Karsten

    2002-01-15

    This paper describes a massively parallel simulation method and its application for modeling multiphase flow and multicomponent transport in porous and fractured reservoirs. The parallel-computing method has been implemented into the TOUGH2 code and its numerical performance is tested on a Cray T3E-900 and IBM SP. The efficiency and robustness of the parallel-computing algorithm are demonstrated by completing two simulations with more than one million gridblocks, using site-specific data obtained from a site-characterization study. The first application involves the development of a three-dimensional numerical model for flow in the unsaturated zone of Yucca Mountain, Nevada. The second application is the study of tracer/radionuclide transport through fracture-matrix rocks for the same site. The parallel-computing technique enhances modeling capabilities by achieving several-orders-of-magnitude speedup for large-scale and high resolution modeling studies. The resulting modeling results provide many new insights into flow and transport processes that could not be obtained from simulations using the single-CPU simulator.

  5. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    Science.gov (United States)

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin; Kim, Yongman; Cihan, Abdullah; Zhang, Yingqi; Finsterle, Stefan

    2017-11-01

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (Pc) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick) pieces of shales, and yielded effective diffusion coefficients from 9 × 10-9 to 3 × 10-8 m2 s-1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large Pc (˜1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.

  6. Estimation of Saturation Flow Rate and Start-Up Lost Time for Signal Timing Based on Headway Distribution

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2015-01-01

    Full Text Available This study aimed to calibrate saturation flow rate (SFR and start-up lost time (SLT when developing signal timing. In current commonly used methods, SFR for one given lane is usually calibrated from many subjective adjustment factors and a fixed result. SLT is calculated based on the fixed SFR, which prevents local applications in China. Considering the importance of traffic behavior (headway in determining SFR and SLT, this study started from headway distribution and attempted to specify the relationships between headway and vehicle position directly. A common intersection in Nanjing, China, was selected to implement field study and data from 920 queues was collected. Headway distribution was explored and the 78th percentile of headway at each position was selected to build model. Based on the developed relationships, SFR and SLT were calibrated. The results showed that SFR and SLT were correlated with queue length. Moreover, the results showed that it was difficult to reach saturated state even with a long queue length. This paper provides a new perspective on calibrating important parameters in signal timing, which will be useful for traffic agencies to complete signal timing by making the process simpler.

  7. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2012-06-02

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  8. Saturated flow in a single fracture: Evaluation of the Reynolds equation in measured aperture fields

    Energy Technology Data Exchange (ETDEWEB)

    NICHOLL,M.J.; RAJARAM,H.; GLASS JR.,ROBERT J.; DETWILER,R.

    2000-01-28

    Fracture transmissivity and detailed aperture fields are measured in analog fractures specially designed to evaluate the utility of the Reynolds equation. The authors employ a light transmission technique with well-defined accuracy ({approximately}1% error) to measure aperture fields at high spatial resolution ({approximately}0.015 cm). A Hele-Shaw cell is used to confirm the approach by demonstrating agreement between experimental transmissivity, simulated transmissivity on the measured aperture field, and the parallel plate law. In the two rough-walled analog fractures considered, the discrepancy between the experimental and numerical estimates of fracture transmissivity was sufficiently large ({approximately} 22--47%) to exclude numerical and experimental errors (< 2%)as a source. They conclude that the three-dimensional character of the flow field is important for fully describing fluid flow in the two rough-walled fractures considered, and that the approach of depth averaging inherent in the formulation of the Reynolds equation is inadequate. They also explore the effects of spatial resolution, aperture measurement technique, and alternative definitions for link transmissivities in the finite-difference formulation, including some that contain corrections for tortuosity perpendicular to the mean fracture plane and Stokes flow. Various formulations for link transmissivity are shown to converge at high resolution ({approximately} 1/5 the spatial correlation length) in the smoothly varying fracture. At coarser resolutions, the solution becomes increasingly sensitive to definition of link transmissivity and measurement technique. Aperture measurements that integrate over individual grid blocks were less sensitive to measurement scale and definition of link transmissivity than point sampling techniques.

  9. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  10. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    Science.gov (United States)

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media. Copyright © 2014. Published by Elsevier B.V.

  11. Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium

    Directory of Open Access Journals (Sweden)

    Jianhong Kang

    2015-01-01

    Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.

  12. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon

    2016-07-15

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  13. Simulations of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones beneath Area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kay H. Birdsell; Kathleen M. Bower; Andrew V. Wolfsberg; Wendy E. Soll; Terry A. Cherry; Tade W. Orr

    1999-07-01

    Numerical simulations are used to predict the migration of radionuclides from the disposal units at Material Disposal Area G through the vadose zone and into the main aquifer in support of a radiological performance assessment and composite analysis for the site. The calculations are performed with the finite element code, FEHM. The transport of nuclides through the vadose zone is computed using a three-dimensional model that describes the complex mesa top geology of the site. The model incorporates the positions and inventories of thirty-four disposal pits and four shaft fields located at Area G as well as those of proposed future pits and shafts. Only three nuclides, C-14, Tc-99, and I-129, proved to be of concern for the groundwater pathway over a 10,000-year period. The spatial and temporal flux of these three nuclides from the vadose zone is applied as a source term for the three-dimensional saturated zone model of the main aquifer that underlies the site. The movement of these nuclides in the aquifer to a downstream location is calculated, and aquifer concentrations are converted to doses. Doses related to aquifer concentrations are six or more orders of magnitude lower than allowable Department of Energy performance objectives for low-level radioactive waste sites. Numerical studies were used to better understand vadose-zone flow through the dry mesa-top environment at Area G. These studies helped define the final model used to model flow and transport through the vadose zone. The study of transient percolation indicates that a steady flow vadose-zone model is adequate for computing contaminant flux to the aquifer. The fracture flow studies and the investigation of the effect of basalt and pumice properties helped us define appropriate hydrologic properties for the modeling. Finally, the evaporation study helped to justify low infiltration rates.

  14. Dual Mechanism Conceptual Model for Cr Isotope Fractionation during Reduction by Zerovalent Iron under Saturated Flow Conditions.

    Science.gov (United States)

    Jamieson-Hanes, Julia H; Amos, Richard T; Blowes, David W; Ptacek, Carol J

    2015-05-05

    Chromium isotope analysis is rapidly becoming a valuable complementary tool for tracking Cr(VI) treatment in groundwater. Evaluation of various treatment materials has demonstrated that the degree of isotope fractionation is a function of the reaction mechanism, where reduction of Cr(VI) to Cr(III) induces the largest fractionation. However, it has also been observed that uniform flow conditions can contribute complexity to isotope measurements. Here, laboratory batch and column experiments were conducted to assess Cr isotope fractionation during Cr(VI) reduction by zerovalent iron under both static and saturated flow conditions. Isotope measurements were accompanied by traditional aqueous geochemical measurements (pH, Eh, concentrations) and solid-phase analysis by scanning electron microscopy and X-ray absorption spectroscopy. Increasing δ(53)Cr values were associated with decreasing Cr(VI) concentrations, which indicates reduction; solid-phase analysis showed an accumulation of Cr(III) on the iron. Reactive transport modeling implemented a dual mechanism approach to simulate the fractionation observed in the experiments. The faster heterogeneous reaction pathway was associated with minimal fractionation (ε=-0.2‰), while the slower homogeneous pathway exhibited a greater degree of fractionation (ε=-0.9‰ for the batch experiment, and ε=-1.5‰ for the column experiment).

  15. LLUVIA-II: A program for two-dimensional, transient flow through partially saturated porous media; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, R.R.; Hopkins, P.L.

    1992-08-01

    LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification.

  16. Saturation of the response to stochastic forcing in two-dimensional backward-facing step flow: A self-consistent approximation

    Science.gov (United States)

    Mantič-Lugo, Vladislav; Gallaire, François

    2016-12-01

    Selective noise amplifiers are characterized by large linear amplification to external perturbations in a particular frequency range despite their global linear stability. Applying a stochastic forcing with increasing amplitude, the response undergoes a strong nonlinear saturation when compared to the linear estimation. Building upon our previous work, we introduce a predictive model that describes this nonlinear dynamics, and we apply it to a canonical example of selective noise amplifiers: the backward-facing step flow. Rewriting conveniently the stochastic forcing and response in the frequency domain, the model consists in a mean flow equation coupled to the linear response to forcing at each frequency. This coupling is attained by the Reynolds stress, which is constructed by the integral in frequency of the independent responses. We generalize the model for a response to a white noise forcing δ -correlated in space and time restricting the flow dynamics to its most energetic patterns calculated from the optimal harmonic forcing and response of the flow. The model estimates accurately the response saturation when compared to direct numerical simulations, and it correctly approximates the structure of the response and the mean flow modification. It also shows that the response undergoes a selective process governed by the nonlinear gain, which promotes a response structure with an approximately single frequency and wavelength in the whole domain. These results suggest that the mean flow modification by the Reynolds stress is the key nonlinearity in the saturation process of the response to white noise.

  17. Rain-Impact-Entrainment of Chemicals and Soil into Overland Flow in Saturated Areas: Theory and Experiments

    Science.gov (United States)

    Walter, M.; Gao, B.; Parlange, J.; Steenhuis, T. S.

    2004-12-01

    Overland flow from riparian and other frequently saturated areas is a potentially important transport pathway between the landscape and aquatic ecosystems. Both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, however, current transport models either do not consider the two processes together, or use "effective" parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with experimental data. One unique aspect of this study is that all the parameters needed to apply the model to our experiments were either directly measured or previously published, that is, there was no model "calibration" or "fitting." Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or "exchange layer," via diffusion. The exchange layer depth and transfer processes are derived from the "shield" concept in the Rose soil erosion model (e.g., Rose, 1985, Adv. Soil Sci. 2,1-63.). The model's governing equations were solved numerically and the results agreed well with experimental data (R2 > 0.90). The model was also successfully tested against previously published experimental data by Leman and Ahuja (1983, J. Environ. Qual. 12(1), 34-40); these data were unique because they provided chemical concentrations in the soil profile as well as in the overland flow. This model provides insights into important processes relevant to landscape-river interactions and water quality protection.

  18. Effects of variable blast pressures on blood flow and oxygen saturation in rat brain as evidenced using MRI.

    Science.gov (United States)

    Bir, Cynthia; Vandevord, Pamela; Shen, Yimin; Raza, Waqar; Haacke, E Mark

    2012-05-01

    It has been recognized that primary blast waves may result in neurotrauma in soldiers in theater. A new type of contrast used in magnetic resonance imaging (MRI), susceptibility-weighted imaging (SWI), has been developed that is based on the different susceptibility levels in diverse tissues and can detect decreases in cerebral blood flow (CBF) using inferred oxygen saturation changes in tissue. In addition, a continuous arterial spin-labeled (ASL) MRI sequence was used as a direct measure of regional CBF within the brain tissue. Animals were subjected to whole-body blast exposures of various overpressures within a gas-driven shock tube. When exposed to low levels of overpressure, most rats demonstrated no obvious changes between pre- and postexposure in the conventional MR images. CBF changes measured by SWI and ASL were significantly higher for the overpressure exposed groups as compared to the sham group and tended to increase with pressure increases at the highest two pressures. In the hippocampus, all blast animals had a reduction in the CBF consistently in the range of 0-27%. In summary, low levels of primary blast pressure exposure demonstrated a significant physiologic effect to the brain up to 72 h postexposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Aqueous Iron-Sulfide Clusters in Variably Saturated Soil Systems: Implications for Iron Cycling and Fluid Flow

    Science.gov (United States)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2008-12-01

    Iron and sulfur cycling is an important control on contaminant fate and transport, the availability of micronutrients and the physics of water flow. This study explores the effects of soil structure (i.e. layers, lenses, macropores, or fractures) on linked biogeochemical and hydrological processes involving Fe and S cycling in the vadose zone using packed soil columns. Three laboratory soil columns were constructed: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. Both upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. Water samples extracted by lysimeter were analyzed for reduced species (including total sulfide, Fe(II), and FeSaq) voltammetrically using a mercury drop electrode. In addition to other reduced species, aqueous FeS clusters (FeSaq) were observed in two of the columns, with the greatest concentrations of FeSaq occurring in close proximity to the soil interface in the layered column. To our knowledge, this is the first documentation of aqueous FeS clusters in partially saturated sediments. The aqueous nature of FeSaq allows it to be transported instead of precipitating and suggests that current conceptual models of iron-sulfur cycling may need to be adapted to account for an aqueous phase. The presence of iron-rich soil aggregates near the soil interface may indicate that FeS clusters played a critical role in the formation of soil aggregates that subsequently caused up to an order of magnitude decrease in hydraulic conductivity.

  20. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid

    2012-02-23

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model called DYPOSIT, which has been employed and extended for this study: (a) P c-S w relationship is measured empirically under equilibrium conditions. It is then used in Darcy-based simulations for all dynamic conditions. This is only valid if there is a guarantee that this relationship is unique for a given flow process (drainage or imbibition) independent of dynamic conditions; (b) It is also known that P c-S w relationship is flow process dependent. Depending on drainage and imbibition, different curves can be achieved, which are referred to as "hysteresis". A thermodynamically derived theory (Hassanizadeh and Gray, Water Resour Res 29: 3389-3904, 1993a) suggests that, by introducing a new state variable, called the specific interfacial area (a nw, defined as the ratio of fluid-fluid interfacial area to the total volume of the domain), it is possible to define a unique relation between capillary pressure, saturation, and interfacial area. This study investigates these two aspects of capillary pressure-saturation relationship using a dynamic pore-network model. The simulation results imply that P c-S w relation not only depends on flow process (drainage and imbibition) but also on dynamic conditions for a given flow process. Moreover, this study attempts to obtain the first preliminary insights into the global functionality of capillary pressure-saturation-interfacial area relationship under equilibrium and non-equilibrium conditions and the uniqueness of P c-S w-a nw relationship. © 2012 The Author(s).

  1. Numerical study of two-phase flows in porous media : extraction of a capillary pressure saturation curve free from boundary effects

    Science.gov (United States)

    Fiorentino, Eve-Agnès; Moura, Marcel; Jørgen Måløy, Knut; Toussaint, Renaud; Schäfer, Gerhard

    2015-04-01

    The capillary pressure saturation relationship is a key element in the resolution of hydrological problems that involve the closure partial-flow Darcy relations. This relationship is derived empirically, and the two typical curve fitting equations that are used to describe it are the Brooks-Corey and Van Genüchten models. The question we tackle is the influence of the boundary conditions of the experimental set-up on the measurement of this retention curve, resulting in a non physical pressure-saturation curve in porous media, due the "end effects" phenomenon. In this study we analyze the drainage of a two-phase flow from a quasi 2D random porous medium, and compare it to simulations arising from an invasion percolation algorithm. The medium is initially saturated with a viscous fluid, and as the pressure difference is gradually increased, air penetrates from an open inlet, thus displacing the fluid which leaves the system from the outlet in the opposing side. In the initial stage, the liquid-air interface evolves from a planar front to the fractal structure characteristic of slow drainage processes, giving the initial downward curvature. In the final stage, air spreads all along the filter, and must reach narrower pores, calling for an increase of the pressure difference, reflected by the final upward curvature. Measuring the pressure-saturation (P-S) law in subwindows located at the inlet, outlet and middle of the network, we emphasize that these boundary effects are the fact of a fraction of pores that is likely to be negligible for high scale systems. We analyze the value of the air saturation at the end of the experiment for a series of simulations with different sample geometries : we observe that this saturation converges to a plateau when the distance between the inlet ant outlet increases, and that the value of this plateau is determined by the distance between the lateral walls. We finally show that the pressure difference between the two phases

  2. Effects of Intravitreal Dexamethasone Implants on Retinal Oxygen Saturation, Vessel Diameter, and Retrobulbar Blood Flow Velocity in ME Secondary to RVO.

    Science.gov (United States)

    Eibenberger, Katharina; Schmetterer, Leopold; Rezar-Dreindl, Sandra; Wozniak, Piotr; Told, Reinhard; Mylonas, Georgios; Krall, Christoph; Schmidt-Erfurth, Ursula; Sacu, Stefan

    2017-10-01

    To investigate the effects of intravitreal 0.7 mg dexamethasone implants (Ozurdex) on arterial and venous oxygen saturation, retinal vessel diameter, and retrobulbar blood flow velocity in patients with macular edema (ME) due to retinal vein occlusion (RVO). This prospective, nonrandomized clinical trial included 40 eyes of 40 patients with ME due to RVO. Measurements of arterial and venous oxygen saturation and retinal vessel diameters were performed using the Dynamic Vessel Analyzer. The main outcome measure was the retinal arteriovenous oxygen difference, calculated as the difference between arterial and venous oxygenation. Color Doppler imaging was performed for measuring peak systolic velocity (PSV), end diastolic velocity (EDV), and resistive index (RI) in ophthalmic artery (OA), central retinal artery (CRA), and posterior ciliary arteries (PCAs). Follow-up was monthly for 6 months following an initial dexamethasone implant injection. As statistical analysis, a mixed model was performed to investigate the effect treatment. The arteriovenous oxygen difference showed a significant increase (P 0.05), while the venous oxygen saturation and diameter decreased significantly (P 0.05). In patients with RVO, intravitreal dexamethasone treatment leads to an increase in arteriovenous oxygen saturation difference indicating improved retinal oxygenation. Arterial oxygenation and vessel diameter showed no response, whereas venous oxygenation and vessel diameter decreased after treatment.

  3. Aspect-dependent soil saturation and insight into debris-flow initiation during extreme rainfall in the Colorado Front Range

    Science.gov (United States)

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2015-01-01

    Hydrologic processes during extreme rainfall events are poorly characterized because of the rarity of measurements. Improved understanding of hydrologic controls on natural hazards is needed because of the potential for substantial risk during extreme precipitation events. We present field measurements of the degree of soil saturation and estimates of available soil-water storage during the September 2013 Colorado extreme rainfall event at burned (wildfire in 2010) and unburned hillslopes with north- and south-facing slope aspects. Soil saturation was more strongly correlated with slope aspect than with recent fire history; south-facing hillslopes became fully saturated while north-facing hillslopes did not. Our results suggest multiple explanations for why aspect-dependent hydrologic controls favor saturation development on south-facing slopes, causing reductions in effective stress and triggering of slope failures during extreme rainfall. Aspect-dependent hydrologic behavior may result from (1) a larger gravel and stone fraction, and hence lower soil-water storage capacity, on south-facing slopes, and (2) lower weathered-bedrock permeability on south-facing slopes, because of lower tree density and associated deep roots penetrating bedrock as well as less intense weathering, inhibiting soil drainage.

  4. Numerical simulation of air- and water-flow experiments in a block of variably saturated, fractured tuff from Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, E.M.; Healy, R.W. [Geological Survey, Denver, CO (United States); Thamir, F. [AMX International, Inc., Denver, CO (United States); Hampson, D. [EQE International, Evergreen, CO (United States)

    1998-11-01

    Numerical models of water movement through variably saturated, fractured tuff have undergone little testing against experimental data collected from relatively well-controlled and characterized experiments. This report used the results of a multistage experiment on a block of variably saturated, fractured, welded tuff and associated core samples to investigate if those results could be explained using models and concepts currently used to simulate water movement in variably saturated, fractured tuff at Yucca Mountain, Nevada, the potential location of a high-level nuclear-waste repository. Aspects of the experiment were modeled with varying degrees of success. Imbibition experiments performed on cores of various lengths and diameters were adequately described by models using independently measured permeabilities and moisture-characteristic curves, provided that permeability reductions resulting from the presence of entrapped air were considered. Entrapped gas limited maximum water saturations during imbibition to approximately 0.70 to 0,80 of the fillable porosity values determined by vacuum saturation. A numerical simulator developed for application to fluid flow problems in fracture networks was used to analyze the results of air-injection tests conducted within the tuff block through 1.25-cm-diameter boreholes. These analyses produced estimates of transmissivity for selected fractures within the block. Transmissivities of other fractures were assigned on the basis of visual similarity to one of the tested fractures. The calibrated model explained 53% of the observed pressure variance at the monitoring boreholes (with the results for six outliers omitted) and 97% of the overall pressure variance (including monitoring and injection boreholes) in the subset of air-injection tests examined.

  5. Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Pazanin, Igor [Zagreb Univ. (Croatia). Dept. of Mathematics; Siddheshwar, Pradeep G. [Bangalore Univ., Bengaluru (India). Dept. of Mathematics

    2017-06-01

    In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.

  6. Experiments on two-phase flow in a quasi-2D porous medium: investigation of boundary effects in the measurement of pressure-saturation relationships

    Science.gov (United States)

    Moura, Marcel; Fiorentino, Eve-Agnès; Jørgen Måløy, Knut; Toussaint, Renaud; Schäfer, Gerhard

    2015-04-01

    We have performed two-phase flow experiments to analyze the drainage from a quasi-2D random porous medium. The medium is transparent, which allows for the visualization of the invasion pattern during the flow and is initially fully saturated with a viscous fluid (a dyed glycerol-water mix). As the pressure in the fluid is gradually reduced, air penetrates from an open inlet, thus displacing the fluid which leaves the system from the outlet in the opposite side. A feedback mechanism was devised to control the experiment: the capillary pressure (difference in pressure between the non-wetting and wetting phases) is continuously increased to be just above the threshold value necessary to drive the invasion process. This mechanism is intended to keep the invasion process slow, in the so-called capillary regime, where capillary forces dominate the dynamics. Pressure measurements and pictures of the flow are recorded and the pressure-saturation relationship is computed. The effects of the boundary conditions to this quantity are verified experimentally by repeatedly performing the analysis using porous media of different sizes. We show that some features of the pressure-saturation curve are strongly affected by boundary effects. The invasion close to the inlet and outlet of the model are particularly influenced by the boundaries and this is reflected in the phases of pressure building up in the pressure-saturation curves, in the beginning and end of the invasion process. Conversely, at the central part of the model (away from the boundaries), the invasion process happens at an essentially constant capillary pressure, which is reflected as a plateau in the pressure-saturation curve. Additionally, the use of a high-resolution camera allows us to analyze the images down to the pore scale. We can directly obtain a distribution of pore-throat sizes in the model (and their associated capillary pressure thresholds) and divide it into distributions of invaded / non-invaded pores

  7. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.

    Science.gov (United States)

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  8. The transport behaviour of elemental mercury DNAPL in saturated porous media: Analysis of field observations and two-phase flow modelling

    Science.gov (United States)

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J. S.

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  9. Irreversibility of Gas-Condensate Flow in Gas Cycling Projects: Kinetically Stable Saturation Patterns Irréversibilité des écoulements de gaz à condensat dans les projets de recyclage de gaz : profils stationnaires de saturation

    Directory of Open Access Journals (Sweden)

    Mitlin V.

    2006-12-01

    Full Text Available The dynamics of a two-phase multicomponent reservoir system which is approaching the steady-state flow regime are studied. First, the compositional model is analyzed in the linear approximation, for the case of a small initial deviation from the steady-state regime. An analytical expression is obtained for the characteristic relaxation time. Next, numerical simulations are performed for situations where there is a substantial deviation from the steady-state regime. The linear injection of an enriched gas into a gas-condensate reservoir, followed by the extraction regime, is simulated. It is shown that the change in phase compositions and pressure on the way to equilibrium proceeds with characteristic times of the order of the injection time. However, the change in the saturation and overall composition takes approximately 200 times longer than the injection time. Thus, the reservoir system manifests a spatially inhomogeneous saturation distribution for an abnormally long time. Similar kinetically stable patterns have been also discovered in the nonlinear dynamics of phase transitions, plasma, and thin films. The question of the existence of discontinuous steady states for this multicomponent flow is considered. In the case of a binary mixture, it is shown that such solutions do not exist. Cet article présente une étude de la dynamique d'un réservoir biphasique multiconstituant approchant le régime d'écoulement stationnaire. En premier lieu, nous procédons à une approximation linéaire du modèle compositionnel dans le cas des petites fluctuations autour du régime permanent. Une expression analytique est ainsi obtenue pour le temps caractéristique de transition. Des simulations numériques sont ensuite effectuées pour les déviations importantes par rapport au régime permanent. Nous avons ainsi pu étudier le déplacement linéaire d'un mélange gaz/condensat par un gaz enrichi suivi d'un régime de production. On montre alors que le

  10. Influence of Soret, Hall and Joule heating effects on mixed convection flow saturated porous medium in a vertical channel by Adomian Decomposition Method

    Science.gov (United States)

    Reddy, Ch. Ram; Kaladhar, K.; Srinivasacharya, D.; Pradeepa, T.

    2016-02-01

    This paper analyzes the laminar, incompressible mixed convective transport inside vertical channel in an electrically conducting fluid saturated porous medium. In addition, this model incorporates the combined effects of Soret, Hall current and Joule heating. The nonlinear governing equations and their related boundary conditions are initially cast into a dimensionless form using suitable similarity transformations and hence solved using Adomian Decomposition Method (ADM). In order to explore the influence of various parameters on fluid flow properties, quantitative analysis is exhibited graphically and shown in tabular form.

  11. Energy Transfer in Mixed Convection MHD Flow of Nanofluid Containing Different Shapes of Nanoparticles in a Channel Filled with Saturated Porous Medium.

    Science.gov (United States)

    Aaiza, Gul; Khan, Ilyas; Shafie, Sharidan

    2015-12-01

    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.

  12. Numerical study at moderate Reynolds number of peristaltic flow of micropolar fluid through a porous-saturated channel in magnetic field

    Science.gov (United States)

    Ahmed, Bilal; Javed, Tariq; Ali, N.

    2018-01-01

    This paper analyzes the MHD flow of micropolar fluid induced by peristaltic waves passing through the porous saturated channel at large Reynolds number. The flow model is formulated in the absence of assumptions of lubrication theory which yields the governing equations into a non-linear set of coupled partial differential equations which allows studying the peristaltic mechanism at non-zero Reynolds and wave numbers. The influence of other involved parameters on velocity, stream function and microrotation are discussed through graphs plotted by using Galerkin's finite element method. Besides that, the phenomena of pumping and trapping are also analyzed in the later part of the paper. To ensure the accuracy of the developed code, obtained results are compared with the results available in the literature and found in excellent agreement. It is found that the peristalsis mixing can be enhanced by increasing Hartmann number while it reduces by increasing permeability of the porous medium.

  13. Effect of low-level laser therapy on blood flow and oxygen- hemoglobin saturation of the foot skin in healthy subjects: a pilot study

    Science.gov (United States)

    Heu, Franziska; Forster, Clemens; Namer, Barbara; Dragu, Adrian; Lang, Werner

    2013-01-01

    Background and aims: This study on healthy test subjects intends to show whether one-off Low-Level Laser Therapy (LLLT) has an instant effect on the perfusion or the oxygenation of the skin tissue. These possible instant effects may have an influence on the accelerated wound healing which is often observed after application of LLLT, in addition to the usual postulated effects of LLLT which occur with a time delay normally. Study design/materials and methods: The study was carried out double-blind and placebo-controlled in two batches of testing. The test subjects received one-off LLLT on a defined area of the arch of the foot. Simultaneously a placebo treatment was carried out on the corresponding contralateral area. In the first batch of tests, the blood flow was measured immediately before and after treatment using thermography and LDI. In the second batch of tests, the blood flow and the oxygen saturation were determined immediately before and after the treatment using an O2C device. Results: No evidence that the LLLT has a significant instant effect on the circulation or the oxygen saturation could be found. Conclusion: No immediate effect of an LLLT on the perfusion or oxygenation situation is to be expected with physiologically normal starting conditions. An additional investigation should be carried out in which either the radiation dose is varied or the starting conditions are pathological (e.g. chronic wounds) in order to rule out immediate effects on circulation or oxygen saturation as the cause of the improved wound healing which is often observed. PMID:24155546

  14. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    Science.gov (United States)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-01-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Saturation Excess-Overland Flow, 2002

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average value of saturation overland flow, in percent of total streamflow, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Saturation Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory

    Science.gov (United States)

    Scudeler, Carlotta; Pangle, Luke; Pasetto, Damiano; Niu, Guo-Yue; Volkmann, Till; Paniconi, Claudio; Putti, Mario; Troch, Peter

    2016-10-01

    This paper explores the challenges of model parameterization and process representation when simulating multiple hydrologic responses from a highly controlled unsaturated flow and transport experiment with a physically based model. The experiment, conducted at the Landscape Evolution Observatory (LEO), involved alternate injections of water and deuterium-enriched water into an initially very dry hillslope. The multivariate observations included point measures of water content and tracer concentration in the soil, total storage within the hillslope, and integrated fluxes of water and tracer through the seepage face. The simulations were performed with a three-dimensional finite element model that solves the Richards and advection-dispersion equations. Integrated flow, integrated transport, distributed flow, and distributed transport responses were successively analyzed, with parameterization choices at each step supported by standard model performance metrics. In the first steps of our analysis, where seepage face flow, water storage, and average concentration at the seepage face were the target responses, an adequate match between measured and simulated variables was obtained using a simple parameterization consistent with that from a prior flow-only experiment at LEO. When passing to the distributed responses, it was necessary to introduce complexity to additional soil hydraulic parameters to obtain an adequate match for the point-scale flow response. This also improved the match against point measures of tracer concentration, although model performance here was considerably poorer. This suggests that still greater complexity is needed in the model parameterization, or that there may be gaps in process representation for simulating solute transport phenomena in very dry soils.

  17. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.

    Science.gov (United States)

    Godinez, Itzel G; Darnault, Christophe J G

    2011-01-01

    Transport of manufactured nano-TiO(2) in saturated porous media was investigated as a function of morphology characteristics, pH of solutions, flow velocity, and the presence of anionic and non-ionic surfactants in different concentrations. Surfactants enhanced the transport of nano-TiO(2) in saturated porous media while a pH approaching the point of zero charge of nano-TiO(2) limited their transport. The deposition process, a retention mechanism of nano-TiO(2) in saturated porous media was impacted by surfactant and pH. In Dispersion 1 systems (pH 7), the size of the nano-TiO(2) aggregates was directly related to the presence of surfactants. The presence of non-ionic surfactant (Triton X-100) induced a size reduction of nano-TiO(2) aggregates that was dependent on the critical micelle concentration. In Dispersion 2 systems (pH 9), the stability provided by the pH had a significant effect on the size of nano-TiO(2) aggregates; the addition of surfactants did impact the size of the nano-TiO(2) aggregates but in less significance as compared to Dispersion 1 systems. The electrostatic and steric repulsion forces in connection with the size of nano-TiO(2) aggregates and flow velocity impacted the single-collector efficiency and attachment efficiency which dictated the maximum transport distance of nano-TiO(2) for the Dispersion 1 and Dispersion 2 systems. By doubling the flow velocity at pH 9, the No Surfactant, 50% CMC Triton X-100, 100% CMC Triton X-100 and 100% CMC SDBS dispersion systems allowed nano-TiO(2) to attain maximum transport distances of 0.898, 2.17, 2.29 and 1.12 m, respectively. Secondary energy minima played a critical role in the deposition mechanisms of nano-TiO(2). Nano-TiO(2) deposited in the secondary energy wells may be released because of changes in solution chemistry. The deposition of nano-TiO(2) in primary and secondary energy minima, the reversibility of their deposition should be characterized to analyze the transport of nanoparticles in

  18. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    Science.gov (United States)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  19. Saturated Particle Transport in Porous Media: An Investigation into the Influence of Flow Direction and Particle Size Distribution

    Science.gov (United States)

    2015-06-28

    military and industrial operations. Contaminants can include PCBs, fuels, solvents, herbicides/pesticides, heavy metals, munitions materials, and...interpretation of laboratory or field experiments, and have led to the generation of a range of particle filtration and transport models that are thought...of flow direction and particle size distribution on particle filtration . To meet this objective, particle transport experiments were conducted in the

  20. Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium

    Directory of Open Access Journals (Sweden)

    Nor Athirah Mohd Zin

    Full Text Available In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs are dispersed in the Kerosene Oil (KO which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ, material parameters of Jeffrey fluid λ1, λ, rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Keywords: Jeffrey nanofluid, AgNPs, MHD and Porosity, Rotating flow, Laplace transform technique

  1. Analytical solution for tension-saturated and unsaturated flow from wicking porous pipes in subsurface irrigation: The Kornev-Philip legacies revisited

    Science.gov (United States)

    Kacimov, A. R.; Obnosov, Yu. V.

    2017-03-01

    The Russian engineer Kornev in his 1935 book raised perspectives of subsurface "negative pressure" irrigation, which have been overlooked in modern soil science. Kornev's autoirrigation utilizes wicking of a vacuumed water from a porous pipe into a dry adjacent soil. We link Kornev's technology with a slightly modified Philip (1984)'s analytical solutions for unsaturated flow from a 2-D cylindrical pipe in an infinite domain. Two Darcian flows are considered and connected through continuity of pressure along the pipe-soil contact. The first fragment is a thin porous pipe wall in which water seeps at tension saturation; the hydraulic head is a harmonic function varying purely radially across the wall. The Thiem solution in this fragment gives the boundary condition for azimuthally varying suction pressure in the second fragment, ambient soil, making the exterior of the pipe. The constant head, rather than Philip's isobaricity boundary condition, along the external wall slightly modifies Philip's formulae for the Kirchhoff potential and pressure head in the soil fragment. Flow characteristics (magnitudes of the Darcian velocity, total flow rate, and flow net) are explicitly expressed through series of Macdonald's functions. For a given pipe's external diameter, wall thickness, position of the pipe above a free water datum in the supply tank, saturated conductivities of the wall and soil, and soil's sorptive number, a nonlinear equation with respect to the total discharge from the pipe is obtained and solved by a computer algebra routine. Efficiency of irrigation is evaluated by computation of the moisture content within selected zones surrounding the porous pipe.Plain Language SummarySubsurface irrigation by "automatic" gadgets like pitchers or porous pipes is a water saving technology which minimizes evaporative losses and deep percolation. Moisture is emitted by capillary suction of a relatively dry soil and "thirsty" roots just in "right quantities", spontaneously

  2. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth.

    Science.gov (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran

    2017-06-01

    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determining of the Parking Manoeuvre and the Taxi Blockage Adjustment Factor for the Saturation Flow Rate at the Outlet Legs of Signalized Intersections: Case Study from Rasht City (Iran)

    Science.gov (United States)

    Behbahani, Hamid; Jahangir Samet, Mehdi; Najafi Moghaddam Gilani, Vahid; Amini, Amir

    2017-10-01

    The presence of taxi stops within the area of signalized intersections at the outlet legs due to unnatural behaviour of the taxis, sudden change of lanes, parking manoeuvres activities and stopping the vehicle to discharge or pick up the passengers have led to reduction of saturation flow rate at the outlet leg of signalized intersections and increased delay as well as affecting the performance of a crossing lane. So far, in term of evaluating effective adjustment factors on saturation flow rate at the inlet legs of the signalized intersections, various studies have been carried out, however; there has not been any studies on effective adjustment factors on saturation flow rate at the inlet legs. Hence, the evaluating of the traffic effects of unique behaviours on the saturation flow rate of the outlet leg is very important. In this research the parking manoeuvre time and taxi blockage time were evaluated and analyzed based on the available lane width as well as determining the effective adjustment factors on the saturation flow rate using recording related data at four signalized intersections in Rasht city. The results show that the average parking manoeuvre time is a function of the lane width and is increased as the lane width is reduced. Also, it is suggested to use the values of 7.37 and 11.31 seconds, respectively for the average parking manoeuvre time and the average blockage time of taxies at the outlet legs of signalized intersections for the traffic designing in Rasht city.

  4. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    Energy Technology Data Exchange (ETDEWEB)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  5. Impact of water flow conditions on the fate of ammonium and nitrate at the interface of the unsaturated and saturated zone

    Science.gov (United States)

    Glöckler, David; Gassen, Niklas; Stumpp, Christine

    2017-04-01

    Elevated nitrate concentrations in groundwater have caused severe environmental issues in the last decades. Mitigation strategies need to be developed to reduce the amount of nitrate without reducing crop yield though. Therefore, we need to understand nitrogen turnover processes and how they are influenced by hydrogeochemical conditions in the unsaturated and saturated zone. The objective of this study was to investigate the influence of flow conditions on transport processes and the fate of ammonium and nitrate released from slurry application. Experiments were conducted under controlled conditions in an aquifer model setup (1.1 x 0.6 x 0.2 m3). A diluted slurry mix was injected continuously. The inorganic nitrogen compounds were traced under different water regimes regarding recharge rates and water table position (steady-state, transient and stagnant flow conditions). Conservative tracers and mathematical modeling were used to identify water flow and transport. Spatiotemporal changes of dissolved oxygen, ammonium, nitrite, nitrate, dissolved organic carbon and matrix potential were identified through high resolution monitoring (0.05 m). The ecosystem immediately responded to the slurry application with enhanced microbial respiration and the first step of nitrification converting ammonium to nitrite. This process was dominating during the first ten days of the experiment. A complete nitrification was established after 20 days resulting in increasing nitrate concentrations. Less nitrate was measured below the water table during steady state flow conditions in contrast to transient conditions with a fluctuating water table which seemed to inhibit denitrification. Still denitrification was not the dominating process despite high concentration of dissolved organic carbon (4-20 mg/L). Even under stagnant flow conditions, nitrate stayed in the system and denitrification was limited. Anoxic conditions were not established due to the low bioavailability of the dissolved

  6. Analysis of heavy oils flows in saturated rocks; Analyse des ecoulements d'huiles lourdes dans les roches saturees

    Energy Technology Data Exchange (ETDEWEB)

    Luc Dormieux; Denis Garnier [Ecole Nationale des Ponts et Chaussees, 6 et 8 avenue Blaise Pascal Cite Descartes - Champs/Marne, 77455 Marne la Vallee Cedex 2, (France); Thierry Yalamas; Elisabeth Bemer; Jean-Francois Nauroy [Institut Francais du Petrole 1 et 4 avenue de Bois-Preau, 92852 Rueil-Malmaison Cedex, (France)

    2005-07-01

    In heavy oil reservoirs, the fluid is a viscous material, possibly nonlinear. In order to describe the flow of such oils in the rock, an extension of Darcy law to non Newtonian fluids is presented. Besides, oil production in this type of reservoir is responsible for rock erosion and the formation of a paste (slurry) made up of a mixture of oil and sand grains is observed. Based on a non linear homogenization technique, a modelling of the constitutive behavior of this slurry is proposed. (authors)

  7. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    Science.gov (United States)

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  8. Head growth in fetuses with isolated congenital heart defects: lack of influence of aortic arch flow and ascending aorta oxygen saturation.

    Science.gov (United States)

    Jansen, F A R; van Zwet, E W; Rijlaarsdam, M E B; Pajkrt, E; van Velzen, C L; Zuurveen, H R; Kragt, A; Bax, C L; Clur, S-A B; van Lith, J M M; Blom, N A; Haak, M C

    2016-09-01

    Congenital heart defects (CHDs) are reported to be associated with a smaller fetal head circumference (HC) and neurodevelopmental delay. Recent studies suggest that altered intrauterine brain hemodynamics may explain these findings. Our objectives were to evaluate the pattern of head growth in a large cohort of fetuses with various types of CHD, analyze these patterns according to the type of CHD and estimate the effect of cerebral hemodynamics with advancing gestation in the second and third trimesters. Singleton fetuses with an isolated CHD were selected from three fetal medicine units (n = 436). Cases with placental insufficiency or genetic syndromes were excluded. CHD types were clustered according to the flow and oxygen saturation in the aorta. Z-scores of biometric data were constructed using growth charts of a normal population. HC at different gestational ages was evaluated and univariate and multivariate mixed regression analyses were performed to examine the patterns of prenatal HC growth. Fetuses with severe and less severe types of CHD demonstrated statistically significant HC growth restriction with increasing gestational age (slope of -0.017/day); however, there was no statistically significant effect of fetal hemodynamics on HC growth. Fetuses with CHD but normal brain oxygenation and normal aortic flow showed a significant decrease in HC growth (slope of -0.024/day). Only fetuses with isolated tetralogy of Fallot demonstrated a smaller HC z-score at 20 weeks of gestation (-0.67 (95% CI, -1.16 to -0.18)). Despite the decline in head growth in fetuses with a prenatally detected isolated CHD, HC values were within the normal range, raising the question of its clinical significance. Furthermore, in contrast to other studies, this large cohort did not establish a significant correlation between aortic flow or oxygen saturation and HC growth. Factors other than altered fetal cerebral hemodynamics may contribute to HC growth restriction with increasing

  9. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.

    Science.gov (United States)

    Hou, Jun; Zhang, Mingzhi; Wang, Peifang; Wang, Chao; Miao, Lingzhan; Xu, Yi; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Liu, Zhilin

    2017-12-15

    This study investigated the transport and long-term release of stabilized poly vinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) in a quartz sand column with various sand grain sizes (0.3-0.5 μm, 0.5-1.0 μm, 1.0-2.0 μm), input concentrations of PVP-AgNP solution (1, 5, 15, 25 mg/L), and flow rates corresponding to a filter velocities (1.0, 1.5, 2.0, 2.5 mL/min-0.14, 0.21, 0.28, 0.35 cm/min) by determining breakthrough curves, retention profiles, and long-term release curves. Breakthrough curves and retention profiles were simulated by a mathematical model based on the advection dispersion equation coupled with second-order kinetics. The increased transport of PVP-AgNPs in quartz sand occurred with increased grain sizes and reduced input concentrations, and the transport can be predicted by the colloid filtration theory and DLVO theory. The long-term (one week) release amounts of retained PVP-AgNPs were 42.78%, 31.45%, and 10.95% in the fine, medium, and coarse sand columns, respectively, and were 34.70%, 40.79%, 47.24%, and 57.32% at flow rates of 0.0363, 0.0436, 0.0545, and 0.0726 mL/min, respectively. The released quantity of retained PVP-AgNPs decreased as the sand grain size increased. This phenomenon is opposite with the trend of increased transport of PVP-AgNPs with increased grain size in the transport test, which most likely because colloidal filtration regulates the transport process and adsorption (and desorption) dominates the release process. Increasing the flow rate increased the shear force on the particles, which improved the release of PVP-AgNPs. The results of the release tests further verified our previous published studies showing that the long-term release of retained PVP-AgNPs in the quartz sand was mostly in the form of released nanoparticles rather than ions. The results of this study indicated that sand grain size, input concentration, and flow rate have a prominent influence on the transport and long-term release behavior of

  10. FECWATER: user's manual of a Finite-Element Code for simulating WATER flow through saturated-unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Strand, R.H.

    1982-08-01

    This report presents the user's manual of FECWATER, a Finite-Element code for simulating WATER flow through saturated-unsaturated porous media. The code is designed for generic application. For each site-specific application, 14 cards are required to specify the size of arrays and 6 cards are used to assign the control numbers in the main program. In addition, user's supply functions must be given to specify the soil property relationships between moisture content, water capacity, and hydraulic conductivity and pressure head, if they are not given in tabular form. Input data to the code includes the program control indices, properties of the porous media, the geometry in the form of elements and nodes, boundary and initial conditions, and rainfall information. Principal output includes the spatial distribution of pressure head, total head, moisture-content, and Darcy's velocity components at any desired time. Fluxes through various types of boundaries are output. In addition, diagnostic variables, such as the number of non-convergent nodes, residuals, and rainfall-seepage nodes, may be printed, if required. This user's manual should be used in conjunction with references listed in the bibliography.

  11. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    Science.gov (United States)

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of slip condition and Newtonian heating on MHD flow of Casson fluid over a nonlinearly stretching sheet saturated in a porous medium

    Directory of Open Access Journals (Sweden)

    Imran Ullah

    2017-04-01

    Full Text Available The effect of slip condition on MHD free convective flow of non-Newtonian fluid over a nonlinearly stretching sheet saturated in porous medium with Newtonian heating is analyzed. The governing nonlinear coupled partial differential equations with auxiliary conditions are transformed into the system of coupled ordinary differential equations via similarity transformations and then solved numerically using Keller-box method. The results for skin friction coefficient and the reduced Nusselt number are obtained and compared with previous results in the literature and are found to be in excellent agreement. Results show that the slip parameter reduces the velocity of Casson fluid and enhances the shear stress. It is also observed that slip effect is more pronounced on temperature profile in comparison with velocity profile. It is also seen that velocity and dimensionless temperature are increasing functions of Newtonian heating parameter. Further, temperature gradient is an increasing function of thermal buoyancy parameter and Newtonian heating parameter whereas a decreasing function of porosity parameter and nonlinear stretching sheet parameter.

  13. Experimental studies on the enhanced flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in vertical porous coated tube

    Science.gov (United States)

    Yang, Dong; Shen, Zhi; Chen, Tingkuan; Zhou, Chenn Q.

    2013-07-01

    The characteristics of flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in a vertical porous coated tube are experimentally studied in this paper. The experiments are performed at evaporation pressure of 0.16-0.31MPa, mass flux of 390-790kg/m2s, and vapor quality of 0.06-0.58. The variations of heat transfer coefficient and pressure drop with vapor quality are measured and compared to the results of smooth tube. Boiling curves are generated at mass flux of 482 and 675kg/m2s. The experimental results indicate that the heat transfer coefficients of the porous tube are 1.8-3.5 times those of smooth tube, and that the frictional pressure drops of the porous tube are 1.1-2.9 times those of smooth tube. The correlations for heat transfer coefficient and frictional pressure drop are derived, in which the effect of fluid molecular weight is included. The experiments show that significant heat transfer enhancement is accompanied by a little pressure drop penalty, the application of the porous coated tube is promising in the process industries.

  14. Facts about saturated fats

    Science.gov (United States)

    ... fat diary with low-fat or nonfat milk, yogurt, and cheese. Eat more fruits, vegetables, whole grains, and other foods with low or no saturated fat. Alternative Names Cholesterol - saturated fat; Atherosclerosis - saturated fat; Hardening of the ...

  15. Saturated fat (image)

    Science.gov (United States)

    Saturated fat can raise blood cholesterol and can put you at risk for heart disease and stroke. You should ... limit any foods that are high in saturated fat. Sources of saturated fat include whole-milk dairy ...

  16. Two-phase flows during a discharge of liquefied gases, initially at saturation. Effect of the nature of the fluid; Ecoulements diphasiques lors de la vidange de gaz liquefies initialement a saturation. Influence de la nature du fluide

    Energy Technology Data Exchange (ETDEWEB)

    Alix, P.

    1997-10-03

    In the case of a confinement loss (breakage of a connection piece) on a pressurized liquefied gas tank, a critical two-phase (liquid-vapour) flow is generated. This thesis is aimed at the validation of models describing these flows with various fluids (water, R 11, methanol, ethyl acetate, pure butane, commercial butane), using a pilot experimental plant. Results show that reduced upstream pressure is the main parameter, thus indicating that a model can be validated using minimal fluids. The homogenous models DEM and HRM appear to be more precise

  17. Migration of Chemotactic Bacteria Transverse to Flow in Response to a Benzoate Source Plume Created in a Saturated Sand-Packed Microcosm

    Science.gov (United States)

    Ford, R.; Boser, B.

    2012-12-01

    Bioremediation processes depend on contact between microbial populations and the groundwater contaminants that they biodegrade. Chemotaxis, the ability of bacteria to sense a chemical gradient and swim preferentially toward locations of higher concentration, can enhance the transport of bacteria toward contaminant sources that may not be readily accessible by advection and dispersion alone. A two-dimensional rectangular-shaped microcosm packed with quartz sand was used to quantify the effect of chemotaxis on the migration of bacteria within a saturated model aquifer system. Artificial groundwater was pumped through the microcosm at a rate of approximately 1 m/day. A plume of sodium benzoate was created by continuous injection into an upper port of the microcosm to generate a chemical gradient in the vertical direction transverse to flow. Chemotactic bacteria, Pseudomonas putida F1, or the nonchemotactic mutant, P. putida F1 CheA, were injected with a conservative tracer in a port several centimeters below the benzoate position. As the injectates traversed the one-meter length of the microcosm, samples were collected from a dozen effluent ports to determine vertical concentration distributions for the bacteria, benzoate and tracer. A moment analysis was implemented to estimate the center of mass, variance, and skewness of the concentration profiles. The transverse dispersion coefficient and the transverse dispersivity for chemotactic and nonchemotactic bacteria were also evaluated. Experiments performed with a continuous injection of bacteria showed that the center of mass for chemotactic bacteria was closer to the benzoate source on average than the nonchemotactic control (relative to the conservative tracer). These results demonstrated that chemotaxis can increase bacterial transport toward contaminants, potentially enhancing the effectiveness of in situ bioremediation. Experiments with 2 cm and 3 cm spacing between bacteria and benzoate injection locations were

  18. Two-phase flows during draining of liquefied gases initially undersaturated. Validation by water and CFC11; Ecoulements diphasiques lors de la vidange de gaz liquifies initialement sous satures. Validation par l`eau et le CFC11

    Energy Technology Data Exchange (ETDEWEB)

    May, L.

    1996-12-11

    In petroleum industry, the safety studies require to estimate the two-phase flow during accidental draining of pressurized liquefied gas storages. Meanwhile the mass flow strongly depends of initial conditions. Then it is primordial to be able to reckon it in the case where it is the highest, that is to say when the fluid is initially undersaturated. An experimental installation has been carried out. The used fluids are water and CFC11. The experimental measures show that the thermodynamic conditions at the inlet of the pipe (P at +/- 15 mbar and T at +/- 0.15 degrees Celsius) are well controlled. The measured mass flows are compared to different models. The frictions in the monophase domain have been taken into account. It has been shown that the extensive H.E.M. model perfectly estimates the mass flow (as well as for water than for CFC11) for large deviations to saturation. In order to correctly predict the domain of weak variation to saturation, D.E.M. (out of equilibrium) models or H.R.M. (homogeneous model of relaxation) models have to be used. (O.M.) 50 refs.

  19. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, D.; Simunek, J.

    2010-01-15

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  20. Nonmonotone Saturation Profiles for Hydrostatic Equilibrium in Homogeneous Porous Media

    NARCIS (Netherlands)

    Hilfer, R.; Doster, F.; Zegeling, P.A.|info:eu-repo/dai/nl/073634433

    2012-01-01

    Nonmonotonic saturation profiles (saturation overshoot) occur as travelling waves in gravity driven fingering. They seem important for preferential flow mechanisms and have found much attention recently. Here, we predict them even for hydrostatic equilibrium when all velocities vanish. We suggest

  1. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically- reactive single-species solute transport

    Science.gov (United States)

    Voss, C.I.

    1984-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program which can be used to simulate the movement of fluid and the transport of either energy or dissolved substances in a subsurface environment. The model employs a two-dimensional hybrid finite-element and integrated-finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated by SUTRA: (1) fluid density-dependent saturated or unsaturated groundwater flow, and either (2a) transport of a solute in the groundwater, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay, or, (2b) transport of thermal energy in the groundwater and solid matrix of the aquifer. SUTRA provides, as the primary calculated results, fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA may also be used to simulate simpler subsets of the above process. SUTRA may be employed for areal and cross-sectional models of saturated groundwater flow systems, and for cross-sectional models of unsaturated zone flow. Solute transport simulation using SUTRA may be used to simulate natural or man-induced chemical transport, solute sorption, production and decay. SUTRA may be used for simulation of variable density leachate movement, and for cross-sectional simulation of salt-water intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between fresh water and salt water. SUTRA energy transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. (USGS)

  2. Ensemble kalman filtering to perform data assimilation with soil water content probes and pedotransfer functions in modeling water flow in variably saturated soils

    Science.gov (United States)

    Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...

  3. Experimental Study on Hydrate Induction Time of Gas-Saturated Water-in-Oil Emulsion using a High-Pressure Flow Loop

    Directory of Open Access Journals (Sweden)

    Lv X.F.

    2015-11-01

    Full Text Available Hydrate is one of the critical precipitates which have to be controlled for subsea flow assurance. The induction time of hydrate is therefore a significant parameter. However, there have been few studies on the induction time of the natural gas hydrate formation in a flow loop system. Consequently, a series of experiments were firstly performed, including water, natural gas and Diesel oil, on the hydrate induction time under various conditions such as the supercooling and supersaturation degree, water cut, anti-agglomerant dosage, etc. The experiments were conducted in a high-pressure hydrate flow loop newly constructed in the China University of Petroleum (Beijing, and dedicated to flow assurance studies. Then, based on previous research, this study puts forward a method for induction time, which is characterized by clear definition, convenient measurement and good generality. Furthermore, we investigated the influences of the experimental parameters and analyzed the experimental phenomena for the hydrate induction time in a flowing system.

  4. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  5. Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends : Laboratory experiments, analysis, and modeling

    NARCIS (Netherlands)

    Blanckaert, K.J.F.

    2009-01-01

    The paper investigates the influence of relative bend curvature on secondary flow, energy losses, and turbulence in sharp open-channel bends. These processes are important in natural streams with respect to sediment transport, the bathymetry and planimetry, mixing and spreading of pollutants, heat,

  6. Potential effects of sea-level rise on the depth to saturated sediments of the Sagamore and Monomoy flow lenses on Cape Cod, Massachusetts

    Science.gov (United States)

    Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.

    2016-05-25

    In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea

  7. Experimental study on cavity flow natural convection in porous medium, saturated with an Al(sub2)0(sub3) 60% EG-40% water nanofluid

    CSIR Research Space (South Africa)

    Grobler, Carla

    2015-07-01

    Full Text Available stream_source_info Grobler_2015.pdf.txt stream_content_type text/plain stream_size 23883 Content-Encoding UTF-8 stream_name Grobler_2015.pdf.txt Content-Type text/plain; charset=UTF-8 EXPERIMENTAL STUDY ON CAVITY FLOW.... THEORY Analytical Prediction for Heat Transfer Different heat transfer regimes have been defined for nat- ural convection in a 2D porous rectangular cavity which is heated from the sides. Figure 1 shows under which circum- stances each of these heat...

  8. Transition to Turbulent Dynamo Saturation

    Science.gov (United States)

    Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros

    2017-11-01

    While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2 ×10-5. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm ≃10-3 , which explains why it has been overlooked by numerical studies so far.

  9. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass

  10. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  11. Determination of saturated and unsaturated hydraulic conductivity ...

    African Journals Online (AJOL)

    The estimation of hydraulic conductivity indicates how fluids flow through a substance and thus determine the water balance in the soil profile. In determining the saturated and unsaturated hydraulic conductivity of soil, five plots of 5.0 x 4.0 m were prepared with a PVC access tube installed in each plot. The plots were ...

  12. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    Science.gov (United States)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R2 = 0.64, p infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R2 = 0.71, 0.50, 0.65; p infrared spectroscopy and T2-prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  13. Venous oxygen saturation.

    Science.gov (United States)

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Metamaterial saturable absorber mirror.

    Science.gov (United States)

    Dayal, Govind; Ramakrishna, S Anantha

    2013-02-01

    We propose a metamaterial saturable absorber mirror at midinfrared wavelengths that can show a saturation of absorption with intensity of incident light and switch to a reflecting state. The design consists of an array of circular metallic disks separated by a thin film of vanadium dioxide (VO(2)) from a continuous metallic film. The heating due to the absorption in the absorptive state causes the VO(2) to transit to a metallic phase from the low temperature insulating phase. The metamaterial switches from an absorptive state (R≃0.1%) to a reflective state (R>95%) for a specific threshold intensity of the incident radiation corresponding to the phase transition of VO(2), resulting in the saturation of absorption in the metamaterial. The computer simulations show over 99.9% peak absorbance, a resonant bandwidth of about 0.8 μm at 10.22 μm wavelengths, and saturation intensity of 140 mW cm(-2) for undoped VO(2) at room temperature. We also carried out numerical simulations to investigate the effects of localized heating and temperature distribution by solving the heat diffusion problem.

  15. Quantitative 1D saturation profiles on chalk by NMR

    DEFF Research Database (Denmark)

    Olsen, Dan; Topp, Simon; Stensgaard, Anders

    1996-01-01

    Quantitative one-dimensional saturation profiles showing the distribution of water and oil in chalk core samples are calculated from NMR measurements utilizing a 1D CSI spectroscopy pulse sequence. Saturation profiles may be acquired under conditions of fluid flow through the sample. Results reveal...... that strong saturation gradients exist in chalk core samples after core floods, due to capillary effects. The method is useful in analysis of corefloods, e.g., for determination of capillary pressure functions...

  16. Long-term effects of weight loss with a very-low carbohydrate, low saturated fat diet on flow mediated dilatation in patients with type 2 diabetes: A randomised controlled trial.

    Science.gov (United States)

    Wycherley, Thomas P; Thompson, Campbell H; Buckley, Jonathan D; Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Brinkworth, Grant D

    2016-09-01

    Very-low carbohydrate diets can improve glycaemic control in patients with type 2 diabetes (T2DM). However, compared to traditional higher carbohydrate, low fat (HighCHO) diets, they have been associated with impaired endothelial function (measured by flow mediated dilatation [FMD]) that is possibly related to saturated fat. This study aimed to examine the effects of a 12-month hypocaloric very-low carbohydrate, low saturated fat (LowCHO) diet compared to an isocaloric HighCHO diet. One hundred and fifteen obese patients with T2DM (age:58.4 ± 0.7 [SEM] yr, BMI:34.6 ± 0.4 kg/m(2), HbA1c:7.33 [56.3 mmol/mol] ± 0.10%) were randomised to consume an energy restricted LowCHO diet (Carb:Pro:Fat:Sat-Fat 14:28:58: < 10% energy; n = 58) or isocaloric HighCHO diet (53:17:30: < 10%; n = 57) whilst undertaking exercise (60 min, 3/wk). Bodyweight, HbA1c and FMD were assessed. Seventy eight participants completed the intervention (LowCHO = 41, HighCHO = 37). Both groups experienced similar reductions in weight and HbA1c (-10.6 ± 0.7 kg, -1.05 ± 0.10%; p < 0.001 time, p ≥ 0.48 time × diet). FMD did not change (p = 0.11 time, p = 0.20 time × diet). In patients with obesity and T2DM, HighCHO diet and LowCHO diet have similar effects on endothelial function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Saturated and trans fats

    National Research Council Canada - National Science Library

    Shader, Richard I

    2014-01-01

    ... Original Pancake Mix plus ingredients suggested by the recipe: 2 g saturated fat (SF) and no trans fatty acids or trans fat (TFA); bacon, Oscar Mayer Lower Sodium Bacon: 2.5 g SF and no TFA; sausages, Jimmy Dean Original Pork Sausage Links: 8 g SF and no TFA; potatoes, Ore-Ida Mini Tater Tots: 2 g SF and no TFA; and nondairy creamer, Nestlé Coffee-...

  18. Saturation in nuclei

    CERN Document Server

    Lappi, T

    2010-01-01

    This talk discusses some recent studies of gluon saturation in nuclei. We stress the connection between the initial condition in heavy ion collisions and observables in deep inelastic scattering (DIS). The dominant degree of freedom in the small x nuclear wavefunction is a nonperturbatively strong classical gluon field, which determines the initial condition for the glasma fields in the initial stages of a heavy ion collision. A correlator of Wilson lines from the same classical fields, known as the dipole cross section, can be used to compute many inclusive and exclusive observables in DIS.

  19. Femoral venous oxygen saturation and central venous oxygen saturation in critically ill patients.

    Science.gov (United States)

    Zhang, Xiaohong; Wang, Jiandong; Dong, Yun; Chen, Youdai

    2015-08-01

    To investigate the relationship between central venous oxygen saturation (ScvO(2)) and femoral venous oxygen saturation (SfvO(2)) in a large group of critically ill patients. Observational study. A group of unselected critically ill patients with central line placed into superior vena cava were included. A 26-bed intensive care unit in a tertiary referral hospital. None. Venous blood samples of superior vena cava and femoral vein were collected within an interval of 5 to 15 minutes and analyzed with blood gas/electrolyte analyzer immediately. Although SfvO(2) was significantly correlated with ScvO(2) (r = 0.493, P 731 pairs of blood samples collected from 357 patients. The fit line of scatter diagram ScvO(2) vs SfvO(2) had a large intercept (48.68%) and a low slope (0.2978); ScvO(2) was still around 50% while SfvO(2) was nearing 0%. The distribution of blood flow, measured with Doppler ultrasound, had a similar trend in 237 patients and 412 measurements. The ratio of femoral artery flow over common carotid artery flow varied widely (from 0 to 7.13). Blood flow was not distributed in a fixed ratio to the superior vena cava-drained organs and tissues. Central venous oxygen saturation was not representative of the whole systemic circulation in critically ill patients. Central venous oxygen saturation alone might be misleading in goal-directed therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Flow

    DEFF Research Database (Denmark)

    2009-01-01

    Flow er en positiv, koncentreret tilstand, hvor al opmærksomhed er samlet om en bestemt aktivitet, som er så krævende og engagerende, at man må anvende mange mentale ressourcer for at klare den. Tidsfornemmelsen forsvinder, og man glemmer sig selv. 'Flow' er den første af en række udsendelser om...

  1. Saturated Zone In-Situ Testing

    Energy Technology Data Exchange (ETDEWEB)

    P. W. Reimus; M. J. Umari

    2003-12-23

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  2. The distribution of saturated clusters in wetted granular materials

    Science.gov (United States)

    Li, Shuoqi; Hanaor, Dorian; Gan, Yixiang

    2017-06-01

    The hydro-mechanical behaviour of partially saturated granular materials is greatly influenced by the spatial and temporal distribution of liquid within the media. The aim of this paper is to characterise the distribution of saturated clusters in granular materials using an optical imaging method under different water drainage conditions. A saturated cluster is formed when a liquid phase fully occupies the pore space between solid grains in a localized region. The samples considered here were prepared by vibrating mono-sized glass beads to form closely packed assemblies in a rectangular container. A range of drainage conditions were applied to the specimen by tilting the container and employing different flow rates, and the liquid pressure was recorded at different positions in the experimental cell. The formation of saturated clusters during the liquid withdrawal processes is governed by three competing mechanisms arising from viscous, capillary, and gravitational forces. When the flow rate is sufficiently large and the gravity component is sufficiently small, the viscous force tends to destabilize the liquid front leading to the formation of narrow fingers of saturated material. As the water channels along these liquid fingers break, saturated clusters are formed inside the specimen. Subsequently, a spatial and temporal distribution of saturated clusters can be observed. We investigated the resulting saturated cluster distribution as a function of flow rate and gravity to achieve a fundamental understanding of the formation and evolution of such clusters in partially saturated granular materials. This study serves as a bridge between pore-scale behavior and the overall hydro-mechanical characteristics in partially saturated soils.

  3. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  4. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  5. [Monitoring of jugular venous oxygen saturation].

    Science.gov (United States)

    Nakamura, Shunsuke

    2011-04-01

    The continuous monitoring of jugular venous oxygen saturation(SjO2) has become a practical method for monitoring global cerebral oxygenation and metabolism. SjO2 reflects the balance between the cerebral blood flow and the cerebral metabolic rate for oxygen (CMRO2), if arterial oxyhemoglobin saturation, hemoglobin concentration remain constant. Normal SjO2 values range between 55% and 75%. Low SjO2 indicates cerebral hypoperfusion or ischemia. Conversely, an increased SjO2 indicates either cerebral hyperemia or a disorder that decreases CMRO2. In minimizing secondary brain damage following resuscitation from cardiopulmonary arrest, SjO2 monitoring is thus considered to be an integral part of multimodality monitoring and can provide important information for the management of patients in neurointensive care.

  6. Nonlinear saturation of Weibel-type instabilities

    Science.gov (United States)

    Srinivasan, Bhuvana; Cagas, Petr; Hakim, Ammar

    2017-10-01

    Weibel-type instabilities, which grow in plasmas with anisotropic velocity distribution, have been studied for many years and drawn recent interest due to their broad applicability spanning from laboratory laser plasmas to origins of intergalactic magnetic fields in astrophysical plasmas. Magnetic particle trapping has been considered as the main mechanism of the nonlinear saturation of these instabilities. However, novel continuum kinetic and two-fluid five moment simulations show that there are additional effects - the transverse flow introduced by the magnetic field creates a secondary electrostatic two-stream instability which alters the saturation and is responsible for a quasi-periodic behavior in the nonlinear phase. This research was supported by the Air Force Office of Scientific Research under Grant Number FA9550-15-1-0193.

  7. Stochastic Modeling of Macrodispersion in Variably Saturated, Spatially Heterogeneous Formations

    Science.gov (United States)

    Russo, David

    2015-04-01

    The macrodispersion tensor, D, plays an important role in solute transport on the field scale. A key problem is how to relate D to the properties of the spatially heterogeneous formation. Under unsaturated flow conditions, the problem is further complicated inasmuch as the relevant flow parameters, the hydraulic conductivity and the water capacity, which depend on the formation properties, depend also on flow-controlled attributes in a highly nonlinear fashion. Consequently, under variably saturated conditions, quantification of D requires several simplifying assumptions regarding the constitutive relationships for unsaturated flow, the flow regime, and the spatial structure of the formation heterogeneity. The present talk focuses on the quantification of D in a variably saturated, spatially heterogeneous formation, accomplished by using a two-stage approach. The approach combines a stochastic, continuum description of a steady-state unsaturated flow, based on small-perturbation, first-order approximation of Darcy's law and the continuity equation for unsaturated flow, with a general Lagrangian description of the motion of an indivisible particle of a passive solute that is carried by the steady-state flow. The resultant, time-dependent D depends on the covariances of the water saturation and the components of the water flux vector, and their cross-covariances, which, in turn, depend on the (cross-)covariances of the relevant formation properties and the pressure head. The effect of few characteristics of the spatially heterogeneous, variably saturated flow system, on D is analyzed and discussed. Main findings reveal that under variably saturated flow conditions, the travel distance required for the principal components of D to approach their asymptotic values may be exceedingly large, particularly in relatively wet formations with significant stratification and with coarse-textured soil material associated with small capillary forces. Hence, in many practical

  8. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann

    1999-01-01

    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  9. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  10. Saturation current spikes eliminated in saturable core transformers

    Science.gov (United States)

    Schwarz, F. C.

    1971-01-01

    Unsaturating composite magnetic core transformer, consisting of two separate parallel cores designed so impending core saturation causes signal generation, terminates high current spike in converter primary circuit. Simplified waveform, demonstrates transformer effectiveness in eliminating current spikes.

  11. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  12. SITE-SCALE SATURATED ZONE TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    S. KELLER

    2004-11-03

    This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical

  13. GEOCENTRIFUGE STUDIES OF FLOW AND TRANSPORT IN POROUS MEDIA, FINAL REPORT FOR GRANT NUMBER DE-FG02-03ER63567 TO THE UNIVERSITY OF IDAHO (RW SMITH), ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 86598, COUPLED FLOW AND REACTIVITY IN VARIABLY SATURATED POROUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Smith; Carl D. Palmer; Earl D. Mattson

    2007-06-15

    Improved models of contaminant migration in heterogeneous, variably saturated porous media are required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose-zone barriers to contaminant migrations. The development of these improved models requires field and laboratory results to evaluate their efficacy. However, controlled laboratory experiments simulating vadose conditions can require extensive period of time, and often are conducted at condition near saturation rather than the much drier conditions common in many contaminated arid vadose zone sites. Collaborative research undertaken by the Idaho National Laboratory (INL) and the University of Idaho as part of this Environmental Management Science Program project focused on the development and evaluation of geocentrifuge techniques and equipment that allows vadose zone experiments to be conducted for relevant conditions in time frames not possible in conventional bench top experiments. A key and novel aspect of the research was the use of the 2-meter radius geocentrifuge capabilities at the Idaho National Laboratory to conduct unsaturated transport experiments. Specifically, the following activities were conducted ** Reviewing of the theory of unsaturated flow in the geocentrifuge to establish the range of centrifuge accelerations/experimental conditions and the translation of centrifuge results to 1 gravity applications. ** Designing, constructing, and testing of in-flight experimental apparatus allowing the replication of traditional bench top unsaturated transport experiments on the geocentrifuge. ** Performing unsaturated 1-dimenstional column geocentrifuge experiments using conservative tracers to evaluate the effects of increased centrifugal acceleration on derived transport properties and assessing the scaling relationships for these properties. Because the application of geocentrifuge techniques to vadose transport

  14. Theory of graphene saturable absorption

    Science.gov (United States)

    Marini, A.; Cox, J. D.; García de Abajo, F. J.

    2017-03-01

    Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic devices, as well as for applications in mode-locking and random lasers.

  15. Evaluation of the Performance of Grouting Materials for Saturated Riprap

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2013-12-01

    Full Text Available In this study, four types of grout were developed to evaluate the effect of grouting of saturated riprap layers on ground water flow. The developed types of grout are divided into a quick-setting type and a general-type, and also into high and low viscosities. A number of grout tests were performed in a model acrylic chamber, 0.4 m in diameter and 2.0 m in length, for visual observation of injection. To reproduce the field flow condition of the saturated riprap layers (approach flow, the grout tests were carried out at 0 cm/s and 100 cm/s for the flow speed and 10 L/min for the grout injection speed after installing a flow injection opening on the lower part of the chamber. Based on the results of the grout tests, the injection of each grout in the saturated riprap layers was examined to find out the most effective grout.

  16. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...... are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using...

  17. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  18. Slow light in saturable absorbers

    OpenAIRE

    Macke, Bruno; Ségard, Bernard

    2008-01-01

    International audience; In connection with the experiments recently achieved on doped crystals, biological samples, doped optical fibers and semiconductor heterostructures, we revisit the theory of the propagation of a pulse-modulated light in a saturable absorber. Explicit analytical expressions of the transmitted pulse are obtained, enabling us to determine the parameters optimizing the time-delay of the transmitted pulse with respect to the incident pulse. We finally compare the maximum fr...

  19. Saturation of Van Allen's belts

    CERN Document Server

    Le Bel, E

    2002-01-01

    The maximum number of electrons that can be trapped in van Allen's belts has been evaluated at CEA-DAM more precisely than that commonly used in the space community. The modelization that we have developed allows to understand the disagreement (factor 50) observed between the measured and predicted electrons flux by US satellites and theory. This saturation level allows sizing-up of the protection on a satellite in case of energetic events. (authors)

  20. Saturation Concentrations of Suspended Fine Sediment : Computations with the Prandtl Mixing-Length Model

    NARCIS (Netherlands)

    Kranenburg, C.

    1998-01-01

    Adopting a 1DV numerical model including the standard k-eps turbulence model, Winterwerp et al. (1999) calculated a saturation concentration for an initially uniform distribution of fine sediment concentration in steady flow. At concentrations exceeding the saturation concentration the concentration

  1. SATURATED PICRIC ACID PREVENTS AUTOPHAGIA

    Directory of Open Access Journals (Sweden)

    V Rahimi-Movaghar

    2008-08-01

    Full Text Available "nThe dysesthesia and paresthesia that occurs in laboratory rats after spinal cord injury (SCI results in autophagia. This self-destructive behavior interferes with functional assessments in designed studies and jeopardizes the health of the injured rat. In this study, we evaluated role of saturated picric acid in the prevention of autophagia and self-mutilation. All rats were anesthetized with an intraperitoneal injection of a mixture of ketamine (100 mg/kg and xylazine (10 mg/kg for the SCI procedures. In the first 39 rats, no solution applied to the hind limbs, but in the next 26 cases, we smeared the saturated picric acid on the tail, lower extremities, pelvic, and abdomen of the rats immediately after SCI. In the rats without picric acid, 23 rats died following autophagia, but in the 26 rats with picric acid, there was no autophagia (P < 0.001. Picric acid side effects in skin and gastrointestinal signs such as irritation, redness and diarrhea were not seen in any rat. Saturated picric acid is a topical solution that if used appropriately and carefully, might be safe and effectively prevents autophagia and self-mutilation. When the solution is applied to the lower abdomen and limbs, we presume that its bitterness effectively prevents the rat from licking and biting the limb.

  2. Ion chemistry at elevated ion-molecule interaction energies in a selected ion flow-drift tube: reactions of H3O+, NO+ and O2+ with saturated aliphatic ketones.

    Science.gov (United States)

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2017-12-06

    The reactions of H3O+, NO+ and O2+ ions with a homologous series of six aliphatic ketones, viz. acetone through 2-octanone, have been investigated in a helium-buffered selected ion flow-drift tube, SIFDT, in order to reveal their dependencies on ion-molecule interaction energies, Er, and to gain insight into their mechanisms. The ultimate motivation is to allow analysis and absolute quantification of trace amounts of ketones and other volatile organic compounds in air using selected ion flow-drift tube mass spectrometry, SIFDT-MS. The reactions of H3O+ with the ketone molecules, M, proceed via exothermic proton transfer producing MH+ ions, the collisional rate coefficients, kc, for which can be calculated as a function of Er and are seen to reduce by about one third over the Er range from 0.05 eV up to 0.5 eV. The rate coefficients, k, and product ion distributions for the NO+ and O2+ reactions with M had to be obtained experimentally relative to the calculated kc for the H3O+ reactions. The product ions of the NO+/ketones reactions initially proceed via the formation of excited (NO+M)* adduct ions that partially fragment, and the k reduces with Er as much as four times for the acetone reactions but remains close to their respective kc for the higher-order ketones indicating long lifetimes of the (NO+M)* ions with respect to the stabilising collision times with He atoms. The k for the O2+/ketones dissociative charge transfer reactions are observed to be greater than their calculated kc implying that long distance electron transfer occurs.

  3. Promoter analysis by saturation mutagenesis

    Directory of Open Access Journals (Sweden)

    Baliga Nitin

    2001-01-01

    Full Text Available Gene expression and regulation are mediated by DNA sequences, in most instances, directly upstream to the coding sequences by recruiting transcription factors, regulators, and a RNA polymerase in a spatially defined fashion. Few nucleotides within a promoter make contact with the bound proteins. The minimal set of nucleotides that can recruit a protein factor is called a cis-acting element. This article addresses a powerful mutagenesis strategy that can be employed to define cis-acting elements at a molecular level. Technical details including primer design, saturation mutagenesis, construction of promoter libraries, phenotypic analysis, data analysis, and interpretation are discussed.

  4. Semiconductor saturable absorbers for ultrafast terahertz signals

    OpenAIRE

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluen...

  5. Semiconductor saturable absorbers for ultrafast terahertz signals

    OpenAIRE

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductorsGaAs,GaP, and Ge in the terahertz (THz) frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band nonparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation flue...

  6. An efficient implicit-pressure/explicit- saturation-method-based shifting-matrix algorithm to simulate two-phase, immiscible flow in porous media with application to CO2 sequestration in the subsurface

    KAUST Repository

    Salama, Amgad

    2013-07-04

    The flow of two or more immiscible fluids in porous media is widespread, particularly in the oil industry. This includes secondary and tertiary oil recovery and carbon dioxide (CO2) sequestration. Accurate predictions of the development of these processes are important in estimating the benefits and consequences of the use of certain technologies. However, this accurate prediction depends--to a large extent--on two things. The first is related to our ability to correctly characterize the reservoir with all its complexities; the second depends on our ability to develop robust techniques that solve the governing equations efficiently and accurately. In this work, we introduce a new robust and efficient numerical technique for solving the conservation laws that govern the movement of two immiscible fluids in the subsurface. As an example, this work is applied to the problem of CO2 sequestration in deep saline aquifers; however, it can also be extended to incorporate more scenarios. The traditional solution algorithms to this problem are modeled after discretizing the governing laws on a generic cell and then proceed to the other cells within loops. Therefore, it is expected that calling and iterating these loops multiple times can take a significant amount of computer time. Furthermore, if this process is performed with programming languages that require repeated interpretation each time a loop is called, such as Matlab, Python, and others, much longer time is expected, particularly for larger systems. In this new algorithm, the solution is performed for all the nodes at once and not within loops. The solution methodology involves manipulating all the variables as column vectors. By use of shifting matrices, these vectors are shifted in such a way that subtracting relevant vectors produces the corresponding difference algorithm. It has been found that this technique significantly reduces the amount of central-processing-unit (CPU) time compared with a traditional

  7. The use of saturation in qualitative research.

    Science.gov (United States)

    Walker, Janiece L

    2012-01-01

    Understanding qualitative research is an important component of cardiovascular nurses' practice and allows them to understand the experiences, stories, and perceptions of patients with cardiovascular conditions. In understanding qualitative research methods, it is essential that the cardiovascular nurse understands the process of saturation within qualitative methods. Saturation is a tool used for ensuring that adequate and quality data are collected to support the study. Saturation is frequently reported in qualitative research and may be the gold standard. However, the use of saturation within methods has varied. Hence, the purpose of this column is to provide insight for the cardiovascular nurse regarding the use of saturation by reviewing the recommendations for which qualitative research methods it is appropriate to use and how to know when saturation is achieved. In understanding saturation, the cardiovascular nurse can be a better consumer of qualitative research.

  8. Elastoplastic model for unsaturated, quasi-saturated and fully saturated fine soils

    Directory of Open Access Journals (Sweden)

    Lai Ba Tien

    2016-01-01

    Full Text Available In unsaturated soils, the gaseous phase is commonly assumed to be continuous. This assumption is no more valid at high saturation ratio. In that case, air bubbles and pockets can be trapped in the porous network by the liquid phase and the gas phase becomes discontinuous. This trapped air reduces the apparent compressibility of the pore fluid and affect the mechanical behavior of the soil. Although it is trapped in the pores, its dissolution can take place. Dissolved air can migrate through the pore space, either by following the flow of the fluid or by diffusion. In this context, this paper present a hydro mechanical model that separately considers the kinematics and the mechanical behavior of each fluid species (eg liquid water, dissolved air, gaseous air and the solid matrix. This new model was implemented in a C++ code. Some numerical simulations are performed to demonstrate the ability of this model to reproduce a continuous transition of unsaturated to saturated states.

  9. Saturation of equatorial inertial instability

    NARCIS (Netherlands)

    Kloosterziel, R.C.; Orlandi, P.; Carnevale, G.F.

    2015-01-01

    Inertial instability in parallel shear flows and circular vortices in a uniformly rotating system ( $f$f-plane) redistributes absolute linear momentum or absolute angular momentum in such a way as to neutralize the instability. In previous studies we showed that, in the absence of other

  10. Using X-ray computed tomography to evaluate the initial saturation resulting from different saturation procedures

    DEFF Research Database (Denmark)

    Christensen, Britt Stenhøj Baun; Wildenschild, D; Jensen, K.H.

    2006-01-01

    for saturation. Evaluation of the different enhanced saturation techniques was done with Xray computed tomography (CT) and gravimetrically. The use of CT scanning makes it possible to observe the spatial distribution of wetting and non-wetting phases in the porous medium in a non-destructive way. In this case...... with pressurized nitrogen between each saturation and allowed to saturate for the same length of time for all the different procedures. Both gravimetric measurements and CT attenuation levels showed that venting the sample with carbon dioxide prior to saturation clearly improved initial saturation whereas the use...

  11. Inferring immobile and in-situ water saturation from laboratory and field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Belen, Rodolfo P., Jr.

    2000-06-01

    Analysis of experimental data and numerical simulation results of dynamic boiling experiments revealed that there is an apparent correlation between the immobile water saturation and the shape of the steam saturation profile. An elbow in the steam saturation profile indicates the sudden drop in steam saturation that marks the transition from steam to two-phase conditions inside the core during boiling. The immobile water saturation can be inferred from this elbow in the steam saturation profile. Based on experimental results obtained by Satik (1997), the inferred immobile water saturation of Berea sandstone was found to be about 0.25, which is consistent with results of relative permeability experiments reported by Mahiya (1999). However, this technique may not be useful in inferring the immobile water saturation of less permeable geothermal rocks because the elbow in the steam saturation profile is less prominent. Models of vapor and liquid-dominated geothermal reservoirs that were developed based on Darcy's law and material and energy conservation equations proved to be useful in inferring the in-situ and immobile water saturations from field measurements of cumulative mass production, discharge enthalpy, and downhole temperature. Knowing rock and fluid properties, and the difference between the stable initial, T{sub o}, and dry-out, T{sub d}, downhole temperatures, the in-situ and immobile water saturations of vapor-dominated reservoirs can be estimated. On the other hand, the in-situ and immobile water saturations, and the change in mobile water content of liquid-dominated reservoirs can be inferred from the cumulative mass production, {Delta}m, and enthalpy, h{prime}, data. Comparison with two-phase, radial flow, numerical simulation results confirmed the validity and usefulness of these models.

  12. Modelling suction instabilities in soils at varying degrees of saturation

    Directory of Open Access Journals (Sweden)

    Buscarnera Giuseppe

    2016-01-01

    Full Text Available Wetting paths imparted by the natural environment and/or human activities affect the state of soils in the near-surface, promoting transitions across different regimes of saturation. This paper discusses a set of techniques aimed at quantifying the role of hydrologic processes on the hydro-mechanical stability of soil specimens subjected to saturation events. Emphasis is given to the mechanical conditions leading to coupled flow/deformation instabilities. For this purpose, energy balance arguments for three-phase systems are used to derive second-order work expressions applicable to various regimes of saturation. Controllability analyses are then performed to relate such work input with constitutive singularities that reflect the loss of strength under coupled and/or uncoupled hydro-mechanical forcing. A suction-dependent plastic model is finally used to track the evolution of stability conditions in samples subjected to wetting, thus quantifying the growth of the potential for coupled failure modes upon increasing degree of saturation. These findings are eventually linked with the properties of the field equations that govern pore pressure transients, thus disclosing a conceptual link between the onset of coupled hydro-mechanical failures and the evolution of suction with time. Such results point out that mathematical instabilities caused by a non-linear suction dependent behaviour play an important role in the advanced constitutive and/or numerical tools that are commonly used for the analysis of geomechanical problems in the unsaturated zone, and further stress that the relation between suction transients and soil deformations is a key factor for the interpretation of runaway failures caused by intense saturation events.

  13. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    and nanocomposites derived from glycolyzed PET waste with varied compositions. SUNAIN KATOCH. ∗ ... Water vapour transmission (WVT) was determined for saturated polyester nanocomposite sheets according to ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the estimation of the ...

  14. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  15. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec...

  16. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  17. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  18. Experimental Bullard-von Karman dynamo: MHD saturated regimes

    Science.gov (United States)

    Miralles, Sophie; Plihon, Nicolas; Pinton, Jean-François

    2014-05-01

    The dynamo instability, converting kinetic energy into magnetic energy, creates the magnetic fields of many astrophysical bodies for which the flows are highly turbulent. Those turbulent fluctuations restricts the range of parameters of numerical and theoretical predictions. As laboratory experiments are closer from natural parameters, this approach is favored in this work. In the past decades, dynamo action has been observed in experiments involving laminar flows [1] or fully turbulent flows [2] in liquid sodium. Nevertheless, the saturation of the velocity field by the Lorentz force due to the dynamo magnetic field is weak in those experiment because the control parameter is always close to the threshold of the instability (which is not the case in astrophysical situations). The details of the mechanism of the back reaction of Lorentz force on the flow are not known. We present here an experimental semi-synthetic dynamo, for which a fluid turbulent induction mechanism ('omega' effect) is associated to an external amplification applying a current into a pair of coils. The flow, called von-Karman, is produced by the counter rotation of two coaxial propellers in a cylindrical tank filled with liquid gallium. The resulting flow is highly turbulent (Re > 10 ^ 5). The amplification, mimicking a turbulent 'alpha' effect, allow to observe the dynamo instability at low magnetic Reynolds number (Rm ~ 2), far below the threshold of natural homogeneous dynamo. This experiment reaches non linear regimes, for which the saturation is a MHD process, at control parameter several times the critical value. The instability grows through an on-off intermittent regime evolving into a full MHD saturated regime for which the Lorentz force is in balance with the inertial one. The power budget is strongly modified by the dynamo magnetic field and we give an insight of the estimated rate of conversion of kinetic energy into magnetic one from experimental data. Very rich regimes such as

  19. Combinatorics of saturated secondary structures of RNA.

    Science.gov (United States)

    Clote, P

    2006-11-01

    Following Zuker (1986), a saturated secondary structure for a given RNA sequence is a secondary structure such that no base pair can be added without violating the definition of secondary structure, e.g., without introducing a pseudoknot. In the Nussinov-Jacobson energy model (Nussinov and Jacobson, 1980), where the energy of a secondary structure is -1 times the number of base pairs, saturated secondary structures are local minima in the energy landscape, hence form kinetic traps during the folding process. Here we present recurrence relations and closed form asymptotic limits for combinatorial problems related to the number of saturated secondary structures. In addition, Python source code to compute the number of saturated secondary structures having k base pairs can be found at the web servers link of bioinformatics.bc.edu/clotelab/.

  20. Saturated fat, carbohydrate, and cardiovascular disease

    National Research Council Canada - National Science Library

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-01-01

    A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations...

  1. Saturated thickness, High Plains aquifer, 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies...

  2. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Univ. of California, Berkeley, CA (United States)

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media.

  3. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  4. Phase field modeling of partially saturated deformable porous media

    Science.gov (United States)

    Sciarra, Giulio

    2016-09-01

    A poromechanical model of partially saturated deformable porous media is proposed based on a phase field approach at modeling the behavior of the mixture of liquid water and wet air, which saturates the pore space, the phase field being the saturation (ratio). While the standard retention curve is expected still^ to provide the intrinsic retention properties of the porous skeleton, depending on the porous texture, an enhanced description of surface tension between the wetting (liquid water) and the non-wetting (wet air) fluid, occupying the pore space, is stated considering a regularization of the phase field model based on an additional contribution to the overall free energy depending on the saturation gradient. The aim is to provide a more refined description of surface tension interactions. An enhanced constitutive relation for the capillary pressure is established together with a suitable generalization of Darcy's law, in which the gradient of the capillary pressure is replaced by the gradient of the so-called generalized chemical potential, which also accounts for the "force", associated to the local free energy of the phase field model. A micro-scale heuristic interpretation of the novel constitutive law of capillary pressure is proposed, in order to compare the envisaged model with that one endowed with the concept of average interfacial area. The considered poromechanical model is formulated within the framework of strain gradient theory in order to account for possible effects, at laboratory scale, of the micro-scale hydro-mechanical couplings between highly localized flows (fingering) and localized deformations of the skeleton (fracturing).

  5. DEFINITION OF DYNAMIC INDUCTANCES OF THE ASYNCHRONOUS ENGINE WITH REGARD TO PROCESSES OF SATURATION

    Directory of Open Access Journals (Sweden)

    D. O. Kulagin

    2014-07-01

    Full Text Available Development of mathematical model of asynchronous machines in (d, q coordinate system with taking into account the saturation of magnetic circuits is performed. In the paper, we used the method of dynamic inductances, which is connected with the use of a systematic study of motor properties. An analytical model of asynchronous motor magnetic circuit, which is taken into account action of the tangential and radial dynamic inductances is created. On the basis of this the sensor dynamic inductances of rich machine, which was recorded in (d, q coordinate system of equations of rotor and stator circles of asynchronous motor with the saturation were built. The author suggests to use the method of dynamic inductances at construction of asynchronous engine mathematical model, that allows to take into account the saturation of the main magnetic path for the modes with a wide range of changes in the flow of mutual induction between the stator and the rotor, saturation flow path, the scattering modes that are characterized by large current circuits of the machine, induction, due to processes of saturation, between mutually perpendicular to the contours of the machine, as well as the joint saturation worker thread and threads scattering modes that are characterized by the significant size of the workflow and large values of currents contours of the machine. The mathematical model allows to take into account the change of the magnetic state of asynchronous motor as necessity to build adequate systems of control drives and driving

  6. Saturated fats and cardiovascular disease risk: A review

    OpenAIRE

    Ishi Khosla; Gayatri C Khosla1

    2017-01-01

    Saturated fats have been in the line of fire for more than three decades. The major mistake in understanding fats was to equate all saturated fatty acids as one. The oversimplification of the relationship of saturated fats with cardiovascular disease (CVD) led to unwarranted removal of some valuable fats from our diets. Recently, the relationship of dietary saturated fats and that of individual saturated fatty acids (SFAs) to CVD risk has been reevaluated. All saturated fats are not equal and...

  7. Current and Noise Saturation in Graphene Superlattice

    Science.gov (United States)

    Yang, Wei; Lu, Xiaobo; Berthou, Simon; Wilmart, Quentin; Boukhicha, Mohamed; Voisin, Christophe; Zhang, Guangyu; Placais, Bernard

    One of the merits of graphene is that the Fermi level can be easily tuned by electrical gating, which render charge carriers n type or p type, or even insulating around the Dirac point (DP). By aligning graphene on top of Boron Nitride (BN), the presence of graphene superlattice makes transport properties even more versatile owning to the emergence of secondary Dirac points (SDPs). Here we present a study of high electric field performance of graphene superlattice obtained from epitaxial approach. By using microwave cavity, noise produced from graphene by joule heating is recorded up to 5GHz. Current and noise saturation are observed and investigated. Depending on Fermi energy, saturation can be attributed to intrinsic optical or remote surface polar phonon scattering at a doping far away from DP, while no saturation are found around DP. Moreover, noise saturation is identified around Fermi energy between DP and SDP, which can be attributed to the influence of van Hove singularity arising from the superlattice. Lastly, saturation due to the bias induced shift of DP, or so called Dirac fermion pinch-off, is well observed by local top gate technique. EU Graphene flagship project (Contract No. 604391).

  8. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  9. Soil Structure and Saturated Hydraulic Conductivity

    Science.gov (United States)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.

  10. Perturbative Saturation and the Soft Pomeron

    CERN Document Server

    Kovner, A; Kovner, Alex; Wiedemann, Urs Achim

    2002-01-01

    We show that perturbation theory provides two distinct mechanisms for the power like growth of hadronic cross sections at high energy. One, the leading BFKL effect is due to the growth of the parton density, and is characterized by the leading BFKL exponent. The other mechanism is due to the infrared diffusion, or the long range nature of the Coulomb field of perturbatively massless gluons. When perturbative saturation effects are taken into account, the first mechanism is rendered ineffective but the second one persists. We suggest that these two distinct mechanisms are responsible for the appearance of two pomerons. The density growth effects are responsible for the hard pomeron and manifest themselves in small systems (e.g. gamma^* or small size fluctuations in the proton wave function) where saturation effects are not important. The soft pomeron is the manifestation of the exponential growth of the black saturated regions which appear in typical hadronic systems. We point out that the nonlinear generaliza...

  11. Interger multiplication with overflow detection or saturation

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.J.; Balzola, P.I.; Akkas, A.; Brocato, R.W.

    2000-01-11

    High-speed multiplication is frequently used in general-purpose and application-specific computer systems. These systems often support integer multiplication, where two n-bit integers are multiplied to produce a 2n-bit product. To prevent growth in word length, processors typically return the n least significant bits of the product and a flag that indicates whether or not overflow has occurred. Alternatively, some processors saturate results that overflow to the most positive or most negative representable number. This paper presents efficient methods for performing unsigned or two's complement integer multiplication with overflow detection or saturation. These methods have significantly less area and delay than conventional methods for integer multiplication with overflow detection and saturation.

  12. The Danish tax on saturated fat

    DEFF Research Database (Denmark)

    Vallgårda, Signild; Holm, Lotte; Jensen, Jørgen Dejgård

    2015-01-01

    BACKGROUND/OBJECTIVES: Health promoters have repeatedly proposed using economic policy tools, taxes and subsidies, as a means of changing consumer behaviour. As the first country in the world, Denmark introduced a tax on saturated fat in 2011. It was repealed in 2012. In this paper, we present...... on saturated fat had been suggested by two expert committees and was introduced with a majority in parliament, as a part of a larger economic reform package. Many actors, including representatives from the food industry and nutrition researchers, opposed the tax both before and after its introduction, claiming......, research was published showing that consumption of saturated fat had declined in Denmark. CONCLUSIONS: The analysis indicates that the Danish tax on fat was introduced mainly to increase public revenue. As the tax had no strong proponents and many influential adversaries, it was repealed. New research...

  13. Tracking Controller for Intrinsic Output Saturated Systems in Presence of Amplitude and Rate Input Saturations

    DEFF Research Database (Denmark)

    Chater, E.; Giri, F.; Guerrero, Josep M.

    2014-01-01

    We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...

  14. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.

    2012-01-01

    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  15. Saturated poroelastic actuators generated by topology optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2011-01-01

    In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizing...... the coupling of internal fluid pressure and elastic shear stresses a slab of the optimized porous material deflects/deforms when a pressure is imposed and an actuator is created. Several phenomenologically based constraints are imposed in order to get a stable force transmitting actuator....

  16. Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity

    Science.gov (United States)

    Saturated hydraulic conductivity Ksat is a fundamental characteristic in modeling flow and contaminant transport in soils and sediments. Therefore, many models have been developed to estimate Ksat from easily measureable parameters, such as textural properties, bulk density, etc. However, Ksat is no...

  17. Prediction of the saturated hydraulic conductivity from Brooks and Corey’s water retention parameters

    NARCIS (Netherlands)

    Nasta, P.; Vrugt, J.A.; Romano, N.

    2013-01-01

    Prediction of flow through variably saturated porous media requires accurate knowledge of the soil hydraulic properties, namely the water retention function (WRF) and the hydraulic conductivity function (HCF). Unfortunately, direct measurement of the HCF is time consuming and expensive. In this

  18. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  19. Fullerene Transport in Saturated Porous Media

    Science.gov (United States)

    We investigated the effects of background solution chemistry and residence time within the soil column on the transport of aqu/C60 through saturated ultrapure quartz sand columns. Aqu/C60 breakthrough curves were obtained under different pore water velocities, solution pHs, and i...

  20. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 5. Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate catalyzed by manganese(III) tetra-arylporphyrins, to study the axial ligation of imidazole. Reza Tayebee. Volume 118 Issue 5 September 2006 pp 429-433 ...

  1. Nasal pulse oximetry overestimates oxygen saturation

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H

    1990-01-01

    Ten surgical patients were monitored with nasal and finger pulse oximetry (Nellcor N-200) for five study periods with alternating mouth and nasal breathing and switching of cables and sensors. Nasal pulse oximetry was found to overestimate arterial oxygen saturation by 4.7 (SD 1.4%) (bias...

  2. Understanding 'saturation' of radar signals over forests.

    Science.gov (United States)

    Joshi, Neha; Mitchard, Edward T A; Brolly, Matthew; Schumacher, Johannes; Fernández-Landa, Alfredo; Johannsen, Vivian Kvist; Marchamalo, Miguel; Fensholt, Rasmus

    2017-06-14

    There is an urgent need to quantify anthropogenic influence on forest carbon stocks. Using satellite-based radar imagery for such purposes has been challenged by the apparent loss of signal sensitivity to changes in forest aboveground volume (AGV) above a certain 'saturation' point. The causes of saturation are debated and often inadequately addressed, posing a major limitation to mapping AGV with the latest radar satellites. Using ground- and lidar-measurements across La Rioja province (Spain) and Denmark, we investigate how various properties of forest structure (average stem height, size and number density; proportion of canopy and understory cover) simultaneously influence radar backscatter. It is found that increases in backscatter due to changes in some properties (e.g. increasing stem sizes) are often compensated by equal magnitude decreases caused by other properties (e.g. decreasing stem numbers and increasing heights), contributing to the apparent saturation of the AGV-backscatter trend. Thus, knowledge of the impact of management practices and disturbances on forest structure may allow the use of radar imagery for forest biomass estimates beyond commonly reported saturation points.

  3. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    Biot 's theory for wave propagation in saturated porous solid is modified to study the propagation of thermoelastic waves in poroelastic medium. Propagation of plane harmonic waves is considered in isotropic poroelastic medium. Relations are derived among the wave-induced temperature in the medium and the ...

  4. Spontaneous emission from saturated parametric amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik

    2009-01-01

    Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....

  5. Elevated transferrin saturation and risk of diabetes

    DEFF Research Database (Denmark)

    Ellervik, Christina; Mandrup-Poulsen, Thomas; Andersen, Henrik Ullits

    2011-01-01

    OBJECTIVE We tested the hypothesis that elevated transferrin saturation is associated with an increased risk of any form of diabetes, as well as type 1 or type 2 diabetes separately. RESEARCH DESIGN AND METHODS We used two general population studies, The Copenhagen City Heart Study (CCHS, N = 9...

  6. Saturated fat, carbohydrates and cardiovascular disease

    NARCIS (Netherlands)

    Kuipers, R. S.; de Graaf, D. J.; Luxwolda, M. F.; Muskiet, M. H. A.; Dijck-Brouwer, D. A. J.; Muskiet, F. A. J.

    The dietary intake of saturated fatty acids (SAFA) is associated with a modest increase in serum total cholesterol, but not with cardiovascular disease (CVD). Replacing dietary SAFA with carbohydrates (CHO), notably those with a high glycaemic index, is associated with an increase in CVD risk in

  7. Two-beam interaction in saturable media

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Schmidt, Michel R.; Juul Rasmussen, Jens

    1998-01-01

    The dynamics of two coupled soliton solutions of the nonlinear Schrodinger equation with a saturable nonlinearity is investigated It is shown by means of a variational method and by direct numerical calculations that two well-separated solitons can orbit around each other, if their initial velocity...

  8. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    Saturated polyester resin, derived from the glycolysis of polyethyleneterephthalate (PET) was examined as an effective way for PET recycling. The glycolyzed PET (GPET) was reacted with the mixture of phthalic anhydride and ethylene glycol (EG) with varied compositions and their reaction kinetic were studied. During ...

  9. Multi-spectral imaging of oxygen saturation

    Science.gov (United States)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  10. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  11. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Science.gov (United States)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  12. Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations

    Science.gov (United States)

    Revil, A.

    2017-05-01

    I developed a model of cross-coupled flow in partially saturated porous media based on electrokinetic coupling including the effect of ion filtration (normal and reverse osmosis) and the multi-component nature of the pore water (wetting) phase. The model also handles diffusion and membrane polarization but is valid only for saturations above the irreducible water saturation. I start with the local Nernst-Planck and Stokes equations and I use a volume-averaging procedure to obtain the generalized Ohm, Fick, and Darcy equations with cross-coupling terms at the scale of a representative elementary volume of the porous rock. These coupling terms obey Onsager's reciprocity, which is a required condition, at the macroscale, to keep the total dissipation function of the system positive. Rather than writing the electrokinetic terms in terms of zeta potential (the double layer electrical potential on the slipping plane located in the pore water), I developed the model in terms of an effective charge density dragged by the flow of the pore water. This effective charge density is found to be strongly controlled by the permeability and the water saturation. I also developed an electrical conductivity equation including the effect of saturation on both bulk and surface conductivities, the surface conductivity being associated with electromigration in the electrical diffuse layer coating the grains. This surface conductivity depends on the CEC of the porous material.

  13. A New Robust Solver for Saturated-Unsaturated Richards' Equation

    Science.gov (United States)

    Barajas-Solano, D. A.; Tartakovsky, D. M.

    2012-12-01

    We present a novel approach for the numerical integration of the saturated-unsaturated Richards' equation, a degenerate parabolic partial differential equation that models flow in porous media. The method is based on the mixed (pore pressure-water content) form of RE, written as a set of differential algebraic equations (DAEs) of index-1 for the fully saturated case and index-2 for the partially saturated case. A DAE-based approach allows us to overcome the numerical challenges posed by the degenerate nature of the Richards' equation. The resulting set of DAEs is solved using the stiffly-accurate, single-step, 3-stage implicit Runge-Kutta method Radau IIA, chosen for its favorable accuracy and stability properties, and its ease of implementation. For each time step a nonlinear system of equations on the intermediate Runge-Kutta states of the pore pressure is solved, written so to ensure that the next step pore pressure and water content correspond to one another correctly. The implementation of our approach compares favorably to state-of-the-art DAE-based solvers in both one- and two-dimensional simulations. These solvers use multi-step backward difference formulas together with a pressure-based form of Richards' equation. To the best of our knowledge, our method is the first instance of a successful DAE-based solver that uses the mixed form of Richards' equation. We consider this a promising line of research, with future work to be done on the use of globally convergent methods for the solution of the occurring nonlinear systems of equations.

  14. Applied research in hydraulics and heat flow

    CERN Document Server

    Asli, Kaveh Hariri; Asli, Hossein Hariri; Motlaghzadeh, Kasra

    2014-01-01

    PrefaceModeling for Heat Flow ProcessFluid and Fluid MechanicsTwo Phases Flow and Vapor BubbleDynamic Modeling for Heat and Mass TransferVapor Pressure and Saturation TemperatureFinite Difference and Method of Characteristics for Transitional FlowLagrangian and Eulerian Transitional FlowDynamic Modeling for Water FlowModeling for Flow ProcessDynamic Modeling for Mass and Momentum TransportIndex

  15. The effect of fluid saturation on the dynamic shear modulus of tight sandstones

    Science.gov (United States)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Shuai, Da

    2017-10-01

    Tight sandstones have become important targets in the exploration of unconventional oil and gas reservoirs. However, due to low porosity, low permeability, complex pore structure and other petrophysical properties of tight sandstones, the applicability of Gassmann’s fluid substitution procedure becomes debatable. Aiming at this problem, this paper attempts to explore the applicability of Gassmann’s theory in tight sandstones. Our focus is to investigate the sensitivity of dynamic shear modulus to fluid saturation and the possible mechanism. Ultrasonic velocity in dry and saturated tight sandstone samples was measured in the laboratory under an effective pressure within the range of 1-60 MPa. This study shows that the shear modulus of the water-saturated samples appears to either increase or decrease, and the soft porosity model (SPM) can be used to quantitatively estimate the variation of shear modulus. Under the condition of in situ pressure, samples dominated by secondary pores and microcracks are prone to show shear strengthening with saturation, which is possibly attributed to the local flow dispersion. Samples that mainly have primary pores are more likely to show shear weakening with saturation, which can be explained by the surface energy mechanism. We also find good correlation between changes in shear modulus and inaccurate Gassmann-predicted saturated velocity. Therefore, understanding the variation of shear modulus is helpful to improving the applicability of Gassmann’s theory in tight sandstones.

  16. Mechanical behavior of saturated, consolidated, alumina powder compacts

    Science.gov (United States)

    Franks, George Vincent, Jr.

    Alumina slurries were prepared with three differing particle pair potentials produced by adjusting pH and salt concentration. The three pair potentials investigated were repulsive, strongly attractive and weakly attractive. Bodies were consolidated by pressure filtration, at applied pressures between 0.25 MPa and 150 MPa. The mechanical properties of these bodies were investigated by uniaxial compressive loading. High consolidation pressures lead to high forces at particle contacts which can push the particles together to form a strong touching network even when the particles are separated by a potential barrier in the slurry state. When particles are pushed into adhesive contact, the saturated, consolidated powder compacts are brittle. When a short ranged repulsive interparticle potential persists after consolidation, the specimens are plastic. Saturated bodies formed from strongly attractive slurries (flocculated at the isoelectric point pH 9) were plastic at low relative densities but were brittle at higher relative densities. Bodies formed from the repulsive slurries (dispersed at pH 4) were always brittle. Bodies consolidated from weakly attractive slurries (coagulated at pH 4, 5, 6, or 12 with additions of salt) were plastic at low consolidation pressures but became brittle at high consolidation pressures. This plastic-to-brittle transition depends on the shape of the pair potential, the size and morphology of the powder. The plastic specimens had stress-strain behavior characterized by a peak stress, followed by a lower flow stress. The peak stress reduced to the flow stress upon several reloading cycles. The effect of the slope of the repulsive potential barrier on the plastic-to-brittle transition was investigated. Alumina slurries coagulated at pH 12 with 0.5 M of Lisp+, Cssp+ and tetraethylammoniumsp+ chlorides were consolidated by pressure filtration. Consolidation pressures required to push particles together were greater for smaller counterions. The

  17. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  18. Replacing foods high in saturated fat by low-saturated fat alternatives: a computer simulation of the potential effects on reduction of saturated fat consumption

    NARCIS (Netherlands)

    Schickenberg, B.; Assema, P.; Brug, J.; Verkaik-Kloosterman, J.; Ocke, M.C.; Vries, de N.

    2009-01-01

    10 en%) increased from 23.3 % to 86.0 %. We conclude that the replacement of relatively few important high-saturated fat products by available lower-saturated fat alternatives can significantly reduce saturated fat intake and increase the proportion of individuals complying with recommended intake

  19. [Tissue oxygen saturation in the critically ill patient].

    Science.gov (United States)

    Gruartmoner, G; Mesquida, J; Baigorri, F

    2014-05-01

    Hemodynamic resuscitation seeks to correct global macrocirculatory parameters of pressure and flow. However, current evidence has shown that despite the normalization of these global parameters, microcirculatory and regional perfusion alterations can persist, and these alterations have been independently associated with a poorer patient prognosis. This in turn has lead to growing interest in new technologies for exploring regional circulation and microcirculation. Near infra-red spectroscopy allows us to monitor tissue oxygen saturation, and has been proposed as a noninvasive, continuous and easy-to-obtain measure of regional circulation. The present review aims to summarize the existing evidence on near infra-red spectroscopy and its potential clinical role in the resuscitation of critically ill patients in shock. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  20. Variables of state and charateristics for isentropic discharge phenomena of water, starting with saturation

    Energy Technology Data Exchange (ETDEWEB)

    Baudisch, H.

    1968-03-15

    The tables presented in this report contain the thermodynamic values of isentropic change of state for water in the two-phase region starting from the saturation line down to 0.01 at. The variables have been computed in the pressure range from 5-100 at. in equal pressure intervals of 5 at. and in the range from 100-170 at. in intervals of 10 at. Assuming a one-dimensional flow and a known saturation pressure, the dimensions of a discharge nozzle may be determined by interpolation of the calculated values for an isentropic discharge. 4 figs., 29 tabs., 23 refs.

  1. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2013-08-01

    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  2. The danish tax on saturated fat

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Smed, Sinne

    Denmark introduced a new tax on saturated fat in food products with effect from October 2011. The objective of this paper is to make an effect assessment of this tax for some of the product categories most significantly affected by the new tax, namely fats such as butter, butter-blends, margarine...... on saturated fat in food products has had some effects on the market for the considered products, in that the level of consumption of fats dropped by 10 – 20%. Furthermore, the analysis points at shifts in demand from high-price supermarkets towards low-price discount stores – a shift that seems to have been...... – and broaden – the analysis at a later stage, when data are available for a longer period after the introduction of the fat tax....

  3. Experimental study and theoretical interpretation of saturation effect on ultrasonic velocity in tight sandstones under different pressure conditions

    Science.gov (United States)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da

    2018-03-01

    Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.

  4. WAter Saturation Shift Referencing (WASSR) for chemical exchange saturation transfer experiments

    Science.gov (United States)

    Kim, Mina; Gillen, Joseph; Landman, Bennett. A.; Zhou, Jinyuan; van Zijl, Peter C.M.

    2010-01-01

    Chemical exchange saturation transfer (CEST) is a contrast mechanism exploiting exchange-based magnetization transfer (MT) between solute and water protons. CEST effects compete with direct water saturation and conventional MT processes and generally can only be quantified through an asymmetry analysis of the water saturation spectrum (Z-spectrum) with respect to the water frequency, a process that is exquisitely sensitive to magnetic field inhomogeneities. Here, it is shown that direct water saturation imaging allows measurement of the absolute water frequency in each voxel, allowing proper centering of Z-spectra on a voxel-by-voxel basis independent of spatial B0 field variations. Optimal acquisition parameters for this “water saturation shift referencing” or “WASSR” approach were estimated using Monte Carlo simulations and later confirmed experimentally. The optimal ratio of the WASSR sweep width to the linewidth of the direct saturation curve was found to be 3.3–4.0, requiring a sampling of 16–32 points. The frequency error was smaller than 1 Hz at signal to noise ratios of 40 or higher. The WASSR method was applied to study glycogen, where the chemical shift difference between the hydroxyl (OH) protons and bulk water protons at 3T is so small (0.75–1.25 ppm) that the CEST spectrum is inconclusive without proper referencing. PMID:19358232

  5. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments.

    Science.gov (United States)

    Kim, Mina; Gillen, Joseph; Landman, Bennett A; Zhou, Jinyuan; van Zijl, Peter C M

    2009-06-01

    Chemical exchange saturation transfer (CEST) is a contrast mechanism that exploits exchange-based magnetization transfer (MT) between solute and water protons. CEST effects compete with direct water saturation and conventional MT processes, and generally can only be quantified through an asymmetry analysis of the water saturation spectrum (Z-spectrum) with respect to the water frequency, a process that is exquisitely sensitive to magnetic field inhomogeneities. Here it is shown that direct water saturation imaging allows measurement of the absolute water frequency in each voxel, allowing proper centering of Z-spectra on a voxel-by-voxel basis independently of spatial B(0) field variations. Optimal acquisition parameters for this "water saturation shift referencing" (WASSR) approach were estimated using Monte Carlo simulations and later confirmed experimentally. The optimal ratio of the WASSR sweep width to the linewidth of the direct saturation curve was found to be 3.3-4.0, requiring a sampling of 16-32 points. The frequency error was smaller than 1 Hz at signal-to-noise ratios of 40 or higher. The WASSR method was applied to study glycogen, where the chemical shift difference between the hydroxyl (OH) protons and bulk water protons at 3T is so small (0.75-1.25 ppm) that the CEST spectrum is inconclusive without proper referencing.

  6. Gluon saturation beyond (naive) leading logs

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, Guillaume

    2014-12-15

    An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.

  7. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  8. Stabilization of Neutral Systems with Saturating Actuators

    Directory of Open Access Journals (Sweden)

    F. El Haoussi

    2012-01-01

    to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

  9. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacou, P A [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Shafqat, K [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Pal, S K [St Andrew' s Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, CM1 7ET (United Kingdom)

    2007-10-15

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO{sub 2}) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO{sub 2}) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO{sub 2} sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures

  10. Saturated Dispersive Extinction Theory of Red Shift

    Science.gov (United States)

    Wang, Ling Jun

    2012-03-01

    The Dispersive Extinction Theory (DET) proposed by WangfootnotetextWang, Ling Jun, Physics Essays, 18, No. 2, (2005). offers an alternative to the Big Bang. According to DET, the cosmic red shift is caused by the dispersive extinction of the star light during the propagation from the stars to the earth, instead of being caused by the Doppler shift due to the expansion of the universe.footnotetextHubble, E., Astrophys. J. 64, 321 (1926).^,footnotetextHubble, E., The Realm of the Nebulae, (Yale University Press, New Haven, 1936). DET allows an infinite, stable, non expanding universe, and is immune of the fundamental problems inherent to the Big Bang such as the horizon problem, the extreme violation of the conservation of mass, energy and charge, and the geocentric nature which violates the principle of relativity.footnotetextWang, Ling Jun, Physics Essays, 20, No. 2, (2007). The scenario dealt with in Reference (1) is a one in which the extinction by the space medium is not saturated. This work deals with a different scenario when the extinction is saturated. The saturated extinction causes limited energy loss, and the star light can travel a much greater distance than in the unsaturated scenario.

  11. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  12. A Numerical Study on the Effects of Initial Water Saturation of a Geothermal Reservoir on Well Characteristics

    OpenAIRE

    Khasani; Itoi, Ryuichi; Tanaka, Toshiaki; Fukuda, Michihiro

    2004-01-01

    The effects of initial water saturation on well characteristics in two-phase geothermal reservoirs were evaluated. A vertical wellbore model of uniform diameter coupled with a radial horizontal flow in a reservoir of uniform thickness was employed. The momentum equation for two-phase flow in a wellbore was numerically evaluated with a method introduced by Orkiszewski. The energy equation in the wellbore was assumed to be isenthalpic. Mass flow rate and pressure at a feed zone of the well were...

  13. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  14. Trans Fat Now Listed With Saturated Fat and Cholesterol

    Science.gov (United States)

    ... Trans Fat Now Listed With Saturated Fat and Cholesterol Share Tweet Linkedin Pin it More sharing options ... I Do About Saturated Fat, Trans Fat, and Cholesterol? When comparing foods, look at the Nutrition Facts ...

  15. Calcium phosphate saturation in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Temperature, inorganic phosphate concentration and pH seem to be the major factors influencing the degree of saturation of calcium phosphate in sea water. Two water regions can be demarcated in the study area based on the saturation patterns...

  16. Heavy Flavor Production in DGLAP improved Saturation Model

    CERN Document Server

    Sapeta, S

    2007-01-01

    The saturation model with DGLAP evolution is shown to give good description of the production of the charm and beauty quarks in deep inelastic scattering. The modifications of saturation properties caused by the presence of heavy quarks are also discussed.

  17. Rigid aleph_epsilon-saturated models of superstable theories

    OpenAIRE

    Shami, Ziv; Shelah, Saharon

    1999-01-01

    In a countable superstable NDOP theory, the existence of a rigid aleph_epsilon-saturated model implies the existence of 2^lambda rigid aleph_epsilon-saturated models of power lambda for every lambda>2^{aleph_0}.

  18. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones

    Science.gov (United States)

    Delin, Geoffrey N.; Herkelrath, William N.

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites.

  19. Focus on the electrical field-induced strain of electroactive polymers and the observed saturation

    Science.gov (United States)

    Guyomar, D.; Yuse, K.; Cottinet, P.-J.; Kanda, M.; Lebrun, L.

    2010-12-01

    Thanks to their large electrical field-induced strains, electroactive polymers can be used in various applications; as electroactive materials for artificial muscles or as active materials of membranes, due to their flexibility. One drawback concerning their use involves the saturation of the electrical field-induced strain which occurs at around 20% for a polymer film with a thickness of 80 μm. Few studies have been devoted to the understanding of this saturation. To this end, the present paper describes mechanical measurements of the extensive strain versus stress and the determination of the current flowing through an electroactive polymer driven by an electrical field. These experiments have clearly demonstrated that the observed saturation of the electrical induced strain was not due to a mechanical saturation within the sample but to the saturation of the electrically induced polarization. By carrying out a suitable modeling of the polarization versus electrical field, it was possible to calculate the strain and current versus electrical field. These values were then compared to experimental data, and were found to show a very good agreement.

  20. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  1. Silica fractal atomic clusters saturated with OH

    CERN Document Server

    Olivi-Tran, N

    2003-01-01

    We constructed regular fractal SiOH atomic clusters which pending bonds are saturated with OH molecules. We calculated the binding energies of these clusters as well as for sp sup 2 hybridization as for sp sup 3 hybridizations. The result are the following: for the two hybridizations, the total binding energies have a linear dependence on the size of the fractal cluster, which comes directly from the scaling law of the fractal characteristic of the building of the cluster. We related by a scaling law, the number of electronic bonds and the total bonding energy.

  2. Chloride diffusion in partially saturated cementitious material

    DEFF Research Database (Denmark)

    Nielsen, Erik Pram; Geiker, Mette Rica

    2003-01-01

    The paper proposes a combined application of composite theory and Powers' model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg....../m(3) rapid-hardening Portland cement, w/c = 0.5, maturity minimum 6 months) stored at 65% and 85% RH, as well as in vacuum-saturated mortar samples, illustrate the applicability of the method. (C) 2003 Elsevier Science Ltd. All rights reserved....

  3. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2006-01-30

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), our efforts have become focused on technology transfer. To this end, we completing our theoretical developments, generating recommended processing flows, and perfecting our rock and fluid properties interpretation techniques. Some minor additional data analysis and modeling will complete our case studies. During this quarter we have: Presented findings for the year at the DHI/FLUIDS meeting at UH in Houston; Presented and published eight papers to promote technology transfer; Shown how Rock and fluid properties are systematic and can be predicted; Shown Correct values must be used to properly calibrate deep-water seismic data; Quantified and examined the influence of deep water geometries in outcrop; Compared and evaluated hydrocarbon indicators for fluid sensitivity; Identified and documented inappropriate processing procedures; Developed inversion techniques to better distinguish hydrocarbons; Developed new processing work flows for frequency-dependent anomalies; and Evaluated and applied the effects of attenuation as an indicator. We have demonstrated that with careful calibration, direct hydrocarbon indicators can better distinguish between uneconomic ''Fizz'' gas and economic hydrocarbon reservoirs. Some of this progress comes from better characterization of fluid and rock properties. Other aspects include alternative techniques to invert surface seismic data for fluid types and saturations. We have also developed improved work flows for accurately measuring frequency dependent changes in seismic data that are predicted by seismic models, procedures that will help to more reliably identify anomalies associated with hydrocarbons. We have been prolific in publishing expanded abstracts and presenting results, particularly at the SEG. This year, we had eight such

  4. Inheritance of reduced saturated fatty acid content in sunflower oil

    OpenAIRE

    Vick Brady A.; Jan C.C.; Miller Jerry F.

    2002-01-01

    In recent years, consumers have become concerned with reducing the saturated fat content of their diet. Studies have indicated that high levels of saturated fat consumption are correlated with increased risk of coronary heart disease. The total saturated fat content of oil from current sunflower hybrids averages about 130 g kg-1. To identify sunflower germplasm with reduced saturated fatty acid composition, a total of 884 cultivated sunflower accessions from the USDA-ARS North Central Regiona...

  5. Synchrotron radiation measurement of multiphase fluid saturations in porous media: Experimental technique and error analysis

    Science.gov (United States)

    Tuck, David M.; Bierck, Barnes R.; Jaffé, Peter R.

    1998-06-01

    Multiphase flow in porous media is an important research topic. In situ, nondestructive experimental methods for studying multiphase flow are important for improving our understanding and the theory. Rapid changes in fluid saturation, characteristic of immiscible displacement, are difficult to measure accurately using gamma rays due to practical restrictions on source strength. Our objective is to describe a synchrotron radiation technique for rapid, nondestructive saturation measurements of multiple fluids in porous media, and to present a precision and accuracy analysis of the technique. Synchrotron radiation provides a high intensity, inherently collimated photon beam of tunable energy which can yield accurate measurements of fluid saturation in just one second. Measurements were obtained with precision of ±0.01 or better for tetrachloroethylene (PCE) in a 2.5 cm thick glass-bead porous medium using a counting time of 1 s. The normal distribution was shown to provide acceptable confidence limits for PCE saturation changes. Sources of error include heat load on the monochromator, periodic movement of the source beam, and errors in stepping-motor positioning system. Hypodermic needles pushed into the medium to inject PCE changed porosity in a region approximately ±1 mm of the injection point. Improved mass balance between the known and measured PCE injection volumes was obtained when appropriate corrections were applied to calibration values near the injection point.

  6. Test of Scintillometer Saturation Correction Methods Using Field Experimental Data

    NARCIS (Netherlands)

    Kleissl, J.; Hartogensis, O.K.; Gomez, J.D.

    2010-01-01

    Saturation of large aperture scintillometer (LAS) signals can result in sensible heat flux measurements that are biased low. A field study with LASs of different aperture sizes and path lengths was performed to investigate the onset of, and corrections for, signal saturation. Saturation already

  7. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  8. Flow heterogeneity in reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, A.; Simon, R.

    1975-01-01

    A study by Chevron Oil Field Research Co. shows that microscopic flow heterogeneity values are essential for interpreting laboratory displacement data and properly evaluating field displacement projects. Chevron discusses microscopic flow heterogeneity in reservoir rocks: a measuring method, results of some measurements, and several applications to reservoir engineering problems. Heterogeneity is expressed in terms of both breakthrough recovery and the Dykstra-Parsons permeability variation. Microscopic flow heterogeneity in a reservoir rock is related to pore size, pore shape, and location of the different pore sizes that determine flow paths of various permeabilities. This flow heterogeneity affects secondary recovery displacement efficiency, residual oil and water saturations, and capillary pressure measurements.

  9. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  10. Impact of sample geometry on the measurement of pressure-saturation curves: Experiments and simulations

    Science.gov (United States)

    Moura, M.; Fiorentino, E.-A.; Mâløy, K. J.; Schäfer, G.; Toussaint, R.

    2015-11-01

    In this paper, we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2-D random porous medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the pressure-saturation relationship is computed. We show that this relationship depends on the system size and aspect ratio. The effects of the system's boundaries on this relationship are measured experimentally and compared with simulations produced using an invasion percolation algorithm. The pressure build up at the beginning and end of the invasion process are particularly affected by the boundaries of the system whereas at the central part of the model (when the air front progresses far from these boundaries), the invasion happens at a statistically constant capillary pressure. These observations have led us to propose a much simplified pressure-saturation relationship, valid for systems that are large enough such that the invasion is not influenced by boundary effects. The properties of this relationship depend on the capillary pressure thresholds distribution, sample dimensions, and average pore connectivity and its applications may be of particular interest for simulations of two-phase flow in large porous media.

  11. Energy dependent saturable and reverse saturable absorption in cube-like polyaniline/polymethyl methacrylate film

    Energy Technology Data Exchange (ETDEWEB)

    Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)

    2014-08-01

    Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.

  12. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  13. A sulfide-saturated lunar mantle?

    Science.gov (United States)

    Brenan, James M.; Mungall, James E.

    2017-04-01

    Although much work has been done to understand the controls on the sulfur content at sulfide saturation (SCSS) for terrestrial melt compositions, little information exists to evaluate the SCSS for the high FeO compositions typical of lunar magmas, and at the reduced conditions of the Moon's interior. Experiments were done to measure the SCSS for a model low Ti mare basalt with 20 wt% FeO at 1400oC as a function of fO2 and pressure. Synthetic lunar basalt was encapsulated along with stoichiometric FeS in capsules made from Fe-Ir alloy. The fO2 of the experiment can be estimated by the heterogeneous equilibrium: Femetal + 1 /2 O2 = FeOsilicate Variation in the metal composition, by addition of Ir, serves to change the fO2 of the experiment. Capsule compositions spanning the range Fe25Ir75 to Fe96Ir4 (at%) were synthesized by sintering of pressed powders under reducing conditions. Fe100 capsules were fabricated from pure Fe rod. For a melt with 20 wt% FeO, this range in capsule composition spans the fO2 interval of ˜IW-1 (Fe100, Fe96Ir4) to IW+2.2 (Fe25Ir75). Experiments were done over the pressure interval of 0.1 MPa to 2 GPa. Results for experiments involving Fe100capsules indicate that the SCSS decreases from ˜2000 ppm (0.1 MPa) to 700 ppm (2 GPa). Experiments done thus far at 1 GPa, involving the range of capsule compositions indicated, show a marked decrease in SCSS as the Fe content of the capsule increases (fO2 decreases). Complementary to the decrease in SCSS is a drop in the sulfur content of the coexisting sulfide melt, from ˜50 at% at ΔIW = +2.2 to ˜20 at% at ΔIW-1. In fact, both the composition of the sulfide melt and the SCSS are essentially indistinguishable for Fe96Ir4 and Fe100 compositions. Results thus far indicate that at reduced conditions and high pressure, the SCSS for high FeO lunar compositions is low, and overlaps with Apollo 11 melt inclusion data. Importantly, such low SCSS does not require Fe metal saturation, and suggests that some

  14. From QCD to nuclear matter saturation

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Magda [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)]|[Theory division, CERN, CH-12111 Geneva (Switzerland); Chanfray, Guy [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)

    2007-03-15

    We discuss a relativistic chiral theory of nuclear matter with {sigma} and {omega} exchange using a formulation of the {sigma} model in which all the chiral constraints are automatically fulfilled. We establish a relation between the nuclear response to the scalar field and the QCD one which includes the nucleonic parts. It allows a comparison between nuclear and QCD information. Going beyond the mean field approach we introduce the effects of the pion loops supplemented by the short-range interaction. The corresponding Landau-Migdal parameters are taken from spin-isospin physics results. The parameters linked to the scalar meson exchange are extracted from lattice QCD results. These inputs lead to a reasonable description of the saturation properties, illustrating the link between QCD and nuclear physics. We also derive from the corresponding equation of state the density dependence of the quark condensate and of the QCD susceptibilities. (authors)

  15. The Danish tax on saturated fat

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Smed, Sinne

    2013-01-01

    Denmark introduced a new tax on saturated fat in food products with effect from October 2011. The objective of this paper is to make an effect assessment of this tax for some of the product categories most significantly affected by the new tax, namely fats such as butter, butter-blends, margarine...... fat in food products has had some effects on the market for the considered products, in that the level of consumption of fats dropped by 10 – 20%. Furthermore, the analysis points at shifts in demand from high-price supermarkets towards low-price discount stores – at least for some types of oils...... and fats, a shift that seems to have been utilized by discount chains to raise the prices of butter and margarine by more than the pure tax increase. Due to the relatively short data period with the tax being active, interpretation of these findings from a long-run perspective should be done...

  16. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    Diffusion and compound-specific mixing significantly affect conservative and reactive transport in groundwater at different scales, not only under diffusion-dominated regimes but also under advection-dominated flow through conditions [1]. When dissolved species are charged, besides the magnitude...... water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection...

  17. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  18. A new method for calculation of water saturation in shale gas reservoirs using V P -to-V S ratio and porosity

    Science.gov (United States)

    Liu, Kun; Sun, Jianmeng; Zhang, Hongpan; Liu, Haitao; Chen, Xiangyang

    2018-02-01

    Total water saturation is an important parameter for calculating the free gas content of shale gas reservoirs. Owing to the limitations of the Archie formula and its extended solutions in zones rich in organic or conductive minerals, a new method was proposed to estimate total water saturation according to the relationship between total water saturation, V P -to-V S ratio and total porosity. Firstly, the ranges of the relevant parameters in the viscoelastic BISQ model in shale gas reservoirs were estimated. Then, the effects of relevant parameters on the V P -to-V S ratio were simulated based on the partially saturated viscoelastic BISQ model. These parameters were total water saturation, total porosity, permeability, characteristic squirt-flow length, fluid viscosity and sonic frequency. The simulation results showed that the main factors influencing V P -to-V S ratio were total porosity and total water saturation. When the permeability and the characteristic squirt-flow length changed slightly for a particular shale gas reservoir, their influences could be neglected. Then an empirical equation for total water saturation with respect to total porosity and V P -to-V S ratio was obtained according to the experimental data. Finally, the new method was successfully applied to estimate total water saturation in a sequence formation of shale gas reservoirs. Practical applications have shown good agreement with the results calculated by the Archie model.

  19. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Science.gov (United States)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  20. The role of uncertainty in bedrock depth and hydraulic properties on the stability of a variably-saturated slope

    NARCIS (Netherlands)

    Gomes, Guilherme J.C.; Vrugt, Jasper A.; Vargas, Eurípedes A.; Camargo, Julia T.; Velloso, Raquel Q.; van Genuchten, Martinus Th

    We investigate the uncertainty in bedrock depth and soil hydraulic parameters on the stability of a variably-saturated slope in Rio de Janeiro, Brazil. We couple Monte Carlo simulation of a three-dimensional flow model with numerical limit analysis to calculate confidence intervals of the safety

  1. Saturation of Van Allen's belts; Saturation des ceintures de Van Allen

    Energy Technology Data Exchange (ETDEWEB)

    Le Bel, E.; Simonet, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2002-12-01

    The maximum number of electrons that can be trapped in van Allen's belts has been evaluated at CEA-DAM more precisely than that commonly used in the space community. The modelization that we have developed allows to understand the disagreement (factor 50) observed between the measured and predicted electrons flux by US satellites and theory. This saturation level allows sizing-up of the protection on a satellite in case of energetic events. (authors)

  2. Physical extraction of microorganisms from water-saturated, packed sediment.

    Science.gov (United States)

    Ugolini, Fabio; Schroth, Martin H; Bürgmann, Helmut; Zeyer, Josef

    2014-05-01

    Microbial characterization of aquifers should include samples of both suspended and attached microorganisms (biofilms). We investigated the effect of shear, sonication, and heat on the extraction of microorganisms from water-saturated, packed sediment columns containing established biofilms. Shear was studied by increasing flow velocity of the column eluent, sonication by treating the columns with ultrasound at different power levels, and heat by warming up the column eluent to different temperatures. Effluent cell concentrations were used as a measure of extraction efficiency. Dissolved organic carbon and adenosine tri-phosphate (ATP) concentrations were used to corroborate cell-extraction results. Additionally, ATP was used as an indicator of cell-membrane integrity. Extraction quality was determined by comparing terminal-restriction fragment length polymorphism (T-RFLP) profiles of extracted bacterial communities with destructively sampled sediment-community profiles. Sonication and heat increased the extraction efficiency up to 200-fold and yielded communities comparable to the sediment community. These treatments showed high potential for in-situ application in aquifers.

  3. Reaching saturation in patterned source vertical organic field effect transistors

    Science.gov (United States)

    Greenman, Michael; Sheleg, Gil; Keum, Chang-min; Zucker, Jonathan; Lussem, Bjorn; Tessler, Nir

    2017-05-01

    Like most of the vertical transistors, the Patterned Source Vertical Organic Field Effect Transistor (PS-VOFET) does not exhibit saturation in the output characteristics. The importance of achieving a good saturation is demonstrated in a vertical organic light emitting transistor; however, this is critical for any application requiring the transistor to act as a current source. Thereafter, a 2D simulation tool was used to explain the physical mechanisms that prevent saturation as well as to suggest ways to overcome them. We found that by isolating the source facet from the drain-source electric field, the PS-VOFET architecture exhibits saturation. The process used for fabricating such saturation-enhancing structure is then described. The new device demonstrated close to an ideal saturation with only 1% change in the drain-source current over a 10 V change in the drain-source voltage.

  4. Subcritical saturation of the magnetorotational instability through mean magnetic field generation

    Science.gov (United States)

    Xie, Jin-Han; Julien, Keith; Knobloch, Edgar

    2018-03-01

    The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.

  5. Basic hydraulic experiment on the saturated concentration of suspended load due to tsunamis

    Science.gov (United States)

    Takahashi, Tomoyuki; Somekawa, Shiho

    2016-04-01

    When tsunamis arrive in the shallow sea, a huge amount of suspended load is generated by large velocity and strong turbulence. The suspended load causes the geomorphic processes of erosion and deposition. Because the suspended load cannot be increased endlessly, it should have the saturated concentration. Many numerical models of sediment transport due to tsunamis have assumed a constant value of 1% for the saturated concentration empirically. However, it is supposed as a function of velocity. In this study, a hydraulic experiment was carried out to investigate a relationship between velocity and the saturated concentration of suspended load when tsunamis attack. A water circulation pipe used in the experiment was 10 cm in a diameter, 260 cm in length and 50 cm in width. A velocity of water flow in the pipe had been controlled by two pumps and two valves. It was changed from 0.24 to 1.22 m/s. Various amounts of sand was spread on the bottom of pipe. The amount of sand was changed from 0.1 to 10% as converted in the concentration of suspended load if all sand suspended. A diameter and a density of the sand were 0.267 mm and 2.64 x 103 kg/m^3. A condition of sediment transport in the pipe was recorded by video camera from a transparent window at the side of pipe. The condition was judged as all sand particles were suspended or not. The former condition indicates that the concentration of suspended load is saturated and the latter does it is not saturated. When velocity was smaller than 0.47 m/s, there was no suspended load because of a weak tractive force. When velocity became larger, the suspended load was generated and the concentration also became higher. However, the concentration had the upper limit and surplus sand appeared on the bed of pipe when velocity became much larger. The condition gave the saturated concentration of suspended load. When velocity was 0.665 m/s, the saturated concentration was smaller than 1% which is used in many numerical simulations

  6. Saturated fat -a never ending story?

    Science.gov (United States)

    Svendsen, Karianne; Arnesen, Erik; Retterstøl, Kjetil

    2017-01-01

    Science has no clear message regarding health effects of saturated fats, it seems. Different RCTs, prospective cohort studies and meta-analysis have led to contrasting conclusions. The aim of the present commentary is to discuss some possible reasons for an apparently never-ending fat controversy. They are of a purely scientific nature, which is important to recognize, but unfortunately hard to overcome. First is the placebo problem. In pharmaceutical science, evidence-based medicine is often synonymous with data on verified medical events from long-lasting double-blind randomized placebo controlled trials. In nutritional science the lack of double-blind design and lack of placebo food generate less conclusive data than those achieved in pharmaceutical science. Some scientists may apply the same type of scientific criteria used to evaluate the effects of drugs for foods. This leaves an impression of insufficient data since in this respect the fundamental criteria for evidence based medicine are not present. The next scientific problem is the energy balance equation. In contrast to pharmaceuticals, nutrients contain energy. An increased intake of one nutrient will lead to a decreased intake of another. The effect of change in only one nutrient is then difficult to isolate. Lastly, in nutritional science, generalizability is difficult compared to pharmaceutical science. Food culture interferes with lifestyle and food habits change over time. In conclusion, all available knowledge, from molecular experiments to population studies, must be taken in to account, to convert scientific data into dietary recommendations.

  7. Assaying Carcinoembryonic Antigens by Normalized Saturation Magnetization

    Science.gov (United States)

    Huang, Kai-Wen; Chieh, Jen-Jie; Shi, Jin-Cheng; Chiang, Ming-Hsien

    2015-07-01

    Biofunctionalized magnetic nanoparticles (BMNs) that provide unique advantages have been extensively used to develop immunoassay methods. However, these developed magnetic methods have been used only for specific immunoassays and not in studies of magnetic characteristics of materials. In this study, a common vibration sample magnetometer (VSM) was used for the measurement of the hysteresis loop for different carcinoembryonic antigens (CEA) concentrations ( Φ CEA) based on the synthesized BMNs with anti-CEA coating. Additionally, magnetic parameters such as magnetization ( M), remanent magnetization ( M R), saturation magnetization ( M S), and normalized parameters (Δ M R/ M R and Δ M S/ M S) were studied. Here, Δ M R and Δ M s were defined as the difference between any ΦCEA and zero Φ CEA. The parameters M, Δ M R, and Δ M S increased with Φ CEA, and Δ M S showed the largest increase. Magnetic clusters produced by the conjugation of the BMNs to CEAs showed a Δ M S greater than that of BMNs. Furthermore, the relationship between Δ M S/ M S and Φ CEA could be described by a characteristic logistic function, which was appropriate for assaying the amount of CEAs. This analytic Δ M S/ M S and the BMNs used in general magnetic immunoassays can be used for upgrading the functions of the VSM and for studying the magnetic characteristics of materials.

  8. Sensorial saturation and neonatal pain: a review.

    Science.gov (United States)

    Locatelli, Chiara; Bellieni, Carlo Valerio

    2017-08-23

    Sensorial saturation (SS) is an analgesic approach to babies' pain that includes three types of stimulations: oral sugar, massage and caregivers' voice. The aim of this review is to assess its efficacy. We performed an analysis of scientific literature from 2001 to 2017, retrieving those clinical trials where SS had been compared with other analgesic treatments during procedural pain in babies. We retrieved 14 studies. Pain sources were heel-prick in nine, eye examination and intramuscular shots in two each, and endotracheal aspiration in one. SS was the most effective treatment in all cases, except in endotracheal suctioning. No drawbacks were reported in any study using SS. SS is a safe and effective approach to neonatal pain due to heel-prick, more effective than oral sucrose or glucose in both term and preterm babies; it seems also effective in other types of acute procedural pain like eye examination or intramuscular injections, but more studies are needed to confirm these preliminary data. More studies are also needed to test SS efficacy for other procedures, and for older infants.

  9. Recovery of Biot's transition frequency of air-saturated poroelastic media using vibroacoustic spectroscopy

    Science.gov (United States)

    Ogam, Erick; Fellah, Z. E. A.

    2014-08-01

    The transition frequency marks the passage from low-frequency viscosity dominated flow to high-frequency inertia dominated one in porous media. It was one of the principal characteristics predicted by Biot's theory. The transition frequency has been a theoretical concept for which only theoretical expressions have been developed in recent years. A vibroacoustic spectroscopy experimental method to recover the characteristic frequency (fC) and for gaining insight into the frequency response of fluid-saturated porous materials has been developed. Long thin air-saturated porous rods solicited mechanically are employed for the experiment. Changes in the fluid flow profile with excitation frequency results in relative motion between the skeleton and the saturating-fluid. This enhances the frictional viscous forces, which, in turn, increases damping of the skeletal motion. These transitions are signaled by observable cues in the acquired laser-vibrometry spectrum of the rods' longitudinal vibration mode patterns. The resonance peaks exhibit sudden attenuation (increase in damping) and are interrupted at the transition frequencies evoking a change of propagation medium. These patterns are compared with those of two plains, single phase material (viscoelastic) rods whose modes stand out as regularly spaced moderately damped peaks.

  10. Predicting saturated hydraulic conductivity using soil morphological properties

    Directory of Open Access Journals (Sweden)

    Gülay Karahan

    2016-01-01

    Full Text Available Many studies have been conducted to predict soil saturated hydraulic conductivity (Ks by parametric soil properties such as bulk density and particle-size distribution. Although soil morphological properties have a strong effect on Ks, studies predicting Ks by soil morphological properties such as type, size, and strength of soil structure; type, orientation and quantity of soil pores and roots and consistency are rare. This study aimed at evaluating soil morphological properties to predict Ks. Undisturbed soil samples (15 cm length and 8.0 cm id. were collected from topsoil (0-15 cm and subsoil (15-30 cm (120 samples with a tractor operated soil sampler at sixty randomly selected sampling sites on a paddy field and an adjecent grassland in Central Anatolia (Cankırı, Turkey. Synchronized disturbed soil samples were taken from the same sampling sites and sampling depths for basic soil analyses. Saturated hydraulic conductivity was measured on the soil columns using a constant-head permeameter. Following the Ks measurements, the upper part of soil columns were covered to prevent evaporation and colums were left to drain in the laboratory. When the water flow through the column was stopped, a subsample were taken for bulk density and then soil columns were disturbed for describing the soil morphological properties. In addition, soil texture, bulk density, pH, field capacity, wilting point, cation exchange capacity, specific surface area, aggregate stability, organic matter, and calcium carbonate were measured on the synchronized disturbed soil samples. The data were divided into training (80 data values and validation (40 data values sets. Measured values of Ks ranged from 0.0036 to 2.14 cmh-1 with a mean of 0.86 cmh-1. The Ks was predicted from the soil morphological and parametric properties by stepwise multiple linear regression analysis. Soil structure class, stickiness, pore-size, root-size, and pore-quantity contributed to the Ks prediction

  11. Can Polyphosphate Biochemistry Affect Biological Apatite Saturation?

    Science.gov (United States)

    Omelon, S. J.; Matsuura, N.; Gorelikov, I.; Wynnyckyj, C.; Grynpas, M. D.

    2010-12-01

    Phosphorus (P) is an important and limiting element for life. One strategy for storing ortho phosphates (Pi) is polymerization. Polymerized Pi's (polyphosphates: (PO3-)n: polyPs) serve as a Pi bank, as well as a catiion chelator, energy source, & regulator of responses to stresses in the stationary phase of culture growth and development1. PolyP biochemistry has been investigated in yeasts, bacteria & plants2. Bigeochemical cycling of P includes the condensation of Pi into pyro (P2O7-4), & polyPs, & the release of Pi from these compounds by the hydrolytic degradation of Pi from phosphomonoester bonds. Alkaline phosphatase (ALP) is one of the predominate enzymes for regenerating Pi in aquatic systems3, & it cleaves Pi from polyPs. ALP is also the enzyme associated with apatite biomineralization in vertebrates4. PolyP was proposed to be the ALP substrate in bone mineralization5. Where calcium ions are plentiful in many aquatic environments, there is no requirement for aquatic life to generate Ca-stores. However, terrestrial vertebrates benefit from a bioavailable Ca-store such as apatite. The Pi storage strategy of polymerizing PO4-3 into polyPs dovetails well with Ca-banking, as polyPs sequester Ca, forming a neutral calcium polyphosphate (Ca-polyP: (Ca(PO3)2)n) complex. This neutral complex represents a high total [Ca+2] & [PO4-3], without the threat of inadvertent apatite precipitation, as the free [Ca+2] & [PO4-3], and therefore apatite saturation, are zero. Recent identification of polyP in regions of bone resorption & calcifying cartilage5 suggests that vertebrates may use polyP chemistry to bank Ca+2 and PO4-3. In vitro experiments with nanoparticulate Ca-polyP & ALP were undertaken to determine if carbonated apatite could precipitate from 1M Ca-polyP in Pi-free “physiological fluid” (0.1 M NaCl, 2 mM Ca+2, 0.8 mM Mg+2, pH ~8.0 ±0.5, 37 °C), as this is estimated to generate the [Ca+2] & [PO4-3] required to form the apatite content of bone tissue

  12. Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)

    2004-05-01

    We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.

  13. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawmoto, Ken; Møldrup, Per

    2012-01-01

    A series of column experiments was conducted to investigate the transport and deposition of variably charged colloids in saturated porous media. Soil colloids with diameters volcanic-ash soil from Nishi-Tokyo (referred to here as VAS colloids) and a red-yellow soil from...... Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed....... Breakthrough curves and deposition profiles for soil colloids were strong functions of the hydrodynamics, solution pH, and surface charge of the colloids and sand grains. Greater deposition was typical for lower flow rates and lower pH. The deposition of VAS colloids in both sands under low-pH conditions...

  14. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Tai -Sheng [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important

  15. Transdentinal cytotoxicity of experimental adhesive systems of different hydrophilicity applied to ethanol-saturated dentin.

    Science.gov (United States)

    Bianchi, Luciana; Ribeiro, Ana Paula Dias; de Oliveira Carrilho, Marcela Rocha; Pashley, David H; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2013-09-01

    The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. MDPC-23 cells were seeded onto the pulpal side of the discs, incubated for 48h. The EASs with increasing hydrophilicity (R1, R2, R3 and R4) were applied to the occlusal side after etching and saturation of etched dentin with water or ethanol. R0 (no adhesive) served as controls. R1 is a non-solvated hydrophobic blend, R2 is similar to a simplified etch-and-rinse adhesive system and R3 and R4 are similar to self-etching adhesives. After 24h, cell metabolism was evaluated by MTT assay (n=8 discs) and cell morphology was examined by SEM (n=2 discs). Type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after 10s or 20s of photoactivation. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests (α=0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R2, R3 and R4 compared with water saturation, although R2 and R3 induced higher SDH production. Photoactivation for 20s significantly improved the %DC of all EASs compared with 10s. A significant positive correlation was observed between the degree of hydrophilicity and %DC. In conclusion, except for R1, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.

    Science.gov (United States)

    Delin, Geoffrey N; Herkelrath, William N

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  17. Quantify fluid saturation in fractures by light transmission technique and its application

    Science.gov (United States)

    Ye, S.; Zhang, Y.; Wu, J.

    2016-12-01

    The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.

  18. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Olof Birna Olafsdottir

    Full Text Available To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1. Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min and then again room air (10 minutes recovery.Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001 and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001. The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001. The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001 and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001.Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.

  19. Prioritized Control Allocation for Quadrotors Subject to Saturation

    NARCIS (Netherlands)

    Smeur, E.J.J.; de Wagter, C.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    This paper deals with the problem of actuator saturation for INDI (Incremental Nonlinear Dynamic Inversion) controlled flying vehicles. The primary problem that arises from actuator saturation for quadrotors, is that of arbitrary control objective realization. We have integrated the weighted least

  20. Polar spots and stellar spindown: is dynamo saturation needed?

    NARCIS (Netherlands)

    Solanki, S. K.; Motamen, S.; Keppens, R.

    1997-01-01

    Dynamo saturation is often invoked when calculating the rotational evolution of cool stars. At rapid rotation rates a saturated dynamo reduces the angular momentum carried away by the stellar wind. This, in turn, may explain the high rotation rates present in the distribution of rotation periods in

  1. Polar spots and stellar spindown: Is dynamo saturation needed?

    NARCIS (Netherlands)

    Solanki, S. K.; Motamen, S.; Keppens, R.

    1997-01-01

    Dynamo saturation is often invoked when calculating the rotational evolution of cool stars. At rapid rotation rates a saturated dynamo reduces the angular momentum carried away by the stellar wind. This, in turn, may explain the high rotation rates present in the distribution of rotation periods in

  2. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  3. Renal vein oxygen saturation in renal artery stenosis

    DEFF Research Database (Denmark)

    Nielsen, K; Rehling, M; Henriksen, Jens Henrik Sahl

    1992-01-01

    Renal vein oxygen-saturation was measured in 56 patients with arterial hypertension and unilateral stenosis or occlusion of the renal artery. Oxygen-saturation in blood from the ischaemic kidney (84.4%, range 73-93%) was significantly higher than that from the 'normal' contralateral kidney (81...

  4. Comparison of empirical models and laboratory saturated hydraulic ...

    African Journals Online (AJOL)

    Numerous methods for estimating soil saturated hydraulic conductivity exist, which range from direct measurement in the laboratory to models that use only basic soil properties. A study was conducted to compare laboratory saturated hydraulic conductivity (Ksat) measurement and that estimated from empirical models.

  5. Stability and stabilization of linear systems with saturating actuators

    CERN Document Server

    Tarbouriech, Sophie; Gomes da Silva Jr, João Manoel; Queinnec, Isabelle

    2011-01-01

    Gives the reader an in-depth understanding of the phenomena caused by the more-or-less ubiquitous problem of actuator saturation. Proposes methods and algorithms designed to avoid, manage or overcome the effects of actuator saturation. Uses a state-space approach to ensure local and global stability of the systems considered. Compilation of fifteen years' worth of research results.

  6. Excitable solitons in a semiconductor laser with a saturable absorber

    Science.gov (United States)

    Turconi, Margherita; Prati, Franco; Barland, Stéphane; Tissoni, Giovanna

    2015-11-01

    Self-pulsing cavity solitons may exist in a semiconductor laser with an intracavity saturable absorber. They show locally the passive Q -switching behavior that is typical of lasers with saturable absorbers in the plane-wave approximation. Here we show that excitable cavity solitons are also possible in a suitable parameter range and characterize their excitable dynamics and properties.

  7. Saturated hydraulic conductivity values of some forest soils of ...

    African Journals Online (AJOL)

    A simple falling-head method is presented for the laboratory determination of saturated hydraulic conductivity of some forest soils of Ghana. Using the procedure, it was found that saturated hydraulic conductivity was positively and negatively correlated with sand content and clay content, respectively, both at P = 0.05 level.

  8. Significance of saturation index of certain clay minerals in shallow ...

    Indian Academy of Sciences (India)

    In reality, a number of kinetic reasons exist that may ..... of SI with increase of pH. This increase of pH reduces the availability of H+ for ion exchange. Group B: The SI of Gibbsite ranges from near saturation to saturation. This may be due to the .... tion of ions in solution which emphasizes increased contribution of species with ...

  9. Serum albumin--a non-saturable carrier

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B; Larsen, F G

    1984-01-01

    The shape of binding isotherms for sixteen ligands to human serum albumin showed no signs of approaching saturation at high ligand concentrations. It is suggested that ligand binding to serum albumin is essentially different from saturable binding of substrates to enzymes, of oxygen to haemoglobi...

  10. Retinal oxygen saturation in patients with systemic hypoxemia

    DEFF Research Database (Denmark)

    Traustason, Sindri; Jensen, Annette Schophuus; Arvidsson, Henrik Sven

    2011-01-01

    To assess spectrophotometric oximetry across a broad range of arterial saturation levels and to study the effect of chronic systemic hypoxemia on retinal oxygen extraction.......To assess spectrophotometric oximetry across a broad range of arterial saturation levels and to study the effect of chronic systemic hypoxemia on retinal oxygen extraction....

  11. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands

    Science.gov (United States)

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.

  12. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands.

    Science.gov (United States)

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D; Bastow, Trevor P; Rayner, John L; Davis, Greg B

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time. Copyright © 2016. Published by Elsevier B.V.

  13. Numerical simulations of stick-slip in fluid saturated granular fault gouge

    Science.gov (United States)

    Dorostkar, O.; Johnson, P. A.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2016-12-01

    Fluids play a key role in determining the frictional strength and stability of faults. For example, fluid flow and fluid-solid interaction in fault gouge can trigger seismicity, alter earthquake nucleation properties and cause fault zone weakening. We present results of 3D numerical simulations of stick-slip behavior in dry and saturated granular fault gouge. In the saturated case, the gouge is fully saturated and drainage is possible through the boundaries. We model the solid phase (particles) with the discrete element method (DEM) while the fluid is described by the Navier-Stokes equations and solved by computational fluid dynamics (CFD). In our model, granular gouge is sheared between two rough plates under boundary conditions of constant normal stress and constant shearing velocity at the layer boundaries. A phase-space study including shearing velocity and normal stress is taken to identify the conditions for stick-slip regime. We analyzed slip events for dry and saturated cases to determine shear stress drop, released kinetic energy and compaction. The presence of fluid tends to cause larger slip events. We observe a close correlation between the kinetic energy of the particles and of the fluid. In short, during slip, fluid flow induced by the failure and compaction of the granular system, mobilizes the particles, which increases their kinetic energy, leading to greater slip. We further observe that the solid-fluid interaction forces are equal or larger than the solid-solid interaction forces during the slip event, indicating the important influence of the fluid on the granular system. Our simulations can explain the behaviors observed in experimental studies and we are working to apply our results to tectonic faults.

  14. Dynamics of saturated energy condensation in two-dimensional turbulence.

    Science.gov (United States)

    Chan, Chi-kwan; Mitra, Dhrubaditya; Brandenburg, Axel

    2012-03-01

    In two-dimensional forced Navier-Stokes turbulence, energy cascades to the largest scales in the system to form a pair of coherent vortices known as the Bose condensate. We show, both numerically and analytically, that the energy condensation saturates and the system reaches a statistically stationary state. The time scale of saturation is inversely proportional to the viscosity and the saturation energy level is determined by both the viscosity and the force. We further show that, without sufficient resolution to resolve the small-scale enstrophy spectrum, numerical simulations can give a spurious result for the saturation energy level. We also find that the movement of the condensate is similar to the motion of an inertial particle with an effective drag force. Furthermore, we show that the profile of the saturated coherent vortices can be described by a Gaussian core with exponential wings.

  15. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments.

    Science.gov (United States)

    Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I

    2014-06-17

    The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

  16. Saturated phosphatidic acids mediate saturated fatty acid–induced vascular calcification and lipotoxicity

    Science.gov (United States)

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L.; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M.; Kuro-o, Makoto; Miyazaki, Makoto

    2015-01-01

    Recent evidence indicates that saturated fatty acid–induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  17. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    Science.gov (United States)

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  18. Changes in air saturation and air water interfacial area during surfactant-enhanced air sparging in saturated sand

    Science.gov (United States)

    Kim, Heonki; Choi, Kyong-Min; Moon, Ji-Won; Annable, Michael D.

    2006-11-01

    Reduction in the surface tension of groundwater, prior to air sparging for removal of volatile organic contaminant from aquifer, can greatly enhance the air content and the extent of influence when air sparging is implemented. However, detailed information on the functional relationship between water saturation, air-water contact area induced by air sparging and the surface tension of water has not been available. In this study, the influence of adding water-soluble anionic surfactant (sodium dodecyl benzene sulfonate) into groundwater before air sparging on the air-water interfacial area and water saturation was investigated using a laboratory-scale sand packed column. It was found that water saturation decreases with decreasing surface tension of water until it reaches a point where this trend is reversed so that water saturation increases with further decrease in the surface tension. The lowest water saturation of 0.58 was achieved at a surface tension of 45.4 dyn/cm, which is considered as the optimum surface tension for maximum de-saturation for the initially water-saturated sand used in this study. The air-water contact area generated in the sand column due to air sparging was measured using a gaseous interfacial tracer, n-decane, and was found to monotonically increase with decreasing water saturation. The results of this study provide useful design information for surfactant-enhanced air sparging removal of volatile contaminants from aquifers.

  19. Modelling carbon and nitrogen turnover in variably saturated soils

    Science.gov (United States)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  20. Flow Rounding

    OpenAIRE

    Kang, Donggu; Payor, James

    2015-01-01

    We consider flow rounding: finding an integral flow from a fractional flow. Costed flow rounding asks that we find an integral flow with no worse cost. Randomized flow rounding requires we randomly find an integral flow such that the expected flow along each edge matches the fractional flow. Both problems are reduced to cycle canceling, for which we develop an $O(m \\log(n^2/m))$ algorithm.

  1. Saturated fats: a perspective from lactation and milk composition.

    Science.gov (United States)

    German, J Bruce; Dillard, Cora J

    2010-10-01

    For recommendations of specific targets for the absolute amount of saturated fat intake, we need to know what dietary intake is most appropriate? Changing agricultural production and processing to lower the relative quantities of macronutrients requires years to accomplish. Changes can have unintended consequences on diets and the health of subsets of the population. Hence, what are the appropriate absolute amounts of saturated fat in our diets? Is the scientific evidence consistent with an optimal intake of zero? If not, is it also possible that a finite intake of saturated fats is beneficial to overall health, at least to a subset of the population? Conclusive evidence from prospective human trials is not available, hence other sources of information must be considered. One approach is to examine the evolution of lactation, and the composition of milks that developed through millennia of natural selective pressure and natural selection processes. Mammalian milks, including human milk, contain 50% of their total fatty acids as saturated fatty acids. The biochemical formation of a single double bond converting a saturated to a monounsaturated fatty acid is a pathway that exists in all eukaryotic organisms and is active within the mammary gland. In the face of selective pressure, mammary lipid synthesis in all mammals continues to release a significant content of saturated fatty acids into milk. Is it possible that evolution of the mammary gland reveals benefits to saturated fatty acids that current recommendations do not consider?

  2. Elastic velocities of partially gas-saturated unconsolidated sediments

    Science.gov (United States)

    Lee, M.W.

    2004-01-01

    Fluid in sediments significantly affects elastic properties of sediments and gas in the pore space can be identified by a marked reduction of P-wave velocity or a decrease of Poisson's ratio. The elastic properties of gas-saturated sediments can be predicted by the classical Biot-Gassmann theory (BGT). However, parameters for the BGT such as the Biot coefficient or moduli of dry frame of unconsolidated and high porosity sediments are not readily available. Dependence of velocities on differential pressure or porosity for partially gas-saturated sediments is formulated using properties derived from velocities of water-saturated sediments. Laboratory samples for unconsolidated and consolidated sediments and well log data acquired for unconsolidated marine sediments agree well with the predictions. However, because the P-wave velocity depends highly on how the gas is saturated in the pore space such as uniform or patch, the amounts of gas estimated from the P-wave velocity contains high uncertainty. The modeled Vp/Vs ratio of partially gas-saturated sediment using the patch distribution is usually greater than 1.6, whereas the ratio modeled assuming a uniform distribution is about 1.6. Thus, Poisson's ratio or Vp/Vs ratio may be used to differentiate patch from uniform saturation, but differences between various models of patch saturation cannot be easily identified. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Red cell aspartate aminotransferase saturation with oral pyridoxine intake

    Directory of Open Access Journals (Sweden)

    Marilena Oshiro

    Full Text Available CONTEXT AND OBJECTIVE: The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. DESIGN AND SETTING: Controlled trial, in Hematology Division of Instituto Adolfo Lutz. METHODS: Red cell aspartate aminotransferase activity was assayed (before and after in normal volunteers who were given oral pyridoxine for 15-18 days (30 mg, 100 mg and 200 mg daily. In vitro study of blood from seven normal volunteers was also performed, with before and after assaying of aspartate aminotransferase activity. RESULTS: The in vivo study showed increasing aspartate aminotransferase saturation with increasing pyridoxine doses. 83% saturation was reached with 30 mg daily, 88% with 100 mg, and 93% with 200 mg after 20 days of oral supplementation. The in vitro study did not reach 100% saturation. CONCLUSIONS: Neither in vivo nor in vitro study demonstrated thorough aspartate aminotransferase saturation with its coenzyme pyridoxal phosphate in red cells, from increasing pyridoxine supplementation. However, the 200-mg dose could be employed safely in vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome treatment. Although maximum saturation in circulating red cells is not achieved, erythroblasts and other nucleated and cytoplasmic organelles containing cells certainly will reach thorough saturation, which possibly explains the results obtained in these diseases.

  4. Saturation Detection-Based Blocking Scheme for Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-07-01

    Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.

  5. On the propagation of a coupled saturation and pressure front

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  6. Dynamics of Saturated Energy Condensation in Two-Dimensional Turbulence

    CERN Document Server

    Chan, Chi-kwan; Brandenburg, Axel

    2011-01-01

    We derive and numerically confirm that the saturation of energy condensation in two-dimensional turbulence is governed by the balance between forcing and small-scale dissipation. The time scale of saturation is inversely proportional to the viscosity but the saturation energy level is determined by both viscosity and the forcing scale. It is shown that, because the energy dissipation is proportional to the enstrophy, which itself is a conserved quantity in the ideal case, it is necessary to resolve the enstrophy spectrum to achieve numerical consistency. We also find that the movement of the condensate vortices can be described as Brownian motion of an inertial particle.

  7. Femtosecond Yb:YAG laser using semiconductor saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Hoenninger, C.; Zhang, G.; Keller, U. [Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, ETH Hoenggerberg--HPT, CH-8093 Zuerich (Switzerland); Giesen, A. [Institut fuer Strahlwerkzeuge, Universitaet Stuttgart, Pfaffenwaldring 43, D-70569 Stuttgart (Germany)

    1995-12-01

    We demonstrate a passively mode-locked femtosecond Yb:YAG laser using different semiconductor saturable absorber devices, a high-finesse and a low-finesse antiresonant Fabry{endash}Perot saturable absorber. We achieved pulses as short as 540 fs with dispersion compensation and 1.7-ps pulses without dispersion compensation. We also mode locked the laser at either 1.03 or 1.05 {mu}m by adjusting the band gap and antiresonance wavelength design of the antiresonant Fabry{endash}Perot saturable absorber. {copyright} {ital 1995 Optical Society of America.}

  8. Investigation of saturation effects in ceramic phosphors for laser lighting

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    We report observation of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion....... It is shown, that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on incident power and spot size diameter...

  9. Influence of obstacles on bubbles rising in water-saturated sand

    OpenAIRE

    Poryles Raphaël; Varas Germán; Vidal Valérie

    2017-01-01

    This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which di...

  10. Continuous-time random-walk model of transport in variably saturated heterogeneous porous media.

    Science.gov (United States)

    Zoia, Andrea; Néel, Marie-Christine; Cortis, Andrea

    2010-03-01

    We propose a unified physical framework for transport in variably saturated porous media. This approach allows fluid flow and solute migration to be treated as ensemble averages of fluid and solute particles, respectively. We consider the cases of homogeneous and heterogeneous porous materials. Within a fractal mobile-immobile continuous time random-walk framework, the heterogeneity will be characterized by algebraically decaying particle retention times. We derive the corresponding (nonlinear) continuum-limit partial differential equations and we compare their solutions to Monte Carlo simulation results. The proposed methodology is fairly general and can be used to track fluid and solutes particles trajectories for a variety of initial and boundary conditions.

  11. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.

    Science.gov (United States)

    Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi

    2015-01-06

    CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.

  12. High-resolution measurement of pore saturation and colloid removal efficiency in quartz sand using fluorescence imaging.

    Science.gov (United States)

    Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise

    2007-12-15

    Colloid deposition in unsaturated, nonuniform porous media is poorly explained by current models and difficult to measure using breakthrough curves and retained mass profiles. We present new methods which enable time-lapse fluorescence imaging to quantify variations in pore saturation, theta, and colloid deposition in 2D, nonuniform unsaturated flow fields. Calibration experiments revealed direct proportionality between fluorescence F and theta in 20/30 mesh quartz sand. Analysis of breakthrough data in fluorescence images allows quantification of the mean mobile concentration, mean deposition rate, and hence the colloid removal efficiency eta directly from data at the pixel-scale throughoutthe flow field. We imaged carboxylate-modified latex microspheres from a point source in saturated flow and unsaturated flow across a capillary fringe at 10(-3), 10(-2), and 10(-1) M NaCl. Total numbers of colloids deposited and values of eta increased with ionic strength. We modeled the observed variations in eta with theta to estimate the partitioning of colloid deposition between air-water and solid-water interfaces. In the broad saturation range 0.2 < theta < 1, our results suggest that only at the lowest ionic strength, where deposition at solid-water interfaces was strongly unfavorable, did colloid deposition associated with air-water interfaces significantly influence the total colloid removal.

  13. Assessing controls on perched saturated zones beneath the Idaho Nuclear Technology and Engineering Center, Idaho

    Science.gov (United States)

    Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.

    2011-01-01

    Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and

  14. Characterization of trapped gas saturation and heterogeneity in core samples using miscible-displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H. [USDOE Morgantown Energy Technology Center, WV (United States); Jikich, S.A. [EG& G Technical Services of West Virginia, Inc. (United States)

    1994-12-31

    Trapped gas saturation and permeability heterogeneity were evaluated in Berea cores at reservoir conditions, using standard miscible displacement experiments, with and without surfactants. Pressure and production history were influenced by core heterogeneity and foam lamellae formation when aqueous surfactant was present in the core. A simple dispersion model and a three-coefficient dispersion-capacitance model (Coates-Smith) were fit to the experimental data. The dispersion-capacitance model successfully matched the experiments in which foam lamella formed, while the simple dispersion model was used only for determining initial core flow heterogeneity. The objective of the dispersion-capacitance model was to estimate trapped gas saturations; however longitudinal dispersion and mass transfer also were examined. The results show that the dispersion-capacitance model accurately fits trapped gas saturation controlled by rock heterogeneities and foam lamellae for lamella generating mechanisms that allow a continuous gas phase (leave-behind lamellae). The practical applications resulting from this study can aid in core sample selection and scaling short laboratory corefloods to field dimensions for applications to foam stimulation and underground storage of natural gas.

  15. PHT3D-UZF: A reactive transport model for variably-saturated porous media

    Science.gov (United States)

    Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric; Prommer, H.

    2016-01-01

    A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.

  16. Using historical biogeography to test for community saturation.

    Science.gov (United States)

    Pinto-Sánchez, Nelsy Rocío; Crawford, Andrew J; Wiens, John J

    2014-09-01

    Saturation is the idea that a community is effectively filled with species, such that no more can be added without extinctions. This concept has important implications for many areas of ecology, such as species richness, community assembly, invasive species and climate change. Here, we illustrate how biogeography can be used to test for community saturation, when combined with data on local species richness, phylogeny and climate. We focus on a clade of frogs (Terrarana) and the impact of the Great American Biotic Interchange on patterns of local richness in Lower Middle America and adjacent regions. We analyse data on species richness at 83 sites and a time-calibrated phylogeny for 363 species. We find no evidence for saturation, and show instead that biotic interchange dramatically increased local richness in the region. We suggest that historical biogeography offers thousands of similar long-term natural experiments that can be used to test for saturation. © 2014 John Wiley & Sons Ltd/CNRS.

  17. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  18. Graph-analytical method for determining saturation in oil formations

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanova, E.E.; Fedortsov, V.K.; Ismaylov, K.K.

    1980-01-01

    Factual material is generalized for a large number of oil fields of the Soviet Union for which probability-statistical models have been selected. A graph-analytical method is developed for determining the saturation pressure of oil by gas.

  19. Delayed system control in presence of actuator saturation

    Directory of Open Access Journals (Sweden)

    A. Mahjoub

    2014-09-01

    Full Text Available The paper is introducing a new design method for systems’ controllers with input delay and actuator saturations and focuses on how to force the system output to track a reference input not necessarily saturation-compatible. We propose a new norm based on the way we quantify tracking performance as a function of saturation errors found using the same norm. The newly defined norm is related to signal average power making possible to account for most common reference signals e.g. step, periodic. It is formally shown that, whatever the reference shape and amplitude, the achievable tracking quality is determined by a well defined reference tracking mismatch error. This latter depends on the reference rate and its compatibility with the actuator saturation constraint. In fact, asymptotic output-reference tracking is achieved in the presence of constraint-compatible step-like references.

  20. Double storey three phase saturated cores fault current limiter

    Science.gov (United States)

    Wolfus, Y.; Nikulshin, Y.; Friedman, A.; Yeshurun, Y.

    2014-05-01

    A novel saturated-cores Fault-Current-Limiter (FCL) configuration is described. This FCL is based on two parallel planes of iron rectangular cores, on which three-phase coils are mounted and connected in series to the grid. Two DC coils are mounted in between the planes on perpendicular core limbs connecting the two AC planes. The DC coils are set to magnetically saturate the AC cores. The transition to three-dimensional, double-storey design enables handling three-phase symmetrical faults while offering better decoupling between the AC and DC circuits. At the same time, it shortens the AC limb lengths and enables deeper magnetic saturation levels in comparison to other saturated cores FCL designs. Hence, this FCL configuration exhibits lower insertion impedance and higher ratio of fault to nominal state impedance in comparison with other designs.

  1. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  2. Saturation of entropy production in quantum many-body systems

    Science.gov (United States)

    Kaneko, Kazuya; Iyoda, Eiki; Sagawa, Takahiro

    2017-12-01

    Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. Here, we address this problem on the basis of quantum many-body physics, and discuss how the entropy production saturates in isolated quantum systems under unitary dynamics. First, we rigorously prove that the entropy production does indeed saturate in the long time regime, even when the total system is in a pure state. Second, we discuss the non-negativity of the entropy production at saturation, implying the second law of thermodynamics. This is based on the eigenstate thermalization hypothesis, which states that even a single energy eigenstate is thermal. We also numerically demonstrate that the entropy production saturates at a non-negative value even when the initial state of a heat bath is a single energy eigenstate. Our results reveal fundamental properties of the entropy production in isolated quantum systems at late times.

  3. Retinal oxygen saturation before and after glaucoma surgery.

    Science.gov (United States)

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. On the Stability Criterion in a Saturated Atmosphere

    National Research Council Canada - National Science Library

    Richiardone, R; Giusti, F

    2001-01-01

      The expression of the moist buoyancy frequency indicated that it is not completely correct ot use the moist adiabatic lapse rate as a static stability parameter of a saturated atmosphere, because...

  5. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    Science.gov (United States)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered

  6. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  7. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  8. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  9. Succinct synthesis of saturated hydroxy fatty acids and

    DEFF Research Database (Denmark)

    Kaspersen, Mads Holmgaard; Jenkins, Laura; Dunlop, Julia

    2017-01-01

    Saturated hydroxy fatty acids make up a class of underexplored lipids with potentially interesting biological activities. We report a succinct and general synthetic route to saturated hydroxy fatty acids hydroxylated at position 6 or higher, and exemplify this with the synthesis of hydroxylauric...... acids. All regioisomers of hydroxylauric acids were tested on free fatty acid receptors FFA1, FFA4 and GPR84. The results show that the introduction of a hydroxy group and its position have a high impact on receptor activity....

  10. Facile and Green Synthesis of Saturated Cyclic Amines.

    Science.gov (United States)

    Hameed, Arruje; Javed, Sadia; Noreen, Razia; Huma, Tayyaba; Iqbal, Sarosh; Umbreen, Huma; Gulzar, Tahsin; Farooq, Tahir

    2017-10-12

    Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  11. Facile and Green Synthesis of Saturated Cyclic Amines

    Directory of Open Access Journals (Sweden)

    Arruje Hameed

    2017-10-01

    Full Text Available Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  12. Biodegradation of crude oil saturated fraction supported on clays.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  13. The relation between oxygen saturation level and retionopathy of prematurity

    Directory of Open Access Journals (Sweden)

    Mohammad Gharavi Fard

    2016-03-01

    Full Text Available Introduction: Oxygen therapy used for preterm infant disease might be associated with oxygen toxicity or oxidative stress. The exact oxygen concentration to control and maintain the arterial oxygen saturation balance is not certainly clear. We aimed to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods: PubMed was searched for obtaining the relevant articles. A total of seven articles were included after studying the titles, abstracts, and the full text of retrieved articles at initial search. Inclusion criteria were all the English language human clinical randomized controlled trials with no time limitation, which studied the efficacy of low versus high oxygen saturation measured by pulse oximetry in preterm infants.Result: It can be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of ≤28 weeks in preterm neonates. This relation has been demonstrated in five large clinical trials including three Boost trials, COT, and Support.Discussion: Applying higher concentrations of oxygen supplementations at mesentural age ≥32 weeks reduced the development of retinopathy of prematurity. Lower concentrations of oxygen saturation decreased the incidence and the development of retinopathy of prematurity in preterm neonates while applied soon after the birth.Conclusions: Targeting levels of oxygen saturation in the low or high range should be performed cautiously with attention to the postmesentural age in preterm infants at the time of starting the procedures.

  14. Dufour and Soret Effects on Melting from a Vertical Plate Embedded in Saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2013-01-01

    Full Text Available Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer in mixed convection boundary layer flow with aiding and opposing external flows from a vertical plate embedded in a liquid saturated porous medium with melting are investigated. The resulting system of nonlinear ordinary differential equations is solved numerically using Runge Kutta-Fehlberg with shooting techniques. Numerical results are obtained for the velocity, temperature, and concentration distributions, as well as the Nusselt number and Sherwood number for several values of the parameters, namely, the buoyancy parameter, melting parameter, Dufour effect, Soret effect, and Lewis number. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed.

  15. Central venous oxygen saturation does not correlate with the venous oxygen saturation at the surgical site during abdominal surgery.

    Science.gov (United States)

    Weinrich, Malte; Scheingraber, Stefan; Stephan, Bernhard; Weiss, Christel; Kayser, Anna; Kopp, Berit; Schilling, Martin K

    2008-01-01

    Measurement of central venous oxygen saturation has become a surrogate parameter for fluid administration, blood transfusions and treatment with catecholamines in (early) goal directed therapy in the treatment of acute septic patients. These strategies are not easily transferred to the postoperative management of abdominal surgery due to the different conditions in surgical patients. A study population of 15 patients (8 females/7 males) underwent elective major abdominal surgery: 6 gastrectomies, 5 major liver resections and 4 lower anterior rectum resections. Surgery was performed for primary or secondary malignancy. The patients' age was 65.4+/-12.7 (mean+/-standard deviation, range 44-84, median 62) years. Blood samples were taken intraoperatively from indwelling central venous lines as well as from draining veins at the surgical site. Blood gas analyses to determine the oxygen saturations were performed immediately. All patients were operated in standardized general anesthesia including epidural analgesia and in a balanced volume status. Central venous oxygen saturations and oxygen saturations in blood from the draining veins of the surgical site showed a wide range with high intra- and interindividual differences intraoperatively. Overall, at most time points no correlation between the two oxygen saturations could be detected in three operation types. A significant correlation was only observed at one time point during liver resections. Our results show a lack of correlation between central venous oxygen saturations and oxygen saturations in the draining veins of the surgical site during major abdominal surgery. Measurement of central venous oxygen saturations does not seem to be a good surrogate for the local oxygen supply in the field of interest in major abdominal surgery even under standardized conditions.

  16. On the water saturation calculation in hydrocarbon sandstone reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stalheim, Stein Ottar

    2002-07-01

    The main goal of this work was to identify the most important uncertainty sources in water saturation calculation and examine the possibility for developing new S{sub w} - equations or possibility to develop methods to remove weaknesses and uncertainties in existing S{sub w} - equations. Due to the need for industrial applicability of the equations we aimed for results with the following properties: The accuracy in S{sub w} should increase compared with existing S{sub w} - equations. The equations should be simple to use in petrophysical evaluations. The equations should be based on conventional logs and use as few as possible input parameters. The equations should be numerical stable. This thesis includes an uncertainty and sensitivity analysis of the most common S{sub w} equations. The results are addressed in chapter 3 and were intended to find the most important uncertainty sources in water saturation calculation. To increase the knowledge of the relationship between R{sub t} and S{sub w} in hydrocarbon sandstone reservoirs and to understand how the pore geometry affects the conductivity (n and m) of the rock a theoretical study was done. It was also an aim to examine the possibility for developing new S{sub w} - equations (or investigation an effective medium model) valid inhydrocarbon sandstone reservoirs. The results are presented in paper 1. A new equation for water saturation calculation in clean sandstone oil reservoirs is addressed in paper 2. A recommendation for best practice of water saturation calculation in non water wet formation is addressed in paper 3. Finally a new equation for water saturation calculation in thinly interbedded sandstone/mudstone reservoirs is presented in paper 4. The papers are titled: 1) Is the saturation exponent n a constant. 2) A New Model for Calculating Water Saturation In 3) Influence of wettability on water saturation modeling. 4) Water Saturation Calculations in Thinly Interbedded Sandstone/mudstone Reservoirs. A

  17. An in vivo evaluation of the change in the pulpal oxygen saturation after administration of preoperative anxiolytics and local anesthesia

    Directory of Open Access Journals (Sweden)

    Krishna P. Shetty

    2016-03-01

    Full Text Available Background. Given the influence of systemic blood pressure on pulpal blood flow, anxiolytics prescribed may alter the pulpal blood flow along with the local anesthetic solution containing a vasoconstrictor. This study evaluated the impact of preoperative anxiolytics and vasoconstrictors in local anesthetic agents on pulpal oxygen saturation. Methods. Thirty anxious young healthy individuals with a mean age of 24 years were randomly selected using the Corah’s Dental Anxiety Scale (DAS. After checking the vital signs the initial pulpal oxygen saturation (initial SpO2 was measured using a pulse oximeter. Oral midzolam was administered at a dose of 7.5 mg. After 30 min, the vital signs were monitored and the pulpal oxygen saturation (anxiolytic SpO2 was measured. A total of 1.5 mL of 2% lidocaine with 1:200000 epinephrine was administered as buccal infiltration anesthesia and 10 min the final pulpal oxygen saturation (L.A SpO2 was measured. Results. The mean initial (SpO2 was 96.37% which significantly decreased to 90.76% (SpO2 after the administration of the anxiolytic agent. This drop was later accentuated to 85.17% (SpO2 after administration of local anesthetic solution. Statistical significance was set at P<0.0001. Conclusion. High concentrations of irritants may permeate dentin due to a considerable decrease in the pulpal blood flow from crown or cavity preparation. Therefore, maintaining optimal blood flow during restorative procedures may prevent pulpal injury.

  18. Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure

    OpenAIRE

    Mohammad Salehi, Mehdi; Omidvar, Pouria; Naeimi, Fatemeh

    2016-01-01

    Laboratory tests and field applications show that low-salinity water flooding could lead to significant reduction of residual oil saturation. There has been a growing interest with an increasing number of low-salinity water flooding studies. However, there are few quantitative studies on flow and transport behavior of low-salinity IOR processes. This paper presents laboratory investigation of the effect of salinity injection water on oil recovery, pressure drop, permeability, IFT and relat...

  19. Cumulant expansion in gluon saturation and five- and six-gluon azimuthal correlations

    Science.gov (United States)

    Özönder, Şener

    2017-10-01

    Correlations between the momenta of the final state hadrons measured in proton or nucleus collisions contain information that sheds light on the initial conditions and evolutionary dynamics of the collision system. These correlation measurements have revealed the long-range rapidity correlations in p-p and p-Pb systems, and they have also made it possible to extract the elliptic flow coefficient from hadron correlation measurements. In this work, we calculate five- and six-gluon correlation functions in the framework of saturation physics by using superdiagrams. We also derive the cumulant expansion of the gluon correlators that is valid in the gluon saturation limit. We show that the cumulant expansion of the gluon correlators that is used for counting the number of diagrams to be calculated does not follow the standard cumulant expansion. We also explain how these findings can be used in obtaining experimentally relevant observables such as flow coefficients calculated from correlations as well as ratios of the correlation functions of different orders.

  20. Saturated hydraulic conductivity and biofilms: A theoretical approach linking pore and pedon scale

    Science.gov (United States)

    Richter, M.; Moenickes, S.; Richter, O.; Schröder, T.

    2012-04-01

    The fate of active substances in the soil environment is shaped by soil physical properties as well as microbial life. Microorganisms degrading those substances occur in soil pores either in suspension or as biofilms on grain surfaces. At the same scale, i.e. pore scale, the soil physical properties texture, density, porosity, and water content have an impact on transport behaviour of active substances. Macroscopic parameters describe these processes at pedon scale; e.g. hydraulic conductivity summarizes the effect of named pore scale parameters. Narsilio et al. [2009] derived a relationship between the saturated hydraulic conductivity and pore scale water velocity fields based on Navier-Stokes equation for incompressible fluids. However, they did not analyse the influence of heterogeneity and microbial activity, whereas microorganisms, especially biofilms, do have an impact on hydraulic conductivity [Vandevivere and Baveye, 1992]. Biofilms alter the pore geometry while growing. This alteration directly influences the soil water flow field and hence the convective transport of active substances. Here, we present a way to couple the saturated hydraulic conductivity at macro scale to biomass population dynamics and pore space. The hydraulic conductivity will be analysed with regard to heterogeneous soils. The model combining fluid flow, reactive transport, and biofilm dynamics is applied to investigate the degradation and transport behaviour of pesticides in heterogeneous soils.

  1. Simulation of Nonisothermal Consolidation of Saturated Soils Based on a Thermodynamic Model

    Science.gov (United States)

    Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable. PMID:23983623

  2. Menopausal estrogen therapy predicts better nocturnal oxyhemoglobin saturation.

    Science.gov (United States)

    Saaresranta, Tarja; Polo-Kantola, Päivi; Virtanen, Irina; Vahlberg, Tero; Irjala, Kerttu; Polo, Olli

    2006-10-20

    The respiratory responses in the few previous studies evaluating the effects of short-term unopposed estrogen therapy on breathing in postmenopausal women have been inconsistent. We performed a study to investigate whether long-term estrogen therapy would prevent age-related decline in nocturnal arterial oxyhemoglobin saturation and whether higher serum estradiol concentration is associated with better arterial oxyhemoglobin saturation. Sixty-four healthy postmenopausal women were followed-up for 5 years in a 5-year prospective open follow-up study. The women were users or non-users of estrogen therapy according to their personal preference. Mean overnight arterial oxyhemoglobin saturation was similar at baseline (94.3 +/- 1.1%) and after follow-up (94.5 +/- 1.6%). Present estrogen users had higher mean arterial oxyhemoglobin saturation (95.2 +/- 1.4%) than present non-users (94.0 +/- 1.5%), when adjusted for age and body mass index (p = 0.042). The change in mean arterial oxyhemoglobin saturation during follow-up was not associated with serum estradiol concentration at baseline but associated with estradiol at follow-up (p = 0.042), when adjusted for age and body mass index. At follow-up, women with higher serum estradiol concentration had also higher mean nocturnal arterial oxyhemoglobin saturation (Pearson r = 0.29, p = 0.019) and lower apnea-hypopnea index (Spearman r = -0.28, p = 0.031). The pooled current estrogen users spent proportionally less time with SaO(2) below 90% than non-users (ANCOVA adjusted for age and BMI, p = 0.017). Estrogen use and especially high serum estradiol concentration predict higher mean overnight arterial oxyhemoglobin saturation. The present data suggest that estrogen therapy has favorable respiratory effects.

  3. Why doesn't the ring current injection rate saturate?

    Science.gov (United States)

    Lopez, R. E.; Lyon, J. G.; Mitchell, E.; Bruntz, R.; Merkin, V. G.; Brogl, S.; Toffoletto, F.; Wiltberger, M.

    2009-02-01

    For low values of the solar wind electric field, the response of the polar cap potential is essentially linear, but at high values of VB s, the polar cap potential saturates and does not increase further with increasing VB s. On the other hand, the ring current injection rate does increase linearly with VB s and shows no evidence of saturating. If enhanced convection is the origin of the ring current, this poses a paradox. How can the polar cap potential, and thus convection, saturate when the ring current does not? We examine a possible explanation based on the reexamination of the Burton equation by Vasyliunas (2006). We show that this explanation is not a viable solution to the paradox since it would require a changing polar cap flux, and we demonstrate that the polar cap flux saturates (at around 1 GWb) as the polar cap potential saturates. Instead, we argue that during storms a quasi-steady reconnection region forms in the tail near the Earth. This reconnection region moves closer to the Earth for higher values of solar wind B s, although the polar cap potential, the dayside merging and nightside reconnection rates, and the amount of open flux do not change much as a function of B s once the polar cap potential has become saturated. As the neutral line moves closer, the volume per unit magnetic flux in the closed field line region is less. Flux tubes leaving the reconnection region in general have lower PV γ as B s increases, and lower PV γ flux tubes can penetrate deeper into the inner magnetosphere, leading to a corresponding greater injection of particles into the inner magnetosphere. Thus a reconnection region that is closer to Earth is more effective in creating a strong ring current. This leads to a continued dependence of the ring current injection rate on VB s, although the polar cap potential has saturated.

  4. A modification of the constant-head permeameter to measure saturated hydraulic conductivity of highly permeable media.

    Science.gov (United States)

    Nijp, Jelmer J; Metselaar, Klaas; Limpens, Juul; Gooren, Harm P A; van der Zee, Sjoerd E A T M

    2017-01-01

    The saturated hydraulic conductivity (Ks ) is a key characteristic of porous media, describing the rate of water flow through saturated porous media. It is an indispensable parameter in a broad range of simulation models that quantify saturated and/or unsaturated water flow. The constant-head permeameter test is a common laboratory method to determine Ks on undisturbed soil samples collected from the field. In this paper we show that the application of this conventional method may result in a biased Ks in the case of highly permeable media, such as the top layer of Sphagnum peat and gravel. Tubes in the conventional permeameter, that collect water under the sample, introduce a hydraulic head-dependent resistance for highly permeable media and result in an underestimation of Ks . We present a simple and low-budget alternative of the constant-head permeameter test that overcomes the disadvantages of conventional permeameters. The new method was successfully tested on intact highly permeable peatmoss collected from a northern peatland. •Conventional constant-head permeameters underestimate Ks of highly permeable media due to flow resistance in tubing systems•We developed the low-resistance permeameter to overcome this disadvantage.•Testing of the low-resistance permeameter demonstrated no systematic bias and successful application for highly permeable media.

  5. Effect of solution saturation state and temperature on diopside dissolution

    Directory of Open Access Journals (Sweden)

    Carroll Susan A

    2007-03-01

    Full Text Available Abstract Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields Rate (moldiopsidecm−2s−1=k×10−Ea/2.303RT(aH+2aMg2+n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaieaacqWFsbGucqWFHbqycqWF0baDcqWFLbqzcqqGGaaicqGGOaakcqWFTbqBcqWFVbWBcqWFSbaBcqWFGaaicqWFKbazcqWFPbqAcqWFVbWBcqWFWbaCcqWFZbWCcqWFPbqAcqWFKbazcqWFLbqzcqWFGaaicqWFJbWycqWFTbqBdaahaaWcbeqaaiabgkHiTiabikdaYaaakiab=bcaGiab=nhaZnaaCaaaleqabaGaeyOeI0IaeGymaedaaOGaeiykaKIaeyypa0Jaem4AaSMaey41aqRaeeymaeJaeeimaaZaaWbaaSqabeaacqGHsislcqWGfbqrdaWgaaadbaGaemyyaegabeaaliabc+caViabikdaYiabc6caUiabioda

  6. Optimal sampling schedule for chemical exchange saturation transfer.

    Science.gov (United States)

    Tee, Y K; Khrapitchev, A A; Sibson, N R; Payne, S J; Chappell, M A

    2013-11-01

    The sampling schedule for chemical exchange saturation transfer imaging is normally uniformly distributed across the saturation frequency offsets. When this kind of evenly distributed sampling schedule is used to quantify the chemical exchange saturation transfer effect using model-based analysis, some of the collected data are minimally informative to the parameters of interest. For example, changes in labile proton exchange rate and concentration mainly affect the magnetization near the resonance frequency of the labile pool. In this study, an optimal sampling schedule was designed for a more accurate quantification of amine proton exchange rate and concentration, and water center frequency shift based on an algorithm previously applied to magnetization transfer and arterial spin labeling. The resulting optimal sampling schedule samples repeatedly around the resonance frequency of the amine pool and also near to the water resonance to maximize the information present within the data for quantitative model-based analysis. Simulation and experimental results on tissue-like phantoms showed that greater accuracy and precision (>30% and >46%, respectively, for some cases) were achieved in the parameters of interest when using optimal sampling schedule compared with evenly distributed sampling schedule. Hence, the proposed optimal sampling schedule could replace evenly distributed sampling schedule in chemical exchange saturation transfer imaging to improve the quantification of the chemical exchange saturation transfer effect and parameter estimation. Copyright © 2013 Wiley Periodicals, Inc.

  7. A Bézier-Spline-based Model for the Simulation of Hysteresis in Variably Saturated Soil

    Science.gov (United States)

    Cremer, Clemens; Peche, Aaron; Thiele, Luisa-Bianca; Graf, Thomas; Neuweiler, Insa

    2017-04-01

    Most transient variably saturated flow models neglect hysteresis in the p_c-S-relationship (Beven, 2012). Such models tend to inadequately represent matrix potential and saturation distribution. Thereby, when simulating flow and transport processes, fluid and solute fluxes might be overestimated (Russo et al., 1989). In this study, we present a simple, computationally efficient and easily applicable model that enables to adequately describe hysteresis in the p_c-S-relationship for variably saturated flow. This model can be seen as an extension to the existing play-type model (Beliaev and Hassanizadeh, 2001), where scanning curves are simplified as vertical lines between main imbibition and main drainage curve. In our model, we use continuous linear and Bézier-Spline-based functions. We show the successful validation of the model by numerically reproducing a physical experiment by Gillham, Klute and Heermann (1976) describing primary drainage and imbibition in a vertical soil column. With a deviation of 3%, the simple Bézier-Spline-based model performs significantly better that the play-type approach, which deviates by 30% from the experimental results. Finally, we discuss the realization of physical experiments in order to extend the model to secondary scanning curves and in order to determine scanning curve steepness. {Literature} Beven, K.J. (2012). Rainfall-Runoff-Modelling: The Primer. John Wiley and Sons. Russo, D., Jury, W. A., & Butters, G. L. (1989). Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resources Research, 25(10), 2109-2118. https://doi.org/10.1029/WR025i010p02109. Beliaev, A.Y. & Hassanizadeh, S.M. (2001). A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport in Porous Media 43: 487. doi:10.1023/A:1010736108256. Gillham, R., Klute, A., & Heermann, D. (1976). Hydraulic properties of a porous

  8. Symbolic Computation of Strongly Connected Components Using Saturation

    Science.gov (United States)

    Zhao, Yang; Ciardo, Gianfranco

    2010-01-01

    Finding strongly connected components (SCCs) in the state-space of discrete-state models is a critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of reachable states and SCCs constitutes a formidable challenge. This paper is concerned with computing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel algorithm and transitive closure. First, saturation speeds up state-space exploration when computing each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute the transitive closure using saturation. Experimental results indicate that our improved algorithms achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive closure computation algorithm, up to 10(exp 150) SCCs can be explored within a few seconds.

  9. Amplifying mirrors with saturated gain without and with a resonator

    DEFF Research Database (Denmark)

    Skettrup, Torben

    2007-01-01

    An investigation of amplifying mirrors with a view to their use in resonator structures has been performed. Both non-saturated and saturated amplifying mirrors are demonstrated. It was found that relatively high values of gain (typical 5-10 times) can be obtained even when saturation is taken...... into account. Several resonator structures containing from two up to four mirrors, some including beamsplitters, are investigated. It was found that the gain to a first approximation depends only on the ratio between the pumping power and the input power on the amplifying mirror. It was also found...... that the configuration with four mirrors is well suited as an amplifier device working as an optical transistor since high values of gain up to 40 times could be obtained....

  10. An analysis of the saturation of a high gain FEL

    Energy Technology Data Exchange (ETDEWEB)

    Gluckstern, R.L.; Okamoto, Hiromi (Maryland Univ., College Park, MD (United States). Dept. of Physics); Krinsky, S. (Brookhaven National Lab., Upton, NY (United States))

    1992-12-01

    We study the saturated state of an untapered free electron laser in the Compton regime, arising after exponential amplification of an initial low level of radiation by an initially monoenergetic, unbunched electron beam. The saturated state of the FEL is described by oscillations about an equilibrium state. Using the two invariants of the motion, and certain assumptions motivated by computer simulations, we provide approximate analytic descriptions of the radiation field and electron distribution in the saturation regime. We first consider a one-dimensional approximation, and later extend our approach to treat an electron beam of finite radial extent. Of note is a result on the radiated power in the case of an electron beam with small radius.

  11. Prediction of saturation using the carbon/oxygen log

    Energy Technology Data Exchange (ETDEWEB)

    Horner, S.C.; Sanyal, S.K.

    1984-09-01

    This project investigates the nature of Dresser-Atlas Carbon/Oxygen Log gamma ray spectra. It presents an attempt to improve the signal-to-noise ratio of the C/O and Si/Ca parameters used by Dresser-Atlas to determine oil saturation. Two techniques were developed to subtract the Compton background from the spectral data. Neither technique significantly improves the accuracy of the cased-hole prediction of oil saturation. However, it has been shown that it is possible to develop a satisfactory correlation for oil saturation on a well-by-well basis. This correlation can then be used to generate oil-in-place from the C/O and Si/Ca ratios. 17 references.

  12. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  13. Mutual boosting of the saturation scales in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kopeliovich, B.Z., E-mail: bzk@mpi-hd.mpg.d [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, 69120 Heidelberg (Germany); Pirner, H.J. [Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, 69120 Heidelberg (Germany); Potashnikova, I.K.; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile)

    2011-03-14

    Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. The DGLAP driven gluon distribution turns out to be suppressed at large x, but significantly enhanced at x<<1. This is a high twist effect. In the case of nucleus-nucleus collisions all participating nucleons on both sides get enriched in gluon density at small x, which leads to a further boosting of the saturation scale. We derive reciprocity equations for the saturation scales corresponding to a collision of two nuclei. The solution of these equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.

  14. SHAD-Nisat: A Composite Study of Shallow Saturation Diving Incorporating Long Duration Air Saturation with Excursions, Deep Nitrox Saturation, and Switch from Nitrogen to Helium

    Science.gov (United States)

    1982-08-01

    exposures caused red blood cell losses; recovery began a few days after return to normal pressure. The divers were also deconditioned , presumably...5. Deconditioning following long saturation 1-15 6. Pulmonary function changes 1-15 7. Sickness in 7 atm nitrox 1-16 8. Performance and...II-l 1. Chamber system II-l a. Physical characteristics II-l b. Air supply system II-4 c. Pure gas supply II-4 d. Pressurization and

  15. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion...... influences the energy transfer to the signal, depending on its detuning with respect to the pump, and breaks the symmetry of the gain expected from phase-matching considerations in unsaturated amplifiers. The asymmetry feature of the saturated spectrum is shown to particularly depend on the dispersion...... characteristics of the amplifier and shows local maxima for specific dispersion values....

  16. Saturation of the Holographic Principle for Spatially Closed Cosmological Models

    Science.gov (United States)

    Diaz, P.; Per, M. A.; Segui, A.

    Under the assumption on the fundamental character of the Holographic Principle as a primary principle guiding the behavior of our universe the saturation of the holographic limit is reasonable. On the other hand the Fischler-Susskind holographic prescription seems to be incompatible with closed cosmological models due to the apparently unavoidable recontraction of the particle horizon area. However we will show that the saturation of the Fischler-Susskind holographic prescription over a closed (although almost flat) cosmological model enforces a cosmological evolution very similar to the observed universe.

  17. Saturation Physics and the Electron-Ion Collider

    Science.gov (United States)

    Gonçalves, V. P.; Kugeratski, M. S.; Navarra, F. S.

    Using an extension of the Iancu-Itakura-Munier model to nuclear targets we look for saturation effects in electron-ion collisions. In previous publications we have made definite predictions. Here we try to compare our results with already existing experimental data on structure functions and on total and diffractive cross sections. Strictly speaking such a comparison is not well justified because the present data are not yet in the saturation domain. Nevertheless our results agree qualitatively with data and, in some cases, even quantitatively.

  18. Analysis on Inductance and Torque of PMSM Considering Magnetic Saturation

    Science.gov (United States)

    Cao, Xiao-Hua; Wang, Xin; Wei, Heng

    2017-07-01

    This paper analyses the surface-mounted PMSM which controlled by Id=0 vector control based on Ansoft in which finite element simulation of 2D static magnetic field can be operated on, then calculating and analysing the data with MATLAB, and then operating on the analysis of the change law of torque and inductance under different load conditions, and then paying more attention on the impact of magnetic saturation to torque and inductance. With the analysis of magnetic saturation, this paper puts forward a scheme of control and design used by PMSM.

  19. Robust human intrusion detection technique using hue-saturation histograms

    Science.gov (United States)

    Hassan, Waqas; Mitra, Bhargav; Bangalore, Nagachetan; Birch, Philip; Young, Rupert; Chatwin, Chris

    2011-04-01

    A robust human intrusion detection technique using hue-saturation histograms is presented in this paper. Initially a region of interest (ROI) is manually identified in the scene viewed by a single fixed CCTV camera. All objects in the ROI are automatically demarcated from the background using brightness and chromaticity distortion parameters. The segmented objects are then tracked using correlation between hue-saturation based bivariate distributions. The technique has been applied on all the 'Sterile Zone' sequences of the United Kingdom Home Office iLIDS dataset and its performance is evaluated with over 70% positive results.

  20. Transport of Sr 2+ and SrEDTA 2- in partially-saturated and heterogeneous sediments

    Science.gov (United States)

    Pace, M. N.; Mayes, M. A.; Jardine, P. M.; McKay, L. D.; Yin, X. L.; Mehlhorn, T. L.; Liu, Q.; Gürleyük, H.

    2007-05-01

    Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr 2+ and SrEDTA 2-. The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA 2- complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr 2+ as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr 2+ and SrEDTA 2- suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA 2-, MnEDTA 2-, PbEDTA 2-, and unidentified Sr and Ca complexes. Displacement of Sr 2+ through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that

  1. Replacement of dietary saturated fatty acids by trans fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and women

    NARCIS (Netherlands)

    Roos, de N.M.; Bots, M.L.; Katan, M.B.

    2001-01-01

    We tested whether trans fatty acids and saturated fatty acids had different effects on flow-mediated vasodilation (FMD), a risk marker of coronary heart disease (CHD). Consumption of trans fatty acids is related to increased risk of CHD, probably through effects on lipoproteins. Trans fatty acids

  2. FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    2000-05-05

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  3. Assessment of fluid distribution and flow properties in two phase fluid flow using X-ray CT technology

    Science.gov (United States)

    Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi

    2017-11-01

    To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.

  4. particle size distribution and control on bitumen saturation of some ...

    African Journals Online (AJOL)

    vicadmin

    The bitumen saturation analysis was carried out with the use of toluene. The result of sedimentological and particle size distribution studies showed that the sands are medium grained, moderately sorted and mesokurtic. The grain morphology can be described as having low to high sphericity, with shapes generally ...

  5. Article size distribution and control on Bitumen saturation of some ...

    African Journals Online (AJOL)

    The bitumen saturation analysis was carried out with the use of toluene. The result of sedimentological and particle size distribution studies showed that the sands are medium grained, moderately sorted and mesokurtic. The grain morphology can be described as having low to high sphericity, with shapes generally ...

  6. Investigation of paramagnetic saturation in lanthanum manganese nitrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Meijer, H.C.; Bots, G.J.C.; Verheij, W.A.; van der Marel, L.C.

    1973-01-01

    Paramagnetic saturation of lanthanum manganese nitrate, La2Mn3(NO3)12·24H2O, has been investigated at liquid He temperatures in a static as well as a dynamical way. With the aid of the molecular-field theory the Casimir and Du Pré dispersion and absorption curves are adapted explicitly to the

  7. Effect of dietary lipid saturation on the production performance of ...

    African Journals Online (AJOL)

    Patron Saint of Ladybugs

    Dietary lipid saturation level had no effect on daily feed intake of hens, hen-day egg production, egg output and live weight of hens during the peak-of-lay period. The mono-unsaturated n-9 diet (high oleic acid sunflower oil) had the lowest feed efficiency (0.47), while that of the control-, polyunsaturated n-6. (sunflower oil) ...

  8. Enhancement of aromatic and saturated hydrocarbon by modified ...

    African Journals Online (AJOL)

    Three sediment samples collected from the Qua Iboe River System and eighteen different column packing ratios of silica gel and alumina were used in this investigation. The variation of the composition of the stationary phase (silica gel and alumina, SA) gave different yields of aromatic and saturated hydrocarbons. In all the ...

  9. Poole-Frenkel (PF) effect high field saturation

    OpenAIRE

    Ongaro, R.; Pillonnet, A.

    1989-01-01

    An improved Poole Frenkel (PF) effect, based upon a rigorous methodological approach, is proposed. The chosen model is stated precisely, emphasis being made explicitly on the subtending hypotheses. A systematic reference to Fermi-Dirac function, allows to establish quantitatively the concept of PF saturation. The resulting general theory integrates, as particular applications, the previous one-dimensional PF theories.

  10. Transport of E. coli in saturated and unsaturated porous media ...

    Indian Academy of Sciences (India)

    Saturated and unsaturated sand and soil column experiments were conducted to study the complex interaction between the effects of biological and hydrological factors on the transport of bacteria through a porous medium. These experiments were conducted with continuous input of bacteria and substrate at the inlet to ...

  11. Central venous oxygen saturation during hypovolaemic shock in humans

    DEFF Research Database (Denmark)

    Madsen, P; Iversen, H; Secher, N H

    1993-01-01

    We compared central venous oxygen saturation and central venous pressure (CVP) as indices of the effective blood volume during 50 degrees head-up tilt (anti-Trendelenburg's position) induced hypovolaemic shock in eight healthy subjects. Head-up tilt increased thoracic electrical impedance from 31...

  12. Rheology of dry, partially saturated and wet granular materials

    NARCIS (Netherlands)

    Pakpour, M.

    2013-01-01

    This thesis is dedicated to the study of the rheology of dry, wet and partially saturated granular materials. Granular media, suspensions, emulsions, polymers and gels are ubiquitous in the chemical and materials processing industry, and despite their very different appearance, the rheology and

  13. Organogel as a replacement of saturated fat in food products

    Science.gov (United States)

    Organogels of edible oil have drawn a great interest as promising alternatives to saturated fats and trans fats. Plant waxes are recognized as promising organogelators, which can provide organogels from healthful vegetable oils at low concentrations. Plant waxes are obtained as by-products during th...

  14. Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation

    NARCIS (Netherlands)

    Chevalliot, S.; Dhindsa, M.; Kuiper, S.; Heikenfeld, J.

    2011-01-01

    Basic electrowetting theory predicts that a continued increase in applied voltage will allow contact angle modulation to zero degrees. In practice, the effect of contact angle saturation has always been observed to limit the contact angle modulation, often only down to a contact angle of 60 to 70°.

  15. Effect of soil saturation on denitrification in a grassland soil

    Directory of Open Access Journals (Sweden)

    L. M. Cardenas

    2017-10-01

    Full Text Available Nitrous oxide (N2O is of major importance as a greenhouse gas and precursor of ozone (O3 destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP. The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  16. Effect Of Intraruminal Infussion Of Saturated And Unsaturated Fatty ...

    African Journals Online (AJOL)

    This study describes the effect of intraruminal infusion of diferent proportions of palmitic (saturated fatty acid) and linolenic (unsaturated fatty acid) on rumen degradability of organic matter fraction of Pennisetium purpureum, total volatile fatty acid and total methane productions in West African Dwarf sheep. Five combination ...

  17. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand

    Science.gov (United States)

    Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...

  18. 79 lung function, oxygen saturation and symptoms among street ...

    African Journals Online (AJOL)

    admin

    Therefore, a study of lung function, oxygen saturation and symptoms among female street sweepers and their control groups in Calabar, Nigeria was carried out. Ventilatory function tests were done using 200 female street sweepers whose length of service was less than two years and 200 sex, age, weight, and height ...

  19. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    Science.gov (United States)

    Moos, Daniel

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  20. Surface waves in a cylindrical borehole through partially-saturated ...

    Indian Academy of Sciences (India)

    48

    2017-01-04

    Jan 4, 2017 ... 1. Introduction. 40. The propagation of seismic waves in saturated porous media and related phenomena are of. 41 great interest in various fields, viz. acoustics, biomechanics, structural engineering, seismology. 42 and exploration of subsurface resources. Pores and fractures are pervasive in almost all the.

  1. Effect of soil saturation on denitrification in a grassland soil

    Science.gov (United States)

    Maritza Cardenas, Laura; Bol, Roland; Lewicka-Szczebak, Dominika; Gregory, Andrew Stuart; Matthews, Graham Peter; Whalley, William Richard; Misselbrook, Thomas Henry; Scholefield, David; Well, Reinhard

    2017-10-01

    Nitrous oxide (N2O) is of major importance as a greenhouse gas and precursor of ozone (O3) destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP). The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  2. Mulching an Arenic Hapludult at Umudike: Effects on saturated ...

    African Journals Online (AJOL)

    A study was carried out over two cropping seasons on an Arenic Hapludult at Umudike, southeastern Nigeria, to investigate and determine the quantity and type of mulch material that would optimize the rhizome yield of turmeric (Curcuma longa Linn) and improve the saturated hydraulic conductivity of the soil. The turmeric ...

  3. A characterization of saturated fusion systems over abelian 2-groups

    DEFF Research Database (Denmark)

    Henke, Ellen

    2014-01-01

    Given a saturated fusion system FF over a 2-group S, we prove that S is abelian provided any element of S  is F-conjugate to an element of Z(S). This generalizes a Theorem of Camina–Herzog, leading to a significant simplification of its proof. More importantly, it follows that any 2-block B...

  4. Test of the rosetta pedotransfer function for saturated hydraulic conductivity

    NARCIS (Netherlands)

    Alvarez-Acosta, C.; Lascano, R.J.; Stroosnijder, L.

    2012-01-01

    Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soil related input data of which the saturated hy- draulic conductivity (Ks) is one of the most important ones.

  5. Total mortality by elevated transferrin saturation in patients with diabetes

    DEFF Research Database (Denmark)

    Ellervik, Christina; Andersen, Henrik Ullits; Tybjærg-Hansen, Anne

    2013-01-01

    It is not known to what extent iron overload predicts prognosis in patients with diabetes after diagnosis or whether iron overload is a risk factor independent of the HFE genotype. We investigated total and cause-specific mortality according to increased transferrin saturation (≥ 50 vs....

  6. Surface waves in a cylindrical borehole through partially-saturated ...

    Indian Academy of Sciences (India)

    M D Sharma

    2018-02-14

    Feb 14, 2018 ... Keywords. Cylindrical waves; phase velocity; dispersion; porous solid; partial saturation; multiphase pore-fluid. Nomenclature t. Time ... on Biot's theory of poroelasticity (Biot 1956), was observed. In a later study, Chao et al. ... model and used it to obtain the analytical solution for wave propagation in a 1-D ...

  7. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  8. Sahlgren's saturation test for detecting and grading acquired dyschromatopsia.

    Science.gov (United States)

    Frisén, L; Kalm, H

    1981-08-01

    A new sorting test requires only two minutes for quantitative estimation of saturation thresholds for bluish pigment colors. The test is highly sensitive to and specific for differences between normal subjects and individuals with acquired color vision defects. When combined with Ishihara's pseudo-isochromatic plates, it discriminates between congenital and acquired dyschromatopsias and identifies subjects with combined defects.

  9. A saturating chiral field theory of nuclear matter

    Directory of Open Access Journals (Sweden)

    J. Boguta

    1983-01-01

    Full Text Available Catastrophe Theory analysis is used to construct a chiral theory of pions which leads to a saturating nuclear matter equation of state. This is achieved by introducing a vector meson field via the Higgs mechanism. The equation of state and the nuclear optical potential are computed. A metamorphosis of the nuclear force is suggested.

  10. Structural information from OH stretching frequencies monohydric saturated alcohols

    NARCIS (Netherlands)

    Maas, J.H. van der; Lutz, E.T.G.

    1974-01-01

    Infrared data have been recorded of the hydroxyl stretching band for about 70 monohydric saturated alcohols in dilute carbon tetrachloride solution. The wavenumber maximum, the half-bandwidth and the band pattern could be related to the structure of the molecules. Not only primary, secondary and

  11. Effect of saturation on seed dormancy and germination of the ...

    African Journals Online (AJOL)

    laddiya

    2012-01-26

    Jan 26, 2012 ... the lixiviated solutions, their germination, but not their growth and development, was inhibited. Taken together, this work provides valuable insight into the regulation of seed dormancy and germination rate in L. chinensis, which may in turn have implications for improved propagation. Key words: Saturation ...

  12. Centrifuge modeling of LNAPL transport in partially saturated sand

    NARCIS (Netherlands)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-01-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an

  13. Shear waves in a fluid saturated elastic plate

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    MS received 25 February 2002. Abstract. In the present context, we consider the propagation of shear waves in the transverse isotropic fluid saturated porous plate. The frequency spectrum for SH-modes in the plate has been studied. It is observed that the frequency of the propagation is damped due to the two-phase ...

  14. Double shock dynamics induced by the saturation of defocusing nonlinearities

    KAUST Repository

    Crosta, Matteo

    2012-01-01

    We show that the saturation of defocusing nonlinearities leads to qualitative changes in the onset of wave breaking, determining double shock formation whose regularization occurs in terms of antidark solitons. In a given material, the crossover between different regimes can be controlled by changing the input intensity. © 2012 Optical Society of America.

  15. Calcium phosphate saturation in seawater around the Andaman Island

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    apparent solubility product of 4 x 10/20 C given by Kester and Pytocowicz. The maximum percentage saturation works out to be 67, 65, 95, and 97 respectively towards west, east, north and south. The inorganic mineral phosphate and calcium content...

  16. Saturating interactions in /sup 4/He with density dependence

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, S.D.; Resler, D.A.; Moszkowski, S.A.

    1989-05-03

    With the advent of larger and faster computers, as well as modern shell model codes, nuclear structure calculations for the light nuclei (A<16) which include full 2/bar h/..omega.. model spaces are quite feasible. However, there can be serious problems in the mixing of 2/bar h/..omega.. and higher excitations into the low-lying spectra if the effective interaction is non-saturating. Furthermore, effective interactions which are both saturating and density dependent have not generally been used in previous nuclear structure calculations. Therefore, we have undertaken studies of /sup 4/He using two-body potential interactions which incorporate both saturation and density-dependence. Encouraging initial results in remedying the mixing of 0 and 2/bar h/..omega.. excitations have been obtained. We have also considered the effects of our interaction on the /sup 4/He compressibility and the centroid of the breathing mode strength. First indications are that a saturating effective interaction, with a short-range density dependent part and a long-range density independent part, comes close to matching crude predictions for the compressibility of /sup 4/He. 11 refs., 6 tabs.

  17. Saturate hydraulic conductivity, water stable aggregates and soil ...

    African Journals Online (AJOL)

    Saturate hydraulic conductivity, water stable aggregates and soil organic matter in a sandy-loam soil in Ikwuano lga of Abia state. ... Samples were analyzed for soil properties like; Ksat, WSA (%) and percent organic carbon (OC %), Data from the analysis were subjected to ANOVA using a split plot in RCBD. Results ...

  18. The Flow of Butane and Isobutene Vapors Near Saturation Through Porous Vycor Glass Membranes

    Czech Academy of Sciences Publication Activity Database

    Loimer, T.; Uchytil, Petr; Petričkovič, Roman; Setničková, Kateřina

    2011-01-01

    Roč. 383, 1-2 (2011), s. 104-115 ISSN 0376-7388 R&D Projects: GA ČR GA104/09/1165; GA ČR GCP106/10/J038; GA MŠk ME 889 Grant - others:AIMC GmbH(AT) AES:09/2006 Institutional research plan: CEZ:AV0Z40720504 Keywords : transport process es * porous media * inorganic membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.850, year: 2011

  19. An extension of Lauwerier’s Solution for heat flow in saturated porous media

    NARCIS (Netherlands)

    Saeid, S.; Barends, F.B.J.

    2009-01-01

    One of the crucial topics in this century is sustainable energy. Since the sources of fossil fuels are limited and are going to be exhausted, there is a need to look for sustainable renewable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune.

  20. Dynamic of aragonite saturation horizon in waters of Baja California, Mexico

    Science.gov (United States)

    Valencia Gasti, J. A.; Oliva, N. L.; Martin Hernandez-Ayon, J. M.; Durazo, R.; Santamaria-del-Angel, E.; Alin, S. R.; Feely, R. A.

    2016-02-01

    The status of the ocean acidification can be estimated by hydrographic calibrated data with carbon system variables. Recently empirical models for the coast of southern California and northern Baja California were developed. These models can be applied mainly in places where hydrographic data exist but also with measurements of the carbon system available for calibrations. The aim of this study was to analyze the hydrographic data of a transect in front of Ensenada's coast, corresponding to the line 100 of IMECOCAL's program during the period 1998-2014. Such data was used to apply an empirical model to estimate the aragonite saturation state (Ωa) in order to identify oceanographic conditions that could influence the variability of the depth of saturation horizon that might be in the last 17 years in habitats of shellfish and oyster production areas adjacent to the coast of Ensenada. It was found that the temperature, salinity, oxygen, pH, dissolved inorganic carbon and Ωa showed a seasonal variation with different oceanographic scenarios: (a) during spring-summer the California Current flow to the Ecuador and upwelling events are presented; (b) in autumn-winter the influence the Southern California Bight Eddy can transport water from the subarctic to Ecuador in the oceanic portion of the transect and towards the pole at the coastal side. These oceanographic characteristics encourage that coastal stations present seasonal variability, reflected in the depth of the horizon Ωa shallower ( 66m + 21m) in spring and deeper into the winter ( 122m + 35). It has been reported that the upwelling off the coast of BC transport water from a depth between 80 and 90m in spring and summer; therefore under saturated water (Ωa coast of BC

  1. The influence of surfactant sorption on capillary pressure-saturation relationships

    Energy Technology Data Exchange (ETDEWEB)

    Desai, F.N.; Demond, A.H.; Hayes, K.F.

    1991-12-31

    The capillary pressure-saturation relationship, a fundamental relationship in the description of multiphase flow, depends on the interfacial properties of the system. Sorption of a cationic surfactant such as cetyltrimethylammonium bromide (CTAB) at the various interfaces of a system changes interfacial properties such as electrophoretic mobility, interfacial tensions, and contact angle. The objective of this paper is to examine the effect of the changes in these interfacial properties on the capillary pressure-saturation relationships for the air-water-silica system. The results presented here show that as the sorption of CTAB increases, the naturally negatively-charged silica surface becomes positively charged. This change in charge is reflected in the contact angle which passes through a maximum when the electrophoretic mobility is close to zero. The spontaneous imbibition capillary pressure relationship is more sensitive to changes in interfacial properties than the drainage relationship. In the air-water-silica system studied here, no imbibition is observed at the maximum contact angle. The surface tension and contact angle can be used to predict both the drainage and imbibition relationships of the air-water-silica-CTAB systems from that of the air-water-silica system. The prediction is accomplished through scaling using the value of surface tension and the operational contact angle, which can be obtained from the intrinsic angle through the incorporation of corrections for roughness and interfacial curvature. A comparison of the measured and calculated capillary pressure relationships shows that it is possible to predict the effect of surfactant sorption on both drainage and imbibition capillary pressure-saturation relationships for the system studied.

  2. The influence of surfactant sorption on capillary pressure-saturation relationships

    Energy Technology Data Exchange (ETDEWEB)

    Desai, F.N.; Demond, A.H.; Hayes, K.F.

    1991-01-01

    The capillary pressure-saturation relationship, a fundamental relationship in the description of multiphase flow, depends on the interfacial properties of the system. Sorption of a cationic surfactant such as cetyltrimethylammonium bromide (CTAB) at the various interfaces of a system changes interfacial properties such as electrophoretic mobility, interfacial tensions, and contact angle. The objective of this paper is to examine the effect of the changes in these interfacial properties on the capillary pressure-saturation relationships for the air-water-silica system. The results presented here show that as the sorption of CTAB increases, the naturally negatively-charged silica surface becomes positively charged. This change in charge is reflected in the contact angle which passes through a maximum when the electrophoretic mobility is close to zero. The spontaneous imbibition capillary pressure relationship is more sensitive to changes in interfacial properties than the drainage relationship. In the air-water-silica system studied here, no imbibition is observed at the maximum contact angle. The surface tension and contact angle can be used to predict both the drainage and imbibition relationships of the air-water-silica-CTAB systems from that of the air-water-silica system. The prediction is accomplished through scaling using the value of surface tension and the operational contact angle, which can be obtained from the intrinsic angle through the incorporation of corrections for roughness and interfacial curvature. A comparison of the measured and calculated capillary pressure relationships shows that it is possible to predict the effect of surfactant sorption on both drainage and imbibition capillary pressure-saturation relationships for the system studied.

  3. Reduction in saturated fat intake for cardiovascular disease.

    Science.gov (United States)

    Hooper, Lee; Martin, Nicole; Abdelhamid, Asmaa; Davey Smith, George

    2015-06-10

    Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally it is unclear whether the energy from saturated fats that are lost in the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. This review is part of a series split from and updating an overarching review. To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA) or monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and EMBASE (Ovid) on 5 March 2014. We also checked references of included studies and reviews. Trials fulfilled the following criteria: 1) randomised with appropriate control group; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) not multifactorial; 4) adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 5) intervention at least 24 months; 6) mortality or cardiovascular morbidity data available. Two review authors working independently extracted participant numbers experiencing health outcomes in each arm, and we performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses and funnel plots. We include 15 randomised controlled trials (RCTs) (17 comparisons, ˜59,000 participants), which used a variety of interventions from providing all food to advice on how to reduce saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.72 to 0.96, 13 comparisons, 53,300 participants of whom 8% had a cardiovascular event, I² 65%, GRADE moderate quality of

  4. Glycosaminoglycan chemical exchange saturation transfer in human lumbar intervertebral discs: Effect of saturation pulse and relationship with low back pain.

    Science.gov (United States)

    Wada, Tatsuhiro; Togao, Osamu; Tokunaga, Chiaki; Funatsu, Ryohei; Yamashita, Yasuo; Kobayashi, Kouji; Nakamura, Yasuhiko; Honda, Hiroshi

    2017-03-01

    To evaluate the dependence of saturation pulse power and duration on glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging and assess the degeneration of human lumbar intervertebral discs (IVDs) using this method. All images were acquired on a 3T magnetic resonance imaging (MRI) scanner. The CEST effects were measured in the glycosaminoglycan (GAG) phantoms with different concentrations. In the human study, CEST effects were measured in the nucleus pulposus of IVD. We compared the CEST effects among the different saturation pulse powers (0.4, 0.8, and 1.6 μT) or durations (0.5, 1.0, and 2.0 sec) at each Pfirrmann grade (I-V). The relationship between the CEST effects and low back pain was also evaluated. The phantom study showed high correlations between the CEST effects and GAG concentration (R 2  = 0.863, P low back pain were significantly lower than those in the groups without pain (P pain (P = 0.0216). The contrast of gagCEST imaging in the lumbar IVDs varied with saturation pulse power and duration. GagCEST imaging may serve as a tool for evaluating IVD degeneration in the lumbar spine. 2 J. Magn. Reson. Imaging 2017;45:863-871. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam

    Directory of Open Access Journals (Sweden)

    Xianglei Zheng

    2016-12-01

    Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

  6. Modeling of wave processes in a blocky medium with fluid-saturated porous interlayers

    Science.gov (United States)

    Chentsov, E. P.; Sadovskii, V. M.; Sadovskaya, O. V.

    2017-10-01

    Wave processes in a 2D blocky medium are under investigation. Considered continuum consists of rectangular elastic blocks divided by fluid-saturated porous interlayers. The interlayers are described in terms of modified Biot's porous-flow model. Porous skeleton in the model has viscoelastic properties and takes pore collapsing effect into account. In order to analyse the fluid behavior in nodes between blocks, a hydrodynamic analogue of Kirchhoff's law is used. To implement presented model nu-merically, a computational algorithm, based on a two-cyclic splitting by spatial variables, is developed. For the blocks equations Godunov's gap decay scheme is used; for the interlayers equations a hybrid numerical method, based on the dissipationless Go- dunov's and Ivanov's schemes, is applied. Parallel software is designed for analysing stresses and velocity fields in a 2D blocky medium. Comparative study of the model with elastic interlayers and the model with fluid-saturated porous interlayers is carried out. It is shown that the latter model preserves isotropic properties of a medium longer than the former model, as the interlayer thickness increases.

  7. Thermophysical properties of saturated light and heavy water for Advanced Neutron Source applications

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, A.; Siman-Tov, M.

    1993-05-01

    The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor`s nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300{degrees}C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250{degrees}C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

  8. Thermophysical properties of saturated light and heavy water for advanced neutron source applications

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, A.; Siman-Tov, M.

    1993-05-01

    The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor's nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300[degrees]C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250[degrees]C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

  9. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Science.gov (United States)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  10. Electrical Resistivity as an Indicator of Saturation in Fractured Geothermal Reservoir Rocks: Experimental Data and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Detwiler, R L; Roberts, J J

    2003-06-23

    The electrical resistivity of rock cores under conditions representative of geothermal reservoirs is strongly influenced by the state and phase (liquid/vapor) of the pore fluid. In fractured samples, phase change (vaporization/condensation) can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring of geothermal reservoirs may provide a useful tool for remotely detecting the movement of water and steam within fractures, the development and evolution of fracture systems and the formation of steam caps. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction from the matrix. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

  11. Suggested Methods for Preventing Core Saturation Instability in HVDC Transmission Systems

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Ian

    2002-07-01

    In this thesis a study of the HVDC related phenomenon core saturation instability and methods to prevent this phenomenon is performed. It is reason to believe that this phenomenon caused disconnection of the Skagerrak HVDC link 10 August 1993. Internationally, core saturation instability has been reported at several HVDC schemes and thorough complex studies of the phenomenon has been performed. This thesis gives a detailed description of the phenomenon and suggest some interesting methods to prevent the development of it. Core saturation instability and its consequences can be described in a simplified way as follows: It is now assumed that a fundamental harmonic component is present in the DC side current. Due to the coupling between the AC side and the DC side of the HVDC converter, a subsequent second harmonic positive-sequence current and DC currents will be generated on the AC side. The DC currents will cause saturation in the converter transformers. This will cause the magnetizing current to also have a second harmonic positive-sequence component. If a high second harmonic impedance is seen from the commutation bus, a high positive-sequence second harmonic component will be present in the commutation voltages. This will result in a relatively high fundamental frequency component in the DC side voltage. If the fundamental frequency impedance at the DC side is relatively low the fundamental component in the DC side current may become larger than it originally was. In addition the HVDC control system may contribute to the fundamental frequency component in the DC side voltage, and in this way cause a system even more sensitive to core saturation instability. The large magnetizing currents that eventually will flow on the AC side cause large zero-sequence currents in the neutral conductors of the AC transmission lines connected to the HVDC link. This may result in disconnection of the lines. Alternatively, the harmonics in the large magnetizing currents may cause

  12. THE INFLUENCE OF INDIVIDUAL FACTORS ON THE EFFECTIVENESS OF JUICE PURIFICATION IN THE PROCESS OF II SATURATION

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2014-01-01

    Full Text Available Summary. The effect of reducing substances in the final stage of lime - carbon dioxide purification of raw juice is studied in the article. The presence of significant amounts of reducing substances in the juice of the I saturation increases chroma and calcium salts in the purified product. It is actual to apply additional techniques and methods of cleaning of production sugar-containing solutions at the final stage of lime -carbon dioxide cleaning - II saturation, that will increase the completeness of precipitation of organic and mineral non-sugars, improve the quality of the purified juice, increase the yield of white sugar and improve its quality. The effect filtroperlit as seed material for forming the structure of particles of calcium carbonate precipitate with a larger surface adsorption is studied. The effect of phosphate input for further improvement of the efficiency of adsorption in the juice purification process was also studied. The effect of flow of activated filtroperlit on II saturation filtration speed was studied. It was found out that the more non-sugars are present in the juice, the smaller electrokinetic potential has the surface sediment. Rational consumption of reagents depending on the quality of the feedstock is calculated. In the process of cleaning the juice of various technological quality, it is necessary to control the reagents flow. It was found out that for cleaning juice of satisfactory technological quality the flow of filtroperlit is 0.015 - 0.033% by weight of juice and 15% РО4 3- . When cleaning the juice obtained from sugar beet of poor quality, it is necessary to increase the filtroperlit flow up to 0.050% and phosphate up to 20 %. It is necessary to control permanently the main liming process, the maximum decomposition of reducing substances to obtain thermally stable juice.

  13. A new two-stage approach for predicting the soil water characteristic from saturation to oven-dryness

    DEFF Research Database (Denmark)

    Karup Jensen, Dan; Tuller, Markus; de Jonge, Lis Wollesen

    2015-01-01

    The soil water characteristic (SWC) is one of the most important properties required for understanding plant-soil relationships and is crucial for modeling gas and water flow in soils. Measuring the SWC is laborious, and until now the dry-region soil water retention has commonly been excluded due...... with clay and organic carbon contents ranging from 0.01 to 0.52 kg kg-1 and 0 to 0.07 kg kg-1, respectively, were used for the model development. Measuring the SWC from saturation to oven-dryness was accomplished with Tempe cells and a water vapor sorption analyzer. The model was subsequently tested...... to slow and inaccurate measurements. Hence, models applied to predict the SWC consequently exclude the dry region and are often only applicable for specific soil textural classifications. The present study proposes a new two-step approach to prediction of the continuous SWC from saturation to oven dryness...

  14. Phosphorus Sorption Capacities of Steel Slag in Pilot-Scale Constructed Wetlands for Treating Urban Runoff: Saturation Potential and Longevity

    Science.gov (United States)

    Guo, W. J.; Zhao, L. Y.; Zhao, W. H.; Li, Q. Y.; Wu, Z. B.

    2017-01-01

    Two parallel pilot-scale integrated constructed wetland (ICW) systems were constructed on the bank of Nanfeihe River. The phosphate (PO4 3-) isothermal adsorption properties of the upper substrate steel furnace slag (SFS) in up-flow chamber was investigated during one-year operation period. The maximum phosphorus (P) adsorption capacity of SFS 9, 11, 13, 15, 17, 19 months service time were 848.9 mg/kg, 968.1 mg/kg, 824.5 mg/kg, 788.7 mg/kg, 864.7 mg/kg and 960.3 mg/kg, respectively. The saturated adsorption amount of SFS had not decreased with the service time prolonging in ICW. The longevity of a full-scale system could not be reliably estimated only based on the theoretical saturated adsorption capacity from laboratory experiments.

  15. Convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions

    Science.gov (United States)

    Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.

    2018-01-01

    We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.

  16. TECHNIQUES OF EVALUATION OF HEMOGLOBIN OXYGEN SATURATION IN CLINICAL OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    S. Yu. Petrov

    2016-01-01

    Full Text Available Oxygen content in body fluids and tissues is an important indicator of life support functions. A number of ocular pathologies, e.g. glaucoma, are of presumable vascular origin which means altered blood supply and oxygen circulation. Most oxygen is transported in the blood in the association with hemoglobin. When passing through the capillaries, hemoglobin releases oxygen, converting from oxygenated form to deoxygenated form. This process is accompanied by the changes in spectral characteristics of hemoglobin which result in different colors of arterial and venous blood. Photometric technique for the measurement of oxygen saturation in blood is based on the differences in light absorption by different forms of hemoglobin. The measurement of saturation is called oximetry. Pulse oximetry with assessment of tissue oxygenation is the most commonly used method in medicine. The degree of hemoglobin oxygen saturation in the eye blood vessels is the most accessible for noninvasive studies during ophthalmoscopy and informative. Numerous studies showed the importance of this parameter for the diagnosis of retinopathy of various genesis, metabolic status analysis in hyperglycemia, diagnosis and control of treatment of glaucoma and other diseases involving alterations in eye blood supply. The specific method for evaluation of oxygen concentration is the measurement of pressure of oxygen dissolved in the blood, i.e. partial pressure of oxygen. In ophthalmological practice, this parameter is measured in anterior chamber fluid evaluating oxygen level for several ophthalmopathies including different forms of glaucoma, for instillations of hypotensive eye drops as well as in vitreous body near to the optic disc under various levels of intraocular pressure. Currently, monitoring of oxygen saturation in retinal blood vessels, i.e. retinal oximetry, is well developed. This technique is based on the assessment of light absorption by blood depending on

  17. Propagation des ondes acoustiques dans les milieux poreux saturés. Effets d'interface Propagation of Acoustic Waves in Saturated Porous Media. Interface Effects (Part Three

    Directory of Open Access Journals (Sweden)

    Rasolofosaon P.

    2006-11-01

    égligeable. En outre, nous montrons que la géométrie du milieu de propagation joue un rôle relativement secondaire. This article is the logical continuation of a previous article (O. Coussy and T. Bourbié, 1984 concerning the propagation, within the framework of Biot's theory, of acoustic waves in infinite saturated porous media. Starting from the same assumptions as O. Coussy and T. Bourbié concerning the propagation media, this article analyzes the influence of the presence of plane geometric discontinuities (free semi-infinite media or the contacts between two semi-infinite media or discontinuities with cylindrical symmetry (wells. After reviewing the stress-strain relations for a porous medium and the basic equations for dynamic poroelasticity, the article discusses the boundary conditions to be imposed on the interfaces. It then examines the general laws of reflection and refraction in poroelasticity (generalized Snell-Descartes laws. The application of these laws to several interesting specific cases mainly reveals the following phenomena: (1 a slow compressive wave is always generated at the interface between two saturated porous media; (2 the reflected and transmitted waves are generally inhomogeneous. In the next phase the propagation of acoustic waves is examined on the free surface of a semi-infinite saturated porous medium (Rayleigh waves and at the plane interface between a liquid and a saturated porous medium (Stoneley waves. Compared to the properties known for them in conventional elastodynamics, these waves in poroelasticity are slightly dispersive, and appreciably attenuated because of the two-phase nature of the propagation medium. Lastly, the influence of a submerged source emitting near a permeable interface is examined. Emphasis is placed on the fundamental role of permeability and flow conditions at interfaces on the attenuation of S waves and surface waves. By way of comparison, the influence of these parameters on the first arrivals (P waves is

  18. Propagation des ondes acoustiques dans les milieux poreux saturés. Effets d'interface Propagation of Acoustic Waves in Saturated Porous Media. Interface Effects (Part Two

    Directory of Open Access Journals (Sweden)

    Rasolofosaon P.

    2006-11-01

    égligeable. En outre, nous montrons que la géométrie du milieu de propagation joue un rôle relativement secondaire. This article is the logical continuation of a previous article (O. Coussy and T. Bourbié, 1984 concerning the propagation, within the framework of Biot's theory, of acoustic waves in infinite saturated porous media. Starting from the same assumptions as O. Coussy and T. Bourbié concerning the propagation media, this article analyzes the influence of the presence of plane geometric discontinuities (free semi-infinite media or the contacts between two semi-infinite media or discontinuities with cylindrical symmetry (wells. After reviewing the stress-strain relations for a porous medium and the basic equations for dynamic poroelasticity, the article discusses the boundary conditions to be imposed on the interfaces. It then examines the general laws of reflection and refraction in poroelasticity (generalized Snell-Descartes laws. The application of these laws to several interesting specific cases mainly reveals the following phenomena: (1 a slow compressive wave is always generated at the interface between two saturated porous media; (2 the reflected and transmitted waves are generally inhomogeneous. In the next phase the propagation of acoustic waves is examined on the free surface of a semi-infinite saturated porous medium (Rayleigh waves and at the plane interface between a liquid and a saturated porous medium (Stoneley waves. Compared to the properties known for them in conventional elastodynamics, these waves in poroelasticity are slightly dispersive, and appreciably attenuated because of the two-phase nature of the propagation medium. Lastly, the influence of a submerged source emitting near a permeable interface is examined. Emphasis is placed on the fundamental role of permeability and flow conditions at interfaces on the attenuation of S waves and surface waves. By way of comparison, the influence of these parameters on the first arrivals (P waves is

  19. Propagation des ondes acoustiques dans les milieux poreux saturés. Effets d'interface Propagation of Acoustic Waves in Saturated Porous Media. Interface Effects (Part One

    Directory of Open Access Journals (Sweden)

    Rasolofosaon P.

    2006-11-01

    égligeable. En outre, nous montrons que la géométrie du milieu de propagation joue un rôle relativement secondaire. This article is the logical continuation of a previous article (O. Coussy and T. Bourbié, 1984 concerning the propagation, within the framework of Biot's theory, of acoustic waves in infinite saturated porous media. Starting from the same assumptions as O. Coussy and T. Bourbié concerning the propagation media, this article analyzes the influence of the presence of plane geometric discontinuities (free semi-infinite media or the contacts between two semi-infinite media or discontinuities with cylindrical symmetry (wells. After reviewing the stress-strain relations for a porous medium and the basic equations for dynamic poroelasticity, the article discusses the boundary conditions to be imposed on the interfaces. It then examines the general laws of reflection and refraction in poroelasticity (generalized Snell-Descartes laws. The application of these laws to several interesting specific cases mainly reveals the following phenomena: (1 a slow compressive wave is always generated at the interface between two saturated porous media; (2 the reflected and transmitted waves are generally inhomogeneous. In the next phase the propagation of acoustic waves is examined on the free surface of a semi-infinite saturated porous medium (Rayleigh waves and at the plane interface between a liquid and a saturated porous medium (Stoneley waves. Compared to the properties known for them in conventional elastodynamics, these waves in poroelasticity are slightly dispersive, and appreciably attenuated because of the two-phase nature of the propagation medium. Lastly, the influence of a submerged source emitting near a permeable interface is examined. Emphasis is placed on the fundamental role of permeability and flow conditions at interfaces on the attenuation of S waves and surface waves. By way of comparison, the influence of these parameters on the first arrivals (P waves is

  20. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ashraf Aly [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Li, Zhen [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States); Sahle-Demessie, Endalkachew, E-mail: sahle-demessie.endalkachew@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Sorial, George A. [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States)

    2013-01-15

    Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO{sub 2}, breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT{sup ®} based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing.

  1. Fluid dynamics with saturated minijet initial conditions in ultrarelativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Paatelainen, R.; Eskola, K.J.; Niemi, H. [Department of Physics, PO Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, PO Box 64, FI-00014 University of Helsinki (Finland); Tuominen, K. [Department of Physics, PO Box 64, FI-00014 University of Helsinki (Finland); Helsinki Institute of Physics, PO Box 64, FI-00014 University of Helsinki (Finland)

    2014-04-04

    Using next-to-leading order perturbative QCD and a conjecture of saturation to suppress the production of low-energy partons, we calculate the initial energy densities and formation times for the dissipative fluid dynamical evolution of the quark–gluon plasma produced in ultrarelativistic heavy-ion collisions. We identify the model uncertainties and demonstrate the predictive power of the approach by a good global agreement with the measured centrality dependence of charged particle multiplicities, transverse momentum spectra and elliptic flow simultaneously for the Pb+Pb collisions at the LHC and Au+Au at RHIC. In particular, the shear viscosity in the different phases of QCD matter is constrained in this new model simultaneously by all these data.

  2. Clinical value and influencing factors of intraoperative monitoring of jugular venous oxygen saturation

    Directory of Open Access Journals (Sweden)

    Jie SONG

    2016-10-01

    Full Text Available Intraoperative jugular venous oxygen saturation (SjvO2 monitoring has been widely used in clinic, which can monitor cerebral blood flow (CBF and oxygen metabolism. Reverse puncture and catheterization through jugular vein for monitoring SjvO2 is easy to operate and can collect blood samples repeatedly. It is an effective method for real-time dynamic evaluation of cerebral oxygen supply-demand and neurological function. This article reviews the clinical significance and influencing factors of SjvO2 monitoring during operation. It notes in particular that SjvO2 can not be used as the only way to monitor CBF and oxygen metabolism, and a comprehensive evaluation should be done combining with the change of other parameters. DOI: 10.3969/j.issn.1672-6731.2016.10.014

  3. Chaotic Convection in a Viscoelastic Fluid Saturated Porous Medium with a Heat Source

    Directory of Open Access Journals (Sweden)

    B. S. Bhadauria

    2016-01-01

    Full Text Available Chaotic convection in a viscoelastic fluid saturated porous layer, heated from below, is studied by using Oldroyd’s type constituting relation and in the presence of an internal heat source. A modified Darcy law is used in the momentum equation, and a heat source term has been considered in energy equation. An autonomous system of fourth-order differential equations has been deduced by using a truncated Fourier series. Effect of internal heat generation on chaotic convection has been investigated. The asymptotic behavior can be stationary, periodic, or chaotic, depending upon the flow parameters. Construction of four-scroll, or “two-butterfly,” and chaotic attractor has been examined.

  4. Capturing Scale-Dependent Dispersion in Saturated Soils using both Local and Nonlocal Transport Models

    Science.gov (United States)

    Garrard, R. M.; Zhang, Y.; Sun, H.; Xia, Y.

    2016-12-01

    Conservative tracer transport in saturated soils can exhibit scale-dependent dispersion before reaching a Gaussian asymptote. This is most likely due to increasing flow field heterogeneity or the expansion of local velocity distribution experienced by the tracer particles with travel distance. A time nonlocal transport model, previously developed to capture this non-Fickian transport has exhibited an upscaling, sometimes constant, effective dispersion coefficient D from numerical simulations. However, the efficiency of this model has not been systematically checked against real-world data. This study applies and compares both the traditional advection-dispersion equation (ADE) and the time fractional ADE models to quantify solute dynamics moving through 10-meter-long soil columns, where the spatial trend of D can shed light on the scale-dependency of pre-asymptotic dispersion.

  5. The ASY-EOS experiment at GSI: investigating the symmetry energy at supra-saturation densities

    CERN Document Server

    Russotto, P; De Filippo, E; Févre, A Le; Gannon, S; Gašparić, I; Kiš, M; Kupny, S; Leifels, Y; Lemmon, R C; Łukasik, J; Marini, P; Pagano, A; Pawłowski, P; Santoro, S; Trautmann, W; Veselsky, M; Acosta, L; Adamczyk, M; Al-Ajlan, A; Al-Garawi, M; Al-Homaidhi, S; Amorini, F; Auditore, L; Aumann, T; Ayyad, Y; Baran, V; Basrak, Z; Benlliure, J; Boiano, C; Boisjoli, M; Boretzky, K; Brzychczyk, J; Budzanowski, A; Cardella, G; Cammarata, P; Chajecki, Z; Chbihi, A; Colonna, M; Cozma, D; Czech, B; Di Toro, M; Famiano, M; Geraci, E; Greco, V; Grassi, L; Guazzoni, C; Guazzoni, P; Heil, M; Heilborn, L; Introzzi, R; Isobe, T; Kezzar, K; Krasznahorkay, A; Kurz, N; La Guidara, E; Lanzalone, G; Lasko, P; Li, Q; Lombardo, I; Lynch, W G; Matthews, Z; May, L; Minniti, T; Mostazo, M; Papa, M; Pirrone, S; Politi, G; Porto, F; Reifarth, R; Reisdorf, W; Riccio, F; Rizzo, F; Rosato, E; Rossi, D; Simon, H; Skwirczynska, I; Sosin, Z; Stuhl, L; Trifiró, A; Trimarchi, M; Tsang, M B; Verde, G; Vigilante, M; Wieloch, A; Wigg, P; Wolter, H H; Wu, P; Yennello, S; Zambon, P; Zetta, L; Zoric, M

    2012-01-01

    The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich heavy-ions systems at intermediate energies has been proposed as an observable sensitive to the strength of the symmetry term in the nuclear Equation Of State (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for $^{197}$Au+$^{197}$Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.

  6. Two-dimensional finite elements model for selenium transport in saturated and unsaturated zones.

    Science.gov (United States)

    Tayfur, Gokmen; Tanji, Kenneth K; Baba, Alper

    2010-10-01

    A two-dimensional finite element model was developed to simulate species of selenium transport in two dimensions in both saturated and unsaturated soil zones. The model considers water, selenate, selenite, and selenomethionine uptake by plants. It also considers adsorption and desorption, oxidation and reduction, volatilization, and chemical and biological transformations of selenate, selenite, and selenomethionine. In addition to simulating water flow, selenate, selenite, and selenomethionine transport, the model also simulates organic and gaseous selenium transport. The developed model was applied to simulate two different observed field data. The simulation of the observed data was satisfactory, with mean absolute error of 48.5 microg/l and mean relative error of 8.9%.

  7. Influence of obstacles on bubbles rising in water-saturated sand

    Directory of Open Access Journals (Sweden)

    Poryles Raphaël

    2017-01-01

    Full Text Available This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.

  8. Influence of obstacles on bubbles rising in water-saturated sand

    Science.gov (United States)

    Poryles, Raphaël; Varas, Germán; Vidal, Valérie

    2017-06-01

    This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.

  9. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  10. Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    CERN Document Server

    Halpern, Federico D

    2016-01-01

    The narrow power decay-length ($\\lambda_q$), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles measured is found to arise due to radially sheared $\\vec{E}\\times\\vec{B}$ poloidal flows. A complex interaction between sheared flows and outflowing plasma currents regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL $\\lambda_q$ is roughly equal to the turbulent correlation length.

  11. On the importance of aqueous diffusion and electrostatic interactions in advection-dominated transport in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo

    2015-01-01

    Diffusion and compound-specific mixing significantly affect conservative and reactive transport in groundwater. The variability of diffusion coefficients for different solutes has a relevant impact on their displacement at different scales, not only under diffusion-dominated regimes but also under...... advection-dominated flow through conditions. When the solutes are charged species, besides the magnitude of their aqueous diffusion coefficients also their electrostatic interactions play a significant role in the displacement of the different species. Under flow-through conditions this leads...... to multicomponent ionic dispersion: the dispersive fluxes of the different ions are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes were selected as tracers and their transport was studied...

  12. Complex geometrical optics of inhomogeneous and nonlinear saturable media

    Science.gov (United States)

    Berczynski, Pawel

    2013-05-01

    The method of complex geometrical optics (CGO) is presented, which describes Gaussian beam (GB) diffraction and self-focusing along curvilinear trajectory in smoothly inhomogeneous and nonlinear saturable media. CGO method reduces the problem of Gaussian beam propagation in inhomogeneous and nonlinear media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, CGO radically simplifies the description of Gaussian beam diffraction and self-focusing effects as compared to the other methods of nonlinear optics such as: variational method approach, method of moments and beam propagation method. The power of CGO method is presented on the example of the evolution of beam intensity and wave front cross-section along curvilinear central ray with torsion in weakly absorptive and nonlinear saturable graded-index fiber, where the effect of initial beam ellipticity is included into our description.

  13. Methane hydrate formation in partially water-saturated Ottawa sand

    Science.gov (United States)

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  14. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  15. Avalanche effect and gain saturation in high harmonic generation

    CERN Document Server

    Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian

    2015-01-01

    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...

  16. Identifiability analysis of Prandtl Ishilinskii hysteresis model with saturation

    Science.gov (United States)

    Sjöström, MÅrten; Gulliksson, MÅrten

    2008-02-01

    A new class of Preisach operators based on play operators with an inverse in a closed form and allowing for saturation has recently been proposed. Its existence criteria and identification procedure were considered in earlier articles. The present paper analyses the identification procedure with respect to the sensitivity to underlying functions (i.e. intrinsic behaviour of the hysteretic system), to spline approximation, and to the least square error (LSE) estimation procedure. The analysis shows that model errors are significantly influenced by large derivatives of the underlying functions. Spline approximations have generally little effect on model errors. In particular, an upper bound of the relative parameter error due to measurement discrepancies has been derived for the LSE problem. The bound increases, the closer to saturation data are measured.

  17. Modeling saturable absorption for ultra short X-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Hatada, Keisuke, E-mail: keisuke.hatada@unicam.it [CNISM, Sezione di Fisica, Scuola di Scienze e Tecnologie, Universit‘a di Camerino, via Madonna delle Carceri 9, I-62032 Camerino (Italy); INFN, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Di Cicco, Andrea [CNISM, Sezione di Fisica, Scuola di Scienze e Tecnologie, Universit‘a di Camerino, via Madonna delle Carceri 9, I-62032 Camerino (Italy)

    2014-10-15

    Saturable absorption was recently observed in transmission measurements above the L{sub II,III} edge of pure Al thin films using ultra short X-ray pulses at a free-electron-laser (FEL) facility. The high fluence reachable by FEL pulses, the shortness of the pulse duration, and the typical lifetime of the excited state are all important factors enabling observation of the phenomenon. We devised a simplified theoretical approach describing the saturation phenomenon using a three-channel model containing ground, excited and relaxed states. This phenomenological model explicitly includes the interaction between the solid and photon field in a semi-classical way, and the resulting non-linear coupled equation is solved numerically. We successfully applied this model to recent experimental results obtained using FEL radiation.

  18. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  19. Continuous central venous saturation monitoring in pediatrics: a case report.

    Science.gov (United States)

    Spenceley, Neil; Skippen, Peter; Krahn, Gordon; Kissoon, Niranjan

    2008-03-01

    To report the use of a new pediatric central venous catheter that offers continuous central venous saturation (ScVO2) monitoring in the critically ill child. Case report. Pediatric intensive care unit in a tertiary care children's hospital. A 3-month-old child, following cardiac surgery, with an isolated decrease in central venous saturations. Diagnosis of pericardial effusion by echocardiography followed by surgical drainage. ScVO2 readings quickly returned to normal, and the remaining patient course was uneventful. We report the first case of a newly modified central venous catheter (PediaSat Oximetry Catheter, Edwards Lifesciences LLC, Irvine, CA) for children and demonstrate its utility in a patient with impaired oxygen delivery when traditional markers remain stable. This catheter enabled the rapid diagnosis of cardiac compromise due to pericardial effusion, leading to early treatment. Traditional central catheter functions and insertion technique are maintained, making the catheter potentially useful in any critically ill child.

  20. Red cell aspartate aminotransferase saturation with oral pyridoxine intake

    OpenAIRE

    Oshiro, Marilena; Nonoyama, Kimiyo; Oliveira, Raimundo Antônio Gomes; Barretto, Orlando Cesar de Oliveira

    2005-01-01

    CONTEXT AND OBJECTIVE: The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. DESIGN AND SETTING: Controlled trial, in Hematology Division of Instituto...

  1. Cellular and Molecular Imaging Using Chemical Exchange Saturation Transfer.

    Science.gov (United States)

    McMahon, Michael T; Gilad, Assaf A

    2016-10-01

    Chemical exchange saturation transfer (CEST) is a powerful new tool well suited for molecular imaging. This technology enables the detection of low concentration probes through selective labeling of rapidly exchanging protons or other spins on the probes. In this review, we will highlight the unique features of CEST imaging technology and describe the different types of CEST agents that are suited for molecular imaging studies, including CEST theranostic agents, CEST reporter genes, and CEST environmental sensors.

  2. A Partially Saturated Constitutive Theory for Compacted Fills

    Science.gov (United States)

    2004-06-01

    excellent example of this is the work by Brackley (1975) who envisioned the grain structure of a partially saturated soil and therefore a means to explain...Josa, A., (1988). "Un modelo elastoplastico para suelos no saturados," Tesis Doctorae, Universitat Politecnica de Catalunya, Barcelons, Spain. Lawton...smech + icode IF(hflag(r)) hmech=bmnech + icode IF(tflag(r)) trnech=tmech + icode icode = 10*icode end do Print data for an Excel file Added for

  3. Parameter Identification Using ANFIS for Magnetically Saturated Induction Motor

    OpenAIRE

    Mohamed M. Ismail Ali; M. A. Moustafa Hassan

    2012-01-01

    The problem of controlling the p-model induction motor with magnetic saturation is considered in this paper. The motor parameters such that stator resistance Rs, rotor resistance Rr and load torque TL can be varied during the operation, many techniques are used for online identification of the motor parameters. In this paper, the authors use a new technique which is the Adaptive Neuro Fuzzy Inference Systems (ANFIS) technique for online identification of the motor parameters. A simulation stu...

  4. Saturated hydraulic conductivity (Ksat) in relation to some soil ...

    African Journals Online (AJOL)

    The results of the study showed that the particle size fractions of the soils varied from sandy loam to clay loam. Bulk density and particle density were low to moderate with mean values of 1.44 gcm-3 and 2.34 gcm-3. Total porosity was low with mean value of 38.06% and a coefficient of variation of 9.56%. Saturated hydraulic ...

  5. Postural control in a simulated saturation dive to 240 msw.

    OpenAIRE

    Goplen, Frederik Kragerud; Aasen, T. B.; Nordahl, Stein Helge G

    2007-01-01

    INTRODUCTION: There is evidence that increased ambient pressure causes an increase in postural sway. This article documents postural sway at pressures not previously studied and discusses possible mechanisms. METHODS: Eight subjects participated in a dry chamber dive to 240 msw (2.5 MPa) saturation pressure. Two subjects were excluded due to unilateral caloric weakness before the dive. Postural sway was measured on a force platform. The path length described by the center of pr...

  6. Saturation of the Electric Field Transmitted to the Magnetosphere

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  7. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  8. A mercury saturation assay for measuring metallothionein in fish

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, M.D. (Univ. of Manitoba, Winnipeg (Canada). Dept. of Zoology); Stephenson, M. (AECL Research, Pinawa, Manitoba (Canada). Environmental Science Branch); Klaverkamp, J.F. (Freshwater Inst., Winnipeg, Manitoba (Canada))

    1993-07-01

    An accurate, rapid, sensitive, and simple method using mercury saturation for quantifying metallothionein (MT) is described. A complex solution of enzymatic and nonenzymatic thiols, including rabbit liver MT-2, and supernatants from homogenized samples of rainbow trout liver were incubated in the presence of [sup 203]Hg in 10% trichloroacetic acid. Excess Hg was bound to an removed by chicken egg albumin, which denatured on contact with the acidic assay medium. After centrifugation, MT labeled with [sup 203]Hg remained in the TCA supernatant and was estimated using known stoichiometry for Hg-MT binding. A dilution series was used to establish that nonspecific metal binding, a common problem with other metal saturation assays, is negligible. Analysis of hepatic MT with high Cu content from rainbow trout demonstrated virtually complete displacement of Cu, Cd, and Zn by Hg. When compared to other metal-saturation assays developed for vertebrates, this method requires the least number of technical steps, and one-third or less of total preparatory and analytical time.

  9. World, Land, and High-Altitude Saturation Wind Power Potentials

    Science.gov (United States)

    Archer, C. L.; Jacobson, M. Z.

    2012-12-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. We use the GATOR-GCMOM global model, modified to treat wind turbines as an elevated momentum sink, to explore the effects of increasing the number of wind turbines over large geographic regions. Energy is conserved in the model by converting all electric power generated by the wind turbines to heat via electricity use at the surface, where it occurs, and by converting kinetic energy lost by natural surface roughness to turbulence, then heat. We find that, as the number of turbines is increased, power extraction first increases linearly, but then converges to a "saturation" potential not identified previously from physical principles or turbine properties. These saturation potentials are ~253 TW at 100 m hub height over the entire globe, ~80 TW at 100 m over land and near-shore (outside Antarctica), and ~380 TW at 10 km in the jet streams. Sensitivity to grid resolution is minimal. We propose that these saturation potentials should be used as the world, land, and high-altitude theoretical wind power potentials.

  10. Nonlinear mechanisms for drift wave saturation and induced particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A.M. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Lee, W.W. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs.

  11. Cardiac arrhythmias during fiberoptic bronchoscopy and relation with oxygen saturation

    Directory of Open Access Journals (Sweden)

    Hassan G

    2005-01-01

    Full Text Available To evaluate the occurrence of electrocardiographic abnormalities during fiberoptic bronchoscopy, in relation to specific stages of the procedures, patients′ age, sex, smoking, pre-existing lung disease, premedication and oxygen saturation, a prospective study was conducted on 56 patients aged 35 to 75 (mean 62 years without pre-existing cardiovascular disease. Patients were connected to a 12-lead computerized electrocardiographic recorder and pulse oximeter. Fall of oxygen saturation from mean of 95.12% before the procedure to below 80% was observed in 12 (21.4% patients and below 75% in 5 (8.9% patients, at various stages. Statistically highly significant (p < 0.001 fall of oxygen saturation was observed during the procedures while bronchoscope was introduced into the airways and tracheobronchial tree examined. Major disturbances of cardiac rhythm (i.e. atrial, ventricular or both developed in 23 (41.07% patients. Out of these, sinus tachycardia was noted in 16 (69.5%, ventricular premature complexes in 5 (21.7% and paroxysmal supraventricular tachycardia in 2 (8.6% patients. Arrhythmias were most frequent in association with periods of maximum oxygen desaturation in 18 (78.2% of these 23 patients. Oxygen desaturation persisted for more than half an hour in 38 (67.8% of the 56 patients. However, no correlation was observed between the frequency of arrhythmias during bronchoscopy and patients′ age, sex pre-medication or pre-existing pulmonary disease.

  12. Elasticity of Flowing Soap films

    Science.gov (United States)

    Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    The robustness of soap films and bubbles manifests their mechanical stability. The single most important factor underlying the mechanical stability of soap films is its elasticity. Non-destructive measurement of the elasticity in these films has been cumbersome, because of its flowing nature. Here we provide a convenient, reproducible, and non-destructive method for measuring the elasticity by generating and inspecting Marangoni waves. Our method is based on generating an oblique shock by inserting a thin cylindrical obstacle in the flowing film, and converting the measured the shock angle to elasticity. Using this method, we find a constant value for the elasticity of 22 dyne/cm in the commonly used range of film widths, thicknesses or flow rates, implying that the surface of the film is chemically saturated with soap molecules.

  13. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  14. Mixed convection opposing flow in porous annulus

    Science.gov (United States)

    Salman, Ahmed N. J.; Kamangar, Sarfaraz; Al-Rashed, Abdullah A. A. A.; Khan, T. M. Yunus; Khaleed, H. M. T.

    2016-06-01

    The current work investigates the mixed convection flow in a vertical porous annulus embedded with fluid saturated porous medium. The annulus is isothermally heated discretely at 20%, 35% and 50% of the height of cylinder at the center of annulus. Darcy law with thermal non-equilibrium approach is considered. The governing partial differential equations are solved using Finite Element Method (FEM). The effects of Peclet number Pe and conductivity ratio Kr on heat transfer and fluid flow is discussed It is found that the applied velocity in the downward direction, in case of an opposing flow, does not allow the thermal energy to reach from a hot to a cold surface.

  15. A Design Method of Saturation Test Image Based on CIEDE2000

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2012-01-01

    Full Text Available In order to generate color test image consistent with human perception in aspect of saturation, lightness, and hue of image, we propose a saturation test image design method based on CIEDE2000 color difference formula. This method exploits the subjective saturation parameter C′ of CIEDE2000 to get a series of test images with different saturation but same lightness and hue. It is found experimentally that the vision perception has linear relationship with the saturation parameter C′. This kind of saturation test image has various applications, such as in the checking of color masking effect in visual experiments and the testing of the visual effects of image similarity component.

  16. Experimental visualization of solutes transport in two-dimensional saturated permeable media

    Science.gov (United States)

    Muñoz, Edinsson; Herrera, Paulo

    2017-04-01

    Mass transport processes in groundwater flows control transport of contaminants or other dissolved substances. A good characterization of transport processes should allow, for example, the optimization of remediation systems or the prediction of natural attenuation or dilution of pollutants in aquifers. Several previous studies have highlighted the role of heterogeneity in transverse mixing processes, which may be enhanced by the convergence of streamlines due to the presence of high permeability materials. The convergence of streamlines increases the concentration gradients in the direction transverse to the flow, which results in greater transverse mixing and natural dilution. This mixing makes possible the occurrence of chemical reactions between species dissolved in groundwater of different origin. We used image analysis techniques to characterize experiments that replicate the transport of a conservative tracer in two types of quasi 2-D homogeneous and heterogeneous saturated permeable media. The experiments were carried out in an acrylic glass tank, 85 cm long, 16 cm wide and 1 cm thick. We simulated flow conditions found in confined aquifers by imposing a vertical flow fed by a peristaltic pump that injected water at eight points at the bottom of the tank, while we controlled the outflow through the top boundary by using a constant head reservoir. We filled the tank with glass beads with mean diameter 0.05 cm to model the matrix material of the porous media and we used glass beads of 0.2 cm to create a high permeability inclusion to study the effect of heterogeneity on transverse mixing. After steady-state of flux was reached, we injected a conservative tracer (Blue Brilliant) only at the two central ports, while clean water continued flowing through the other six ports. We took digital pictures of the steady-state plume and analyzed the concentration of the tracer along perpendicular to the mean flow fringes, using a piecewise linear model to convert light

  17. Specific interfacial area: the missing state variable in two-phase flow equations?

    NARCIS (Netherlands)

    Joekar-Niasar, V.; Hassanizadeh, S.M.

    2011-01-01

    Classical Darcy's equation for multiphase flow assumes that gravity and the gradient in fluid pressure are the only driving forces and resistance to the flow is parameterized by (relative) permeability as a function of saturation. It is conceivable that, in multiphase flow, other driving forces may

  18. Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model

    Science.gov (United States)

    This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.

  19. Integrated Surface-groundwater Flow Modeling: a Free-surface Overland Flow Boundary Condition in a Parallel Groundwater Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    Kollet, S J; Maxwell, R M

    2005-04-08

    Interactions between surface and ground water are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel three-dimensional variable saturated subsurface flow code ParFlow. In ParFlow, the overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated into ParFlow, which is efficiently exploited by the overland flow simulator. Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow and compares favorably to other commonly used hydrologic models. The influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results show the uncertainty in overland flow predictions due to subsurface heterogeneity and demonstrate the usefulness of our approach. Both the overland flow component and the coupled model are evaluated in a parallel scaling study and show to be efficient.

  20. A customized resistivity system for monitoring saturation and seepage in earthen levees: installation and validation

    National Research Council Canada - National Science Library

    Diego Arosio; Stefano Munda; Greta Tresoldi; Monica Papini; Laura Longoni; Luigi Zanzi

    2017-01-01

    This work is based on the assumption that a resistivity meter can effectively monitor water saturation in earth levees and can be used as a warning system when saturation exceeds the expected seasonal maxima...

  1. Impact of sample saturation on the detected porosity of hardened concrete using low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn

    2014-01-01

    The present work studied the impact of sample saturation on the analysis of pore volume and pore size distribution by low temperature (micro-)calorimetry. The theoretical background was examined, which emphasizes that the freezing/melting temperature of water/ice confined in non-fully saturated...... samples and a higher proportion of pores with small radii were found in the capillary saturated samples. In addition, the observed hysteresis between the freezing and melting curves of ice content of the capillary saturated samples was more pronounced than that of the vacuum saturated samples. The major...... pores is further depressed compared with that when the pores are fully saturated. The study of the experimental data on hardened concrete samples showed that for a same concrete mix, the total pore volume detected from the capillary saturated samples was always lower than that of the vacuum saturated...

  2. Magnesium Oxide Carbonation Rate Law in Saturated Brines

    Science.gov (United States)

    Nemer, M. B.; Allen, C.; Deng, H.

    2008-12-01

    Magnesium oxide (MgO) is the only engineered barrier certified by the EPA for emplacement in the Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy repository for transuranic waste in southeast New Mexico. MgO reduces actinide solubility by sequestering CO2 generated by the biodegradation of cellulosic, plastic, and rubber materials. Demonstration of the effectiveness of MgO is essential for WIPP recertification. In order to be an effective barrier, the rate of CO2 sequestration should be fast compared to the rate CO2 production, over the entire 10,000 year regulatory period. While much research has been conducted on the kinetics of magnesium oxide carbonation in waters with salinity up to that of sea water, we are not aware of any work on determining the carbonation rate law in saturated brines at low partial pressures of CO2 (PCO2 as low as 10-5.5 atm), which is important for performing safety assessments of bedded salt waste repositories. Using a Varian ion-trap gas- chromatograph/mass-spectrometer (GC/MS) we experimentally followed the CO2 sequestration kinetics of magnesium oxide in salt-saturated brines down to a PCO2 as low as 10-5.5 atm. This was performed in a closed reactor with a known initial PCO2. The results of this study show that carbonation is approximately first order in PCO2, in saturated brines. We believe that this method will benefit the study of the detailed kinetics of other similar processes.

  3. Results of neutron irradiation of liquid lithium saturated with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Mazzitelli, Giuseppe [ENEA, RC Frascati, Frascati (Italy)

    2017-04-15

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(−144/RT). • The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10{sup −13} cm{sup −2} s{sup −1}. The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(-144/RT). The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  4. Experiment of nitrox saturation diving with trimix excursion.

    Science.gov (United States)

    Shi, Z Y

    1998-11-01

    Depth limitations to diving operation with air as the breathing gas are well known: air density, oxygen toxicity, nitrogen narcosis and requirement for decompression. The main objectives of our experiment were to assess the decompression, counterdiffusion and performance aspect of helium-nitrogen-oxygen excursions from nitrox saturation. The experiment was carried out in a wet diving stimulator with "igloo" attached to a 2-lock living chamber. Four subjects of two teams of 2 divers were saturated at 25 msw simulated depth in a nitrogen oxygen chamber environment for 8 days, during which period they performed 32 divers-excursions to 60 or 80 msw pressure. Excursion gas mix was trimix of 14.6% oxygen, 50% helium and 35.4% nitrogen, which gave a bottom oxygen partial pressure of 1.0 bars at 60 msw and 1.3 at 80 msw. Excursions were for 70 min at 60 msw with three 10-min work periods and 40 min at 80 msw with two 10-min work periods. Work was on a bicycle ergometer at a moderate level. We calculated the excursion decompression with M-Values based on methods of Hamilton (Hamilton et al., 1990). Staged decompression took 70 min for the 60 msw excursion and 98 min for 80 msw, with stops beginning at 34 or 43 msw respectively. After the second dive day bubbles were heard mainly in one diver but in three divers overall, to Spencer Grade III some times. No symptoms were reported. Saturation decompression using the Repex procedures began at 40 msw and was uneventful: Grade II and sometimes III bubbles persisted in 2 of the four divers until 24 hr after surfacing. We conclude that excursions with mixture rich in helium can be performed effectively to as deep as 80 msw using these procedures.

  5. Displacement front behavior of near miscible CO2flooding in decane saturated synthetic sandstone cores revealed by magnetic resonance imaging.

    Science.gov (United States)

    Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen

    2017-04-01

    It is of great importance to study the CO 2 -oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO 2 enhanced oil recovery. In this work, we carried out near miscible CO 2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO 2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    Science.gov (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  7. Changes in hemodynamic parameters and cerebral saturation during supraventricular tachycardia.

    Science.gov (United States)

    Hershenson, Jared A; Ro, Pamela S; Miao, Yongjie; Tobias, Joseph D; Olshove, Vincent; Naguib, Aymen N

    2012-02-01

    Induced supraventricular tachycardia (SVT) during electrophysiology studies (EPS) can be associated with hemodynamic changes. Traditionally, invasive arterial blood pressure has been used for continuous monitoring of these changes. This prospective study evaluated the efficacy of near-infrared spectroscopy (NIRS) monitoring during SVT. The use of NIRS has expanded with evidence of its accuracy and benefit in detecting cerebral hypoperfusion. This study aimed first to determine the hemodynamic changes associated with electrophysiology testing for SVT and second to determine whether the hemodynamic changes are associated with similar changes in the cerebral saturation as determined by NIRS. The study enrolled 30 patients 5-20 years of age with a history of SVT who underwent an EPS. The demographic data included age, gender, weight, height, and type of SVT. Hemodynamic data (invasive blood pressure and heart rate), NIRS, bispectral index (BIS), end-tidal carbon dioxide, and pulse oximetry were collected before and during three episodes of induced SVT. The linear correlation coefficient (r) was measured to calculate the relationship of the changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) to the changes in NIRS values during the SVT episodes. Data from 22 patients were collected. The induction of SVT was associated mainly with a change in SBP and a less prominent change in DBP and MAP from baseline. The changes in hemodynamic status were associated with minimal changes in cerebral saturations, as evidenced by an average absolute change in NIRS of SVT during electrophysiology testing is associated with hemodynamic changes, mainly in SBP. In this study, these hemodynamic changes resulted in a minimal decrease in cerebral perfusion, as evidenced by minimal changes in the cerebral saturation measured by NIRS (0.7% from baseline). Although the changes in the cerebral saturation were minimal, these changes were

  8. Gain dynamics and saturation in semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher

    2004-01-01

    Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor...... optical amplifiers may be operated in regimes of high linearity, i.e. with a high saturation power, but can also show strong and fast nonlinearities by breaking the equilibrium between discrete dot states and the continuum of wetting layer states. In this paper, we analyse the interplay of these two...

  9. Fabrication of PDMS/SWCNT thin films as saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Romano, I; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); Davila-Rodriguez, J; Delfyett, P J [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816-2700 (United States); May-Arrioja, D A, E-mail: hromano@inaoep.mx [Depto. de Ingenieria Electronica, UAM Reynosa Rodhe, Universidad Autonoma de Tamaulipas, Carr. Reynosa-San Fernando S/N, Reynosa, Tamaulipas 88779 (Mexico)

    2011-01-01

    We present a novel technique to fabricate a saturable absorber thin film based on Polydimethylsiloxane doped with Single Wall Carbon Nanotubes. Using this film a passive mode-locked fiber laser in a standard ring cavity configuration was built by inserting the film between two angled connectors. Self-starting passively mode-locked laser operation was easily observed. The generated pulses have a width of 1.26 ps at a repetition rate of 22.7 MHz with an average power of 4.89 mW.

  10. Low Saturation Intensities in Two-Photon Ultracold Collisions

    Science.gov (United States)

    Sukenik, C. I.; Hoffmann, D.; Bali, S.; Walker, T.

    1998-07-01

    We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding.

  11. Monitoring cerebral tissue oxygen saturation during surgery: a clinician's perspective

    Science.gov (United States)

    Meng, Lingzhong; Gelb, Adrian W.; Cerussi, Albert E.; Mantulin, William W.; Tromberg, Bruce J.

    2013-03-01

    Organ protection and physiology optimization are important goals when taking care of anesthetized patients undergoing surgery. Postoperative cognitive dysfunction and perioperative stroke are unwarranted potential outcomes. Neurovascular coupling, the match between cerebral metabolic demand and substrate supply, should be regarded as the essential cerebral physiology which needs to be monitored during surgery. The brain-targeting near-infrared spectroscopy (NIRS) technology has the potential to fulfill this goal. Proposition of why and how to monitor essential cerebral physiology via advanced NIRS technologies is discussed. We also discussed the limits of the current NIRS technologies which merely measure cerebral tissue oxygen saturation in pooled cerebral arterial, capillary, and venous blood.

  12. Transformer ratio saturation in a beam-driven wakefield accelerator

    Science.gov (United States)

    Farmer, J. P.; Martorelli, R.; Pukhov, A.

    2015-12-01

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  13. Terahertz saturable absorbers from liquid phase exfoliation of graphite

    OpenAIRE

    Bianchi, Vezio; Carey, Tian; Viti, Leonardo; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Tredicucci, Alessandro; Yoon, Duhee; Karagiannidis, Panagiotis; Lombardi, Lucia; Tomarchio, Flavia; Ferrari, Andrea C.; Torrisi, Felice; Vitiello, Miriam S.

    2017-01-01

    Saturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.5 THz quantum cascade laser show a transparency modulation ∼80%, almost one order of magnitude larger than that reported to date at TH...

  14. Spatiotemporal extreme events in a laser with a saturable absorber

    Science.gov (United States)

    Rimoldi, Cristina; Barland, Stéphane; Prati, Franco; Tissoni, Giovanna

    2017-02-01

    We study extreme events occurring in the transverse (x ,y ) section of the field emitted by a broad-area semiconductor laser with a saturable absorber. The spatiotemporal events on which we perform the statistical analysis are identified as maxima of the field intensity in the three-dimensional space (x ,y ,t ) . We identify regions in the parameter space where extreme events are more likely to occur and we study the connection of those extreme events with the cavity solitons that are known to exist in the same system, both stationary and self-pulsing.

  15. Formation of fatty acids in photochemical conversions of saturated hydrocarbons

    Science.gov (United States)

    Telegina, T. A.; Pavlovskaya, T. Y.; Ladyzhenskaya, A. I.

    1977-01-01

    Abiogenic synthesis of fatty acids was studied in photochemical conversions of saturated hydrocarbons. It was shown that, in a hydrocarbon water CaCO3 suspension, the action of 254 nm UV rays caused the formation of fatty acids with a maximum number of carbon atoms in the chain not exceeding that in the initial hydrocarbon. Synthesis of acetic, propionic, butyric, valeric, caproic, enanthic and caprylic (in the case of octane) acids occurs in heptane water CaCO3 and octane water CaCO3 systems.

  16. Sahlgren's Saturation Test for acquired dyschromatopsia: increased lightness enhances sensitivity.

    Science.gov (United States)

    Lindblom, B; Wikholm, M; Frisén, L

    1988-01-01

    Sahlgren's Saturation Test (SST) is a simple sorting test designed for the detection and grading of acquired color vision defects. Like other pigment-based color vision tests, the SST color samples have medium lightness, i.e., they belong to the intermediate part of the gray scale. We tested normal controls and subjects with congenital or acquired dyschromatopsia with five SST versions that differed only in the amount of lightness. The sensitivity of the test increased considerably with increasing lightness. Therefore, the lightness level of SST has now been changed from 30 to 10 Natural Color System units.

  17. Rate dependence of dry, oil- or water-saturated chalk

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Al-Alwan, A.

    The rate dependence of dry, oil- or water-saturated high-porosity outcrop chalk is investigated based on whether the fluid effect could be excluded from a governing material parameter, the b-factor. The b-factor is used in geotechnical engineering to establish the difference in evolution of load...... between stress-strain curves when applying different loading rates. The material investigated is outcrop chalk from Stevns, Southern part of Denmark, with a porosity of 43 to 44% and subjected to varying loading rates. The Biot critical frequency is a function of the fluid properties viscosity and density...

  18. Reverse saturable absorption (RSA) in fluorinated iridium derivatives

    Science.gov (United States)

    Ferry, Michael J.; O'Donnell, Ryan M.; Bambha, Neal; Ensley, Trenton R.; Shensky, William M.; Shi, Jianmin

    2017-08-01

    The photophysical properties of cyclometallated iridium compounds are beneficial for nonlinear optical (NLO) applications, such as the design of reverse saturable absorption (RSA) materials. We report on the NLO characterization of a family of compounds of the form [Ir(pbt)2(LX)], where pbt is 2-phenylbenzothiazole and LX is a beta-diketonate ligand. In particular, we investigate the effects of trifluoromethylation on compound solubility and photophysics compared to the parent acetylacetonate (acac) version. The NLO properties, such as the singlet and triplet excited-state cross sections, of these compounds were measured using the Z-scan technique. The excited-state lifetimes were determined from visible transient absorption spectroscopy.

  19. De-Mystifying Saturated Fats – A Perspective

    Directory of Open Access Journals (Sweden)

    Indu Mani

    2014-11-01

    Full Text Available Since the 1980s the world has been repeatedly informed about the harmful effects of saturated fatty acids. The USDA recommends that SFA consumption should be < 10 en%, while the American Heart Association goes a step further and suggests that the intakes should be reduced to < 7 en%. However, recent findings are increasingly questioning this advice, showing evidence that consumption of SFA may actually be better than increasing intake of either carbohydrates or polyunsaturated fatty acids. This article aims to summarize some of this information, with emphasis on its relevance to Indian diets.

  20. Monte Carlo simulation of AB-copolymers with saturating bonds

    DEFF Research Database (Denmark)

    Chertovich, A.C.; Ivanov, V.A.; Khokhlov, A.R.

    2003-01-01

    Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A- and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending...... on the nature of a particular AB-sequence: statistical random sequence, diblock sequence and 'random-complementary' sequence (one-half of such an AB-sequence is random with Bernoulli statistics while the other half is complementary to the first one). The properties of random-complementary sequences are closer...

  1. Nonlinear saturation of ballooning modes in tokamaks and stellarators

    Science.gov (United States)

    Bauer, F.; Garabedian, P.; Betancourt, O.

    1988-01-01

    The spectral code BETAS computes plasma equilibrium in a toroidal magnetic field B = [unk]s × [unk]Ψ with remarkable accuracy because the finite difference scheme employed in the radial direction allows for discontinuities of the flux function Ψ across the nested surfaces s = const. Instability of higher modes in stellarators like the Heliotron E can be detected in roughly an hour on the best supercomputers by calculating bifurcated equilibria that are defined over just one field period. The method has been validated by comparing results about nonlinear saturation of ballooning modes in tokamaks with numerical data from the PEST code. PMID:16593984

  2. Theoretical and experimental investigation of thermohydrologic processes in a partially saturated, fractured porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Manteufel, R.D. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Dodge, F.T.; Svedeman, S.J. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    The performance of a geologic repository for high-level nuclear waste will be influenced to a large degree by thermohydrologic phenomena created by the emplacement of heat-generating radioactive waste. The importance of these phenomena is manifest in that they can greatly affect the movement of moisture and the resulting transport of radionuclides from the repository. Thus, these phenomena must be well understood prior to a definitive assessment of a potential repository site. An investigation has been undertaken along three separate avenues of analysis: (i) laboratory experiments, (ii) mathematical models, and (iii) similitude analysis. A summary of accomplishments to date is as follows. (1) A review of the literature on the theory of heat and mass transfer in partially saturated porous medium. (2) A development of the governing conservation and constitutive equations. (3) A development of a dimensionless form of the governing equations. (4) A numerical study of the importance and sensitivity of flow to a set of dimensionless groups. (5) A survey and evaluation of experimental measurement techniques. (6) Execution of laboratory experiments of nonisothermal flow in a porous medium with a simulated fracture.

  3. Mass Transfer From Nonaqueous Phase Organic Liquids in Water-Saturated Porous Media

    Science.gov (United States)

    Geller, J. T.; Hunt, J. R.

    2010-01-01

    Results of dissolution experiments with trapped nonaqueous phase liquids (NAPLs) are modeled by a mass transfer analysis. The model represents the NAPL as isolated spheres that shrink with dissolution and uses a mass transfer coefficient correlation reported in the literature for dissolving spherical solids. The model accounts for the reduced permeability of a region of residual NAPL relative to the permeability of the surrounding clean media that causes the flowing water to partially bypass the residual NAPL. The dissolution experiments with toluene alone and a benzene-toluene mixture were conducted in a water-saturated column of homogeneous glass beads over a range of Darcy velocities from 0.5 to 10 m d−1. The model could represent the observed effluent concentrations as the NAPL underwent complete dissolution. The changing pressure drop across the column was predicted following an initial period of NAPL reconfiguration. The fitted NAPL sphere diameters of 0.15 to 0.40 cm are consistent with the size of NAPL ganglia observed by others and are the smallest at the largest flow velocity. PMID:20336189

  4. Computations in Nonlinear Wave Interactions and Saturation in Crossflow--Dominated Boundary Layers

    Science.gov (United States)

    Haynes, Tim S.; Reed, Helen L.

    1996-11-01

    The nonlinear development of stationary crossflow vortices over a 45^circ swept NLF--0415 airfoil is studied. Previous investigations indicate that the linear stability theories are unable to accurately describe the transitional flow over crossflow--dominated configurations. In recent years the development of nonlinear parabolized stability equations (NPSE) has opened new pathways toward understanding transitional boundary--layer flows. This is because the elegant inclusion of nonlinear and nonparallel effects in the NPSE allows accurate stability analyses to be performed without the difficulties and overhead associated with direct numerical simulations (DNS). Numerical (NPSE) results are presented here and compared with experimental results obtained at the Arizona State University Unsteady Wind Tunnel (ASUUWT) for the same configurations. The comparison shows clearly that the saturation of crossflow disturbances is responsible for the discrepancy between linear stability theories and experimental results. The effects of curvature and NPSE initial conditions are discussed. The comparison of computational (NPSE) and experimental disturbance mode shapes and N--factor curves shows excellent agreement. This work was supported at various stages by NASA Ames Research Center (NGT50745), Air Force Office of Scientific Research (F49620-95-1-0033), and the National Science Foundation Faculty Awards for Women in Science and Engineering (GER-9022523).

  5. Visualisation study on Pseudomonas migulae AN-1 transport in saturated porous media.

    Science.gov (United States)

    Qu, Dan; Ren, Hejun; Zhou, Rui; Zhao, Yongsheng

    2017-10-01

    Influence of granular size and groundwater flow rate on transport of Pseudomonas migulae AN-1 in saturated porous media was non-invasively and visually investigated with a novel imaging technique based on our previously established green fluorescent protein-tagging approach. AN-1 was transported faster than water was. The finer the media were, the greater the enhancement of bacterial velocity was. Mass recovery (MR) increased, while deposition rate coefficient (Kc) decreased, with increasing granular size. Similar and linear trends of MR and Kc, respectively, were quantitatively observed with increasing water flow rate. The images revealed that the initial shape of bacterial plume after injection was a narrow strip along the injection well and an ellipsoid in the lower part of the injection well in medium and coarse sand, respectively. Bacterial plume migrated horizontally in medium sand, but shifted slightly downward in coarse sand. Under similar conditions, the fluorescent area carrying AN-1 in medium sand was larger than that carrying AN-1 in coarse sand during the same period. The visualisation method of this study captured both the movement of free-state and retained bacteria that adhered to sediments. A continuous biological zone composed of planktonic and retained AN-1 was observed. These findings are significant for actual bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Capillary pressure-saturation relationships for diluted bitumen and water in gravel

    Science.gov (United States)

    Hossain, S. Zubair; Mumford, Kevin G.

    2017-08-01

    Spills of diluted bitumen (dilbit) to rivers by rail or pipeline accidents can have serious long-term impacts on environment and ecology due to the submergence and trapping of oil within the river bed sediment. The extent of this problem is dictated by the amount of immobile oil available for mass transfer into the water flowing through the sediment pores. An understanding of multiphase (oil and water) flow in the sediment, including oil trapping by hysteretic drainage and imbibition, is important for the development of spill response and risk assessment strategies. Therefore, the objective of this study was to measure capillary pressure-saturation (Pc-Sw) relationships for dilbit and water, and air and water in gravel using a custom-made pressure cell. The Pc-Sw relationships obtained using standard procedures in coarse porous media are height-averaged and often require correction. By developing and comparing air-water and dilbit-water Pc-Sw curves, it was found that correction was less important in dilbit-water systems due to the smaller difference in density between the fluids. In both systems, small displacement pressures were needed for the entry of non-wetting fluid in gravel. Approximately 14% of the pore space was occupied by trapped dilbit after imbibition, which can serve as a source of long-term contamination. While air-water data can be scaled to reasonably predict dilbit-water behaviour, it cannot be used to determine the trapped amount.

  7. KINETIC MODEL OF ELECTRIC-DISCHARGE СО2-LASER WITH FAST FLOW

    Directory of Open Access Journals (Sweden)

    V. Nevdakh

    2013-01-01

    Full Text Available The paper presents a kinetic model of CW electric-discharge CO2-laser with fast flow. Expressions linking a non-saturated gain ratio, saturation intensity and output power of the fast-flow laser with excitation rates and relaxation times of laser levels have been obtained in the paper. The paper demonstrates that the higher excitation and flow rates or higher saturation intensity provide considerably higher specific output power of the fast-flow CO2-laser in comparison with a sealed-off CO2-laser. While maintaining a steady discharge the same output power of the fast-flow CO2-laser may be obtained under various discharge conditions and combinations of fast flow rate, gas mixture composition and active media temperature.

  8. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime.......The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  9. Inductance identification of an induction machine taking load-dependent saturation into account

    OpenAIRE

    Ranta, Mikaela; Hinkkanen, Marko; Luomi, Jorma

    2008-01-01

    The paper proposes an identification method for the inductances of induction machines, based on signal injection. Due to magnetic saturation, a saturation-induced saliency appears in the induction motor, and the total leakage inductance estimate depends on the angle of the excitation signal. The proposed identification method is based on a small-signal model that includes the saturation-induced saliency. Because of the saturation, the load also affects the estimate, and measurements are neede...

  10. Joint application of Geoelectrical Resistivity and Ground Penetrating Radar techniques for the study of hyper-saturated zones. Case study in Egypt

    Directory of Open Access Journals (Sweden)

    Hany S. Mesbah

    2017-06-01

    Full Text Available This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS and Ground Penetrating Radar (GPR for outlining and investigating of surface springing out (flow of groundwater to the base of an service building site, and determining the reason(s for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form, are easily clarifying the direction of groundwater flow toward the studied building.

  11. The physics of debris flows

    Science.gov (United States)

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  12. FlowCyl: one-parameter characterisation of matrix rheology

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Ramenskiy, Evgeny; Mørtsell, Ernst

    The FlowCyl is a simple flow viscometer – a modification of the Marsh Cone test apparatus developed to characterize cement pastes and grouts. The FlowCyl gives a one parameter characterisation of rheology called the flow resistance ratio or λQ for use in the Particle-Matrix concrete proportioning...... system. Recent studies have shown that the FlowCyl test, which has previously proven acceptable for the one-parameter characterisation of matrix phase rheology, is probably not suitable for matrices with high powder content and a superplasticiser dosage below the surface adsorption saturation. This paper...

  13. Composition of the saturated hydrocarbons from males, females, and eggs of the millipede, Graphidostreptus tumuliporus

    NARCIS (Netherlands)

    Oudejans, R.C.H.M.

    The total hydrocarbons of the millipede Graphidostreptus tumuliporus contain 10 per cent saturated components. The composition of the saturated hydrocarbons from males, females, and eggs is reported. Straight-chain alkanes (n-C15–n-C36) constitute 59 to 75 per cent of the saturated hydrocarbons

  14. A novel approach to deterministic performance analysis of guidance loops with saturation

    NARCIS (Netherlands)

    Weiss, M.; Bucco, D.

    2011-01-01

    Since saturation often plays an important role in limiting the performance of guidance loops, performance analysis of guidance loops with saturation has been a popular subject of investigation. Most work so far has concentrated on the effect of saturation on stochastic performance of guidance loops,

  15. Relating the onset of reduction to degree of soil water saturation ...

    African Journals Online (AJOL)

    Relating the onset of reduction to degree of soil water saturation. Kimberly Smith, Cornelius W van Huyssteen. Abstract. Literature does not indicate the degree of water saturation at which reduction is expected to occur. This study therefore aimed to determine the degree of water saturation (S) at which reduction is initiated.

  16. A Modified Prophylactic Regimen for the Prevention of Otitis Externa in Saturation Divers

    Science.gov (United States)

    2013-10-01

    Prophylactic Regimen for the Prevention of Otitis Externa in Saturation Divers Authors: DISTRIBUTION STATEMENT A. Paul C. Algra, LT, MC...May 2012 – May 2013 4. TITLE AND SUBTITLE A Modified Prophylactic Regimen for the Prevention of Otitis Externa in Saturation Divers...SUPPLEMENTARY NOTES 14. ABSTRACT To prevent acute otitis externa (AOE) in the saturation setting and to decrease the side effects

  17. 9 CFR 96.14 - Uncertified casings; disinfection with saturated brine solution.

    Science.gov (United States)

    2010-01-01

    ... saturated brine solution. 96.14 Section 96.14 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... § 96.14 Uncertified casings; disinfection with saturated brine solution. Foreign animal casings offered... acid as at present or if preferred may be submerged in a saturated brine solution at a temperature not...

  18. Threshold Saturation in Spatially Coupled Constraint Satisfaction Problems

    Science.gov (United States)

    Hamed Hassani, S.; Macris, Nicolas; Urbanke, Ruediger

    2013-03-01

    We consider chains of random constraint satisfaction models that are spatially coupled across a finite window along the chain direction. We investigate their phase diagram at zero temperature using the survey propagation formalism and the interpolation method. We prove that the SAT-UNSAT phase transition threshold of an infinite chain is identical to the one of the individual standard model, and is therefore not affected by spatial coupling. We compute the survey propagation complexity using population dynamics as well as large degree approximations, and determine the survey propagation threshold. We find that a clustering phase survives coupling. However, as one increases the range of the coupling window, the survey propagation threshold increases and saturates towards the phase transition threshold. We also briefly discuss other aspects of the problem. Namely, the condensation threshold is not affected by coupling, but the dynamic threshold displays saturation towards the condensation one. All these features may provide a new avenue for obtaining better provable algorithmic lower bounds on phase transition thresholds of the individual standard model.

  19. Distinct saturable pathways for the endocytosis of different tyrosine motifs.

    Science.gov (United States)

    Warren, R A; Green, F A; Stenberg, P E; Enns, C A

    1998-07-03

    Endocytosis of surface proteins through clathrin-coated pits requires an internalization signal in the cytoplasmic domain. Two types of internalization signal have been described: one requiring a tyrosine as the critical residue (tyrosine-based motif), and the other consisting of either two consecutive leucines or an isoleucine and leucine (dileucine motif). Although it seems that these signals are necessary and sufficient for endocytic targeting, the mechanism of recognition is not well understood. To examine this question, tetracycline-repressible cell lines were used to overexpress one of several receptors bearing a tyrosine-based internalization signal. By measuring the rates of endocytosis for either the overexpressed receptor, or that of other endogenous receptors, we were able to show that the endocytosis of identical receptors could be saturated, but a complete lack of competition exists between the transferrin receptor (TfR), the low-density lipoprotein receptor, and the epidermal growth factor receptor. Overexpression of any one of these receptors resulted in its redistribution toward the cell surface, implying that entry into coated pits is limited. During high levels of TfR expression, however, a significant increase in the amount of surface Lamp1, but not low-density lipoprotein receptor, epidermal growth factor receptor, or Lamp2, is detected. This suggests that Lamp1 and TfR compete for the same endocytic sites. Together, these results support the idea that there are at least three distinct saturable components involved in clathrin-mediated endocytosis.

  20. Biodegradation of diesel/biodiesel blends in saturated sand microcosms

    DEFF Research Database (Denmark)

    Lisiecki, Piotr; Chrzanowski, Łukasz; Szulc, Alicja

    2014-01-01

    The aim of the study was to evaluate the biodegradation extent of both aromatic and aliphatic hydrocarbon fractions in saturated sandy microcosm spiked with diesel/biodiesel blends (D, B10, B20, B30, B40, B50, B60, B70, B80, B90 and B100, where D is commercial petroleum diesel fuel and B is comme......The aim of the study was to evaluate the biodegradation extent of both aromatic and aliphatic hydrocarbon fractions in saturated sandy microcosm spiked with diesel/biodiesel blends (D, B10, B20, B30, B40, B50, B60, B70, B80, B90 and B100, where D is commercial petroleum diesel fuel and B...... is commercial biodiesel blend) augmented with a bacterial consortium of petroleum degraders. The biodegradation kinetics for blends were evaluated based on measuring the amount of emitted CO2 after 578 days. Subsequently, the residual aromatic and aliphatic fractions were separated and determined by employing...... of biodiesel, regardless of the concentration used. This observation leads to the conclusion that blending with biodiesel does not impact the long-term biodegradation of specific diesel oil fractions. © 2013 Elsevier Ltd. All rights reserved....