WorldWideScience

Sample records for saturated sandy soils

  1. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    the water retention curve), both exhibiting similar and exponential relationships with D50. Under variably saturated conditions, higher Dp and ka in coarser sand (larger D50) were observed due to rapid gas diffusion and advection through the less tortuous large-pore networks. In addition, soil compaction......The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...... saturated conditions. Data showed that particle size markedly affects the effective diameter of the drained pores active in leading gas through the sample at –100 cm H2O of soil water matric potential (calculated from Dp and ka) as well as the average pore diameter at half saturation (calculated from...

  2. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle...... size distribution or, more recently, soil-air permeability. However, similar links to soil gas diffusivity (Dp/Do) have not been fully explored even though gas diffusivity is a direct measure of connectivity and tortuosity of the soil pore network. Based on measurements for a coarse sandy soil....../Do model to measured data, and subsequently linked to the cementation exponent of the wellestablished Revil and Cathles predictive model for saturated hydraulic conductivity. Furthermore, a two-parameter model, analogue to the Kozeny-Carman equation, was developed for the Ksat - Dp/Do relationships. All 44...

  3. Transport Modeling of Modified Magnetite Nanoparticles with Sodium Dodecyl Sulfate in a Saturated Sandy Soil

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-02-01

    . Efficiency of one site and two-site models varied from 0.761 to 0.851 and 0.760 to 0.846 respectively that indicated both models had good estimation of nanoparticles transport in the sandy soil. Also, logarithmic form of nanoparticles breakthrough curve showed that both models had good estimation of all ranges of breakthrough curve containing its tail. Conclusion: Investigation of transport modeling of modified magnetite nanoparticles with Sodium dodecyl sulfate in a saturated sandy soil showed that decreasing the nanoparticles concentration would enhanced the mobility of modified magnetite nanoparticles, but increasing of pressure head had no effect on nanoparticles mobility. The results of models evaluation showed that both one site and two-site models had eligible estimation of nanoparticles transport in the studied sandy soil columns.

  4. Saturate hydraulic conductivity, water stable aggregates and soil ...

    African Journals Online (AJOL)

    Saturate hydraulic conductivity, water stable aggregates and soil organic matter in a sandy-loam soil in Ikwuano lga of Abia state. ... Samples were analyzed for soil properties like; Ksat, WSA (%) and percent organic carbon (OC %), Data from the analysis were subjected to ANOVA using a split plot in RCBD. Results ...

  5. Impact of Sewage Sludge on Water Movement in Calcareous Sandy Soils

    Directory of Open Access Journals (Sweden)

    A.M. AI-Omran

    1997-01-01

    Full Text Available The present study was undertaken to investigate the changes in soil physical properties and their effect on water movement under ponded irrigation. Sewage sludge was applied to 10 cm soil depth at rates of 0.25. 75  and 100 Mg-ha-1 to two disturbed soils differing in CaCO3 content. The results showed that cumulative infiltration (1 decreased with an increase in sewage sludge rates. Basic infiltration for slightly calcareous sandy soil was higher than that of moderately calcareous sandy soil, laboratory measurements showed an exponential decrease in saturated hydraulic conductivity and an increase in available water capacity with an increase in sewage sludge rates. For both soils, water diffusivity (D(Q decreased with an increase in sewage sludge rates. The (oral values of slightly calcareous sandy soils were higher than those of moderately calcareous sandy soils.

  6. Sandy Soil Microaggregates: Rethinking Our Understanding of Hydraulic Function

    Energy Technology Data Exchange (ETDEWEB)

    Paradiś, Ashley; Brueck, Christopher; Meisenheimer, Douglas; Wanzek, Thomas; Dragila, Maria Ines

    2017-01-01

    This study investigated the peculiar structure of microaggregates in coarse sandy soils that exhibit only external porosity and investigated their control on soil hydrology. The microstructure underpins a hydrologic existence that differs from finer textured soils where aggregates have internal porosity. Understanding the impact of these microaggregates on soil hydrology will permit improved agricultural irrigation management and estimates associated with ecosystem capacity and resiliency. Microstructure was investigated using a digital microscope, and aspects of the structure were quantified by sedimentation and computed microtomography. Sandy soil microaggregates were observed to be comprised of a solid sand-grain core that is coated with fines, presumably cemented by organic media. This microstructure leads to three distinct water pools during drainage: capillary water, followed by thick films (1–20 μm) enveloping the outer surfaces of the crusted microaggregates, followed by adsorbed thin films (<1 μm). The characteristics of the thick films were investigated using an analytical model. These films may provide as much as 10 to 40% saturation in the range of plant-available water. Using lubrication theory, it was predicted that thick film drainage follows a power law function with an exponent of 2. Thick films may also have a role in the geochemical evolution of soils and in ecosystem function because they provide contiguous water and gas phases at relatively high moisture contents. And, because the rough outer crust of these microaggregates can provide good niches for microbial activity, biofilm physics will dominate thick film processes, and consequently hydrologic, biologic, and geochemical functions for coarse sandy soils.

  7. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  8. Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils.

    Science.gov (United States)

    Yoon, G L; Park, J B

    2001-06-29

    Laboratory pilot tests were performed to investigate the relationship between electrical resistivity and contaminated soil properties. Three different sandy soils and leachate collected from one of the industrial waste landfill sites in Korea were mixed to simulate contaminated soil conditions. The values of electrical resistivity of the soils were measured using laboratory scaled resistivity cone penetrometer probe. In the experiments, electrical resistivity was observed in terms of water content, unit weight, saturation degree of the soils, and leachate concentration. The experimental results show that the electrical resistivity of the sandy soils depends largely on the water content and electrical properties of pore water rather than unit weight and types of soils. The amount of fines can have significant effect on electrical properties of soils. Direct correlation with contamination in such soils may not be valid here. The results suggest that the electrical resistivity measurement is well suited and applicable for monitoring and delineation of contaminants in the subsurface.

  9. Saturated hydraulic conductivity (Ksat) in relation to some soil ...

    African Journals Online (AJOL)

    The results of the study showed that the particle size fractions of the soils varied from sandy loam to clay loam. Bulk density and particle density were low to moderate with mean values of 1.44 gcm-3 and 2.34 gcm-3. Total porosity was low with mean value of 38.06% and a coefficient of variation of 9.56%. Saturated hydraulic ...

  10. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  11. Effect of soil pH on sorption of salinomycin in clay and sandy soils

    African Journals Online (AJOL)

    use

    In this study, sorption of salinomycin was measured in four agricultural soils, a clay soil with low organic matter content (LOM), a clay soil with high organic matter content (HOM), a sandy soil with. HOM, and a loamy sandy (LOM) soils, at three pH levels, namely 4, 7 and 9. Desorption studies was carried out using the batch ...

  12. Phosphorus leaching from biosolids-amended sandy soils.

    Science.gov (United States)

    Elliott, H A; O'Connor, G A; Brinton, S

    2002-01-01

    Increasing emphasis on phosphorus (P)-based nutrient management underscores the need to understand P behavior in soils amended with biosolids and manures. Laboratory and greenhouse column studies characterized P forms and leachability of eight biosolids products, chicken manure (CM), and commercial fertilizer (triple superphosphate, TSP). Bahiagrass (Paspalum notatum Flugge) was grown for 4 mo on two acid, P-deficient Florida sands, representing both moderate (Candler series: hyperthermic, uncoated Typic Quartzipsamments) and very low (Immokalee series: sandy, siliceous, hyperthermic Arenic Alaquods) P-sorbing capacities. Amendments were applied at 56 and 224 kg P(T) ha(-1), simulating P-based and N-based nutrient loadings, respectively. Column leachate P was dominantly inorganic and lower for biosolids P sources than TSP. For Candler soil, only TSP at the high P rate exhibited P leaching statistically greater (alpha = 0.05) than control (soil-only) columns. For the high P rate and low P-sorbing Immokalee soil, TSP and CM leached 21 and 3.0% of applied P, respectively. Leachate P for six biosolids was biological P removal process, exhibited significantly greater leachate P in both cake and pelletized forms (11 and 2.5% of applied P, respectively) than other biosolids. Biosolids P leaching was correlated to the phosphorus saturation index (PSI = [Pox]/[Al(ox) + Fe(ox)]) based on oxalate extraction of the pre-applied biosolids. For hiosolids with PSI < or = approximately 1.1, no appreciable leaching occurred. Only Largo cake (PSI = 1.4) and pellets (PSI = 1.3) exhibited P leaching losses statistically greater than controls. The biosolids PSI appears useful for identifying biosolids with potential to enrich drainage P when applied to low P-sorbing soils.

  13. Microstructure characteristics of cement-stabilized sandy soil using nanosilica

    Directory of Open Access Journals (Sweden)

    Asskar Janalizadeh Choobbasti

    2017-10-01

    Full Text Available An experimental program was conducted to explore the impact of nanosilica on the microstructure and mechanical characteristics of cemented sandy soil. Cement agent included Portland cement type II. Cement content was 6% by weight of the sandy soil. Nanosilica was added in percentages of 0%, 4%, 8% and 12% by weight of cement. Cylindrical samples were prepared with relative density of 80% and optimum water content and cured for 7 d, 28 d and 90 d. Microstructure characteristics of cement-nanosilica-sand mixtures after 90 d of curing have been explored using atomic force microscopy (AFM, scanning electron microscopy (SEM and X-ray diffraction (XRD tests. Effects of curing time on microstructure properties of cemented sandy soil samples with 0% and 8% nanosilica have been investigated using SEM test. Unconfined compression test (for all curing times and compaction test were also performed. The SEM and AFM tests results showed that nanosilica contributes to enhancement of cemented sandy soil through yielding denser, more uniform structure. The XRD test demonstrated that the inclusion of nanosilica in the cemented soil increases the intensity of the calcium silicate hydrate (CSH peak and decreases the intensity of the calcium hydroxide (CH peak. The results showed that adding optimum percentages of nanosilica to cement-stabilized sandy soil enhances its mechanical and microstructure properties.

  14. Effect of Tractor Forward Speed on Sandy Loam Soil Physical ...

    African Journals Online (AJOL)

    Field studies were conducted at the National Centre for Agricultural Mechanization (NCAM), Ilorin on a sandy loam soil to evaluate the effect of the imposition of different levels of tractor forward speed during tillage on some soil physical properties. The forward speed was varied from 1.0 to 10.6km/h: The depth of tillage was ...

  15. Compaction Behaviour of Akure Sandy Clay Loamy Soils | Manuwa ...

    African Journals Online (AJOL)

    Laboratory investigations were conducted to study the behaviors of sandy clay loam soil under uni-axial compression loading. The effects of applied pressure and moisture content on bulk density of soils were observed and subjected to regression analysis. The effect of applied pressure on bulk density could be described ...

  16. Microfungi diversity isolation from sandy soil of Acapulco touristic beaches

    Science.gov (United States)

    Microscopic fungi diversity in marine sandy soil habitats is associated with key functions of beach ecosystems. There are few reports on their presence in Mexican beaches. Although standard methods to obtain the fungi from soil samples are established, the aim of this pilot study was to test the pla...

  17. effect of tractor forward speed on sandy loam soil physical ...

    African Journals Online (AJOL)

    Dr Obe

    . 51 ... Ilorin on a sandy loam soil to evaluate the effect of the imposition of different levels of tractor forward speed during tillage on some soil physical .... reported to have negative impacts to root growth and development (Negi; et al., 1980,.

  18. Leaching behaviour of azoxystrobin in sandy loam soil

    African Journals Online (AJOL)

    Mr HMM Mzimela

    2014-08-01

    Aug 1, 2014 ... Key words: Leaching, azoxystrobin, sandy loam soil, column, residues. INTRODUCTION. Pesticides are one of the major technological developments of twentieth century. Whether natural or synthetic, they have toxicological significance and pose a potential risk when they persist in the environment. The.

  19. Soil Structure and Saturated Hydraulic Conductivity

    Science.gov (United States)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.

  20. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  1. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  2. Crop Growing by Brackish Water Drip Irrigaton in Sandy Soil

    OpenAIRE

    山根, 昌勝; 佐藤, 一郎

    1983-01-01

    Grain sorghum(Sorghum vulgare L.),cabbage (Brassica oleracea L.)and Japanese radish(Raphanus sativus L.)were grown in sandy soil under a plastic house,and irrigated either with fresh water, or with brackish water containing 2995 ppm of several dissolved salts,a nd using five kinds of drip irrigation emitters. The soil moisture contents of the brackish water plots were slight1l higher than those of the fresh water plots. In the brackish water plots,the pH values of soil suspension (H₂0,1:2.5) ...

  3. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  4. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    Science.gov (United States)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  5. Extraction Efficiency of Belonolaimus longicaudatus from Sandy Soil.

    Science.gov (United States)

    McSorley, R; Frederick, J J

    1991-10-01

    Numbers of Belonolaimus longicaudatus extracted from sandy soils (91-92% sand) by sieving and centrifugation were only 40-55% of those extracted by sieving and incubation on a Baermann tray. Residues normally discarded at each step of the sieving plus Baermann tray extraction procedure were examined for nematodes to obtain estimates of extraction efficiencies. For third-stage and fourth-stage juveniles, males, and females, estimates of extraction efficiency ranged from 60 to 65% in one experiment and 73 to 82% in another. Estimated extraction efficiencies for second-stage juveniles were lower (33% in one experiment, 67% in another) due to losses during sieving. When sterilized soil was seeded with known numbers of B. longicaudatus, 60% of second-stage juveniles and 68-76% of other stages were recovered. Most stages of B. longicaudatus could be extracted from these soils by sieving plus Baermann incubation with an efficiency of 60-70%.

  6. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils.

    NARCIS (Netherlands)

    Pol-Van Dasselaar, van den A.; Beusichem, van M.L.; Oenema, O.

    1998-01-01

    Aerobic grasslands may consume significant amounts of atmospheric methane (CH4). We aimed (i) to assess the spatial and temporal variability of net CH4 fluxes from grasslands on aerobic sandy soils, and (ii) to explain the variability in net CH4 fluxes by differences in soil moisture content and

  7. Microbial and physical properties as indicators of sandy soil quality under cropland and grassland

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata

    2017-04-01

    Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water

  8. Effect of gas on shear wave velocity of sandy soils densified with explosives

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Vega-Posada

    2017-01-01

    Full Text Available Context: Shear wave velocity tests (Vs are commonly used to estimate the increase in resistance of explosive densified soils. In some historical cases, Vs tests performed after the soil improvement process do not show a significant increase in soil resistance, even though the soil surface sits more than 0.50 m. It is believed that this response is due to the presence of gas on the soil mass. Method: This paper presents the results of monotonic triaxial tests performed on samples of dense gaseous sandy soils to evaluate the effect of occluded gas on the response to the shear wave velocity in densified sands with explosives. For sand sampling, it was collected from a loose sand deposit located in South Carolina, USA. These samples were densified in-situ with explosives, and consolidated to the in-situ effective stress conditions, which are considered representative in the conditions of effort at the moment of the densification with explosives. Results: Triaxial tests were performed under global non-drained conditions. The results of these tests show that gas causes the shear wave velocity values obtained for the gaseous sands to approximate the shear wave velocity values obtained in the saturated samples tested under drained conditions. In addition, behavior tends to be more pronounced as the soil is denser. Conclusions: These response may offer some insights as to why the shear wave velocity does not increase significantly in densified soils with explosives, even though the density increases considerably.

  9. Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    There is a need for an improved understanding of nitrogen (N) dynamics in depleted sandy soils in southern Africa. A field experiment was conducted to evaluate the performance of different soil fertility improvement practices on a degraded granitic sandy soil in Zimbabwe. Legumes capable of

  10. Effects Of Mixtures Of Pig Manure And Sandy Soil On The Growth Of ...

    African Journals Online (AJOL)

    A study was carried out to evaluate the effects of mixtures of various levels of pig manure with sandy soil on the growth of tomato (Lycopersicon esculentum Mill) seedlings. Pig manure was mixed with sandy soil at the rates of 0, 25, 50, 75 and 100% respectively on volume/volume basis of the dry materials, the treatments ...

  11. Water flow and pesticide transport in cultivated sandy soils : experimental data on complications

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2010-01-01

    The risk of leaching of agricultural pesticides from soil to groundwater and water courses has to be evaluated. Complications in water flow and pesticide transport in humic-sandy and loamy-sandy soil profiles can be expected to increase the risk of leaching. Much of the precipitation water is

  12. Soil organic matter of a sandy soil influenced by agronomy and climate

    OpenAIRE

    ELLMER, Frank

    2008-01-01

    Long term field experiments are being conducted at Humboldt University of Berlin (Germany) to obtain information regarding sustainable management of arable land with sandy soils. In Thyrow, a location in the south of Berlin with silty and sandy soil (85 % sand, 12 % silt, 3 % clay, 0.5 % Corg, pH 5.5) several experiments have been carried out since 1937. They include the study of the long-term effects of the agronomic factors of: crop rotation; organic fertilization; mineral ferti...

  13. Effect of soil saturation on denitrification in a grassland soil

    Directory of Open Access Journals (Sweden)

    L. M. Cardenas

    2017-10-01

    Full Text Available Nitrous oxide (N2O is of major importance as a greenhouse gas and precursor of ozone (O3 destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP. The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  14. Effect of soil saturation on denitrification in a grassland soil

    Science.gov (United States)

    Maritza Cardenas, Laura; Bol, Roland; Lewicka-Szczebak, Dominika; Gregory, Andrew Stuart; Matthews, Graham Peter; Whalley, William Richard; Misselbrook, Thomas Henry; Scholefield, David; Well, Reinhard

    2017-10-01

    Nitrous oxide (N2O) is of major importance as a greenhouse gas and precursor of ozone (O3) destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP). The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  15. Electrical Resistivity Based Empirical Model For Delineating Some Selected Soil Properties On Sandy-Loam Soil

    Directory of Open Access Journals (Sweden)

    Joshua

    2015-08-01

    Full Text Available Electrical Resistivity ER survey was conducted on a Sandy-loam soil with a view to evaluate some selected soil properties. Electrical Resistivity was measured from the soil surface at 0 0.3 m ER30 and 0 0.9 m ER90 soil depths using multi-electrode Wenner array and Miller 400D resistance meter. Soil samples were collected to a depth 0.3 m at points where ER was measured and analyzed for properties such as Organic Matter OM Cation Exchange Capacity CEC Soil Water Content SWC Sand Silt and Clay contents using standard methods. The results indicated that lower ER areas exhibit higher content of soil properties than higher ER areas. The ER90 correlates insignificantly to the soil properties while ER30 correlates significantly to the soil properties except clay r 0.63 - 0.75. The relationship between ER30 and soil properties were best fitted to multiple linear regression R2 0.90 and Boltzmann distribution R2 0.80 - 0.84. The study indicates the ability of ER to delineate some soil properties influencing yield on sandy-loam soil. This will help farmers take decisions that can improve yields.

  16. Phosphorus fractions in sandy soils of vineyards in southern Brazil

    Directory of Open Access Journals (Sweden)

    Djalma Eugênio Schmitt

    2013-04-01

    Full Text Available Phosphorus (P applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm were collected from a native grassland area and two vineyards, after 14 years (vineyard 1 and 30 years (vineyard 2 of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

  17. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil.

    Science.gov (United States)

    Bolster, Carl H; Abit, Sergio M

    2012-01-01

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region

  19. Leaching and ponding of viral contaminants following land application of biosolids on sandy-loam soil.

    Science.gov (United States)

    Wong, Kelvin; Harrigan, Tim; Xagoraraki, Irene

    2012-12-15

    Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Assessing potential of biochar for increasing water‐holding capacity of sandy soils

    National Research Council Canada - National Science Library

    Basso, Andres S; Miguez, Fernando E; Laird, David A; Horton, Robert; Westgate, Mark

    2013-01-01

    Increasing the water‐holding capacity of sandy soils will help improve efficiency of water use in agricultural production, and may be critical for providing enough energy and food for an increasing global population...

  1. ZINC MIGRATION IN THE SANDY SOIL AND ITS IMPACT ON THE BIOAVAILABILITY OF SOME NUTRIENT IN THE ROOT ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Saad Drissi

    2016-06-01

    Full Text Available This study investigated the effect of different leaching amounts on the downward movement of zinc applied, as fertilizer, on the surface of a sandy soil. The experiment was conducted in polyethylene bags filled to 30 cm depth with sandy soil. A zinc supply of 15.3 10-3 cmolc kg-1 was applied to the soil surface as a solution of zinc sulfate. Three leaching amounts were tested: 31 mm, 208 mm and 497 mm. Results showed the absence of zinc in the leachate for all leaching amounts. Within the soil profile, the highest content on exchangeable zinc (15.3 10-3 cmolc kg-1 was recorded in the top soil layer (0-10cm for all leaching amounts. In the middle (10-20 cm and in the lower (20-30 cm layers, the exchangeable zinc content remained similar to that recorded before leaching (0.76 10-3 cmolc kg-1. The percentage of the cation exchange capacity occupied by zinc in the top soil layer increased after leaching. It averaged 0.35% for all leaching amounts while it remained similar to that recorded before leaching (0.03% for the middle and the lower layers. This increase was linked to the adsorption saturations sites particularly released by manganese, potassium, calcium and ammonium after their downward movement.

  2. Effect of increasing biochar application rate on soil hydraulic properties of an artificial sandy soil

    Science.gov (United States)

    Lopez, V.; Ghezzehei, T. A.

    2013-12-01

    Biochar, a product of the pyrolysis of biomass, has become an increasingly studied subject of interest as an agricultural soil amendment to address issues of carbon emission, population density, and food scarcity. Biochar has been reported to increase content and retention of nutrients, pH, cation-exchange capacity, vegetative growth, microbial community, and carbon sequestration. A number of studies addressing the usefulness of biochar as a soil amendment have focused on chemical and biological properties, disregarding the effects on soil physical properties of amended soil. Aside from biochar, lime (calcium carbonate) addition to soils has also been utilized in agricultural practices, typically to raise the pH value of acidic soils, increase microbial activity, and enhance soil stability and productivity as a result. Both biochar and lime amendments may be beneficial in increasing the soil physical properties, particularly through the formation of aggregates. In previous studies an increase in soil particle aggregates resulted in higher rates of biological activity, infiltration rates, pore space, and aeration, all of which are a measure of soil quality. While the effectiveness of biochar and lime as soil amendments has been independently documented, their combined effectiveness on soil physical properties is less understood. This study aims to provide a further understanding on the effect of increasing biochar application rate on soil particle aggregation and hydraulic properties of a low reactive pre-limed artificial sandy soil with and without microbial communities. Microbial communities are known to increase soil aggregates by acting as cementing agents. Understanding the impact of biochar addition on soil physical properties will have implications in the development of sustainable agricultural practices, especially in systems undergoing climate stress and intensive agriculture.

  3. Transport and Retention of Toxoplasma gondii Oocysts in Loamy Sand and Sandy Loam Soils

    Science.gov (United States)

    Kinsey, E. N.; Korte, C.; L'Ollivier, C.; Dubey, J. P.; Aurélien, D.; Darnault, C. J. G.

    2016-12-01

    Toxoplasma gondii is one of the most prevalent parasites affecting warm-blooded animals and humans. It has a complex life cycle that involves a wide variety of intermediate hosts with felids as a definitive host. Humans may contract it through consumption of infected, undercooked meat or by water or food sources contaminated with the oocyst form of the parasite. Infection of pregnant women can cause stillbirth, neurological effects or blindness. Because of the prevalence of cats, including on farms where oocyst-contaminated cat feces, animal feed, soil and water have been found, T. gondii is spread almost throughout the entire globe. It has been implicated or suspected in waterborne infections since the 1990s. This study aims to characterize the transport and retention of T. gondii oocysts in field soils. The four soils used were collected from fallow and cultivated fields in Illinois and Utah, USA. They are classified as loamy sands and sandy loams. Soil columns were subjected to continuous artificial rainfall until they reached steady state at which point pulses that included 2.5 million T. gondii oocysts (Me49 strain) and KBr as a tracer were added. After the pulse infiltrated, continuous rainfall was resumed. Rain applied all columns was a 1 mM KCl solution. Leachate samples were collected, analyzed using qPCR for T. gondii and bromide ions and breakthrough curves were produced. Soil was sliced into 1 to 2 cm sections, for which water content and T. gondii concentration were measured to access degree of saturation and oocyst retention.

  4. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  5. Hydraulic conductivity of a sandy soil at low water content after compaction by various methods

    Science.gov (United States)

    Nimmo, John R.; Akstin, Katherine C.

    1988-01-01

    To investigate the degree to which compaction of a sandy soil influences its unsaturated hydraulic conductivity K, samples of Oakley sand (now in the Delhi series; mixed, thermic, Typic Xeropsamments) were packed to various densities and K was measured by the steady-state centrifuge method. The air-dry, machine packing was followed by centrifugal compression with the soil wet to about one-third saturation. Variations in (i) the impact frequency and (ii) the impact force during packing, and (iii) the amount of centrifugal force applied after packing, produced a range of porosity from 0.333 to 0.380. With volumetric water content θ between 0.06 and 0.12, K values were between 7 × 10−11 and 2 × 10−8 m/s. Comparisons of K at a single θ value for samples differing in porosity by about 3% showed as much as fivefold variation for samples prepared by different packing procedures, while there generally was negligible variation (within experimental error of 8%) where the porosity difference resulted from a difference in centrifugal force. Analysis involving capillary-theory models suggests that the differences in K can be related to differences in pore-space geometry inferred from water retention curves measured for the various samples.

  6. Testing PESTLA using two modellers for bentazone and ethoprophos in a sandy soil

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Gottesb ren, B.

    2000-01-01

    Two modellers tested the PESTLA model (version 2.3.1) against results of a field study on bentazone and ethoprophos behaviour in a sandy soil. Both modellers achieved an acceptable description of the measured moisture profiles but only after calibration of the soil hydraulic properties. Both could

  7. Contribution of individual sorbents to the control of heavy metal activity in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    A multisurface model is used to evaluate the contribution of various sorption surfaces to the control of heavy metal activity in sandy soil samples at pH 3.7-6.1 with different sorbent contents. This multisurface model considers soil as a set of independent sorption surfaces, i.e. organic matter

  8. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    Soil moisture shortage is a major limiting factor to agricultural production in eastern Africa, in view of increased drought incidences and seasonal rainfall variability. This study evaluated the potential for Ca-bentonite (a 2:1 clay mineral) as a possible amendment for increased moisture retention by sandy soils in drought ...

  9. Effect of Plant-derived Hydrophobic Compounds on Soil Water Repellency in Dutch Sandy Soils

    Science.gov (United States)

    Mao, Jiefei; Dekker, Stefan C.; Nierop, Klaas G. J.

    2013-04-01

    Soil water repellency or hydrophobicity is a common and important soil property, which may diminish plant growth and promotes soil erosion leading to environmentally undesired situations. Hydrophobic organic compounds in the soil are derived from vegetation (leaves, roots, mosses) or microorganisms (fungi, bacteria), and these compounds induce soil water repellency (SWR) and can be called SWR-biomarkers. As common hydrophobic constituents of organic matter, plant lipids are mainly from wax layers of leaves and roots, whereas cutins and suberins as aliphatic biopolyesters occur in leaves and roots, respectively. Their unique compositions in soil can indicate the original vegetation sources. To investigate the individual or combined effects of the hydrophobic compounds on SWR and their possible associations with each other, we conducted experiments to analyse the organic composition of Dutch coastal dune sandy soils in relation to SWR. DCM/MeOH solvent is used to remove solvent soluble lipids. BF3-methanol is utilized to depolymerize cutins and suberins from isopropanol/NH3 extractable organic matter. Total organic carbon (TOC) has a positive linear relation with SWR only for those soils containing low TOC (

  10. Improvement of the bioavailability of hydrocarbons by applying nonionic surfactants during the microbial remediation of a sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Loeser, C. [Bauer und Mourik Umwelttechnik GmbH and Co. Schrobenhausen (Germany); Seidel, H.; Zehnsdorf, A.; Hoffmann, P. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Sektion Sanierungsforschung Leipzig (Germany)

    2000-07-01

    During the microbial treatment of a sandy model soil artificially contaminated with polycyclic aromatic hydrocarbons (PAHs), a large residual pollution was found. The remaining PAHs were sorbed into the micropores of the soil and were therefore not bioavailable. Using a lab-scale percolator, the microbially pretreated soil was subjected to aftertreatment with surfactants with the aim of further degradation of its pollution. Two commercial noionic surfactants of the polyethoxylate type, Praewozell F1214/5 N and Sapogenat T-300, were used. The surfactants differ both in their physicochemical properties (CMC value, PAH solubilization capacity, adsorption onto soil) and in their microbial degradability. During aftertreatment under permanently aerobic conditions, only a weak PAH accumulation in the liquid phase was observed, which was due to a low solubilization rate as well as to simultaneous microbial degradation of the dissolved PAHs. Temporary anaerobiosis successfully suppressed the microbial degradation of both the surfactant and the solubilized PAHs, resulting in a more intensive PAH accumulation. But the PAH content of the soil - the essential criterion for evaluating the efficiency of surfactant application - was not decreased to a larger extent with surfactants than without them. To find out why the surfactants failed to act, the surfactant and hydrocarbon distribution among the liquid and solid phases was studied in mixtures of phenanthrene-spiked soils and Praewozell-containing liquids; at heavy phenanthrene loading, the aqueous phase was saturated with PAH; at weak loading, it was unsaturated. Model-aided data analysis showed that the soil may contain PAH in two fractions: strongly sorbed into soil pores and, in the case of heavy loading, also weakly attached to the soil surface. The latter is easily extractable, resulting in a PAH-saturated liquid, while strongly adsorbed PAH is only partially dissolved due to competition between the micelles and the soil

  11. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom...

  12. Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil Column Method

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2010-01-01

    Full Text Available Effect of Coated Urea with Humic-Calcium on Transformation of Nitrogen in Coastal Sandy Soil: A Soil ColumnMethod (Sulakhudin, A Syukur, D Shiddieq and T Yuwono: In coastal sandy soil, mainly nitrogen losses due toleaching resulted to low fertilizer efficiency. Slow-release N fertilizers are proposed to minimize these losses, andhumic-calcium coated urea has been examined. A soil column method was used to compare the effects of coated ureawith humic-calcium on transformation and leaching loss of N in coastal sandy soil. The experiment aid to compare twokinds sources of humic substances (cow manure and peat which mixed with calcium as coated urea on transformation,vertical distribution and leaching N in coastal sandy soil. The concentration of humic-calcium coated urea i.e.1%, 5%and 10% based on their weight. The results showed that urea coated with humic-calcium from cow manure (UCHMand humic-calcium from peat (UCHP increased the N total and available N in the soil and decreased leaching loss ofN from the soil column. Compared to UCHP, UCHM in all concentration showed N-nitrate higher than N-ammonium onincubation length 2, 4 and 6 weeks. The N leached from a costal sandy soil with application coated urea with UCHMranged from 21.18% to 23.72% of the total N added as fertilizer, for coated urea with UCHP they ranged between21.44% and 23.25%, whereas for urea (control reached 29.48%. Leaching losses of mineral N were lower when ureacoated with UCHM compared to urea coated with UCHP or urea fertilizer. The study concluded that the UCHM isbetter than UCHP in decreasing N leached from coastal sandy soil

  13. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  14. Quasi 3D modelling of water flow in the sandy soil

    Science.gov (United States)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic

  15. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  16. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  17. Saturated hydraulic conductivity values of some forest soils of ...

    African Journals Online (AJOL)

    A simple falling-head method is presented for the laboratory determination of saturated hydraulic conductivity of some forest soils of Ghana. Using the procedure, it was found that saturated hydraulic conductivity was positively and negatively correlated with sand content and clay content, respectively, both at P = 0.05 level.

  18. DEPENDENCE OF SUFFOSION STABILITY OF SANDY SOILS OF VARIOUS GENESES ON THE TYPE OF FILTRATE

    Directory of Open Access Journals (Sweden)

    Potapov Ivan Aleksandrovich

    2012-10-01

    Full Text Available Results of calculations and experimental researches of suffosion stability of sandy soils are provided in the article. The authors have assessed the prospects for the application of standard methodologies to demonstrate the need to take account of the filtrate properties in the course of projecting potential suffusion process development patterns typical for sandy soils. The principal attention must be driven to the value of the kinematic viscosity of filtered liquids. Any assessment of filtration-related interaction of the flow of liquid with sandy soils must be backed by the gradation analysis of soils and the analysis of their homogeneity, as well as the mineralogical and morphological analysis. The morphological study of sands of various geneses, performed hereunder, is based on the methodology that takes account of both the shape of sand particles and the structure of their surface. The proposed methodology makes it possible to assess extensive sand specimen rather than separate sand particles to assure the representative sampling to assure the accuracy of the morphological analysis. The authors provide the data that cover the research of sands of various geneses demonstrating varied granulometric and mineral composition, as well as various morphological peculiarities of correlation with the filtrates that have different values of kinematic viscosity. The methodological research completed by the authors has indicated an urgent need to perform laboratory and field researches of suffosion instability of sandy soils in varied geoecological environments typical for urban lands exposed to anthropogenic pollutions.

  19. The Effect of Chloride and Sulfate Ions on the Adsorption of Cd 2+ on Clay and Sandy Loam Egyptian Soils

    National Research Council Canada - National Science Library

    Mohamed E. EL-Hefnawy; Elmetwaly M. Selim; Faiz F. Assaad; Ali I. Ismail

    2014-01-01

      Adsorption of Cd2+ on two types of Egyptian soils: clay (alluvial) and sandy loam (calcareous), was studied. Effect of changing the matrix electrolyte type and concentration was used to mimic the natural soil salts...

  20. The Effect of Chloride and Sulfate Ions on the Adsorption of Cd2+on Clay and Sandy Loam Egyptian Soils

    National Research Council Canada - National Science Library

    EL-Hefnawy, Mohamed E; Selim, Elmetwaly M; Assaad, Faiz F; Ismail, Ali I

    2014-01-01

    Adsorption of Cd2+ on two types of Egyptian soils: clay (alluvial) and sandy loam (calcareous), was studied. Effect of changing the matrix electrolyte type and concentration was used to mimic the natural soil salts...

  1. The effect of chloride and sulfate ions on the adsorption of Cd2+ on clay and sandy loam Egyptian soils

    National Research Council Canada - National Science Library

    El-Hefnawy, Mohamed E; Selim, Elmetwaly M; Assaad, Faiz F; Ismail, Ali I

    2014-01-01

    Adsorption of Cd(2+) on two types of Egyptian soils: clay (alluvial) and sandy loam (calcareous), was studied. Effect of changing the matrix electrolyte type and concentration was used to mimic the natural soil salts...

  2. Effect of soil coarseness on soil base cations and available micronutrients in a semi-arid sandy grassland

    Science.gov (United States)

    Lü, Linyou; Wang, Ruzhen; Liu, Heyong; Yin, Jinfei; Xiao, Jiangtao; Wang, Zhengwen; Zhao, Yan; Yu, Guoqing; Han, Xingguo; Jiang, Yong

    2016-04-01

    Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0-10, 10-20 and 20-40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.

  3. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland.

    Science.gov (United States)

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2016-01-01

    The trait-based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community-weighted mean, CWM) and the dispersion of functional trait values (FD is). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (P functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.

  4. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    Science.gov (United States)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that

  5. Use of olive mill wastewater (OMW) to decrease hydrophobicity in sandy soil

    NARCIS (Netherlands)

    Diamantis, V.; Pagorogon, L.; Gazani, E.; Doerr, S.H.; Pliakas, F.; Ritsema, C.J.

    2013-01-01

    This study explores the potential effectiveness of olive mill wastewater (OMW) as an alternative to industrial surfactants in decreasing hydrophobicity in sandy soil. The OMW was obtained from a storage lagoon and characterized by high concentrations of short-chain fatty acids, mainly butyric,

  6. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    Uganda Journal of Agricultural Sciences by National Agricultural Research Organisation is licensed under a Creative ... Under field conditions, Ca-bentonite was applied on sandy soils in the drought-prone Lwabiyata sub county, Nakasongola district in ... standard methods (Okalebo et al., 1993). To study the effect of ...

  7. Optimising crude oil biodegradation in a sandy loam soil using a ...

    African Journals Online (AJOL)

    The impacts of addition of cow dung and poultry manure alone and in combination with surfactants and/or alternate carbon substrates on crude oil biodegradation in a sandy loam soil were investigated. At a 1.0% (w/w) concentration of the mixture of cow dung and poultry manure, addition of the alternate carbon substrates ...

  8. Irrigation initiation timing in soybean grown on sandy soils in Northeast Arkansas

    Science.gov (United States)

    Irrigation initiation timing was evaluated in furrow-irrigated soybean field with sandy soils in Mississippi County, AR. A major objective of this 2015 study was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of local weather ...

  9. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  10. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L.),...... mineralized in the sandy loam soil, when urine was applied prior to sowing. Thus, the fertilizer effect of urine N may be significantly lower than that of urea N on fine-textured soils, even when gaseous losses of urine N are negligible.......The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L.......), or it was applied to ryegrass one month after sowing. In a sandy loam soil, 62% of the incorporated urine N and 78% of the incorporated urea N was recovered in three cuts of herbage after 5 months. In a sandy soil, 51-53% of the labelled N was recovered in the herbage and the distribution of labelled N in plant...

  11. Cementation in a matrix of loose sandy soil using biological ...

    African Journals Online (AJOL)

    Man-made materials varying from cement-based to chemical-based have been injected into soils to improve their engineering properties (shear strength, compressibility, permeability, bearing capacity etc.). Soil type in general plays important role in determination of treatment material and method. Materials used for soil ...

  12. Flow and transport in water repellent sandy soils

    NARCIS (Netherlands)

    Ritsema, C.J.

    1998-01-01

    Water repellency in soils is currently receiving increasing attention from scientists and policy makers, due to the adverse and sometimes devastating effects of soil water repellency on environmental quality and agricultural crop production. Soil water repellency often leads to severe

  13. Impact of biochar addition on thermal properties of a sandy soil: modelling approach

    Science.gov (United States)

    Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz; Bis, Zbigniew; Marczewski, Wojciech; Usowicz, Jerzy

    2017-04-01

    Adding biochar can alter soil thermal properties and increase the water holding capacity and reduce the mineral soil fertilization. Biochar in the soil can determine the heat balance on the soil surface and the temperature distribution in the soil profile through changes in albedo and the thermal properties. Besides, amendment of soil with biochar results in improvement of water retention, fertility and pH that are of importance in sandy and acid soils, widely used in agriculture. In this study we evaluated the effects of wood-derived biochar (0, 10, 20, and 40 Mg ha-1) incorporated to a depth of 0-15 cm on the thermal conductivity, heat capacity, thermal diffusivity and porosity in sandy soil under field conditions. In addition, soil-biochar mixtures of various percentages of biochar were prepared to determine the thermal properties in function of soil water status and density in laboratory. It was shown that a small quantity of biochar added to the soil does not significantly affect all the thermal properties of the soil. Increasing biochar concentration significantly enhanced porosity and decreased thermal conductivity and diffusivity with different rate depending on soil water status. The soil thermal conductivity and diffusivity varied widely and non-linearly with water content for different biochar content and soil bulk density. However, the heat capacity increased with biochar addition and water content linearly and was greater at higher than lower soil water contents. The measured and literature thermal data were compared with those obtained from the analytic model of Zhang et al. (2013) and statistical-physical model (Usowicz et al., 2016) based on soil texture, biochar content, bulk density and water content.

  14. Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization in soil and nutritional quality of spinach.

    Science.gov (United States)

    Khan, Waqas-Ud-Din; Ramzani, Pia Muhammad Adnan; Anjum, Shazia; Abbas, Farhat; Iqbal, Muhammad; Yasar, Abdullah; Ihsan, Muhammad Zahid; Anwar, Muhammad Naveed; Baqar, Mujtaba; Tauqeer, Hafiz Muhammad; Virk, Zaheer Abbas; Khan, Shahbaz Ali

    2017-10-01

    The complex interaction of biochar (BC) with soil health reflecting properties, the feedstock used to prepare BC and application rate of BC in sandy soil is still a question for the researchers. An incubation study was conducted where nine different sorts of BC, each prepared from the different feedstock, were applied at 2% rate to evaluate their relative suitability to improve sandy soil health. Results revealed that BC prepared from miscanthus (MIB) significantly increased soil medium and fine pores, available water content (AWC), electrical conductivity (EC), and cation exchange capacity (CEC) while decreased soil wide pores, pH, bulk density (BD) and particle density (PD) compared to the rest sorts of BC. Later, spinach was grown in pots containing same soil but spiked with 50 ppm nickel (Ni) and amended with 1, 2, 3, 4 and 5% rates of MIB. The results showed a significant increment in spinach biomass, reduction in the concentrations of Ni in spinach tissues and DTPA-extractable Ni with the increasing rate of MIB till 3% and later, no significant changes with 4 and 5% rates thereafter. However, significant improvement in the activities of antioxidant enzymes, chemical and biochemical attributes of spinach were observed at 5% MIB when compared to lower rates. Similarly, post-harvest soil physicochemical and enzymatic parameters were also significantly (P spinach, sandy soil health and can reduce Ni concentrations in spinach tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Influencing mechanism of several shrubs and subshrubs on soil fertility in Keerqin sandy land].

    Science.gov (United States)

    Su, Yongzhong; Zhao, Halin; Zhang, Tonghui

    2002-07-01

    Keerqin sandy land is one of serious desertification areas in the semiarid zone of north China, and shrubs are the dominant plant life form and play an important role in the region. The effects of "fertile island" and rhizosphere of several shrubs and subshrubs were studied. The results showed that the concentrations of organic C, total N and total P, and values of electrical conductivity (EC) in the soils under the canopy of shrubs increased by 56%, 51%, 37%, and 51%, respectively, compared with those of the soils in open spaces, but there was no significant difference in pH value between the soils under shrub canopies and in open spaces. Shrub rhizosphere soils had significant higher contents of organic C, total N, and values of EC as well as lower pH value compared to the bulk soils, but there was no significant difference in total P between rhizosphere and bulk soils. There were close relationships between the properties in soils under shrub canopies and the rhizosphere soils, indicating that the development of "fertile island" were favorable to root growth and induced greater amount of rhizodeposition, and vice versa. Soils under Artemisia frigida and Caragada microphylla canopies and rhizospheres had significant higher organic C and total N contents than those of Artemisia halodendron and Salix gordejvii. This results suggested that shrubs were of vital importance for accumulation of nutrients and maintenance of soil fertility in Keerqin sandy land ecosystem.

  16. Leaching behaviour of azoxystrobin in sandy loam soil

    African Journals Online (AJOL)

    Mr HMM Mzimela

    2014-08-01

    Aug 1, 2014 ... respiration in fungi. It also inhibits mycelial growth, along with spore production and germination. It is active at very low doses against a wide range of fungal pathogens. Laboratory studies show that azoxystrobin is moderately persistent in soil in the absence of light and moderately mobile in soil profile.

  17. Volatilisation of o-Xylene from Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund; Brun, Adam

    1994-01-01

    The diffusive release of o-xylene from two soils with different contents of organic carbon (1.1 % and 0.11 % TOC) and with two different water contents (app. 5 % w/w and 15 % w/w was studied in the laboratory. The soils were spiked with o-xylene in the laboratory. The fluxes were measured over...

  18. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment......Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...

  19. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil.

    Science.gov (United States)

    Chen, G C; He, Z L; Stoffella, P J; Yang, X E; Yu, S; Calvert, D

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1,183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils.

  20. Changes in physical properties of sandy soil after long-term compost treatment

    Science.gov (United States)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  1. Structure stability and water retention near saturation characteristics as affected by soil texture, and polyacrylamide concentration

    Science.gov (United States)

    Mamedov, Amrakh I.; Ekberli, Imanverdi A.; Ozturk, Hasan S.; Wagner, Larry E.; Norton, Darrell L.; Levy, Guy J.

    2017-04-01

    Studying the effects of soil properties and amendment application on soil structure stability is important for the development of effective soil management and conservation practices for sustaining semi-arid soil and water quality under climate change scenarios. Two sets of experiments were conducted to evaluate the effects of soil texture and soil amendment polyacrylamide (PAM) rate on soil structural stability expressed in terms of near saturation soil water retention and aggregate stability using the high energy (0-5 J kg-1) moisture characteristic (HEMC) method. Contribution of (i) soil type were assessed using 30 soil samples varying in texture from sandy to clay taken from long term cultivated lands, covering a range of crop and land management practices, and (ii) anionic PAM concentration (0, 10, 25, 50, 100 & 200 mg l-1) were tested on selected loam and clay soils. The water retention curves of slow and fast wetted soil samples were characterized by a modified van Genuchten (1980) model that provides (i) model parameters α and n, which represent the location of the inflection point and the steepness of the S-shaped water retention curves, and (ii) a composite soil structure index (SI =VDP/MS; VDP-volume of drainable pores, MS-modal suction). The studied treatments had, generally, considerable effects on the shape of the water retention curves (α and n). Soil type, PAM concentration and their interaction had significantly effects on the stability indices (SI, VDP and MS) and the model parameters (α and n). The SI and α increased, and ndecreased exponentially with the increase in soil clay content and PAM concentration, but the shape of curves were soil texture and management dependent, since predominant changes were observed in the various range of studied macropores (pore size > 60 μm). An exponential type of relationship existed between SI and α and n. Effect of PAM contribution and wetting condition was more pronounced in the loam soil at low PAM

  2. Impacts of acid deposition on concentrations and fluxes of solutes in acid sandy forest soils in the Netherlands.

    NARCIS (Netherlands)

    Vries, de W.; Grinsven, van J.J.M.; Breemen, van N.; Leeters, E.E.J.M.; Jansen, P.C.

    1995-01-01

    This article summarizes the most important impacts of acid atmospheric deposition on the soil solution chemistry of acid sandy forest soils in the Netherlands, by comparing and interpreting data from soil solution monitoring studies (18 stands) and a national soil solution survey (150 stands).

  3. Garlic mustard and its effects on soil microbial communities in a sandy pine forest in central Illinois

    Science.gov (United States)

    Alexander B. Faulkner; Brittany E. Pham; Truc-Quynh D. Nguyen; Kenneth E. Kitchell; Daniel S. O' Keefe; Kelly D. McConnaughay; Sherri J. Morris

    2014-01-01

    This study evaluated the impacts of garlic mustard (Alliaria petiolata), an invasive species, on soil microbial community dynamics in a pine plantation on sandy soils in central Illinois. In situ soil carbon dioxide efflux was significantly greater in invaded sites. Similarly, in vitro carbon mineralization was significantly greater for soils...

  4. Predicting saturated hydraulic conductivity using soil morphological properties

    Directory of Open Access Journals (Sweden)

    Gülay Karahan

    2016-01-01

    Full Text Available Many studies have been conducted to predict soil saturated hydraulic conductivity (Ks by parametric soil properties such as bulk density and particle-size distribution. Although soil morphological properties have a strong effect on Ks, studies predicting Ks by soil morphological properties such as type, size, and strength of soil structure; type, orientation and quantity of soil pores and roots and consistency are rare. This study aimed at evaluating soil morphological properties to predict Ks. Undisturbed soil samples (15 cm length and 8.0 cm id. were collected from topsoil (0-15 cm and subsoil (15-30 cm (120 samples with a tractor operated soil sampler at sixty randomly selected sampling sites on a paddy field and an adjecent grassland in Central Anatolia (Cankırı, Turkey. Synchronized disturbed soil samples were taken from the same sampling sites and sampling depths for basic soil analyses. Saturated hydraulic conductivity was measured on the soil columns using a constant-head permeameter. Following the Ks measurements, the upper part of soil columns were covered to prevent evaporation and colums were left to drain in the laboratory. When the water flow through the column was stopped, a subsample were taken for bulk density and then soil columns were disturbed for describing the soil morphological properties. In addition, soil texture, bulk density, pH, field capacity, wilting point, cation exchange capacity, specific surface area, aggregate stability, organic matter, and calcium carbonate were measured on the synchronized disturbed soil samples. The data were divided into training (80 data values and validation (40 data values sets. Measured values of Ks ranged from 0.0036 to 2.14 cmh-1 with a mean of 0.86 cmh-1. The Ks was predicted from the soil morphological and parametric properties by stepwise multiple linear regression analysis. Soil structure class, stickiness, pore-size, root-size, and pore-quantity contributed to the Ks prediction

  5. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHYU ASTIKO

    2016-01-01

    Full Text Available Abstract. Astiko W, Fauzi MT, Sukartono. 2016. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia. Nusantara Bioscience 8: 66-70. Inoculation of arbuscular mycorrhizal fungi (AMF on maize in sandy soil is expected to have positive implications for the improvement of AMF population and nutrient uptake. However, how many increases in the AMF population and nutrient uptake in the second cycle of a certain cropping system commonly cultivated by the farmers after growing their corn crop have not been examined. Since different cropping systems would indicate different increases in the populations of AMF and nutrient uptake. This study aimed to determine the population AMF and nutrient uptake on the second cropping cycle of corn-based cropping systems which utilized indigenous mycorrhizal fungi on sandy soil in dryland area of North Lombok, West Nusa Tenggara, Indonesia. For that purpose, an experiment was conducted at the Akar-Akar Village in Bayan Sub-district of North Lombok, designed according to the Randomized Complete Block Design, with four replications and six treatments of cropping cycles (P0 = corn-soybean as a control, in which the corn plants were not inoculated with AMF; P1 = corn-soybean, P2 = corn-peanut, P3 = corn-upland rice, P4 = corn-sorghum, and P5 = corn-corn, in which the first cycle corn plants were inoculated with AMF. The results indicated that the mycorrhizal populations (spore number and infection percentage were highest in the second cycle sorghum, achieving 335% and 226% respectively, which were significantly higher than those in the control. Increased uptake of N, P, K and Ca the sorghum plants at 60 DAS of the second cropping cycle reached 200%; 550%; 120% and 490% higher than in the control. The soil used in this experiment is rough-textured (sandy loam, so it is relatively low in water holding capacity and high porosity.

  6. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  7. [Effects of land use and management on soil quality of Heerqin sandy land].

    Science.gov (United States)

    Su, Yongzhong; Zhao, Halin

    2003-10-01

    The changes of soil physical, chemical and biological properties under different land use and management lasted for 14 years were investigated on the Heerqin sandy land. The results showed that among various land use systems marked differences exhibited in soil quality indicators, including soil particle composition, porosity distribution, bulk density, water-holding capacity, organic matter and nutrient contents, pH, and enzyme activities. Most of these soil quality indicators were the highest in the orchard intercropped with crops and perennial grass (agroforestry systems), intermediate in the well-management irrigated farmland, and the lowest in the less-management dry farmland. Compared to the primary grassland soil, although some soil properties, including porosity distribution, water-holding capacity, phosphorus content, and enzyme activities, were improved in the well-management systems, soil organic matter and nitrogen contents were significantly lower. It suggested that a long-term input of organic matter was needed for the restoration and reestablishment of soil carbon and nitrogen pools in the seriously degraded ecosystem. Inappropriate land use and management could rapidly worsen soil quality, and hence, from a perspective of soil resource conservation, a preferable way for preventing soil degradation and achieving sustainable land use should be to give up the cultivation of degraded dry farmlands, and to adopt more effective and appropriate soil management and cultivation practices.

  8. Assessment of Fate of Thiodicarb Pesticide in Sandy Clay Loam Soil

    Directory of Open Access Journals (Sweden)

    M. A. Bajeer

    2015-06-01

    Full Text Available In present study the fate of thiodicarb pesticide in sandy clay loam soil was investigated through its adsorption and leaching using HPLC. Experimental results revealed that thiodicarb follows first order kinetic with rate constant value of 0.711 h-1 and equilibrium study showed that Freundlich model was best fitted with multilayer adsorption capacity 3.749 mol/g and adsorption intensity 1.009. Therefore, adsorption of thiodicarb was multilayer, reversible and non-ideal. Leaching study has indicated intermediate mobility of thiodicarb with water due to its solubility, while field study showed the non-leacher nature. However both adsorption and leaching were heavily affected by soil characteristics. As the soil taken was sandy clay loam hence due to clay texture adsorption was higher because of vacant sites existing and greater surface area. For this the pesticide has remained adsorbed in above 20 cm soil layer as clearly seen from field study, minor amount was recorded in third layer of soil having 21-30 cm depth. The leached amount of thiodicarb in first and last part of water was 1.075 and 0.003 ng/µl. The general trend observed for adsorption in column and field soil was decreased downwards from 2.027 to 0.618 and 5.079 to 0.009 ng/µl.

  9. Soil C Saturation is Evident in Soils Rich in Organic Matter

    Science.gov (United States)

    Chung, H.; Ngo, K.; Plante, A.; Six, J.

    2008-12-01

    Recent studies suggest that mineral soils have a limit to their soil C stabilization capacity. We reasoned that C saturation will be most evident in soils that are already rich in soil organic C (SOC) and have been exposed to a broad range of C input. Therefore, we determined the modes of soil C saturation in an agricultural experiment located in Ellerslie, Canada, where organic matter-rich soils have been cropped to cereal grain for more than 20 years. In this experiment, soils are subject to a broad range of soil C input due to a combination of straw incorporation, N fertilization, and tillage treatments. We determined if C saturation is taking place in soil size fractions that are functionally different, namely the large macroaggregates (>2000 μm), small macroaggregates (2000-250 μm), microaggregates (250-53 μm), and silt plus clay fraction (structured soil. Our study suggests that soils that are farther away from C saturation potential will have greater C sink capacity than soils that are close to their C saturation capacity.

  10. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  11. Decomposition of the organic matter of natural and concentrated vinasse in sandy and clayey soils.

    Science.gov (United States)

    Possignolo-Vitti, Nadia Valério; Bertoncini, Edna Ivani; Vitti, André Cesar

    2017-07-01

    Vinasse has been used as fertilizer by sugarcane growers, due to its potential to completely replace mineral fertilizers. However, if the application is not adequate, this practice may cause environmental contamination. This study used a respirometry test to evaluate the organic matter (OM) decomposition present in natural vinasse and concentrated vinasse (CV), with or without urea addition. The experiment involved two soil types and two types of vinasse at different application rates. The vinasse chemical characterization showed high levels of pseudo-total potassium (K) in both vinasses, which are not considered in the application rates. Decomposition rates above 90% and between 70 and 80% were obtained for sandy and clayey soils, respectively, over a brief 41-day period, indicating rapid OM decomposition. Positive priming effect was observed for CV and CV + urea treatments in sandy soil. An important implication of these findings revealed that K not available in vinasse was released in the soil solution by the OM mineralization, indicating the possibility of overestimation in the vinasse application rates. Therefore, K pseudo-total values should be considered in the calculation of the vinasse application rates. However, studies involving K mobility into soil are needed to validate this hypothesis.

  12. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    properties of soils, especially on water retention at low matric potentials. To overcome this knowledge gap, the effects of combined BC (0 to 100 Mg ha-1) and manure (21 and 42 Mg ha-1) applications on water vapor sorption and specific surface area was investigated for a sandy loam soil. In addition......, potential impacts of BC aging were evaluated. All considered BC-amendment rates led to a distinct increase of water retention, especially for low matric potentials. The observed increases were attributed to a significant increase of soil organic matter contents and specific surface areas in BCamended soils....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  13. Influence of biochar on the physical, chemical and retention properties of an amended sandy soil

    Science.gov (United States)

    Baiamonte, Giorgio; De Pasquale, Claudio; Parrino, Francesco; Crescimanno, Giuseppina

    2017-04-01

    Soil porosity plays an important role in soil-water retention and water availability to crops, potentially affecting both agricultural practices and environmental sustainability. The pore structure controls fluid flow and transport through the soil, as well as the relationship between the properties of individual minerals and plants. Moreover, the anthropogenic pressure on soil properties has produced numerous sites with extensive desertification process close to residential areas. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils and increase soil fertility, improving soil structure and enhancing soil water storage and soil water movement. Soil application of biochar might have agricultural, environmental and sustainability advantages over the use of organic manures or compost, as it is a porous material with a high inner surface area. The main objectives of the present study were to investigate the possible application of biochar from forest residues, derived from mechanically chipped trunks and large branches of Abies alba M., Larix decidua Mill., Picea excelsa L., Pinus nigra A. and Pinus sylvestris L. pyrolysed at 450 °C for 48h, to improve soil structural and hydraulic properties (achieving a stabilization of soil). Different amount of biochar were added to a desertic sandy soil, and the effect on soil porosity water retention and water available to crops were investigated. The High Energy Moisture Characteristic (HEMC) technique was applied to investigate soil-water retention at high-pressure head levels. The adsorption and desorption isotherms of N2 on external surfaces were also determined in order to investigate micro and macro porosity ratio. Both the described model of studies on adsorption-desorption experiments with the applied isotherms model explain the increasing substrate porosity with a particular attention to the macro and micro

  14. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater. PMID:24587723

  15. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  16. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  17. Modelling suction instabilities in soils at varying degrees of saturation

    Directory of Open Access Journals (Sweden)

    Buscarnera Giuseppe

    2016-01-01

    Full Text Available Wetting paths imparted by the natural environment and/or human activities affect the state of soils in the near-surface, promoting transitions across different regimes of saturation. This paper discusses a set of techniques aimed at quantifying the role of hydrologic processes on the hydro-mechanical stability of soil specimens subjected to saturation events. Emphasis is given to the mechanical conditions leading to coupled flow/deformation instabilities. For this purpose, energy balance arguments for three-phase systems are used to derive second-order work expressions applicable to various regimes of saturation. Controllability analyses are then performed to relate such work input with constitutive singularities that reflect the loss of strength under coupled and/or uncoupled hydro-mechanical forcing. A suction-dependent plastic model is finally used to track the evolution of stability conditions in samples subjected to wetting, thus quantifying the growth of the potential for coupled failure modes upon increasing degree of saturation. These findings are eventually linked with the properties of the field equations that govern pore pressure transients, thus disclosing a conceptual link between the onset of coupled hydro-mechanical failures and the evolution of suction with time. Such results point out that mathematical instabilities caused by a non-linear suction dependent behaviour play an important role in the advanced constitutive and/or numerical tools that are commonly used for the analysis of geomechanical problems in the unsaturated zone, and further stress that the relation between suction transients and soil deformations is a key factor for the interpretation of runaway failures caused by intense saturation events.

  18. Zeolite and Hucalcia as Coating Material for Improving Quality of NPK Fertilizer in Costal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sulakhudin

    2011-05-01

    Full Text Available he growth and yield of plants are mainly a function of the quantity of fertilizer and water. In coastal sandy soil, nutrient losses and dry soils are seriously problems. The objective of the research was to study effect of zeolite and hucalci concentrations as NPK coating materials on NPK qualities i.e. water adsorption and release of N, P and K. The research used a coastal sandy soil as media. It was conducted in a laboratory of Soil Science Department, Gadjah Mada University from July to August 2009. Experimental design used was a factorial in a completely randomized design. The first factor was hucalci concentration, consisted of 10% (H1, 20% (H2, and 30% (H3. The second factor was zeolite concentration, consisted of 25% (Z1, 50% (Z2, 75% (Z3, and 100% (Z4. NPK fertilizer (without coating used as a control. The results showed that hucalci and zeolite had a capability to increase water adsorption and to retard the release of N, P, K. The coated NPK with hucalci 30% and zeolite 100% had the highest quality in water absorption, water retention and release of nutrients.

  19. Does thermal carbonization (Biochar) of organic material increase more merits for their amendments of sandy soil?

    Science.gov (United States)

    Wu, Y.; Xu, G.; Sun, J. N.; Shao, H. B.

    2014-02-01

    Organic materials (e.g. furfural residue) are generally believed to improve the physical and chemical properties of the soils with low fertility. Recently, biochar have been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, 5% of the furfural addition increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar addition at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar have different amendments depending on soil properties: furfural was more effectively to decrease pH and to increase available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  20. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  1. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR.

    Directory of Open Access Journals (Sweden)

    Rishi Prasad

    Full Text Available Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations--a billion dollar industry in this region. Potato (Solanum tuberosum L. production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha(-1 N of the total input N (310 to 349 kg ha(-1 N. The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha(-1 N and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn. The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses.

  2. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR.

    Science.gov (United States)

    Prasad, Rishi; Hochmuth, George J; Boote, Kenneth J

    2015-01-01

    Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB) is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations--a billion dollar industry in this region. Potato (Solanum tuberosum L.) production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N) loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha(-1) N) of the total input N (310 to 349 kg ha(-1) N). The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha(-1) N) and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn). The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses.

  3. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil

    NARCIS (Netherlands)

    Weng, L.; Fest, E.P.M.J.; Filius, J.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2002-01-01

    The transport of inorganic and organic pollutants in water and soil can be strongly influenced by the mobility of natural dissolved organic matter (DOM). In this paper, the transport of a humic acid (HA) and a fulvic acid (FA) in a copper-contaminated acid sandy soil was studied. The data showed

  4. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  5. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Influence of manganese fertilizer on efficiency of grapes on sandy soils of the Chechen Republic

    Directory of Open Access Journals (Sweden)

    Batukaev A.A.

    2014-01-01

    Full Text Available As a result of the studies, there has been obtained new information about the manganese influence on productivity of grape plantations, on sandy soils of the Chechen Republic. Manganese fertilizing of 4 kg active ingredient per 1 ha, against the background of nitrogen 90 kg, phosphorus 90 kg and potassium 90 kg/ha, made it into a phase of grape sap flow, which contributes to higher yields, increase of the sugar content of the berries and a significant decrease in juice acidity, in comparison with other options.

  7. Effect of Zinc-Phosphorus Interaction on Corn Silage Grown on Sandy Soil

    Directory of Open Access Journals (Sweden)

    Saad Drissi

    2015-10-01

    Full Text Available This study investigated the response of corn silage to different combinations of zinc (Zn and phosphorus (P soil supply when grown in sandy soil. The soil was naturally poor in extractable Zn and rich in plant-available P. The experiment was conducted in outdoor containers. The treatments consisted of soil supply combinations of 3 levels of Zn (0, 5 and 10 mg Zn kg−1 of dry soil and 4 levels of P (0, 12, 36 and 72 mg P2O5 kg−1 of dry soil. The results showed the absence of a significant effect (at p ≤ 0.05 of Zn-P interaction on plant growth, plant mineral content or total aerial dry weight at harvest. P application depressed Zn shoot content, and conversely, Zn supply slightly reduced P shoot content. The total aerial dry weight at harvest was not enhanced by P application. However, it was significantly increased by Zn supply of 5 mg·kg−1 only for the highest P (72 mg·kg−1 application (at p ≤ 0.05. This increase was around 15% compared to no Zn soil supply. It was especially linked to kernel dry weight and particularly to pollination rate. For the highest level of P supply, Zn applications significantly enhanced (at p ≤ 0.05 the kernel dry weight and the pollination rate by 22.1% and 38.4% respectively, compared to no Zn supply.

  8. Dynamics of carbon pools in post-agrogenic sandy soils of southern taiga of Russia

    Directory of Open Access Journals (Sweden)

    Lyuri Dmitriy I

    2010-04-01

    Full Text Available Abstract Background Until recently, a lot of arable lands were abandoned in many countries of the world and, especially, in Russia, where about half a million square kilometers of arable lands were abandoned in 1961-2007. The soils at these fallows undergo a process of natural restoration (or self-restoration that changes the balance of soil organic matter (SOM supply and mineralization. Results A soil chronosequence study, covering the ecosystems of 3, 20, 55, 100, and 170 years of self-restoration in southern taiga zone, shows that soil organic content of mineral horizons remains relatively stable during the self-restoration. This does not imply, however, that SOM pools remain steady. The C/N ratio of active SOM reached steady state after 55 years, and increased doubly (from 12.5 - 15.6 to 32.2-33.8. As to the C/N ratio of passive SOM, it has been continuously increasing (from 11.8-12.7 to 19.0-22.8 over the 170 years, and did not reach a steady condition. Conclusion The results of the study imply that soil recovery at the abandoned arable sandy lands of taiga is incredibly slow process. Not only soil morphological features of a former ploughing remained detectable but also the balance of soil organic matter input and mineralization remained unsteady after 170 years of self-restoration.

  9. Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil.

    Science.gov (United States)

    Rocheleau, Sylvie; Kuperman, Roman G; Dodard, Sabine G; Sarrazin, Manon; Savard, Kathleen; Paquet, Louise; Hawari, Jalal; Checkai, Ronald T; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I

    2011-11-15

    Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg(-1) in studies with NG freshly amended in soil, and from 23 to 185 mg kg(-1) in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Biochar application to sandy and loamy soils for agricultural nutrient management

    Science.gov (United States)

    Gronwald, Marco; Don, Axel; Tiemeyer, Baerbel; Helfrich, Mirjam

    2014-05-01

    Soil fertility of agricultural soils is challenged by nutrients losses and increasing soil acidification. Furthermore, leached nutrients negatively affect the quality of ground and surface water 1]. In addition to the possible soil carbon sequestration by applying biochars, many positive soil-improving properties are attributed to biochars. The application of biochars to agricultural - especially sandy - soils could reduce leaching of nutrients and may improve their availability 1,2]. Thus, biochar application to agricultural fields could be an ecologically and economically viable option to improve soils' fertility. However, biochar properties strongly depend on their feedstock and production process 3]. Various types of biochars (pyrolysis char, hydrochar (produced at 200 and 250° C); feedstocks: digestate, Miscanthus and wood chips) were used to determine sorption kinetics and sorption isotherms for the major nutrients Ca, Mg, K, NH4 and NO3 as a function of biochar types in different soil substrates (sand, loess). In addition, the biochars were washed to create free binding sites on the chars' surface that simulate aged char. We compared the simulated aged char with biochars that was aged in-situ at a field experiment for seven months. The first results showed that pyrochars have the largest retention potential for NO3 and hydrochars have retention potential for NH4. Washing of biochars turned them from a PO4 and NH4 source into an adsorber, especially for hydrochars. Highest leaching was observed for biochars from digestates likely due to the high nutrient content of digestates. But the different ions may lead to pH-dependent interactions between each other and the chars' surface that override the adsoption effects. In this context, cation-bridge and ligand bindings 4,5] need to be further investigated. Most of the fresh, unwashed biochars were a source of nutrients with hardly any detectable nutrient retention. Pyrochars showed the highest potential for anion

  11. Archaeol: An Indicator of Methanogenesis in Water-Saturated Soils

    Directory of Open Access Journals (Sweden)

    Katie L. H. Lim

    2012-01-01

    Full Text Available Oxic soils typically are a sink for methane due to the presence of high-affinity methanotrophic Bacteria capable of oxidising methane. However, soils experiencing water saturation are able to host significant methanogenic archaeal communities, potentially affecting the capacity of the soil to act as a methane sink. In order to provide insight into methanogenic populations in such soils, the distribution of archaeol in free and conjugated forms was investigated as an indicator of fossilised and living methanogenic biomass using gas chromatography-mass spectrometry with selected ion monitoring. Of three soils studied, only one organic matter-rich site contained archaeol in quantifiable amounts. Assessment of the subsurface profile revealed a dominance of archaeol bound by glycosidic headgroups over phospholipids implying derivation from fossilised biomass. Moisture content, through control of organic carbon and anoxia, seemed to govern trends in methanogen biomass. Archaeol and crenarchaeol profiles differed, implying the former was not of thaumarcheotal origin. Based on these results, we propose the use of intact archaeol as a useful biomarker for methanogen biomass in soil and to track changes in moisture status and aeration related to climate change.

  12. Elastoplastic model for unsaturated, quasi-saturated and fully saturated fine soils

    Directory of Open Access Journals (Sweden)

    Lai Ba Tien

    2016-01-01

    Full Text Available In unsaturated soils, the gaseous phase is commonly assumed to be continuous. This assumption is no more valid at high saturation ratio. In that case, air bubbles and pockets can be trapped in the porous network by the liquid phase and the gas phase becomes discontinuous. This trapped air reduces the apparent compressibility of the pore fluid and affect the mechanical behavior of the soil. Although it is trapped in the pores, its dissolution can take place. Dissolved air can migrate through the pore space, either by following the flow of the fluid or by diffusion. In this context, this paper present a hydro mechanical model that separately considers the kinematics and the mechanical behavior of each fluid species (eg liquid water, dissolved air, gaseous air and the solid matrix. This new model was implemented in a C++ code. Some numerical simulations are performed to demonstrate the ability of this model to reproduce a continuous transition of unsaturated to saturated states.

  13. Effect of Poultry Manure and Vertisols Matter on Availability and Leaching of Macronutrients in Coastal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Bambang Djadmo Kertonegoro

    2011-01-01

    Full Text Available The poultry manure and vertisols matter have potency for reclaiming a soil. The research objectives was to study the effect of poultry manure (PM and vertisols matter (VM on availability and leaching of macro nutrient in coastal sandy soil treated by rainfall simulation. A laboratory experiment was conducted with lesymeters to measure nutrient leaching. The factorial 4 × 4 treatment applied was arranged by randomized completely block design with three replications. The first factor was level of PM consisted of 0, 20, 40, and 60 Mg ha-1. The second one was the level of VM consisted of 0, 5, 10, and 15%. Variables observed were soil physical and chemical properties such as bulk density (BD, particle density (PD, porosity, pF 2.54, pF 4.2, available water capacity (AWC, permeabi- lity, cation exchange capacity (CEC, available macro nutrients (N, P, K, Ca, Mg, and S by Morgan Wolf extraction, and the rate of macro nutrient leaching measuared by Spectrophotometry and Atomic Absorption Spectrophotometry. Result of the research showed that application of PM and VM in the sandy soil decreased soil PD and BD, increased soil porosity and AWC, decreased soil permeability, and slightly increased soil CEC. Application of PM and VM increased soil available nutrient in the sandy soil. Up to 60 Mg ha-1 dose PM increased soil available nutrient, while 10 to 15% dose, VM did not increased it. The rank of nutrient leaching from high to low by rain simulation was N-NO3-> SO4= > K+ > Ca2+. Leaching of K and N-NH4+ could be reduced by soil amendment. Combination of PM 60 Mg ha-1 and VM 10% was the best soil amendment for increasing nutrient availability and decreasing nutrient leaching in the sandy soil.

  14. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate.

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C; Hernández, Marta; Kunz, Airton; Barardi, Célia R M; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling.

  15. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  16. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K

    2011-05-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L-1-135 mg L-1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d-1-1780 mg d-1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency. © 2011.

  17. Capillary rise simulation of saline waters of different concentrations in sandy soils

    Directory of Open Access Journals (Sweden)

    Natthawit Jitrapinate

    2016-06-01

    Full Text Available Soil salinity causes corrosion of engineering structures worldwide. The main cause of soil salinization is capillary rise of saline groundwater. Soil salinity can be mitigated once the capillary rise of saline groundwater in soils is understood. The objective of this paper is to present experimental results of capillary rising rates of different salt concentration waters in three sandy soils. Each sample comprised of a soil column 300-mm height and 50-mm in diameter steeped in a 25-mm deep saline water pool for a time period to allow for the capillary action to develop. The salinity strength varied from fresh water, EC = 2 dS/m, to medium saline (50, 100, and 150 dS/m, and to high saline water (200 dS/m. It was found that the highest rate of capillary rise occurred in medium saline waters, while the lowest is the fresh water. The very saline water has lower rate than the medium ones but higher than fresh water.

  18. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    Directory of Open Access Journals (Sweden)

    C. T. Petersen

    1997-01-01

    Full Text Available Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf. 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  19. Geotechnical response of pipelines shallowly embedded in clayey and sandy soils

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato M.S. [Military Institute of Engineering (IME), Rio de Janeiro, RJ (Brazil); Borges, Ricardo G. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil); Feitoza, Jaquelline; Almeida, Maria C.F.; Almeida, Marcio S.S. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2009-07-01

    Offshore and onshore pipelines used for oil and gas transportation are often buried to avoid eventual damages and also to provide movement constraint. The soil cover supply resistance against upward and lateral displacements of the pipe caused by thermally-induced axial loading, which can lead to structural buckling. The clear understanding of this behavior is critical for the development of new analysis tools and new design criteria which could minimize future accidents. In this way, research on pipe-soil interaction behavior has been undertaken using both clayey and sandy soils through physical and numerical simulations. This paper is part of a research effort to provide a pipe-soil interaction guideline suitable for application in pipeline design along the Brazilian coast. This work presents a comprehensive set of lateral buckling simulation tests using the COPPE-UFRJ geotechnical centrifuge. The chosen soils are typical of the Brazilian coast and therefore very representative of tropical regions. Physical and numerical results are compared and other research works are considered in order to assess the overall uplift resistance. In flight T-bar and cone penetration tests were undertaken to provide a soil resistance profile which was used to trace dimensionless curves that could be adopted in similar design situations. (author)

  20. Utilization of Sandy Soil as the Primary Raw Material in Production of Unfired Bricks

    Directory of Open Access Journals (Sweden)

    Guilan Tao

    2018-01-01

    Full Text Available In this study, attempts were made to use sandy soil as the main raw material in making unfired bricks. The sprayed-cured brick specimens were tested for compressive and flexural strength, rate of water absorption, percentage of voids, bulk density, freezing/thawing, and water immersion resistance. In addition, the microstructures of the specimens were also studied using scanning electron microscope (SEM and X-ray diffraction (XRD technique. The test results show that unfired brick specimens with the addition of ground-granulated blast-furnace slag (GGBS tend to achieve better mechanical properties when compared with the specimens that added cement alone, with GGBS correcting particle size distribution and contributing to the pozzolanic reactions and the pore-filling effects. The test specimens with the appropriate addition of cement, GGBS, quicklime, and gypsum are dense and show a low water absorption rate, a low percentage of voids, and an excellent freezing/thawing and water immersion resistance. The SEM observation and XRD analysis verify the formation of hydrate products C–S–H and ettringite, providing a better explanation of the mechanical and physical behavior and durability of the derived unfired bricks. The results obtained suggest that there is a technical approach for the high-efficient comprehensive utilization of sandy soil and provide increased economic and environmental benefits.

  1. Projectile Penetration into Sandy Soil Confined by a Honeycomb-Like Structure

    Directory of Open Access Journals (Sweden)

    Weiming Luo

    2017-01-01

    Full Text Available HPS (Honeycomb-like Protective Structure is a newly proposed protective structure filled with sandy soil. In order to investigate the penetration resistance of the structure, numerical simulations based on SPH method had been carried out by using LS-DYNA, which are corresponding to the experiments. The calibrated model leads to reasonable predictions of the dynamic responses and damage modes of the HPS. More situations were carried out taking factors influencing the penetration into consideration, including point of impact, angle of impact, and projectile caliber. Penetration mode was established by analyzing the energy dissipation and investigating the mechanism from the phenomenological viewpoint. Simulation results show that the resisting forces and the torque that act on the long rod projectile would be greater than those acting on the short one when instability occurred. Besides, approximate 45° angle of impact was formed in the case of off-axis, which has a certain influence on the ballistic stability, resulting in more kinetic energy of projectile dissipating in HPS and less depth of penetration. The kinetic energy of projectile dissipated in sandy soil largely and the strip slightly, and the former was greater than the sum of the latter.

  2. Effects of Green Manure and Clay on the Soil Characteristics, Growth and Yield of Peanut at the Coastal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Muchtar

    2010-05-01

    Full Text Available Poor physical properties and limited amount of available nutrients wereregarded as two main constraints possessed by coastal sandy soil for agricultural production. The objective of thestudy was to identify the effect of green manure and clay soil applications toward soils characteristic, growth andyield of peanut (Arachis hypogeae L. in the coastal sand soil. A completely randomized design with factorialpattern 4 x 5 was applied in this experiment. The first factors were the rate of green manure application consisted offour levels, i.e. control, 5 Mg ha-1, 10 Mg ha-1 and 15 Mg ha-1 of green manures. The second factors were the additionof five different levels of clay, i.e. control, Vertisol, Alfisol, Inceptisol and Vertisol + Alfisol + Inceptisol. Eachtreatment combinations were replicated three times. Results of the study showed that the vertisol soil affectingphysical characteristics of soil. The addition of Inceptisol soil affected chemical characteristic of soil, increasedgrowth and yield of peanut. Application of 15 Mg ha-1 of green manures affected toward the characteristic of soilsexcept of the crop yields. However, there was no significant interaction effect from both materials to all variablesobserved.

  3. Modelling carbon and nitrogen turnover in variably saturated soils

    Science.gov (United States)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  4. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    Science.gov (United States)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  5. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    Science.gov (United States)

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  6. Retention and transport of mecoprop on acid sandy-loam soils

    Science.gov (United States)

    Paradelo Núñez, Remigio; Conde Cid, Manuel; Abad, Elodie Martin; Fernández Calviño, David; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel

    2017-04-01

    Interaction with soil components is one of the key processes governing the fate of agrochemicals in the environment. In this work, we have studied the adsorption/desorption and transport of mecoprop in four acid sandy-loam soils with different organic matter contents. Kinetics of adsorption and adsorption/desorption at equilibrium have been studied in batch experiments, whereas transport was studied in laboratory columns. Adsorption and desorption are linear or nearly-linear. The kinetics of mecoprop adsorption are relatively fast in all cases (less than 24 h). Adsorption and desorption were adequately described by the linear and Freundlich models, with KF values that ranged from 0.7 to 8.8 Ln µmol1-n kg-1 and KD values from 0.3 to 3.6 L kg-1. High desorption percentages (>50%) were found, indicative of a high reversibility of the adsorption process. The results of the transport experiments showed that the retention of mecoprop by soil was very low (less than 6.2%). The retention of mecoprop by the soils in all experiments increased with organic matter content. Overall, it was observed that mecoprop was weakly adsorbed by the soils, what would result in a high risk of leaching of this compound.

  7. Mitigation of Water Stress on Apple Trees under Rotational Irrigation Conditions by Increasing the Application Rate of Organic Fertilizers to Sandy Soils

    Science.gov (United States)

    Hamed, Lamy Mamdoh Mohamed; Ramadan Eid, Abdelraouf; Mohsmed Rabie Abdellatif Abdelaziz, Adel; Fathy Abdelsalam Essa, El-Sayed

    2016-04-01

    Egypt, as part of Mediterranean regions, is characterized by irregular and low rainfall amount which varies between (30-150 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. On the other hand, New reclaimed soils are mostly occupies around 84 % of total area of Egypt, which is mainly sandy soils. These soils generally characterized by low water capacity holding, soil organic matter, and weak in nutrients retention. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency and increasing of nutrient retention in sandy soils. In this context, two field experiments were carried out on sand soil located in north Cairo-Egypt at the experimental farm of National Research Center, El-NUBARIA, (latitude 30° 30' N, and longitude 30° 19' E). The effect of compost rates on soil hydraulic characteristics, fruit yields, quality traits, and water use efficiency and productivity of apple tree (Apple Anna Cultivar), was studied under deficit irrigation conditions. Four rates of compost [I1: control, I2: 12 ton.ha-1., I3: 24 ton.ha-1., I4: 36 ton.ha-1. and I5:48 ton.ha-1.] were applied under irrigation frequencies of (IF1 :once per week; IF2 :twice per week, IF3 :three times per week). The obtained results indicated that by increasing the application rate of compost, the available water capacity and saturated water content of sandy soil have been enhanced. In the same time, the fruit yield, quality traits and water productivity were increased by increasing the application rate of compost. It is worthy to mention that the I5IF3 treatment gave the highest values of fruit yield, quality traits and water productivity, whereas I1IF1 treatment gave the lowest values of all the above mentioned variables. As result, for apple cultivation in El-NUBARIA region, the recommended rate of compost is 48 ton.ha-1 and irrigation frequency

  8. Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

    Directory of Open Access Journals (Sweden)

    F. Nooralivand

    2016-02-01

    Full Text Available Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil. Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier Transmission Infrared Spectroscopy (FTIR. Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter under conditions of different nanoparticle concentration (1, 2, and 3 g1-1and high initial NO3- concentration (150, 250, and 350 mgl-1. Homogeneous soil column was filled with the wet packed

  9. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    single grain structure at the surface. The soils are predominantly sandy in texture with sand weighted average values of > 90 % in Sokoto and Illela coversand and > 80 % in Sangiwa coversand. The soils were acidic with pH values ranging from 4.6 to 5.4. Organic matter, exchangeable bases, CEC and base saturation were ...

  10. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  11. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... by 15 to 85% in the BC-amended soils. The moderate impact of corn cob biochar on soil water retention, and minimal improvements in convective and diffusive gas transport provides an avenue for an environmentally friendly disposal of crop residues, particularly for corn cobs, and structural improvement...

  12. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    Science.gov (United States)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered

  13. Influence of legume crops on content of organic carbon in sandy soil

    Directory of Open Access Journals (Sweden)

    Hajduk Edmund

    2015-06-01

    Full Text Available The paper presents the results of a 3-year field experiment designed to evaluate the content of organic carbon in brown soil (Haplic Cambisol Dystric developed from a light loamy sand under legumes cultivation. Experimental factors were: species of legume crop (colorful-blooming pea (Pisum sativum, chickling vetch (Lathyrus sativus, narrow-leafed lupin (Lupinus angustifolius, methods of legumes tillage (legumes in pure culture and in mixture with naked oats and mineral N fertilization (0, 30, 60, 90 kg N·ha−1. Cultivation of legumes on sandy soil did not result in an increase of organic carbon content in the soil after harvest as compared to the initial situation, i.e. 7.39 vs. 7.76 g·kg−1 dry matter (DM, on average, respectively. However, there was the beneficial effect of this group of plants on soil abundance in organic matter, the manifestation of which was higher content of organic carbon in soils after legume harvest as compared to soils with oats grown (7.21 g·kg−1 DM, on average. Among experimental crops, cultivation of pea exerted the most positive action to organic carbon content (7.58 g·kg−1, after harvest, on average, whereas narrow-leaved lupin had the least effect on organic carbon content (7.23 g·kg−1, on average. Pure culture and greater intensity of legume cultivation associated with the use of higher doses of mineral nitrogen caused less reduction in organic carbon content in soils after harvest.

  14. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  15. Laboratory and field study of the performance of helical piles in sandy soil

    Directory of Open Access Journals (Sweden)

    Farhad Nabizadeh

    2016-12-01

    Full Text Available Developing different method in construction of deep footing plays a major role in optimized and economized performing of civil projects especially in problematic soils. One of the common types of deep footing is helical piles which have several advantages such as fast procedure, useful in different soil types, performing without noise and vibration, effective in pressure and tension and etc. In this paper, the performance of 1-helix & 2-helixes and 3-helixes in an un-grouted and grouted with the field and laboratory studies are discussed. Field studies include of helical piles behavior in sand. Laboratory tests with physical FCV modeling is also carried out on the soil of the site. Grouting effect on helical piles resistance is evaluated. Comparison load test results with analytical method were compared. Results show that performance cylindrical in sandy soils in helical piles is not suitable and increasing helical number pile capacity is decreases. Also, after grouting helical pile with three helixes increases more resistant compare to one helix and double helixes.

  16. Environmental adaptability of Canavalia virosa and Flemingia congesta to sandy ash soil of Merapi Volcano, Java

    Directory of Open Access Journals (Sweden)

    S. S. Wardoyo

    2016-07-01

    Full Text Available Studies on volcanic ash of Mount Merapi erupted in 2010 are limited to only characterization of mineralogical, physical, chemical, and biological properties of the volcanic ash. In order to speed up rehabilitation of soils affected by the volcanic ash, it is necessary to study the application of suitable plant species, which is called bio-mechanic conservation. The purpose of this study was to test the environmental adaptability of Canavalia virosa and Flemingia congesta in sandy soil covered by volcanic ash of Mount Merapi. This study was carried out using 2x4 Split-plot randomized block design with three replicates. The main plot of the design was plant species (Canavalia virosa and Flemingia congesta, while the sub plot was the dose of organic matter application (0, 20, 40, and 60 t / ha. Soil parameters measured were N-total, P-total, available P, available K, and organic matter contents. Plant parameters measured were plant dry weight and plant height. The results showed no significant differences in soil N, P and K contents of all treatments tested in this study after 9 weeks, except C organic content. Canavalia virosa grew well until 9 weeks, whereas Flemingia congesta started to die a 9 weeks after planting.

  17. Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms

    NARCIS (Netherlands)

    Zingore, S.; Delve, R.J.; Nyamangara, J.; Giller, K.E.

    2008-01-01

    Manure is a key nutrient resource on smallholder farms in the tropics, especially on poorly buffered sandy soils, due to its multiple benefits for soil fertility. Farmers preferentially apply manure to fields closest to homesteads (homefields), which are more fertile than fields further away

  18. Biochar application does not improve the soil hydrological function of a sandy soil

    NARCIS (Netherlands)

    Jeffery, S.; Meinders, M.B.J.; Stoof, C.R.; Bezemer, T.M.; Voorde, van de T.F.J.; Mommer, L.; Groenigen, van J.W.

    2015-01-01

    Biochar application to soil is currently being widely posited as a means to improve soil quality and thereby increase crop yield. Next to beneficial effects on soil nutrient availability and retention, biochar is assumed to improve soil water retention. However, evidence for such an effect in the

  19. Effect of Plant-derived Hydrophobic Compounds on Soil Water. Repellency in Dutch Sandy Soils

    NARCIS (Netherlands)

    Mao, J.; Dekker, S.C.; Nierop, K.G.J.

    2013-01-01

    Soil water repellency or hydrophobicity is a common and important soil property, which may diminish plant growth and promotes soil erosion leading to environmentally undesired situations. Hydrophobic organic compounds in the soil are derived from vegetation (leaves, roots, mosses) or microorganisms

  20. Volatilization of tri-allate, ethoprophos and parathion measured with four methods after spraying on a sandy soil

    NARCIS (Netherlands)

    Bor, G.; Berg, van den F.; Smelt, J.H.; Smidt, R.A.; Peppel-Groen, van de A.E.; Leistra, M.

    1995-01-01

    At about eleven times after application of tri-allate, ethoprophos and parathion to a sandy soil, their rates of volatilization were determined by the aerodynamic method (AD), the Bowen-ratio method (BR), the theoretical-profile method (TP) and the Box method. The volatilization was highest for

  1. Movement of water, bromide ion and the pesticides ethoprophos and bentazone measured in a sandy soil in Vredepeel (The Netherlands)

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Pas, van der L.J.T.

    1999-01-01

    The aim of this study was to collect a data set suitable for testing pesticide leaching models in the case of a Dutch sandy soil with a shallow groundwater table. The movement of water, bromide ion and the behaviour of the pesticides ethoprophos and bentazone was studied. The substances were applied

  2. Movement of water, bromide and the pesticides ethoprophos and bentazone in a sandy soil: the Vredepeel data set

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Pas, van der L.J.T.

    2000-01-01

    The aim of this study was to collect a data set suitable for testing pesticide leaching models in the case of a Dutch sandy soil with a shallow groundwater table. The movement of water, bromide ion and the behaviour of the pesticides ethoprophos and bentazone was studied. The substances were applied

  3. Woodland dynamics as a result of settlement relocation on Pleistocene sandy soils in The Netherlands (200 BC – 1400 AD).

    NARCIS (Netherlands)

    Groenewoudt, B.; Spek, Mattheus

    2015-01-01

    In this paper we investigate the potential of charcoal kilns as indicators (proxy data) of the interaction between settlement dynamics and the history of woodland presence, composition and structure. The results demonstrate that in our research area (Pleistocene sandy soils of the Netherlands)

  4. Target Diameter Models for Leuce Poplar Stands Growing on Sandy Soils

    Directory of Open Access Journals (Sweden)

    RÉDEI, Károly

    2012-01-01

    Full Text Available The fact that certain ecological factors fundamentally influencing tree growth have become unfavourable in Hungary in recent years, has led to the more extensive use of white poplar (and its hybrids in afforestation and forest regeneration. An intensive integrated research and development work has been carried out on the growth of Leuce poplars on sandy soils, including primarily the white poplar (Populus alba and its natural hybrid the grey poplar (Populus x canescens. The research revealed several factors influencing stand growth. The study presents a new, simplified tending operation model for Leuce poplar stands, as well as age, growing space and target diameter models suitable for qualitaty log production and for mass assortments. The simplicity of these practice-oriented models may foster the qualitative development of Leuce poplar management in Hungary.

  5. Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils

    OpenAIRE

    John Volk; Olusegun Yerokun

    2016-01-01

    This study aimed to establish the fate of copper (Cu) and cobalt (Co) in sandy loam and clay loam soils that had been irrigated with increasing concentrations of contaminated water. A sequential extraction procedure was used to determine the fractions of Cu and Co in these soils. The concentration of bioavailable Cu and Co on clay loam was 1.7 times that of sandy loam soil. Cu on sandy loam soil was largely in the organic > residual > exchangeable > water-soluble > carbonate fract...

  6. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.

    Science.gov (United States)

    Cartmill, Andrew D; Cartmill, Donita L; Alarcón, Alejandro

    2014-01-01

    A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4,6, or 8 kg m(-3)] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg(-1)) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.

  7. Chemical behavior of radioiodine in soils, (1). Studies on the sorption and desorption of iodide on sandy soils

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shigeo; Kamada, Hiroshi (National Inst. of Radiological Sciences, Nakaminato, Ibaraki (Japan). Nakaminato Lab. Branch Office)

    1983-12-01

    Iodine-129 will be accumulated in the environment owing to its long half-life. In order to estimate its impact on man, it is necessary to obtain the information about its accumulation and movement in the environment over the long period. In this paper, the sorption and desorption of iodide (I/sup -/) on sandy soils were examined by using column and batch experiments. The results obtained were as follows: 1) Every breakthrough curves of I/sup -/ showed plateau, before the ratio of concentration (C/C/sub 0/) were reached 1.0. The ratio C/C/sub 0/ on plateau in the effluent was affected by the kind of soil and NaI concentration in the inflow solution. 2) Iodine once sorbed on soil would be scarcely removed with 5.0 x 10/sup -4/ mol/l CaCl/sub 2/ solution. 3) Chemical form of iodine in the effluent was identified, showing that, more than 90% was recovered as I/sup -/. 4) In batch experiment, the equilibrium period on the sorption of I/sup -/ by anion exchange resin and soil was examined. The equilibrum period on the sorption by anion exchange resin was within 3 hr, but the period by soil was more than 15 days. This means that the sorption phenomenon of I/sup -/ to soil is not always based on an ion exchange reaction on the surface of soil particle. 5) A new theory should be examined for evaluating the movement of I/sup -/ in a soil.

  8. Degree of saturation effect on the grout-soil interface shear strength of soil nailing

    Directory of Open Access Journals (Sweden)

    Wang Qiong

    2016-01-01

    Full Text Available In the grouted soil nailing system, the bonding strength of cement grout-soil interface offers the required resistance to maintain the stability of whole structure. In practice, soil nailing applications are often placed at unsaturated conditions, such as soil slopes, shallow foundations, retaining walls and pavement structures. In these cases, the water content in the soil nail zone may increase or decrease due to rain water or dry weather, and even cannot become saturated during their design service life. In this study, the effect of water content (degree of saturation on the shear strength of interface between cement grout and sand are experimentally investigated by means of direct shear test. Meanwhile the water retention curve was determined and interface microstructure was observed. Experimental results show that the shear strength of interface changes non-monotonously with degree of saturation when the interface was prepared, due to the non-monotonousness of the cohesiveness between soil particles. The less the cohesiveness between sand particles, the more grout was observed been penetrated into the voids, and thus the larger the interface shear stress.

  9. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns.

    Science.gov (United States)

    Fang, Jing; Shan, Xiao-quan; Wen, Bei; Lin, Jin-ming; Owens, Gary

    2009-04-01

    The stability of TiO(2) nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO(2) could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO(2) contents in soil suspensions after 24h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO(2) (18.8-83.0%) readily passed through the soils columns, while TiO(2) was significantly retained by soils with higher clay contents and salinity. TiO(2) aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO(2) in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO(2) nanoparticles to deep soil layers.

  10. Crop response to phosphate and lime on acid sandy soils high in zinc

    Energy Technology Data Exchange (ETDEWEB)

    Smilde, K.W.; Koukoulakis, P.; Van Luit, B.

    1974-12-01

    Beans, lettuce, tomatoes, cotton, maize, and Sudan grass were grown in glasshouse experiments, and potatoes and maize in field experiments on a Zn-polluted sandy soil (pH-KCl 4.3, 36-54 ppM AcONH/sub 4/-extractable Zn) to study the effects of added P and lime on dry matter production and mineral composition. Moreover, the effects of added P and lime on AcONH/sub 4/-extractable ('available') soil Zn, and of added Zn on water-soluble ('available') soil P were estimated. Beans, lettuce, tomatoes, and cotton required both lime and P to overcome the toxic effect of excess Zn, i.e. a Zn/P imbalance interfering with the P metabolism. Maize and Sudan grass, accumulating much smaller amounts of Zn from the unamended Zn-polluted soil, grew well and responded vigorously to P in the absence of applied lime. Potatoes were intermediate in behaviour. P and lime decreased Zn concentrations in the above-ground portions of all crops, mainly as a result of 'dilution' following a vigorous growth response. Only in cases where lime depressed growth (maize and Sudan grass at the lower P rates) was there some evidence of a direct inhibitive effect on Zn uptake by plant tops. Soil analyses indicated that the Zn-P antagonism could not be explained satisfactorily on the basis of chemical reactions involving mutual immobilization. It is postulated, therefore, that the Zn-P interaction is mainly a plant physiological characteristic.

  11. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...... carbon (CCCresilience of the three soils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after...

  12. Clay Dispersibility and Soil Friability - Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... friability for 1 yr of measurements could be ascribed to wet conditions for potato (Solanum tuberosum L.) harvest and tillage the preceding year. Literature data indicate soils’ content of clay and silt (Fines20) to be a better predictor of specific surface area than clay. We conclude that a clay/OC ratio...

  13. Transport and Deposition of Suspended Soil-Colloids in Saturated Sand Columns

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    a red‐yellow soil from Okinawa, Japan. Different concentrations of suspended‐soil colloids (with diameter water‐saturated columns repacked with either Narita (mean diameter D50 = 0.64 mm) or Toyoura (mean diameter D50 = 0...

  14. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil

    Directory of Open Access Journals (Sweden)

    M.E El-Hadad

    2011-03-01

    Full Text Available In a greenhouse experiment, the nematicidal effect of some bacterial biofertilizers including the nitrogen fixing bacteria (NFB Paenibacillus polymyxa (four strains, the phosphate solubilizing bacteria (PSB Bacillus megaterium (three strains and the potassium solubilizing bacteria (KSB B. circulans (three strains were evaluated individually on tomato plants infested with the root-knot nematode Meloidogyne incognita in potted sandy soil. Comparing with the uninoculated nematode-infested control, the inoculation with P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2, increased the counts of total bacteria and total bacterial spores in plants potted soil from 1.2 to 2.6 folds estimated 60 days post-inoculation. Consequently, the inoculation with P. polymyxa NFB7 increased significantly the shoot length (cm, number of leaves / plant, shoot dry weight (g / plant and root dry weight (g / plant by 32.6 %, 30.8 %, 70.3 % and 14.2 %, respectively. Generally, the majority treatments significantly reduced the nematode multiplication which was more obvious after 60 days of inoculation. Among the applied strains, P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2 inoculations resulted in the highest reduction in nematode population comparing with the uninoculated nematode-infested control. They recorded the highest reduction in numbers of hatched juveniles/root by 95.8 %, females/root by 63.75 % and juveniles/1kg soil by 57.8 %. These results indicated that these bacterial biofertilizers are promising double purpose microorganisms for mobilizing of soil nutrients (nitrogen, phosphate and potassium and for the biological control of M. incognita.

  15. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil.

    Science.gov (United States)

    El-Hadad, M E; Mustafa, M I; Selim, Sh M; El-Tayeb, T S; Mahgoob, A E A; Abdel Aziz, Norhan H

    2011-01-01

    In a greenhouse experiment, the nematicidal effect of some bacterial biofertilizers including the nitrogen fixing bacteria (NFB) Paenibacillus polymyxa (four strains), the phosphate solubilizing bacteria (PSB) Bacillus megaterium (three strains) and the potassium solubilizing bacteria (KSB) B. circulans (three strains) were evaluated individually on tomato plants infested with the root-knot nematode Meloidogyne incognita in potted sandy soil. Comparing with the uninoculated nematode-infested control, the inoculation with P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2, increased the counts of total bacteria and total bacterial spores in plants potted soil from 1.2 to 2.6 folds estimated 60 days post-inoculation. Consequently, the inoculation with P. polymyxa NFB7 increased significantly the shoot length (cm), number of leaves / plant, shoot dry weight (g) / plant and root dry weight (g) / plant by 32.6 %, 30.8 %, 70.3 % and 14.2 %, respectively. Generally, the majority treatments significantly reduced the nematode multiplication which was more obvious after 60 days of inoculation. Among the applied strains, P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2 inoculations resulted in the highest reduction in nematode population comparing with the uninoculated nematode-infested control. They recorded the highest reduction in numbers of hatched juveniles/root by 95.8 %, females/root by 63.75 % and juveniles/1kg soil by 57.8 %. These results indicated that these bacterial biofertilizers are promising double purpose microorganisms for mobilizing of soil nutrients (nitrogen, phosphate and potassium) and for the biological control of M. incognita.

  16. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (Ksampler/soil) and the uptake rate constant (ku) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both Ksampler/soil and ku values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both Ksampler/soil and ku values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  18. Relating the onset of reduction to degree of soil water saturation ...

    African Journals Online (AJOL)

    Relating the onset of reduction to degree of soil water saturation. Kimberly Smith, Cornelius W van Huyssteen. Abstract. Literature does not indicate the degree of water saturation at which reduction is expected to occur. This study therefore aimed to determine the degree of water saturation (S) at which reduction is initiated.

  19. Simulation of phosphate leaching in catchments with phosphate-saturated soils in the Netherlands

    NARCIS (Netherlands)

    Groenenberg, J.E.; Reinds, G.J.; Breeuwsma, A.

    1996-01-01

    The effects on phosphate leaching to surface waters of two scenarios for net phosphate input to sandy agricultural soils were estimated. WATBAL and ANIMO simulations for manure surplus areas in the Netherlands were used. The methodology and models were verified by comparing model results with

  20. Thallium dynamics in contrasting light sandy soils--soil vulnerability assessment to anthropogenic contamination.

    Science.gov (United States)

    Vanek, Ales; Chrastný, Vladislav; Komárek, Michael; Galusková, Ivana; Drahota, Petr; Grygar, Tomás; Tejnecký, Václav; Drábek, Ondrej

    2010-01-15

    The influence of different soil conditions and the presence of LMWOA (Low Molecular Weight Organic Acids) on anthropogenic Tl dynamics were discussed in this study. A shift from the "labile" to the residual fraction during the ageing was identified, indicating Tl incorporation into stable phases (e.g., illite and/or amorphous silicates). The increased water-soluble Tl concentration (1.8-fold, in maximum) after the split application of LMWOA (simulating root exudation) was observed in all soils; partial dissolution of relatively "insoluble" Tl-bearing phases (silicates and eventually oxides) in the presence of LMWOA is suggested. Thermodynamic modeling showed that Tl mobilization in the presence of citric and oxalic acids was indirect and could be attributed to complexation of major elements (Ca, Mg, Al) originating from the dissolution of various soil phases. On the contrary, H(+)-promoted dissolution by acetic acid was assumed as the predominant mechanism of Tl mobilization. Manganese(III,IV) oxides, illite and probably amorphous silicates were evaluated as the dominant phases responsible for Tl retention in the soils. In carbonate-rich soils, Tl coprecipitation with the newly formed carbonates seems to be an important factor influencing Tl release. Therefore, we suggest data on CEC, pH(ZPC) and soil mineralogy to be critical for assessment of Tl behavior in soil systems.

  1. Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils

    DEFF Research Database (Denmark)

    Kianpoor Kalkhajeh, Yusef; Huang, Biao; Hu, Wenyou

    2017-01-01

    Chinese greenhouse vegetable production can cause eutrophication of fresh waters due to heavy use of fertilizers. To address this, phosphorus (P) leaching was compared between two major greenhouse vegetable soils from Jiangsu Province, Southeast China: clayey and acid-neutral Guli Orthic Anthrosols.......44% led to DRP leaching exceeding 0.1 mg L(-1). Accordingly, more than 80% of Tongshan soils resulted in DRP leaching exceeding the environmental P threshold. In conclusion P rich alkaline sandy soils used for greenhouse vegetable production are at high risk of P mobilization across China....... and sandy and alkaline Tongshan Ustic Cambosols. A total of 20 intact soil columns were collected based on differences in total P content varying between 1360 and 11,220 mg kg(-1). Overall, six leaching experiments were carried out with collection of leachates over 24 h. Very high P concentrations...

  2. Soil water repellency patterns following long-term irrigation with waste water in a sandy calcareous soil, SE Spain

    Science.gov (United States)

    Mataix-Solera, J.; García-Irles, L.; Morugán, A.; Doerr, S. H.; García-Orenes, F.; Atanassova, I.; Navarro, M. A.; Ayguadé, H.

    2009-04-01

    One of the consequences of long-term irrigation with waste water can be the development of soil water repellency (WR). Its emergence can affect soil-water balance, irrigation efficiency and crop yield. Water repellency development has been suggested to be controlled by parameters such as organic matter quantity and type present in the waste water, soil properties (particularly the texture), and the overall time period of irrigation. Here we examine the effect of long-term (~20 years) irrigation with low quality waste-water on soil wettability under a Populus alba tree stand used as a "green filter". The plot exhibited considerable micro-topography (ridges and furrows) and consisted of sandy calcareous soil (Xerofluvent). Water repellency and organic carbon content (OC) were studied in 160 samples taken from the plot and from an adjacent area used as control (no irrigated). From the control area 40 samples were taken from the first 5 cm of mineral soil (C samples). From the irrigated plot a total of 120 samples were collected. To account for the micro-topography of the terrain, 40 samples each were taken from ridges (R samples; 0-5 cm depth), furrows (F samples; 0-5 cm depth), and from furrows at depth (FD samples, 5-10 cm depth). Soil WR was assessed in the laboratory for all air dry samples using the water drop penetration time test (WDPT Test). Samples with WDPT ? 5 seconds were classified as non-repellent. Organic carbon content (OC) was analyzed in all samples by potassium dichromate oxidation method. We also carried out a detailed chemical characterisation of the organic matter in two furrow samples that exhibited contrasting wettability, but no major difference in OC content (F10: WDPT 9960s, OC 6.7%; F31: WDPT 10s, OC 7.5%). Following accelerated solvent extraction with Dichloro-methane/MeOH (95:5), the extract was analysed by GC-MS. All samples from the control area (C) were wettable (mean WDPT=1s). In the irrigated plot, water repellency was present for 48

  3. Volatilization of tri-allate, ethoprophos and parathion measured with four methods after spraying on a sandy soil

    OpenAIRE

    Bor, G.; Berg, van den, W.; Smelt, J.H.; Smidt, R.A.; Peppel - Groen, van de, A.E.; Leistra, M.

    1995-01-01

    At about eleven times after application of tri-allate, ethoprophos and parathion to a sandy soil, their rates of volatilization were determined by the aerodynamic method (AD), the Bowen-ratio method (BR), the theoretical-profile method (TP) and the Box method. The volatilization was highest for tri-allate and lowest for parathion. On the first day after application, the volatilization rate decreased sharply, but thereafter the decrease was more gradual. The differences in volatilization rate ...

  4. Saturated hydraulic conductivity and soil water retention properties across a soil-slope transition

    Science.gov (United States)

    Mohanty, Binayak P.; Mousli, Zak

    2000-11-01

    The hydraulic properties of soil and their spatial structures are important for understanding soil moisture dynamics, land surface and subsurface hydrology, and contaminant transport. We investigated whether landscape features, including relative position on a slope, contribute to the variability of soil hydraulic properties in a complex terrain of a glacial till material. Using 396 undisturbed soil cores collected along two orthogonal transects, we measured saturated hydraulic conductivity (Ksat) and soil water retention functions at two (15 and 30 cm) depths across a glacial till landscape in central Iowa that encompassed two soil types (Nicollet loam with 1-3% slope on the hilltop position and Clarion loam with 2-5% slope on the shoulder position). The van Genuchten-Mualem model was fitted to the experimental data using the RETC optimization computer code. At the 15 cm depth a statistical comparison indicated significant differences in Ksat, saturated water content (θs), water content at permanent wilting point (θ15,000) and van Genuchten fitting parameters (α and n) between soil types and landscape positions. At the 30 cm depth, θs, θ15,000, and residual water content (θr) were found to be significantly different across the soil-slope transition. Available water content (θ333-15,000) did not show any significant difference across the soil-slope transition for either depth. No clear directional trend was observed, with some exceptions for Ksat, θs, and α on specific transect limbs and depths. Drifts in the soil hydraulic parameters due to soil-slope transition were removed using a mean-polishing approach. Geostatistical analyses of these parameters showed several important characteristics including the following: (1) The spatial correlation lengths and semivariogram patterns of the independently measured (or estimated) loge Ksat and θs at 30-cm depth matched extremely well; (2) better spatial structures with large correlation lengths were observed for

  5. Effect of soil pH on sorption of salinomycin in clay and sandy soils ...

    African Journals Online (AJOL)

    Desorption of salinomycin with methanol over a 72 h period was 70% with a phosphate buffer (pH 7). Since the phosphate buffer would mimic, to some extent, the quality of water flowing through field soils containing various salts, it was concluded that salinomycin could pose ...

  6. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    Science.gov (United States)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  7. Structural Stability and Hydraulic Conductivity Of Nkpologu Sandy ...

    African Journals Online (AJOL)

    Studies were conducted in the runoff plots at the University of Nigeria Nsukka Teaching and Resesarch Farm in 2010 and 2011 to monitor the changes in structural stability and saturated hydraulic conductivity (Ksat) of Nkpologu sandy loam soil under different cover management practices. The management practices were ...

  8. Effects of Soil Bulk Density on Gas Transport Parameters and Pore-Network Properties across a Sandy Field Site

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; de Jonge, Lis Wollesen; Chamindu, T K K Deepagoda

    2015-01-01

    The gas diffusion coefficient, air permeability, and their interrelations with air-filled porosity are crucial for characterization of diffusive and convective transport of gases in soils. Variations in soil bulk density can affect water retention, air-filled pore space, pore tortuosity...... and connectivity, and hence control gas diffusion and air permeability. Considering 86 undisturbed core samples with variable bulk density that were extracted on a grid from the top layer of a sandy field, the effects of soil bulk density on gas transport parameters and the soil water characteristic were...... to quantify gas transport and water retention processes across the field. Results revealed significant negative correlations between all six parameters and soil bulk density. Areas with higher bulk density exhibited reduced air-filled porosity and lower diffusivity- and air permeability-based connectivity...

  9. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    Tillage and residue management influence soil organic carbon (SOC) and lead to changes in soil physical behav-iour and functioning. We examined the effect of the clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management. Soil...... and DD and MP soil at 10–20 cm, while MP was higher than DD at 10–20 cm depth (p b 0.05). However, there was no difference in the effect of the contrasting tillage manage-ments on carbon sequestration when an equivalent soil mass and the entire topsoil layer were considered. In the top 10 cm soil, DD...

  10. Physico-chemical and Bio-chemical Controls on Soil C Saturation Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Six, Johan [Univ. of California, Davis, CA (United States); Plante, Alain F. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2011-05-31

    In this project, we tested through a multitude of lab and field experiments the concept of soil C stabilization and determined metrics for the level of C saturation across soils and soil organic matter fractions. The basic premise of the soil C saturation concept is that there is a maximum amount of C that can be stabilized within a soil, even when C input is further increased. In a first analysis, our results showed that linear regression models do not adequately predict maximal organic C stabilization by fine soil particles. Soil physical and chemical properties associated with soil clay mineralogy, such as specific surface area and organic C loading, should be incorporated into models for predicting maximal organic C stabilization. In a second analysis, we found significantly greater maximal C stabilization in the microaggregate-protected versus the non-microaggregate protected mineral fractions, which provides independent validation that microaggregation plays an important role in increasing the protection and stabilization of soil C leading to greater total soil C accumulation in these pools. In a third study, our results question the role of biochemical preference in mineral C stabilization and of the chemical recalcitrance of specific plant-derived compounds in non-protected soil C accumulation. Because C biochemical composition of slowly turning over mineral protected C pools does not change with C saturation, input C composition is unlikely to affect long-term C stabilization. Rather, C saturation and stabilization in soil is controlled only by the quantity of C input to the soil and the physical and chemical protection mechanisms at play in long-term C stabilization. In conclusion, we have further corroborated the concept of soil C saturation and elucidated several mechanisms underlying this soil C saturation.

  11. Effects of Nitramine Explosive CL-20 on the Soil Microinvertebrate Community in a Sandy Loam Soil

    Science.gov (United States)

    2013-09-01

    using high-gradient extractor (Merchant and Crossley, 1970). The most abundant microarthropods were sorted to acarine suborders Prostigmata...Survival data was normalized using square root (x + 1) transformation prior to regression analyses; the exception was predatory nematode survival data...Ecosyst. Environ. 1991, 34, 201–207. Merchant, V.A.; Crossley, D.E., Jr. An Inexpensive, High-Efficiency Tullgren Extractor for Soil

  12. Pore size distribution of soil near saturation as affected by soil type, land use, and soil amendments

    Science.gov (United States)

    Mamedov, A. I.; Wagner, L. E.; Levy, G. J.

    2008-12-01

    Storage and flow of water in soil voids, which are related to the size and geometry of the voids and flow rate are usually controlled by the void of the smallest size. Another reason for the complexity of water flow in soils is the intricate nature and change of the soil pores due to the modification of soil structure under different agricultural management and climatic conditions. Shrinking and swelling stresses enhance breakdown of aggregates and to subsequent collapse of pores, thus adversely affecting the movement of water and solutes in the soil. Our objective was to study the role of soil type, nature of cultivation, waste and soil stabilizers application, and soil condition on disturbed soil pore-size distribution, drainable porosity and water holding capacity at near saturation (infiltration porosity) using the high energy moisture characteristic method. In this method, the wetting process of the aggregates is accurately controlled, and the energy of hydration and entrapped air are the main forces responsible for aggregate breakdown. We studied a large number (> 300) of soil samples from different climatic regions varying (i) in their inherent properties (clay mineralogy, dispersion potential, texture, organic matter, Fe and Al oxides content), and; (ii) the conditions prevailing in the soil (water quality, salinity, sodicity, redox potential, type of tillage); and finally that were subjected to the addition of different soil amendments (polymers, gypsum, manure, sludge). The results showed that structural stability and pore size distribution strongly depended on soil type, conditions prevailing in the soil and the type of amendment used. Detailed analyses of the results provided valuable information on inter- and intra- aggregate porosities that may have vital bearing on the understanding of (i) solution transport processes in different soil types under different treatments or with different solute concentration, and (ii) down-profile transport of soil

  13. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  14. The Effect of Chloride and Sulfate Ions on the Adsorption of Cd 2+ on Clay and Sandy Loam Egyptian Soils

    OpenAIRE

    EL-Hefnawy, Mohamed E.; Selim, Elmetwaly M.; Assaad, Faiz F.; Ismail, Ali I.

    2014-01-01

    Adsorption of Cd2+ on two types of Egyptian soils: clay (alluvial) and sandy loam (calcareous), was studied. Effect of changing the matrix electrolyte type and concentration was used to mimic the natural soil salts. Kinetics and thermodynamic parameters of the adsorption were calculated at two different electrolyte concentrations: 0.05 N and 0.15 N. The adsorption was described by Langmuir and Freundlich isotherms. Results showed that lower concentration of the NaCl or Na2SO4 electrolytes (0....

  15. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone

    Science.gov (United States)

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  16. Hierarchical saturation of soil carbon pools near a natural CO2 spring

    NARCIS (Netherlands)

    Kool, D.M.; Chung, H.; Tate, K.R.; Ross, D.J.; Newton, P.C.D.; Six, J.

    2007-01-01

    Soil has been identified as a possible carbon (C) sink to mitigate increasing atmospheric CO2 concentration. However, several recent studies have suggested that the potential of soil to sequester C is limited and that soil may become saturated with C under increasing CO2 levels. To test this concept

  17. Fruit yield and composition in orange trees cv. 'Lane Late' in response to nitrogen fertilization in Sandy Typic Hapludalf soil

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    Full Text Available ABSTRACT: Little is known about the impact of N fertilization on fruit production and composition in orange groves grown in soils with low or medium organic matter content in Rio Grande do Sul (RS. This study aimed to evaluate how N fertilization of orange trees cv. 'Lane Late' in a sandy soil may interfere in fruit yield and composition of fruit and juice. The experiment was conducted with orange trees cv. 'Lane Late' growing in Sandy Typic Hapludalf soil, in Rosário do Sul (RS. The plants received applications of 0, 20, 40, 60, 80, 100, 120, 140 and 160kg N ha-1. Total N in leaves, number of fruits per plant, yield, fresh weight, fruit diameter, peel thickness, percentage of fruit juice, peel color, juice color, ascorbic acid content, total soluble solids (TSS and total titratable acidity were evaluated in 2010/2011 and 2011/2012 crops. In the first crop, especially yield, number of fruits per plant, TSS content in fruit juice and ratio decreased with increasing N rate applied. However, in the second crop, the total titratable acidity of the fruit juice prominently increased with the dose of N applied. In both crops, results were highly influenced by rainfall distribution, which affect the plant physiology, soil N dynamics and, consequently, probability of response to N applied and the loss of mineral N in the soil.

  18. NLEAP model simulation of climate and management effects on N leaching for corn grown on sandy soil

    Science.gov (United States)

    Follett, R. F.

    1995-12-01

    The Nitrate Leaching and Economic Analysis Package (NLEAP) model was used to evaluate effects of climate and N fertility on nitrate leaching from a 3-yr field experiment of continuous corn ( Zea mays L.). Half of the plots were randomly chosen to be either nonirrigated or irrigated (based upon calculated potential evapotranspiration). Three replications of nitrogen (N) fertility (56, 112 and 224 kg ha -1) were used. Soil was a Hecla sandy loam to loamy sand (Pachic Udic Haploboroll). Soil and climate data were from the upper Midwest U.S.A. database for NLEAP. On-site data were used in the model when available. This study shows that NLEAP is capable of integrating data collected for nonirrigated and irrigated conditions on sandy soil for a wide range of N treatments and predicting the nitrate available for leaching (NAL). Precipitation distribution and amount were different in each year. Calculated NAL provided an excellent indicator of potential nitrate leaching hazard. NLEAP output showed that leaching of residual N on this sandy soil is very sensitive to early-spring precipitation. The NLEAP model provided valuable insights concerning effects of climate and N and irrigation management on N leaching. To obtain optimum yields while minimizing nitrate leaching, this study indicates the need to use soil and plant-tissue testing, post-emergence N-fertilizer application, and modem irrigation-scheduling technology. Also, use of the NLEAP model along with field-plot experiments provide additional important information concerning timing of N-leaching events relative to climate and an additional assessment of the effectiveness of fertilizer-N management decisions.

  19. Soil development in OSL dated sandy dune substrates under Quercus robur Forest (Netherlands)

    Science.gov (United States)

    van Mourik, J. M.; Nierop, Ir. K.; Verstraten, J. M.

    2009-04-01

    Coastal dune landscapes are very dynamic. The present distribution of vegetation and soil is the result of over 2000 years of natural processes and human management. The initial soil development was controlled by an increase of the organic matter content, which consisted mainly of decomposed roots of grasses (rhizomull), and a decrease of the soil pH to 3-4 by decalcification. This stage was followed by the development of a deciduous forest, which was dominated by Quercus robur. Since 1600 AD, a large part of the deciduous forest that dominated the east side of the coastal dune landscape transferred in expensive residential areas and urbanizations. Nevertheless some parts of the oak forest belt remained. The present forest soils are acid and the controlling soil processes are leaching of sesquioxides and storage of organic matter in mormoder humus forms. The sustainability of ecosystems is closely related to the quality of the humus form, controlling nutrient cycling and water supply. Therefore, improve of knowledge of humus form development and properties is important. We applied soil micromorphology and pyrolysis-gas chromatography/mass spectrometry (GC/MS) to investigate more details of humus form development at two locations (Duivendrift and Hoek van Klaas) in the coastal dune area of the Amsterdamse Waterleidingduinen (near Haarlem, the Netherlands). However, to understand forest soil development, including the organic matter composition in the humus form, the age of the substrate and the forest is required. Therefore, we used tradition techniques as pollen analysis and radiocarbon dating but also the recently introduced optical stimulated luminescence (OSL) dating technique. OSL dating works excellent for aeolian sandy deposits with a high percentage of quartz grains. The OSL age is defined as the time after the last bleaching by solar radiation of mineral grains. Or in other words, the start of a stable period without sand drifting. In the Ah horizons we

  20. Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sameh H. Youseif

    2017-01-01

    Full Text Available Soil fertility is one of the major limiting factors for crop’s productivity in Egypt and the world in general. Biological nitrogen fixation (BNF has a great importance as a non-polluting and a cost-effective way to improve soil fertility through supplying N to different agricultural systems. Faba bean (Vicia faba L. is one of the most efficient nitrogen-fixing legumes that can meet all of their N needs through BNF. Therefore, understanding the impact of rhizobial inoculation and contrasting soil rhizobia on nodulation and N2 fixation in faba bean is crucial to optimize the crop yield, particularly under low fertility soil conditions. This study investigated the symbiotic effectiveness of 17 Rhizobium/Agrobacterium strains previously isolated from different Egyptian governorates in improving the nodulation and N2 fixation in faba bean cv. Giza 843 under controlled greenhouse conditions. Five strains that had a high nitrogen-fixing capacity under greenhouse conditions were subsequently tested in field trials as faba bean inoculants at Ismaillia Governorate in northeast Egypt in comparison with the chemical N-fertilization treatment (96 kg N·ha−1. A starter N-dose (48 kg N·ha−1 was applied in combination with different Rhizobium inoculants. The field experiments were established at sites without a background of inoculation under low fertility sandy soil conditions over two successive winter growing seasons, 2012/2013 and 2013/2014. Under greenhouse conditions, inoculated plants produced significantly higher nodules dry weight, plant biomass, and shoot N-uptake than non-inoculated ones. In the first season (2012/2013, inoculation of field-grown faba bean showed significant improvements in seed yield (3.73–4.36 ton·ha−1 and seed N-yield (138–153 Kg N·ha−1, which were higher than the uninoculated control (48 kg N·ha−1 that produced 2.97 Kg·ha−1 and 95 kg N·ha−1, respectively. Similarly, in the second season (2013

  1. Degradation and sorption of metribuzin and primary metabolites in a sandy soil.

    Science.gov (United States)

    Henriksen, Trine; Svensmark, Bo; Juhler, René K

    2004-01-01

    Leaching to the ground water of metabolites from the herbicide metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5-one] has been measured in a Danish field experiment in concentrations exceeding the European Union threshold limit for pesticides at 0.1 microg/L. In the present work, degradation and sorption of metribuzin and the metabolites desamino-metribuzin (DA), diketo-metribuzin (DK), and desamino-diketo-metribuzin (DADK) were studied in a Danish sandy loam topsoil and subsoil from the field in question, using accelerated solvent extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Fast dissipation of metribuzin and the metabolites was observed in the topsoil, with 50% disappearance within 30 to 40 d. A two-compartment model described degradation of metribuzin and DA, whereas that of DADK could be described using first-order kinetics. Part of the dissipation was probably due to incorporation into soil organic matter. Degradation in subsoil occurred very slowly, with extrapolated half-lives of more than one year. Sorption in the topsoil followed the order DA > metribuzin > DK > DADK. Subsoil sorption was considerably lower, and was hardly measurable for metribuzin and DK. Abiotic degradation was considerably higher in the topsoil than the subsoil, especially concerning the de-amination step, indicating that organic matter may be related to the degradation process. The present results confirm observations of metribuzin and transformation product leaching made in the field experiment and demonstrate the need for knowledge on primary metabolites when assessing the risk for pesticide leaching.

  2. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate

  3. Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils

    Directory of Open Access Journals (Sweden)

    John Volk

    2016-12-01

    Full Text Available This study aimed to establish the fate of copper (Cu and cobalt (Co in sandy loam and clay loam soils that had been irrigated with increasing concentrations of contaminated water. A sequential extraction procedure was used to determine the fractions of Cu and Co in these soils. The concentration of bioavailable Cu and Co on clay loam was 1.7 times that of sandy loam soil. Cu on sandy loam soil was largely in the organic > residual > exchangeable > water-soluble > carbonate fractions, whereas on clay loam soil the element was largely in organic > exchangeable > residual > carbonate > water-soluble fractions. Co was largely observed in the exchangeable, water-soluble, and carbonate fractions, but with no particular trend observed in both soil types. When crops are grown on sandy soils that have a low capacity to hold heavy metals, the resulting effect would be high uptake of the heavy metals in crop plants. Because the predominant forms of Cu and Co vary in soils, it is expected that the metals will behave differently in the soils.

  4. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils.

    Science.gov (United States)

    Anuradha, B; Rekhapadmini, A; Rangaswamy, V

    2016-06-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5.0, 7.5 and 10.0 kg ha-1) and -untreated groundnut soil samples at 10 day intervals. By determining the effective concentration, the rate of selected enzyme activity was estimated by adding the suitable substrate at 10, 20, 30 and 40 days of soil incubation. Both the enzyme activities were increased up to 5.0 kg ha-1 level of fungicide in both soil samples significantly at 10 days of soil incubation and further enhanced up to 20 days of incubation. The activity of the phosphatase and urease decreased progressively at 30 and 40 days of incubation. From overall studies, higher concentrations (7.5 and 10.0 kg ha-1) of both tebuconazole and copper hydroxide were toxic to phosphatase and urease activities, respectively, in both soil samples.

  5. Measuring Negative Pore Pressures in Partially Frozen Saturated Soils

    OpenAIRE

    Holten, Johannes Gaspar

    2017-01-01

    Freezing of soil is an issue which has many implications on modern infrastructure, in which frost heave plays a pivotal role. During freezing the behavior of the soil and the flow of water is altered. In an engineering perspective, it is important to grasp the driving forces behind these behavioral changes. The main contributor to frost heave is the development of a large negative pore pressure in the unfrozen water in partially frozen fine-grained soil, termed cryosuction. The suction leads...

  6. Procyanidins in Lotus L. genotypes grown in soil with different saturations of aluminum

    Directory of Open Access Journals (Sweden)

    Sílvia Ortiz Chini

    2016-02-01

    Full Text Available Condensed tannins are formed by monomers of procyanidins and prodelfinidins, where the proportion and concentration of their monomers varies according to the plant species and environmental conditions. In Lotus spp., condensed tannins prevent tympanism in ruminants that feed on them. This study aimed to evaluate the concentration of procyanidins and their monomers, catechin and epicatechin in the genotypes of Lotus L. grown in soil with different saturations of aluminum. A two-factor (genotype × Al saturation assay was performed, where the genotypes São Gabriel, Ganador, and UFRGS (Lotus corniculatus L.; Serrano (Lotus uliginosus; and El Rincón (Lotus subbiflorus were cultivated in soil with an Al saturation of 0-20%. The procyanidins were evaluated using high-performance liquid chromatography, which was previously validated for catechin and epicatechin. The concentration of procyanidins and the proportion of epicatechin:catechin were affected by the genotype × environment interaction. In L. corniculatus and L. subbiflorus, the concentration of procyanidin was significantly higher when they were grown in the soil with an Al saturation of 20% compared to that when they were grown in the soil with 0% Al saturation, but the opposite effect was observed in L. uliginosus. The proportion of epicatechin:catechin decreased in plants grown in soil without Al, and only the UFRGS genotype maintained a similar proportion under both the soil acidity conditions. The predominant monomer was epicatechin, which varied from 57% to 75% according to the soil in which the plants were grown.

  7. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China.

    Science.gov (United States)

    Su, Yong Zhong; Wang, Xue Fen; Yang, Rong; Lee, Jaehoon

    2010-11-01

    The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0-15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO(4)-oxidation C), C management index (CMI) and inorganic C (CaCO(3)-C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO(3) enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0-87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09-0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C

  8. Determination of diagnostic standards on saturated soil extracts for cut roses grown in greenhouses.

    Directory of Open Access Journals (Sweden)

    John Jairo Franco-Hermida

    Full Text Available This work comprises the theoretical determination and validation of diagnostic standards for the analysis of saturated soil extracts for cut rose flower crops (Rosa spp. growing in the Bogota Plateau, Colombia. The data included 684 plant tissue analyses and 684 corresponding analyses of saturated soil extracts, all collected between January 2009 and June 2013. The tissue and soil samples were selected from 13 rose farms, and from cultivars grafted on the 'Natal Briar' rootstock. These concurrent samples of soil and plant tissues represented 251 production units (locations of approximately 10,000 m2 distributed across the study area. The standards were conceived as a tool to improve the nutritional balance in the leaf tissue of rose plants and thereby define the norms for expressing optimum productive potential relative to nutritional conditions in the soil. To this end, previously determined diagnostic standard for rose leaf tissues were employed to obtain rates of foliar nutritional balance at each analyzed location and as criteria for determining the diagnostic norms for saturated soil extracts. Implementing this methodology to foliar analysis, showed a higher significant correlation for diagnostic indices. A similar behavior was observed in saturated soil extracts analysis, becoming a powerful tool for integrated nutritional diagnosis. Leaf analyses determine the most limiting nutrients for high yield and analyses of saturated soil extracts facilitate the possibility of correcting the fertigation formulations applied to soils or substrates. Recommendations are proposed to improve the balance in soil-plant system with which the possibility of yield increase becomes more probable. The main recommendations to increase and improve rose crop flower yields would be: continuously check pH values of SSE, reduce the amounts of P, Fe, Zn and Cu in fertigation solutions and carefully analyze the situation of Mn in the soil-plant system.

  9. Determination of diagnostic standards on saturated soil extracts for cut roses grown in greenhouses.

    Science.gov (United States)

    Franco-Hermida, John Jairo; Quintero, María Fernanda; Cabrera, Raúl Iskander; Guzman, José Miguel

    2017-01-01

    This work comprises the theoretical determination and validation of diagnostic standards for the analysis of saturated soil extracts for cut rose flower crops (Rosa spp.) growing in the Bogota Plateau, Colombia. The data included 684 plant tissue analyses and 684 corresponding analyses of saturated soil extracts, all collected between January 2009 and June 2013. The tissue and soil samples were selected from 13 rose farms, and from cultivars grafted on the 'Natal Briar' rootstock. These concurrent samples of soil and plant tissues represented 251 production units (locations) of approximately 10,000 m2 distributed across the study area. The standards were conceived as a tool to improve the nutritional balance in the leaf tissue of rose plants and thereby define the norms for expressing optimum productive potential relative to nutritional conditions in the soil. To this end, previously determined diagnostic standard for rose leaf tissues were employed to obtain rates of foliar nutritional balance at each analyzed location and as criteria for determining the diagnostic norms for saturated soil extracts. Implementing this methodology to foliar analysis, showed a higher significant correlation for diagnostic indices. A similar behavior was observed in saturated soil extracts analysis, becoming a powerful tool for integrated nutritional diagnosis. Leaf analyses determine the most limiting nutrients for high yield and analyses of saturated soil extracts facilitate the possibility of correcting the fertigation formulations applied to soils or substrates. Recommendations are proposed to improve the balance in soil-plant system with which the possibility of yield increase becomes more probable. The main recommendations to increase and improve rose crop flower yields would be: continuously check pH values of SSE, reduce the amounts of P, Fe, Zn and Cu in fertigation solutions and carefully analyze the situation of Mn in the soil-plant system.

  10. Rehabilitation of the nematode fauna in a phytostabilized, heavily zinc-contaminated, sandy soil

    NARCIS (Netherlands)

    Bouwman, L.A.; Vangronsveld, J.

    2004-01-01

    Background, Aim and Scope. The Maatheide in Lommel, Belgium, is an extremely metal contaminated, sandy area where vegetation has disappeared over ca. 130 hectares due to the activities of a former pyrometallurgical zinc smelter. To reduce the environmental impact of this area a rehabilitation

  11. Carbon saturation in the silt and clay particles in soils with contrasting mineralogy

    Directory of Open Access Journals (Sweden)

    Francisco Matus

    2016-07-01

    Full Text Available The silt and clay particles play a key role as stabilizing agents of soil organic carbon (SOC. Several lines of evidence indicate a theoretical maximum or C saturation in individual particles. In the present study, we hypothesized that a C fraction displaying linear accumulation relative to the SOC is not influenced by C saturation, while a fraction displaying an asymptotic relationship is regarded as saturated (Stewart et al., 2008. The aim of the present study was to compare the amount of C in the silt and clay sized fractions in temperate and subtropical cropping soils across a range of textures with different mineralogy. Twenty-one and 18 soil samples containing 1:1 and 2:1 clay of temperate soil from Chile under monoculture of maize (Zea maiz L. for at least 30 years and 9 subtropical soils from Mexico under maize and bean (Phaseolus vulgaris L. cropping for 9 years having mixed clay were collected at 0-0.1 m. The SOC of 2:1 soils was significantly higher (14±0.5 g kg-1 dry soil than 1:1 soils (10±0.7 g kg-1. However, subtropical soils showed the highest values (59±0.5 g kg-1. A positive (P < 0.01 relationship was observed between the SOC and the C in the silt fraction (R2 0.80-0.97, P < 0.01. In contrast, the clay fraction remained constant or showed asymptotic behavior. We conclude that the silt fraction, unlike clay, showed no evidence of C saturation, while clay accumulates C to a maximum. On average, the 2:1 clay was saturated at 1-2 g C kg-1 and 1:1 at 1 g C kg-1, and subtropical soils at 14 g C kg-1.

  12. Effects of different nitrogen and potassium sources on lettuce (Lactuca sativa L. yield in a sandy soil

    Directory of Open Access Journals (Sweden)

    Mohamed Awaad

    2016-10-01

    Full Text Available Lettuce plants were grown under sandy soil conditions in the private farm of Ahmed Orabi organization, Cairo Governorate Egypt, between 15th November 2009 and 15 January 2010. The experiment was conducted to assess the effects of different nitrogen sources, slow release N (urea-formaldehyde and fast release N (urea containing fertilizers at the rates of 0, 60, 90 and 120 kg N ha-1 applied alone or combined with potassium sulphate, on lettuce plant yield. Results indicated that application of different sources of N alone or combined with potassium sulphate gave the highest fresh dry weight per plant and total lettuce yield per hectare compared with the control. The highest dry weight of lettuce was achieved with the combination of urea and potassium sulphate. Although fertilization made with the combination of urea and potassium sulphate resulted in the highest P, K, Zn and Mn contents in lettuce plant, fertilization with urea alone gave the highest N and Fe contents. The lowest content of nitrate in lettuce plants was recorded with the fertilization of urea only or with the combination of urea and potassium sulphate. Application of the combination of urea and potassium sulphate induced the highest protein content in plants. The results indicated that application of urea-formaldehyde as a slow release nitrogen fertilizer solely or combined with potassium sulphate significantly improved yield and yield quality of lettuce plants grown in sandy soil.

  13. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) has been suggested as a means of making intensification of agriculture sustainable. The purpose of this study was to understand and quantify long-term individual and combined effects of key conservation practices on soil physical properties and topsoil C content. Field...... experiments were conducted in 11- to 12-yr-old experiments on two Danish sandy loams at Foulum and Flakkebjerg. Three crop rotations/residue management treatments were compared and tillage was included as a splitplot factor. The tillage systems were moldboard plowing to a depth of 20 cm (MP), direct drilling....... However, H and D in combination with residue retention gave the best structural stability. Residue retention alleviated negative effects of reduced tillage on PR and improved wet stability in the MP treatment at the Foulum site. Clay and SOC correlated well with soil physical parameters, confirming...

  14. Influence of saturation degree and role of suction in unsaturated soils behaviour: application to liquefaction

    Directory of Open Access Journals (Sweden)

    Vernay Mathilde

    2016-01-01

    Full Text Available The effect of the pore fluid compressibility on liquefaction has been studied by various authors. But few papers have been published about the role of suction in cyclic behavior of unsaturated soils. Most of these works use Skempton coefficient B as a reference in terms of saturation degree to analyze their results. The use of B in experimental conditions is convenient, but is not accurate when studying liquefaction behavior, since effects of suction are neglected. In this paper, the influence of saturation degree on mechanical behavior of a soil under dynamic loads is studied. Cyclic undrained triaxial tests were performed on sand samples, under various levels of saturation. Soil-water characteristic curve was used, in order to study influence of suction. The first results confirm that when the degree of saturation decreases, the resistance increases. Initial positive suction tends to stiffen the soil. It also appears that the presence of air delays the occurrence of liquefaction, but doesn’t prevent it. Indeed, liquefaction is observed, whether the soil is saturated or not.

  15. Estimating the saturated soil hydraulic conductivity by the near steady-state phase of a beerkan infiltration run

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2017-04-01

    soils (sand, S; loamy sand, LS; sandy loam, SAL; loam, L; silt loam, SIL and silty clay loam, SCL) from UNSODA database and different initial water contents. Comparison with other existing procedures were also carried out. The SSBI method allowed accurate estimation of saturated soil hydraulic conductivity of both field and analytically generated data. For analytically generated data, the most accurate predictions were obtained with the method 2 by Wu et al. (1999) for the S and LS soils (prediction errors not exceeding 3.8%) and with the SSBI method for the other four soils (error < 3.7%). Therefore, this last method performed better than the other tested methods in most cases. The analysis of the field data supported the usability of the SSBI method in different environments and conditions to obtain an acceptable prediction of Ks, i.e. similar to the one that can be obtained with the BEST-steady algorithm (Bagarello et al., 2014a). Finally, this investigation yielded encouraging signs on the applicability of the SSBI method for a trustworthy estimation of Ks by the near steady-state phase of a beerkan infiltration run. REFERENCES Bagarello, V., Castellini, M., Di Prima, S., Giordano, G., Iovino, M., 2013. Testing a Simplified Approach to Determine Field Saturated Soil Hydraulic Conductivity. Procedia Environmental Sciences 19, 599-608. doi:10.1016/j.proenv.2013.06.068 Bagarello, V., Di Prima, S., Iovino, M., 2014a. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal 78, 724. doi:10.2136/sssaj2013.06.0231 Bagarello, V., Di Prima, S., Iovino, M., Provenzano, G., 2014b. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrological Processes 28, 1095-1103. doi:10.1002/hyp.9649 Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments

  16. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawmoto, Ken; Møldrup, Per

    2012-01-01

    A series of column experiments was conducted to investigate the transport and deposition of variably charged colloids in saturated porous media. Soil colloids with diameters volcanic-ash soil from Nishi-Tokyo (referred to here as VAS colloids) and a red-yellow soil from...... Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed....... Breakthrough curves and deposition profiles for soil colloids were strong functions of the hydrodynamics, solution pH, and surface charge of the colloids and sand grains. Greater deposition was typical for lower flow rates and lower pH. The deposition of VAS colloids in both sands under low-pH conditions...

  17. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study

    Science.gov (United States)

    Lu, Weiwei; Ding, Weixin; Zhang, Junhua; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-01-01

    This study examined the effect of nitrogen (N) on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant) straw in absence (BC0) and presence (BCN) of N and monitored for dynamics of carbon dioxide (CO2) flux, phospholipid fatty acids (PLFAs) profile and dissolved organic carbon (DOC) content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P biochar carbon (C) were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P biochar (1.75%) and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil. PMID:26192282

  18. Community-specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate forest.

    Science.gov (United States)

    Crumsey, Jasmine M; Le Moine, James M; Capowiez, Yvan; Goodsitt, Mitchell M; Larson, Sandra C; Kling, George W; Nadelhoffer, Knute J

    2013-12-01

    Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.

  19. Effects of soil development time and litter quality on soil carbon sequestration: Assessing soil carbon saturation with a field transplant experiment along a post-mining chronosequence

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan

    2017-01-01

    Roč. 28, č. 2 (2017), s. 664-672 ISSN 1085-3278 Institutional support: RVO:60077344 Keywords : soil organic matter fractions * carbon sequestration * carbon saturation * mining * reclamation Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 9.787, year: 2016

  20. Dynamic Characteristics of Saturated Silty Soil Ground Treated by Stone Column Composite Foundation

    OpenAIRE

    Yongxiang Zhan; Guanlu Jiang; Hailin Yao

    2014-01-01

    A shaking table model test was carried out to develop an understanding of the performance improvement of saturated silty soil ground using stone column composite foundation as reinforcement. It is found that at less than 0.161 g loading acceleration, soil between piles has not yet been liquefied, the response acceleration scarcely enlarges, and the shear displacement almost does not appear in silty soil. At 0.252 g loading acceleration, as a result of liquefaction of soil between piles, the r...

  1. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed...... and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii...

  2. The effect of chloride and sulfate ions on the adsorption of Cd2+ on clay and sandy loam Egyptian soils.

    Science.gov (United States)

    El-Hefnawy, Mohamed E; Selim, Elmetwaly M; Assaad, Faiz F; Ismail, Ali I

    2014-01-01

    Adsorption of Cd(2+) on two types of Egyptian soils: clay (alluvial) and sandy loam (calcareous), was studied. Effect of changing the matrix electrolyte type and concentration was used to mimic the natural soil salts. Kinetics and thermodynamic parameters of the adsorption were calculated at two different electrolyte concentrations: 0.05 N and 0.15 N. The adsorption was described by Langmuir and Freundlich isotherms. Results showed that lower concentration of the NaCl or Na2SO4 electrolytes (0.05 N) had higher adsorption capacity. Also, the maximum adsorption of cadmium when using sulfate counter ion is about two to three times higher than that when using chloride (544 μg/g for alluvial soil and 170 μg/g for calcareous soil when using 0.05 N). Using NaCl as matrix electrolyte, Freundlich isotherms showed bi-linear fits that probably mean a two energy level adsorption. This might be explained by either the competition of Cd(2+) with Na(+) or its complexation with Cl(-).

  3. The Effect of Chloride and Sulfate Ions on the Adsorption of Cd2+ on Clay and Sandy Loam Egyptian Soils

    Directory of Open Access Journals (Sweden)

    Mohamed E. EL-Hefnawy

    2014-01-01

    Full Text Available Adsorption of Cd2+ on two types of Egyptian soils: clay (alluvial and sandy loam (calcareous, was studied. Effect of changing the matrix electrolyte type and concentration was used to mimic the natural soil salts. Kinetics and thermodynamic parameters of the adsorption were calculated at two different electrolyte concentrations: 0.05 N and 0.15 N. The adsorption was described by Langmuir and Freundlich isotherms. Results showed that lower concentration of the NaCl or Na2SO4 electrolytes (0.05 N had higher adsorption capacity. Also, the maximum adsorption of cadmium when using sulfate counter ion is about two to three times higher than that when using chloride (544 μg/g for alluvial soil and 170 μg/g for calcareous soil when using 0.05 N. Using NaCl as matrix electrolyte, Freundlich isotherms showed bi-linear fits that probably mean a two energy level adsorption. This might be explained by either the competition of Cd2+ with Na+ or its complexation with Cl−.

  4. Organic Carbon and Physical Properties in Sandy Soil after Conversion from Degraded Pasture to Eucalyptus in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Karla Nascimento Sena

    Full Text Available ABSTRACT Soil is currently seen as the most relevant carbon sink and the most effective carbon stabilizer. In contrast, agriculture is the second largest C emitter, after burning of fossil fuels. This organic carbon (OC introduced into the soil, mainly via organic matter (OM, is essential for several soil properties and plays an extremely important role in sandy soils. The objective of this study was to describe the changes in the amounts and pools of OC and the influence thereof on some physical soil properties in areas converted from pasture to eucalyptus. The following areas were analyzed: a degraded pasture (PAST, two areas of pasture-eucalyptus conversion after 2 and 15 years (EU02 and EU15, respectively and a preserved Cerrado area (CER in the east of the state of Mato Grosso do Sul. Soil samples were taken from the 0.00-0.05, 0.05-0.10, and 0.10-0.30 m layers. The OC was measured and analyzed, the carbon pool (CP calculated, aggregate stability, bulk density (BD, and macro- and microporosity determined, and total porosity (TP calculated to analyze the influence of land use on soil properties. The experimental design was completely randomized, and four clusters per area were established, with nine subsampling points, for a total of 36 subsamples per area, organized in 20 × 20 m grids, The soil under natural vegetation (preserved Cerrado was used as a control. The change from CER to commercial cultivation accelerates the process of OC loss (reductions of 25-35 % and reductions in soil physical quality. In the PAST area, OC was reduced by 30 % in the 0.00-0.05 m layer. Cumulative OC and CP were highest in the 0.00-0.05 m layer and decreased in the deeper layers in all land use treatments. Organic C in the 0.10-0.30 m layer was not influenced by land use, indicating the possibility of OC persistence in the soil for longer periods. Macroporosity and total porosity may be considered appropriate in CER and EU15, whereas the conditions for plant

  5. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  6. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    Conservation tillage and diversified crop rotations have been suggested as appropriate alternative soil management systems to sustain soil quality. The purpose of this study was to quantify the effect of implementing three crop rotations (R2–R4) on soil structural changes and the “productivity...... function” of soil. R2 is a winter-dominated crop rotation (winter wheat was the main crop) with straw residues incorporated. R3 is a mix of winter and spring crops with straw residues removed. R4 is the same mix of crops as in R3, but with straw residues incorporated. Three tillage systems were used...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...

  7. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil.

    Science.gov (United States)

    Shaheen, Sabry M; Shams, Mohamed S; Khalifa, Mohamed R; El-Dali, Mohamed A; Rinklebe, Jörg

    2017-08-01

    Contamination of long-term sewage effluent irrigated soils by potentially toxic elements (PTEs) is a serious concern due to its high environmental and health risk. Our scientific hypothesis is that soil amendments can cause contradictory effects on the element mobilization and phytoavailability depending on the type of element and amendment. Therefore, we aimed to assess the impact of the application (1%) of several low cost amendments and environmental wastes on the (im)mobilization, availability, and uptake of Al, Cd, Cr, Cu, Fe, Mn, Ni, and Zn by sorghum (Sorghum bicolor) in a long term sewage effluent irrigated sandy soils collected from Egypt. The used materials include activated charcoal (AC), potassium humate (KH), phosphate rock (PR), phosphogypsum (PG), triple superphosphate (TSP), phosphoric acid (PA), sulfur (S), sugar beet factory lime (SBFL), cement bypass kiln dust (CBD), egg shell (ES), bone mill (BM), brick factory residual (BFR), ceramic powder (CP), and drinking water treatment residual (WTR). The mobilization and availability of the elements in the soil were extracted using NH4NO3 and ammonium bicarbonate- diethylene triamine penta acetic acid (AB-DTPA), respectively. The above-ground biomass samples were analyzed for the elements studied. The results confirmed our hypothesis and concluded that although some amendments like S, PA, and TSP can be used for reducing the plant uptake of Al, Cr, and Fe, they might be used with KH for enhancing the phytoextraction of Cd, Cu, Mn, and Ni. Moreover, several wastes such as BFR and WTR might be used for enhancing the phytoextraction of Al, Cd, Cr, Cu, Fe, and Ni and reducing the uptake of Mn from the studied soil. Although SBFL decreased the plant uptake of Al, Fe, Mn, and Zn, it's increased the plant uptake of Cd, Cu, and Ni. Therefore, the amendments which reduce the plant uptake of an element might be suitable candidates for its immobilization, while the amendments which increase the plant uptake of an

  8. Growth, Yield and WUE of Drip and Sprinkler Irrigated Okra Grown On Sandy Soil Under Semi-Arid Conditions in Southeast Ghana

    DEFF Research Database (Denmark)

    Plauborg, Finn

    Vegetable production systems at the Keta sand spit, Southeast Ghana, are typically managed with excessive amounts of irrigation water and fertilizers on sandy soils with low inherent water and nutrient retention capacities. The shallow groundwater which is the primary irrigation water resource is...

  9. Measurement of surface redistribution of rainfall and modelling its effect on water balance calculations for a millet field on sandy soil in Niger.

    NARCIS (Netherlands)

    Gaze, S.R.; Simmonds, L.P.; Brouwer, J.; Bouma, J.

    1997-01-01

    During rain there can be substantial redistribution of water at the surface of sandy soils in the Sudano-Sahelian zone, because of localised runoff and runon. This results in variable infiltration over a field. Measurements of spatial variability in infiltration and crop growth were made in a millet

  10. Dynamics of carbon pools in post-agrogenic sandy soils of southern taiga of Russia

    National Research Council Canada - National Science Library

    Kalinina, Olga; Goryachkin, Sergey V; Karavaeva, Nina A; Lyuri, Dmitriy I; Giani, Luise

    2010-01-01

    ...) supply and mineralization. A soil chronosequence study, covering the ecosystems of 3, 20, 55, 100, and 170 years of self-restoration in southern taiga zone, shows that soil organic content of mineral horizons remains...

  11. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB, Open ridge (OR, Tiedridge (TR, FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat. After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates in the 0-0.15 m layer were significantly (P< 0.05 higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots

  12. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  13. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    Jefferson Davis Highway , Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no...ecotoxicological benchmarks for developing the ecological soil screening levels (Eco-SSLs) for risk assessments of contaminated soils. For the present study, we...invertebrate-based Eco-SSL for Se. 15. SUBJECT TERMS Ecological soil screening level (Eco-SSL) Selenium Natural soil Enchytraeus crypticus Selenate

  14. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  15. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Andersen, Mathias Neumann

    2015-01-01

    Aim To study maize (Zea mays L.) growth and soil nitrogen (N) dynamics in monocrop and intercropped systems in a North European climate and soil conditions with the support of a simulation model. Methods Field data for 3 years at two sites/soil types in Denmark and three main factors: (i) cropping...

  16. Flow Properties in Saturated Soils from Differing Behaviour of Dispersive Seismic Velocity and Attenuation

    NARCIS (Netherlands)

    Ghose, R.; Zhubayev, A.

    2012-01-01

    A careful look into the pertinent models of poroelasticity reveals that in water-saturated sediments or soils, the seismic (P and S wave) velocity dispersion and attenuation in the low field-seismic frequency band (20-200 Hz) have a contrasting behaviour in the porosity-permeability domain.Taking

  17. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  18. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  19. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Science.gov (United States)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  20. Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity

    Science.gov (United States)

    Saturated hydraulic conductivity Ksat is a fundamental characteristic in modeling flow and contaminant transport in soils and sediments. Therefore, many models have been developed to estimate Ksat from easily measureable parameters, such as textural properties, bulk density, etc. However, Ksat is no...

  1. Impacts of grass removal on wetting and actual water repellency in a sandy soil

    Directory of Open Access Journals (Sweden)

    Oostindie Klaas

    2017-03-01

    Full Text Available Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties. The soil of the plots was sampled six times in vertical transects to a depth of 33 cm between 23 May and 7 October 2002. On each sampling date the soil water contents were measured and the persistence of actual water repellency was determined of field-moist samples. Considerably higher soil water contents were found in the bare versus the grass-covered plots. These alterations are caused by differences between evaporation and transpiration rates across the plots. Noteworthy are the often excessive differences in soil water content at depths of 10 to 30 cm between the bare and grass-covered plots. These differences are a consequence of water uptake by the roots in the grass-covered plots. The water storage in the upper 19 cm of the bare soil was at least two times greater than in the grass-covered soil during dry periods. A major part of the soil profile in the grass-covered plots exhibited extreme water repellency to a depth of 19 cm on all sampling dates, while the soil profile of the bare plots was completely wettable on eight of the twelve sampling dates. Significant differences in persistence of actual water repellency were found between the grass-covered and bare plots.

  2. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  3. Estimación de la conductividad hidráulica saturada in situ en un suelo tratado con vinaza Field satured hydraulic conductivity estimation on vinasse trated soil

    Directory of Open Access Journals (Sweden)

    Ludwig M Rojas D

    2008-06-01

    Full Text Available Se estimaron los cambios en la conductividad hidráulica saturada mediante las técnicas de caída de carga" y "fuente localizada de agua en un suelo Ustipsamment típico arenoso isohipertérmico con dosis diluidas de vinazas. La investigación se realizó en el centro experimental de la Universidad Nacional de Colombia Sede Palmira (3° 25'39.81" N y 76° 25'45.70" o, 953 m.s.n.m, 24 °C y 60% HR, 1.020 mm. Los dos métodos no difirieron de forma significativa (pChanges of the satured hydraulic conductivity in a soil was estimated using the “falling head” and “point source” methods. The soil treated with vinasse was an Ustipsamment Typic Sandy Isohipertermic located at the experimental center of the National University of Colombia at Palmira (3° 25' 39.81" N, 76° 25' 45.70" W; 953 m.a.s.l., 24 °C, 60% RH. and 1020 mm.. The field methods used did not show statistical differences for the estimation of the satured hydraulic conductivity (p<0.05. However, a decreasing exponential relationship between hydraulic conductivity and vinasse concentration was found. The hydraulic conductivity was reduced about of 50% from the initial value to 2° Brix in a sandy soil, 5.3° brix to a sandy loam soil and 6.1° Brix to a clay loam soil.

  4. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  5. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...... of plant biomass under both water regimes, most likely due to reduced mechanical impedance to root growth. No positive effects on plant growth were achieved by addition of WGB. Our results suggest that SGB has a great global potential to increase crop productivity on coarser soil types changing...

  6. Enhancing crude oil degradation in a sandy soil: Effects of addition ...

    African Journals Online (AJOL)

    Natural restoration of crude oil polluted soils takes a long time, hence various soil treatments have been used to hasten the process. This study investigated the effects of the addition of poultry manure alone and in combination with surfactant (Goldcrew or Corexit) and/or alternate carbon substrate (glucose or starch) on ...

  7. Transition from Brittle Failure to Ductile Flow in a Sandy Soil | Gitau ...

    African Journals Online (AJOL)

    Mechanical properties and deviatoric stress-strain relationships of the soil were also established. The specimens were prepared under laboratory conditions where the inter-particle cementation bonds were allowed to form to their natural state. An unsaturated soil mechanics approach was used to define critical state ...

  8. Assessment of structural stability of a degraded sandy clay loam soil ...

    African Journals Online (AJOL)

    Soil aggregates under grass treatment had the lowest range of Potential Structural Deformation Index (PSDI) values (14.63 - 20.13 %) compared to aggregates under legume treatment (24.07 - 27.17 %).The PSDI values indicated that soils under vegetative cover were on the average twice more stable to rain drop impact ...

  9. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...

  10. Evaluation of soil saturation, soil chemistry, and early spring soil and air temperatures as risk factors in yellow-cedar decline.

    Science.gov (United States)

    D.V. D' Amore; P.E. Hennon

    2006-01-01

    Yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst.) is a valuable tree species that is experiencing a widespread decline and mortality in southeast Alaska. This study evaluated the relative importance of several potential risk factors associated with yellow-cedar decline: soil saturation, soil aluminum (Al) toxicity or calcium (Ca) deficiency...

  11. Increase in removal of polycyclic aromatic hydrocarbons during bioremediation of crude oil-contaminated sandy soil.

    Science.gov (United States)

    Oliveira, Fernando J S; de França, Francisca P

    2005-01-01

    A 23 full factorial experimental design was adopted to estimate the effects of three variables on the biodegradation of oil during soil bioremediation: bioaugmentation seeding a mixed culture, addition of fertilizer or mineral media, and correction of initial pH of the soil to 7.0. The tests were carried out in polyvinyl chloride reactors with 5.0 kg of crude oil-contaminated soil at 14 g/kg. After screening the variables, soil bioremediation tests were conduced with varied C:N ratios, yielding an increase in biodegradation of the oil heavy fraction from 24 to 65%, consumption of total n-paraffins, and a remarkable decrease in the concentration of residual polycyclic aromatic hydrocarbons of the soil.

  12. Leaching of Metribuzin and its Metabolites from a Sandy Soil: Comparison between Field, Laboratory, and Modelling Data

    Science.gov (United States)

    Ullum, M.; Henriksen, T.; Kjaer, J.; Plauborg, F.; Olsen, P.

    2003-04-01

    On a sandy field site in Denmark leaching of the two metabolites metribuzin-diketo (MD) and metribuzin-desamino-diketo (MDD) was found as a result of a double application of metribuzin according to the current Danish regulations. The leaching exceeding the maximum allowable concentration of 0.1 µg/l considerably (on a yearly average) was found as a result of the Danish Pesticide Leaching Assessment Programme (PLAP). PLAP comprises an intensive monitoring of pesticide and bromide leaching at six agricultural field sites in Denmark representing a wide range of Danish soil and climate conditions. The programme is developed as an early warning system for the Danish EPA and provides unique data sets allowing for calibration and validation. The leaching behaviour of metribuzin, MD, and MDD was evaluated by comparing field, laboratory, and modelling data. The MACRO model (verson 4.2) was applied to to the test site covering the soil profile to a depth of 5 m b.g.s., always including the groundwater table. The model was parameterized using mainly measured data supplied by literature/default values. Sorption and degradation parameters of both metribuzin and its metabolites were determined in the laboratory using soils from both top- and subsoil. Model performance with respect to solute and pesticide leaching were evaluated by comparing simulated and measured data. The latter comprising, groundwater table, soil water content measured with TDR probes at different depth, and bromide and pesticides concentration measured in grounps of suction cups situated 1 and 2 m b.g.s. Initial modelling result will be presented along with identified model limitations.

  13. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  14. Strengthening and Stabilization of the Weak Water Saturated Soils Using Stone Columns

    Directory of Open Access Journals (Sweden)

    Sinyakov Leonid

    2016-01-01

    Full Text Available The article considers innovative modern materials and structures for strengthening of weak soils. In this paper describes a method of strengthening of weak saturated soils using stone columns. The method of calculating the physical-mechanical characteristics of reinforced soil mass is presented. Two approaches to determining the stress-strain state and timeframe of consolidation of strengthened soil foundation using the finite element technique in two-dimensional formulation are proposed. The first one approach it is a modeling of reinforced soil mass, where each pile is represented as a separate 2D stripe. The second approach is to the simulation of the strengthened mass the equivalent composite block with improved physical-mechanical characteristics. The use of the equivalent composite block can significantly reduce the time spent on the preparation of a design scheme. The results of calculations were compared. They show the allowable divergence of results of calculation by two methods were presented, and the efficiency of the strengthening of weak water saturated soils by stone column is proved.

  15. A Study on the Coupled Model of Hydrothermal-Salt for Saturated Freezing Salinized Soil

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available Water and heat interact in the process of freezing for the saturated soil. And for the salinized soil, water, heat, and salt interact in the freezing process, because salinized soil has soluble salt. In this paper, a one-dimensional mathematical coupled model of hydraulic-thermal-salt is established. In the model, Darcy’s law, law of conservation of energy, and law of conservation of mass are applied to derive the equations. Consider that a saturated salinized soil column is subjected to the condition of freezing to model the moisture migration and salt transport. Both experiment and numerical simulation under the same condition are developed in the soil column. Then the moisture content and salt content between simulation and experiment are compared. The result indicates that simulation matches well with the experiment data, and after 96 hours, the temperature distribution becomes stable, freezing front reaches a stable position, and a lot of unfrozen water has time to migrate. Besides, the excess salt precipitates when the concentration is greater than the solubility, and the precipitation is distributed discontinuously. These results can provide reference for engineering geology and environmental engineering in cold region and saline soil area.

  16. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Ome, A.M.

    2016-11-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing). Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials. (Author)

  17. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Directory of Open Access Journals (Sweden)

    Mohammed N. A. Hasaneen

    2016-03-01

    Full Text Available Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing. Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials.

  18. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions

    Directory of Open Access Journals (Sweden)

    Farrokhian Firouzi Ahmad

    2015-06-01

    Full Text Available Study of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.

  19. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types

    Science.gov (United States)

    Qiong Zhao; Dehui Zeng; Zhiping Fan; Zhanyuan Yu; Yalin Hu; Jianwei Zhang

    2009-01-01

    We investigated the seasonal patterns of soil phosphorus (P) fractions under five vegetation types – Ulmus macrocarpa savanna, grassland, Pinus sylvestris var. mongolica plantation, Pinus tabulaeformis plantation, and Populus simonii plantation ...

  20. Assessing soil water repellency of a sandy field with visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Masís Meléndez, Federico; de Jonge, Lis Wollesen

    2016-01-01

    Soil water repellency (WR) is a widespread phenomenon caused by aggregated organic matter (OM) and layers of hydrophobic organic substances coating the surface of soil particles. These substances have a very low surface free energy, reducing a soil's water attraction. There is focus on WR due...... to its effects on germination, root growth, liquid-vapour dynamics, surface erosion and leaching of chemicals through fingered flow paths. However, common techniques for measuring WR are time-consuming and expensive. Meanwhile, it is well established that visible near infrared (vis-NIR) spectroscopy...... models (r2 = 0.85) were generated for WR. The majority of bands important in the vis-NIR region of WR models were related to different components of OM indicating that, across the investigated field, WR was related to specific hydrophobic components of soil OM rather than to the total amount of carbon...

  1. Soil moisture spatio-temporal behavior of Pinus pinaster stands on sandy flatlands of central Spain.

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Sanz, V.; Garcia-Vinas, J. I.

    2011-07-01

    Pinus pinaster stands in the center of the Iberian Peninsula frequently grow in a unique hydrological system characterized by a variable groundwater table near the soil surface and highly permeable soils (arenosols). Over the last few decades, this superficial aquifer has been overused as a water resource, especially for irrigated crops. Overuse has reached a critical level and has caused various environmental impacts and a water sustainability crisis wherein rainfall variability does not allow for a sufficient level of aquifer recharge by natural means. Within this changing scenario, soil water significantly affects the spatio-temporal ecological response, necessitating more extensive characterization of the complex soil-tree water relationship. The primary goal of the present work was to evaluate the influence of root zone soil moisture on the observed spatial response of Pinus pinaster stands. Volumetric soil moisture content was measured at eleven forest sites, using time-domain reflectometry (TDR), over a two-year observation period. The results demonstrate that the combined effect of groundwater table proximity and dune morphology associated with this area are the main factors driving very different water availability conditions among the monitored hydrological response units, which modulate maritime pine installation and development. Topographically lower areas are more heterogeneous in terms of soil moisture behavior. In these areas, the conifer forests that are connected to the water table may be the most sensitive to land use changes within current environmental change scenarios. Consequently, in these pine ecosystems, the combined influences of geomorphology and water table proximity on variations in root zone soil moisture are essential and must be considered to develop adequate adaptive management models. (Author) 25 refs.

  2. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  3. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    Science.gov (United States)

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ18O and δ2H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ2H and δ18O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ2H and δ18O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  4. Effects of charcoal-enriched goat manure on soil fertility parameters and growth of pearl millet (Pennisetum glaucum L. in a sandy soil from northern Oman

    Directory of Open Access Journals (Sweden)

    Melanie Willich

    2016-12-01

    Full Text Available The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i charcoal feeding on manure composition, and (ii charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.. To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration; second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001 from 45.2% (0% AC to 60.2% (9% AC with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001 from 0% AC (N: 2.5%, P: 1.5%, K: 0.8% to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%. Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.

  5. Experimental and modelling investigations of tracer transport in variably saturated agricultural soil of Thailand: Column study

    Directory of Open Access Journals (Sweden)

    Tulaya Masipan

    2016-03-01

    Full Text Available Tracer (Bromide movement through the unsaturated agricultural soil was investigated in soil columns. Two tracer column experiments, with a diameter of 7 cm and a depth of 25 cm, were vertically homogeneous packed with sandy loam and then carried out to investigate bromide (Br− transport under different water contents (at steady flow condition. One soil column (Column 1 represents the unsaturated agricultural soil in dry season (with water content ranging from 0.23 to 0.26 and the other (Column 2 represents the soil in wet season (water content from 0.24 to 0.35. Bromide samples were periodically collected by vacuum tubes inserted at 6.25 cm equally spaced intervals (e.g., 6.25, 12.5, 18.75 and 25 cm along the length of the column and the effluent collected at the end of the column. The observed breakthrough curves (BTCs of bromide in both columns represented a relative smooth and sigmodal curves at different distances (sampling ports. Dispersivity (α, cm for sandy loam at different locations was numerically estimated by curve fitting the experimental data with HYDRUS-1D. The α can be well described by the convection–dispersion equation and these values derived from Column 1 (ranging from 0.37 to 0.98 cm are more than those from Column 2 (0.25–0.59. Moreover, the α in both columns increases with the travel distance due to the scale-dependent effect. Furthermore, the α values were plotted on a log–log scale against travel distances and they yield empirical power law relationships with an excellent correlation (α = 0.102 (L0.697, R2 = 0.999 and α = 0.086 (L0.579, R2 = 0.963 for Column 1 and 2, respectively.

  6. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    Science.gov (United States)

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  7. Agronomic assessment of pyrolysed food waste digestate for sandy soil management.

    Science.gov (United States)

    Opatokun, Suraj Adebayo; Yousef, Lina F; Strezov, Vladimir

    2017-02-01

    The digestate (DFW) of an industrial food waste treatment plant was pyrolysed for production of biochar for its direct application as bio-fertilizer or soil enhancer. Nutrient dynamics and agronomic viability of the pyrolysed food waste digestate (PyD) produced at different temperatures were evaluated using germination index (GI), water retention/availability and mineral sorption as indicators when applied on arid soil. The pyrolysis was found to enrich P, K and other micronutrients in the biochar at an average enrichment factor of 0.87. All PyD produced at different temperatures indicated significantly low phytotoxicity with GI range of 106-168% and an average water retention capacity of 40.2%. Differential thermogravimetric (DTG) thermographs delineated the stability of the food waste digestate pyrolysed at 500 °C (PyD500) against the degradation of the digestate food waste despite the latter poor nutrient sorption potential. Plant available water in soil is 40% when treated with 100 g of digestate per kg soil, whereas PyD500 treated soil indicated minimal effect on plant available water, even with high application rates. However, the positive effects of PyD on GI and the observed enrichment in plant macro and micronutrients suggest potential agronomic benefits for PyD use, in addition to the benefits from energy production from DFW during the pyrolysis process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Emissions of nitrous oxide and ammonia from a sandy soil following surface application and incorporation of cauliflower leaf residues.

    Science.gov (United States)

    Nett, L; Fuß, R; Flessa, H; Fink, M

    2015-11-01

    Vegetable production systems are often characterized by excessive nitrogen (N) fertilization and the incorporation of large amounts of post-harvest crop residues. This makes them particularly prone to ammonia (NH3) and nitrous oxide (N2O) emissions. Yet, urgently needed management strategies that can reduce these harmful emissions are missing, because underlying processes are not fully understood. The present study therefore focuses on the effects of residue placement on NH3 and N2O emissions. For this, cauliflower leaf residues (286 kg N/ha) were either applied as surface mulch (mulch) or mixed with the topsoil (mix) and in situ NH3 and N2O emissions were investigated. The experiment took place on a sandy soil in Northeastern Germany during summer 2012. Residue application created a high peak in N2O emissions during the first 2 weeks, irrespective of residue placement. There was no significant difference in the emission sums over the experimental period (65 days) between the mix (5·8 ± 0·68 kg N2O-N/ha) and the mulch (9·7 ± 1·53 kg N2O-N/ha) treatment. This was also the case for NH3 emissions, which exhibited a lower initial peak followed by a prolonged decline. Measured emission sums were 4·1 ± 0·33 (mix) and 5·1 ± 0·73 (mulch) kg NH3-N/ha. It was concluded that substantial NH3 and N2O emissions can occur after high input of available organic carbon and N even in a coarse-textured soil with low water-holding capacity. Other than expected, surface-application does not enhance NH3 emissions at the expense of N2O emissions compared with residue mixing into the soil, at least under the conditions of the present study.

  9. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  10. Context dependency and saturating effects of loss of rare soil microbes on plant productivity

    Directory of Open Access Journals (Sweden)

    Gera eHol

    2015-06-01

    Full Text Available Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing towards a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.

  11. Context dependency and saturating effects of loss of rare soil microbes on plant productivity.

    Science.gov (United States)

    Hol, W H Gera; de Boer, Wietse; de Hollander, Mattias; Kuramae, Eiko E; Meisner, Annelein; van der Putten, Wim H

    2015-01-01

    Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition, and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing toward a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.

  12. Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia

    Science.gov (United States)

    Intensive tillage in many less-developed countries, including Cambodia have caused significant decline in agriculture’s natural resources and sustainability. With limited available data, long-term conventional tillage system (CT) and conservation agriculture system (CA) can affect changes in soil pr...

  13. Axial compressive bearing capacity of piles in oil-contaminated sandy soil using FCV

    NARCIS (Netherlands)

    Mohammadi, Amirhossein; Ebadi, Taghi; Eslami, Abolfazl; Zee, van der S.E.A.T.M.

    2018-01-01

    Oil and its derivatives contaminate many soils and not only affect their chemical and biological properties but also their geotechnical properties. As oil contamination may deteriorate the functioning of piles, this paper addresses the effects of oil contamination on soil–pile interactions. Axial

  14. The influence of clay particles on the hydraulic conductivity of sandy soils

    NARCIS (Netherlands)

    Fahmy, M.I.

    1961-01-01

    The relation between hydraulic conductivity and size of the sand particles and clay content was investigated in artificial mixtures of sand and clay and in natural soils, in four different ways in the laboratory and field.

    In the artificial mixtures coarse aggregates of illitic clay hardly

  15. Aeolian sediment mass fluxes on a sandy soil in Central Patagonia

    NARCIS (Netherlands)

    Sterk, G.; Parigiani, J.; Cittadini, E.; Peters, P.; Scholberg, J.M.S.; Peri, P.

    2012-01-01

    The climate of Patagonia is semi-arid and characterised by frequent strong winds. Wind erosion is potentially a serious soil degradation process that impacts long-term sustainability of local agricultural systems, but the conditions and the rates of wind erosion in this region have not been studied

  16. Aeolian sediment mass fluxes on a sandy soil in Central Patagonia

    NARCIS (Netherlands)

    Sterk, G.; Parigiani, J.; Cittadini, E.; Peters, P.; Scholberg, J.; Peri, P.

    2012-01-01

    The climate of Patagonia is semi-arid and characterised by frequent strong winds. Wind erosion is potentially a serious soil degradation process that impacts long-term sustainability of local agricultural systems, but the conditions and the rates of wind erosion in this region have not been

  17. Towards improved nitrogen management in silage maize production on sandy soils

    NARCIS (Netherlands)

    Schroeder, J.

    1998-01-01

    Maize has become a highly appreciated crop in Dutch dairy farming during the last 25 years. The current cropping technique, however, is associated with a low recovery of soil mineral nitrogen (N) and serious losses of N to the environment. This gave rise to the research described in this

  18. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  19. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  20. Clinoptilolite zeolite influence on nitrogen in a manure-amended sandy agricultural soil

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4-...

  1. Cleansing of sandy soils using attrition; Depollution de sols sablonneux par attrition

    Energy Technology Data Exchange (ETDEWEB)

    Schriker, H. Tiefel [A.K.W. Apparate und Verfahren, Hirschau (Germany); Neesse, T. [Universite d' Erlangen-Nuremberg (Germany)

    2001-03-01

    The attrition process used in soil cleansing has been improved thanks to a combination with classification, dosimetry and integrated measurement processes in order to ensure a constant concentration of solids. Tests have been successfully performed on quartz sands contaminated with mineral oil. Abstract only. (J.S.)

  2. A Comparative Study of the Soil Fauna in forests and cultivated land on sandy soils in Suriname

    NARCIS (Netherlands)

    Drift, van der J.

    1963-01-01

    1. In the coastal area of Suriname the soil and surface fauna were studied in various types of agricultural land, and compared with the fauna in the adjacent forests. 2. In primeval forest the soil macroarthropods are less numerous than in secondary forest (Formicidae excluded). They range generally

  3. Factors Influencing Spatial Variability in Nitrogen Processing in Nitrogen-Saturated Soils

    Directory of Open Access Journals (Sweden)

    Frank S. Gilliam

    2001-01-01

    Full Text Available Nitrogen (N saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF, West Virginia exhibit symptoms of N saturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturated soils from FEF, and how these effects varied between high N-processing vs. low N-processing soils collected from two watersheds, WS3 (fertilized with [NH4]2SO4 and WS4 (untreated control. Samples of forest floor material (O1 horizon and mineral soil (to a 5-cm depth were taken from three subplots within each of four plots that represented the extremes of highest and lowest rates of net N mineralization and nitrification (hereafter, high N and low N, respectively of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C, lignin, and N. Subsamples of mineral soil were extracted immediately with 1 N KCl and analyzed for NH4+ and NO3- to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence of nitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and 30°C, followed by 1 NKCl extraction and analysis for NH4+ and NO3-. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubations at all temperatures supported earlier observations based on field incubations. At 30°C, rates from N-treated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of

  4. Contribution of Rhizobium–Mycorrhiza–Merapi-indigenous Rhizobacteria Association on Growth and Yield of Three Cultivars Soybean Cultivated on Coastal Sandy Soil

    OpenAIRE

    Linda Kusumastuti; Agung Astuti; Sarjiyah Sarjiyah

    2017-01-01

    A study was conducted to examine the effect of inoculum association between Rhizobium sp., mycorrhizae and Merapi-indigenous Rhizobacteria on the growth and yield of 3 soybean cultivars, and to determine the best inoculum and cultivars for soybean cultivation on coastal sandy soil. The study was conducted in the Agro-biotechnology and Research Laboratory and experimental station of Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta during the period of September 2015 to June 2016. Ex...

  5. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    Nitrogen (N) cycling within agriculture constitutes a source of direct and indirect emissions of the potent greenhouse gas nitrous oxide (N2O). We analysed relationships between N2O emissions and C and N balances of four arable cropping systems under conventional or organic management within a long......-term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green...... manure). Crops in both organic and conventional systems received N at rates below the optimum for crop production. Soil N2O emissions were monitored in 2008–2009 in six selected crops which could be combined with data from other monitoring programs to calculate N2O emission factors for each of the 16...

  6. Contribution of Rhizobium–Mycorrhiza–Merapi-indigenous Rhizobacteria Association on Growth and Yield of Three Cultivars Soybean Cultivated on Coastal Sandy Soil

    Directory of Open Access Journals (Sweden)

    Linda Kusumastuti

    2017-02-01

    Full Text Available A study was conducted to examine the effect of inoculum association between Rhizobium sp., mycorrhizae and Merapi-indigenous Rhizobacteria on the growth and yield of 3 soybean cultivars, and to determine the best inoculum and cultivars for soybean cultivation on coastal sandy soil. The study was conducted in the Agro-biotechnology and Research Laboratory and experimental station of Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta during the period of September 2015 to June 2016. Experiments were conducted by using coastal sandy soil as planting medium in polybags by employing 4 x 3 factorial experiments, arranged in completely randomised design, and placed under the field condition. The first factor used was inoculation treatment consisted of 4 combination of inoculums: (1 Rhizobium sp. – mycorrhizae, (2 Rhizobium sp. – Merapi-indigenous Rhizobacteria, (3 Rhizobium sp. – mycorrhizae – Merapi-indigenous Rhizobacteria, and (4 without inoculation. The second factor was soybean cultivars consisted of 3 varieties: (1 Grobogan, (2 Detam-1, and (3 Petek. Observation was carried out on nodulation, mycorrhizal effect, Rhizobacterial population dynamics, plant growth and yield. The results showed that Rhizobium sp.–mycorrhizae inoculated on Petek increased root growth, leaf area and yield (5,97 tonnes/ha. Rhizobium sp.–mycorrhizae inoculation only increased diameter of nodules. It was also observed that the best soybean cultivar for coastal sandy soil was Petek.

  7. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  8. Maxwell's Law Based Models for Liquid and Gas Phase Diffusivities in Variably-Saturated Soil

    DEFF Research Database (Denmark)

    Mamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2012-01-01

    The gas diffusion coefficient (D-s,D-g) and solute diffusion coefficient (D-s,D-l) and their dependencies on fluid content (kappa) (equal to soil-air content theta for D-s,D-g and soil-water content epsilon for D-s,D-l) are controlling factors for gas and solute transport in variably saturated...... soils. In this study, we propose unified, predictive models for D-s,D-g(epsilon) and D-s,D-l(theta) based on modifying and extending the classical Maxwell model at fluid saturation with a fluid-induced reduction term including a percolation threshold (epsilon(th) for D-s,D-g and theta(th) for D......-s,D-l). Different percolation threshold terms adopted from recent studies for gas (D-s,D-g) and solute (D-s,D-l) diffusion were applied. For gas diffusion, epsilon(th) was a function of bulk density (total porosity), while for solute diffusion theta(th) was best described by volumetric content of finer soil...

  9. A thermodynamic treatment of partially saturated soils revealing the structure of effective stress

    Science.gov (United States)

    Jiang, Yimin; Einav, Itai; Liu, Mario

    2017-03-01

    A rigorous thermodynamic treatment of partially saturated soils is developed using a minimal number of assumptions. The derivation is carried out in a way that does not require to explicitly track the complex shapes of interfaces between the solid, fluid and gas domains. Instead, suction is the property being recovered explicitly through the minimisation of energy around an ideal 'suctionless limit', while considering the different compressibilities of the three domains. In interpreting experimental data the derivation ensures the thermodynamic equilibrium between the chemical potentials of the soil and measurement cells, while carefully distinguishing intrinsic from measured pressures and suctions. A most general expression for the effective stress of partially saturated soils is then derived that is strictly linked to the soil-water retention curve (SWRC). The structure of the effective stress broadly depends on the three thermodynamic densities characterising the solid, liquid and gas domains. Special cases of SWRC are explored, which reveals conditions for which the structure of the effective stress may agree with previously proposed empirical relationships.

  10. NUTRIENT RETURN THROUGH LITTERFALL IN A Eucalyptus dunnii Maiden STAND IN SANDY SOIL

    Directory of Open Access Journals (Sweden)

    Aline Aparecida Ludvichak

    Full Text Available ABSTRACT In a forest stand, litterfall is primarily responsible for the retention and return of nutrients to the soil. The objective of this study was to evaluate the return of nutrients through litterfall in a stand of Eucalyptus dunnii in a Pampa biome. For quantification of litterfall, four 420-m2 installments were marked; within each one, four 0.50-m2 collection plots were distributed. For the collection of thick branches, four 7.00-m2 sub-plots were staked out. The collected litterfall was separated into leaf, twig, thick branch, and miscellany fractions for subsequent chemical analysis. The total litterfall measured was 6.99 Mg ha-1 yr-1, and comprised 61.57% leaves, 17.34% twigs, 13.83% thick branches, and 7.26% miscellany. The total amount of macronutrients in the litterfall was 160.22 kg ha-1 yr-1, and the macronutrient transfer order was the same for the leaf, twig, and thick branch fractions (Ca > N > K > Mg > S > P. The total quantity of micronutrients was 7.55 kg ha-1 yr-1, and the transfer order was Mn > Fe > B > Zn > Cu. Maintaining litterfall on the site, especially in degraded or low fertility soils like in the Pampa biome, may contribute to possible improvements in soil characteristics.

  11. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    treatment (labelled M8-1), the soil was loaded only in the first year. A tricycle-like machine with a single pass of wide tyres each carrying 12 Mg (treatment S12) was included at one site. Traffic treatments were applied in a randomized block design with four replicates and with treatments repeated in four......Compaction of the subsoil due to heavy traffic in moist and wet soil is widespread in modern agriculture. The objective of this study was to quantify the effects from realistic field traffic on soil penetration resistance and barley crop yield for three Luvisols developed from glacial till...

  12. Using random forests to explore the effects of site attributes and soil properties on near-saturated and saturated hydraulic conductivity

    Science.gov (United States)

    Jorda, Helena; Koestel, John; Jarvis, Nicholas

    2014-05-01

    Knowledge of the near-saturated and saturated hydraulic conductivity of soil is fundamental for understanding important processes like groundwater contamination risks or runoff and soil erosion. Hydraulic conductivities are however difficult and time-consuming to determine by direct measurements, especially at the field scale or larger. So far, pedotransfer functions do not offer an especially reliable alternative since published approaches exhibit poor prediction performances. In our study we aimed at building pedotransfer functions by growing random forests (a statistical learning approach) on 486 datasets from the meta-database on tension-disk infiltrometer measurements collected from peer-reviewed literature and recently presented by Jarvis et al. (2013, Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17(12), 5185-5195). When some data from a specific source publication were allowed to enter the training set whereas others were used for validation, the results of a 10-fold cross-validation showed reasonable coefficients of determination of 0.53 for hydraulic conductivity at 10 cm tension, K10, and 0.41 for saturated conductivity, Ks. The estimated average annual temperature and precipitation at the site were the most important predictors for K10, while bulk density and estimated average annual temperature were most important for Ks prediction. The soil organic carbon content and the diameter of the disk infiltrometer were also important for the prediction of both K10 and Ks. However, coefficients of determination were around zero when all datasets of a specific source publication were excluded from the training set and exclusively used for validation. This may indicate experimenter bias, or that better predictors have to be found or that a larger dataset has to be used to infer meaningful pedotransfer functions for saturated and near-saturated hydraulic conductivities. More research is in progress

  13. Prediction of the soil water retention curve for structured soil from saturation to oven-dryness

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Tuller, Markus

    2017-01-01

    The soil water retention curve (SWRC) is the most fundamental soil hydraulic function required for modelling soil–plant–atmospheric water flow and transport processes. The SWRC is intimately linked to the distribution of the size of pores, the composition of the solid phase and the soil specific....... In this research we evaluated a new two-stage approach developed recently to predict the SWRC based onmeasurements for disturbed repacked soil samples. Our study involved undisturbed structured soil and took into account the effects of bulk density, organic matter content and particle-size distribution....... Independently measured SWRCs for 171 undisturbed soil samples with organic matter contents that ranged from 3 to 14% were used for model validation. The results indicate that consideration of the silt and organic matter fractions, in addition to the clay fraction, improved predictions for the dry-end SWRC...

  14. Nitrogen fertilization in the growth phase of 'Chardonnay' and 'Pinot Noir' vines and nitrogen forms in sandy soil of the Pampa Biome

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    Full Text Available ABSTRACT Information on nitrogen fertilization in growing vines is still a very limited subject, especially for crops on sandy soils in the Pampa Biome in Rio Grande do Sul, where viticulture has expanded considerably in the last decade. This study aimed to assess the impact of N doses on growth of young plants of Chardonnay and Pinot Noir vines and N forms present in sandy soil in the Pampa Biome. The experiment was conducted from October 2011 to December 2012 in a vineyard in Santana do Livramento, in Southern Rio Grande do Sul State, in soil with 82 g kg-1 clay in the 0-20 cm layer. Vines of Chardonnay and Pinot Noir varieties were subjected to applications of 0, 10, 20, 40, 60, and 80 kg N ha-1 year-1. Total N in leaves, SPAD readings, stem diameter, plant height, and dry matter of the pruned material were evaluated in two growth cycles and three times. Soil samples were collected at 0-10 and 10-20 cm depths at four crop growth stages, in which N-NH4 +, N-NO3 -, and total N were analyzed and the mineral N was calculated. The N levels applied to young vines, although they did not provide relevant changes in the N-NH4 +, N-NO3 -, and mineral N contents in the soil, were able to increase the N content in the leaves, increasing plant vigor. because the reason is that there was an increase in stem diameter, plant height, and dry matter of pruned material in most evaluation periods. These parameters suggest better growth patterns and uniformity of young grapevines with possible positive effects in anticipation of production, demonstrating the importance of nitrogen fertilization strategies to the growing vines in the sandy soil conditions of the Pampa Biome.

  15. Sustainable long-term intensive application of manure to sandy soils without phosphorus leaching

    DEFF Research Database (Denmark)

    Asomaning, Samuel K.; Abekoe, Mark K.; Dowuona, G.N.N.

    2015-01-01

    manure over 70 years and on uncultivated plots (controls). The samples were analyzed for texture, pH, total C and P and poorly ordered Al and Fe oxides as well as different P forms as assessed by the Hedley fractionation method. The results showed a fourfold P increase in the top 40 cm of the cultivated...... and uncultivated sites. P fractionation showed that the cultivated top soils were dominated by sparingly soluble Ca–P compounds that accounted for about 70% of the P gain. Thus, the results suggest that intensive crop production under tropical semi-arid conditions may be environmentally sustainable when based...

  16. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  17. Dynamic Characteristics of Saturated Silty Soil Ground Treated by Stone Column Composite Foundation

    Directory of Open Access Journals (Sweden)

    Yongxiang Zhan

    2014-01-01

    Full Text Available A shaking table model test was carried out to develop an understanding of the performance improvement of saturated silty soil ground using stone column composite foundation as reinforcement. It is found that at less than 0.161 g loading acceleration, soil between piles has not yet been liquefied, the response acceleration scarcely enlarges, and the shear displacement almost does not appear in silty soil. At 0.252 g loading acceleration, as a result of liquefaction of soil between piles, the response acceleration increases rapidly and reaches its peak, and the shear displacement of silty soil increases significantly. At 0.325 g loading acceleration, the integral rigidity of foundation decreases greatly, which reduces its capability of vibration transmission and result in the response acceleration amplification coefficient is less than that at the former loading acceleration, but the shear displacement of silty soil further increases. The stone column composite foundation can greatly reduce both the shear displacement and the settlement of ground compared with untreated foundation. Under the condition of 7-degree seismic fortification, the design meets seismic resistance requirements.

  18. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  19. Spatiotemporal predictions of soil properties and states in variably saturated landscapes

    Science.gov (United States)

    Franz, Trenton E.; Loecke, Terrance D.; Burgin, Amy J.; Zhou, Yuzhen; Le, Tri; Moscicki, David

    2017-07-01

    Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions ( 5 m). A cross-validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an 30% reduction in root-mean-square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper-resolution hydrologic and biogeochemical models.

  20. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  1. Hydrodispersive characterization of a sandy porous medium by tracer tests carried out in laboratory on undisturbed soil samples

    Science.gov (United States)

    Ferrante, Aldo Pedro; Fallico, Carmine; Rios, Ana C.; Fernanda Rivera, Maria; Santillan, Patricio; Salazar, Mario

    2013-04-01

    The contamination of large areas and correspondent aquifers often imposes to implement some recovery operations which are generally complex and very expensive. Anyway, these interventions necessarily require the preventive characterization of the aquifers to be reclaimed and in particular the knowledge of the relevant hydrodispersive parameters. The determination of these parameters requires the implementation tracer tests for the specific site (Sauty JP, 1978). To reduce cost and time that such test requires tracer tests on undisturbed soil samples, representative of the whole aquifer, can be performed. These laboratory tests are much less expensive and require less time, but the results are certainly less reliable than those obtained by field tests for several reasons, including the particular scale of investigation. In any case the hydrodispersive parameters values, obtained by tests carried out in laboratory, can provide useful information on the considered aquifer, allowing to carry out initial verifications on the transmission and propagation of the pollutants in the aquifer considered. For this purpose, tracer tests with inlet of short time were carried out in the Soil Physics Laboratory of the Department of Soil Protection (University of Calabria), on a series of sandy soil samples with six different lengths, repeating each test with three different water flow velocities (5 m/d; 10 m/s and 15 m/d) (J. Feyen et al., 1998). The lengths of the samples taken into account are respectively 15 cm, 24 cm, 30 cm, 45 cm, 60 cm and 75 cm, while the solution used for each test was made of 100 ml of water and NaCl with a concentration of this substance corresponding to 10 g/L. For the porous medium taken into consideration a particle size analysis was carried out, resulting primarily made of sand, with total porosity equal to 0.33. Each soil sample was placed in a flow cell in which was inlet the tracer from the bottom upwards, measuring by a conductivimeter the

  2. Two and Three-Phases Fractal Models Application in Soil Saturated Hydraulic Conductivity Estimation

    Directory of Open Access Journals (Sweden)

    ELNAZ Rezaei abajelu

    2017-03-01

    Full Text Available Introduction: Soil Hydraulic conductivity is considered as one of the most important hydraulic properties in water and solutionmovement in porous media. In recent years, variousmodels as pedo-transfer functions, fractal models and scaling technique are used to estimate the soil saturated hydraulic conductivity (Ks. Fractal models with two subset of two (solid and pore and three phases (solid, pore and soil fractal (PSF are used to estimate the fractal dimension of soil particles. The PSF represents a generalization of the solid and pore mass fractal models. The PSF characterizes both the solid and pore phases of the porous material. It also exhibits self-similarity to some degree, in the sense that where local structure seems to be similar to the whole structure.PSF models can estimate interface fractal dimension using soil pore size distribution data (PSD and soil moisture retention curve (SWRC. The main objective of this study was to evaluate different fractal models to estimate the Ksparameter. Materials and Methods: The Schaapetal data was used in this study. The complex consists of sixty soil samples. Soil texture, soil bulk density, soil saturated hydraulic conductivity and soil particle size distribution curve were measured by hydrometer method, undistributed soil sample, constant head method and wet sieve method, respectively for all soil samples.Soil water retention curve were determined by using pressure plates apparatus.The Ks parameter could be estimated by Ralws model as a function of fractal dimension by seven fractal models. Fractal models included Fuentes at al. (1996, Hunt and Gee (2002, Bird et al. (2000, Huang and Zhang (2005, Tyler and Wheatcraft (1990, Kutlu et al. (2008, Sepaskhah and Tafteh (2013.Therefore The Ks parameter can be estimated as a function of the DS (fractal dimension by seven fractal models (Table 2.Sensitivity analysis of Rawls model was assessed by making changes±10%, ±20% and±30%(in input parameters

  3. Persistence, distribution, and emission of Telone C35 injected into a Florida sandy soil as affected by moisture, organic matter, and plastic film cover.

    Science.gov (United States)

    Thomas, J E; Ou, L T; Allen, L H; McCormack, L A; Vu, J C; Dickson, D W

    2004-05-01

    With the phase-out of methyl bromide scheduled for 2005, alternative fumigants are being sought. This study of Telone C35, a mixture of (Z)- and (E)-1,3-dichloropropene (1,3-D) with chloropicirin (CP), focuses on its emissions, distribution, and persistence in Florida sandy soil in microplots with different soil-water and organic matter carbon (C) content with and without two different plastic film mulches. The addition of CP did not affect the physical behavior of the isomers of 1,3-D. Slower subsurface dispersion and longer residence time of the mixed fumigant occurred at higher water content. An increase in the percent organic carbon in the soil led to a more rapid decrease for chloropicirin than for 1,3-dichloropene isomers. The use of a virtually impermeable film (VIF) for soil cover provided a more even distribution and longer persistence under all the conditions studied in comparison to polyethylene (PE) film cover or no cover. The conditions of near field capacity water content, low organic matter, and a virtually impermeable film cover yielded optimum conditions for the distribution, emission control, and persistence of Telone C35 in a Florida sandy soil.

  4. Impact of slurry management strategies on potential leaching of nutrients and pathogens in a sandy soil amended with cattle slurry.

    Science.gov (United States)

    Fangueiro, D; Surgy, S; Napier, V; Menaia, J; Vasconcelos, E; Coutinho, J

    2014-12-15

    For farmers, management of cattle slurry (CS) is now a priority, in order to improve the fertilizer value of the slurry and simultaneously minimize its environmental impact. Several slurry pre-treatments and soil application methods to minimize ammonia emissions are now available to farmers, but the impact of such management strategies on groundwater is still unclear. A laboratory experiment was performed over 24 days in controlled conditions, with undisturbed soil columns (sandy soil) in PVC pipes (30 cm high and 5.7 cm in diameter). The treatments considered (4 replicates) were: a control with no amendment (CTR), injection of whole CS (WSI), and surface application of: whole CS (WSS), acidified (pH 5.5) whole CS (AWSS), the liquid fraction obtained by centrifugation of CS (LFS), and acidified (pH 5.5) liquid fraction (ALFS). An amount of CS equivalent to 240 kg N ha(-1) was applied in all treatments. The first leaching event was performed 72 h after application of the treatments and then leaching events were performed weekly to give a total of four irrigation events (IEs). All the leachates obtained were analyzed for mineral and organic nitrogen, electrical conductivity (EC), pH, total carbon, and phosphorus. Total coliforms and Escherichia coli were also quantified in the leachates obtained in the first IE. The results show that both acidification and separation had significant effects on the composition of the leachates: higher NO3(-) concentrations were observed for the LFS and ALFS relative to all the other treatments, throughout the experiment, and lower NO3(-) concentrations were observed for acidified relative to non-acidified treatments at IE2. Acidification of both the LF and WS led to higher NH4(+) concentrations as well as an increase of EC for treatment ALFS relative to the control, in the first IE, and lower pH values in the AWSS. Furthermore, the E. coli and total coliform concentrations in AWSS, LFS, and ALFS were significantly higher than in

  5. Capturing Scale-Dependent Dispersion in Saturated Soils using both Local and Nonlocal Transport Models

    Science.gov (United States)

    Garrard, R. M.; Zhang, Y.; Sun, H.; Xia, Y.

    2016-12-01

    Conservative tracer transport in saturated soils can exhibit scale-dependent dispersion before reaching a Gaussian asymptote. This is most likely due to increasing flow field heterogeneity or the expansion of local velocity distribution experienced by the tracer particles with travel distance. A time nonlocal transport model, previously developed to capture this non-Fickian transport has exhibited an upscaling, sometimes constant, effective dispersion coefficient D from numerical simulations. However, the efficiency of this model has not been systematically checked against real-world data. This study applies and compares both the traditional advection-dispersion equation (ADE) and the time fractional ADE models to quantify solute dynamics moving through 10-meter-long soil columns, where the spatial trend of D can shed light on the scale-dependency of pre-asymptotic dispersion.

  6. [Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land].

    Science.gov (United States)

    Lin, Gui-Gang; Zhao, Qiong; Zhao, Lei; Li, Hui-Chao; Zeng, De-Hui

    2012-05-01

    A full factorial experiment was conducted to study the effects of understory removal and nitrogen addition (8 g x m(-2)) on the soil NO(3-)-N and NH(4+)-N concentrations, potential net nitrogen mineralization rate (PNM) and nitrification rate (PNN), microbial biomass C (MBC) and N (MBN), MBC/MBN, urease and acid phosphomonoesterase activities, and Olsen-P concentration in a Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land during a growth season. Understory removal decreased the soil NH(4+)-N concentration, PNM, MBC, and MBN/MBN significantly, increased the soil Olsen-P concentration, but had little effects on the soil NO(3-)-N concentration, PNN, and urease and acid phosphomonoesterase activities. Nitrogen addition increased the soil NO(3-)-N concentration, PNM and PNN significantly, but had little effects on the other test properties. The interaction between understory removal and nitrogen addition had significant effects on the soil NH(4+)-N concentration, but little effects on the soil NO(3-)-N concentration. However, the soil NO(3-)-N concentration in the plots of understory removal with nitrogen addition was increased by 27%, compared with the plots of nitrogen addition alone, which might lead to the leaching of NO3-. It was suggested that understory vegetation could play an important role in affecting the soil chemical and biological properties in Mongolian pine plantations, and hence, the importance of understory vegetation should not be neglected when the forest management and restoration were implemented.

  7. Mobility and dissipation of chlorpyriphos and quinalphos in sandy clay loam in an agroecosystem-a laboratory-based soil column study.

    Science.gov (United States)

    G P, Bindumol; C C, Harilal

    2017-09-15

    Leaching potential of pesticides, apart from climatological factors, depends on soil physical properties, soil-pesticide interaction and chemical nature of the molecule. Recent investigations have revealed the presence of various organophosphate pesticides in various agroecosystems. The present study investigated the soil transport mechanism of commonly used organophosphate pesticides in acidic sandy clay loam soils of Kerala State, India. Packed soil column experiment was undertaken under laboratory condition for 30 days. Unsaturated flow was carried out using distilled water/0.01 M CaCl2 solution after applying chlorpyriphos and quinalphos at the rate of 0.04% a.i.ha-1 and 0.025% a.i.ha-1, respectively. The study revealed the retention of residues of chlorpyriphos and quinalphos in the top 5-cm layer. Irrespective of the applied concentration of chlorpyriphos and quinalphos, the relative concentration of the pesticides in soil was similar. About 56% of the applied chemicals were dissipated in 30 days of unsaturated flow. A new dissipation compound iron, tricarbonyl [N-(phenyl-2-pyridinylmethyene) benzenamine-N, N'], was detected in GCMS analysis of soil extract from distilled water percolated soil. The dissipation of chlorpyriphos and quinalphos was faster in 0.01 M CaCl2-treated soil column. Among the pesticides analysed, the residue of quinalphos was detected in leachate.

  8. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2013-01-01

    The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... equilibration times and potential for hydraulic decoupling. The objectives of this study were to measure both adsorption and desorption branches of the dry end of the SWC for 21 variably-textured Arizona soils using new, fully automated instrumentation (AquaSorp); apply the data to parameterize the Tuller...... model well described the distinct non-singularity between the adsorption and desorption branches, while the TO model captured the adsorption data reasonably well (

  9. Dolomite phosphate rock (DPR) application in acidic sandy soil in reducing leaching of phosphorus and heavy metals-a column leaching study.

    Science.gov (United States)

    Yang, Yuangen; He, Zhenli; Yang, Xiaoe; Stoffella, Peter J

    2013-06-01

    A column leaching study was designed to investigate the leaching potential of phosphorus (P) and heavy metals from acidic sandy soils applied with dolomite phosphate rock (DPR) fertilizers containing varying amounts of DPR material and N-Viro soils. DPR fertilizers were made from DPR materials mixing with N-Viro soils at the ratios of 30, 40, 50, 60, and 70 %, and applied in acidic sandy soils at the level of 100 mg available P per kilogram soil. A control and a soluble P chemical fertilizer were also included. The amended soils were incubated at room temperature with 70 % field water holding capacity for 21 days before packed into a soil column and subjected to leaching. Seven leaching events were conducted at days 1, 3, 7, 14, 28, 56, and 70, respectively, and 258.9 mL of deionized water was applied at each leaching events. The leachate was collected for the analyses of pH, electrical conductivity (EC), dissolved organic carbon (DOC), major elements, and heavy metals. DPR fertilizer application resulted in elevations up to 1 unit in pH, 7-10 times in EC, and 20-40 times in K and Ca concentrations, but 3-10 times reduction in P concentration in the leachate as compared with the chemical fertilizer or the control. After seven leaching events, DPR fertilizers with adequate DPR materials significantly reduced cumulative leaching losses of Fe, P, Mn, Cu, and Zn by 20, 55, 3.7, 2.7, and 2.5 times than chemical fertilizer or control. Even though higher cumulative losses of Pb, Co, and Ni were observed after DPR fertilizer application, the loss of Pb, Co, and Ni in leachate was <0.10 mg (in total 1,812 mL leachate). Significant correlations of pH (negative) and DOC (positive) with Cu, Pb, and Zn (P<0.01) in leachate were observed. The results indicated that DPR fertilizers had a great advantage over the soluble chemical fertilizer in reducing P loss from the acidic sandy soil with minimal likelihood of heavy metal risk to the water environment. pH elevation and high

  10. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials

    Science.gov (United States)

    Ayral-Cinar, Derya; Demond, Avery H.

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.

  11. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland.

    Science.gov (United States)

    Gruba, Piotr; Socha, Jarosław; Błońska, Ewa; Lasota, Jarosław

    2015-07-15

    In this study we investigated the effect of fine (ϕsoils, site moisture, metal (Al and Fe) of soil organic matter (SOM) and forest species composition on the spatial distribution of carbon (C) pools in forest soils at the landscape scale. We established 275 plots in regular 200×200m grid in a forested area of 14.4km(2). Fieldwork included soil sampling of the organic horizon, mineral topsoil and subsoil down to 40cm deep. We analysed the vertical and horizontal distribution of soil organic carbon (SOC) stocks, as well as the quantity of physically separated fractions including the free light (fLF), occluded light (oLF) and mineral associated fractions (MAF) in the mineral topsoil (A, AE) horizons. Distribution of C in soils was predominantly affected by the variation in the FF content. In soils richer in the FF more SOC was accumulated in mineral horizons and less in the organic horizons. Accumulation of SOC in mineral soil was also positively affected by the degree of saturation of SOM with Al and Fe. The increasing share of beech influenced the distribution of C stock in soil profiles by reducing the depth of O horizon and increasing C stored in mineral soil. The content of FF was positively correlated with the content of C in MAF and fLF fractions. The content of oLF and MAF fractions was also positively influenced by a higher degree of metal saturation, particularly Al. Our results confirmed that Al plays an important role in the stabilization of SOM inside aggregates (CoLF) and as in CMAF fractions. We also found a significant, positive effect of beech on the CfLF and fir on the CoLF content. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Stress transfer from pile group in saturated and unsaturated soil using theoretical and experimental approaches

    Directory of Open Access Journals (Sweden)

    al-Omari Raid R.

    2017-01-01

    Full Text Available Piles are often used in groups, and the behavior of pile groups under the applied loads is generally different from that of single pile due to the interaction of neighboring piles, therefore, one of the main objectives of this paper is to investigate the influence of pile group (bearing capacity, load transfer sharing for pile shaft and tip in comparison to that of single piles. Determination of the influence of load transfer from the pile group to the surrounding soil and the mechanism of this transfer with increasing the load increment on the tip and pile shaft for the soil in saturated and unsaturated state (when there is a negative pore water pressure. Different basic properties are used that is (S = 90%, γd = 15 kN / m3, S = 90%, γd = 17 kN / m3 and S = 60%, γd =15 kN / m3. Seven model piles were tested, these was: single pile (compression and pull out test, 2×1, 3×1, 2×2, 3×2 and 3×3 group. The stress was measured with 5 cm diameter soil pressure transducer positioned at a depth of 5 cm below the pile tip for all pile groups. The measured stresses below the pile tip using a soil pressure transducer positioned at a depth of 0.25L (where L is the pile length below the pile tip are compared with those calculated using theoretical and conventional approaches. These methods are: the conventional 2V:1H method and the method used the theory of elasticity. The results showed that the method of measuring the soil stresses with soil pressure transducer adopted in this study, gives in general, good results of stress transfer compared with the results obtained from the theoretical and conventional approaches.

  13. Experimental and numerical approaches of the hydro-mechanical behaviour of a quasi-saturated compacted clayey soil

    Directory of Open Access Journals (Sweden)

    Li Zhong-Sen

    2016-01-01

    Full Text Available The present research is funded by the French National Project « TerreDurable », which is dedicated to the study of soils in quasi-saturated conditions (close to saturation for the analysis of stability and settlement of earth structures such as embankment, dams. A global presentation of the drying-wetting test shows the volume change, air entry and soil-water characteristics of the soil at slurry and oven-dried conditions. Unsaturated undrained triaxial test was carried out in order to investigate the variation of pore-water pressure from quasi-saturated domain to saturation. The experimental results of the triaxial test are then modeled using a two-dimensional explicit finite difference program (Flac 2D. A constitutive law developed in the TerreDurable project allows better understanding the behaviour of quasi-saturated soils using the water retention curve of quasi-saturated domain proposed by Boutonnier (2007, 2010. A simple effective stress model is used (Cam Clay by taking into account both the suction and the compressibility of equivalent fluid (water + air. The results from numerical calculation and experimental measurements are compared.

  14. Avaliação do regime estacionário em colunas de amostras deformadas de solo sob saturação Evaluation of the stationary condition in disturbed saturated soil columns

    Directory of Open Access Journals (Sweden)

    Luciana de Pinho Cunha

    2007-10-01

    studies. Disturbed soil samples were collected in an experimental area of the ESALQ/USP. The soils had three different granulometries: very clayey, sandy-loam and sandy soil. PVC columns were filled with soil samples and then distilled and deaerated water was used for saturation and subsequent drainage in the columns, according to the experimental set-up of a constant-head permeameter. The data showed that for very clayey and sandy-loam samples, the steady-state was reached after 15 days and for the sandy soil after 27 days. The variability of K0 was higher in the first six test days. It was therefore concluded that the use of a fixed time for the addition of solutes in soil can result in a reduction of reliability in results.

  15. The use of volcanic ash from the eruption of Mount Kelud in East Java for improving yield of sweet potato grown on a sandy soil

    Directory of Open Access Journals (Sweden)

    H. Melsandi

    2015-07-01

    Full Text Available The purpose of this study was to explore the effect of volcanic ash from the eruption of Mount Kelud and compost on the soil properties and production of sweet potato on a sandy soil. The treatments of this study were (a a combination of and volcanic ash with the proportion of 100: 0, 90:10, 80:20, and 70:30 (% weight, (b the addition of compost (2.5 and 5 t / ha, and (c two varieties of sweet potato (Manohara and Ayamurazaki. The soil used in this study is the topsoil (0-30 cm Psament or sandy Entisol obtained from sweet potato cultivation location in Sumber Pasir Village of Pakis District, South Malang. Ten kilograms of planting medium (soil + volcanic ash for each treatment was placed in a 15 kg plastic pot. Sixteen treatments arranged in a factorial completely randomized design with three replications. The results showed that application of Mount Kelud volcanic ash and compost was able to improve soil permeability, soil pH, organic C, and K-total, but did not significantly affect total N content, available P and K total land. The highest fresh tuber weights of 373.51 g / plant or 19.92 t / ha and 393.09 g / plant or 20.96 t / ha for Manohara and Ayumurazaki varieties, respectively, were observed in the treatment of 10% volcanic ash + 5 t compost / ha. The carbohydrate content of Manohara variety was higher than that of Ayamurazaki variety at each treatment. The highest carbohydrate content of the Manohara variety (23.52% was obtained through application of 20% volcanic ash + 2.5 t compost/ha, while that of the Ayamurazaki variety (22.42% was obtained through application of 30% volcanic ash + 2.5 t/ha.

  16. A new two-stage approach for predicting the soil water characteristic from saturation to oven-dryness

    DEFF Research Database (Denmark)

    Karup Jensen, Dan; Tuller, Markus; de Jonge, Lis Wollesen

    2015-01-01

    The soil water characteristic (SWC) is one of the most important properties required for understanding plant-soil relationships and is crucial for modeling gas and water flow in soils. Measuring the SWC is laborious, and until now the dry-region soil water retention has commonly been excluded due...... with clay and organic carbon contents ranging from 0.01 to 0.52 kg kg-1 and 0 to 0.07 kg kg-1, respectively, were used for the model development. Measuring the SWC from saturation to oven-dryness was accomplished with Tempe cells and a water vapor sorption analyzer. The model was subsequently tested...... to slow and inaccurate measurements. Hence, models applied to predict the SWC consequently exclude the dry region and are often only applicable for specific soil textural classifications. The present study proposes a new two-step approach to prediction of the continuous SWC from saturation to oven dryness...

  17. Temperature Changes in the Vicinity of Thermally Loaded Structure Embedded in the Soil: Effect of Sand Content and Saturation Degree

    Science.gov (United States)

    Różański, Adrian

    2017-06-01

    Due to the rapid development of geothermal technologies, the problem of efficient and proper evaluation of soil thermal conductivity becomes extremely important. Factors mostly affecting the soil conductivity are the conductivity of solid phase and the degree of saturation. The former one is mainly affected by the mineral composition, in particular, by the content of quartz whose conductivity is the highest one among all the minerals forming soil skeleton. Organic matter, because of its relatively low conductivity, influences the solid conductivity as well. The problem addressed in the paper is the influence of mentioned factors on temperature changes in the vicinity of thermally loaded structure embedded in the soil medium. Numerical simulations are carried out for different values of soil thermal conductivity resulting from various quartz contents and degrees of saturation. In addition, a weak coupled - heat and water transport - problem is considered.

  18. Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff

    Directory of Open Access Journals (Sweden)

    J. J. Maynard

    2011-11-01

    Full Text Available The fate of organic carbon (C lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-year-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above-ground biomass were measured during two contrasting years (vegetated (2004 vs. non-vegetated (2005, followed by collection of sediment cores to the antecedent soil layer, representing 13 years of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13 yr sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg–1 and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20–35 g kg–1 underlain by C depleted (5–10 g kg–1 sediments and an increasing δ13C signature with depth indicating increased decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004, fluctuating cycles

  19. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhe [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Zeng, Fangang [School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Xue, Nandong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Li, Fasheng, E-mail: ligulax@vip.sina.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China)

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (< 2 {mu}m clay, 2-20 {mu}m silt, 20-200 {mu}m fine sand, and > 200 {mu}m coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 {mu}g/g in profile 1 and 10.8 to 0.143 {mu}g/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: Black-Right-Pointing-Pointer PAH concentrations varied largely in different sized fractions. Black-Right-Pointing-Pointer The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Black-Right-Pointing-Pointer Soil organic

  20. Mapping of Soil Saturated Hydraulic Conductivity in Navroud-Assalem Watershed in Guilan Province

    Directory of Open Access Journals (Sweden)

    M.R. Khaledian

    2016-02-01

    Full Text Available Introduction: With increasing awareness of human beings towards the environment, researchers pay more attention to process and redistribution of water flow and solute transport in the soil and groundwater. Moreover, determination of soil hydraulic conductivity is necessary to determine the runoff from basins. Water movement within the unsaturated zone is often described by the formulae proposed by Richards. To solve this equation, initial and boundary conditions of the hydraulic conductivity and the soil water pressure should be determined as functions of soil water content. Beerkan method was developed to identify retention and hydraulic conductivity curves. In this method, van Gunechten with Burdine condition and Brooks and Corey equations were used to describe water retention and hydraulic conductivity curves. Recognition of the spatial pattern of studied parameter using semivariogram and then preparing zoning map with interpolation methods such as IDW and kriging can help us in relevant watershed management. The aim of this study was to spatial analyze of saturated hydraulic conductivity from 50 infiltration tests at watershed scale using Beerkan method and then preparing zoning map for the Navroud watershed. Materials and Methods: Navroud-Assalem watershed with an area of about 307 km2 is located in the west part of Guilan province, within the city of Talesh. Of the total watershed area of Navroud, about 41 km2 is plains and the rest of it is about 266 km2, corresponding to the mountainous area. The study area includes an area with a height above 130 m. In order to complete the database of the studied watershed the present study was designed to assess soil saturated hydraulic conductivity. In this study, a 2×2 km network was designed in Navroud watershed with a surface area of 307 km2, and then infiltration tests were carried out in each node using single ring of Beerkan. Beerkan method derives shape parameters from particle

  1. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system

    NARCIS (Netherlands)

    Melo Carvalho, de M.T.; Holanda Nunes Maia, de A.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Heinemann, A.B.; Soler da Silva, M.A.; Petter, F.A.; Marimon-Junior, B.H.; Meinke, H.B.

    2014-01-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (~450 °C) of eucalyptus wood, milled to pass through a 2000 µm sieve

  2. Simulation of Nonisothermal Consolidation of Saturated Soils Based on a Thermodynamic Model

    Science.gov (United States)

    Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable. PMID:23983623

  3. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    NARCIS (Netherlands)

    Berton Zanchi, F.; Waterloo, M.J.; Dolman, A.J.; Groenendijk, M.; Kruijt, B.

    2011-01-01

    Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and

  4. Nitrogen fertilization on soybean under crop-livestock system and sandy soil = Nitrogênio mineral na soja integrada com a pecuária em solo arenoso

    Directory of Open Access Journals (Sweden)

    Alvadi Antonio Balbinot Junior

    2016-07-01

    Full Text Available In Brazil, soybean has been introduced in areas with sandy soil and tropical climate, often under crop-livestock system. The use of nitrogen (N for this crop is supplied by the soil organic matter mineralization and the biological N fixation. However, there are questions about the effect of nitrogen fertilization in soybean crop under sandy soils with a high amount of straw. The aim of this study was to evaluate the agronomic performance of two soybean cultivars in different doses (20 and 45 kg N ha-1 and application times (sowing, at flowering or early grain filling of N in sandy soil with high amount of Urochloa brizantha straw. Two experiments were conducted in Northwest of Paraná state, Brazil, the first experiment with the BMX Potência RR cultivar and the second one with the BRS 360 RR cultivar, in a sandy soil (11% clay. The experiment were composed by seven treatments (interaction between factors and the control, settled in a randomized block design with four replications. In sandy soil, with high amount of U. brizantha straw, the nitrogen fertilizer applied at different doses and at soybean development stages, cultivars BMX Potência RR and BRS 360 RR, does not influence the photoassimilates partition between stem and leaves, foliar N concentration, yield, yield components, and the oil and protein content in the grains. = No Brasil, a soja tem sido introduzida em regiões que apresentam solos arenosos e clima tropical, sendo muitas vezes integrada com a pecuária. A demanda da oleaginosa por nitrogênio(N é suprida pela mineralização da matéria orgânica do solo e pela fixação biológica do N. No entanto, há questionamentos quanto ao efeito da adubação nitrogenada na cultura da soja cultivada em solos arenosos, com alta quantidade de palha de gramíneas. Objetivou-se com este trabalho avaliar o desempenho de duas cultivares de soja, em solo arenoso, após dois anos com pastagem de Urochloa brizantha, submetidas a diferentes

  5. Aspect-dependent soil saturation and insight into debris-flow initiation during extreme rainfall in the Colorado Front Range

    Science.gov (United States)

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2015-01-01

    Hydrologic processes during extreme rainfall events are poorly characterized because of the rarity of measurements. Improved understanding of hydrologic controls on natural hazards is needed because of the potential for substantial risk during extreme precipitation events. We present field measurements of the degree of soil saturation and estimates of available soil-water storage during the September 2013 Colorado extreme rainfall event at burned (wildfire in 2010) and unburned hillslopes with north- and south-facing slope aspects. Soil saturation was more strongly correlated with slope aspect than with recent fire history; south-facing hillslopes became fully saturated while north-facing hillslopes did not. Our results suggest multiple explanations for why aspect-dependent hydrologic controls favor saturation development on south-facing slopes, causing reductions in effective stress and triggering of slope failures during extreme rainfall. Aspect-dependent hydrologic behavior may result from (1) a larger gravel and stone fraction, and hence lower soil-water storage capacity, on south-facing slopes, and (2) lower weathered-bedrock permeability on south-facing slopes, because of lower tree density and associated deep roots penetrating bedrock as well as less intense weathering, inhibiting soil drainage.

  6. A Bézier-Spline-based Model for the Simulation of Hysteresis in Variably Saturated Soil

    Science.gov (United States)

    Cremer, Clemens; Peche, Aaron; Thiele, Luisa-Bianca; Graf, Thomas; Neuweiler, Insa

    2017-04-01

    Most transient variably saturated flow models neglect hysteresis in the p_c-S-relationship (Beven, 2012). Such models tend to inadequately represent matrix potential and saturation distribution. Thereby, when simulating flow and transport processes, fluid and solute fluxes might be overestimated (Russo et al., 1989). In this study, we present a simple, computationally efficient and easily applicable model that enables to adequately describe hysteresis in the p_c-S-relationship for variably saturated flow. This model can be seen as an extension to the existing play-type model (Beliaev and Hassanizadeh, 2001), where scanning curves are simplified as vertical lines between main imbibition and main drainage curve. In our model, we use continuous linear and Bézier-Spline-based functions. We show the successful validation of the model by numerically reproducing a physical experiment by Gillham, Klute and Heermann (1976) describing primary drainage and imbibition in a vertical soil column. With a deviation of 3%, the simple Bézier-Spline-based model performs significantly better that the play-type approach, which deviates by 30% from the experimental results. Finally, we discuss the realization of physical experiments in order to extend the model to secondary scanning curves and in order to determine scanning curve steepness. {Literature} Beven, K.J. (2012). Rainfall-Runoff-Modelling: The Primer. John Wiley and Sons. Russo, D., Jury, W. A., & Butters, G. L. (1989). Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resources Research, 25(10), 2109-2118. https://doi.org/10.1029/WR025i010p02109. Beliaev, A.Y. & Hassanizadeh, S.M. (2001). A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport in Porous Media 43: 487. doi:10.1023/A:1010736108256. Gillham, R., Klute, A., & Heermann, D. (1976). Hydraulic properties of a porous

  7. Effects of organic fertilizers and biochar/organic fertilizer combinations on fertility and organic matter dynamics of a sandy soil in north-west Germany

    Science.gov (United States)

    Greenberg, Isabel; Kaiser, Michael; Polifka, Steven; Wiedner, Katja; Glaser, Bruno; Ludwig, Bernard

    2017-04-01

    Biochar and biochar/organic fertilizer combinations have been recommended as soil amendments to improve plant productivity and soil properties, as well as to increase soil organic C (OC) storage. However, these claims have been largely unverified by field experiments lasting several years. To address these issues, a field experiment was established in 2012 to analyze the effects of organic fertilizers and biochar/organic fertilizer combinations (five field replicates, fully randomized block design) on the fertility and organic matter dynamics of a sandy Cambisol. In 2016, samples were taken from the 0-10 cm and 10-30 cm soil depths of the following treatments: mineral fertilizer and maize digestate that were applied both individually and in combination with 1 t/ha or 40 t/ha biochar. Further treatments were compost and 10 t/ha composted biochar. The treatments were analyzed for the plant yield and the bulk soil samples were analyzed for the pH, cation exchange capacity (CEC), OC content, microbial biomass C and the distribution of aggregate-size fractions (i.e. >2 mm, 2 mm - 250 µm, 250 - 53 µm, <53 µm). The latter were also analyzed for OC content and by FTIR. In 2012, the combination of 40 t/ha biochar+digestate accounted for about 42% higher maize (Zea mays) yields (7.9 t/ha) than the mineral fertilization treatment. For winter rye (Secale cereale) in 2013, we detected the highest yield (10.4 t/ha) for the 10 t/ha composted biochar treatment. In 2014, the highest yield for blue lupine (Lupinus angustifolius) (1.84 t/ha) was detected for the 40 t/ha biochar+digestate treatment. The first data for the soil samples indicate that the 10 t/ha composted biochar and the compost treatment are most effective in increasing the CEC, and the microbial biomass C content of the soil, while pH was not significantly affected by any of the treatments. The bulk soil OC content of the treatments receiving 40 t/ha biochar+fertilizer (digestate or mineral), 10 t/ha composted

  8. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  9. Changes in soil organic matter over 70 years in continuous arable and ley-arable rotations on a sandy loam soil in England.

    Science.gov (United States)

    Johnston, A E; Poulton, P R; Coleman, K; Macdonald, A J; White, R P

    2017-05-01

    The sequestration in soil of organic carbon (SOC) derived from atmospheric carbon dioxide (CO2) by replacing arable crops with leys, has been measured over 70 years on a sandy loam soil. The experiment was designed initially to test the effect of leys on the yields of arable crops. A 3-year grazed grass with clover (grass + clover) ley in a 5-year rotation with arable crops increased percentage organic carbon (%OC) in the top 25 cm of the soil from 0.98 to 1.23 in 28 years, but with little further increase during the next 40 years with all-grass leys given fertilizer nitrogen (N). In this second period, OC inputs were balanced by losses, suggesting that about 1.3% OC might be near the equilibrium content for this rotation. Including 3-year lucerne (Medicago sativa) leys had little effect on %OC over 28 years, but after changing to grass + clover leys, %OC increased to 1.24 during the next 40 years. Eight-year leys (all grass with N or grass + clover) in 10-year rotations with arable crops were started in the 1970s, and after three rotations %OC had increased to ca. 1.40 in 2000-2009. Over 70 years, %OC declined from 0.98 to 0.94 in an all-arable rotation with mainly cereals and to 0.82 with more root crops. Applications of 38 t ha-1 farmyard manure (FYM) every fifth year increased %OC by 0.13% by the mid-1960s when applications ceased. Soil treated with FYM still contained 0.10% more OC in 2000-2009. Changes in the amount of OC have been modelled with RothC-26.3 and estimated inputs of C for selected rotations. Little of the OC input during the 70 years has been retained; most was retained in the grazed ley rotation, but 9 t ha-1 only of a total input of 189 t ha-1. In other rotations more than 98% of the total OC input was lost. Despite large losses of C, annual increases in OC of 4‰ are possible on this soil type with the inclusion of grass or grass + clover leys or the application of FYM, but only for a limited

  10. Black carbon yields and types in forest and cultivated sandy soils (Landes de Gascogne, France) as determined with different methods: influence of change in land use

    Energy Technology Data Exchange (ETDEWEB)

    Quenea, K. [UMR CNRS, Paris (France). LBCOP; INRA-CNRS-UPMC, Thjiverval (France). BIOEMCO; Derenne, S.; Largeau, C. [UMR CNRS, Paris (France). LBCOP; Rumpel, C.; Mariotti, A. [INRA-CNRS-UPMC, Thjiverval (France). BIOEMCO; Rouzaud, J.-N. [Laboratoire de Geologie, Paris (France); Gustafsson, O. [Stockholm University (Sweden). Dept. of Applied Environmental Science; Carcaillet, C.C. [Institut de Botanique, Montpelier (France)

    2006-09-15

    Black carbon ( BC ) was isolated from sandy soils of a pine forest reference plot and an adjacent plot used maize cropping since forest clearing 22 years ago. This was performed by: (i) isolation of a refractory organic macromolecular fraction (ROM) using strong hydrolysis followed by chemo-thermal oxidation (CTO) and (ii) direct hand-picking of the untreated soils. Much lower BC contents, ca. x 300, were obtained with the ROM-CTO approach. Experiments on reference chars from the ''international BC-ring trial'' and high resolution, transmission electron microscopy (HRTEM) observations showed that this large difference was not due to BC component losses resulting from the strong hydrolysis during ROM isolation but was due primarily to complete removal of char/charcoal upon CTO. BC is heavily dominated by char/charcoal and soot only affords a very low contribution in both soils. Calculations showed that BC accounts for a substantial part, ca 13% , of total ROM and change in land-use resulted in a large loss of BC relative to the forest soil, ca. 60% after 22 years, thus supporting recent questions raised about BC persistence in soil. (Author)

  11. Monitorization of the unsaturated zone on the sandy soils of Donana National Park; Monitorizacion de la zona no saturada en el entorno del Espacio Natural de Donana

    Energy Technology Data Exchange (ETDEWEB)

    Prados, M. L.; Guardiola-Albert, C.; Vanderlinken, K.; Giraldez, J. V.; Mediavilla, C.

    2010-07-01

    Within the framework of a study into the recharge of the Almonte-Marismas aquifer, we describe the methods used to monitor water flux in the vadose zone at four sites within the Donana National Park and its surroundings. We also provide a description of land use and soil and hydrological conditions at each measurement point. Very frequent observations are required to monitor efficiently the water flux in these well-drained, sandy soils, which undergo considerable oscillations in their usually low water content. To this end we have resorted to inexpensive capacitance probes, installed at different points along the soil profiles in question according mainly to the depth of the water table. We propose a calibration method to increase the accuracy and precision of the probe measurements. Our work has demonstrated that these sensors perform well in monitoring soil water content and also validates both the installation methods used. Data analysis proves that these sensors are very useful for locating the depth of the water table accurately and emphasises the need for specific calibration for each soil in order to obtain the most accurate moisture data. (Author) 10 refs.

  12. Does nitrogen saturation theory apply to unpolluted temperate forests? A test along a forest soil nitrogen gradient in Oregon

    Science.gov (United States)

    Perakis, S. S.; Sinkhorn, E. R.

    2011-12-01

    Natural gradients of soil nitrogen (N) can be used to evaluate the consequences of long-term ecosystem N enrichment, and to test the applicability of N saturation theory as a general framework for understanding ecosystem N dynamics. Temperate forest soils of the Oregon Coast Range experience low rates of atmospheric N deposition, yet display among the highest soil N accumulations ever reported worldwide. We measured plant and soil (0-1m) N stocks and natural abundance delta15N, plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir forests growing across an exceptionally wide soil N gradient in the Oregon Coast Range. Ecosystem N content ranged from 8,788 to 22,667 kg N/ha across sites, with highest N accumulations near the coast, and 96-98% of total ecosystem N residing in mineral soil. Ecosystem delta15N displayed a curvilinear relationship with ecosystem N content that reflected competing influences of N input from biological fixation at low-N sites and fractionating N losses at high-N sites. Simulation modeling of ecosystem N and delta15N mass balance suggest that cycles of wildfire can promote unusually high natural N accumulation by fostering early successional biological nitrogen fixation. Surface mineral soil (0 - 10 cm) N concentrations were tightly correlated to total soil N stocks to 1 m depth, and in contrast to predictions of N saturation theory, were linearly related to 10-fold variation in net N mineralization from 8 - 82 kg N/ha-yr. Net N mineralization was unrelated to soil C:N, soil texture, precipitation and temperature differences among sites. Net nitrification accounted for pH decline from 5.8 to 4.1 across sites. The ratio of net:gross N mineralization and nitrification increased along the gradient, indicating progressive saturation of microbial N demands at high soil N. Aboveground N uptake by plants increased asymptotically with net N mineralization to a

  13. Sensitivity analysis of tracer transport in variably saturated soils at USDA-ARS OPE3 field site

    Science.gov (United States)

    The objective of this study was to assess the effects of uncertainties in hydrologic and geochemical parameters on the results of simulations of the tracer transport in variably saturated soils at the USDA-ARS OPE3 field site. A tracer experiment with a pulse of KCL solution applied to an irrigatio...

  14. Similarity index between irrigation water and soil saturation extract in the experimental field of Yachay University, Ecuador

    Science.gov (United States)

    Carrera-Villacrés, D. V.; Sánchez-Gómez, V. P.; Portilla-Bravo, O. A.; Bolaños-Guerrón, D. R.

    2017-08-01

    Soil monitoring is a job that demands a lot of time and money. therefore, measuring the same parameters in the water becomes simple because it can be done in situ. The objective of this work was to find a similarity index for the validation of mathematical correlation models based on physicochemical parameters to verify if there is a balance between irrigation water and soil saturation extract in the experimental field Yachay that is known as the city of knowledge that is located in Imbabura province, Ecuador, for which, the sampling of water was carried out in two representative periods (dry and rainy). Sampling of 10 soil profiles was also performed, covering the total area; these samples were obtained results of Electrical Conductivity (EC), pH and total dissolved salts (TDS). With correlation models between soils and water, it is possible to predict concentrations of elements in the irrigation water. It was concluded that there is a balance between soil and water, so that the salts present in the soil are highly soluble, in addition, there is a high probability that the elements in the irrigation water are in the soil. In sample water, the same concentrations were found in the soil, at their saturation point, and very close to the field capacity.

  15. The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar, wood ash, and humic substances amendments.

    Science.gov (United States)

    Pukalchik, Maria; Mercl, Filip; Panova, Maria; Břendová, Kateřina; Terekhova, Vera A; Tlustoš, Pavel

    2017-10-01

    Nowadays trace metal contamination of soils represents an important environmental hazard. Nevertheless, the use of some secondary waste products as amendments may restore the common soil functions. This paper focuses on the chemical and biological influence of wood biochar (BC), wood ash (WA) and humic substances (HS), alone and in the mixtures, on a heavily multi-contaminated sandy loam soil. The soil was amended by above-mentioned materials to follow a pH-increasing design (pH Ca from 6.0 to 6.5, 7.0 and 7.5); soil samples were analyzed after 3, 30, and 60 days using a set of variables, namely the plant-available trace element concentrations (Cu, Cd, and Zn), microbial biomass carbon (Cmic), and microbial quotient (qCO 2 ), as well as toxicity to Sinapis alba and Daphnia magna. Wood ash and WA + HS were the most efficient treatments to decrease mobile Cd and Zn concentrations in the soil, while HS, BC, and BC + HS combinations were the most effective in reducing the Cu mobility. The effect of BC and WA on the Cmic and qCO 2 was mostly negative, whereas adding HS markedly increased Cmic and reduced qCO 2 in soil. After amendment applications, the root elongation of mustard was significantly increased in HS and combined treatments (BC + HS, WA + HS). Additionally, BC + HS, WA + HS and WA 8.4% significantly decreased the toxicity of leachates to D. magna to the low-, or non-toxic levels. Our results suggest that the combination of amendments with HS can be a suitable remediation strategy for heavily contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Application of N-modified lignite and activated biochar to increase growth of summer wheat on nutrient-poor sandy soil

    Science.gov (United States)

    Schillem, Steffi; Schneider, Bernd-Uwe; Zeihser, Uwe; Hüttl, Reinhard F.

    2017-04-01

    Land degradation is recognized as the main environmental problem that adversely depletes soil organic carbon (SOC) and nitrogen (SON) stocks, which in turn directly affects the fertility and productivity of soils. Degraded soils and marginal lands are characterized by low fertility, poor physicochemical and biological properties and are almost free of soil organic matter (SOM), limiting their functional properties and, hence, their productivity. To enhance or restore the fertility of these soils, natural soil amendments such as biochar, lignite or humic acids can be added. A greenhouse experiment was carried out to investigate the effect of different application rates (5, 7.5, 11, 15, 28 t ha-1) of N-modified lignite (NL) incorporated in a nutrient-poor sandy soil from a recultivation site on plant growth, water use and nitrogen use efficiency of summer wheat. Additionally activated biochar (BC) was tested to see whether any differences exist between N-modified lignite and activated biochar at the same C-application rates. All variants with soil amendments displayed a much higher grain and straw yield and water use efficiency compared to the control sample. The differences were significant for the 28 t ha-1variant followed by the variant with 5 t ha-1 NL. With the 7.5 t ha-1 NL higher biomasses, water and nitrogen use efficiency could be achieved compared to the variant treated with BC at the same C-content. This study shows that even small amounts of N-modified lignite can increase growth, water and nitrogen use efficiency of summer wheat on marginal lands.

  17. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  18. Performance of Low-Volume Roads with Wearing Course Layer of Silty Sandy Soil Modified with Rice Husk Ash and Lime

    Energy Technology Data Exchange (ETDEWEB)

    Behak Katz, L.; Musso Laespiga, M.

    2016-07-01

    Rice husk ash (RHA) is a by-product of rice milling. Its use as soil stabilizer is a way to replace the final disposal with environmental benefit. However, RHA is not cementitious itself but when mixed with lime forms cements which improve the soil properties. A research of performance of a silty sandy soil modified with RHA and lime as wearing course layer of low-volume roads was conducted through two full-scale test sections with different pavements built in Artigas, northern Uruguay. The alkaline reactivity of RHA is low because the husk burning is not controlled. The soil-RHA-lime mix design was conducted according to the Thompson’s Method. The pavement test sections were monitored through deflection measures by Benkelman beam and observations of surface condition. The deflections decreased over time in both test sections due to the development of cementation of the study materials. After one year, the dust emission was reduced, the wet skid resistance of pavement surfaces improved and there was not rutting. The researched pavements have had a good performance under the existing traffic and environmental conditions, demonstrating that wearing course layer of silty sand modified with RHA and lime is an alternative to improve the condition of low-volume roads and to replace the final disposal of RHA, with environmental, social and economic benefits. (Author)

  19. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2016-06-01

    Full Text Available In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C from two feedstocks (rice husk and apple wood chips. Produced biochars were prepared at two diameters (1-2 mm and <1 mm and mixed with soil at a rate of 2% (w/w. Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.

  20. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M.

    2016-11-01

    In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks. (Author)

  1. Unsaturated hydraulic conductivity of sandy soil columns packed to different bulk densities and water uptake by plantroots

    NARCIS (Netherlands)

    Rossi-Pisa, P.

    1978-01-01

    This paper describes a laboratory metbod used to determine both the soil moisture retention curve and the unsaturated hydraulic conductivity in soil columns under transient flow conditions during evaporation.

  2. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area......+2012). Although a similar trend of increased water retention was observed from −100 MPa to −480 MPa, there was little difference among the different biochar rates. Increases in soil specific surface area for biochar treatments were consistent with rates and slurry application. Apparent hysteresis of the dry...

  3. Laboratory investigation on streaming potential for sandy soil and weathered rock; Shitsunai jikken ni yoru sashitsu jiban oyobi fuka ganban no ryudo den`i no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Shima, H. [OYO Corp., Tokyo (Japan)

    1996-10-01

    Laboratory experiment on sandy soil and weathered rock was conducted to clarify the generation mechanism of streaming potential due to underground fluid. Streaming potential is caused by underground fluid flow, namely by fluid flow in porous substances as electrokinetic phenomenon. In experiment, Inagi sand, Toyoura sand and strongly decomposed weathered granite were used. In Inagi and Toyoura sands, positive streaming potential was observed downstream in fluid flow. Streaming potential could be nearly determined as primary function of fluid velocity, and generated streaming potential increased with fluid resistivity. Streaming potential was higher in Inagi sand than Toyoura sand, probably depending on hydraulic radius, size of bleeding channel, and conductivity of sand surface. In weathered granite, negative streaming potential was measured. In the case of positive {zeta} potential, negative streaming potential is theoretically generated downstream in fluid flow. This experiment suggested possible generation of negative streaming potential in some kinds of ground. 2 refs., 6 figs., 1 tab.

  4. Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: a custom pressure plate apparatus and capillary bundle model.

    Science.gov (United States)

    Wei, Y; Durian, D J

    2013-05-01

    To probe the effects of hydrogel particle additives on the water-accessible pore structure of sandy soils, we introduce a custom pressure plate method in which the volume of water expelled from a wet granular packing is measured as a function of applied pressure. Using a capillary bundle model, we show that the differential change in retained water per pressure increment is directly related to the cumulative cross-sectional area distribution f(r) of the water-accessible pores with radii less than r. This is validated by measurements of water expelled from a model sandy soil composed of 2-mm-diameter glass beads. In particular, it is found that the expelled water is dramatically dependent on sample height and that analysis using the capillary bundle model gives the same pore size distribution for all samples. The distribution is found to be approximately log normal, and the total cross-sectional area fraction of the accessible pore space is found to be f(0)=0.34. We then report on how the pore distribution and total water-accessible area fraction are affected by superabsorbent hydrogel particle additives, uniformly mixed into a fixed-height sample at varying concentrations. Under both fixed volume and free swelling conditions, the total area fraction of water-accessible pore space in a packing decreases exponentially as the gel concentration increases. The size distribution of the pores is significantly modified by the swollen hydrogel particles, such that large pores are clogged while small pores are formed.

  5. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  6. Fate and transport of monoterpenes through soils. Part II: calculation of the effect of soil temperature, water saturation and organic carbon content.

    Science.gov (United States)

    van Roon, André; Parsons, John R; Krap, Lenny; Govers, Harrie A J

    2005-09-01

    This theoretical study was performed to investigate the influence of soil temperature, soil water content and soil organic carbon fraction on the mobility of monoterpenes (C10HnOn') applied as pesticides to a top soil layer. This mobility was expressed as the amount volatilized and leached from the contaminated soil layer after a certain amount of time. For this, (slightly modified) published analytical solutions to a one dimensional, homogeneous medium, diffusion/advection/biodegradation mass balance equation were used. The required input-parameters were determined in a preceding study. Because the monoterpenes studied differ widely in the values for their physico-chemical properties, the relative importance of the various determinants also differed widely. Increasing soil water saturation reduced monoterpene vaporization and leaching losses although a modest increase was usually observed at high soil water contents. Organic matter served as the major retention domain, reducing volatilization and leaching losses. Increasing temperature resulted in higher volatilization and leaching losses. Monoterpene mobility was influenced by vertical water flow. Volatilization losses could be reduced by adding a clean soil layer on top of the contaminated soil. Detailed insight into the specific behaviour of different monoterpenes was obtained by discussing intermediate calculation results; the transport retardation factors and effective soil diffusion coefficients. One insight was that the air-water interface compartment is probably not an important partitioning domain for monoterpenes in most circumstances. The results further indicated that biodegradation is an important process for monoterpenes in soil.

  7. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits...... in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites...... of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands...

  8. Dynamic analysis of slab track on multi-layered transversely isotropic saturated soils subjected to train loads

    Science.gov (United States)

    Zhan, Yongxiang; Yao, Hailin; Lu, Zheng; Yu, Dongming

    2014-12-01

    The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE < 1 and RG < 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.

  9. Generalized Density-Corrected Model for Gas Diffusivity in Variably Saturated Soils

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per

    2011-01-01

    models. The GDC model was further extended to describe two-region (bimodal) soils and could describe and predict Dp/Do well for both different soil aggregate size fractions and variably compacted volcanic ash soils. A possible use of the new GDC model is engineering applications such as the design......Accurate predictions of the soil-gas diffusivity (Dp/Do, where Dp is the soil-gas diffusion coefficient and Do is the diffusion coefficient in free air) from easily measureable parameters like air-filled porosity (ε) and soil total porosity (φ) are valuable when predicting soil aeration...... and the emission of greenhouse gases and gaseous-phase contaminants from soils. Soil type (texture) and soil density (compaction) are two key factors controlling gas diffusivity in soils. We extended a recently presented density-corrected Dp(ε)/Do model by letting both model parameters (α and β) be interdependent...

  10. Adsorption/desorption of copper by a sandy soil amended with various rates of manure, sewage sludge, and incinerated sewage sludge.

    Science.gov (United States)

    Alva, A K; Baugh, T J; Paramasivam, S; Sajwan, K S

    2005-01-01

    Organic amendments are sometimes applied to agricultural soils to improve the physical, chemical, and microbiological properties of the soils. The organic fractions in these soil amendments also influence metal reaction, particularly the adsorption and desorption of metals, which, in turn, determine the bioavailability of the metals and hence their phytotoxicities. In this study, a Quincy fine sandy (mixed, mesic, Xeric Torripsamments) soil was treated with 0 to 160 g kg(-1) rates of either manure, sewage sludge (SS), or incinerated sewage sludge (ISS) and equilibrated in a greenhouse at near field capacity moisture content for 100 days. Following the incubation period, the soil was dried and adsorption of copper (Cu) was evaluated in a batch equilibration study at either 0, 100, 200, or 400 mg L(-1) Cu concentrations in a 0.01M CaCl2 solution. The desorption of adsorbed Cu was evaluated by three successive elutions in 0.01M CaCl2. Copper adsorption increased with an increase in manure rates. At the highest rate of manure addition (160 g kg(-1) soil), Cu adsorption was two-fold greater than that by the unamended soil at all rates of Cu additions. With increasing rates of Cu additions, the adsorption of Cu decreased from 99.4 to 77.6% of Cu applied to the 160 g kg(-1) manure amended soil. The desorption of Cu decreased with an increase in rate of manure amendment. Effects of sewage sludge amendments on Cu adsorption were somewhat similar to those as described for manure additions. Likewise, the desorption of Cu was the least at the high rate of SS addition (160 g kg(-1)), although at the lower rates there was not a clear indication of the rate effects. In contrast to the above two amendments, the ISS amendment had the least effect on Cu adsorption. At the highest rate of ISS amendment, the Cu adsorption was roughly 50% of that at the similar rate of either manure or SS amendments, across all Cu rates.

  11. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  12. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    terrestrial invertebrates, the enchytraeid worm (Enchytraeus crypticus) and the collembolan (F. candida), in soils amended with up to 1,000 mg kg–1 of...Determination of Explosive Contaminated Soil Leachates to Daphnia magna Using an Adapted Toxicity Characteristic Leaching Procedure; ERDEC-TR-030; U.S. Army...Aerobic Biodegradation Potential of RDX, TNT, GAP, and NC. In Environmental Biotechnology: Principles and Applications ; Moo-Young, M., Anderson, W.A

  13. Measurement of ²²²Rn diffusion through sandy soil with solar cells photodiodes as the detector.

    Science.gov (United States)

    Shitrit, Y; Dody, A; Alfassi, Z B; Berant, Z

    2012-02-01

    An experimental system was developed to study the diffusion rate of radon (²²²Rn) gas through porous media as a function of soil porosity/grain size and soil water content. Columns with different grain sizes, soil water content and soil depths were used. The system used solar cells photodiodes as alpha (α) detectors. This new detector is highly efficient and low cost compared to other known detectors. Soil water content was found to be the most dominant factor affecting the ²²²Rn diffusion rate. A maximum diffusion rate value of (6.5 ± 0.07) × 10⁻⁶ m²/s was found in dry conditions. The minimum diffusion value of less than (3.9 ± 0.14) × 10⁻⁷ m²/s was found in 2% soil water content. The experimental results were compared with theoretical calculations done with the "GREEN equation". Two discrepancies were observed: the time to equilibrium state in the measurements was longer compare to the calculated values and the α count rates were lower in the experiment compared with the theoretical calculations. These results can be explained by the differences in the system geometry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Speciation of organic matter in sandy soil size fractions as revealed by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers

  15. Effects of soil management practices and tillage systems on soil moisture conservation and maize yield on a sandy loam in semiarid Kenya

    OpenAIRE

    Gicheru, P.T.; Gachene, C.K.K.; Mbuvi, J.P.

    2006-01-01

    Metadata only record This journal article illustrates the effect of seven different tillage and soil management practices on water conservation and the yield of maize. Maize is a vital crop in the semiarid parts of Africa, and the amount of water in the soil greatly affects the productivity of this plant. The soil moisture is affected by the different infiltration rates and structural stability of the soil resulting from the different techniques studied: bare with conventional tillage (BC)...

  16. Modelling long-term phophorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils

    NARCIS (Netherlands)

    Campillo, del M.C.; Zee, van der S.E.A.T.M.; Torrent, J.

    1999-01-01

    The sound management of agricultural soils that are heavily loaded with phosphorus (P) involves minimizing the losses of P responsible for eutrophication of surface waters, while ensuring enough P for crops. This paper describes a simple model to examine the compatibility of these two objectives in

  17. Validation of the PESTLA model: Field test using data from a sandy soil in Schaijk (the Netherlands)

    NARCIS (Netherlands)

    Boekhold AE; Swartjes FA; Hoogenboom FGG; van der Linden AMA

    1993-01-01

    Within the framework of the project "Validation of PESTLA" the Schaijk data set was used to analyse PESTLA model performance. The Schaijk data set contains field data on bentazon behaviour in a coarse textured humic gley soil cropped with maize. PESTLA model input parameters were derived

  18. State-space prediction of field-scale soil water content time series in a sandy loam

    NARCIS (Netherlands)

    Wendroth, O.; Rogasik, H.; Koszinski, S.; Ritsema, C.J.; Dekker, L.W.; Nielsen, D.R.

    1999-01-01

    The description of field soil water content time series can be affected by uncertainty due to measurement errors of the respective state variables, errors due to assumptions underlying the model, and errors in the determination of boundary conditions. In this study, a simple state-equation was

  19. Probability mapping of iron pan presence in sandy podzols in South-West France, using digital soil mapping.

    NARCIS (Netherlands)

    Richer-de-Forges, Anne C.; Saby, Nicolas P.A.; Mulder, V.L.; Larochea, B.; Arrouaysa, B.; Arrouaysa, D.

    2017-01-01

    This work evaluated two different digital soil mapping methods for mapping the presence of iron pans in South-West France. The presence of iron pans limit rooting depth, thereby affecting available water content for plants and increasing vulnerability of trees to storms. In some cases, it may also

  20. Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: An application of the ROMUL model

    NARCIS (Netherlands)

    Nadporozhskaya, M.A.; Mohren, G.M.J.; Chertov, O.G.; Komarov, A.S.; Mikhailov, A.V.

    2006-01-01

    We applied the simulation model ROMUL of soil organic matter dynamics in order to analyse and predict forest soil organic matter (SOM) changes following stand growth and also to identify gaps of data and modelling problems. SOM build-up was analysed (a) from bare sand to forest soil during a primary

  1. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis

    Science.gov (United States)

    Abdalla, Khatab; Chivenge, Pauline; Ciais, Philippe; Chaplot, Vincent

    2016-06-01

    The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon redistributions within soils and changes in soil CO2 emissions. Yet, discrepancies exist on the impact of tillage on soil CO2 emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications totaling 174 paired observations comparing CO2 emissions over entire seasons or years from tilled and untilled soils across different climates, crop types and soil conditions with the objective of quantifying tillage impact on CO2 emissions and assessing the main controls. On average, tilled soils emitted 21 % more CO2 than untilled soils, which corresponded to a significant difference at P 3 %). Finally, nitrogen fertilization and crop residue management had little effect on the CO2 responses of soils to no-tillage. These results suggest no-tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.

  2. Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China

    Science.gov (United States)

    Wang, Yunqiang; Shao, Ming'an; Liu, Zhipeng; Horton, Robert

    2013-04-01

    SummarySaturated hydraulic conductivity (Ks) is an important soil property that shows a high degree of spatial heterogeneity. There is a lack of research that investigates and determines Ks at a regional scale, due to the challenges associated with the required intensive sampling. To determine the closely correlated factors affecting Ks at a regional scale and to then generate a regional distribution map of Ks, we selected 382 sampling sites across the Loess Plateau of China (620,000 km2) and collected undisturbed and disturbed soil samples from two soil layers (0-5 and 20-25 cm). We found that both surface Ks and subsurface Ks had log(base 10)-normal distributions, and demonstrated strong spatial variability (CV = 206% and 135%, respectively). Surface LogKs was most closely correlated with LogSand, LogSilt, LogSG (slope gradient), LogSSWC (saturated soil water content), vegetation coverage and land use; while subsurface LogKs was correlated with LogClay, SSWC, LogSG, LogAltitude, LogGY (growth year) and land use. Geostatistical analysis indicated that semivariograms of surface and subsurface Log Ks could be best fitted by an isotropic exponential model, with effective ranges of 204 km and 428 km, respectively. Distribution maps of Ks produced by kriging indicated a pronounced spatial pattern and demonstrated an obvious spatial depth gradient. The spatial distribution patterns of Ks at a regional scale in the loessial soils of China comprehensively reflected soil hydraulic properties and the combined effects of soil texture, vegetation, topography and human activities.

  3. Comparison of water distribution mechanisms under two localized irrigation techniques (Drip Irrigation & Buried Diffuser) for one week irrigation period in a sandy soil of southeastern Tunisia

    Science.gov (United States)

    Gasmi, Ines; Kodešová, Radka; Mechergui, Mohamed; Nikodem, Antonín; Moussa, Mohamed

    2017-04-01

    The majority of agricultural ecosystems in the Mediterranean basin of northern Africa suffer from water shortage and positions these regions in a highly vulnerable to climate change. In arid regions of Tunisia and exactly in the Southeastern part, during each growing season, plant productivity in sandy-loamy soils is dramatically reduced by limited availability of soil water and nutrients. Thus, highly permeable soils are unable to retain adequate water and nutrient resource in the plant root zone. Moreover, the investments of supplemental irrigation and agricultural amendments of additional fertilization are not sustainable due to the leaching of water supplies and nutrients, which severely limit agricultural productivity. In addition, inadequate soil water distribution, costly irrigation and fertilization leads to negative responses to plant nutrients added to highly permeable soils. That's why we should use irrigation techniques with high water use efficiency. This paper focuses on the comparison between two localized irrigation techniques which are the Drip Irrigation (DI) and the Buried Diffuser (BD) that has the same flow rates (4 l/h). The BD is buried at 15 cm depths. Experimental data was obtained from Smar-Médenine located in South-East of Tunisia. The water distribution at the soil surface for BD is very important about 195 cm2 while for the DI is about 25.12 cm2. The HYDRUS 2D/3D model helped to evaluate the water distribution and compare the water balance obtained with those two irrigation techniques for one week irrigation period. There is a rapid kinetic which has a duration of 3 hours (irrigation time) and a slow kinetic which is the result of the water distribution in the soil, the plant uptake and the effect of climatic condition. There are two mechanisms that affect the two irrigation techniques: the water distribution and the position of irrigation system. As a result, irrigation with BD goes dipper in the soil. The transmission zone for this

  4. Acid precipitation effects on soil pH and base saturation of exchange sites

    Science.gov (United States)

    W. W. McFee; J. M. Kelly; R. H. Beck

    1976-01-01

    The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...

  5. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang

    2010-01-01

    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  6. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    OpenAIRE

    Mohammed N. A. Hasaneen; Aya M. Omer

    2016-01-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron m...

  7. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaelae, Kim, E-mail: kim.yrjala@helsinki.f [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland); Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola [METROPOLIA University of Applied Science, Vantaa (Finland); Sipilae, Timo P. [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland)

    2010-05-15

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  8. Ideal and saturated soil fertility as bench marks in nutrient management; 1 outline of the framework

    NARCIS (Netherlands)

    Janssen, B.H.; Willigen, de P.

    2006-01-01

    This paper presents a framework for nutrient management that takes sustainable soil fertility, environmental protection and balanced plant nutrition as starting points, and integrates concepts from plant physiology, soil chemistry and agronomy. The framework is meant as a tool that can be applied

  9. Aqueous Iron-Sulfide Clusters in Variably Saturated Soil Systems: Implications for Iron Cycling and Fluid Flow

    Science.gov (United States)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2008-12-01

    Iron and sulfur cycling is an important control on contaminant fate and transport, the availability of micronutrients and the physics of water flow. This study explores the effects of soil structure (i.e. layers, lenses, macropores, or fractures) on linked biogeochemical and hydrological processes involving Fe and S cycling in the vadose zone using packed soil columns. Three laboratory soil columns were constructed: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. Both upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. Water samples extracted by lysimeter were analyzed for reduced species (including total sulfide, Fe(II), and FeSaq) voltammetrically using a mercury drop electrode. In addition to other reduced species, aqueous FeS clusters (FeSaq) were observed in two of the columns, with the greatest concentrations of FeSaq occurring in close proximity to the soil interface in the layered column. To our knowledge, this is the first documentation of aqueous FeS clusters in partially saturated sediments. The aqueous nature of FeSaq allows it to be transported instead of precipitating and suggests that current conceptual models of iron-sulfur cycling may need to be adapted to account for an aqueous phase. The presence of iron-rich soil aggregates near the soil interface may indicate that FeS clusters played a critical role in the formation of soil aggregates that subsequently caused up to an order of magnitude decrease in hydraulic conductivity.

  10. Hydromechanical behavior of a quasi-saturated compacted soils on drying-wetting paths-experimental and numerical approaches

    Directory of Open Access Journals (Sweden)

    Andriantrehina Soanarivo Rinah

    2016-01-01

    Full Text Available This paper presents an experimental and numerical investigation funded by the French National Project “Terredurable”, which is devoted to the study of soils in quasi-saturated state. The experimental study is focused on the behavior of compacted soils on drying-wetting paths and the macroscopic effect of the drying path on shrinkage and cracking. Furthermore, a protocol for image analysis of crack in drying tests was developed. Two approaches are used for the measurement of surface strains and identification of the ultimate stress before the formation of the first crack, using VIC-2D software, and for the monitoring of crack evolution, using ImageJ software. The aim of the numerical approach is to reproduce the drying experiments with a finite difference code (FLAC 3D, in order to understand the stress conditions that can explain crack initiation, without modeling the crack formation itself.

  11. The degree of phosphorus saturation of agricultural soils in Germany: Current and future risk of diffuse P loss and implications for soil P management in Europe.

    Science.gov (United States)

    Fischer, P; Pöthig, R; Venohr, M

    2017-12-01

    Decades of intensive agricultural production with excessive application of P fertilizer have resulted in the accumulation of P in soils, threatening water bodies in most industrialized countries with eutrophication. In our study, we elucidated the risk of P loss of German agricultural soils by transforming provided monitoring data of plant-available P determined by the calcium-acetate-lactate (PCAL) and double-lactate method (PDL) into the degree of phosphorus saturation (DPS). As water-soluble phosphorus (WSP) is correlated to DPS, we derived a pedotransfer function (PTF) between PCAL and WSP for different soil types. Considering all soils together resulted in WSP=0.1918×PCAL (R(2)=0.80, n=54). Subsequently, risk parameters DPS and EPC0 were calculated from PCAL and PDL monitoring data (n>337,000) by using the determined PTF and soil type-independent correlations with WSP, as published in an earlier study. Calculated DPS values from monitoring data indicated high risks of dissolved P loss for >76% of German arable soils. Recent suggestions by the Association of German Agricultural Analytical and Research Institutes (VDLUFA) to reduce recommended PCAL levels are crucial for the reduction of P loss risks in the future. The accuracy of predicted DPS and EPC0 values by CAL and other methods used in Europe to estimate plant-available P is limited by the soil type-dependency of these methods. Consequently, we recommend considering WSP as an agri-environmental soil P test across Europe. Our results indicate that a WSP level in soils can be defined that constitutes a reasonable compromise between the securing of agronomic production and the fulfillment of environmental goals. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Respuesta del trigo a la fertilización nitrogenada y nitroazufrada en suelos arenosos Wheat response to nitrogen and nitrogen with sulfur fertilization in sandy soils

    Directory of Open Access Journals (Sweden)

    Mirian Barraco

    2009-12-01

    (S additions. However, the available information is not consistent for the diagnosis and analysis of the marginal contribution of S on wheat grain responses in combination with N fertilization. Thus, the objective of this study was to quantify the yield response of dryland wheat crops to N and NS fertilization and to determine the relationship between yield response and several soil properties in sandy soils. The study consisted in 34 field experiments within the semiarid and subhumid sandy pampas region (Argentina managed under no-tillage practices. Three treatments were evaluated: i control (without fertilization, ii 140 kg of N ha-¹ [N-NO3 soil (0-40 cm + N fertilizer], iii 140 kg of N ha-¹ [N-NO3 soil (0- 40 cm + N fertilizer] + 12 kg of S ha-¹. A positive response to N fertilization was observed in every experimental site. Mean grain yield response to the application of N was 949 kg ha-¹. Although the mean grain yield response to S fertilization was 232 kg ha-¹, only 38% of the sites (13 sites showed a significant response to this treatment. Crop response to S fertilization was not related to soil organic matter (p = 0.61, sand content (p = 0.90, soil extractable S-S0(4 ²-(p = 0.29, nor soil N-N0(3 -(p = 0.47 levels. Furthermore, it decreased with increasing maximum grain yields and it was positively related to crop responses to N fertilization. We conclude that in coarse textured soils with significant N limitations, wheat responses to S fertilization are greater and more common in low productivity sites.

  13. Processes, mechanisms, parameters, and modeling approaches for partially saturated flow in soil and rock media; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Narasimhan, T.N. [Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times.

  14. Estimation of Hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing

    KAUST Repository

    Jonard, François

    2015-06-01

    In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8-2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green\\'s functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.

  15. Field satured hydraulic conductivity estimation on vinasse trated soil Estimación de la conductividad hidráulica saturada in situ en un suelo tratado con vinaza

    Directory of Open Access Journals (Sweden)

    Menjívar Flórez Juan Carlos

    2008-06-01

    Full Text Available Changes for soil satured hydraulic conductivity were estimated by using the “falling head” and “point source” methods. The soil type trated with vinasse was Ustipsamment Typic Sandy Isohipertermic located at Colombia National University experimental center (3° 25' 39.81"; N, 76° 25' 45.70"; W; 953 m.s.n.m., 24 °C, 60% HR. and 1020 mm.. The used field methods did not show statistical differences for the estimation of the satured hydraulic conductivity (p<0.05, however a decreasing exponential relationship between hydraulic conductivity and vinasse concentration was found. The hydraulic conductivity was reduced about of 50% from the initial value to 2° brix in sandy soil, 5.3° brix to sandy loam soil and 6.1° brix to clay loam.Key words: Point source method; Simulation models; Falling head method; Irrigation.Se estimaron los cambios en la conductividad hidráulica saturada mediante las técnicas de “caída de carga” y “fuente localizada de agua” en un suelo Ustipsamment típico arenoso isohipertérmico con dosis diluidas de vinazas. La investigación se realizó en la Universidad Nacional de Colombia Sede Palmira (3° 25'39.81"; N y 76° 25'45.70"; O, 953 m.s.n.m, 24 °C y 60% HR, 1.020 mm. Los dos métodos no difirieron de forma significativa (p<0.05 en la estimación de la conductividad hidráulica saturada promedio, la cual se redujo de forma exponencial al incrementar la concentración de vinaza. Los resultados obtenidos nos indican una reducción de la conductividad hidráulica del 50% para una concentración de vinaza de 2° Brix en un suelo arenoso, 5.3° Brix en el suelo franco arenoso y 6.1° Brix en el suelo franco arcilloso.Transport properties and pore-network structure in variably-saturated Sphagnum peat soil

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Dissanayaka, Shiromi Himalika; Kawamoto, K.

    2016-01-01

    ) of layers in peat soil from two profiles were measured under different moisture conditions. A two-region Archie's Law (2RAL)-type model was applied successfully to the four properties; the reference point was taken at -9.8kPa of soil-water matric potential where volume shrinkage typically started to occur...... a need for specific hydraulic functions for peat soil. The 2RAL model for Dg agreed well with measured data, and performed better than existing unimodal models. To facilitate use of the 2RAL for Dg, we developed a simple predictive expression for Dg at the reference point. The pore-network tortuosity......Gas and water transport in peat soil are of increasing interest because of their potentially large environmental and climatic effects under different types of land use. In this research, the water retention curve (WRC), gas diffusion coefficient (Dg) and air and water permeabilities (ka and kw...

  16. Microbial clogging of saturated soils and aquifer materials: Evaluation of mathematical models

    Energy Technology Data Exchange (ETDEWEB)

    Vandevivere, P.; Baveye, P.; Sanchez de Lozada, D. [Cornell Univ. Ithaca, NY (United States)

    1995-09-01

    Bacterial reductions of the saturated hydraulic conductivity of natural porous media appear to be caused by a wide range of mechanisms, few of which have been carefully studied. Nevertheless, a number of mathematical models have been developed in recent years to describe the microbial clogging process, based on the assumption that bacterial cells form impermeable biofilms uniformly covering pore walls. In the present study, two independent sets of experimental data available in the literature are used to test the existing bioclogging models. To broaden the scope of the assessment, an additional model, initially developed to describe the deep filtration of suspended colloids, is also included in the comparisons. Analysis of the experimental data reveals a clear relationship between the texture of a porous medium and the ability of a given level of biomass to reduce its saturated hydraulic conductivity at equal biomass, clogging is much more pronounced in fine-textured materials than in coarse-textured ones. In addition, the results of the model comparisons suggest that none of the existing models can predict satisfactorily the saturated hydraulic conductivity reductions observed in fine sands, whereas they fare somewhat better in coarser materials. It is argued that this inadequacy of existing models is due to the continuous biofilm assumption on which they are founded. Indeed, a simplistic model that assumes the biomass to be distributed as plugs instead of as continuous biofilms produces quantitatively much improved predictions of the saturated hydraulic conductivity reductions. Reference is made to the consequences of this observation in terms of future research. 50 refs., 4 figs.

  17. Rain-Impact-Entrainment of Chemicals and Soil into Overland Flow in Saturated Areas: Theory and Experiments

    Science.gov (United States)

    Walter, M.; Gao, B.; Parlange, J.; Steenhuis, T. S.

    2004-12-01

    Overland flow from riparian and other frequently saturated areas is a potentially important transport pathway between the landscape and aquatic ecosystems. Both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, however, current transport models either do not consider the two processes together, or use "effective" parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with experimental data. One unique aspect of this study is that all the parameters needed to apply the model to our experiments were either directly measured or previously published, that is, there was no model "calibration" or "fitting." Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or "exchange layer," via diffusion. The exchange layer depth and transfer processes are derived from the "shield" concept in the Rose soil erosion model (e.g., Rose, 1985, Adv. Soil Sci. 2,1-63.). The model's governing equations were solved numerically and the results agreed well with experimental data (R2 > 0.90). The model was also successfully tested against previously published experimental data by Leman and Ahuja (1983, J. Environ. Qual. 12(1), 34-40); these data were unique because they provided chemical concentrations in the soil profile as well as in the overland flow. This model provides insights into important processes relevant to landscape-river interactions and water quality protection.

  18. Soil base saturation combines with Beech Bark Disease to influence composition and structure of Sugar Maple-Beech forests in an acid rain-impacted region

    Science.gov (United States)

    Lawrence, Gregory B.; McDonnell, Todd C.; Sullivan, Timothy J.; Dovciak, Martin; Bailey, Scott W.; Antidormi, Michael; Zarfos, Michael R.

    2017-01-01

    Sugar maple, an abundant and highly valued tree species in eastern North America, has experienced decline from soil calcium (Ca) depletion by acidic deposition, while beech, which often coexists with sugar maple, has been afflicted with beech bark disease (BBD) over the same period. To investigate how variations in soil base saturation combine with effects of BBD in influencing stand composition and structure, measurements of soils, canopy, subcanopy, and seedlings were taken in 21 watersheds in the Adirondack region of NY (USA), where sugar maple and beech were the predominant canopy species and base saturation of the upper B horizon ranged from 4.4 to 67%. The base saturation value corresponding to the threshold for Al mobilization (16.8%) helped to define the species composition of canopy trees and seedlings. Canopy vigor and diameter at breast height (DBH) were positively correlated (P soils, soil-Ca depletion and BBD may have created opportunities for gap-exploiting species such as red maple and black cherry, whereas in high-base saturation soils, sugar maple dominated the canopy. Where soils were beginning to recover from acidic deposition effects, sugar maple DBH and basal area increased progressively from 2000 to 2015, whereas for beech, average DBH did not change and basal area did not increase after 2010.

  19. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  1. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  2. Efficacy of biochar amendments in limiting the transport of pathogenic bio-colloids in soils of different textures

    Science.gov (United States)

    Biochar amendment has been shown to affect bacterial transport in soils. The effect of pyrolysis temperature of the added poultry litter biochar on the transport of Escherichia coli O157:H7 and Salmonella typhimurium through fine sand and sandy loam soils were investigated in water-saturated column ...

  3. Metribuzin transport in undisturbed soil cores under controlled water potential conditions: experiments and modelling to evaluate the risk of leaching in a sandy loam soil profile.

    Science.gov (United States)

    Pot, Valérie; Benoit, Pierre; Le Menn, Mona; Eklo, Ole-Martin; Sveistrup, Tore; Kvaerner, Jens

    2011-04-01

    Mobility of pesticides in soils is often evaluated and characterised in the surface soil layers rather than at different depths where soil characteristics such as soil organic matter, microbial biomass or clay contents can strongly change pesticide behaviour. The objective of this work was to characterise the reactivity of the herbicide metribuzin in three main soil horizons found in the 0-80 cm profile of an alluvial soil of southern Norway under dynamic transport conditions. A laboratory infiltrometer was used to perform percolation experiments in soil cores sampled in the three horizons Ap, Bw and Bw/C, at a fixed matric potential of -10 cm, thus preventing pores of equivalent radii higher than 0.015 cm from contributing to water flow. The physical equilibrium transport model correctly described the transport of water tracer (bromide). The distribution coefficient K(d) values were estimated to be 0.29, 0.17 ± 0.02 and 0.15 ± 0.00 L kg(-1) for horizons Ap, Bw and Bw/C respectively, in close agreement with batch sorption data. Degradation was found only for the surface horizon with a short half-life of about 5 days, in disagreement with longer half-lives found in batch and field degradation data. For all horizons, a kinetic sorption model was needed for better description of metribuzin leaching. Chemical non-equilibrium was greatest in the Bw horizon and lowest in the Bw/C horizon. Overall, metribuzin exhibited a greater mobility in the deeper horizons. The risk of metribuzin transfer to groundwater in such alluvial soils should therefore be considered. Copyright © 2011 Society of Chemical Industry.

  4. Agronomic performance and chemical response of sunflower ( Helianthus annuus L.) to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Energy Technology Data Exchange (ETDEWEB)

    Helmy, A. M.; Fawzy Ramadan, M. F.

    2009-07-01

    Sunflower ( Helianthus annuus L.) is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt) during the 2005 season. The objective of this research was to determine the effect of organic nitrogen (ON) sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS) as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macro nutrients by sunflowers grown on sandy soil.The treatments of chicken manure (CM) and a mixture of farmyard manure (FYM) with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR)> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N), phosphorus (P) and potassium (K) by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control. (Author) 58 refs.

  5. Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil.

    Science.gov (United States)

    Khan, Naeem; Bano, Asghari

    2017-09-21

    The present attempt was made to study the role of exogenously applied salicylic acid (SA) and putrescine (Put) on the phytoremediation of heavy metal and on the growth parameters of chickpea grown in sandy soil. The SA and Put were applied alone as well as in combination with plant growth promoting rhizobacteria (PGPR). The PGPRs, isolated from the rhizosphere of chickpea were characterized on the basis of colony morphology and biochemical traits through gram staining, catalase and oxidase tests, and identified by 16S-rRNA gene sequencing as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium. The chickpea seeds were soaked in 24 h fresh cultures of isolates for 2-3 h prior to sowing. The growth regulators (PGRs), SA and Put (300 mg/L), were applied to the seedlings as foliar spray at 3-leaf stage. The result revealed that plants treated with SA and Put alone or in combination with PGPRs, significantly enhanced the accumulation of heavy metals in plant shoot. PGPR induces Ni accumulation in sensitive variety and Pb in both the varieties, the PGR in combination augment the bioremediation effects of PGPR and both sensitive and tolerant variety showed significant accumulation of Ni, Cd and Pb. SA was more effective in accumulating Ni and Cd whereas, significant accumulation of Pb was recorded in Put. PGPRs, further augmented the PGRs induced accumulation of heavy metals and macronutrients in chickpea shoot and in rhizosphere. SA increased the proline content of tolerant variety while decreasing the lipid peroxidation and proline content of the sensitive variety but decreased the stimulating effect of PGPR in proline production. Interactive effects of PGPR and PGRs is recommended for inducing phytoremediation in chickpea plants under drought stress.

  6. Spatiotemporal stability of an ammonia oxidizing community in a nitrogen-saturated forest soil

    NARCIS (Netherlands)

    Laverman, A.M.; Speksnijder, A.G.C.L.; Braster, M.; Kowalchuk, G.A.; Verhoef, H.A.; Verseveld, H.W.

    2001-01-01

    Elevated levels of nitrogen input into various terrestrial environments in recent decades have led to increases in soil nitrate production and leaching. However, nitrifying potential and nitrifying activity tend to be highly variable over space and time, making broad-scale estimates of nitrate

  7. Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil

    NARCIS (Netherlands)

    Laverman, A.M.; Speksnijder, Arjen; Braster, M.; Kowalchuk, G.A.; Verhoef, H.A.; Van Verseveld, H.W.

    2001-01-01

    Elevated levels of nitrogen input into various terrestrial environments in recent decades have led to increases in soil nitrate production and leaching. However, nitrifying potential and nitrifying activity tend to be highly variable over space and time, making broad-scale estimates of nitrate

  8. The effect of Sinabung volcanic ash and rock phosphate nanoparticle on CEC (cation exchange capacity) base saturation exchange (K, Na, Ca, Mg) and base saturation at Andisol soils Ciater, West Java

    Science.gov (United States)

    Yuniarti, Anni; Arifin, Mahfud; Sofyan, Emma Trinurasi; Natalie, Betty; Sudirja, Rija; Dahliani, Dewi

    2018-02-01

    Andisol, soil orders which covers an upland area dominantly. The aim of this research is to know the effect between the ameliorant of Sinabung volcanic ashes with the ameliorant of rock phosphatenanoparticle towards CEC and base saturation exchange (K, Na, Ca, Mg) and the base saturation on Ciater's Andisols, West Java. A randomized complete block design (RCBD) factorial with two factors was used in this research. The first factor is the volcanic ash and the second factor is rock phosphate which consists of four levels each amount of 0%, 2.5%, 5%, 7.5% with three replications. The result showed that there was no interaction between volcanic ash and rock phosphate nanoparticle formed in first month and fourth month towards the improvement of CEC and saturation base exchange rate unless magnesium cation exchange increased in fourth month. There was independent effect of volcanic ash formed nanoparticles towards base saturation exchange increased for 5% dose. There was independent effect of rock phosphate formed nanoparticles towards base saturation exchange and increased for 5% dose. The dose combination of volcanic ashes 7.5% with phosphate rock, 5% increased the base saturation in the first month incubation.

  9. The impact of long-term application of inorganic nitrogen fertilizers and manure on changes of selected properties of organic matter in sandy loam soil

    Directory of Open Access Journals (Sweden)

    Barbara MURAWSKA

    2017-09-01

    Full Text Available The aim of the research was to assess the effect of long-term application of different doses of nitrogen fertilizers with or without manure to changes in the total organic carbon content, total nitrogen content, evaluation of dissolved organic carbon content and the value of absorbance coefficient (A4/6 in sandy loam soil. The base of research was the long-term field experiment, established in 1979 at the Wierzchucinek Experimental Station close to Bydgoszcz city - Poland. The experiment was carried out in the three-course crop rotation, potato, rye, rye in randomized split-plot design. The experimental treatments were four levels of N fertilizers in 0, 47, 93, and 140 kg*ha-1*yr-1 (N0, N1, N2, N3 as a 1st factor of experiment, and the same doses of N fertilizers with farmyard manure application (30 t*ha-1 as a 2nd factor. After 36 years of experiment the content of total organic carbon was 26% lower and the content of total nitrogen 13% higher compared to the values determined before the experiment foundation (1979. The consequence of changes in the content of organic carbon and total nitrogen, are changes in the ratio of organic carbon content and total nitrogen content. It was noticed that the use of manure and different nitrogen doses resulted in a decrease of organic carbon content and total nitrogen content value. After application of different nitrogen doses, organic carbon content ranged from 122.4 to 152.2 mg*kg-1. The same nitrogen doses applied simultaneously with farmyard manure increased the organic carbon content, which ranged from 133.5 to 166.7 mg*kg-1. The changes of the organic carbon content did not effect on percentage of this fraction in the total organic carbon. Percentage of organic carbon content in total organic carbon content was on averaged 1.6%. After the application of different nitrogen doses, humic acids of analyzed soils were characterized by lower average value of A4/6 (5.4. However, the application of nitrogen

  10. Soil Water Retention and Relative Permeability for Full Range of Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2010-09-28

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.

  11. Dissipation behavior of phorate and its toxic metabolites in the sandy clay loam soil of a tropical sugarcane ecosystem using a single-step sample preparation method and GC-MS.

    Science.gov (United States)

    Ramasubramanian, Thirumalaiandi; Paramasivam, Mariappan

    2016-10-01

    The dissipation of phorate in the sandy clay loam soil of tropical sugarcane ecosystem was studied by employing a single-step sample preparation method and gas chromatography with mass spectrometry. The limit of quantification of the method was 0.01 μg/g. The recoveries of phorate, phorate sulfoxide, phorate sulfone, and phorate oxon were in the range 94.00-98.46% with relative standard deviations of 1.51-3.56% at three levels of fortification between 0.01 and 0.1 μg/g. The Half-life of phorate and the total residues, which include phorate, phorate sulfoxide and phorate sulfone, was 5.5 and 19.8 days, respectively at the recommended dose of insecticide. Phorate rapidly oxidized into its sulfoxide metabolite in the sandy clay loam soil. Phorate sulfoxide alone accounted for more than 20% of the total residues within 2 h post-application and it was more than 50% on the fifth day after treatment irrespective of the doses applied. Phorate sulfoxide and phorate sulfone reached below the detectable level on 105 and 135 days after treatment, respectively as against 45 days after treatment for phorate residues at the recommended dose. Thus, the reasonably prolonged efficacy of phorate against soil pests may be attributed to longer persistence of its more toxic sulfoxide and sulfone metabolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  13. Simulation of Hydraulic Fracture in Unsaturated Soils with High Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Tielin Chen

    2014-01-01

    Full Text Available A numerical simulation approach of hydraulic fracture process, considering the couplings of the stress distribution, the fluid flow of the water-air mixture, the compression and dissolution of air, and the element damage evolution, has been developed to investigate the mechanisms of crack initiation and propagation in porous media during hydraulic fracturing. The concept of homogenized pore fluid has been adopted to represent the water air mixture. A large number of numerical analysis on hydraulic fracturing in clay with incipient injection slot have been carried out to study the mechanism of hydraulic fracturing in unsaturated soil with the characteristic of critical model I type of crack loading using stress intensity factor KIc. The results provide a numerical picture depicting the mechanisms of crack initiation and propagation during hydraulic fracturing. The numerical results are in good agreement with the experimental results, which confirms the adequacy and the power of the numerical approach.

  14. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    Science.gov (United States)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R

  15. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    OpenAIRE

    Ndiaye, B.; Esteves, Michel; Vandervaere, J.P.; Lapetite, Jean-Michel; Vauclin, Michel

    2005-01-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h(-1), on 10 runoff microplots of 2 m(2), five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hy...

  16. The estimation of evapotranspiration from wetland sites - the impact of soil physical properties near saturation

    Science.gov (United States)

    Frahm, Enrico; Tiemeyer, Bärbel; Salzmann, Thomas; Miegel, Konrad

    2010-05-01

    The evapotranspiration (ET) is a significant process within the soil-plant-atmosphere continuum (SPAC). Especially on wetland sites ET is an important component of the water balance due to the high biomass and ET of wetland vegetation. Thus, comprehensive knowledge of all hydrological processes is the basis for a sustainable management of wetlands. Determining wetland ET still suffers from large uncertainties as it is notoriously difficult to measure directly due to its inherent complexities and small scale spatial and temporal variations. Consequently, there is a wide range of approaches to derive evapotranspiration losses indirectly from other parameters, but all have their significant assets and drawbacks. One of the commonly used methods is the interpretation of diurnal ground water fluctuations (DGF), which has been successfully applied to estimate the ET of phreatophytic vegetation (ETGW). The basic idea behind this method is the assumption of a directly coupled system of incoming solar radiation, vegetation ET, water transport within the plants and water uptake by the root system of the phreatophytic vegetation from both the vadose zone and the groundwater. Such a system is characterised by a strong diurnal cycle and significant DGFs. In the presented study, DGFs measured in a rewetted riverine fen in North-Eastern Germany were analysed to estimate ETGW. With maximum daily values of 5.9 mm for reed (Phragmites australis) and 7.9 mm for willow (Salix spp.), the method yields generally plausible results. However, a comparison of the time series of ETGW and ET according to the Penman-Monteith method (ETPM) shows considerable discrepancies. Despite continuous sufficient water supply the ETGW results fall up to 90 % below the results of ETPM. The aim of the presented study was to identify processes explaining these differences. As a first step, we could identify a clear connection between these errors and the hydrological conditions: The difference between ETGW

  17. Excess of organic carbon in mountain spruce forest soils after bark beetle outbreak altered microbial N transformations and mitigated N-saturation

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Jiří; Tahovská, K.; Kopáček, Jiří; Šantrůčková, H.

    2015-01-01

    Roč. 10, č. 7 (2015), e0134165 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : N-saturation * bark beetle outbreak * soil microbial biomass * nitrification * ammonification * DOC * nitrate Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015

  18. An investigation into the use of a mixture model for simulating the electrical properties of soil with varying effective saturation levels for sub-soil imaging using ECT

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R R; Newill, P A; Podd, F J W; York, T A; Grieve, B D; Dorn, O, E-mail: Robert.Hayes@postgrad.manchester.ac.uk

    2010-11-01

    A new visualisation tool is being developed for seed breeders, providing on-line data for each individual plant in a screening programme. It will be used to indicate how efficiently each plant utilises the water and nutrients available in the surrounding soil. This will facilitate early detection of desirable genetic traits with the aim of increased efficiency in identification and delivery of tomorrow's drought tolerant food crops. Visualisation takes the form of Electrical Capacitance Tomography (ECT), a non-destructive and non-intrusive imaging technique. Measurements are to be obtained for an individual plant thus allowing water and nutrient absorption levels for an individual specimen to be inferred. This paper presents the inverse problem, discusses the inherent challenges and presents the early experimental results. Two mixture models are evaluated for the prediction of electrical capacitance measurement data for varying effective soil saturation levels using a finite element model implemented in COMSOL Multiphysics. These early studies have given the research team an understanding of the technical challenges that must now be addressed to take the current research into the world of agri-science and food supply.

  19. Variabilidade espacial das características químicas do solo e produtividade de milho em um Argissolo Vermelho-Amarelo distrófico arênico Spatial variability of chemical soil properties and corn yield on a sandy loam soil

    Directory of Open Access Journals (Sweden)

    V. R. Silva

    2003-12-01

    soil properties can help plan and optimize research studies, and be used for commercial agricultural cultivation aiming at precision agriculture. The objective of this study was to evaluate the spatial variability and dependence of several chemical soil properties and of corn yield on a sandy loam Paleudalf. The area was treated with lime and phosphorus by plowing the fertilizers into the soil along with oat residues two months prior to soil sampling. To quantify the soil properties in the field, soil samples were collected at 6 m intervals in the east-west direction and 6 m in the north-south direction. The soil pH in water, SMP index, available phosphorus, exchangeable cations (potassium, calcium, magnesium, and aluminum, organic matter percentage, and corn yield were determined. The data were analyzed with descriptive statistics and geostatistics, by fitting semivariogram models. The spatial dependence of all studied plant and soil properties was moderate to strong. The spherical model was adjusted for pH in water, SMP value, available phosphorous, and base saturation; the gaussian model described the spatial dependence of exchangeable potassium and organic matter; and the exponential model was adjusted to corn yield and to exchangeable cations (aluminum, calcium, and magnesium, H + Al. The range of spatial dependence was 4.5 m for corn yield and very close to exchangeable aluminum, aluminum saturation, and H + Al. The range for soil pH in water, SMP value, exchangeable cations (potassium, calcium, and magnesium, effective CTC, and base saturation was 20 m. Recent soil management operations probably had a part in the increased variability of soil characteristics like phosphorus and potassium.

  20. The differences in crown formation during the splash on the thin water layers formed on the saturated soil surface and model surface

    Science.gov (United States)

    Mazur, Rafał; Polakowski, Cezary; Bieganowski, Andrzej

    2017-01-01

    Splash is the first stage of a negative phenomenon–soil erosion. The aim of this work was to describe the crown formation quantitatively (as part of the splash erosion) and compare the course of this phenomenon on the thin water film formed on a smooth glass surface and on the surface of saturated soil. The height of the falling water drop was 1.5 m. The observation of the crowns was carried out by high-speed cameras. The static and dynamic parameters of crown formation were analysed. It was found that the crowns formed on the water film covering the saturated soil surface were smaller and the time intervals of their existence were shorter. In addition, the shapes of the crowns were different from those created on the water layer covering the glass surface. These differences can be explained by the slightly different values of surface tension and viscosity of the soil solution, the greater roughness of the soil surface and the lower thickness of the water film on the soil surface. PMID:28750072

  1. Frações de zinco em solo arenoso e suas relações com disponibilidade para Cynodon spp cv. Tifton-85 Zinc fractions in a sandy soil and its relations with availability to Cynodon spp cv. Tifton-85

    Directory of Open Access Journals (Sweden)

    E. M. André

    2003-06-01

    Full Text Available Para avaliar um esquema de fracionamento de zinco em Argissolo arenoso e suas relações com a disponibilidade de Zn para Cynodon spp cv. Tifton-85, realizou-se um experimento em casa de vegetação, em esquema fatorial 5 x 2 x 2 (5 doses de Zn, 2 doses de calcário e 2 épocas de amostragem, em delineamento inteiramente casualizado, com três repetições. As doses de Zn foram de 0; 2,5; 5,0; 7,5 e 10 mg dm-3; metade dos vasos não recebeu calagem (V = 42 % e metade recebeu a calagem com vistas em elevar o índice de saturação por bases a 70 %. As épocas de amostragem foram 30 e 150 dias após aplicação de Zn, respectivamente, antes do plantio e depois do 3º corte de Tifton-85. A aplicação de Zn resultou em aumento significativo do elemento nas frações: trocável, óxidos de Mn, matéria orgânica e óxidos de Fe. O Zn ligado aos óxidos de Mn aumentou significativamente com a calagem. Após 150 dias de experimentação, houve diminuição do Zn trocável, ligado aos óxidos de Mn, à matéria orgânica e aos óxidos de Fe, e aumento na fração residual. A distribuição de Zn nas frações do solo foi: residual > óxidos de Fe > óxidos de Mn > trocável > matéria orgânica. As relações entre as características estudadas mostraram que tanto o Zn-DTPA quanto o Zn trocável, ligado à M.O. e aos óxidos de Mn, foram eficientes para representar o Zn absorvido pela planta.To evaluate a fractionation scheme for Zn in a sandy soil (Ultisol and its relation with Zn availability for Cynodon spp cv. Tifton-85, an experiment was carried out in greenhouse, with a factorial scheme (5 doses of zinc, 2 doses of lime and 2 times of sampling, in a completely randomized block design, with three replications. The doses of Zn were: 0; 2.5; 5.0; 7.5 and 10 mg dm-3; half of the pots did not received liming (V = 42% and, in the other half, liming was done to increase the base saturation index to 70%. The sampling times were 30 and 150 days after Zn

  2. Soil contamination. part 1. changes in the humidity of non saturated soils after reject in a limited space. part 2. movements of radioactive ions in non saturated soils after reject in a limited space; Contamination des sols (1. partie). Evolution de l'humidite dans les sols non satures apres rejets sur une surface limitee. (2. partie). Comportement des ions radioactifs dans les sols non satures apres rejets d'eau sur une surface limitee

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, D. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1972-07-01

    An important feature in radiological safety studies of sites is the knowledge of water movements in the unsaturated layer surmounting aquifer; this zone of aerated soil can be effective as a protection against aquifer contamination. Utilizing a neutron-moisture meter, a method was developed permitting to build graphically the hydric states of soil and the moistened volume evolution with time in the particular case of a limited feeding surface. It is also possible to measure moisture gradients, drying kinetics, the retention capacity of soil and the gravific water content achieved by a given water head. The initial hydric state has an effect only upon the infiltration rate and neither upon the moistened front position nor upon the volume of moistened soil; consequently, the storable water amount in soil can be calculated. When water feeding has been stopped, the volume of moistened soil increases to an equilibrium state restricted by the moistened front and all the other water movements occur exclusively inside this volume. Consequently in case of radioactive waste disposal, the ionic pollution will be confined inside a measurable volume, the moistened front being the maximum limits of this volume. Part 2. Following up the report on water movements in non-saturated s o i l s after reject on a limited space - CEA R 3635 (1) - the radioactive ions movements in these soils are studied in using an anion and a cation of reference: iodine 131 and strontium 85. The experimental method is founded on the simultaneous measurements of moisture and radioactivity fronts by means of a neutrons moisture meter and an specially conceived radioactivity probe. It has so been possible to measure: the relative velocities of moisture and radioactivity fronts; the contaminated soil volume inside the moistened oil volume; the concentration gradients; the contamination changes upon watering; the effect of chemical composition of water upon this ions movements and the effect of soil moisture

  3. Two-region, combined Archie’s Law and Reference-Point model for air permeability and gas diffusivity in variably-saturated soil

    DEFF Research Database (Denmark)

    Hamamoto, S; Møldrup, Per; Kawamoto, K

    2011-01-01

    for structured soils, with the natural field moisture condition (set at −100 cm H2O matric potential [pF 2]) as the reference (spliced) point between the large-pore (drained pore diameter ≥30 μm at pF ≤ 2) and the small-pore (subsequently drained pores 2) regions, and (ii) including a percolation...... threshold, set as 10% of the total porosity for structureless porous media or 10% of the porosity in the large-pore region for structured soils. The resulting extended Archie's law with reference point (EXAR) models for ka and Dp were fitted to the measured data. For both structureless and structured porous......The air permeability (ka) and soil gas diffusion coefficients (Dp) are controlling factors for gas transport and fate in variably saturated soils. We developed a unified model for ka and Dp based on the classical Archie's law, extended by: (i) allowing for two-region gas transport behavior...

  4. Co-transport of Pb(2+) and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid.

    Science.gov (United States)

    Fang, Jing; Zhang, Keke; Sun, Peide; Lin, Daohui; Shen, Bing; Luo, Yan

    2016-11-15

    This study investigated the effects of suspended TiO2 nanoparticles (nTiO2) on the transport of Pb(2+) in saturated repacked soil columns under different ionic strengths (IS) and in the presence of fulvic acid (FA). Also, the contribution of soil colloids to the mobility of Pb(2+) was discussed. In the absence of nTiO2, little amount of Pb(2+) was detected in the effluent even in the presence of FA. However, the presence of nTiO2 significantly enhanced the mobility of Pb(2+) in soil columns under all tested conditions and nTiO2-associated Pb(2+) was the major migration species of Pb(2+). Increasing the solution IS decreased the nTiO2-associated Pb(2+) migration due to the significant decrease in the mobility of nTiO2 in soil. FA remarkably increased the nTiO2-associated Pb(2+) mobility in soil column, which was mainly to increase the mobility of nTiO2 in soil and decrease desorption rate of Pb(2+) from nTiO2 during transport. Moreover, nTiO2 significantly enhanced the release of Fe-Al soil colloids, which in turn was also responsible for the enhancement of Pb(2+) mobility in soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Conductividad hidráulica en un suelo aluvial en respuesta al porcentaje de sodio intercambiable Saturated hydraulic conductivity of an alluvial soil with different exchangeable sodium percentages

    Directory of Open Access Journals (Sweden)

    Francisco L. Barreto Filho

    2003-08-01

    Full Text Available El efecto del porcentaje de sodio intercambiable (PSI sobre la conductividad hidráulica de un suelo saturado, fue estudiado en condiciones de laboratorio a través de la determinación de las relaciones entre la conductividad hidráulica medida en un suelo normal y las medidas en suelos con diferentes PSI. Los resultados muestran una gran reducción de la conductividad hidráulica con el aumento de sodio en el suelo, llegando esta reducción a ser en las muestras más sodificadas de casi 100%, cuando comparadas con las muestras sin sodio, hecho probablemente acontecido debido al efecto dispersante del sodio sobre las partículas del suelo.The effect of different exchangeable sodium percentages (ESP on the saturated hydraulic conductivity of a soil was studied under laboratory conditions by determining the relationship between the hydraulic conductivity of a normal soil and that measured on soil with different ESP. The results show a great reduction in the saturated hydraulic conductivity with the increase of the exchangeable sodium percentage in the soil, this reduction being as great as 100% on the highly sodified samples when compared with those which did not receive sodium treatment. This fact is explained due to the dispersing effect of the exchangeable sodium on the soil particles.

  6. Agronomic performance and chemical response of sunflower (Helianthus annuus L. to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Directory of Open Access Journals (Sweden)

    Ramadan, Mohamed Fawzy

    2009-03-01

    Full Text Available Sunflower (Helianthus annuus L. is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt during the 2005 season. The objective of this research was to determine the effect of organicnitrogen (ON sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macronutrients by sunflowers grown on sandy soil. The treatments of chicken manure (CM and a mixture of farmyard manure (FYM with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N, phosphorus (P and potassium (K by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control.El girasol (Helianthus annuus es una opción para la producción de semillas oleaginosas, en particular en terrenos arenosos debido al buen desarrollo de sus raíces. En este trabajo, dos estudios de campo fueron realizados en la región de El-Ishattara (Sharkia Governorate, Egypt durante la estación 2005. El efecto de

  7. Saturated hydraulic conductivity as parameter for modeling applications - comparison of determination methods

    Science.gov (United States)

    Weninger, Thomas; Kreiselmeier, Janis; Chandrasekhar, Parvarthy; Julich, Stefan; Feger, Karl-Heinz; Schwärzel, Kai; Schwen, Andreas

    2017-04-01

    Saturated hydraulic conductivity is broadly used to parametrize physical characteristics of soil. Many methods for its determination have been developed, but still no standard has been established. For the interpretation of results it has to be considered that different methods yield varying results. In this study, values for saturated hydraulic conductivity were measured directly by the falling head lab-method as well as derived indirectly by model fitting to data from hood-infiltrometer experiments in the field and evaporation experiments in the lab. Successive sampling of the exactly same soil body for all three methods ensured the highest possible comparability. Additional physical soil parameters were measured and tested for their suitability as predictors in pedotransfer functions. The experiments were conducted all through the vegetation period 2016 at 4 sites in Lower Austria and Saxony, Germany. Sampled soils had a sandy loam or loamy silt texture and were cultivated with regionally common annual field crops. Subsequently, the results were evaluated with regard to their further use as key parameter in the expression of hydraulic soil properties. Significant differences were found between the evaporation method and the two other methods, where the former underestimated the saturated conductivity considerably. Consequently, an appropriate procedure for the determination of saturated hydraulic conductivity was formulated which combines results of hood infiltrometry and falling head method.

  8. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].

    Science.gov (United States)

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  9. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    Checkai, R.T.; Wentsel, R.S. 1993. Toxicity of selected munitions and munition-contaminated soil on the earthworm ( Eisenia foetida ). pp 1-22...earthworms Eisenia andrei and Lumbricus terrestris exposed to TNT contaminated soils (Johnson et al., 2000; Renoux et al., 2000; Robidoux et al., 2000...TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55, pp 1339-1348. Linz, D.G.; Nakles, D.V., Eds. 1997

  10. Soil phosphorus fractions in sandy soils amended with cattle manure for long periods Frações de fósforo em solos arenosos adubados com esterco por longos períodos

    Directory of Open Access Journals (Sweden)

    Sandra Regina da Silva Galvão

    2009-06-01

    Full Text Available Phosphorus fractions were determined in soil samples from areas fertilized or not with farmyard cattle manure (FYM and in samples of FYM used in the semi-arid region of Paraiba state, Brazil. Soil samples were taken from the 0-20; 20-40 and 40-60 cm layers of 18 cultivated areas, which, according to interviews with farmers, had been treated with 12 to 20 t ha-1 FYM annually, for the past 2 to 40 years. Soil samples were also collected from four unfertilized pasture areas as controls. Phosphorus in the soil samples was sequentially extracted with water (Pw, resin (Pres, NaHCO3 (Pi bic and Po bic, NaOH (Pi hid and Po hid, H2SO4 (Pacid and, finally, by digestion with H2SO4/H2O2 (Presd. Nine FYM samples were extracted with water, resin, Mehlich-1, H2SO4, NaOH or digestion with H2SO4/H2O2, not sequentially, and the extracts analyzed for P. The sampled areas had homogeneous, sandy and P-deficient soils; increases in total soil P (Pt above the mean value of the control areas (up to 274 mg kg-1 in the 0-20 cm layer of the most P-enriched samples were therefore attributed to FYM applications, which was the only external P input in the region. Regression analysis was used to study the relationship between soil P fractions and Pt. The Pacid fraction, related to Ca-P forms, showed the greatest increases (p Frações de P foram quantificadas em amostras de solo obtidas em áreas não adubadas e adubadas com esterco bovino e em amostras do esterco utilizado na região agreste do estado da Paraíba, Brasil. As amostras de solo foram coletadas nas camadas de 0-20, 20-40 e 40- 60 cm em 18 áreas agrícolas que, pelos históricos levantados junto aos agricultores, vinham recebendo entre 12 e 20 Mg ha-1 de esterco anualmente, por períodos variando entre 2 e 40 anos. Como controle, foram retiradas amostras de solo em quatro áreas sob pastagem sem histórico de adubação. O P nas amostras de solo foi sequencialmente extraído com água (Pw, resina (Pres, NaHCO3

  11. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    Science.gov (United States)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences

  12. Improved legume tree fallows and tillage effects on structural stability and infiltration rates of a kaolinitic sandy soil from central Zimbabwe

    NARCIS (Netherlands)

    Nyamadzawo, G.; Chikowo, R.; Nyamugafata, P.; Giller, K.E.

    2007-01-01

    Improved legume tree fallows have great potential to increase soil organic carbon (SOC), aggregate stability and soil infiltration rates during the fallowing phase. However, persistence of the residual effects of improved fallowing on SOC, aggregate stability and infiltration rates, under different

  13. Wet chemical and phosphorus-31 nuclear magnetic resonance analysis of phosphorus speciation in a sandy soil receiving long-term fertilizer or animal manure applications

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; Dolfing, J.; Oenema, O.; Meer, van der P.; Riemsdijk, van W.H.

    2003-01-01

    In areas under intensive livestock farming and with high application rates of animal manure, inorganic and organic phosphorus (P) may be leached from soils. Since the contribution of these P compounds to P leaching may differ, it is important to determine the speciation of P in these soils. We

  14. Paleosols can promote root growth of recent vegetation - a case study from the sandy soil-sediment sequence Rakt, the Netherlands

    Science.gov (United States)

    Gocke, Martina I.; Kessler, Fabian; van Mourik, Jan M.; Jansen, Boris; Wiesenberg, Guido L. B.

    2016-10-01

    Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10-15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (diameter ≤ 2 mm) and medium roots (2-5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots were most abundant in the uppermost part of the relict Podzol with ca. 4450 and 220 m-2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support interpretation of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint

  15. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Badr A. [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Agricultural Engineering Department, Cairo University, Giza (Egypt); Ellis, Naoko [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Kim, Chang Soo [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Clean Energy Research Center, Korea Institute of Science and Technology, 14 gil 5 Hwarang-no Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Bi, Xiaotao, E-mail: tony.bi@ubc.ca [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Emam, Ahmed El-raie [Agricultural Engineering Department, Cairo University, Giza (Egypt)

    2016-10-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K{sub 3}PO{sub 4}, clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10 wt.% K{sub 3}PO{sub 4} + 10 wt.% clinoptilolite as catalysts to the soil at 2 wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10 wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10 wt% clinoptilolite at 400 °C, and 30 wt% K{sub 3}PO{sub 4} at 300 °C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. - Highlights: • High quality biochar was made by catalytic pyrolysis in a microwave reactor. • High heating rate and good biochar quality were achieved using K{sub 3}PO{sub 4} and clinoptilolite mixture. • Biochars showed significant increase in soil WHC and CEC.

  16. Determination of the saturated film conductivity to improve the EMFX model in describing the soil hydraulic properties over the entire moisture range

    Science.gov (United States)

    Wang, Yunquan; Ma, Jinzhu; Guan, Huade; Zhu, Gaofeng

    2017-06-01

    Difficulty in measuring hydraulic conductivity, particularly under dry conditions, calls for methods of predicting the conductivity from easily obtained soil properties. As a complement to the recently published EMFX model, a method based on two specific suction conditions is proposed to estimate saturated film conductivity from the soil water retention curve. This method reduces one fitting parameter in the previous EMFX model, making it possible to predict the hydraulic conductivity from the soil water retention curve over the complete moisture range. Model performance is evaluated with published data of soils in a broad texture range from sand to clay. The testing results indicate that 1) the modified EMFX model (namely the EMFX-K model), incorporating both capillary and adsorption forces, provides good agreement with the conductivity data over the entire moisture range; 2) a value of 0.5 for the tortuosity factor in the EMFX-K model as that in the Mualem's model gives comparable estimation of the relative conductivity associated with the capillary force; and 3) a value of -1.0 × 10-20 J for the Hamaker constant, rather than the commonly used value of -6.0 × 10-20 J, appears to be more appropriate to represent solely the effect of the van der Waals forces and to predict the film conductivity. In comparison with the commonly used van Genuchten-Mualem model, the EMFX-K model significantly improves the prediction of hydraulic conductivity under dry conditions. The sensitivity analysis result suggests that the uncertainty in the film thickness estimation is important in explaining the model underestimation of hydraulic conductivity for the soils with fine texture, in addition to the uncertainties from the measurements and the model structure. High quality data that cover the complete moisture range for a variety of soil textures are required to further test the method.

  17. Respostas da mandioca à adubação NPK e calagem em solos arenosos do noroeste do Paraná Cassava response to npk and liming in sandy soils of northwest Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Jonez FidalskI

    1999-08-01

    Full Text Available Desenvolveram-se dois experimentos de campo, em áreas de pastagens degradadas, no período de 1991-92, nos municípios de Paranavaí e Altônia, região noroeste do Paraná, em Podzólico Vermelho-Escuro de baixa fertilidade, originários da formação geológica do arenito Caiuá, com o objetivo de avaliar as respostas da mandioca (Manihot esculenta L. na produção de raízes e as características químicas do solo à adubação mineral NPK e à calagem. O delineamento estatístico foi em blocos casualizados, com 19 tratamentos e quatro repetições, aplicando-se nitrogênio (0, 20, 40 e 60 kg ha-1 de N, fósforo (0, 30, 60, 90 e 120 kg ha-1 de P2O5, potássio (0, 40, 80 e 120 kg ha-1 de K2O e calcário (0, 850, 1.700 e 2.550 kg ha-1. A produção de raízes de mandioca não apresentou respostas à calagem, adubação nitrogenada e potássica. A adubação potássica não contribuiu para elevar os teores de K no solo. A adubação fosfatada aumentou a produção de raízes de mandioca e os teores de P no solo após o seu cultivo, sendo considerada essencial na produção de mandioca nos dois solos arenosos estudados do noroeste do Paraná.Two field experiments were carried out during 1991-92 in Paranavaí and Altônia cities, Northwest of the State of Paraná, Brazil, in order to evaluate the yield response of cassava and soil chemical characteristics to NPK fertilizers and liming. On sandy Dark Red Podzol, soils have low fertility originated from geological formation of "Caiuá" sandstone. The experimental design was a randomized block with nineteen treatments and four replications. Treatments comprised nutrient rates of nitrogen (0, 20, 40 and 60 kg ha-1; phosphorus (0, 30, 60, 90 and 120 kg ha-1; potassium (0, 40 ,80 and 120 kg ha-1; and lime (0, 850, 1,700 and 2,550 kg ha-1. Yield of cassava roots was not influenced by liming and nitrogen and potassium fertilization. Potassium fertilizer did not contribute to increase the soil K levels

  18. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 1. Changes in Chemical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available In the savanna region of Nigeria, the search continues for practices that will improve the productivity of the fragile soils characterized by low organic matter and plant nutrients, poor structure and very high permeability. A 4-year (1999-2002 field experiment was conducted to determine the effects of land configuration and wood-shavings mulch on soil chemical properties under rainfed sorghum. The treatments were Flat Bed (FB as control, Open-ridge (OR, Tied-ridge (TR, Flat bed with wood-shavings mulch (FBM, Open-ridge with wood-shaving mulch (ORM and Tied-ridge with wood-shavings mulch (TRM. Wood-shavings at the rate of 5 t/ha were used in 1999 but the rate was increased to 10 t/ha during subsequent years to ensure adequate soil coverage. Soil samples from 0.075 m depth were obtained at the end of the third (2001 and fourth (2002 cropping seasons and analysed for pH, organic carbon (OC, total nitrogen (TN, available P (AP, exchangeable acidity, exchangeable K+, Ca++ Mg++ and Na+. The results indicate that over the 4-year study period, the topsoil in all the treatments acidified but the rate of acidification was much faster in bare treatments (FB, OR and TR than in the mulched treatments (FBM, ORM and TRM, irrespective of tillage methods. In 2002; OC, TN and AP in the top 0-0.075 m layer of the wood-shavings amended soil were 24-29, 15-23 and 92-112% higher, respectively, than in the unamended control. OC in this soil layer correlated with TN (r= 0.98** and AP (r= 0.97**. Similarly, the three bare treatments experienced a rapid loss in exchangeable K+, Ca++ Mg++ and Na+ between 1999 and 2002 but the reduction was much greater in OR and TR treatments compared to the FB treatment. FBM, ORM and TRM treatments significantly improved the topsoil fertility with respect to exchangeable K+, Ca++ and Mg++ content. This was attributed to the release of these exchangeable cations from the decomposing organic mulch. These results demonstrate the potential

  19. Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize - wheat rotation in the North China Plain

    Science.gov (United States)

    Niu, Yuhui; Chen, Zengming; Müller, Christoph; Zaman, Monhammad M.; Kim, Donggill; Yu, Hongyan; Ding, Weixin

    2017-12-01

    It is increasingly recognized that the addition of biochar to soil has potential to mitigate climate change and increase soil fertility by enhancing carbon (C) storage. However, the effect of biochar on yield and nitrous oxide (N2O) emissions from upland fields remains unclear. In this study, a one-year field experiment was conducted in an area of calcareous fluvo-aquic soil to assess and quantify the effect of maize straw biochar in reducing N2O loss during 2014-2015 in the North China Plain. Eight treatments were designed as follows: no nitrogen (N) fertilizer (control, CK); biochar application at rates of 3 (B3), 6 (B6) and 12 (B12) t ha-1; chemical fertilizer (NPK) application at 200 kg N ha-1 (F); and fertilizer plus biochar application at rates of 3 (FB3), 6 (FB6) and 12 (FB12) t ha-1. Crop yield, N2O fluxes, soil mineral N concentrations, and soil auxiliary parameters were measured following the application of treatments during each season. During the maize growing season, N2O emission was 0.57 kg N2O-N ha-1 under CK treatment, and increased to 0.88, 0.93 and 1.10 kg N2O-N ha-1 under B3, B6 and B12, respectively. In contrast, N2O emissions were significantly reduced by 31.4-39.9% (P effect of fertilizer and biochar on N2O emissions (P biochar had no effect on N2O emissions regardless of the fertilizer regime. Biochar application did not affect maize yield; however, a significant increase in wheat yield of 16.6-25.9% (P biochar rate of 12 t ha-1 with fertilization. Overall, under maize cropping, N2O emissions per unit yield of grain, biomass, grain N and biomass N (yield-scaled N2O emissions) were significantly reduced by 32.4-39.9% under FB compared with F treatment, regardless of the biochar application rate. Biochar did not affect yield-scaled N2O emissions in wheat. Decreased soil bulk density with biochar is suggested to reduce the denitrification potential and N2O emissions; while increased retention capacity of fertilizer N in biochar-added soil

  20. Henry's law constants and mass transfer coefficients for methyl bromide and 1,3-dichloropropene applied to Florida sandy field soil.

    Science.gov (United States)

    Thomas, John E; Ou, Li-Tse; Allen, Leon H; Vu, Joseph C; Dickson, Donald W

    2006-02-01

    Methyl bromide, a pre-emergent soil fumigant, is scheduled to be phased out in the US by 2005, with exceptions for critical use. Comparison of some of the physical constants related to distribution and retention for methyl bromide (MBr) to other fumigants yields a useful quantification of possible alternatives. In this study, the atmospheric and subsurface dissipation of methyl bromide as well as (Z)- and (E)-1,3-dichloropropene (1,3-D) isomers in Telone II were examined. The Henry's law constants of the three chemicals at soil temperature and their mass transfer coefficients for movement through an agricultural mulch of UV-resistant, high-density polyethylene (PE) were evaluated using field data. At the soil temperature of 16.4 degrees C, calculated Henry's law constant gave a fumigant ranking of MBr (0.21)>(Z)-1,3-D (0.041)>(E)-1,3-D (0.027). Since rapid subsurface distribution of a fumigant is highly dependent on the amount in the gas phase, the greater value for Henry's law constant implies faster distribution throughout the soil. After distribution through the soil, retention of the fumigant becomes imperative. Calculation of the fumigant's mass transfer coefficients through PE from field data gave a ranking of the three chemicals: MBr (1.08 cm/h)<(E)-1,3-D (3.25 cm/h)<(Z)-1,3-D (4.13 cm/h). With mass transfer coefficients of this magnitude, it was concluded that PE film was an inadequate barrier for retaining these fumigants in an agricultural setting.

  1. Profile distribution of total and available Sulphur and boron in sandy ...

    African Journals Online (AJOL)

    The total and available sulphur and boron forms were determined in sandy soils formed from sand dunes, sandy alluvial terrace and sandstone formation in northwestern Nigeria. Hot water and Morgan's solution (sodium acetate/acetic acid solution buffered at pH 4.8) were used as extractants for available boron while ...

  2. Assessment of the Dynamic Behaviour of Saturated Soil Subjected to Cyclic Loading from Offshore Monopile Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Damgaard, Mads; Bayat, Mehdi; Andersen, Lars Vabbersgaard

    2014-01-01

    The fatigue life of offshore wind turbines strongly depends on the dynamic behaviour of the structures including the underlying soil. To diminish dynamic amplification and avoid resonance, the eigenfrequency related to the lowest eigenmode of the wind turbine should not coalesce with excitation...... frequencies related to strong wind, wave and ice loading. Typically, lateral response of monopile foundations is analysed using a beam on a nonlinear Winkler foundation model with soil-pile interaction recommended by the design regulations. However, as it will be shown in this paper, the guideline approaches...... consequently underestimate the eigenfrequency compared to full-scale measurements. This discrepancy leads the authors to investigate the influence of pore water pressure by utilising a numerical approach and consider the soil medium as a two-phase system consisting of a solid skeleton and a single pore fluid...

  3. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    Science.gov (United States)

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Ensemble kalman filtering to perform data assimilation with soil water content probes and pedotransfer functions in modeling water flow in variably saturated soils

    Science.gov (United States)

    Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...

  5. Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application.

    Science.gov (United States)

    Ulrich, Andreas; Klimke, Gabriele; Wirth, Stephan

    2008-04-01

    The community of culturable cellulolytic bacteria was analyzed in two long-term experimental field sites on Albic Luvisol (silty sand) and Haplic Phaeozem (loam), with and without farmyard manure treatment. Against the backdrop of significant differences in soil properties, the bacterial community structure differed clearly between sites and was affected by manure application as analyzed by T-RFLP of 16S rDNA. The population densities of cellulolytic bacteria were significantly increased by manure application in Phaeozem. Cellulose decomposing potentials of 537 isolates were tested on soluble, colloidal, and crystalline cellulose. The results showed some evidence of a greater proportion of isolates with high decomposition activity in Luvisol, but no impact from manure application could be observed in both soils. Restriction analysis and sequencing of 16S rDNA of isolates revealed a rather simple community composition that was dominated by Streptomyces (67%). The composition of the RFLP groups was affected by manure application, which was most evident in Luvisol, whereas an effect of the soil type could not be found. Although abundant RFLP groups were assigned to phylogenetically different bacterial classes (Actinobacteria, Betaproteobacteria, and Gammaproteobacteria), cellulolytic activity could not consistently be differentiated. All in all, cellulolytic capabilities of the isolates were highly variable and did not map to phylogenetic affiliation.

  6. Stability analysis of sandy slope considering anisotropy effect in ...

    Indian Academy of Sciences (India)

    strength anisotropy. Finally, considering the variability of soil shear strength parameters with loading orientation, the stability of a sandy slope with various geometries is analyzed by the limit equilibrium .... The participant of training, testing and validation subsets from the whole of records are 70, 15 and 15%, respectively.

  7. The effect of autumn ridging and inter-row subsoiling on potato tuber yield and quality on a sandy soil in Denmark

    DEFF Research Database (Denmark)

    Henriksen, Jens Christian Martin Bugge; Mølgaard, Jens Peter; Rasmussen, Jesper

    2007-01-01

    Autumn ridging is a modified version of the ridge tillage system. Instead of setting up ridges during the growing season, they are established in autumn and left for the winter. Previous studies have documented positive effects of autumn ridging on potato yield and we hypothesized that subsoiling.......6 t ha1 and reduced the occurrence of malformed potatoes from 9.3% to 7.5%, irrespective of tillage treatment and irrigation level. There was no significant interaction between autumn ridging and subsoiling. The beneficial effect of subsoiling on marketable yield was driven by a 48.5% increase...... in the dry year of 2001. Subsoiling reduced the incidence of common scab from 7.8% to 6.9% when irrigation was reduced. It is concluded that at least three factors may modify the effects of subsoiling: Soil water status in the growing season, precipitation immediately before and after the subsoiling...

  8. Acumulação de nutrientes em solos arenosos adubados com esterco bovino Nutrient build up in sandy soils receiving manure additions

    Directory of Open Access Journals (Sweden)

    Sandra Regina da Silva Galvão

    2008-01-01

    Full Text Available Os objetivos deste trabalho foram quantificar as concentrações de carbono e nutrientes em solos de áreas adubadas e não adubadas com esterco; quantificar as concentrações de nutrientes em amostras de esterco bovino utilizado na região e calcular o acúmulo de nutrientes resultantes dessa adubação e o potencial de perdas por lixiviação. Foram amostradas 18 áreas agrícolas, com adição anual de esterco por pelo menos dois anos e, como controle, quatro áreas sob pastagem não adubadas, coletando-se amostras de solo das camadas de 0-20, 20-40 e 40-60 cm, que foram analisadas quanto à granulometria, densidade do solo, pH, C, N e P totais, bases trocáveis, P extraível por água e por Mehlich-1. Amostras de esterco utilizadas em nove áreas também foram analisadas. A aplicação de esterco resultou em acumulações médias ao redor de 20 Mg ha-1 de C, 2 Mg ha-1 de N total e Ca, e de 0,5 a 1 Mg ha-1 de P total, K e Mg (0-60 cm. Acumulações de P solúvel em água e bases trocáveis na camada de 40-60 cm, em relação às testemunhas, indicam grande potencial de perda desses nutrientes.The objective of this work was to quantify changes on carbon and nutrient contents in soils under continuous manure additions. Eighteen cropped fields that had received annual additions of manure for at least two years and four fields under pasture with no history of manure addition were sampled to assess if this practice results in the accumulation or losses of added nutrients. Soils samples from the 0-20, 20-40 and 40-60 cm layers were taken from each field, and analyzed with regard to their physical (particle size and soil density and chemical (pH, total C, N and P, extractable P by Mehlich-1 and water, and exchangeable cations properties. Manure samples used in nine fields were also analyzed for chemical composition. Manure additions resulted in a build up of nutrient stocks near to 20 Mg ha-1 of C, 2 Mg ha-1 of N and Ca, and 0.5 to 1 Mg ha-1 of P

  9. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils.

    Science.gov (United States)

    Andersson, Helena; Bergström, Lars; Djodjic, Faruk; Ulén, Barbro; Kirchmann, Holger

    2013-01-01

    Eutrophication, a major problem in many fresh and brackish waters, is largely caused by nonpoint-source pollution by P from agricultural soils. This lysimeter study examined the influence of P content, physical properties, and sorption characteristics in topsoil and subsoil on P leaching measured during 21 mo in 1-m-long, undisturbed soil columns of two clay and two sandy soils. Total P losses during the period varied between 0.65 and 7.40 kg ha. Dissolved reactive P was the dominant form in leachate from the sandy soils and one clay soil, varying from 48 to 76%. Particulate P dominated in leachate from the other clay soil, where low pH (5.2) in the subsoil decreased aggregate stability and thereby probably increased the dispersion of clay particles. Phosphorus leaching was small from soils with high P sorption index (PSI) and low P saturation (topsoil was high, and large from a soil with low sorption capacity and high P saturation (>35% of PSI) in the profile. High sorption capacity in the subsoil was more important for P leaching in sandy soils than in clay soils with macropore flow, where the effect of high sorption capacity was reduced due to less interaction between percolating water and the soil matrix. The results suggest that P leaching is greatly affected by subsoil properties and that topsoil studies, which dominate current research, are insufficient for assessing P leaching in many soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Sandy Hook Traveler Information System

    Science.gov (United States)

    2010-09-01

    This report focuses on equipment and procedural solutions for gathering and disseminating a wide range of visitor information, including real-time traveler information data relating to traffic and parking at the Sandy Hook Unit of the Gateway Recreat...

  11. Understanding the hydrologic control of N cycle: Effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils.

    Science.gov (United States)

    Mekala, C; Nambi, Indumathi M

    2017-07-01

    Irrigation practice will be effective if it supplies optimal water and nutrients to crops and act as a filter for contaminants leaching to ground water. There is always a scope for improving the fertilizer use efficiency and scheduling of wastewater irrigation if the fate and transport of nutrients particularly nitrogenous compounds in the soil are well understood. In the present study, nitrogen transport experiments for two different agricultural soils are performed under varying saturation 33, 57, 78% water filled pore space for sandy soil 1 and 52, 81 and 96% for loam soil 2. A HYDRUS 2D model with constructed wetland (CW2D) module could simulate aerobic nitrification and anoxic denitrification well for both soils and estimated the reaction kinetics. A hot spot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway has been observed at 81% moisture content for a loamy sand soil. The presence of high organic content and reductive soil environment (5.53 C/NO 3 - ratio; ORP=-125mV) results in ammonium accumulation of 16.85mg in the soil. The overall observation from this study is nitrification occurs in a wide range of saturations 33-78% with highest at 57% whereas denitrification is significant at higher water saturations 57-78% for sandy soil texture. For a loamy sand soil, denitrification is dominant at 96% saturation with least nitrification at all saturation studies. The greatest nitrogen losses (>90%) was observed for soil 2 while 30-70% for soil1. The slow dispersive subsurface transport with varying oxygen dynamics enhanced nitrogen losses from soil2 due to lesser soil permeability. This in turn, prevents NO 3 - leaching and groundwater contamination. This type of modeling study should be used before planning field experiments for designing optimal irrigation and fertigation schedules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Understanding the hydrologic control of N cycle: Effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils

    Science.gov (United States)

    Mekala, C.; Nambi, Indumathi M.

    2017-07-01

    Irrigation practice will be effective if it supplies optimal water and nutrients to crops and act as a filter for contaminants leaching to ground water. There is always a scope for improving the fertilizer use efficiency and scheduling of wastewater irrigation if the fate and transport of nutrients particularly nitrogenous compounds in the soil are well understood. In the present study, nitrogen transport experiments for two different agricultural soils are performed under varying saturation 33, 57, 78% water filled pore space for sandy soil 1 and 52, 81 and 96% for loam soil 2. A HYDRUS 2D model with constructed wetland (CW2D) module could simulate aerobic nitrification and anoxic denitrification well for both soils and estimated the reaction kinetics. A hot spot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway has been observed at 81% moisture content for a loamy sand soil. The presence of high organic content and reductive soil environment (5.53 C/NO3- ratio; ORP = - 125 mV) results in ammonium accumulation of 16.85 mg in the soil. The overall observation from this study is nitrification occurs in a wide range of saturations 33-78% with highest at 57% whereas denitrification is significant at higher water saturations 57-78% for sandy soil texture. For a loamy sand soil, denitrification is dominant at 96% saturation with least nitrification at all saturation studies. The greatest nitrogen losses (> 90%) was observed for soil 2 while 30-70% for soil1. The slow dispersive subsurface transport with varying oxygen dynamics enhanced nitrogen losses from soil2 due to lesser soil permeability. This in turn, prevents NO3- leaching and groundwater contamination. This type of modeling study should be used before planning field experiments for designing optimal irrigation and fertigation schedules.

  13. Influence of biochar and seaweed extract applications on growth, yield and mineral composition of wheat (Triticum aestivum L. under sandy soil conditions

    Directory of Open Access Journals (Sweden)

    Bahaa Badry Mosa Salim

    2016-12-01

    Full Text Available Two pot experiments were conducted during 2013/2014 and 2014/2015 winter seasons to study the effect of biochar (BC as soil amendments at two rates 2% and 5%, seaweed extract (SWE as foliar applications at 1 and 2 g/l and the combination between BC 2% and SWE treatments on growth, yield attributes and some macro- and micronutrients concentration in roots, leaves and grains of wheat (Triticum aestivum L. cultivar Sakha 93. Two samples were taken at 105 and 150 days after sowing. At the first sample date, plant height, leaves number per main tiller, number of tillers/plant, shoot fresh weight, root length, root fresh weight, chlorophyll reading, spikes number per plant, main spike length and N, P, K, Mg, Ca, Fe, Mn, Zn and Cu concentrations in roots and leaves were determined. At the second sample date (harvesting time, spike weight, number of grains per spike, weight of grains/spike and weight of 100 grains were recorded and nutrients concentrations in grains were determined. Obtained results revealed that, adding biochar, sprayed seaweed extract treatments individually or in combination have stimulating effect on the most of morphological characters and yield components as compared with control plants in both seasons. Generally, using the low level of BC at 2% individually or in combination with SWE treatments has more promotion effect on the most of growth parameters and yield components and achieved the highest concentrations on the most of macro- and micronutrients in roots, leaves and grains as compared with the control in both seasons.

  14. Sandy PMO Disaster Relief Appropriations Act of 2013 Financial Data

    Data.gov (United States)

    Department of Homeland Security — Sandy PMO: Disaster Relief Appropriations Act of 2013 (Sandy Supplemental Bill) Financial Data. This is the Sandy Supplemental Quarterly Financial Datasets that are...

  15. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  16. On Sandy Shores. Teacher's Guide.

    Science.gov (United States)

    Strang, Craig; And Others

    The activities in this guide (for grades 2-4) transport students to the sandy shore, one of the most fascinating ecosystems on the planet. At this ecological juncture a multiplicity of life forms find ways to survive, thrive, and interact with each other. Using a wide variety of learning formats, students explore and deepen their understanding of…

  17. Fluensulfone sorption and mobility as affected by soil type.

    Science.gov (United States)

    Morris, Kelly A; Li, Xiao; Langston, David B; Davis, Richard F; Timper, Patricia; Grey, Timothy L

    2017-09-04

    Fluensulfone is a fluoroalkenyl chemical with activity against multiple genera of plant-parasitic nematodes. The adsorption, desorption, and mobility of fluensulfone were evaluated on multiple soils from the USA in laboratory and column experiments. Adsorption data regressed to the logarithmic Freundlich equation resulted in isotherm values of 1.24 to 3.28. Soil adsorption of fluensulfone correlated positively with organic matter (0.67) and clay (0.34), but negatively with sand (-0.54). Fluensulfone soil desorption correlated to pH (0.38) and cation exchange capacity (0.44). Fluensulfone desorption from Arredondo sand soil was 26%, and from other soils ranged from 43 to 70%. In mobility experiments, fluensulfone in the leachate peaked at 3 h, gradually declining and becoming undetectable after 9 h. Recovery from leachate was 45% of the initial fluensulfone applied to the soil surface. In separate experiments, 30-cm-long soil columns were saturated with 1 L of water, and then segregated into three 10-cm sections. Fluensulfone recovery was 41, 34, 29, and 13% in Chualar sandy loam, Arredondo sand, Greenville sandy clay loam, and Tifton loamy sand, respectively, in the top 10-cm section. Data indicated that soil organic matter and clay contents will affect sorption, mobility, and dissipation of fluensulfone. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Atributos del suelo y paisaje asociados a la variabilidad de rendimientos de maíz en la pampa arenosa Soil attributes associated to corn yield variability in the sandy pampas

    Directory of Open Access Journals (Sweden)

    Susana Urricariet

    2011-07-01

    espacial mientras que en el Sitio 2 fue moderada, con valores extremos entre 5,4-14,5 t ha-1 y 5,5-13,3 t ha-1 para ambos sitios, respectivamente. Nuestros resultados indican que la variabilidad espacial en el contenido de arena del horizonte superficial se asoció estrechamente a los rendimientos de maíz (Y y explicó el 64% de la variabilidad Y (t ha-1 = 21,5 - 0,189 Arena (% (PSpatial variability of soil properties and their association with the landscape position are needed in the application of site specific-management practices. Crop yields are highly variable across a field as a result of complex interactions among different factors such as topography, soil attributes and management practices. The objetives of this study were to determine the spatial distribution of the available water storage capacity using pedotransfer functions and to identify soil attributes associated to the variability of corn yields in a field scale in the Sandy Pampas. In two corn fields, 8 ha and 10 ha- plots were marked and yield maps were obtained at harvest. Before corn planting, a geo-referenced sampling following a grid design was carried out. Thirty-two cores were collected from 0-30 cm-depths in Site 1 (8 ha and forty-two cores in Site 2 (10 ha , and CO and texture were determined. Available water storage capacity (CAD was estimated using pedotransfer functions. In three representatives soil profiles (Typic Hapludoll, Entic Hapludoll and Entic Hapludoll, convex phase water retention at -33 kPa and -1,500 kPa, texture and CO was determinated in order to determine the pedotransfer function with the best fit. The results of both sampling grids were analyzed through geostatistical procedures. CAD in the upper meter of the soil profiles was 121 mm in the Typic Hapludoll and 78-79 mm in both Entic Hapludolls. Sand content variability between topographic positions was greater in Site 1 (40-81% than in Site 2 (43- 73% showing a moderate spatial structure. CAD had a moderate spatial

  19. The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia

    Directory of Open Access Journals (Sweden)

    J. VanLeeuwen

    2009-07-01

    Full Text Available The importance of deep soil-regolith through flow in a small (3.4 km2 ephemeral catchment in the Adelaide Hills of South Australia was investigated by detailed hydrochemical analysis of soil water and stream flow during autumn and early winter rains. In this Mediterranean climate with strong summer moisture deficits, several significant rainfalls are required to generate soil through flow and stream flow [in ephemeral streams]. During autumn 2007, a large (127 mm drought-breaking rain occurred in April followed by significant May rains; most of this April and May precipitation occurred prior to the initiation of stream flow in late May. These early events, especially the 127 mm April event, had low stable water isotope values compared with later rains during June and July and average winter precipitation. Thus, this large early autumn rain event with low isotopic values (δ18O, δD provided an excellent natural tracer. During later June and July rainfall events, daily stream and soil water samples were collected and analysed. Results from major and trace elements, water isotopes (δ18O, δD, and dissolved organic carbon analysis clearly demonstrate that a large component of this early April and May rain was stored and later pushed out of deep soil and regolith zones. This pre-event water was identified in the stream as well as identified in deep soil horizons due to its different isotopic signature which contrasted sharply with the June–July event water. Based on this data, the soil-regolith hydrologic system for this catchment has been re-thought. The catchment area consists of about 60% sandy and 40% clayey soils. Regolith flow in the sandy soil system and not the clayey soil system is now thought to dominate the deep subsurface flow in this catchment. The clayey texture contrast soils had rapid response to rain events and saturation excess overland flow. The sandy soils had delayed soil through flow and

  20. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface.

    Science.gov (United States)

    Kristensen, Andreas H; Henriksen, Kaj; Mortensen, Lars; Scow, Kate M; Moldrup, Per

    2010-02-01

    Naturally occurring biodegradation of petroleum hydrocarbons in the vadose zone depends on the physical soil environment influencing field-scale gas exchange and pore-scale microbial metabolism. In this study, we evaluated the effect of soil physical heterogeneity on biodegradation of petroleum vapors in a 16-m-deep, layered vadose zone. Soil slurry experiments (soil/water ratio 10:30 w/w, 25°C) on benzene biodegradation under aerobic and well-mixed conditions indicated that the biodegradation potential in different textured soil samples was related to soil type rather than depth, in the order: sandy loam > fine sand > limestone. Similarly, O(2) consumption rates during in situ respiration tests performed at the site were higher in the sandy loam than in the fine sand, although the difference was less significant than in the slurries. Laboratory and field data generally agreed well and suggested a significant potential for aerobic biodegradation, even with nutrient-poor and deep subsurface conditions. In slurries of the sandy loam, the biodegradation potential declined with increasing in situ water saturation (i.e., decreasing air-filled porosity in the field). This showed a relation between antecedent undisturbed field conditions and the slurry biodegradation potential, and suggested airfilled porosity to be a key factor for the intrinsic biodegradation potential in the field.

  1. Salinity and soluble organic matter on virus sorption in sand and soil columns.

    Science.gov (United States)

    Cao, Haibo; Tsai, Frank T-C; Rusch, Kelly A

    2010-01-01

    The objective of this research was to study the sorption and transport of bacteriophage MS-2 (a bacterial virus) in saturated sediments under the effect of salinity and soluble organic matter (SOM). One-dimensional column experiments were conducted on washed high-purity silica sand and sandy soil. In sand column tests, increasing salinity showed distinct effect on enhancing MS-2 sorption. However, SOM decreased MS-2 sorption. Using a two-site reversible-irreversible sorption model and the double layer theory, we explained that pore-water salinity potentially compressed the theoretical thickness of double layers of MS-2 and sand, and thus increased sorption on reversible sorption sites. On irreversible sorption sites, increasing salinity reversed charges of some sand particles from negative to positive, and thus converted reversible sorption sites into irreversible sites and enhanced sorption of MS-2. SOM was able to expand the double layer thickness on reversible sites and competed with MS-2 for the same binding place on irreversible sites. In sandy soil column tests, the bonded and dissolved (natural) soil organic matters suppressed the effects of pore-water salinity and added SOM and significantly reduced MS-2 adsorption. This was explained that the bonded soil organic matter occupied a great portion of sorption sites and significantly reduced sorption sites for MS-2. In addition, the dissolved soil organic matter potentially expanded the double layer thickness of MS-2 and sandy soil on reversible sorption sites and competed with MS-2 for the same binding place.

  2. Resposta de brócolis, couve-flor e repolho à adubação com boro em solo arenoso Response of boron fertilization on broccoli, cauliflower and cabbage planted in sandy soil

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Pizetta

    2005-03-01

    Full Text Available Foram avaliados em condições de campo, em solo arenoso, com baixo teor de boro, os efeitos da adubação com cinco doses de boro (0; 2; 4; 6 e 8 kg ha-1 de B na forma de bórax na produção de brócolis, couve-flor e repolho. O experimento obedeceu a um esquema fatorial com delineamento experimental de blocos ao acaso com três repetições. As adubações orgânica e química, inclusive o bórax, foram feitas no sulco antes do transplantio das mudas e a colheita foi feita entre 63 e 93 dias após o transplantio. A produtividade de brócolis variou de 16,9 a 20,5 t ha-1; a de couve-flor de 21,6 a 29,6 t ha-1 e a de repolho de 40,5 a 46,4 t ha-1. O aumento observado na produtividade de brócolis e de repolho foi linear e o efeito das doses de boro na produtividade de couve-flor foi quadrático, sendo necessários 5,1 kg ha-1 de B para atingir a produtividade máxima de 30 t ha-1. Brócolis e repolho mostraram-se menos sensíveis do que a couve-flor tanto à deficiência quanto ao excesso de boro. No caso da couve-flor, com a aplicação de 2 kg ha-1 ou de 6 kg ha-1 de B houve significativa perda de qualidade do produto.The effects of boron fertilization on yield of broccoli, cauliflower and cabbage were evaluated through a field experiment carried out on a sandy soil low in available boron. Five boron levels (0; 2; 4; 6; and 8 kg ha-1 B as borax were applied in broccoli, cauliflower and cabbage using a factorial scheme and a randomized block design with three replicates. Organic manure and chemical fertilizers, including borax, were applied in the planting furrow before seedlings transplant and plants were harvested 63 to 93 days after planting date. The yield intervals obtained with broccoli, cauliflower and cabbage varied according to the following intervals: 16.9 to 20.5 t ha-1, 21.6 to 29.6 t ha-1 and 40.5 to 46.3 t ha-1, respectively. The increase in production observed in broccoli and cabbage yield was linear with boron levels and the

  3. Hidráulica do escoamento e transporte de sedimentos em sulcos em solo franco-argilo-arenoso Flow hydraulics and sediment transport in rills of a sandy clay loam soil

    Directory of Open Access Journals (Sweden)

    José Ramon Barros Cantalice

    2005-07-01

    capacity to deform the rill and alter flow hydraulics, responsible for rill formation dynamics. The objective of this study was to evaluate flow hydraulic conditions that can provide important information on erosion relationships, soil erodibility and sediment transport in furrows of a recently-tilled Palleudult. Rills were pre-formed in a sandy clay loam soil with an average slope of 0.067 m m-1. Simulated rainfall with an intensity of 74 mm h-1 was applied during 80 min, while rainfall and extra inflows of 0, 10, 20, 30, 40, and 50 L min-1 were jointly applied for the last 20 min of each run in the rill. Results indicated that the rill flow regime varied from transitional subcritical to turbulent subcritical. The rill erosion detachment rates were linear to shear stress. Rill erodibility (Kr was 0.0024 kg-1 s-1 N and critical shear stress (tauc was 2.75 Pa. Two functions to predict sediment transport based on stream power explained 53% of data variability, which indicates the inherent difficulty of predicting solid transport through shallow flows on eroding agricultural lands, and the physical and mineralogical diversity of particles and aggregates of the studied soil.

  4. SANDY CREEK ROADLESS AREA, MISSISSIPPI.

    Science.gov (United States)

    Haley, Boyd R.; Bitar, Richard F.

    1984-01-01

    The Sandy Creek Roadless Area includes about 3. 7 sq mi in the southeastern part of Adams County, Mississippi. On the basis of a mineral survey, the area offers little promise for the occurrence of metallic mineral resources but has a probable resource potential for oil and natural gas. It is possible that wells drilled deep enough to penetrate the older reservoirs will encounter significant quantities of oil and natural gas in the roadless area. The deposits of gravel, sand, and clay present in the area could be utilized in the construction industry, but similar deposits elsewhere are much closer to available markets.

  5. PHT3D-UZF: A reactive transport model for variably-saturated porous media

    Science.gov (United States)

    Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric; Prommer, H.

    2016-01-01

    A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.

  6. Facts about saturated fats

    Science.gov (United States)

    ... fat diary with low-fat or nonfat milk, yogurt, and cheese. Eat more fruits, vegetables, whole grains, and other foods with low or no saturated fat. Alternative Names Cholesterol - saturated fat; Atherosclerosis - saturated fat; Hardening of the ...

  7. Saturated fat (image)

    Science.gov (United States)

    Saturated fat can raise blood cholesterol and can put you at risk for heart disease and stroke. You should ... limit any foods that are high in saturated fat. Sources of saturated fat include whole-milk dairy ...

  8. Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site

    Energy Technology Data Exchange (ETDEWEB)

    Bagur-Gonzalez, Maria Gracia [Univ. of Granada, Faculty of Sciences, Dept. of Analytical Chemistry, Granada (Spain); Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Estepa-Molina, Carmen [Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain); Martin-Peinado, Francisco [Univ. of Granada, Faculty of Sciences, Dept. of Soil Science, Granada (Spain); Morales-Ruano, Salvador [Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain)

    2011-02-15

    We used the different soluble-in-water concentrations of As, Cu, Mn, Pb and Zn from contaminated soils in an abandoned mining area (anthropogenic origin) to assess the phytotoxicity of the abandoned site using the results obtained with a Lactuca sativa L. bioassay. Material and methods The study has been carried out on potentially polluted samples from the Rodalquilar mining district (southern Spain). The area was sampled according to the different metallurgical treatments for gold extraction used in each one: dynamic cyanidation and heap leaching. The saturation extracts were obtained by filtering each saturated paste with a vacuum-extraction pump, in which measurements of metal(loid) concentrations, pH and electrical conductivity were made. The variables evaluated in the bioassay, defined as toxicity indices ranging from -1 (maximum phytotoxicity) to >0 (hormesis), were seed germination (SG) and root elongation (RE) of lettuce seeds. Results and discussion In areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil toxicity. According to these results, samples from the western area showed moderate to low toxicity, which was closely related to water-soluble As concentrations. Samples from the eastern area had a high degree of toxicity in 40% of the soils. Conclusions The comparison of the two indices (SG and RE) defined using the L. sativa L. bioassay indicates that, for areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil phytotoxicity. Unsupervised pattern recognition methods such as HCA and PCA enabled us to conclude that the low/moderate phytotoxicity of the soils is related to the extraction process used for the recovery of gold (mainly dynamic cyanidation in tanks located in the eastern area) and to the As and Pb contents. (orig.)

  9. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes

    Science.gov (United States)

    Jorgenson, M. Torre; Harden, Jennifer; Kanevskiy, Mikhail; O'Donnell, Jonathan; Wickland, Kim; Ewing, Stephanie; Manies, Kristen; Zhuang, Qianlai; Shur, Yuri; Striegl, Robert G.; Koch, Josh

    2013-01-01

    The diversity of ecosystems across boreal landscapes, successional changes after disturbance and complicated permafrost histories, present enormous challenges for assessing how vegetation, water and soil carbon may respond to climate change in boreal regions. To address this complexity, we used a chronosequence approach to assess changes in vegetation composition, water storage and soil organic carbon (SOC) stocks along successional gradients within four landscapes: (1) rocky uplands on ice-poor hillside colluvium, (2) silty uplands on extremely ice-rich loess, (3) gravelly–sandy lowlands on ice-poor eolian sand and (4) peaty–silty lowlands on thick ice-rich peat deposits over reworked lowland loess. In rocky uplands, after fire permafrost thawed rapidly due to low ice contents, soils became well drained and SOC stocks decreased slightly. In silty uplands, after fire permafrost persisted, soils remained saturated and SOC decreased slightly. In gravelly–sandy lowlands where permafrost persisted in drier forest soils, loss of deeper permafrost around lakes has allowed recent widespread drainage of lakes that has exposed limnic material with high SOC to aerobic decomposition. In peaty–silty lowlands, 2–4 m of thaw settlement led to fragmented drainage patterns in isolated thermokarst bogs and flooding of soils, and surface soils accumulated new bog peat. We were not able to detect SOC changes in deeper soils, however, due to high variability. Complicated soil stratigraphy revealed that permafrost has repeatedly aggraded and degraded in all landscapes during the Holocene, although in silty uplands only the upper permafrost was affected. Overall, permafrost thaw has led to the reorganization of vegetation, water storage and flow paths, and patterns of SOC accumulation. However, changes have occurred over different timescales among landscapes: over decades in rocky uplands and gravelly–sandy lowlands in response to fire and lake drainage, over decades to

  10. Resposta de arroz de terras altas, feijão, milho e soja à saturação por base em solo de cerrado Response of upland rice, dry bean, corn and soybean to base saturation in cerrado soil

    Directory of Open Access Journals (Sweden)

    Nand K. Fageria

    2001-12-01

    adequate. Nutrient accumulation was significantly influenced by different base saturation treatments as well as by the age of the four crops. Adequate levels of soil chemical properties, such as pH, contents of Ca and Mg, ratio of Ca/Mg, ratio of Ca/K, ratio of Mg/K, Ca saturation, Mg saturation and K saturation were established for upland rice, dry bean, corn and soybean grown in cerrado soil.

  11. PENGARUH SIFAT FISIK TANAH PADA KONDUKTIVITAS HIDROLIK JENUH DI 5 PENGGUNAAN LAHAN (STUDI KASUS DI KELURAHAN SUMBERSARI MALANG Effect of Soil Physical Properties on Saturated Hydraulic Conductivity in The 5 Land Use (A Case Study in Sumbersari Malang

    Directory of Open Access Journals (Sweden)

    Elsa Rosyidah

    2013-11-01

    Full Text Available Water movement in saturated soil will affect runoff and infiltration in an area, while water movement in soil processes influenced by soil physical properties. Changes in land use affect the soil physical properties. Changes in land use and differences in the nature of land which includes land use previously existing vegetation into land that does not exist or lack of vegetation resulted in infiltration and percolation rate be changed on the ground and allow the process of infiltration of large, causing the decrease in recharge areas direct rainwater and decrease the availability of ground water. Measurement of water movement in saturated soil conditions or soil Saturated Hydraulic Conductivity (SHC is very important because SHC role in determining water runoff, infiltration and percolation. The research aimed to know the value of saturated hydraulic conductivity of soil in different land use by using the constant head method and the physical properties of soil including soil texture, weight, density, and porosity in the five land use on three different soil depths. Research conducted in the area Sumbersari in December 2008 until October 2009. Research effect of soil physical properties on using constant head method on five land use is residential population (T1, field (T2, garden tomatoes (T3, shrubs (T4, irrigated rice field (T5 at three different depths ie 0-15 cm (K1, 15-30 cm (K2, and 30-45 cm (K3. The physical properties of soil analyzed include soil texture, weight, density, porosity, and soil moisture content. Results showed that the highest SHC value at all points of location is the location of irrigated rice fields with a depth of 30-45 cm. The main factor affecting the value of SHC is the weight value. Soil physical properties that influence the value of SHC is the soil texture and soil porosity. The results SHC recommended as a reference for land use conditions and other locations with similar soil physical properties. Keywords: Soil

  12. The effects of the African Green Revolution on nitrogen losses from two contrasting soil types in sub-Saharan Africa

    Science.gov (United States)

    Tully, K. L.; Russo, T.; Hickman, J. E.; Palm, C.

    2013-12-01

    Nearly 80% of countries in sub-Saharan Africa (SSA) face problems of nitrogen (N) scarcity, which together with poverty causes food insecurity and malnutrition. The Alliance for a Green Revolution in Africa has set a goal of increasing fertilizer use in the region six-fold by 2015. While there is substantial evidence that greater N fertilizer use will improve crop yields, it could lead to increased N leaching and elevated nitrate (NO3-) concentrations in surface water and groundwater reservoirs. However, it is unclear what the magnitude of impacts will be in SSA given historically low nutrient additions (of less than 5 kg N/ha/yr), highly degraded soils (due to years of nutrient and soil organic matter depletion), and a wide range of soil types on which increased fertilizer use is occurring. Current estimates of N dynamics and balances in SSA agriculture now rely on data from other regions with different soil types, soil fertility, and land management practices. To understand the influence of increased fertilizer use on water quality requires data from representative areas in SSA. Experimental maize plots were established in a randomized complete block design in both western Kenya (clayey soil) and mid-western Tanzania (sandy soil). Plots were amended with 0, 50, 75, and 200 kg N/ha/yr as mineral fertilizer. Tension lysimeters were installed at three depths in each treatment, and water was collected throughout the maize growing season. Soil water solutions were analyzed for NO3--N. Flow through the soil column at each soil depth, was modeled using VS2DT, a variably saturated flow and solute transport model, and water flux values were multiplied by measured NO3--N concentrations to estimate seasonal N leaching flux. Soil texture was a major driver of N losses, altering both the pathways and magnitude of losses. Clayey soils in western Kenya show an enormous potential for loss of NO3--N immediately following the onset of rains as they trigger high rates of N

  13. The ecology of sandy beaches in Transkei

    African Journals Online (AJOL)

    The ecology of sandy beaches in Transkei. T. Wooldridge, A.H. Dye and A. Mclachlan. Department of Zoology, University of Port Elizabeth, Port Elizabeth. Data from an ecological survey of three sandy beaches in. Transkei and from Gulu beach on the eastern Cape coast,. South Africa, are presented. Physical parameters ...

  14. The ecology of sandy beaches in Natal

    African Journals Online (AJOL)

    The ecology of sandy beaches in Natal. A.H. Dye, A. Mclachlan and T. Wooldridge. Department of Zoology, University of Port Elizabeth, Port Elizabeth. Data from an ecological survey of four sandy beaches on the. Natal coast of South Africa are presented. Physical para· meters such as beach profile, particle size, moisture, ...

  15. Measurement of biological oxygen demand sandy beaches

    African Journals Online (AJOL)

    Measurement of biological oxygen demand sandy beaches. •. In. A.H. Dye. Measurements of biological oxygen demand in a sandy beach using conventional in situ techniques are compared with laboratory measurements of interstitial oxygen changes in intact cores. Oxygen uptake as measured in the laboratory was ...

  16. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups

    Directory of Open Access Journals (Sweden)

    Sarah Piché-Choquette

    2016-03-01

    Full Text Available Soil microbial communities are continuously exposed to H2 diffusing into the soil from the atmosphere. N2-fixing nodules represent a peculiar microniche in soil where H2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv. In this study, we investigated the impact of H2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H2 exposure from the atmosphere and N2-fixing nodules. Biphasic kinetic parameters governing H2 oxidation activity in soil changed drastically upon elevated H2 exposure, corresponding to a slight but significant decay of high affinity H2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H2 exposure, suggesting that H2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H2-rich environments exert a direct influence on soil H2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities.

  17. Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009

    DEFF Research Database (Denmark)

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen E; Kristensen, Kristian

    2014-01-01

    decreased in loam soils and tended to increase in sandy soils. This trend is ascribed to dairy farms with grass leys being abundant on sandy soils while cereal cropping dominates on loamy soils. A statistical model including soil type, land use and management was applied separately to 0–25, 25–50 and 50...

  18. Determination of saturated and unsaturated hydraulic conductivity ...

    African Journals Online (AJOL)

    The estimation of hydraulic conductivity indicates how fluids flow through a substance and thus determine the water balance in the soil profile. In determining the saturated and unsaturated hydraulic conductivity of soil, five plots of 5.0 x 4.0 m were prepared with a PVC access tube installed in each plot. The plots were ...

  19. IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA

    Directory of Open Access Journals (Sweden)

    JJ Siang

    2002-01-01

    Full Text Available Hill's code is one of text encoding technique. In this research, Hill's code is extended to image encoding. The image used is BMP 24 bit format. 2x2 and 3x3 matrices is used as a key. The results show that Hill's code is suitable for image whose RGB values vary highly. On the contrary, it is not suitable for less varied RGB images since its original pattern is still persisted in encrypted image. Hill's code for image encoding has also disadvantage in the case that the key matrix is not unique. However, for daily application, with good key matrix, Hill's code can be applied to encode image since it's process only deals with simple matrix operation so it become fast. Abstract in Bahasa Indonesia : Sandi Hill merupakan salah satu teknik penyandian teks. Dalam penelitian ini, pemakaian sandi Hill diperluas dari teks ke citra bertipe BMP 24 bit. Matriks yang dipakai berordo 2x2 dan 3x3. Hasil percobaan menunjukkan bahwa sandi Hill cocok untuk enkripsi citra dengan variasi nilai RGB antar piksel berdekatan yang tinggi (seperti foto, tapi tidak cocok untuk citra dengan variasi nilai RGB yang rendah (seperti gambar kartun karena pola citra asli masih tampak dalam citra sandi. Sandi Hill juga memiliki kelemahan dalam hal tidak tunggalnya matriks kunci yang dapat dipakai. Akan tetapi untuk pemakaian biasa, dengan pemilihan matriks kunci yang baik, sandi Hill dapat dipakai untuk penyandian karena hanya melibatkan operasi matriks biasa sehingga prosesnya relatif cepat. Kata kunci: Sandi Hill, Citra, Relatif Prima.

  20. Influence of humified organic matter on copper behavior in acid polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Calvino, D., E-mail: davidfc@uvigo.e [Plant Biology and Soil Science Department, University of Vigo, Ourense Campus, 32004 Ourense (Spain); Soler-Rovira, P.; Polo, A. [Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo., 28006 Madrid (Spain); Arias-Estevez, M. [Plant Biology and Soil Science Department, University of Vigo, Ourense Campus, 32004 Ourense (Spain); Plaza, C. [Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo., 28006 Madrid (Spain)

    2010-12-15

    The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg{sup -1} and Cu concentrations from 11 to 666 mg kg{sup -1}. The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg{sup -1}, and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter. - The effect of organic matter quality on Cu adsorption in acid soils was low compared with other soil characteristics such as pH or degree of Cu saturation.

  1. Experiences of soil fertility management through legume based ...

    African Journals Online (AJOL)

    Mo

    used the mother-baby trial approach in implementing the farmer and researcher managed trials. ... due to the escalating prices as a direct consequence of market .... the baby trials. These legume crops were grown on different soil types. 44.9 % grow the legumes in sandy soil, 38.2 % in sandy clay loam soils and 13.5% in ...

  2. Nitrous oxide emission from soils amended with crop residues

    NARCIS (Netherlands)

    Velthof, G.L.; Kuikman, P.J.; Oenema, O.

    2002-01-01

    Crop residues incorporated in soil are a potentially important source of nitrous oxide (N2O), though poorly quantified. Here, we report on the N2O emission from 10 crop residues added to a sandy and a clay soil, both with and without additional nitrate (NO3-). In the sandy soil, total nitrous oxide

  3. Heterotrophic bacterial populations in tropical sandy beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; LokaBharathi, P.A.

    Distribution pattern of heterotrophic bacterial flora of three sandy beaches of the west coast of India was studied. The population in these beaches was microbiologically different. Population peaks of halotolerant and limnotolerant forms were...

  4. EAARL Coastal Topography-Sandy Hook 2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Gateway National Recreation Area's Sandy Hook Unit in New Jersey...

  5. Comparison of empirical models and laboratory saturated hydraulic ...

    African Journals Online (AJOL)

    Numerous methods for estimating soil saturated hydraulic conductivity exist, which range from direct measurement in the laboratory to models that use only basic soil properties. A study was conducted to compare laboratory saturated hydraulic conductivity (Ksat) measurement and that estimated from empirical models.

  6. Propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy medium

    Directory of Open Access Journals (Sweden)

    P.C. Pal

    2015-06-01

    Full Text Available The present investigation deals with the propagation of Rayleigh waves in anisotropic layer overlying a sandy medium. Anisotropic material is in the nature of most general case i.e. of triclinic crystal and sandy medium is of alluvial soil type. The solutions for layer and half-space are obtained analytically. The displacement components in x and z directions are obtained for both the media. The dispersion relation is obtained subjected to certain boundary conditions. The special cases are considered. The numerical results are presented in the form of wave number and phase velocity (k − c analytical curves.

  7. Impacts of Sampling and Handling Procedures on DNA- and RNA-based Microbial Characterization and Quantification of Groundwater and Saturated Soil

    Science.gov (United States)

    2012-07-01

    technology (e.g., Taqman or SYBR Green approaches). Non-PCR-based approaches include direct hybridization with oligonucleotide probes (e.g...denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiol. Ecol. 48

  8. THE PROBLEMATIC OF SANDY LANDS IN PARANAVAI MUNICIPALITY –PR

    Directory of Open Access Journals (Sweden)

    Marcelo Eduardo Freres Stipp

    2005-05-01

    Full Text Available The sandy lands are a process of scouring with sand forming a sandy area, which correspondsto a reworking of the sands due its constant mobility, involving the transformation of notsolids deposits is sandy areas. This work tried to establish the characterization of thisphenomenon of scouring with sand in a local level, occurring in arenaceous areas in theNortheast of the state of Paraná, specifically in the urban site of Paranavaí. It was also madean evaluation of the environmental degradation as well as different causes for what provokedthese sandy areas. Being an area with a high level of soil decomposition with the highwaysroutes crossing it, it was necessary, besides bibliographic data that allowed a theoretical basis,a research applied in order to supply subsides for future planning related to the spaceorganization. The evolution of the use and soil occupation in this area has been processedwithin an urban planning which considered by no account neither soil characteristic, thevegetation nor the predominant climate in that region. The mechanisms of region atmospherecirculation were analyzed, the alterations or attributes of the climate as well, aiming toidentify the genesis of the erosion sandy and possible time and space distribution. Initially, themain characteristics of the region were collected, components e processes working on the landmodel. It was observed how it worked and the use and occupation of the soil in past times andcurrently. During 2004, using the Environmental Fragility Letter, the areas of erosion wereidentified, ravines and strong erosion that compounds the first stages of the focused problem.The sandy land is a process that involves erosion, transport, e accumulation, meaning most oftimes the loosing of Biosphere productivity. For monitoring these risk areas some measuringcanes were made to measure the soil loss, which were used in several spots of erosion in theurban area in Paranavaí. The measurement happened in

  9. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  10. Dynamics of Soil Heat Flux in Lowland Area: Estimating the Soil Thermal Conductivy

    Science.gov (United States)

    Zimmer, T.; Silveira, M. V.; Roberti, D. R.

    2013-05-01

    In this work, it is shown soil thermal conductivity estimates in a flooded irrigated rice culture located at the Paraíso do Sul city for two distinct periods. The thermal conductivity is higher when the heat storage is higher and the soil surface temperature is lower. The soil thermal conductivity is also dependant on the soil texture, porosity and moisture. Therefore, it varies from soil to soil and in the same soil, depending on its soil moisture. For approximately 80% of its growing season, lowland flooded irrigated rice ecosystems stay under a 5 - 10 cm water layer. It affects the partitioning of the energy and water balance components. Furthermore this planting technique differs substantially from any other upland non-irrigated or irrigated crop ecosystems where the majority of observational studies have been conducted. In the present work, the dynamic of soil heat flux (G) is analyzed and the soil thermal conductivity (Ks) is estimated using experimental data form soil heat flux and soil temperature in a rice paddy farm in a subtropical location in Southern Brazil. In this region, rice grows once a year at river lowlands and wetlands while the ground is kept bare during the remaining of the year. The soil type is Planossolo Hidromórfico Distrófico, characterized as a mix between sandy and clay soil. The soil heat flux (G) was experimentally estimated with the sensor Hukseflux (HFP01SC-L) at 7 cm bellow the soil surface. The soil temperature at 5 cm and 10 cm was experimentally estimated using the sensor STP01. The experimental soil heat flux was compared with estimated soil heat flux by two forms: (1) using a know Ks from literature for this type of soil in saturated conditions (Ks=1.58); (2) using Ks estimated using the inversion of the equation Qg=-ks* ((T10-T5)/ (Z2-Z1)), where T10 and T5 are the temperature in 10 and 5 cm above the soil and Z2-Z1 is the difference between the positions in temperature measurement. The study period for estimating the Ks

  11. Rapid molecular assessment of the bioturbation extent in sandy soil horizons under pine using ester-bound lipids by on-line thermally assisted hydrolysis and methylation-gas chromatography / mass spectrometry

    NARCIS (Netherlands)

    Nierop, K.G.J.; Verstraten, J.M.

    2004-01-01

    Each plant species has a unique chemical composition, and also within a given plant the various tissues differ from one another in their chemistry. These different compositions can be traced back after decay of the plant parts when they are transformed into soil organic matter (SOM). As a result,

  12. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    Science.gov (United States)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  13. Desirable leaf traits for hydrological reinforcement of soil

    Directory of Open Access Journals (Sweden)

    Boldrin D.

    2016-01-01

    Full Text Available Vegetation has an important influence on slope hydrology and hence slope stability via plant transpiration. Little is known about the relative merit of evergreen versus deciduous shrubs in maintaining suctions through the year. This study aims to quantify the soil-plant-water relations of two shrub species and to identify relevant plant traits that correlate with hydro-mechanical properties of vegetated soil. Corylus avellana L. (Hazel and Ilex aquifolium L. (Holly were chosen as contrasting deciduous and evergreen broadleaf species. For each species, three replicates were planted in separated pots of sandy loam soil. Each pot was irrigated until the soil was saturated and then was left to transpire for 20 days. Soil suction, leaf conductance to water vapour (gL and soil penetration resistance were recorded. After testing, some key plant traits were determined. It was found that Hazel dried soil faster than Holly. The mean suction induced by Hazel (82.9±1.5 kPa was 2.7 times greater than that induced by Holly (30.6±8.2 kPa, as Hazel has significantly higher gL and specific leaf area. Both suction and soil penetration resistance were strongly correlated with the total leaf area, but not the total leaf biomass.

  14. Gypsum-saturated water to reclaim alluvial saline sodic and sodic soils Água saturada com gesso na recuperação de solos aluviais salino-sódicos e sódicos

    Directory of Open Access Journals (Sweden)

    Karien Rodrigues da Silveira

    2008-02-01

    Full Text Available Inadequate management of soil and irrigation water contribute to soil degradation, particularly in the alluvial areas of Northeast Brazil, where salinity and sodicity are already common features. This study evaluates the effects of the addition of gypsum in the irrigation water on physical and chemical properties of soils with different levels of salinity and sodicity. Samples were collected at the Custódia irrigation area of Brazil, predominantly covered by alluvial soils. Leaching tests using simulated irrigation water classified as C3S1, and gypsum-saturated irrigation water were carried out in soil columns of 20 and 50 cm depth. Soil leaching with gypsum saturated water (T2 resulted in an increase in the amounts of exchangeable calcium and potassium, and in a decrease of soil pH, in relation to the original soil (T0, with significant statistical differences to the treatment using only water (T1. There was a reduction in the electrical conductivity, exchangeable sodium and exchangeable sodium percentage in both treatments (T1 and T2, with treatment T2 being more effective in the leaching of soil sodium. No changes of electrical conductivity, calcium and pH in depth were observed, but the 20 - 50 cm layer presented higher amounts of magnesium, sodium and exchangeable sodium percentage. Gypsum saturated water improved the hydraulic conductivity in both layers. The use of gypsum in the irrigation water improved soil physical and chemical properties and should be considered as an alternative in the process of reclamation of saline-sodic and sodic soils in Northeast Brazil.O manejo inadequado do solo e da água de irrigação contribui para a degradação dos solos, particularmente nas áreas aluviais do Nordeste do Brasil, onde a salinidade e a sodicidade são características comumente observadas. Avaliaram-se os efeitos da adição do gesso na água de irrigação, sobre as propriedades físicas e químicas de solos com diferentes níveis de

  15. Application of the Modified Compaction Material Model to the Analysis of Landmine Detonation in Soil with Various Degrees of Water Saturation

    Directory of Open Access Journals (Sweden)

    M. Grujicic

    2008-01-01

    Full Text Available A series of transient non-linear dynamics computational analyses of the explosion phenomena accompanying the detonation of a 100g C4 mine buried in sand to different depths is carried out using the software package AUTODYN. The mechanical response of sand under high deformation-rate conditions has been represented using the modified compaction material model developed in our recent work [1]. While the mechanical response of the other attendant materials (air, gaseous-detonation products and AISI 1006 mild steel is accounted for using the material models available in literature. The results obtained (specifically, the temporal evolution of the sand overburden shape and pressure at various locations in air above the detonation site were compared with their experimental counterparts for a (50wt%-sand/50wt.%-clay soil obtained recently by Foedinger [2]. The comparison revealed that the modified compaction material model for sand can account reasonably well for the magnitude, spatial distribution and the temporal evolution of the dynamic loads accompanying detonation of shallow-buried mines in soils with various clay and water contents.

  16. The Mechanical Behavior of Soils from Ugwueme Landslide, Nigeria

    Science.gov (United States)

    Fukuoka, Hiroshi; Igwe, Ogbonnaya

    2010-05-01

    Climate change and global warming effects are getting obvious in Nigeria by increasing floods and landslides. Authors have launched joint research on evaluation of susceptibility change of landslides under extreme rainfall conditions in Nigeria. Igwe sampled soils from sliding surface of the Ugwueme Landslide, induced by torrential rainfall in 2008. In this abstract, engineering properties of soils from the landslide site are presented. The sample was red, sandy tropical soils. The shear behavior and the dominant factors controlling the deformation of the soils were investigated by means of a new ring shear apparatus. This series of tests were purposed to reveal the detailed pore pressure generation under fully saturated condition to simulate the landslide onset behavior under heavy rainfall condition. Undrained and drained tests at different normal stresses were conducted on normally and over-consolidated soils having the same relative density. Following the consolidation of saturated sample, shear stress was applied until the sample reached the steady state after failure and long shear displacement. Test results show that liquefaction is the major mechanism controlling the deformation of the soils and that the higher the normal stress or over-consolidation ratio the greater the brittleness index. Normally and over-consolidated soils all liquefied regardless of normal stress and over-consolidation ratio, with over-consolidated specimens having higher values of brittleness index than normally consolidated ones. This research found that whereas increase in either normal stress or over-consolidation ratio resulted in a corresponding increase in peak strength, the steady state strength of the soils was unaffected. Normally and over-consolidated specimens all reached the same steady state strength indicating that in highly liquefiable soils, changes in normal stress or over-consolidation ratio has little effect on steady state strength, and by implication, on the

  17. Geology, Topography and Soils in Naiman, Inner Mongolia, China

    OpenAIRE

    SHIRATO, Yasuhito; TANIYAMA, Ichiro; ZHANG, Tonghui; ZHAO, Halin

    1997-01-01

    [ABSTRACT] The characteristics and distribution of soils in Naiman, Inner Mongolia were studied, Soils were classified into 3 types, which were distributed corresponding to geology and topography; loess-derived soils in the southern loess plateau, aeolian sandy soils in Horqin sandy land and alluvial soils along rivers or in inter-dune areas. It was pointed out that each type has a different type of land degradation.

  18. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  19. Satellite Observations Monitor Outages From Superstorm Sandy

    Science.gov (United States)

    Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    In late October 2012, Hurricane Sandy traveled across Jamaica, Cuba, and the Bahamas, then progressed northward along the eastern seaboard of the United States, resulting in numerous tropical storm warnings along the coasts of Florida and North Carolina. As the storm approached the Mid-Atlantic region, interaction with an upper-level low drew the cyclone inland, with the center passing just north of Atlantic City, N. J. In what media reports dubbed a "superstorm," Sandy produced hurricane-force winds, significant coastal storm surge, torrential rain, inland flooding, and extensive damage over a vast area. Further west of the cyclone center, strong winds increased wave activity throughout the Great Lakes, and heavy snowfall occurred across portions of Tennessee, Kentucky, and West Virginia. As of early November, more than 100 fatalities had been attributed to Sandy in the northeastern United States, with total economic losses of up to $50 billion [New York Times, 2012, and Walsh and Schwartz, 2012].

  20. Alterações nos atributos químicos de solo arenoso pela calagem superficial no sistema plantio direto consolidado Changes in properties of a sandy soil under no tillage by surface liming

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2003-04-01

    Full Text Available A forma aplicação de calcário no sistema plantio direto (SPD cria no solo um gradiente de concentração dos produtos de sua reação. O objetivo do presente trabalho foi avaliar os atributos químicos relacionados à acidez de solo após sete anos da aplicação de calcário superficialmente no solo sob SPD. O experimento foi realizado no Departamento de Solos da Universidade Federal de Santa Maria, num Argissolo Vermelho distrófico arênico. O experimento foi instalado em outubro de 1994 em solo conduzido sob SPD desde 1988. Os tratamentos consistiram numa testemunha sem calcário e na reaplicação superficial de calcário para elevar o pH a 6,0, adicionando a dose recomendada, totalmente no início do experimento; metade da dose no início e a outra metade no terceiro ano; e um terço da dose a cada ano, nos três primeiros anos. O delineamento experimental utilizado foi de blocos ao acaso, com quatro repetições. Em outubro de 2001, 84 meses após, foram abertas três trincheiras por parcela e coletadas amostras de solo em camadas de 1 cm até os 10 cm de profundidade, de 2,5 cm até os 25 cm, de 5 cm até os 50 cm e da camada de 50-60 cm. A aplicação superficial de calcário proporcionou uma frente alcalinizante no perfil do solo e migração de Ca e Mg em todo horizonte A.Surface liming of soil under no-tillage forms a concentration gradient of lime or its reaction products in the soil profile. The objective of this study was to evaluate the effects of surface liming on chemical attributes related to soil acidity. The experiment was carried out at the Federal University of Santa Maria, Southern Brazil, on a Typic Hapludult. The experiment was installed in October 1994 on a soil under no tillage since 1988. The treatments were: without lime; superficial reapplication of lime to elevate the pH to 6.0, totally added in the beginning of the experiment; half of the lime requirement in the beginning and the other half at the third year

  1. Características hidrológicas do solo saturado na Reserva Florestal Adolpho Ducke - Amazônia central Hydrological characterists of the satured soil in the Adolpho Ducke Forest Reserve - central Amazonia

    Directory of Open Access Journals (Sweden)

    Juan Daniel Villacis Fajardo

    2010-08-01

    Full Text Available Neste estudo, investigaram-se a porosidade e condutividade hidráulica da zona saturada do solo, buscando entender como essas variáveis físicas afetam os processos hidrológicos em uma área de floresta primária, sob pressão urbana, na Amazônia central. O experimento foi realizado na Reserva Florestal Adolpho Ducke, localizada ao norte da cidade de Manaus, AM. No igarapé Bolívia foi instalado um posto fluviométrico (régua linimétrica e linígrafo; no local, foram instalados quatro piezômetros na zona ripária, perpendicular ao curso do igarapé. A porosidade variou no perfil do solo, alcançando valores acima de 0,40 cm³/cm³. Os valores médios de condutividade hidráulica saturada ou infiltração básica (K foram elevados e variaram de 89,5 ± 12,8 a 279,5 ± 9,0 mm/h. O nível d'água no igarapé oscilou entre 65 e 141 cm, no período de observação (novembro de 2005 a outubro de 2007. O piezômetro da camada profunda do solo, distante do curso d'água, variou entre 166,2 e 304,9 cm. As condutividades hidráulicas do solo saturado foram maiores nos pontos mais distantes do curso d'água, tanto na camada superficial quanto na profunda, determinando o comportamento hidrológico do lençol freático no local.This study investigated the porosity and the hydraulic conductivity on the saturated zone of the soil trying to understand how these physical variables affect the hydrological processes, in an area of primary forest under urban pressure, in Central Amazonia. The experiment was carried out in the Adolpho Ducke Forest Reserve, located on the north of the city of Manaus - AM. One water measurement station (water level scale was installed in the Igarapé Bolívia and four piezometers were installed in the site, the latter on the riparian zone, perpendicular to the course of the stream. The porosity varied in the soil profile, reaching values above 0.40 cm³/cm³. The mean values for the saturated hydraulic conductivity or basic

  2. Fungos micorrízicos arbusculares em rizosferas de plantas do litoral arenoso do Parque Estadual da Ilha do Cardoso, SP, Brasil: 2 Arbuscular mycorrhizal fungi in plant rhizospheres from sandy soil of Parque Estadual da Ilha do Cardoso, SP, Brazil: 2

    Directory of Open Access Journals (Sweden)

    Sandra F. B. Trufem

    1994-12-01

    Full Text Available De março/1988 a julho/1990, em 14 ocasiões, foram coletadas 410 amostras de solo de rizosfera de plantas do litoral arenoso da Ilha do Cardoso, SP, Brasil, com finalidade de se conhecer a micota de fMA. Foram investigadas as rizosferas das plantas: Baccharis trimera DC., Blutaparon portulacoides (St. Hil. Mears, Dalbergia hecastaphylla (L. Taub., Hydrocotyle bonariensis Lam., Ipomoea pes-caprae (L. Swett e Polygala cyparisseas St. Hil. & Moq. Verificaram-se 24 espécies de fMA. Os resultados obtidos permitiram constatar que: a há tendência em ter-se aumento no número de esporos no solo com o aumento da temperatura, precipitação e insolação; b diferentes espécies de fMA ocorrem em diferentes espécies de plantas hospedeiras, sugerindo a existência de especificidade ecológica; c há maior abundância de esporos das espécies de Acaulospora, Gigaspora e Scutellospora sobre as de Glomus. Não se verificou relação entre a fenologia das plantas hospedeiras, o número de esporos no solo e a porcentagem de colonização das raízes.From March/1988 to July/1990, in 14 opportunities, it was collected 410 soil samples of rhizospheres of native plants from sandy soils of Ilha do Cardoso, SP, Brazil to investigate the occurrence of AM fungi. The studied plants were: Baccharis trimera DC., Blutaparon portulacoides (St. Hil. Mears, Dalbergia hecastaphylla (L. Taub., Hydrocotyle bonariensis Lam., Ipomoea pes-caprae (L. Swett and Polygala cyparisseas St. Hil. It was observed 24 species of AM fungi. The results showed: a a tendency to increase the number of spores in the soil with the increase of the temperature, rainfall and sunlight; b different species of AM fungi occurred in different species of hosts, suggesting ecological specificity of AM fungi; c it was observed higher abundance of spores of Acaulospora, Gigaspora and Scutellospora over spores of Glomus and Sclerocystis. It was not observed relatonships between the number of spores in the

  3. Operational Group Sandy technical progress report

    Science.gov (United States)

    ,

    2013-01-01

    Hurricane Sandy made US landfall near Atlantic City, NJ on 29 October 2012, causing 72 direct deaths, displacing thousands of individuals from damaged or destroyed dwellings, and leaving over 8.5 million homes without power across the northeast and mid-Atlantic. To coordinate federal rebuilding activities in the affected region, the President established the cabinet-level Hurricane Sandy Rebuilding Task Force (Task Force). The Task Force was charged with identifying opportunities for achieving rebuilding success while supporting economic vitality, improving public health and safety, protecting and enhancing natural and manmade infrastructure, bolstering resilience, and ensuring appropriate accountability.

  4. Soil moisture storage estimation based on steady vertical fluxes under equilibrium

    Science.gov (United States)

    Amvrosiadi, Nino; Bishop, Kevin; Seibert, Jan

    2017-10-01

    Soil moisture is an important variable for hillslope and catchment hydrology. There are various computational methods to estimate soil moisture and their complexity varies greatly: from one box with vertically constant volumetric soil water content to fully saturated-unsaturated coupled physically-based models. Different complexity levels are applicable depending on the simulation scale, computational time limitations, input data and knowledge about the parameters. The Vertical Equilibrium Model (VEM) is a simple approach to estimate the catchment-wide soil water storage at a daily time-scale on the basis of water table level observations, soil properties and an assumption of hydrological equilibrium without vertical fluxes above the water table. In this study VEM was extended by considering vertical fluxes, which allows conditions with evaporation and infiltration to be represented. The aim was to test the hypothesis that the simulated volumetric soil water content significantly depends on vertical fluxes. The water content difference between the no-flux, equilibrium approach and the new constant-flux approach greatly depended on the soil textural class, ranging between ∼1% for silty clay and ∼44% for sand at an evapotranspiration rate of 5 mm·d-1. The two approaches gave a mean volumetric soil water content difference of ∼1 mm for two case studies (sandy loam and organic rich soils). The results showed that for many soil types the differences in estimated storage between the no-flux and the constant flux approaches were relatively small.

  5. Nitrification in Dutch heathland soils

    NARCIS (Netherlands)

    Boer, de W.

    1989-01-01

    This thesis is the result of a study on the production of nitrate in Dutch heathland soils. Most of the heathlands are located on acid, sandy soils. Therefore , it has dealt mainly with the occurrence, nature and mechanisms of nitrification in acid soils. In the Netherlands, the production

  6. Fullerene Transport in Saturated Porous Media

    Science.gov (United States)

    We investigated the effects of background solution chemistry and residence time within the soil column on the transport of aqu/C60 through saturated ultrapure quartz sand columns. Aqu/C60 breakthrough curves were obtained under different pore water velocities, solution pHs, and i...

  7. Stability of aggregates of some weathered soils in south-eastern ...

    Indian Academy of Sciences (India)

    *According to Soil Survey Staff (1999), S = sand, SCL = sandy clay loam, SL = sandy loam, CL = clay loam, C = clay,. SC = sandy clay. ..... deformation index; SA: state of aggregation; AS: aggregate stability; CV: coefficient of variation. ..... Principal component analysis of aggregate stability indices after varimax rotation using.

  8. IMPACT OF A USED STABILISER ON THE CALIFORNIA BEARING RATIO OF THE CLAYEY-SANDY SILT

    Directory of Open Access Journals (Sweden)

    Katarzyna Kamińska

    2017-01-01

    Full Text Available The paper aimed at the determination of the California Bearing Ratio of a stabilised and unstabilised fine-grained mineral soil. A clayey-sandy silt with the addition of 3, 6 and 10% of road stabilisers Solidex and Solidex A was used for the tests. The tests were carried out in the press Tritech 50 at the loading of 22 and 44 N. The stabilised samples were subjected to 7-days treatment, whereas unstabilised 4-days treatment. Stabilization with the applied road binders brought positive effects, there occurred a significant improvement in the mechanical properties of the clayey-sandy silt. The better binder, which significantly increased the value of the CBR ratio, was Solidex A. The use of hydraulic binders is of a great importance in road building, because their addition improves the mechanical properties of weaker mineral soils.

  9. Modelling the morphology of sandy spits

    DEFF Research Database (Denmark)

    Pedersen, Dorthe; Deigaard, Rolf; Fredsøe, Jørgen

    2008-01-01

    The shape, dimensions and growth rate of an accumulating sandy spit is investigated by a theoretical and experimental study. The idealised case of a spit growing without change of form under a constant wave forcing is considered. The longshore wave-driven sediment transport is taken to be dominan...

  10. Post-Sandy, Schools Claw Back

    Science.gov (United States)

    Maxwell, Lesli A.

    2012-01-01

    David Weiss, the superintendent in Long Beach, N.Y., wrestled with a slew of considerations last week as he weighed when to restart school, nine days after Hurricane Sandy wrecked his community. Just one of seven buildings had most of the essentials: electricity, heat, working fire alarms, sewage, and food. And, with many students and staff…

  11. Coastal ocean circulation during Hurricane Sandy

    Science.gov (United States)

    Miles, Travis; Seroka, Greg; Glenn, Scott

    2017-09-01

    Hurricane Sandy (2012) was the second costliest tropical cyclone to impact the United States and resulted in numerous lives lost due to its high winds and catastrophic storm surges. Despite its impacts little research has been performed on the circulation on the continental shelf as Sandy made landfall. In this study, integrated ocean observing assets and regional ocean modeling were used to investigate the coastal ocean response to Sandy's large wind field. Sandy's unique cross-shelf storm track, large size, and slow speed resulted in along-shelf wind stress over the coastal ocean for nearly 48 h before the eye made landfall in southern New Jersey. Over the first inertial period (˜18 h), this along-shelf wind stress drove onshore flow in the surface of the stratified continental shelf and initiated a two-layer downwelling circulation. During the remaining storm forcing period a bottom Ekman layer developed and the bottom Cold Pool was rapidly advected offshore ˜70 km. This offshore advection removed the bottom Cold Pool from the majority of the shallow continental shelf and limited ahead-of-eye-center sea surface temperature (SST) cooling, which has been observed in previous storms on the MAB such as Hurricane Irene (2011). This cross-shelf advective process has not been observed previously on continental shelves during tropical cyclones and highlights the need for combined ocean observing systems and regional modeling in order to further understand the range of coastal ocean responses to tropical cyclones.

  12. Lessons from Hurricane Sandy for port resilience.

    Science.gov (United States)

    2013-12-01

    New York Harbor was directly in the path of the most damaging part of Hurricane Sandy causing significant impact on many of the : facilities of the Port of New York and New Jersey. The U.S. Coast Guard closed the entire Port to all traffic before the...

  13. Bibliography of sandy beaches and sandy beach organisms on the African continent

    CSIR Research Space (South Africa)

    Bally, R

    1986-01-01

    Full Text Available This bibliography covers the literature relating to sandy beaches on the African continent and outlying islands. The bibliography lists biological, chemical, geographical and geological references and covers shallow marine sediments, surf zones off...

  14. [Effects of short-term fencing on organic carbon fractions and physical stability of sandy sierozem in desert steppe of Northwest China].

    Science.gov (United States)

    Yang, Xin-Guo; Song, Nai-Ping; Li, Xue-Bin; Liu, Bing-Ru

    2012-12-01

    In order to explore the change patterns of organic carbon fractions and physical stability of sandy sierozem in desert steppe at the early stage of fencing, 0-40 cm soil samples were collected from a 5-year fenced desert steppe (inside the fence) and a free grazing steppe (outside the fence) in Yanchi County of Ningxia, Northwest China, with the soil organic carbon, labile organic carbon, and particulate organic carbon contents and soil particle composition analyzed. No significant differences were observed in the soil organic carbon content and soil particle composition inside and outside the fence. The average soil organic carbon inside and outside the fences was 3.25 g x kg(-1), the percentages of sand, silt, and clay were averagely 72%, 16%, and 12%, respectively, and the soil physical stability index was 1.30% -1.31%. The soil active organic carbon showed a significant change in 10-20 cm layer. The soil labile organic carbon content was 0.80 g x kg(-1) inside the fence, which was significantly higher than that outside the fence (0.62 g x kg(-1)). The percentage of soil particulate organic carbon was 50.9% inside the fence, which was also significantly higher than that outside the fence (31.7%). The soil texture inside the fence changed from sandy to loam, and the soil labile organic carbon content increased gradually; while the soil texture outside the fence was sandy, and its vertical change was relatively smooth. The organic carbon of sandy si- erozem in the desert steppe under the conditions of short-term fencing was still in a balance between consumption and accumulation, the soil texture was relatively stable, and the soil physical stability changed little. It was suggested that the soil active organic carbon content and its relative percentage in 10-20 cm layer could be used as the indicators of early soil quality change of desert steppe.

  15. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  16. Long-Term Observations of Dust Storms in Sandy Desert Environments

    Science.gov (United States)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  17. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study

    NARCIS (Netherlands)

    Regelink, I.C.; Temminghoff, E.J.M.

    2011-01-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At

  18. Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions

    NARCIS (Netherlands)

    Oort, van F.; Jongmans, A.G.; Lamy, I.; Baize, D.; Chevallier, P.

    2008-01-01

    Studies relating macro- and microscopic aspects of impacts of long-term contaminative practices on soils are scarce. We performed such an approach by assessing the fate of metal pollutants in an area close to Paris, where sandy Luvisols were irrigated for 100 years with urban waste water. As a

  19. Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2017-07-01

    Full Text Available In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

  20. Differential growth and yield by canola (Brassica napus L.) and wheat (Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash.

    Science.gov (United States)

    Yunusa, Isa A M; Manoharan, Veeragathipillai; Harris, Rob; Lawrie, Roy; Pal, Yash; Quiton, Jonathan T; Bell, Richard; Eamus, Derek

    2013-03-30

    There is a need for field trials on testing agronomic potential of coal fly ash to engender routine use of this technology. Two field trials were undertaken with alkaline and acidic fly ashes supplied at between 3 and 6 Mg ha⁻¹ to acidic soils and sown to wheat and canola at Richmond (Eastern Australia) and to wheat only at Merredin (Western Australia). Ash addition marginally (Pwheat was observed; canola increased accumulation of Mo and Se in its shoot with acidic fly ash, but it was well below phyto toxic levels. Simulations of wheat using APSIM at Richmond over a 100-year period (1909-2008) predicted yield increases in 52% of years with addition of ash at 3.0 Mg ha⁻¹ compared with 24% of years with addition of ash at 6.0 Mg ha⁻¹. The simulated yield increases did not exceed 40% over the control with addition of 6 Mg ha⁻¹ ash, but was between 40% and 50% with an addition rate of 3 Mg ha⁻¹. We found no evidence of phytotoxicity in either crop in this unusually dry year and there is still a need for further field assessment in years with favourable rainfall to enable development of clear recommendations on fly ash rates for optimum yield benefits. © 2012 Society of Chemical Industry.

  1. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-11-01

    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a first field campaign (2–3 August 2011, dewfall increased from 0.042 kg m−2 for the initial sandy substrate to 0.058, 0.143 and 0.178 kg m−2 for crusts 1 to 3, respectively. During a second field campaign (17–18 August 2011, where dew formation was recorded in 1.5 to 2.75-h intervals after installation at 21:30 CEST, dewfall increased from 0.011 kg m−2 for the initial sandy substrate to 0.013, 0.028 and 0.055 kg m−2 for crusts 1 to 3, respectively. Dewfall rates remained on low levels for the substrate and for crust 1, and decreased overnight for crusts 2 and 3 (with crust 3 > crust 2 > crust 1 throughout the campaign. Dew formation was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and extracellular polymeric substances (EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to saturate the BSCs and to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the

  2. Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil

    OpenAIRE

    Negim, O.; Eloifi, B.; Bes, C.; Gaste, H.; Motelica-Heino, Mikael; Le Coustumer, Philippe

    2010-01-01

    International audience; Basic slag (BS) is an alkaline by-product of the steel industry with potential properties to ameliorate nutrient supply and metal stabilisation in contaminated soils. The BS effects on soil pH, soil conductivity, growth and chemical composition of beans were investigated using an acid, sandy soil from a wood treatment facility containing 630 mg Cu kg-1. Pot experiments were carried out on a 2-week period with Phaseolus vulgaris L. An uncontaminated, sandy soil was used...

  3. Effect of ISPAD Anaerobic Digestion on Ammonia Volatilization from Soil Applied Swine Manure

    Directory of Open Access Journals (Sweden)

    Susan King

    2012-01-01

    Full Text Available Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD undergoes proteins degradation but limited NH3 volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH3 volatilization from both ISPAD and open tank swine manures when applied to 5 different soils, namely, washed sand, a Ste Rosalie clay, an Upland sandy loam, a St Bernard loam, and an Ormstown loam. This research was conducted using laboratory wind tunnels simulating land application. The five experimental soils offered similar pH values but different water holding capacity, cation exchange capacity, cation saturation, and organic matter. After 47 h of wind tunnel monitoring, the % of total available nitrogen (TAN or NH4 + and NH3 volatilized varied with both manure and soil type. For all soil types, the ISPAD manure consistently lost less NH3 as compared to the open tank manure, averaging 53% less. Lower volatile solids content improving manure infiltration into the soil and a more complex ionic solution explain the effect of the ISPAD manure advantages. This was reinforced by the St Bernard sandy loam losing the same nitrogen mass for both manures, because of its higher pH and buffer pH coupled with an intermediate CEC resulting in more soil solution NH3. Within each manure type, % TAN volatilized was highest for washed sand and lowest for the clay soil. As a result, ISPAD manure can offer up to 21% more plant-available nitrogen fertilizer especially when the manure is not incorporated into the soil following its application.

  4. Transformation of aldicarb sulfoxide and aldicarb sulfone in four water-saturated sandy subsoils

    NARCIS (Netherlands)

    Smelt, J.H.; Peppel-Groen, van de A.E.; Leistra, M.

    1995-01-01

    Accurate transformation rates of pesticide residues in aquifer material are needed to predict the ultimate effects of pesticide leaching on drinking-water resources. Even slow transformation rates in the groundwater zone can lead to substantial reduction of the concentrations. In this study the

  5. Environmental and agricultural benefits of a management system designed for sandy loam soils of the humid tropics Benefícios ambientais e agronômicos de um agrossistema definido para solos de textura franco arenosa do trópico úmido

    Directory of Open Access Journals (Sweden)

    Alana das Chagas Ferreira Aguiar

    2009-10-01

    Full Text Available A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.O manejo sustentável dos solos de baixa fertilidade natural na agricultura familiar do trópico tem sido um grande desafio, que, se vencido, resultará em vantagens para o ambiente e para os agricultores. Este trabalho foi realizado com o objetivo de avaliar os benefícios ambiental e agronômico de um cultivo em aleias, por meio da determinação do C sequestrado, dos indicadores da qualidade do solo e da produtividade da cultura do milho

  6. Heat transport dynamics at a sandy intertidal zone

    Science.gov (United States)

    Befus, Kevin M.; Cardenas, M. Bayani; Erler, Dirk V.; Santos, Isaac R.; Eyre, Bradley D.

    2013-06-01

    Intertidal zones are spatially complex and temporally dynamic environments. Coastal groundwater discharge, including submarine groundwater discharge, may provide stabilizing conditions for intertidal zone permeable sediments. In this study, we integrated detailed time series temperature observations, porewater pressure measurements, and two-dimensional electrical resistivity tomography profiles to understand the coupled hydraulic-thermal regime of a tropical sandy intertidal zone in a fringing coral reef lagoon (Rarotonga, Cook Islands). We found three heating patterns across the 15 m study transect over tidal and diel periods: (1) a highly variable thermal regime dominated by swash infiltration and changes in saturation state in the upper foreshore with net heat import into the sediment, (2) a groundwater-supported underground stable, cool region just seaward of the intertidal slope break also importing heat into the subsurface, and (3) a zone of seawater recirculation that sustained consistently warm subsurface temperatures that exported heat across the sediment-water interface. Simple calculations suggested thermal conduction as the main heat transport mechanism for the shallow intertidal sediment, but deeper and/or multidimensional groundwater flow was required to explain temperature patterns beyond 20 cm depth. Temperature differences between the distinct hydrodynamic zones of the foreshore site resulted in significant thermal gradients that persisted beyond tidal and diel periods. The thermal buffering of intertidal zones by coastal groundwater systems, both at surface seeps and in the shallow subsurface, can be responsible for thermal refugia for some coastal organisms and hotspots for biogeochemical reactions.

  7. Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture.

    Science.gov (United States)

    Häring, Volker; Manka'abusi, Delphine; Akoto-Danso, Edmund K; Werner, Steffen; Atiah, Kofi; Steiner, Christoph; Lompo, Désiré J P; Adiku, Samuel; Buerkert, Andreas; Marschner, Bernd

    2017-09-06

    In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m-2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.

  8. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    Science.gov (United States)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  9. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  10. Role of Soil Microstructure in Microbially-mediated Drying Resistance

    Science.gov (United States)

    Cruz, B. C.; Shor, L. M.; Gage, D. J.

    2015-12-01