WorldWideScience

Sample records for saturated geologic media

  1. Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Stephen R.

    2003-06-01

    Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones Stephen Brown, Gregory Boitnott, and Martin Smith New England Research In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. For sedimentary materials the length scales are: the pore scale (irregularities in grain surface roughness and cementation), the scale of grain packing faults (and the resulting correlated porosity structures), the scale dominated by sorting or winnowing due to depositional processes, and the scale of geomorphology at the time of deposition. We are studying the heterogeneity and anisotropy in geometry, permeability, and geophysical response from the pore (microscopic), laboratory (mesoscopic), and backyard field (macroscopic) scales. In turn these data are being described and synthesized for development of mathematical models. Eventually, we will perform parameter studies to explore these models in the context of transport in the vadose and saturated zones. We have developed a multi-probe physical properties scanner which allows for the mapping of geophysical properties on a slabbed sample or core. This device allows for detailed study of heterogeneity at those length scales most difficult to quantify using standard field and laboratory practices. The measurement head consists of a variety of probes designed to make local measurements of various properties, including: gas permeability, acoustic velocities (compressional and shear), complex electrical impedance (4 electrode, wide frequency coverage), and ultrasonic reflection (ultrasonic impedance and permeability). We can thus routinely generate detailed geophysical maps of a particular sample. With the exception of the acoustic velocity, we are testing and modifying these probes as necessary for use on soil samples. As a baseline study we have been

  2. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  3. TOURGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media

    OpenAIRE

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...

  4. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variably Saturated Geologic Media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO 2 disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during heater

  5. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  6. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  7. Effective stress principle for partially saturated media

    International Nuclear Information System (INIS)

    McTigue, D.F.; Wilson, R.K.; Nunziato, J.W.

    1984-04-01

    In support of the Nevada Nuclear Waste Storage Investigation (NNWSI) Project, we have undertaken a fundamental study of water migration in partially saturated media. One aspect of that study, on which we report here, has been to use the continuum theory of mixtures to extend the classical notion of effective stress to partially saturated media. Our analysis recovers previously proposed phenomenological representations for the effective stress in terms of the capillary pressure. The theory is illustrated by specializing to the case of linear poroelasticity, for which we calculate the deformation due to the fluid pressure in a static capillary fringe. We then examine the transient consolidation associated with liquid flow induced by an applied surface load. Settlement accompanies this flow as the liquid is redistributed by a nonlinear diffusion process. For material properties characteristic of tuff from the Nevada Test Site, these effects are found to be vanishingly small. 14 references, 7 figures, 1 table

  8. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  9. Two-beam interaction in saturable media

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Schmidt, Michel R.; Juul Rasmussen, Jens

    1998-01-01

    The dynamics of two coupled soliton solutions of the nonlinear Schrodinger equation with a saturable nonlinearity is investigated It is shown by means of a variational method and by direct numerical calculations that two well-separated solitons can orbit around each other, if their initial velocity...

  10. Studies of non-isothermal flow in saturated and partially saturated porous media

    International Nuclear Information System (INIS)

    Ho, C.K.; Maki, K.S.; Glass, R.J.

    1993-01-01

    Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell

  11. RANCH, Radionuclide Migration in Geological Media

    International Nuclear Information System (INIS)

    Patry, J.; Hadermann, J.

    1991-01-01

    1 - Description of problem or function: One-dimensional transport of radionuclide chains through layered geological media, taking into account longitudinal dispersion, convection and retention. 2 - Method of solution: Semi-analytical solution by Laplace transform. Convolution integrals. 3 - Restrictions on the complexity of the problem: Maximum 4 nuclides and 10 layers. Peclet number large compared to 1

  12. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  13. Effective constants for wave propagation through partially saturated porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.; Thigpen, L.

    1985-01-01

    The multipole scattering coefficients for elastic wave scattering from a spherical inhomogeneity in a fluid-saturated porous medium have been calculated. These coefficients may be used to obtain estimates of the effective macroscopic constants for long-wavelength propagation of elastic waves through partially saturated media. If the volume average of the single scattering from spherical bubbles of gas and liquid is required to vanish, the resulting equations determine the effective bulk modulus, density, and viscosity of the multiphase fluid filling the pores. The formula for the effective viscosity during compressional wave excitation is apparently new

  14. Solubility limited radionuclide transport through geologic media

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Iwamoto, Fumio; Pigford, T.H.

    1980-11-01

    Prior analyses for the migration of radionuclides neglect solubility limits of resolved radionuclide in geologic media. But actually some of the actinides may appear in chemical forms of very low solubility. In the present report we have proposed the migration model with no decay parents in which concentration of radionuclide is limited in concentration of solubility in ground water. In addition, the analytical solutions of the space-time-dependent concentration are presented in the case of step release, band release and exponential release. (author)

  15. Plane shock wave studies of geologic media

    International Nuclear Information System (INIS)

    Anderson, G.D.; Larson, D.B.

    1977-01-01

    Plane shock wave experiments have been conducted on eight geologic materials in an effort to determine the importance of time-dependent mechanical behavior. Of the eight rocks studied, only Westerly granite and nugget sandstone appear to show time independence. In the slightly porous materials (1-5 percent), Blair dolomite and sodium chloride, and in the highly porous (15 to 40 percent) rock, Mt. Helen tuff and Indiana limestone, time-dependent behavior is associated with the time required to close the available porosity. In water-saturated rocks the time dependence arises because the water that is present shows no indication of transformation to the higher pressure ice phases, thus suggesting the possibility that a metastable form of water exists under dynamic conditions

  16. Freezing heat transfer within water-saturated porous media

    International Nuclear Information System (INIS)

    Sasaki, Akira; Aiba, Shinya; Fukusako, Shoichiro.

    1990-01-01

    In the present study, analytical and experimental investigations were performed so as to clarify the characteristics of freezing heat transfer in porous media saturated with water in a vertical rectangular cavity. In order to establish the momentum equation, the law of conservation of momentum was applied to the fluid in our control volume, and the equation took into account Forchheimer's extension as the resistance to flow in the porous media. Three different sizes of glass, iron and copper beads were used as the porous media in this study. The temperature of the cold wall was kept at -10degC, while that of the hot wall was varied from 2degC to 22 degC. Comparisons between the analytical results and the experimental ones show good agreement with the exception of the copper bead results. (author)

  17. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  18. UCBNE25, Radionuclide Migration in Geologic Media

    International Nuclear Information System (INIS)

    Kilshtok, G.

    1988-01-01

    1 - Description of program or function: UCBNE25 estimates the maximum concentration of nuclides occurring during the migration of three-member radionuclide chains in geologic media without axial dispersion. Unlike other migration codes, the release rate in UCBNE25 is the independent variable, and time is the dependent variable. The extrema in concentrations are determined without having to calculate the entire concentration history. The program assumes one-dimensional water transport and sorption equilibrium for the nuclides in the soil and in the water. The water velocity is held constant, and the leach times are smaller than the half-lives of the nuclides involved. UCBNE25 calculates for each nuclide the time of the maxima at a specified position, the maximum dimensionless concentration, the corresponding water dilution rate, and the contamination time for that position. The closed form solutions can be easily checked by hand, making it a useful calibration tool for other codes. 2 - Method of solution: The method concentrates on the estimation of the extrema positions in space at a fixed time and their occurrence at a fixed position

  19. Ultrasonic Characterization of Water Saturated Double Porosity Media

    Science.gov (United States)

    Bai, Ruonan; Tinel, Alain; Alem, Abdellah; Franklin, Hervé; Wang, Huaqing

    Wave propagation through a multilayered structure consisting of a water saturated double porosity medium in an aluminum rectangular box immersed in water is studied. By assuming a plane incident wave from water onto the structure, the reflection and transmission coefficients are derived by application of the boundary conditions at each interface. Numerical computations are done for two particular double porosity media, ROBU® and Tobermorite 11 Å, that are assumed to obey Berryman's extension of Biot's theory [Berryman 1995, 2000]. The influence of the thickness of double porosity medium is investigated. To compare experiments to computations, two comparison coefficients Cnum and Cexp are introduced. The theoretical one Cnum is defined as the ratio of the transmission coefficient of the structure to the transmission coefficient of the box filled exclusively with water. The experimental comparison coefficient Cexp is defined as the ratio of the Fourier transforms of the transmitted signals by the box filled with the double porous medium to that of the transmitted signals by the box filled with water. A method of minimization based on a gradient descent algorithm is used to optimize some of the parameters of the double porosity media such as the bulk moduli.

  20. Thermally driven moisture redistribution in partially saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Dodge, F.T.; Svedeman, S.J.; Manteufel, R.D.; Meyer, K.A.; Baca, R.G. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-12-01

    It is widely recognized that the decay heat produced by high-level radioactive waste (HLW) will likely have a significant impact on both the pre- and post-closure performance of the proposed repository at Yucca Mountain (YM), in southwest Nevada. The task of delineating which aspects of that impact are favorable to isolation performance and which are adverse is an extremely challenging technical undertaking because of such factors as the hydrothermal regimes involved, heterogeneity of the geologic media, and the time and space scales involved. This difficulty has motivated both the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) to undertake multi-year thermohydrology research programs to examine the effects of decay heat on pre- and post-closure performance of the repository. Both of these organizations are currently pursuing laboratory and field experiments, as well as numerical modeling studies, to advance the state of knowledge of the thermohydrologic phenomena relevant to the proposed geologic repository. The NRC-sponsored Thermohydrology Research Project, which was initiated in mid-1989 at the Center for Nuclear Waste Regulatory Analyses (CNWRA), began with the intent of addressing a broad spectrum of generic thermohydrologic questions. While some of these questions were answered in the conduct of the study, other new and challenging ones were encountered. Subsequent to that report, laboratory-scale experiments were designed to address four fundamental questions regarding thermohydrologic phenomena: what are the principal mechanisms controlling the redistribution of moisture; under what hydrothermal conditions and time frames do individual mechanisms predominate; what driving mechanism is associated with a particular hydrothermal regime; what is the temporal and spatial scale of each hydrothermal regime? This report presents the research results and findings obtained since issuance of the first progress report. 85 refs.

  1. Thermally driven moisture redistribution in partially saturated porous media

    International Nuclear Information System (INIS)

    Green, R.T.; Dodge, F.T.; Svedeman, S.J.; Manteufel, R.D.; Meyer, K.A.; Baca, R.G.

    1995-12-01

    It is widely recognized that the decay heat produced by high-level radioactive waste (HLW) will likely have a significant impact on both the pre- and post-closure performance of the proposed repository at Yucca Mountain (YM), in southwest Nevada. The task of delineating which aspects of that impact are favorable to isolation performance and which are adverse is an extremely challenging technical undertaking because of such factors as the hydrothermal regimes involved, heterogeneity of the geologic media, and the time and space scales involved. This difficulty has motivated both the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) to undertake multi-year thermohydrology research programs to examine the effects of decay heat on pre- and post-closure performance of the repository. Both of these organizations are currently pursuing laboratory and field experiments, as well as numerical modeling studies, to advance the state of knowledge of the thermohydrologic phenomena relevant to the proposed geologic repository. The NRC-sponsored Thermohydrology Research Project, which was initiated in mid-1989 at the Center for Nuclear Waste Regulatory Analyses (CNWRA), began with the intent of addressing a broad spectrum of generic thermohydrologic questions. While some of these questions were answered in the conduct of the study, other new and challenging ones were encountered. Subsequent to that report, laboratory-scale experiments were designed to address four fundamental questions regarding thermohydrologic phenomena: what are the principal mechanisms controlling the redistribution of moisture; under what hydrothermal conditions and time frames do individual mechanisms predominate; what driving mechanism is associated with a particular hydrothermal regime; what is the temporal and spatial scale of each hydrothermal regime? This report presents the research results and findings obtained since issuance of the first progress report. 85 refs

  2. Analytic models of nuclide transport in saturated geologic media

    International Nuclear Information System (INIS)

    Klett, R.D.; Treadway, A.H.; Hertel, E.S. Jr.; Garner, J.W.

    1987-05-01

    This report describes the TRION Series of computer programs which consists of two major programs, the core program TRION and the performance assessment program SEDTRN, and several special application programs. The results presented in the Derivations and Solutions to the Diffusion Equations section are used in TRION and SEDTRAN and are the basis for some of the special application programs. The solutions are for two-dimensional axisymmetric diffusion with point and line sources, instantaneous and pulse release, sorbtion, a zero-concentration upper sediment boundary simulating the ocean, and either an impermeable lower boundary or an infinitely thick sediment. An array of canisters can be simulated with an impermeable cylindrical boundary around the source

  3. Interaction of Airy-Gaussian beams in saturable media

    Science.gov (United States)

    Zhou, Meiling; Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Deng, Dongmei

    2016-08-01

    Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.

  4. Interaction of Airy–Gaussian beams in saturable media

    International Nuclear Information System (INIS)

    Zhou Meiling; Peng Yulian; Chen Chidao; Chen Bo; Peng Xi; Deng Dongmei

    2016-01-01

    Based on the nonlinear Schrödinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. (paper)

  5. Review of heat dissipation in geologic media

    International Nuclear Information System (INIS)

    Pohl, R.O.; Vandersande, J.W.

    1981-01-01

    Existing data on the thermal conductivity of various rocks, e.g., rocksalt, granite, basalt, etc., will be critically reviewed, with the objective of determining the likely range of conductivity to be expected in a geologic repository. Research carried out at Cornell on the thermal conductivity of rocksalt from different sources, and from different horizons at the WIPP site in New Mexico will be described, as well as the search for the influence of ionizing radiation and of heat treatment. A few examples chosen from previously published calculations of expected temperature profiles will be presented; the considerable discrepancies demonstrate the need for more reliable calculations and for sensitivity analyses

  6. Defect solitons in saturable nonlinearity media with parity-time symmetric optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sumei [Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000 (China); Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China); Hu, Wei, E-mail: huwei@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China)

    2013-11-15

    We reported the existence and stability of defect solitons in saturable nonlinearity media with parity-time (PT) symmetric optical lattices. Families of fundamental and dipole solitons are found in the semi-infinite gap and the first gap. The power of solitons increases with the increasing of the propagation constant and saturation parameter. The existence areas of fundamental and dipole solitons shrink with the growth of saturation parameter. The instability of dipole solitons for positive and no defect induced by the imaginary part of PT symmetric potentials can be suppressed by the saturation nonlinearity, but for negative defect it cannot be suppressed by the saturation nonlinearity.

  7. Multiscale Modeling of Poromechanics in Geologic Media

    Science.gov (United States)

    Castelletto, N.; Hajibeygi, H.; Klevtsov, S.; Tchelepi, H.

    2017-12-01

    We describe a hybrid MultiScale Finite Element-Finite Volume (h-MSFE-FV) framework for the simulation of single-phase Darcy flow through deformable porous media that exhibit highly heterogeneous poromechanical properties over a wide range of length scales. In such systems, high resolution characterizations are a key requirement to obtain reliable modeling predictions and motivate the development of multiscale solution strategies to cope with the computational burden. A coupled two-field fine-scale mixed FE-FV discretization of the governing equations, namely conservation laws of linear momentum and mass, is first implemented based on a displacement-pressure formulation. After imposing a coarse-scale grid on the given fine-scale problem, for the MSFE displacement stage, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. Such MSFE stage is then coupled with the MSFV method for flow, in which a dual-coarse grid is introduced to obtain approximate but conservative multiscale solutions. Robustness and accuracy of the proposed multiscale framework is demonstrated using a variety of challenging test problems.

  8. Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Djuraev Ulugbek

    2017-01-01

    Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.

  9. TESOL and Media Education: Navigating Our Screen-Saturated Worlds

    Science.gov (United States)

    Chamberlin-Quinlisk, Carla

    2012-01-01

    Much has changed for today's language learners. The people, artifacts, and popular culture of a target language are often highly accessible to language learners and teachers, despite geographical barriers. This accessibility, of course, is possible through mass media and electronic forms of communication. This is phenomenal. But with this…

  10. Migration of radionuclide through two-layered geologic media

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Takagi, Ikuji; Nakai, Kunihiro; Higashi, Kunio

    1984-01-01

    For the safety assessment of geologic disposal of high-level radioactive wastes, an analytical solution was obtained for one-dimensional migration of radionuclide through two-layered geologic media without dispersion. By applying it to geologic media composed of granite and soil layers, the effect of interlayer boundary on the discharge profile of radionuclides in decay chains into biological environment is examined. The time-space profiles of radionuclides in the vicinity of interlayer boundary are much complicated as shown in the results of calculation. Those profiles in case that the groundwater flows through granite followed by soil are quite different from those in case that the groundwater flows through soil followed by granite. Each of complicated dependence of profiles on time and space can be physically explained. The characteristic profiles in the vicinity of interlayer boundary have not been discussed previously. Recently, numerical computer codes has been developed to apply to much more realistic geologic situations. However, the numerical accuracies of the codes are necessary to be confirmed. This is achieved by comparing computational results with results from analytical solutions. The analytical solution presented will serve as a bench-mark for numerical accuracy. (author)

  11. Dynamics of elliptic breathers in saturable nonlinear media with linear anisotropy

    International Nuclear Information System (INIS)

    Liang, Guo; Guo, Qi; Shou, Qian; Ren, Zhanmei

    2014-01-01

    We have introduced a class of dynamic elliptic breathers in saturable nonlinear media with linear anisotropy. Two kinds of evolution behavior for the dynamic breathers, rotations and molecule-like librations, are both predicted by the variational approach, and confirmed in numerical simulations. The dynamic elliptic breathers can rotate even though they have no initial orbital angular momentum (OAM). As the media are linear anisotropic, OAM is no longer conserved, and hence the angular velocity is not constant but a periodic function of the propagation distance. When the linear anisotropy is large enough, the dynamic elliptic breathers librate like molecules. The dynamic elliptic breathers are present in media with not only saturable nonlinearity but also nonlocal nonlinearity; indeed, they are universal in nonlinear media with linear anisotropy. (paper)

  12. Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V; Egorov, Alexey A; Vysloukh, Victor A; Torner, Lluis

    2004-01-01

    We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns

  13. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    Science.gov (United States)

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the

  14. Existence and Uniqueness of Solutions to the Stochastic Porous Media Equations of Saturated Flows

    International Nuclear Information System (INIS)

    Ciotir, Ioana

    2010-01-01

    This paper proves the existence and uniqueness of nonnegative solutions for the stochastic porous media equations with multiplicative noise, infinite jump and discontinuous diffusivity function relevant in description of saturation processes in underground water infiltration in a bounded domain of R 3 .

  15. Exact bright and dark spatial soliton solutions in saturable nonlinear media

    International Nuclear Information System (INIS)

    Calvo, Gabriel F.; Belmonte-Beitia, Juan; Perez-Garcia, Victor M.

    2009-01-01

    We present exact analytical bright and dark (black and grey) solitary wave solutions of a nonlinear Schroedinger-type equation describing the propagation of spatial beams in media exhibiting a saturable nonlinearity (such as centrosymmetric photorefractive materials). A qualitative study of the stationary equation is carried out together with a discussion of the stability of the solutions.

  16. LLUVIA-II: A program for two-dimensional, transient flow through partially saturated porous media

    International Nuclear Information System (INIS)

    Eaton, R.R.; Hopkins, P.L.

    1992-08-01

    LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification

  17. Application of infrared thermography for temperature distributions in fluid-saturated porous media

    DEFF Research Database (Denmark)

    Imran, Muhammad; Nick, Hamid; Schotting, Ruud J.

    2016-01-01

    is achieved with a combination of invasive sensors which are inserted into the medium and non-invasive thermal sensors in which sensors are not inserted to measure temperatures but it works through the detection of infrared radiation emitted from the surface. Thermocouples of relatively thin diameter are used......Infrared thermography has increasingly gained importance because of environmental and technological advancements of this method and is applied in a variety of disciplines related to non-isothermal flow. However, it has not been used so far for quantitative thermal analysis in saturated porous media....... This article suggests infrared thermographic approach to obtain the entire surface temperature distribution(s) in water-saturated porous media. For this purpose, infrared thermal analysis is applied with in situ calibration for a better understanding of the heat transfer processes in porous media. Calibration...

  18. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media

    Science.gov (United States)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    2018-02-01

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19 cm and 12.51 cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74 cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced

  19. Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid.

    Science.gov (United States)

    Chen, Chong; Zhao, Kang; Shang, Jianying; Liu, Chongxuan; Wang, Jin; Yan, Zhifeng; Liu, Kesi; Wu, Wenliang

    2018-05-07

    Natural aquifers typically exhibit a variety of structural heterogeneities. However, the effect of mineral colloids and natural organic matter on the transport behavior of uranium (U) in saturated heterogeneous media are not totally understood. In this study, heterogeneous column experiments were conducted, and the constructed columns contained a fast-flow domain (FFD) and a slow-flow domain (SFD). The effect of kaolinite, humic acid (HA), and kaolinite/HA mixture on U(VI) retention and release in saturated heterogeneous media was examined. Media heterogeneity significantly influenced U fate and transport behavior in saturated subsurface environment. The presence of kaolinite, HA, and kaolinite/HA enhanced the mobility of U in heterogeneous media, and the mobility of U was the highest in the presence of kaolinite/HA and the lowest in the presence of kaolinite. In the presence of kaolinite, there was no difference in the amount of U released from the FFD and SFD. However, in the presence of HA and kaolinite/HA, a higher amount of U was released from the FFD. The findings in this study showed that medium structure and mineral colloids, as well as natural organic matter in the aqueous phase had significant effects on U transport and fate in subsurface environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Influence of Poroelasticity on the 3D Seismic Response of Complex Geological Media

    Directory of Open Access Journals (Sweden)

    Wuttke Frank

    2017-06-01

    Full Text Available Elastic wave propagation in 3D poroelastic geological media with localized heterogeneities, such as an elastic inclusion and a canyon is investigated to visualize the modification of local site responses under consideration of water saturated geomaterial. The extended computational environment herein developed is a direct Boundary Integral Equation Method (BIEM, based on the frequency-dependent fundamental solution of the governing equation in poro-visco elastodynamics. Bardet’s model is introduced in the analysis as the computationally efficient viscoelastic isomorphism to Biot’s equations of dynamic poroelasticity, thus replacing the two-phase material by a complex valued single-phase one. The potential of Bardet’s analogue is illustrated for low frequency vibrations and all simulation results demonstrate the dependency of wave field developed along the free surface on the properties of the soil material.

  1. Alternate nuclear waste forms and interactions in geologic media

    International Nuclear Information System (INIS)

    Boatner, L.A.; Battle, G.C. Jr.

    1981-04-01

    The primary purposes of the conference on Alternate Nuclear Waste Forms and Interactions in Geologic Media were: First, to provide an opportunity for a review of the status of the research on some of the candidate alternative waste forms; second, to provide an opportunity for comparing the characteristics of alternate waste forms to those of glasses; and third, to stimulate increased interactions between those research groups that were engaged in a more basic approach to characterizing waste forms and those who were concerned with more applied aspects such as the processing of these materials. The motivating philosophy behind this third purpose of the conference was based on the idea that by operating from the soundest possible fundamental base for any of the candidate waste forms, hopefully any future unpleasant surprise - such as that alluded to earlier in the case of glass waste forms - could be avoided. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base

  2. Geotrap: radionuclide migration in geologic, heterogeneous media. Summary of accomplishments

    International Nuclear Information System (INIS)

    2002-01-01

    GEOTRAP - the OECD/NEA Project on Radionuclide Migration in Geologic, Heterogeneous Media - was carried out in the context of site evaluation and safety assessment of deep repository systems for long-lived radioactive waste. The project was created in 1996 with the aim of developing an understanding of, and modelling capability for, potential radionuclide migration. This report provides an overview of the project's main findings and accomplishments over its five-year life. This summary should help make the valuable information collected and generated by the GEOTRAP project accessible to a wide readership both within and outside the radioactive waste community.It is a reflection of the careful attention paid by this community to the question of radionuclide transport. (authors)

  3. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection......-dominated conditions in homogeneous and heterogeneous porous media [2-3]. The model-based interpretation of the experimental results is challenging since it requires a multicomponent ionic formulation with an accurate description of local hydrodynamic dispersion and explicitly accounting for the cross-coupling...

  4. The Complex Conductivity Signature of Geobacter Species in Geological Media

    Science.gov (United States)

    Brown, I.; Atekwana, E. A.; Sarkisova, S.; Achang, M.

    2013-12-01

    The Complex Conductivity (CC) technique is a promising biogeophysical approach for sensing microbially-induced changes in geological media because of its low-invasive character and sufficient sensitivity to enhanced microbial activity in the near subsurface. Geobacter species have been shown to play important roles in the bioremediation of groundwater contaminated with petroleum and landfill leachate. This capability is based on the ability of Geobacter species to reduce Fe(III) by transferring of electrons from the reduced equivalents to Fe(III) rich minerals through respiration chain and special metallic-like conductors - pili. Only the cultivation of Geobacter species on Fe(III) oxides specifically express pili biosynthesis. Moreover, mutants that cannot produce pili are unable to reduce Fe(III) oxides. However, little is known about the contribution of these molecular conductors (nanowires) to the generation of complex conductivity signatures in geological media. Here, we present the results about the modulation of CC signatures in geological media by Geobacter sulfurreducens (G.s.). Cultures of wild strain G.s. and its pilA(-) mutant were anaerobically cultivated in the presence of the pair of such donors and acceptors of electrons: acetate - fumarate, and acetate - magnetite under anaerobic conditions. Each culture was injected in CC sample holders filled either with N2-CO2 mix (planktonic variant) or with this gases mix and glass beads, d=1 mm, (porous medium variant). Both strains of G.s. proliferated well in a medium supplemented with acetate-fumarate. However, pilA(-) mutant did not multiply in a medium supplemented with ox-red pair yeast extract - magnetite. This observation confirmed that only wild pilA(+) strain is capable of the dissimilatory reduction of Fe(III) within magnetite molecule. The measurement of CC responses from planktonic culture of G.s. wild strain grown with acetate-fumarate did not show linear correlation with their magnitudes but

  5. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    International Nuclear Information System (INIS)

    Norton, D.L.; Glass, R.J.

    1993-01-01

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media

  6. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  7. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  8. Microstructural interactions of geologic media with waste radionuclides

    International Nuclear Information System (INIS)

    Hinkebein, T.E.; Hlava, P.F.

    1977-01-01

    A preliminary investigation of the microstructure of four geologic media was undertaken to examine the interaction of Cs, Sr, Gd and U with those media. Since K/sub D/ measurements often vary by more than an order of magnitude on rocks of the same strata separated by several feet, it was probable that minor rock components play an important role in radionuclide sorption. A qualitative analysis of the rock surfaces after equilibration with solutions of Cs + , Sr ++ , Gd +++ and UO 2 ++ revealed that clay minerals are responsible for all important sorption that takes place on the rocks studied (Magenta dolomite, Bell Canyon silt stone, Eleana shale and clay bearing halite). Thus it is concluded that a relatively small portion of these rocks is actively responsible for sorption characteristics. Gd was bound on all samples, probably as Fe bearing chlorites. Cs was strongly held on the Eleana shale, probably by an illite. Although uranium was associated with an unidentified clay in the halite sample, uranium sorption probably occurred as UO 2 CO 3 , which would not significantly retard uranium movement at trace concentrations. Similarly Sr was retained only as SrSO 4 on Magenta and this mechanism is not significant at trace levels. These analyses were performed by correlating electron microprobe elemental distribution photomicrographs with x-ray analyses of the four rocks. 13 figs., 2 tables

  9. Propagation des ondes acoustiques dans les milieux poreux saturés Propagation of Acoustic Waves in Saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Coussy O.

    2006-11-01

    Full Text Available Ce travail comporte deux parties. La première partie concerne la théorie de la propagation des ondes acoustiques dans les milieux poreux saturés. Une revue des différentes méthodes existantes est faite et un développement critique de la théorie de Biot est exposé en détail. On examine en particulier les différents résultats auxquels cette théorie conduit et on regarde, dans quelles conditions et sur quels problèmes géophysiques, les phénomènes physiques mis en évidence peuvent jouer de manière notable. Dans la deuxième partie, on présente une vérification expérimentale due à Plona (1980 de la théorie de Biot. Après une introduction qualitative de l'expérience mise en place, on expose les résultats obtenus pour un grand nombre de matériaux de porosités différentes. La notion de tortuosité d'un milieu poreux est introduite théoriquement et discutée expérimentalement. This article is in two parts. The first part has to do with the theory of acoustic wave propagation in saturated porous media. Different existing methods are reviewed, and Biot's theory is critically developed in detail. In particular, the different results to which this theory leads are examined, and the conditions and geophysical problems on which the physical phenomena involved may have an appreciable effect are considered. The second part is devoted to the experimental check made by Plona (1980 of Biot's theory. After a qualitative introduction of the experimental procedure, the results obtained for many materials of different porosities are described. The concept of the tortuosity of a porous medium is introduced theoretically and discussed experimentally.

  10. 1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1988-08-01

    This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples

  11. Geological entropy and solute transport in heterogeneous porous media

    Science.gov (United States)

    Bianchi, Marco; Pedretti, Daniele

    2017-06-01

    We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.

  12. On natural convection in enclosures filled with fluid-saturated porous media including viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V.A.F. [Departamento de Engenharia Mecanica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2006-07-15

    Care needs to be taken when considering the viscous dissipation in the energy conservation formulation of the natural convection problem in fluid-saturated porous media. The unique energy formulation compatible with the First Law of Thermodynamics informs us that if the viscous dissipation term is taken into account, also the work of pressure forces term needs to be taken into account. In integral terms, the work of pressure forces must equal the energy dissipated by viscous effects, and the net energy generation in the overall domain must be zero. If only the (positive) viscous dissipation term is considered in the energy conservation equation, the domain behaves as a heat multiplier, with an heat output greater than the heat input. Only the energy formulation consistent with the First Law of Thermodynamics leads to the correct flow and temperature fields, as well as of the heat transfer parameters characterizing the involved porous device. Attention is given to the natural convection problem in a square enclosure filled with a fluid-saturated porous medium, using the Darcy Law to describe the fluid flow, but the main ideas and conclusions apply equally for any general natural or mixed convection heat transfer problem. It is also analyzed the validity of the Oberbeck-Boussinesq approximation when applied to natural convection problems in fluid-saturated porous media. (author)

  13. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    International Nuclear Information System (INIS)

    Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan

    2012-01-01

    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.

  14. Poromechanics Parameters of Fluid-Saturated Chemically Active Fibrous Media Derived from a Micromechanical Approach.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2013-01-01

    The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hill's volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.

  15. Graphene oxide-facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media.

    Science.gov (United States)

    Sun, Kaixuan; Dong, Shunan; Sun, Yuanyuan; Gao, Bin; Du, Wenchao; Xu, Hongxia; Wu, Jichun

    2018-04-15

    In this work, effects of graphene oxide (GO) on the co-transport of the two typical Fluoroquinolones (FQs) - levofloxacin (LEV) and ciprofloxacin (CIP) in saturated and unsaturated quartz sand media were studied. The adsorption isotherms showed that GO had much larger sorption capacities to LEV and CIP than sand with the largest Langmuir adsorption capacity of 409 mg g -1 (CIP-GO); while the sorption affinity of the two FQs onto the two adsorbents might follow the order of CIP-sand > LEV-sand > LEV-GO > CIP-GO. GO promoted the mobility of the two FQs in both saturated and unsaturated porous media due to its strong mobility and sorption capacity. The GO-bound LEV/CIP was responsible for the LEV/CIP transport in the porous media, and transport of GO-bound FQs increased with the increasing of initial GO concentration. Under unsaturated conditions, moisture showed little effect on the transport of GO-bound CIP; however, the mobility of GO-bound LEV reduced with the decreasing of moisture content, suggesting the transport of adsorbed LEV from GO to air-water interface. GO sorption reduced the antibacterial ability of the two FQs, but they were still effective in inhibiting E. coli growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. FEMWASTE: a Finite-Element Model of Waste transport through porous saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.; Ward, D.S.

    1981-04-01

    A two-dimensional transient model for the transport of dissolved constituents through porous media originally developed at Oak Ridge National Laboratory (ORNL) has been expanded and modified. Transport mechanisms include: convection, hydrodynamic dispersion, chemical sorption, and first-order decay. Implementation of quadrilateral iso-parametric finite elements, bilinear spatial interpolation, asymmetric weighting functions, several time-marching techniques, and Gaussian elimination are employed in the numerical formulation. A comparative example is included to demonstrate the difference between the new and original models. Results from 12 alternative numerical schemes of the new model are compared. The waste transport model is compatible with the water flow model developed at ORNL for predicting convective Darcy velocities in porous media which may be partially saturated

  17. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Science.gov (United States)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  18. Thermo-hydric characterization of partially saturated porous media; Caracterisation thermo-hydrique de milieux poreux partiellement satures d'eau

    Energy Technology Data Exchange (ETDEWEB)

    Simon Salager; Frederic Jamin; Moulay Said El Youssoufi; Christian Saix [Laboratoire de Mecanique et Genie Civil, Universite Montpellier II, cc 048, Place Eugene Bataillon, 34095 Montpellier (France)

    2005-07-01

    We present a contribution to the thermo-hydric characterization of partially saturated porous media by water, through the characteristic curve. This curve defines the relation between suction and degree of saturation. Using this curve for a given temperature, a model is used to predict it for other temperatures. An experimental device called pressure cell was made in a thermo-regulated environment. The model was validated by several tests on a ceramic and silty clayey sand, at 20 and 60 C. The results obtained lead to a characteristic surface which can be considered as a generalization of the classical characteristic curve. (authors)

  19. Retardation characteristics of radionuclides in geologic media through batch and packed column experiments

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Han, Kyung Won; Han, Pil Soo; Lee, Jae Owan; Park, Chung Kyun; Yang, Ho Yeon

    1988-03-01

    Batch and packed column experiments are performed to investigate the retardation characteristics of radionuclide,i.e, Cs-137 in geologic media. In batch experiment, the effects of important parameters on the sorption of radionuclide in geologic media, such as nuclide concentration, pH, and particle size are examined. The Kd value obtained from breakthrough curve was compared with that from the batch sorption experiment to investigate the applicability of the Kd value from batch experiment to prediction of radionuclide migration in dynamic flow through porous media. The proposed model of radionuclide migration in porous media is also verified using the experimental results. (Author)

  20. Microstructural effects on the overall poroelastic properties of saturated porous media

    International Nuclear Information System (INIS)

    Bouhlel, M; Jamei, M; Geindreau, C

    2010-01-01

    At the macroscopic scale, the quasi-static deformation of an elastic porous medium saturated by an incompressible Newtonian fluid is described by the well-known Biot's model, which involves four effective parameters. In this work, the three effective poroelastic properties and the permeability of two periodic microstructures of saturated cohesive granular media, i.e. simple cubic (SC) and body-centered cubic (BCC) arrays of overlapping spheres, are computed by solving, over the representative elementary volume, boundary-value problems arising from the homogenization process. The influence of microstructure properties, i.e. solid volume fraction, arrangement of spheres, number of contacts as well as the intrinsic properties of the solid phase on the overall properties, is highlighted. Numerical results are then compared with rigorous bounds, self-consistent estimations, exact expansions and experimental results on ceramics and metals available in the literature. Finally, the capability of the obtained results on such periodic microstructures to describe the poroelastic properties of real porous media is discussed

  1. Effect of flow on bacterial transport and biofilm formation in saturated porous media

    Science.gov (United States)

    Rusconi, R.

    2016-12-01

    Understanding the transport of bacteria in saturated porous media is crucial for many applications ranging from the management of pumping wells subject to bio-clogging to the design of new bioremediation schemes for subsurface contamination. However, little is known about the spatial distribution of bacteria at the pore scale, particularly when small-scale heterogeneities - always present even in seemingly homogeneous aquifers - lead to preferential pathways for groundwater flow. In particular, the coupling of flow and motility has recently been shown to strongly affect bacterial transport1, and this leads us to predict that subsurface flow may strongly affect the dispersal of bacteria and the formation of biofilms in saturated aquifers. I present here microfluidic experiments combined with numerical simulations to show how the topological features of the flow correlate with bacterial concentration and promote the attachment of bacteria to specific regions of the pore network, which will ultimately influence the formations of biofilms. These results highlight the intimate link between small-scale biological processes and transport in porous media.

  2. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  3. Processes, mechanisms, parameters, and modeling approaches for partially saturated flow in soil and rock media

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1993-06-01

    This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times

  4. Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects

    Science.gov (United States)

    Revil, A.

    2017-05-01

    A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.

  5. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    Science.gov (United States)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution

  6. Transport and fate of Herbaspirillum chlorophenolicum FA1 in saturated porous media

    Science.gov (United States)

    Li, X.; Xu, H.; Wu, J.

    2016-12-01

    For the bioremediation of contaminated groundwater, sufficient dispersal of functional microorganisms is one of the most important factors that determine the remediation efficiency. There are extensive studies on the transport of microbes in porous media, while most of them focus on pathogenic bacteria and little attention has been given toward functional bacteria that being used in bioremediation process. Therefore, accurate knowledge of the mechanisms that govern the transport and distribution of such bacteria in groundwater is needed to develop efficient treatment techniques. Herbaspirillum chlorophenolicum FA1, a pure bacterial strain capable of absorbing heavy metals and degrading polycyclic aromatic hydrocarbons (PAHs), was selected as the representative functional bacterium in this study. A series of batch and column experiments were conducted to investigate the transport and deposition behavior of strain FA1 in saturated porous media. The effects of physical (grain size), chemical (ionic strength, humic acid), and biological factors (living/dead cells) were studied in detail. In addition, numerical simulations of breakthrough curve (BTC) data were also performed for information gathering. Results of this study could advance our understanding of functional bacteria transport and help to develop successful bioremediation strategies. This work was financially supported by the National Natural Science Foundation of China -Xinjiang Project (U1503282), the National Natural Science Foundation of China (41030746, 41102148), and the Natural Science Foundation of Jiangsu Province (BK20151385). Keywords: Herbaspirillum chlorophenolicum FA1, bacteria, porous media, transport, modeling

  7. Calibration of a neutron log in partially saturated media. Part II. Error analysis

    International Nuclear Information System (INIS)

    Hearst, J.R.; Kasameyer, P.W.; Dreiling, L.A.

    1981-01-01

    Four sources or error (uncertainty) are studied in water content obtained from neutron logs calibrated in partially saturated media for holes up to 3 m. For this calibration a special facility was built and an algorithm for a commercial epithermal neutron log was developed that obtains water content from count rate, bulk density, and gap between the neutron sonde and the borehole wall. The algorithm contained errors due to the calibration and lack of fit, while the field measurements included uncertainties in the count rate (caused by statistics and a short time constant), gap, and density. There can be inhomogeneity in the material surrounding the borehole. Under normal field conditions the hole-size-corrected water content obtained from such neutron logs can have an uncertainty as large as 15% of its value

  8. Benchmarking variable-density flow in saturated and unsaturated porous media

    Science.gov (United States)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  9. CCC, Heat Flow and Mass Flow in Liquid Saturated Porous Media

    International Nuclear Information System (INIS)

    Mangold, D.C.; Lippmann, M.J.; Bodvarsson, G.S.

    1982-01-01

    1 - Description of problem or function: The numerical model CCC (conduction-convection-consolidation) solves the heat and mass flow equations for a fully, liquid-saturated, anisotropic porous medium and computes one-dimensional (vertical) consolidation of the simulated systems. The model has been applied to problems in the fields of geothermal reservoir engineering, aquifer thermal energy storage, well testing, radioactive waste isolation, and in situ coal combustion. The code has been validated against analytic solutions for fluid and heat flow, and against a field experiment for underground storage of hot water. 2 - Method of solution: The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated porous medium and formulating the governing equations. The sets of equations are sol- ved by an iterative solution technique. The vertical deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. 3 - Restrictions on the complexity of the problem: Maximum of 12 materials. It is assumed that: (a) Darcy's law adequately describes fluid movement through fractured and porous media. (b) The rock and fluid are in thermal equilibrium at any given time. (c) Energy changes due to the fluid compressibility, acceleration and viscous dissipation are neglected. (d) One-dimensional consolidation theory adequately describes the vertical deformation of the medium

  10. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  11. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  12. TRUST: A Computer Program for Variably Saturated Flow in Multidimensional, Deformable Media

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A. E.; Key, K. T.; Narasimhan, T. N.; Nelson, R. W.

    1982-01-01

    The computer code, TRUST. provides a versatile tool to solve a wide spectrum of fluid flow problems arising in variably saturated deformable porous media. The governing equations express the conservation of fluid mass in an elemental volume that has a constant volume of solid. Deformation of the skeleton may be nonelastic. Permeability and compressibility coefficients may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may include hysteresis. The code developed by T. N. Narasimhan grew out of the original TRUNP code written by A. L. Edwards. The code uses an integrated finite difference algorithm for numerically solving the governing equation. Narching in time is performed by a mixed explicit-implicit numerical procedure in which the time step is internally controlled. The time step control and related feature in the TRUST code provide an effective control of the potential numerical instabilities that can arise in the course of solving this difficult class of nonlinear boundary value problem. This document brings together the equations, theory, and users manual for the code as well as a sample case with input and output.

  13. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    Science.gov (United States)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  14. FLAME: A finite element computer code for contaminant transport n variably-saturated media

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-06-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model referred to as the FLAME computer code, is designed to simulate subsurface contaminant transport in a variably-saturated media. The code can be applied to model two-dimensional contaminant transport in an and site vadose zone or in an unconfined aquifer. In addition, the code has the capability to describe transport processes in a porous media with discrete fractures. This report presents the following: description of the conceptual framework and mathematical theory, derivations of the finite element techniques and algorithms, computational examples that illustrate the capability of the code, and input instructions for the general use of the code. The development of the FLAME computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of energy Order 5820.2A

  15. FLAME: A finite element computer code for contaminant transport n variably-saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Baca, R.G.; Magnuson, S.O.

    1992-06-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model referred to as the FLAME computer code, is designed to simulate subsurface contaminant transport in a variably-saturated media. The code can be applied to model two-dimensional contaminant transport in an and site vadose zone or in an unconfined aquifer. In addition, the code has the capability to describe transport processes in a porous media with discrete fractures. This report presents the following: description of the conceptual framework and mathematical theory, derivations of the finite element techniques and algorithms, computational examples that illustrate the capability of the code, and input instructions for the general use of the code. The development of the FLAME computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of energy Order 5820.2A.

  16. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2......, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been...... quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test...

  17. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  18. Comparison study between the effects of different terms contributing to viscous dissipation in saturated porous media

    KAUST Repository

    Salama, Amgad

    2013-02-01

    Some sort of controversy is associated with the problem of viscous dissipation in saturated porous media for which we try to present a comparison study between the influences of the different terms contributing to this phenomenon. We consider viscous dissipation by studying the case of semi-infinite flat plate embedded in saturated porous medium and is kept at constant, higher temperature compared with the surrounding fluid. The fluid is induced to move upwards by natural convection during which viscous dissipation is considered. The boundary layer assumptions are considered to simplify the treatment and to highlight the influencing parameters. The behavior of temperature, and velocity fields in the neighborhood of the vertical flat plate were used to highlight the effects of these parameters. Three terms were considered to contribute to viscous dissipation, namely Darcy\\'s term, the Forchheimer term and Al-Hadharami\\'s term. Although there are no unanimous agreements between researchers to include the Forchhemier term in the dissipation function, some researchers argued it might have an indirect effect and hence for this sake and for completion purposes, we include it in this comparison study. Dimensional considerations reveal that Darcy\\'s term is influenced by Gebhart number, the Forchheimer term is controlled by the non-Darcy parameter and Al-Hadharami\\'s term is influenced by Darcy\\'s number. The governing, non-dimensional set of equations together with the imposed boundary conditions is numerically investigated by finite element method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e., viscous dissipation) is very much influenced by the relative magnitude of these dimensionless parameters. © 2012 Elsevier Masson SAS. All rights reserved.

  19. Scaling behavior of microbubbles rising in water-saturated porous media

    Science.gov (United States)

    Kong, X.; Ma, Y.; Scheuermann, A.; Bringemeier, D.; Galindo-Torres, S. A.; Saar, M. O.; Li, L.

    2015-12-01

    Gas transport in the form of discrete microbubbles in saturated porous media is of importance in a number of processes relevant to many geo-environmental and engineering systems such as bubbling of greenhouse gases in river and sea beds, hydrocarbon gas migration in coal cleats and rock fractures, and air sparging for remediation of soil contaminated with volatile organic compounds. Under the assumption of no or minor volume expansion during gravity-driven migration, the transport of a single microbubble can be well described using various drag force models. However, not enough attention has been paid to the collective behavior of microbubbles during their ascend as a plume through the saturated porous medium, involving dynamic interactions between individual bubbles, bubbles and the ambient fluid, as well as bubbles and the solid matrix. With our quasi-2D, lab-scale microbubble migration experiments, where bubbles are continuously released from a diffuser at the bottom of a porous bed of hydrated gel beads, we establish a scaling relationship between the gas (bubble) release rate and various characteristic parameters of the bubble plume, such as plume tip velocity, plume width, and breakthrough time of the plume front. We find that the characteristic width of the bubble plume varies as a power of both the gas release rate and the bed thickness, with exponents of 0.2 and 0.4, respectively. Moreover, the characteristic breakthrough time also scales with both the gas release rate and the bed thickness with power-law exponents of -0.4 and 1.2, respectively. The mean pore-water velocity of the circulating ambient water also follows a power-law relationship with the gas release rate being an exponent of 0.6 of the gas release rate. This can be quantitatively proven using a simplified momentum exchange model together with the above power-law exponents for the bubble plume. These analyses on the experimental results are carried out on the basis of non

  20. Transport of Escherichia coli phage through saturated porous media considering managed aquifer recharge.

    Science.gov (United States)

    Zhang, Wenjing; Li, Shuo; Wang, Shuang; Lei, Liancheng; Yu, Xipeng; Ma, Tianyi

    2018-03-01

    Virus is one of the most potentially harmful microorganisms in groundwater. In this paper, the effects of hydrodynamic and hydrogeochemical conditions on the transportation of the colloidal virus considering managed aquifer recharge were systematically investigated. Escherichia coli phage, vB_EcoM-ep3, has a broad host range and was able to lyse pathogenic Escherichia coli. Bacteriophage with low risk to infect human has been found extensively in the groundwater environment, so it is considered as a representative model of groundwater viruses. Laboratory studies were carried out to analyze the transport of the Escherichia coli phage under varying conditions of pH, ionic strength, cation valence, flow rate, porous media, and phosphate buffer concentration. The results indicated that decreasing the pH will increase the adsorption of Escherichia coli phage. Increasing the ionic strength, either Na + or Ca 2+ , will form negative condition for the migration of Escherichia coli phage. A comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca 2+ than monovalent Na + . As the flow rate increases, the release of Escherichia coli phage increases and the retention of Escherichia coli phage in the aquifer medium reduces. Changes in porous media had a significant effect on Escherichia coli phage migration. With increase of phosphate buffer concentration, the suspension stability and migration ability of Escherichia coli phage are both increased. Based on laboratory-scale column experiments, a one-dimensional transport model was established to quantitatively describe the virus transport in saturated porous medium.

  1. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum

    International Nuclear Information System (INIS)

    Tiraferri, Alberto; Sethi, Rajandrea

    2009-01-01

    In order to ensure adequate mobility of zerovalent iron nanoparticles in natural aquifers, the use of a stabilizing agent is necessary. Polymers adsorbed on the nanoparticle surface will give rise to electrosteric stabilization and will decrease attachment to the surface soil grains. Water saturated sand-packed columns were used in this study to investigate the transport of iron nanoparticle suspensions, bare or modified with the green polymer guar gum. The suspensions were prepared at 154 mg/L particle concentration and 0.5 g/L polymer concentration. Transport experiments were conducted by varying the ionic strength, ionic composition, and approach velocity of the fluid. Nanoparticle deposition rates, attachment efficiencies, and travel distances were subsequently calculated based on the classical particle filtration theory. It was found that bare iron nanoparticles are basically immobile in sandy porous media. In contrast, guar gum is able to ensure significant nanoparticle transport at the tested conditions, regardless of the chemistry of the solution. Attachment efficiency values for guar gum-coated nanoparticles under the various conditions tested were smaller than 0.066. Although the calculated travel distances may not prove satisfactory for field application, the investigation attested the promising role of guar gum to ensure mobility of iron nanoparticles in the subsurface environment.

  2. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    Science.gov (United States)

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  3. FEMWATER: a finite-element model of water flow through saturated-unsaturated porous media

    International Nuclear Information System (INIS)

    Yeh, G.T.; Ward, D.S.

    1980-10-01

    Upon examining the Water Movement Through Saturated-Unsaturated Porous Media: A Finite-Element Galerkin Model, it was felt that the model should be modified and expanded. The modification is made in calculating the flow field in a manner consistent with the finite element approach, in evaluating the moisture-content increasing rate within the region of interest, and in numerically computing the nonlinear terms. With these modifications, the flow field is continuous everywhere in the flow regime, including element boundaries and nodal points, and the mass loss through boundaries is much reduced. Expansion is made to include four additional numerical schemes which would be more appropriate for many situations. Also, to save computer storage, all arrays pertaining to the boundary condition information are compressed to smaller dimension, and to ease the treatment of different problems, all arrays are variably dimensioned in all subroutines. This report is intended to document these efforts. In addition, in the derivation of finite-element equations, matrix component representation is used, which is believed more readable than the matrix representation in its entirety. Two identical sample problems are simulated to show the difference between the original and revised models

  4. Transport of vanadium (V in saturated porous media: effects of pH, ionic-strength and clay mineral

    Directory of Open Access Journals (Sweden)

    Yulu Wang

    2016-10-01

    Full Text Available Vanadium, a hazardous pollutant, has been frequently detected in soil and groundwater, however, its transport behavior in porous media were not clearly understood. In this study, the effects of solution pH, ionic strength (IS and the effect of clay mineral on the transport of vanadium in saturated porous media were investigated. Laboratory experiments using a series of columns packed with quartz sand were carried out to explore the retention and transport of vanadium with a range of ionic-strength (0.001–0.1 M and pH (4–8 and two different types of clay minerals montmorillonite and kaolinite. Results of the breakthrough experiments showed that vanadium was highly mobile in the saturated porous media. The increase in pH rendered a higher transport of vanadium in saturated porous media. The study also indicated an easier transfer of vanadium with an increase in IS. Montmorillonite enhanced the mobility of vanadium in the column when compared to kaolinite. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions was used to describe the retention and transport of vanadium in the columns very well.

  5. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    Science.gov (United States)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  6. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.

    Science.gov (United States)

    Haque, Muhammad Emdadul; Shen, Chongyang; Li, Tiantian; Chu, Haoxue; Wang, Hong; Li, Zhen; Huang, Yuanfang

    2017-11-01

    Although the potential application of biochar in soil remediation has been recognized, the effect of biochar on the transport of clay colloids, and accordingly the fate of colloid-associated contaminants, is unclear to date. This study conducted saturated column experiments to systematically examine transport of clay colloids in biochar-amended sand porous media in different electrolytes at different ionic strengths. The obtained breakthrough curves were simulated by the convection-diffusion equation, which included a first-order deposition and release terms. The deposition mechanisms were interpreted by calculating Derjaguin-Landau-Verwey-Overbeek interaction energies. A linear relationship between the simulated deposition rate or the attachment efficiency and the fraction of biochar was observed ( ≥ 0.91), indicating more favorable deposition in biochar than in sand. The interaction energy calculations show that the greater deposition in biochar occurs because the half-tube-like cavities on the biochar surfaces favor deposition in secondary minima and the nanoscale physical and chemical heterogeneities on the biochar surfaces increase deposition in primary minima. The deposited clay colloids in NaCl can be released by reduction of ionic strength, whereas the presence of a bivalent cation (Ca) results in irreversible deposition due to the formation of cation bridging between the colloids and biochar surfaces. The deposition and release of clay colloids on or from biochar surfaces not only change their mobilizations in the soil but also influence the efficiency of the biochar for removal of pollutants. Therefore, the influence of biochar on clay colloid transport must be considered before application of the biochar in soil remediation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. On the importance of aqueous diffusion and electrostatic interactions in advection-dominated transport in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo

    2015-01-01

    to multicomponent ionic dispersion: the dispersive fluxes of the different ions are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes were selected as tracers and their transport was studied...... under different advection-dominated conditions and in homogeneous and heterogeneous porous media. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion and explicitly accounting for the cross-coupling...

  8. Transport properties of nuclear wastes in geologic media

    International Nuclear Information System (INIS)

    Seitz, M.G.; Rickert, P.; Fried, S.; Friedman, A.M.; Steindler, M.

    1977-01-01

    Laboratory experiments were performed with Cs, Pu, Np, and Am to examine the migratory characteristics of long-lived radionuclides that could be mobilized by groundwaters infiltrating a nuclear waste repository and the surrounding geologic body. In column infiltration experiments, the positions of peak concentrations of Cs in chalk or shale columns, Pu and Am in limestone, sandstone, or tuff and neptunium in a limestone column did not move when the columns were infiltrated with water. However, fractions of all of the nuclides were seen downstream from the peaks, indicating a large dispersion in the relative migration rates of the trace elements in the lithic materials studied. Static absorption experiments showed that plutonium and americium are strongly absorbed from solution by common rocks and that their migration relative to groundwater flow is thereby retarded. Reaction rates of these dissolved elements with rocks were found to vary considerably in different rock-element systems. Following a sorption step in batch experiments with granulated basalt and Am bearing water, Pu and Am were desorbed from rock and repartitioned between rock and solution to an extent comparable to their distribution during absorption. In contrast, when tablets of various rocks were allowed to dry between absorption and desorption tests, Pu and Am were not generally desorbed from the tablets.In batch experiments with Pu and Am-bearing water and granulated basalt of several different particle sizes, the partitioning of Am and Pu did not correlate with the calculated area of the fracture surfaces nor did the partitioning remain constant (as did the measured surface area). Partitioning is concluded to be a bulk phenomenon with complete penetration of 30 to 40 mesh and smaller particles. 9 tables, 4 figs

  9. Xenon adsorption on geological media and implications for radionuclide signatures.

    Science.gov (United States)

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Graphene Oxide Affects Mobility and Antibacterial Ability of Levofloxacin and Ciprofloxacin in Saturated and Unsaturated Porous Media

    Science.gov (United States)

    Kaixuan, S.

    2017-12-01

    Understand the fate and impact of fluoroquinolone antibiotics (FQs) in soil and groundwater systems is critical to the safety of ecosystem and public health. In this work, laboratory batch sorption, column transport, and bacterial growth experiments were conducted to improve current understanding of the interactions between two typical FQs (levofloxacin (LEV) and ciprofloxacin (CIP)) and graphene oxide (GO) in quartz sand media under various conditions. Studies showed that both GO and quartz sand adsorbed LEV and CIP in aqueous solutions and sand was capable to compete with GO for the antibiotics. While GO showed much larger sorption capacity, the sand had stronger sorption affinity to the two antibiotics. As a result, neither LEV nor CIP showed any signs of breakthrough in saturated or unsaturated porous media. When the two antibiotics were premixed with GO, their mobility in porous media increased for both saturate and unsaturated conditions and the amount of LEV or CIP in the effluents increased with the increasing of initial GO concentration. During their transport in saturated porous media, some of the GO-bound antibiotics, especially those sorbed via relatively weak interactions, transferred from GO to the quartz sand. Under unsaturated conditions, GO-bound LEV might also transfer from GO to the air-water interface due to the strong affiliation between LEV and air-water interface. Sorption onto GO reduced the antibacterial ability of LEV and CIP, however, the GO-bound antibiotics still effectively inhibited the growth of E coli. Findings from this work indicated that mobile GO affected not only the mobility but also the ecotoxicity of LEV and CIP in porous media.

  11. Monte Carlo simulation of radioactive contaminant transport in fractured geologic media: Disorder and long-range correlations

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Cushman, J.H.

    1997-01-01

    The geologic media near Yucca mountain site consist of fractured welded tuffs along with less fractured unwelded tuff. Numerical simulation of flow and transport in such media poses a number of challenging problems, due mainly to the heterogeneities and disorder in the media. In addition, because of different dominant transport mechanisms in different regions of the media, investigations need to be carried out at different time-scales. Time-marching will pose a considerable problem in analyzing such multi-scale transient problems. The authors develop a field-scale network model of fractures and study transport of radionuclides through geologic media as a function of disorder and correlated fracture-permeabilities

  12. Focusing on clay formation as host media of HLW geological disposal in China

    International Nuclear Information System (INIS)

    Zheng Hualing; Chen Shi; Sun Donghui

    2007-01-01

    Host medium is vitally important for safety for HLW geological disposal. Chinese HLW disposal effort in the past decades were mainly focused on granite formation. However, the granite formation has fatal disadvantage for HLW geological disposal. This paper reviews experiences gained and lessons learned in the international community and analyzes key factors affecting the site selection. It is recommended that clay formation should be taken into consideration and additional effort should be made before decision making of host media of HLW disposal in China. (authors)

  13. Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup

    Science.gov (United States)

    Braun, A.; Neukum, C.; Azzam, R.

    2011-12-01

    The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is

  14. Reactive transport modeling in variably saturated porous media with OGS-IPhreeqc

    Science.gov (United States)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kalbacher, T.; Shao, H.; Wang, W.; Kolditz, O.

    2014-12-01

    Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over

  15. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  16. Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow

    Science.gov (United States)

    Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.

    2011-01-01

    Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to

  17. Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow

    International Nuclear Information System (INIS)

    Rassi, Erik M; Codd, Sarah L; Seymour, Joseph D

    2011-01-01

    Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h -1 . The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h -1 . After the maximum flow rate of 500 ml h -1 , the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar

  18. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  19. A solution of coupled heat-moisture transfer in saturated-unsaturated media

    International Nuclear Information System (INIS)

    Geraminegad, M.; Saxena, S.K.

    1985-01-01

    Two formulations of coupled heat and mass flow in the porous media are presented and solved numerically using finite element method. This paper concludes that the formulation based on Phillip and de Vries better estimates heat flow, and, the non-linear behavior of soil parameters significantly affects heat and mass flow in the porous media

  20. Analysis on fractal-like behaviour expected for migration of radionuclides in geologic sorbing media

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Harada, Makoto; Tsubata, Kyoichi; Sato, Yasuo

    1998-01-01

    In earlier work, we showed that within nonhomogeneous sorbing media the desorption process becomes fractal-like. In migration of radionuclides in geologic media, the adsorption is an essential factor retardating the migration. Moreover, geologic media is inherently nonhomogeneous. It is therefore probable that the migration is significantly influenced by the fractal-like feature. Based on this idea, we have analyzed migration behaviours by employing a new model and compared the results with those obtained using conventional models. The nuclides migrate in the media with the flow of ground water being continually trapped on adsorption sites and released (desorbed) to the flow. The concept of the overall residence-time distribution function for nuclides on the adsorption sites is introduced in the new model. This function obeys the power form, ∼t -1-α (α > 0), for sufficiently large t (t denotes time). The migration behaviours predicted by our theory are qualitatively different from those by conventional theories, and the details of the differences are greatly dependent on the exponent α. In particular, the migration behaviour in cases of 0 < α < 1 is characterized by far larger retardation effects. (author)

  1. Influence of pH on the Transport of Silver Nanoparticles in Saturated Porous Media: Laboratory Experiments and Modeling

    Science.gov (United States)

    2012-03-01

    the potential toxic effects of AgNPs (USEPA 2010). Recent in vitro and in vivo studies using various cell lines, algae , zooplankton, fish, rats and... TiO2 in Saturated Porous Media: Effects of pH, Surfactants and Flow Velocity.” Water Research, 45(2), 839-851. He, F., Zhang, M., Qian, T., and Zhao...of silver nanoparticles (AgNPs), the largest and fastest growing category of nanomaterials, and their potential for toxic effects to both humans

  2. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  3. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed...

  4. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  5. Fluid dynamics and mass transfer in variably saturated porous media: formulation and applications of a mathematical model

    International Nuclear Information System (INIS)

    Sharma, D.

    1982-01-01

    This paper presents the formulation and applications of a mathematical model designed to predict the fluid dynamics and associated mass transfers in variably saturated porous media. Novelties in the formulation are emphasized and demonstrated to provide several computational advantages. The numerical procedure employed is of the integrated finite-difference variety which employs a hybrid differencing scheme. This procedure, while solving the coupled governing equations in conservative form, permits accommodation of substantial heterogeneities and anisotropies in material properties of the porous media. Accordingly, it is capable of making reliable predictions of steeply varying moisture and chemical-specie concentration fronts. The paper provides several examples of application of the model to the solution of practical problems. It is demonstrated that economical solutions to highly non-linear problems associated with solid and liquid waste disposal practices can be obtained

  6. Transport of Fluorescently Labeled Hydroxyapatite Nanoparticles in Saturated Granular Media at Environmentally Relevant Concentrations of Surfactants

    Science.gov (United States)

    Little is known about the mobility of engineered nanoparticles (ENPs) in granular media at environmentally relevant concentration of surfactant, which represents a critical knowledge gap in employing ENPs for in-situ remediation of contaminated groundwater. In this study, transpo...

  7. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration.

    Science.gov (United States)

    Wang, Mei; Gao, Bin; Tang, Deshan; Yu, Congrong

    2018-04-01

    Simultaneous aggregation and retention of nanoparticles can occur during their transport in porous media. In this work, the concurrent aggregation and transport of GO in saturated porous media were investigated under the conditions of different combinations of temperature, cation type (valence), and electrolyte concentration. Increasing temperature (6-24 °C) at a relatively high electrolyte concentration (i.e., 50 mM for Na + , 1 mM for Ca 2+ , 1.75 mM for Mg 2+ , and 0.03 and 0.05 mM for Al 3+ ) resulted in enhanced GO retention in the porous media. For instance, when the temperature increased from 6 to 24 °C, GO recovery rate decreased from 31.08% to 6.53% for 0.03 mM Al 3+ and from 27.11% to 0 for 0.05 mM Al 3+ . At the same temperature, increasing cation valence and electrolyte concentration also promoted GO retention. Although GO aggregation occurred in the electrolytes during the transport, the deposition mechanisms of GO retention in the media depended on cation type (valence). For 50 mM Na + , surface deposition via secondary minima was the dominant GO retention mechanism. For multivalent cation electrolytes, GO aggregation was rapid and thus other mechanisms such as physical straining and sedimentation also played important roles in controlling GO retention in the media. After passing through the columns, the GO particles in the effluents showed better stability with lower initial aggregation rates. This was probably because less stable GO particles with lower surface charge densities in the porewater were filtered by the porous media, resulting in more stable GO particle with higher surface charge densities in the effluents. An advection-dispersion-reaction model was applied to simulate GO breakthrough curves and the simulations matched all the experimental data well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    Science.gov (United States)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  9. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    Science.gov (United States)

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media. Copyright © 2014. Published by Elsevier B.V.

  10. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    International Nuclear Information System (INIS)

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs

  11. Pollutant transport in clayey sands: reactive flows in saturated porous media and unsaturated flows

    International Nuclear Information System (INIS)

    Cadalen, Sebastien

    2008-01-01

    In the context of nuclear risk control associated to nuclear waste storage, the french nuclear agency plays an increasing role in terms of research and development in the area of subsurface contamination. This study focuses on an homogeneous porous media constituted of Fontainebleau sand and clay grains (illite) presenting sorption capacities. The modeling of the complex geometry and physical phenomena at different scales enables us to describe the average transport at Darcy's scale. The two main axes developed are the impact of an heterogeneous sorption on transport phenomena and the dispersivity of an unsaturated porous media. (author) [fr

  12. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    International Nuclear Information System (INIS)

    Iversen, G.M.

    2001-01-01

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments

  13. A model for the transport of radionuclides and their decay products through geological media

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Rosinger, E.L.J.

    1979-09-01

    The one-dimensional trasport of radionuclides and their decay products from an underground nuclear waste isolation site through the surrounding geologic media to a surface environment is modeled. An ambiguity in the application of the previously-reported mathematical solution for this problem has been clarified. The results of applying the solution described here compare favorably with those of the former solution, but the present solution is computatonally more efficient and less subject to numerical errors. This solution is being used by the authors and others to evaluate the sensitivity of potential radoactivity releases into the environment to the characteristics of various nuclear waste isolation systems. (author)

  14. The far field migration of radionuclides in two dimensional groundwater flows though geologic media

    International Nuclear Information System (INIS)

    Ting, D.K.S.; Chambre, P.

    1985-01-01

    An analytical method to model the radionuclides migration in a two dimensional groundwater flor through geologic media has been developed and implemented into the computer code UCBNE21. Using this method, the potential hazard to the biosphere posed by the accidental release of radionuclides from a candidate repository site (WIPP) is determined. I-129 and Ra-226 are potentially the most hazardous nuclides in these sites but their discharge into the biosphere will not result in concentrations larger than their maximum permissible concentrations. (Author) [pt

  15. Moving localized structures and spatial patterns in quadratic media with a saturable absorber

    International Nuclear Information System (INIS)

    Tlidi, M; Taki, M; Berre, M Le; Reyssayre, E; Tallet, A; Di Menza, L

    2004-01-01

    For near the first lasing threshold, we give a detailed derivation of a real order parameter equation for the degenerate optical parametric oscillator with a saturable absorber. For this regime, we study analytically the role of the quasi-homogeneous neutral mode in the pattern formation process. We show that this effect stabilized the hexagonal patterns below the lasing threshold. More importantly, we find numerically that when Turing and Hopf bifurcations interact, a stable moving asymmetric localized structure with a constant transverse velocity is generated. The formation of the moving localized structures is analysed for both the propagation and the mean field models. A quantitative confrontation of the two models is discussed

  16. A Physically Based Analytical Model to Describe Effective Excess Charge for Streaming Potential Generation in Water Saturated Porous Media

    Science.gov (United States)

    Guarracino, L.; Jougnot, D.

    2018-01-01

    Among the different contributions generating self-potential, the streaming potential is of particular interest in hydrogeology for its sensitivity to water flow. Estimating water flux in porous media using streaming potential data relies on our capacity to understand, model, and upscale the electrokinetic coupling at the mineral-solution interface. Different approaches have been proposed to predict streaming potential generation in porous media. One of these approaches is the flux averaging which is based on determining the excess charge which is effectively dragged in the medium by water flow. In this study, we develop a physically based analytical model to predict the effective excess charge in saturated porous media using a flux-averaging approach in a bundle of capillary tubes with a fractal pore size distribution. The proposed model allows the determination of the effective excess charge as a function of pore water ionic concentration and hydrogeological parameters like porosity, permeability, and tortuosity. The new model has been successfully tested against different set of experimental data from the literature. One of the main findings of this study is the mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by several researchers. The proposed model also highlights the link to other lithological properties, and it is able to reproduce the evolution of effective excess charge with electrolyte concentrations.

  17. Transport of Silica Colloid through Saturated Porous Media under Different Hydrogeochemical and Hydrodynamic Conditions Considering Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2016-11-01

    Full Text Available Colloids may have an important role in regulating the structure and function of groundwater ecosystems, and may influence the migration of low solubility contaminants in groundwater. There is, however, a degree of uncertainty about how colloids behave under the variable hydrogeochemical and hydrodynamic conditions that occur during managed aquifer recharge. We used an online monitoring system to monitor the transport of silica colloid in saturated porous media under different hydrogeochemical conditions, including a range of pH values (5, 7, and 9, ionic strengths (<0.0005, 0.02, and 0.05 M, cation valences (Na+, Ca2+, flow rates (0.1, 0.2, and 0.4 mL/min. The results showed that silica colloid was more likely to deposit on the surface of porous media in acidic conditions (pH = 5 than in alkaline conditions (pH = 9, indicating that the risks of pollution from colloidal interactions would be higher when the pH of the recharge water was higher. Colloid deposition occurred when the ionic strength of the colloidal suspension increased, and bivalent cations had a greater effect than monovalent cations. This suggests that bivalent cation-rich recharge water might affect the porosity of the porous medium because of colloid deposition during the managed aquifer recharge process. As the flow rate increased, the migration ability of silica colloid increased. We simulated the migration of silica colloid in porous media with the COMSOL Multiphysics model.

  18. Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam

    Directory of Open Access Journals (Sweden)

    Xianglei Zheng

    2016-12-01

    Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

  19. Investigating the impact of microbial interactions with geologic media on geophysical properties

    Science.gov (United States)

    Davis, Caroline Ann

    The goals of this study were to investigate the effect of: (1) microbial metabolic byproducts, microbial growth, and biofilm formation on the low frequency electrical properties of porous media, (2) biofilm formation on acoustic wave properties, and (3) the natural electrical (self-potential) signatures associated with an in-situ biological permeable reactive barrier (PRB). The results suggest: (1) increases in electrolytic conductivity are consistent with increased concentrations of organic acids and biosurfactants; (2) mineral weathering promoted by organic acids causes increases in electrolytic conductivity, concomitant with increases in major cation concentrations; (3) interfacial conductivity generally parallels microbial cell concentrations and biofilm formation; (4) variations in microbial growth and biofilms causes spatiotemporal heterogeneity in the elastic properties of porous media; (5) SP signatures associated with the injection of groundwater into an in-situ biological PRB are dominated by diffusion potentials induced by the injections. The results suggest that electrolytic conductivity may be useful as an indicator of metabolism, while interfacial conductivity may be used as proxy indicator for microbial growth and biofilm formation in porous media. In addition, acoustic measurements may provide diagnostic spatiotemporal data for the validation of bioclogging models/simulations. Collectively, this study provides further evidence that geophysical measurements are sensitive to microbial-induced changes to geologic media, and may be useful for the detection and monitoring of subsurface microbial growth, activity, and distribution such as in microbial enhanced oil recovery, assessing biofilm barriers used for contaminant remediation, or as sealants for reservoirs in CO2 sequestration studies.

  20. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  1. Effects of pH on nano-bubble stability and transport in saturated porous media

    Science.gov (United States)

    Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku

    2018-01-01

    An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.

  2. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

    Science.gov (United States)

    Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

    2017-12-01

    A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

  3. Study on experimental models to analyze radionuclide migration behaviors through porous geologic media

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2012-08-01

    The migration phenomenon of radionuclide through geological media such as soils and porous rocks, which is important in underground disposal of radioactive wastes, can be described by the advection-dispersion of groundwater and the interactions of radionuclide with geological media. On the other hand, to understand the migration phenomenon, actual migration data are experimentally acquired by a batch test, a column test and field trial. In the present study, experimental models about the interactions of radionuclide between the solid phase and the liquid phase were discussed systematically to interpret the migration data acquired by the various techniques and conditions. Equilibrium, reversibility, linearity, mechanism and chemistry in the interactions were considered in discussion of the experimental models. A calculation program, which can analyze migration data obtained under various conditions by applying the selected 9 types of experimental models, was maintained. The calculation program makes it be able to predict the migration behavior of radionuclide under various conditions and to decide the important parameter by a fitting analysis of the migration data. (author)

  4. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.

    Science.gov (United States)

    Nakamura, Keita; Kikumoto, Mamoru

    2018-03-15

    The Leverett concept is used conventionally to model the relationship between the capillary pressures and the degrees of saturation in the water-nonaqueous phase liquid (NAPL)-air three-phase system in porous media. In this paper, the limitation of the Leverett concept that the concept is not applicable in the case of nonspreading NAPLs is discussed through microscopic consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by comparing with past experimental data and simulation results obtained using the conventional model based on the Leverett concept. It is confirmed that the proposed concept can correctly predict the observed distributions of NAPLs, including those of nonspreading ones. Copyright © 2018. Published by Elsevier B.V.

  5. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    KAUST Repository

    Cai, Jianchao; Sun, Shuyu

    2013-01-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  6. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    KAUST Repository

    Cai, Jianchao

    2013-08-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  7. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-05-01

    Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

  8. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

    International Nuclear Information System (INIS)

    1985-05-01

    Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs

  9. Experimental and Modeling Study on Detachment of Silver Nanoparticles in Saturated Granular Media

    Science.gov (United States)

    Kim, I.; Jeon, C. H.; Lawler, D. F.

    2017-12-01

    The detachment of citrate-capped silver nanoparticles (AgNPs) previously captured in a column packed with 350-μm glass beads was investigated either by increasing the hydrodynamic force (filtration velocity) or by reducing electrosteric attraction. Overall, the physical enforcement showed negligible (0.4 0.7%) release of attached AgNPs while the chemically-driven force resulted in the noticeable release up to 25.5% of attached AgNPs. Among the chemical parameters tested in this study, Na ionic strength reduction clearly demonstrated the reversible deposition in the secondary energy minimum of classical DLVO theory, yielding the most significant release of the attached AgNPs. The immediate and transient AgNP release after the ionic strength reduction further corroborated the weak deposition. However, an insignificant release was observed with Ca ionic strength reduction due to the strong Ca-citrate complexation and the subsequent deposition in the primary energy minimum; calculations indicated that the depth of the secondary energy minimum was only 1/10 that of the Na ion case. The natural organic matter (NOM) coating on both AgNPs and granular media resulted in approximately 6.1% greater AgNP release compared to the case without NOM coating, indicating additional weak deposition due to the reduced steric attraction between AgNPs and granular media. A modified filtration model in agreement with the experimental data provided the estimated detachment coefficient as a transient AgNP releasing capacity independent of the amount of attached AgNPs. The marginal difference between the detachment coefficients from Na ionic strength reduction and NOM coating indicates the release potential by NOM coating was possibly underestimated in the experimental study due to a lesser amount of the initially attached AgNPs. The findings provide insights into chemical factors on possible reentrainment behavior of the engineered nanoparticles in soil and groundwater contamination.

  10. Modeling Quantum Dot Nanoparticle Fate and Transport in Saturated Porous Media under Varying Flow Conditions

    Science.gov (United States)

    Becker, M. D.; Wang, Y.; Englehart, J.; Pennell, K. D.; Abriola, L. M.

    2010-12-01

    As manufactured nanomaterials become more prevalent in commercial and industrial applications, the development of mathematical models capable of predicting nanomaterial transport and retention in subsurface systems is crucial to assessing their fate and distribution in the environment. A systematic modeling approach based on a modification of clean-bed filtration theory was undertaken to elucidate mechanisms governing the transport and deposition behavior of quantum dots in saturated quartz sand as a function of grain size and flow velocity. The traditional deposition governing equation, which assumes irreversible attachment by a first-order rate (katt), was modified to include a maximum or limiting retention capacity (Smax) and first-order detachment of particles from the solid phase (kdet). Quantum dot mobility experiments were performed in columns packed with three size fractions of Ottawa sand (d50 = 125, 165, and 335 μm) at two different pore-water velocities (0.8 m/d and 7.6 m/d). The CdSe quantum dots in a CdZnS shell and polyacrylic acid coating were negatively charged (zeta potential measured ca. -35 mV) with a hydrodynamic diameter of approximately 30 nm. Fitted values of katt, Smax, and kdet were obtained for each transport and deposition experiment through the implementation of a nonlinear least-squares routine developed to fit the model to experimental breakthrough and retention data via multivariate optimization. Fitted attachment rates and retention capacities increased exponentially with decreasing grain size at both flow rates, while no discernable trend was apparent for the fitted detachment rates. Maximum retention capacity values were plotted against a normalized mass flux expression, which accounts for flow conditions and grain size. A power function fit to the data yielded a dependence that was consistent with a previous study undertaken with fullerene nanoparticles.

  11. Influence of pH on the transport of nanoscale zinc oxide in saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kanel, Sushil R. [Pegasus Technical Services, Inc. (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency (United States)

    2011-09-15

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such environments is poorly understood. In addition, nZnO is often combined with stabilizers or dispersing agents to prevent its aggregation in products. The purpose of this study is to determine the influence of pH on the transport properties of pristine nZnO and carboxymethyl cellulose (CMC) stabilized nZnO (CMC-nZnO) suspensions in silica sand packed column under saturated flow conditions. Transport data were collected at different pHs (pHs: 3, 7, 9, and 11) under 1 mL/min flow rate conditions in a 1.1 cm diameter column. It is found that the transport trends of pristine nZnO and CMC-nZnO were different. For pristine nZnO, mobility of total Zn reached a minimum around its point of zero charge (pH 8.9). Whereas in the case of CMC-nZnO, the mobility of total Zn decreased as the pH of the solution pH increased from 3 to 11. ZnO and Zn ion mixture were separated using diafiltration membrane. It showed that most of the nZnO and CMC-nZnO exists as Zn ion at pH 3 before and after eluting from the sand packed column whereas at pH 11, they exist as particles. This study shows the strong influence of pH and stabilizing agents on nZnO transport. These factors should be considered during subsurface transport of nZnO.

  12. Influence of pH on the transport of nanoscale zinc oxide in saturated porous media

    International Nuclear Information System (INIS)

    Kanel, Sushil R.; Al-Abed, Souhail R.

    2011-01-01

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such environments is poorly understood. In addition, nZnO is often combined with stabilizers or dispersing agents to prevent its aggregation in products. The purpose of this study is to determine the influence of pH on the transport properties of pristine nZnO and carboxymethyl cellulose (CMC) stabilized nZnO (CMC–nZnO) suspensions in silica sand packed column under saturated flow conditions. Transport data were collected at different pHs (pHs: 3, 7, 9, and 11) under 1 mL/min flow rate conditions in a 1.1 cm diameter column. It is found that the transport trends of pristine nZnO and CMC–nZnO were different. For pristine nZnO, mobility of total Zn reached a minimum around its point of zero charge (pH 8.9). Whereas in the case of CMC–nZnO, the mobility of total Zn decreased as the pH of the solution pH increased from 3 to 11. ZnO and Zn ion mixture were separated using diafiltration membrane. It showed that most of the nZnO and CMC–nZnO exists as Zn ion at pH 3 before and after eluting from the sand packed column whereas at pH 11, they exist as particles. This study shows the strong influence of pH and stabilizing agents on nZnO transport. These factors should be considered during subsurface transport of nZnO.

  13. A physically-based analytical model to describe effective excess charge for streaming potential generation in saturated porous media

    Science.gov (United States)

    Jougnot, D.; Guarracino, L.

    2016-12-01

    The self-potential (SP) method is considered by most researchers the only geophysical method that is directly sensitive to groundwater flow. One source of SP signals, the so-called streaming potential, results from the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore space, it gives rise to a streaming current and a resulting measurable electrical voltage. Different approaches have been proposed to predict streaming potentials in porous media. One approach is based on the excess charge which is effectively dragged in the medium by the water flow. Following a recent theoretical framework, we developed a physically-based analytical model to predict the effective excess charge in saturated porous media. In this study, the porous media is described by a bundle of capillary tubes with a fractal pore-size distribution. First, an analytical relationship is derived to determine the effective excess charge for a single capillary tube as a function of the pore water salinity. Then, this relationship is used to obtain both exact and approximated expressions for the effective excess charge at the Representative Elementary Volume (REV) scale. The resulting analytical relationship allows the determination of the effective excess charge as a function of pore water salinity, fractal dimension and hydraulic parameters like porosity and permeability, which are also obtained at the REV scale. This new model has been successfully tested against data from the literature of different sources. One of the main finding of this study is that it provides a mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by various researchers. The proposed petrophysical relationship also contributes to understand the role of porosity and water salinity on effective excess charge and will help to push further the use of streaming potential to monitor groundwater flow.

  14. Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media

    Science.gov (United States)

    Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.

    2017-12-01

    Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.

  15. SWIFT, 3-D Fluid Flow, Heat Transfer, Decay Chain Transport in Geological Media

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Reeves, M.

    2003-01-01

    1 - Description of problem or function: SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady-state. One, two, or three dimensions are available and transport of radionuclides chains is possible. 4. Method of solution: Finite differencing is used to discretize the partial differential equations in space and time. The user may choose centered or backward spatial differencing, coupled with either central or backward temporal differencing. The matrix equations may be solved iteratively (two line successive-over-relaxation) or directly (special matrix banding and Gaussian elimination). 5. Restrictions on the complexity of the problem: On the CDC7600 in direct solution mode, the maximum number of grid blocks allowed is approximately 1400

  16. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  17. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  18. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  19. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruichang [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China); Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen [Chinese Academy of Sciences, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn; Christie, Peter [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China)

    2015-04-15

    The transport behavior of titanium dioxide nanoparticles (TiO{sub 2} NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO{sub 2} NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L{sup −1}. Facilitated transport of TiO{sub 2} NPs was likely attributable to the increased stability of TiO{sub 2} NPs and repulsive interaction between TiO{sub 2} NPs and quartz sands due to the adsorbed HS. The mobility of TiO{sub 2} NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO{sub 2} NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl{sub 2}. In addition, calculated Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO{sub 2} NPs, while the secondary energy minimum could play an important role in the retention of TiO{sub 2} NPs at 100 mmol L{sup −1} NaCl. Straining and gravitational settlement of larger TiO{sub 2} NPs aggregates at 1 mg L{sup −1} HS, pH 5.0, and 2 mmol L{sup −1} CaCl{sub 2} could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO{sub 2} NPs and TiO{sub 2} NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L{sup −1} CaCl{sub 2}. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO{sub 2} NPs over the range of solution chemistry examined in this study.

  20. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Science.gov (United States)

    Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...

  1. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    Science.gov (United States)

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  2. Numerical simulation of water flow and Nitrate transport through variably saturated porous media in laboratory condition using HYDRUS 2D

    Science.gov (United States)

    Jahangeer, F.; Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The

  3. Current Events via Electronic Media: An Instructional Tool in a General Education Geology Course

    Science.gov (United States)

    Flood, T. P.

    2008-12-01

    St. Norbert College (SNC) is a liberal arts college in the Green Bay Metropolitan area with an enrollment of approximately 2100 students. All students are required to take one science course with a laboratory component as part of the general education program. Approximately 40% of all SNC students take introductory geology. Class size for this course is approximately 35 students. Each faculty member teaches one section per semester in a smart classroom A synthesis of current events via electronic media is an excellent pedagogical tool for the introductory geology course. An on-going informal survey of my introductory geology class indicates that between 75- 85% of all students in the class, mostly freshman and sophomores, do not follow the news on a regular basis in any format, i.e. print, internet, or television. Consequently, most are unaware of current scientific topics, events, trends, and relevancy. To address this issue, and develop a positive habit of the mind, a technique called In-the-News-Making-News (INMN) is employed. Each class period begins with a scientifically-related (mostly geology) online news article displayed on an overhead screen. The articles are drawn from a variety of sources that include international sites such as the BBC and CBC; national sites such as PBS, New York Times, and CNN; and local sites such as the Milwaukee Journal Sentinel and the Green Bay Press Gazette. After perusing the article, additional information is often acquired by "Google" to help supplement and clarify the original article. An interactive discussion follows. Topics that are typically covered include: global climate change, basic scientific and technological discoveries, paleontology/evolution, natural disasters, mineral/ energy/ water resources, funding for science, space exploration, and other. Ancillary areas that are often touched on in the conversation include ethics, politics, economics, philosophy, education, geography, culture, or other. INMN addresses

  4. Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Flory, Jason; Kanel, Sushil R., E-mail: sushil.kanel.ctr@afit.edu; Racz, LeeAnn [Air Force Institute of Technology, Department of Systems and Engineering Management (United States); Impellitteri, Christopher A. [U.S. Environmental Protection Agency (United States); Silva, Rendahandi G. [U.S. EPA Test and Evaluation Facility, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Shaw Environmental and Infrastructure (United States); Goltz, Mark N., E-mail: mark.goltz@afit.edu [Air Force Institute of Technology, Department of Systems and Engineering Management (United States)

    2013-03-15

    Given the ubiquity of silver nanoparticles (AgNPs) and their potential for toxic effects on both humans and the environment, it is important to understand their environmental fate and transport. The purpose of this study is to gain information on the transport properties of commercial AgNP suspensions in a glass bead-packed column under saturated flow conditions at different solution pH levels. Commercial AgNPs were characterized using high-resolution transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. Transport data were collected at different pH levels (4, 6.5, 9, and 11) at fixed ionic strength. Capture of AgNPs increased as the pH of the solution increased from 4 to 6.5. Further increase in pH to 9 and 11 decreased the attachment of AgNPs to the glass beads. AgNP concentration versus time breakthrough data were simulated using an advection-dispersion model incorporating both irreversible and reversible attachment. In particular, a reversible attachment model is required to simulate breakthrough curve tailing at near neutral pH, when attachment is most significant. The laboratory and modeling study reveals that for natural groundwaters, AgNP transport in porous media may be retarded due to capture; but ultimately, most of the mass may be slowly released over time.

  5. Passive flux meter measurement of water and nutrient flux in saturated porous media: bench-scale laboratory tests.

    Science.gov (United States)

    Cho, Jaehyun; Annable, Michael D; Jawitz, James W; Hatfield, Kirk

    2007-01-01

    The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.

  6. Transport and Retention of Carboxymethylcellulose-Modified Carbon Nanotube-Magnetite Nanohybrids in Water-Saturated Porous Media

    Science.gov (United States)

    Wang, D.; Su, C.

    2017-12-01

    Carbon-metal oxide nanohybrids (NHs) are increasingly recognized as the next-generation, promising group of nanomaterials for solving emerging environmental issues and challenges. This research, for the first time, systematically explored the transport and retention of the multifunctional carbon nanotube-magnetite (CNT-Fe3O4) NHs in water-saturated porous media under environmentally relevant physicochemical conditions. An environment-benign macromolecule, carboxymethylcellulose (CMC), was employed to stabilize the NHs. Classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and colloid transport model were used to describe the transport and retention of the NHs. Our results showed that transport of the magnetic CNT-Fe3O4 NHs was lower than that of the parent CNT due to greater aggregation (induced by magnetic attraction) during transport. The DLVO theory well-interpreted the NHs' transport; and secondary minimum played dominant roles in NHs' retention. A novel transport feature, an initial low and following sharp peaks occurred frequently in the NHs' breakthrough curves; and the magnitude and location of both transport peaks varied with different experimental conditions due to the interplay between variability of the fluid viscosity and aggregation-dispersion nature of the NHs. Very promisingly, the estimated maximum transport distance of NHs using the Tufenkji-Elimelech equation ranged between 0.38-46 m, supporting the feasibility of employing the magnetically recyclable CNT-Fe3O4 NHs for in-situ nanoremediation of contaminated soils, sediment aquifers, and groundwater.

  7. Evaluation of Colloid Retention Site Dominance in Variably Saturated Porous Media: An All Pores Pore-Scale Analysis

    Science.gov (United States)

    Morales, Veronica; Perez-Reche, Francisco; Holzner, Markus; Kinzelbach, Wolfgang

    2016-04-01

    It is well accepted that colloid and nanoparticle transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to particle immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Yet, the current understanding of the importance of particle retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which Silver particles were transported for conditions of varying water content and water chemistry. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the main locations where colloids can become retained (interfaces with the water-solid, air-water, air-solid, and air-water-solid, grain-grain contacts, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, and iii) channel widths of 3-dimensional pore-water network representations. The results presented provide a direct statistical evaluation on the significance of colloid retention by attachment to interfaces or by strainig at contact points where multiple interfaces meet.

  8. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated porous media

    Science.gov (United States)

    Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.

    1999-04-01

    We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.

  9. Rn3D: A finite element code for simulating gas flow and radon transport in variably saturated, nonisothermal porous media

    International Nuclear Information System (INIS)

    Holford, D.J.

    1994-01-01

    This document is a user's manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water

  10. 3DFEMWATER: A three-dimensional finite element model of water flow through saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1987-08-01

    The 3DFEMWATER model is designed to treat heterogeneous and anisotropic media consisting of as many geologic formations as desired, consider both distributed and point sources/sinks that are spatially and temporally dependent, accept the prescribed initial conditions or obtain them by simulating a steady state version of the system under consideration, deal with a transient head distributed over the Dirichlet boundary, handle time-dependent fluxes due to pressure gradient varying along the Neumann boundary, treat time-dependent total fluxes distributed over the Cauchy boundary, automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface, include the off-diagonal hydraulic conductivity components in the modified Richards equation for dealing with cases when the coordinate system does not coincide with the principal directions of the hydraulic conductivity tensor, give three options for estimating the nonlinear matrix, include two options (successive subregion block iterations and successive point interactions) for solving the linearized matrix equations, automatically reset time step size when boundary conditions or source/sinks change abruptly, and check the mass balance computation over the entire region for every time step. The model is verified with analytical solutions or other numerical models for three examples

  11. 3DFEMWATER: A three-dimensional finite element model of water flow through saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1987-08-01

    The 3DFEMWATER model is designed to treat heterogeneous and anisotropic media consisting of as many geologic formations as desired, consider both distributed and point sources/sinks that are spatially and temporally dependent, accept the prescribed initial conditions or obtain them by simulating a steady state version of the system under consideration, deal with a transient head distributed over the Dirichlet boundary, handle time-dependent fluxes due to pressure gradient varying along the Neumann boundary, treat time-dependent total fluxes distributed over the Cauchy boundary, automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface, include the off-diagonal hydraulic conductivity components in the modified Richards equation for dealing with cases when the coordinate system does not coincide with the principal directions of the hydraulic conductivity tensor, give three options for estimating the nonlinear matrix, include two options (successive subregion block iterations and successive point interactions) for solving the linearized matrix equations, automatically reset time step size when boundary conditions or source/sinks change abruptly, and check the mass balance computation over the entire region for every time step. The model is verified with analytical solutions or other numerical models for three examples.

  12. Database for Regional Geology, Phase 1: A Tool for Informing Regional Evaluations of Alternative Geologic Media and Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Richard E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Suzanne M. [Clark Univ., Worcester, MA (United States); Lugo, Alexander Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-11-12

    Reported is progress in the following areas: Phase 1 and 2 websites for the regional geology GIS database; terrane maps of crystalline basement rocks; inventory of shale formations in the US; and rock properties and in-situ conditions for shale estimated from sonic velocity measurements.

  13. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  14. A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media

    Science.gov (United States)

    Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.

    2018-03-01

    A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.

  15. Risk-assessment methodology development for waste isolation in geologic media

    International Nuclear Information System (INIS)

    Stevens, C.A.; Fullwood, R.R.; Amirijafari, B.; Basin, S.L.; Cohen, J.

    1982-12-01

    A review of three documents prepared for the USNRC by Sandia National Laboratories (SNL) is presented. These are NUREG/CR-1634, Volume 4 concerned with the effects of variable hydrology on waste migration; NUREG/CR-2324, a user's manual for SWIFT; and NUREG/2343, a user's manual for DNET. This review completes Task 4 of the detailed technical review of the SNL program for Risk Assessment Methodology Development for Waste Isolation in Geologic Media. In general, these reports exhibit high technical quality that characterizes the SNL work. They are tersely written with little condescension to the non-expert reader for understanding the physical situation being modeled. Indeed, the emphasis is on the mathematical procedures rather than the repository physics, leaving the adequacy of the results presented in many computer plots, pretty much to the interpretation of the reader. Other general comments have been presented previously, such as the data conservatisms, need for data that cannot be measured without disturbing the geometry, and the overall plan for use of the many codes developed in the program

  16. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  17. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media

  18. Thermal property and density measurements of samples taken from drilling cores from potential geologic media

    International Nuclear Information System (INIS)

    Lagedrost, J.F.; Capps, W.

    1983-12-01

    Density, steady-state conductivity, enthalpy, specific heat, heat capacity, thermal diffusivity and linear thermal expansion were measured on 59 materials from core drill samples of several geologic media, including rock salt, basalt, and other associated rocks from 7 potential sites for nuclear waste isolation. The measurements were conducted from or near to room temperature up to 500 0 C, or to lower temperatures if limited by specimen cracking or fracturing. Ample documentation establishes the reliability of the property measurement methods and the accuracy of the results. Thermal expansions of salts reached 2.2 to 2.8 percent at 500 0 C. Associated rocks were from 0.6 to 1.6 percent. Basalts were close to 0.3 percent at 500 0 C. Specific heats of salts varied from 0.213 to 0.233 cal g -1 C -1 , and basalts averaged 0.239 cal g -1 C -1 . Thermal conductivities of salts at 50 0 C were from 0.022 to 0.046 wcm -1 C -1 , and at 500 0 C, from 0.012 to 0.027 wcm -1 C -1 . Basalts conductivities ranged from 0.020 to 0.022 wcm -1 C -1 at 100 0 C and 0.016 to 0.018 at 500 0 C. There were no obvious conductivity trends relative to source location. Room temperature densities of salts were from 2.14 to 2.29 gcm -3 , and basalts, from 2.83 to 2.90 gcm -3 . The extreme friability of some materials made specimen fabrication difficult. 21 references, 17 figures, 28 tables

  19. Transient heat characteristics of water-saturated porous media with freezing; Toketsu wo tomonau gansui takoshitsu sonai no hiteijo netsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A [Akita National College of Technology, Akita (Japan)

    1998-02-25

    Analytical and experimental investigations were performed to examine the transient heat characteristics of water-saturated porous media with freezing. As a physical model, a two-dimensional vertical cavity was considered. One vertical wall was abruptly cooled below the fusion temperature. Other three walls were thermally insulated. Three different sizes of glass, and iron, alumina and copper beads were used as the porous media in this study. The cold energy stored up in the porous media and the average thickness of frozen layer were measured in the experiments. Comparisons of the analytical results with the experimental ones were made, and the effects of Darcy number, Stefan number and modified Prandtl number on the transient heat characteristics were discussed. The dimensionless equations for predicting the averaged frozen layer thickness and the stored cold energy were obtained as a function of various dimensionless parameters. 8 refs., 16 figs., 1 tab.

  20. PORMC: A model for Monte Carlo simulation of fluid flow, heat, and mass transport in variably saturated geologic media

    International Nuclear Information System (INIS)

    1991-09-01

    This computer program was developed in support of environmental restoration activities being conducted at the Hanford Site to comply with the Resource Conservation and Recovery Act of 1976 and its 1984 amendum; the Comprehensive Environmental Response, Compensation, and Liability Act as amended in 1986; and the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1990). The results of analyses made using the computer program will be used in remedial investigations to study the possible nature and extent of contamination and in feasibility studies to analyze the environmental consequences associated with alternative remediation methods. This document provides details of the theory and instructions for use of the PORMC computer program. 80 refs

  1. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    Shallow land burial has been a common practice for disposing radioactive waste materials since the beginning of plutonium production operations. Accurate monitoring of radionuclide transport and factors causing transport within the burial sites is essential to minimizing risks associated with disposal. However, monitoring has not always been adequate. Consequently, the Department of Energy (DOE) has begun a program aimed at better assuring and evaluating containment of radioactive wastes at shallow land burial sites. This program includes a technological base for monitoring transport. As part of the DOE program, Pacific Northwest Laboratory (PNL) is developing geohydrologic monitoring systems to evaluate burial sites located in arid regions. For this project, a field test facility was designed and constructed to assess monitoring systems for near-surface disposal of radioactive waste and to provide information for evaluating site containment performance. The facility is an integrated network of monitoring devices and data collection instruments. This facility is used to measure water and radionuclide migration under field conditions typical of arid regions. Monitoring systems were developed to allow for measurement of both mass and energy balance. Work on the facility is ongoing. Continuing work includes emplacement of prototype monitoring instruments, data collection, and data synthesis. At least 2 years of field data are needed to fully evaluate monitoring information

  2. Density-Driven Flow Simulation in Anisotropic Porous Media: Application to CO2 Geological Sequestration

    KAUST Repository

    Negara, Ardiansyah

    2014-04-21

    Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density is smaller than the hosting brine. This motivates an upward motion and eventually CO2 is trapped beneath the cap rock. The trapped CO2 slowly dissolves into the brine causing the density of the mixture to become larger than the host brine. This causes gravitational instabilities that is propagated and magnified with time. In this kind of density-driven flows, the CO2-rich brines migrate downward while the brines with low CO2 concentration move upward. With respect to the properties of the subsurface aquifers, there are instances where saline formations can possess anisotropy with respect to their hydraulic properties. Such anisotropy can have significant effect on the onset and propagation of flow instabilities. Anisotropy is predicted to be more influential in dictating the direction of the convective flow. To account for permeability anisotropy, the method of multipoint flux approximation (MPFA) in the framework of finite differences schemes is used. The MPFA method requires more point stencil than the traditional two-point flux approximation (TPFA). For example, calculation of one flux component requires 6-point stencil and 18-point stencil in 2-D and 3-D cases, respectively. As consequence, the matrix of coefficient for obtaining the pressure fields will be quite complex. Therefore, we combine the MPFA method with the experimenting pressure field technique in which the problem is reduced to solving multitude of local problems and the global matrix of coefficients is constructed automatically, which significantly reduces the complexity. We present several numerical scenarios of density-driven flow simulation in homogeneous, layered, and heterogeneous anisotropic porous media. The numerical results emphasize the

  3. Simulation of Seismic Waves from Underground Explosions in Geologic Media: FY2009 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Vorobiev, O; Sjogreen, B; Petersson, N A

    2009-11-09

    This report summarizes work done after one year on project LL09-Sim-NDD-02 entitled 'Exploratory Research: Advanced Simulation of Low Yield Underground Nuclear Explosions To Improve Seismic Yield Estimation and Source Identification'. Work on this effort proceeded in two thrusts: (1) parametric studies of underground explosion generated motions with GEODYN; and (2) coupling of GEODYN to WPP. GEODYN is a code for modeling hydrodynamic (shock-wave) motions in a wide variety of materials, including earth materials. WPP is an anelastic finite difference code for modeling seismic motions. The sensitivity of seismic motions to emplacement conditions was investigated with a series of parametric studies of low-yield (0.2-4 kiloton) chemical high-explosive shots at a range of burial depths in four canonical geologic media (granite, limestone, tuff and alluvium). Results indicate that the material has a strong impact on the seismic motions consistent with previous reports. Motions computed with GEODYN in realistically complex material models are very consistent with reported motions from nuclear tests by Perret and Bass (1975). The amplitude, frequency content and cavity size resulting from explosions are all strongly sensitive to the material strength. Explosions in high-strength (granite) resulted in the highest amplitude, shortest duration pulse and smallest cavities, whereas explosions in low-strength material (alluvium) resulted in the lowest amplitudes, longest duration pulse and larger cavities. The corner frequencies of P-wave motions at take-off angles corresponding to propagation to teleseismic distances show corresponding behavior, with high-strength materials having the highest corner frequency and low-strength materials having low corner frequency. Gravity has an important effect on the cavity size and outgoing motions due work done against lithostatic stress. In fact without gravity the cavity radius and elastic motions are largely insensitive to

  4. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.

    Science.gov (United States)

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  5. Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment

    International Nuclear Information System (INIS)

    Martin, F.A.; Bataillon, C.; Schlegel, M.L.

    2008-01-01

    The aim of this study was to determine the corrosion behaviour of iron and low alloyed steels under simulated geological disposal conditions, related to long-term disposal of nuclear wastes in the site of Bure (Meuse-Haute Marne, Champagne, France). The dedicated experiment was a fully integrated set-up: three different bars of material (iron, steel or nickel) have been introduced inside a solid block of clay, which has been saturated with synthetic Bure water and maintained at 90 deg. C during 8 months. Two types of clay have been tested: first, a compacted MX80 (Wyoming, USA) and second, argilite directly taken from the Bure site (Callovo-Oxfordian). In situ electrochemistry has been performed: impedance spectra, chronopotentiometry... The samples have been analysed using a combination of techniques, such as SEM, XRD, EDS, μXAS, μRaman, gravimetry after desquamation. In both cases, the steel or the iron seemed to passivate in contact with the clay. Post-processing of the EIS determined the corrosion rates and the changes in the kinetics have been noticed. The post mortem analysis of the corrosion products showed in both cases the presence of an internal layer made of magnetite (Raman, EDX). The external layer was made of partially Ca-substituted siderite (Fe 1-x Ca x CO 3 ), which could play an extra role in the passivation. Moreover, the samples embedded in the Bure argilite presented an intermediate unique layer containing Fe, O, Na and Si. This study suggests the corrosion products started to react with the silica issued from the dissolution of the Bure clay minerals, resulting in clay minerals neo-formation and in corrosion kinetic changes

  6. Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clay-rock in the context of a nuclear waste geological disposal

    International Nuclear Information System (INIS)

    Lassin, A.; Dymitrowska, M.; Azaroual, M.

    2011-01-01

    In nuclear waste geological disposals, large amounts of hydrogen (H 2 ) are expected to be produced by different (bio-)geochemical processes. Depending on the pressure generated by such a process, H 2 could be produced as a gas phase and displace the neighbouring pore water. As a consequence, a water-unsaturated zone could be created around the waste and possibly affect the physical and physic-chemical properties of the disposal and the excavation disturbed zone around it. The present study is the first part of an ongoing research program aimed at evaluating the possible chemical evolution of the pore water-minerals-gas system in such a context. The goal of this study was to evaluate, in terms of thermodynamic equilibrium conditions, the geochemical disturbance of the pore water due to variations in hydrogen pressure, temperature and relative humidity. No heterogeneous reactions involving mineral phases of the clay-rock or reactive surface sites were taken into account in the thermodynamic analysis. In the case sulphate reduction reaction is allowed, geochemical modelling results indicate that the main disturbance is the increase in pH (from around 7 up to more than 10) and an important decrease in the redox potential (Eh) related to hydrogen dissolution. This occurs from relatively low H 2 partial pressures (∼1 bar and above). Then, temperature and relative humidity (expressed in terms of capillary pressure) further displace the thermodynamic equilibrium conditions, namely the pH and the aqueous speciation as well as saturation indices of mineral phases. Finally, the results suggest that the generation of hydrogen, combined with an increase in temperature (between 30 deg. C and 80 deg. C) and a decrease in relative humidity (from 100% to 30%), should increase the chemical reactivity of the pore water-rock-gas system. (authors)

  7. A multi-scale computational scheme for anisotropic hydro-mechanical couplings in saturated heterogeneous porous media

    NARCIS (Netherlands)

    Mercatoris, B.C.N.; Massart, T.J.; Sluys, L.J.

    2013-01-01

    This contribution discusses a coupled two-scale framework for hydro-mechanical problems in saturated heterogeneous porous geomaterials. The heterogeneous nature of such materials can lead to an anisotropy of the hydro-mechanical couplings and non-linear effects. Based on an assumed model of the

  8. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin; Lei, Guanglun; Cathles, Lawrence M.; Steenhuis, Tammo S.

    2014-01-01

    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery

  9. Particle size distributions, size concentration relationships, and adherence to hands of selected geologic media derived from mining, smelting, and quarrying activities

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, Carolyn; Shirai, Jeffry; Kissel, John, E-mail: jkissel@uw.edu

    2011-09-15

    Hand-to-mouth activity, especially in children, is a potentially significant pathway of exposure to soil contaminants. Hand-mouthing behavior is of particular concern in areas impacted by mining, smelting, and quarrying activities as these activities may lead to elevated levels of heavy metals in soil. In order to estimate potential exposures to contaminated geologic media attributable to hand-to-mouth contact, it is useful to characterize adherence of those media to skin, as contaminant concentrations in adhered media may differ greatly from unfractionated, whole media concentrations. Such an investigation has been undertaken to aid estimation of exposures to arsenic, cadmium, lead, and zinc in nine different geologic media collected in the Pacific Northwest region of the United States. After establishing the particle size distribution of each medium (fractions < 63 {mu}m, 63-150 {mu}m, 150-250 {mu}m, and 250 {mu}m-2 mm were determined) and target elemental concentrations within each particle size fraction, an active handling protocol involving six volunteers was conducted. Wet media always adhered to a greater extent than dry media and adhered media generally had higher elemental concentrations than bulk media. Regression analyses suggest smaller particle fractions may have higher elemental concentrations. Results of application of a maximum likelihood estimation technique generally indicate that handling of dry media leads to preferential adherence of smaller particle sizes, while handling of wet media does not. Because adhered material can differ greatly in particle size distribution from that found in bulk material, use of bulk concentrations in exposure calculations may lead to poor estimation of actual exposures. Since lead has historically been a metal of particular concern, EPA's Integrated Exposure Uptake Biokinetic (IEUBK) Model was used to examine the potential consequences of evaluating ingestion of the selected media assuming concentrations in

  10. On the validity of a Fickian diffusion model for the spreading of liquid infiltration plumes in partially saturated heterogeneous media

    International Nuclear Information System (INIS)

    Pruess, K.

    1994-01-01

    Localized infiltration of aqueous and -non-aqueous phase liquids (NAPLs) occurs in many circumstances. Examples include leaky underground pipelines and storage tanks, landfill and disposal sites, and surface spills. Because of ever-present heterogeneities on different scales such infiltration plumes are expected to disperse transversally and longitudinally. This paper examines recent suggestions that liquid plumes are being dispersed from medium heterogeneities in a manner that is analogous to Fickian diffusion. Numerical simulation experiments on liquid infiltration in heterogeneous media are performed to study the dispersive effects of small-scale heterogeneity. It is found that plume spreading indeed tends to be diffusive. Our results suggest that, as far as infiltration of liquids is concerned, broad classes of heterogeneous media behave as dispersive media with locally homogeneous (albeit anisotropic) permeability

  11. A reevaluation of TDR propagation time determination in soils and geological media

    Science.gov (United States)

    Time domain reflectometry (TDR) is an established method for the determination of apparent dielectric permittivity and water content in soils. Using current waveform interpretation procedures, signal attenuation and variation in dielectric media properties along the transmission line can significant...

  12. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  13. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media.

    Science.gov (United States)

    Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L

    2016-07-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N 2 /BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm -1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm -1 ) and the N 2 /BET solid surface area (28±2 cm -1 ). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm -1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm -1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm -1 and 152±8 cm -1 , respectively), but much smaller than the N 2 /BET solid surface area (1387±92 cm -1 and 55224 cm -1 , respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard

  14. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  15. Numerical Simulation of Natural Convection in Heterogeneous Porous media for CO2 Geological Storage

    NARCIS (Netherlands)

    Ranganathan, P.; Farajzadeh, R.; Bruining, J.; Zitha, P.L.J.

    2012-01-01

    We report a modeling and numerical simulation study of density-driven natural convection during geological CO2 storage in heterogeneous formations. We consider an aquifer or depleted oilfield overlain by gaseous CO2, where the water density increases due to CO2 dissolution. The heterogeneity of the

  16. A parallel FE-FV scheme to solve fluid flow in complex geologic media

    NARCIS (Netherlands)

    Coumou, Dim; Matthäi, Stephan; Geiger, Sebastian; Driesner, Thomas

    2008-01-01

    Field data-based simulations of geologic systems require much computational time because of their mathematical complexity and the often desired large scales in space and time. To conduct accurate simulations in an acceptable time period, methods to reduce runtime are required. A parallelization

  17. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin

    2014-05-06

    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery. A transparent micromodel packed with translucent quartz sand was constructed and used to investigate the pore-scale transport, surface deposition-release, and plugging deposition-remigration mechanisms of MPEMs in porous media. The results indicate that the combination of colloidal and hydrodynamic forces controls the deposition and release of MPEMs on pore-surfaces; the reduction of fluid salinity and the increase of Darcy velocity are beneficial to the MPEM release from pore-surfaces; the hydrodynamic forces also influence the remigration of MPEMs in pore-throats. MPEMs can plug pore-throats through the mechanisms of capture-plugging, superposition-plugging, and bridge-plugging, which produces resistance to water flow; the interception with MPEM particulate filters occurring in the interior of porous media can enhance the plugging effect of MPEMs; while the interception with MPEM particulate filters occurring at the surface of low-permeability layer can prevent the low-permeability layer from being damaged by MPEMs. MPEMs can remigrate in pore-throats depending on their elasticity through four steps of capture-plugging, elastic deformation, steady migration, and deformation recovery. © 2014 American Chemical Society.

  18. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: column studies and modeling approaches

    Science.gov (United States)

    Li, X.; Xu, H.; Wu, J.

    2017-12-01

    For in situ biodegradation of organic contaminants in soil and groundwater, precise prediction and monitoring of the movement of the bio-agent is vital for the effectiveness of the subsurface bioremediation technologies. Therefore, the fate and transport of functional microorganisms in porous media has been extensively investigated in the literature, and the effects of a number of physical and chemical factors have been explored. During the bioremediation of contaminated sites, it is highly likely that functional bacteria and heavy metals would be simultaneously present for heavy metals often co-exist with organic contaminants like polycyclic aromatic hydrocarbons (PAHs) in polluted environment. To date, relevant studies on the interactions between heavy metals and functional agents such as PAHs-degrading bacteria are lacking and thus require investigation. In this study, the cotransport of bioremediation agents and heavy metals were evaluated through batch and column experiments. Herbaspirillum chlorophenolicum FA1, a pure bacterial strain capable of absorbing heavy metals and degrading polycyclic aromatic hydrocarbons (PAHs), was used as the model remediation agent, and metal ions of Pb(Ⅱ) and Cd(Ⅱ) were used as the representative heavy metals. Effects of metal species, the concentration of heavy metals, the sequence of entering the media, and the activity of biomass were investigated in detail. In addition, numerical simulations of breakthrough curves (BTC) data were also performed for information gathering. Results of this study could advance our understanding of interactions between functional bacteria and heavy metals during bioremediation process and help to develop successful bioremediation strategies.This work was financially supported by the National Natural Science Foundation of China -Xinjiang Project (U1503282), the National Natural Science Foundation of China (41030746, 41102148), and the Natural Science Foundation of Jiangsu Province (BK20151385

  19. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    International Nuclear Information System (INIS)

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)

  20. Calculation of media temperatures for nuclear sources in geologic depositories by a finite-length line source superposition model (FLLSSM)

    Energy Technology Data Exchange (ETDEWEB)

    Kays, W M; Hossaini-Hashemi, F [Stanford Univ., Palo Alto, CA (USA). Dept. of Mechanical Engineering; Busch, J S [Kaiser Engineers, Oakland, CA (USA)

    1982-02-01

    A linearized transient thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high-level waste or spent fuel assemblies are represented as finite-length line sources in a continuous medium. The combined effects of multiple canisters in a representative storage pattern can be established in the medium at selected point of interest by superposition of the temperature rises calculated for each canister. A mathematical solution of the calculation for each separate source is given in this article, permitting a slow hand calculation. The full report, ONWI-94, contains the details of the computer code FLLSSM and its use, yielding the total solution in one computer output.

  1. A general approach for defining the macroscopic free energy density of saturated porous media at finite strains under non-isothermal conditions

    International Nuclear Information System (INIS)

    Gajo, A.

    2011-01-01

    A general approach is proposed for defining the macroscopic free energy density function (and its complement, the free enthalpy) of a saturated porous medium submitted to finite deformations under non-isothermal conditions, in the case of compressible fluid and solid constituents. Reference is made to an elementary volume treated as an 'open system', moving with the solid skeleton. The proposed free energy depends on the generalised strains (namely an appropriate measure of the strain of the solid skeleton and the variation in fluid mass content) and the absolute temperatures of the solid and fluid phases (which are assumed to differ from each other for the sake of generality). This macroscopic energy proves to be a potential for the generalised stresses (namely the associated measure of the total stress and the free enthalpy of the pore fluid per unit mass) and the entropies of the solid and fluid phases. In contrast with mixture theories, the resulting free energy is not the simple sum of the free energies of the single constituents. Two simplified cases are examined in detail, i.e. the semi-linear theory (originally proposed for isothermal conditions and extended here to non-isothermal problems) and the linear theory. The proposed approach paves the way to the consistent non-isothermal-hyper-elastic-plastic modelling of saturated porous media with a compressible fluid and solid constituents. (authors)

  2. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

  3. Use of social media Edmodo in secondary education subjects: Biology and Geology

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez Ruibal

    2016-01-01

    Full Text Available Social media have become one of the most powerful and innovating tools to encourage collaborative work and lifelong learning. This study shows the result obtained after using the social network Edmodo when teaching in a high school of Asturias. We intend to analyse the degree of student ́s acceptance of this blended learning strategy. This technology allows us take the teaching and learning process beyond the classroom space increasing the adquisition of knowledge and basic skills.

  4. The role of colloids in the transport of radionuclides in geological media

    International Nuclear Information System (INIS)

    Moulin, V.

    1993-01-01

    The main objective of this programme is to understand how colloids could influence the migration behaviour of radionuclides in geological formations. This is being achieved firstly, by identifying the retention mechanisms of colloids and pseudocolloids (association of radionuclides with colloids) on mineral surfaces by static and dynamic experiments, and secondly by investigating the formation of pseudocolloids. Moreover, these studies will be focused on model systems (surfaces, colloids) selected from studies carried out on the El Berrocal site (characterization of the granite, of the colloids). Two types of experiments are planned: for the study of pseudocolloid formation, sorption experiments (batch tests) with radionuclides will be conducted either with model inorganic colloidal suspensions or with mineral monoliths as macroscopic surfaces of colloids. Dynamic experiments will be performed using well-defined packings of both synthetic and natural minerals (major constituents of granite). Moreover, a particular attention will be devoted to the organic coatings (in static and dynamic conditions). These studies will provide data directly usable by migration models to predict colloid transport under conditions relevant to geological disposals. This programme will be carried out in collaboration with the different partners of this contract: CEA (Fontenay-aux-Roses/F), CIEMAT (Madrid/S), CNRS (Orsay/F), GERMETRAD (Nantes/F), GSF (Munich/G), INFM (Padua/I), INTERA (London/UK) with Dr V. Moulin, Dr P. Rivas, Dr J.C. Dran, Pr Pieri, Dr C. Wolfrum, Pr G. Della Mea and Dr P. Grindrod as project leaders respectively. 4 refs., 2 figs., 1 tab

  5. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1985-01-01

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are gound-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission. The approach followed consists of a description of the overall system (waste, facility, and site), scenario selection and screening, consequence modeling (source term, ground-water flow, radionuclide transport, biosphere transport, and health effects), and uncertainty and sensitivity analysis

  6. Development of performance assessment methodology for nuclear waste isolation in geologic media

    Science.gov (United States)

    Bonano, E. J.; Chu, M. S. Y.; Cranwell, R. M.; Davis, P. A.

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the U.S. Nuclear Regulatory Commission.

  7. The geological basis and the representation of spatial variability in fractured media

    International Nuclear Information System (INIS)

    Mazurek, M.; Gautschi, A.; Zuidema, P.

    1998-01-01

    Spatial variability of features and parameters relevant for contaminant transport modelling occurs on all scales of interest for the quantification of processes that govern solute migration, typically decimeters to hundreds of meters. Two types of spatial variability are distinguished, namely the internal heterogeneity of each individual water-conducting feature (e.g. the complex architecture of a fault) and the larger-scale heterogeneity that results from the groundwater flow through different types of water-conducting features along the flow-path from the repository to the discharge areas. An up-scaling procedure is required to obtain hydraulic parameters and the properties of the overall flow-path, whereas the heterogeneity of many other geologic features (geometry of flow and matrix porosity, mineralogy, etc.) can be fed directly into coupled codes that quantify radionuclide transport. The procedures needed to derive conceptual models integrating geological and hydraulic field measurements and observations at a given site are illustrated by examples from both crystalline and sedimentary rock formations. (author)

  8. Oxidation state analyses of uranium with emphasis on chemical speciation in geological media

    International Nuclear Information System (INIS)

    Ervanne, H.

    2004-01-01

    This thesis focuses on chemical methods suitable for the determination of uranium redox species in geological materials. Nd-coprecipitation method was studied for the determination of uranium oxidation states in ground waters. This method is ideally suited for the separation of uranium oxidation states in the field, which means that problems associated with the instability of U(IV) during transport are avoided. An alternative method, such as ion exchange, is recommended for the analysis of high saline and calcium- and iron-rich ground waters. U(IV)/Utot was 2.8-7.2% in ground waters in oxidizing conditions and 60-93% in anoxic conditions. From thermodynamic model calculations applied to results from anoxic ground waters it was concluded that uranium can act as redox buffer in granitic ground waters. An ion exchange method was developed for the analysis of uranium oxidation states in different solid materials of geological origin. These included uranium minerals, uraniumbearing minerals, fracture coatings and bulk rock. U(IV)/Utot was 50-70% in uraninites, 5.8-8.7% in secondary uranium minerals, 15-49% in different fracture coatings and 64- 77% in samples from deep bedrock. In the uranium-bearing minerals, U(IV)/Utot was 33-43% (allanites), 5.9% (fergusonite) and 93% (monazite). Although the ion exchange method gave reliable results, there is a risk for the conversion of uranium oxidation states during analysis of heterogeneous samples due to the redox reactions that take place in the presence of some iron compounds. This risk was investigated in a study of several common iron-bearing minerals. The risk for conversion of uranium oxidation states can be screened by sample selection and minimized with use of a redox buffer compound such as polyacrylic acid (PAA). In studies of several carboxylic acids, PAA was found to be the most suitable for extending the application of the method. The stability of uranium oxidation states during analysis and the selectivity

  9. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1986-01-01

    The analysis of the processes involved in the burial of nuclear wastes can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission

  10. Users' manual for LEHGC: A Lagrangian-Eulerian Finite-Element Model of Hydrogeochemical Transport Through Saturated-Unsaturated Media. Version 1.1

    International Nuclear Information System (INIS)

    Yeh, Gour-Tsyh

    1995-11-01

    The computer program LEHGC is a Hybrid Lagrangian-Eulerian Finite-Element Model of HydroGeo-Chemical (LEHGC) Transport Through Saturated-Unsaturated Media. LEHGC iteratively solves two-dimensional transport and geochemical equilibrium equations and is a descendant of HYDROGEOCHEM, a strictly Eulerian finite-element reactive transport code. The hybrid Lagrangian-Eulerian scheme improves on the Eulerian scheme by allowing larger time steps to be used in the advection-dominant transport calculations. This causes less numerical dispersion and alleviates the problem of calculated negative concentrations at sharp concentration fronts. The code also is more computationally efficient than the strictly Eulerian version. LEHGC is designed for generic application to reactive transport problems associated with contaminant transport in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical element concentrations as a function of time and space and the chemical speciation at user-specified nodes. LEHGC Version 1.1 is a modification of LEHGC Version 1.0. The modification includes: (1) devising a tracking algorithm with the computational effort proportional to N where N is the number of computational grid nodes rather than N 2 as in LEHGC Version 1.0, (2) including multiple adsorbing sites and multiple ion-exchange sites, (3) using four preconditioned conjugate gradient methods for the solution of matrix equations, and (4) providing a model for some features of solute transport by colloids

  11. Studies of nuclear-waste migration in geologic media. Annual report, November 1976--October 1977

    International Nuclear Information System (INIS)

    Seitz, M.G.; Rickert, P.G.; Fried, S.M.; Friedman, A.M.; Steindler, M.J.

    1978-03-01

    The confinement of nuclear wastes in geologic formations is being considered as a method of permanently disposing of the waste. Laboratory experiments (column infiltration, static absorption, and batch partitioning experiments) were performed with nuclides of Cs, Pu, Np, and Am to examine the migratory characteristics of long-lived radionuclides that could be mobilized by groundwaters infiltrating a nuclear waste repository and the surrounding geologic body. In column infiltration experiments, the positions of peak concentrations of Cs in chalk or shale columns; Pu in limestone; Am in limestone, sandstone, or tuff; and Np in a limestone column did not move when the columns were infiltrated with water. However, fractions of each of the nuclides were seen downstream from the peaks, indicating that there was a large dispersion in the relative migration rates of each of the trace elements in the lithic materials studied. The results of static absorption experiments indicate that Pu and Am are strongly absorbed from solution by the common rocks studied and that their migration relative to ground-water flow is thereby retarded. In addition, the reaction rates of dissolved nuclides with rocks were found to vary considerably in different rock-element systems. Batch partitioning experiments were performed to test whether absorption processes are reversible. After granulated basalt and americium-bearing water were contacted in an absorption step, part of the water was replaced with water free of Am and the Am repartitioned between rock and solution. The distribution of Am after desorption was comparable to its distribution after absorption. In cntrast, when tablets of various rocks were allowed to dry between absorption and desorption tests, Pu and Am were not generally desorbed from the tablets. This suggests that reversible reactions of nuclides, between waters and rocks may be upset by treatments such as drying

  12. Quasi-three-dimensional analysis of ground water flow and dissolved multicomponent solute transport in saturated porous media

    International Nuclear Information System (INIS)

    Tang, Yi.

    1991-01-01

    A computational procedure was developed in this study to provide flexibility needed in the application of three-dimensional groundwater flow and dissolved multicomponent solute transport simulations. In the first part of this study, analytical solutions were proposed for the dissolved single-component solute transport problem. These closed form solutions were developed for homogeneous but stratified porous media. This analytical model took into account two-dimensional diffusion-advection in the main aquifer layer and one-dimensional diffusion-advection in the adjacent aquitards, as well as first order radioactive decay and linear adsorption isotherm in both aquifer and aquitards. The associated analytical solutions for solute concentration distributions in the aquifer and aquitards were obtained using Laplace Transformation and Method of Separation of Variables techniques. Next, in order to analyze the problem numerically, a quasi-three-dimensional finite element algorithm was developed based on the multilayer aquifer concept. In this phase, advection, dispersion, adsorption and first order multi-species chemical reaction terms were included to the analysis. Employing this model, without restriction on groundwater flow pattern in the multilayer aquifer system, one may analyze the complex behavior of the groundwater flow and solute movement pattern in the system. These numerical models may be utilized as calibration tools in site characterization studies, or as predictive models during the initial stages of a typical site investigation study. Through application to several test and field problems, the usefulness, accuracy and efficiency of the proposed models were demonstrated. Comparison of results with analytical solution, experimental data and other numerical methods were also discussed

  13. The geological basis and the representation of spatial variability in sedimentary heterogeneous media

    International Nuclear Information System (INIS)

    Cliffe, K.A.; Franklin, D.J.; Jones, P.I.R.; Macleod, E.J.; Porter, J.D.

    1998-01-01

    The impact of different conceptual models was investigated of the heterogeneity of the Sherwood Sandstone Group (SSG) at Sellafield on calculations of flow and transport. Detailed models of the heterogeneity of the Undifferentiated St Bees Sandstone (USBS) of the SSG were produced. The models took into account directly the geological structures at the facies level. The software package STORM (STOchastic Reservoir Modelling), was used to construct the models. The data required by the model are those that characterise the geometry of the channel bodies and the properties of the various sub-facies within the channels. It was found that for the case in which all of the variability was within channels, the larger scale permeabilities did not exhibit any significant correlation structure. The up-scaled effective permeabilities also exhibited correlation lengths that were comparable with the channel dimensions. Flow and transport calculations were also performed on 90 realizations of a detailed facies scale three-dimensional representation of a larger block of the USBS. The results are broadly consistent with the analytical results for transport through a random permeability field. (R.P.)

  14. Modeling of the ionic transfers in saturated porous media: application to the penetration of chlorides through cementing materials

    International Nuclear Information System (INIS)

    Khitab, Anwar

    2005-09-01

    In this work, the problem of ionic species transport through concrete porous media has been documented. Chloride ions penetration in cementitious materials is one of the processes widely responsible for the degradation of concrete structures. Therefore there exists an immense need for its correct understanding and quantification. Different research groups worldwide have proposed different chloride ingress models. Here, a one-dimensional model based on a multi-species approach of the ionic transport is presented. It is the new version of a previous model MsDiff developed a few years ago in our group that describes the diffusion of ionic species with the Nernst-Planck equation instead of Fick's laws. This newer version is named, the package version of MsDiff after it requires a package of five input data at any given age of concrete. With a multi-species approach, it is possible to take into account the interactions, which exist among different ionic species in pore solution of concrete. The numerical scheme of the model is based on finite difference method with Crank-Nickolson and Law-Wendroff techniques. In order to run MsDiff, we do need an input data. Several experiments were performed accordingly to provide experimental feedback to MsDiff. Standard immersion tests were conducted to validate the outcomes of MsDiff. Special attention is given to the diffusion coefficients of the ions and the interactions between the ionic species and the solid phase. In addition to MsDiff, some other existing models were also tried for the sake of comparison with the experimental chloride profiles. Certain experimentation was conducted to watch the effect of exposure period, concrete age at exposure and concentration in the environmental solution. In the end, the simulations were performed with MsDiff in order to calculate the chloride-induced corrosion initiation time using the experimental data already achieved while making use of different criteria adopted by different research

  15. Deposition and release kinetics of nano-TiO2 in saturated porous media: Effects of solution ionic strength and surfactants

    International Nuclear Information System (INIS)

    Godinez, Itzel G.; Darnault, Christophe J.G.; Khodadoust, Amid P.; Bogdan, Dorin

    2013-01-01

    The aggregation, transport and deposition kinetics (i.e. attachment and release) of TiO 2 nanoparticles (nano-TiO 2 ) were investigated as a function of ionic strength and the presence of anionic (sodium dodecylbenzene sulfonate, SDBS) and non-ionic (Triton X-100) surfactants in 100% critical micelle concentration (CMC). The electrolyte concentration of the suspensions dictated the kinetic stability of nano-TiO 2 thus influencing the transport and retention of the nanoaggregates in the saturated porous medium. With increasing ionic strength, the interaction between approaching nano-TiO 2 and nano-TiO 2 already deposited onto collectors surfaces seemed to be more favorable than the interaction between approaching nano-TiO 2 and bare collectors surfaces. The abrupt and gradual reduction in electrolyte concentration during the flushing cycles of the column experiments induced the release of previously deposited nano-TiO 2 suggesting attachment of nano-TiO 2 through secondary energy minimum. Highlights: ► This study focuses on aggregation, transport and deposition kinetics of nano-TiO 2 . ► Ionic strength and surfactants impact nano-TiO 2 transport in saturated porous media. ► Previously deposited nano-TiO 2 serve as preferential sites for subsequent deposition. ► Changes in solution chemistry cause nanodeposits to release a portion of nano-TiO 2 . -- Previously deposited nano-TiO 2 serve as preferential sites for subsequent deposition and changes in solution chemistry cause nanodeposits to release a portion of nano-TiO 2

  16. A study on the radionuclide transport by bacteria in geologic media

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1997-02-01

    The purpose of this paper is to provide a methodology to develop a predictive model based on a conceptual three phase system and to investigate the influence of bacteria and their generation on the transport of radionuclide in porous and fractured media. The mass balance for bacteria, substrate and radionuclide were formulated. To illustrate the model simply, an equilibrium condition was assumed to partition the substrate, bacteria and radionuclide concentrations between the solid soil matrix, aqueous phase, rock matrix and bacterial surface. From the numerical calculation of the radionuclide transport in the presence of bacteria, it was found that the growth of bacteria and supplied primary substrate as limiting or stimulating growth factor of bacteria are the most important factors of the radionuclide transport. We also found that, depend on the transport of bacteria the temporal and spatial distribution of radionuclide concentration was significantly altered. The model proposed in this study will improve the evaluation of the role of the bacteria in the transport of radionuclide in groundwater systems. Furthermore, this model would be usefully utilized in analyzing the important role of colloidal particulate on the overall performance of radioactive waste safety

  17. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    Science.gov (United States)

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  18. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Hao, Xiuzhen; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (Ic, 0–50 mM NaCl) conditions in the presence of 10 mg L−1 humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension Ic in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of Ic in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.

  19. Detection and migration of gases in geological media: Experiments and numerical simulations at the Roselend Natural Laboratory

    International Nuclear Information System (INIS)

    Guillon, S.

    2013-01-01

    Gas migration in rocks results from natural and artificial processes. Understanding gas migration matters for the Comprehensive Nuclear-Test-Ban Treaty (CTBT), to improve the detection of underground nuclear explosions by their radioactive gases. This work concerns many other fields in Earth Sciences, for fundamental as well as applied science. Issues in improving the detection and the understanding of gas migration in geological media are the following. What are the driving forces of gas migration from depth to the surface? How much of the gases produced at depth do arrive at the surface? Does this migration lead to temporal delays and dilution between production and breakthrough at the surface? To answer these questions, this thesis is dedicated to the identification of gas transport mechanisms in fractured rocks, from both field experiments and numerical simulations. The Roselend Natural Laboratory (French Alps) is a unique facility for studying gas transport in the unsaturated zone at the field scale, representative of natural processes. Parameters and external forcings have been determined. A tunnel and an isolated chamber, at 55 m depth, as well as boreholes at depth and at the surface, allow to monitor gases that are present in the rocks. Pneumatic properties of the rocks, permeability and porosity, were determined at scales ranging from 1 to 55 m, from both pneumatic injection tests and pressure monitoring as well as from computational studies of fluid flow and transport in porous media. Inverse modeling was used to quantify the associated uncertainties. The results underline the strong spatial heterogeneity of fractured media. The natural dynamics of three gases, CO 2 , SF 6 and 222 Rn, was monitored continuously for more than one year. The results, interpreted with numerical simulations, determined that the processes controlling the natural dynamics, or baseline, of gases are atmospheric pressure fluctuations and water movements. Such water movements also

  20. Effects of starvation on the transport of Escherichia coli K12 in saturated porous media are dependent on pH and ionic strength

    Science.gov (United States)

    Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.

    2010-12-01

    In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.

  1. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by

  2. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid; Hassanizadeh, S. Majid

    2012-01-01

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a

  3. A Graphical-User Interface for the U. S. Geological Survey's SUTRA Code using Argus ONE (for simulation of variable-density saturated-unsaturated ground-water flow with solute or energy transport)

    Science.gov (United States)

    Voss, Clifford I.; Boldt, David; Shapiro, Allen M.

    1997-01-01

    This report describes a Graphical-User Interface (GUI) for SUTRA, the U.S. Geological Survey (USGS) model for saturated-unsaturated variable-fluid-density ground-water flow with solute or energy transport,which combines a USGS-developed code that interfaces SUTRA with Argus ONE, a commercial software product developed by Argus Interware. This product, known as Argus Open Numerical Environments (Argus ONETM), is a programmable system with geographic-information-system-like (GIS-like) functionality that includes automated gridding and meshing capabilities for linking geospatial information with finite-difference and finite-element numerical model discretizations. The GUI for SUTRA is based on a public-domain Plug-In Extension (PIE) to Argus ONE that automates the use of ArgusONE to: automatically create the appropriate geospatial information coverages (information layers) for SUTRA, provide menus and dialogs for inputting geospatial information and simulation control parameters for SUTRA, and allow visualization of SUTRA simulation results. Following simulation control data and geospatial data input bythe user through the GUI, ArgusONE creates text files in a format required for normal input to SUTRA,and SUTRA can be executed within the Argus ONE environment. Then, hydraulic head, pressure, solute concentration, temperature, saturation and velocity results from the SUTRA simulation may be visualized. Although the GUI for SUTRA discussed in this report provides all of the graphical pre- and post-processor functions required for running SUTRA, it is also possible for advanced users to apply programmable features within Argus ONE to modify the GUI to meet the unique demands of particular ground-water modeling projects.

  4. Law of nonlinear flow in saturated clays and radial consolidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  5. Transport and retention of 14C-perfluorooctanoic acid (PFOA) in saturated limestone and sand porous media: Effects of input concentration, ionic strength and cation type

    Science.gov (United States)

    Xueyan, L.; Gao, B.; Sun, Y.; Wu, J.

    2017-12-01

    Perfluorooctanoic acid (PFOA) has been used in a wide variety of industrial and consumer product applications. PFOA has been detected around the world at ng/L to μg/L levels in groundwater, and at ng/g levels in soil.The physicochemical properties of porous media were proven to play pivotal roles in determining the transport behavior of various pollutants. It is anticipated that physicochemical properties of porous media will strongly influence the transport behavior of PFOA. In addition, previous investigations have revealed that input concentration significantly influence the transport behavior of nanoparticles and antibiotics. Thus, this study was designed experimentally and fundamentally to gain insight into transport and retention of PFOA in various porous medias at different input concentrations, solution IS and cation type. Unlike in quartz sand porous media, the BTCs in limestone porous media exhibited increasing retention rate and high degree of tailing in limestone porous media. Results showed that higher relative retention occurred in limestone porous media than in quartz sand porous media under the same solution chemistry. This result was attributed to the less negative zeta-potentials, rougher surface and larger specific surface area, and the presence of hydroxyl groups and organic matters of limestone grains. Higher ionic strength and Ca2+ had little impact on the mobility of PFOA in quartz sand porous media, but significantly enhanced the retention of PFOA in limestone porous media. The difference is likely due to the compression of the electrical double layer, and the surface-charge neutralization and cation-bridging effect of Ca2+. Higher input concentration resulted in lower relative PFOA retention in limestone porous media, but the influence were insignificant in quartz sand porous media. This effect is likely because attachment sites in limestone responced to the variety of input concentration differently than quartz.

  6. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Science.gov (United States)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  7. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, D.; Simunek, J.

    2010-01-15

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  8. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    International Nuclear Information System (INIS)

    Jacques, D.; Simunek, J.

    2010-01-01

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  9. Groundwater modelling for fractured and porous media: HYDROCOIN Level 1

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    The report describes work carried out as part of the 'Hydrocoin' project to verify some of the models used by the British Geological Survey on its radioactive waste disposal programme. The author's work on Hydrocoin Level 1 concerned groundwater modelling for fractured and porous media. The overall conclusions arising from the work were: a) pressure fields in saturated media can be reliably calculated by existing programmes, b) three techniques for deriving the flow fields are described, and c) severe practical limitations exist as to the ability of current programs to model variably saturated conditions over moderate distances. (U.K.)

  10. Uniqueness of specific interfacial area-capillary pressure-saturation relationship under non-equilibrium conditions in two-phase porous media flow

    NARCIS (Netherlands)

    Joekar-Niasar, V.; Hassanizadeh, S.M.

    2012-01-01

    The capillary pressure–saturation (P c–S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model

  11. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCan/AURORA Mallik gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Dallimore, S. R.; Wright, J. F.; Nixon, F. M. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Kurihara, M. [Japan Oil Engineering, Tokyo (Japan); Yamamoto, K.; Fujii, T.; Fujii, K.; Numasawa, M.; Yasuda, M. [Japan Oil, Gas, Metals National Corp., Chiba (Japan). Technical Research Centre; Imasato, Y. [Schlumberger K.K., Fuchinombe (Japan)

    2008-07-01

    The joint research project between Japan Oil, Gas and Metals National Corporation (JOGMEC), Natural Resources Canada (NRCan) and the Aurora Research Institute was conducted in an effort to measure and monitor the response of a terrestrial gas hydrate reservoir to pressure draw down. This paper reviewed the geologic setting and porous media conditions of a concentrated gas hydrate production interval between 1093 and 1105 m. The short-duration production test was conducted at the Mallik site in Canada's Mackenzie Delta in April 2007. The production interval consists of a sand-dominated succession with occasional silty sand interbeds. Gas hydrate occurs primarily within the sediment pore spaces, with concentrations ranging between 50-90 per cent. Experiments on pore water salinity and porous media conditions on pressure-temperature stability suggest that the partition between gas hydrate stability and instability should be considered as a phase boundary zone rather than a discrete threshold. The experiment revealed that there are significant changes to the physical properties following gas hydrate dissociation, with sediments containing no hydrate behaving as unconsolidated sands. A strong reservoir response to pressure draw down was observed with increasing gas flow during the testing period. Sand inflow to the well during the test may be attributed to loss of sediment strength during gas hydrate dissociation, with the sediment behaving as a gasified slurry. It was concluded that the gas flow response observed during the 2007 production test at Mallik was highly influenced by porous media properties and by the geological heterogeneities which may initiate high permeability conduits in sediments within the production interval of the Mallik gas hydrate reservoir. 18 refs., 6 figs.

  12. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid

    2012-02-23

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model called DYPOSIT, which has been employed and extended for this study: (a) P c-S w relationship is measured empirically under equilibrium conditions. It is then used in Darcy-based simulations for all dynamic conditions. This is only valid if there is a guarantee that this relationship is unique for a given flow process (drainage or imbibition) independent of dynamic conditions; (b) It is also known that P c-S w relationship is flow process dependent. Depending on drainage and imbibition, different curves can be achieved, which are referred to as "hysteresis". A thermodynamically derived theory (Hassanizadeh and Gray, Water Resour Res 29: 3389-3904, 1993a) suggests that, by introducing a new state variable, called the specific interfacial area (a nw, defined as the ratio of fluid-fluid interfacial area to the total volume of the domain), it is possible to define a unique relation between capillary pressure, saturation, and interfacial area. This study investigates these two aspects of capillary pressure-saturation relationship using a dynamic pore-network model. The simulation results imply that P c-S w relation not only depends on flow process (drainage and imbibition) but also on dynamic conditions for a given flow process. Moreover, this study attempts to obtain the first preliminary insights into the global functionality of capillary pressure-saturation-interfacial area relationship under equilibrium and non-equilibrium conditions and the uniqueness of P c-S w-a nw relationship. © 2012 The Author(s).

  13. Experimental study and modeling of gas diffusion through partially water saturated porous media. Application to Vycor glasses, geo-polymers and CEM V cement pastes

    International Nuclear Information System (INIS)

    Boher, C.

    2012-01-01

    This work documents the relationship that exists between the transfer properties of a material (pore size distribution, total porosity accessible to water, water saturation degree), and its diffusion coefficient. For this sake, materials having a quasi mono modal porosity are used: Vycor glasses and geo-polymers. We also use materials having a complex porosity: CEM V cement pastes. The use of Vycor glasses and geo-polymers allows quantifying the gas diffusion coefficient through materials having known pores size, as a function of their water saturation degree. The use of cement pastes allows checking if it is possible to decompose the diffusion coefficient of a complex porosity material, in an assembling of diffusion coefficients of quasi mono modal porosity materials. For this sake, the impact of pore network arrangement on the diffusion coefficient is studied in great details. This study is divided into three parts:1)Measurement of the geometric characteristics of materials porous network by means of the mercury intrusion porosimetry, water porosimetry, isotherms of nitrogen sorption / desorption, and water desorption tests. 2) Measurement of the materials diffusion coefficient, as a function of their relative humidity storage, and their water saturation degree. 3) Modeling the diffusion coefficient of the materials, and study the impact of the pore network (tortuosity, pores connection). (author) [fr

  14. Up-scaling of a two-phase flow model including gravity effect in geological heterogeneous media: application to CO2 sequestration

    International Nuclear Information System (INIS)

    Ngo, Tri-Dat

    2016-01-01

    This work deals with the mathematical modeling and the numerical simulation of the migration under gravity and capillarity effects of the supercritical CO 2 injected into a geological heterogeneous sequestration site. The simulations are performed with the code DuMux. Particularly, we consider the up-scaling, from the cell scale to the reservoir scale, of a two-phase (CO 2 -brine) flow model within a periodic stratified medium made up of horizontal low permeability barriers, continuous or discontinuous. The up-scaling is done by the two-scale asymptotic method. First, we consider perfectly layered media. An homogenized model is developed and validated by numerical simulation for different values of capillary number and the incident flux of CO 2 . The homogenization method is then applied to the case of a two-dimensional medium made up of discontinuous layers. Due to the gravity effect, the CO 2 accumulates under the low permeability layers, which leads to a non-standard local mathematical problem. This stratification is modeled using the gravity current approach. This approach is then extended to the case of semi-permeable strata taking into account the capillarity. The up-scaled model is compared with numerical simulations for different types of layers, with or without capillary pressure, and its limit of validity is discussed in each of these cases. The final part of this thesis is devoted to the study of the parallel computing performances of the code DuMux to simulate the injection and migration of CO 2 in three-dimensional heterogeneous media (layered periodic media, fluvial media and reservoir model SPE 10). (author) [fr

  15. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  16. Impact of thermal constraints on the optimal design of high-level waste repositories in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Malbrain, C; Lester, R K [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Nuclear Engineering

    1982-12-01

    An approximate, semi-analytical heat conduction model for predicting the time-dependent temperature distribution in the region of a high-level waste repository has been developed. The model provides the basis for a systematic, inexpensive examination of the impact of several independent thermal design constraints on key repository design parameters and for determining the optimal set of design parameters which satisfy these constraints. Illustrative calculations have been carried out for conceptual repository designs for spent pressurized water reactor (PWR) fuel and reprocessed PWR high-level waste in salt and granite media.

  17. Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas

    2018-03-01

    Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy

  18. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    Science.gov (United States)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  19. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  20. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  1. On the Theory of Solitons of Fluid Pressure and Solute Density in Geologic Porous Media, with Applications to Shale, Clay and Sandstone

    Science.gov (United States)

    Caserta, A.; Kanivetsky, R.; Salusti, E.

    2017-11-01

    We here analyze a new model of transients of pore pressure p and solute density ρ in geologic porous media. This model is rooted in the nonlinear wave theory, its focus is on advection and effect of large pressure jumps on strain. It takes into account nonlinear and also time-dependent versions of the Hooke law about stress, rate and strain. The model solutions strictly relate p and ρ evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e., the nonlinear "Burgers solitons". We, therefore, show that the actual transport process in porous rocks for large signals is not only the linear diffusion, but also a solitons presence could control the process. A test of a presence of solitons is applied to Pierre shale, Bearpaw shale, Boom clay and Oznam-Mugu silt and clay. An application about the presence of solitons for nuclear waste disposal and salt water intrusions is also discussed. Finally, in a kind of "theoretical experiment" we show that solitons could also be present in higher permeability rocks (Jordan and St. Peter sandstones), thus supporting the idea of a possible occurrence of osmosis also in sandstones.

  2. Dispersion of contaminants in saturated porous media

    International Nuclear Information System (INIS)

    Moltyaner, G.L.; Poisson, J.M.

    1987-10-01

    The main objective of this paper is to outline the experimental and theoretical investigations performed in an attempt to validate the applicability of finite element based numerical models for the prediction of the behaviour of a conservative tracer at the Twin Lake aquifer, Chalk River Nuclear Laboratories, Chalk River, Ontario. The essential point is that the 3/4 of a million data points obtained at the Twin Lake site from a 40 m natural gradient tracer test provide a unique opportunity for quantifying the system variability and for testing finite element models of the dispersion process. The subject of this discussion is the advection-dispersion model of contaminant transport - its equation and solution by the Galerkin finite element method. The report gives a brief description of the experimental data and the methods for the estimation of transport parameters. Scales of averaging associated with the conceptual formulation of the dispersion process, measurement of process variables, parameter estimation and the numerical models are discussed. The compatibility between the scales is emphasized as a major requirement for predictive modelling. The developed finite element model of the radioiodine transport describes the overall behaviour of the tracer plume but lacks the capability to simulate the fingerlike spreading of the plume due to the fact that the grid does not have an adequately fine space discretization. Unfortunately, a refinement of the grid spacing is limited by the size of the site computer memory. For the advection-dominated transport, as that encountered at the Twin Lake aquifer, the failure to satisfy fine mesh requirement causes numerical dispersion. In general, it was concluded that the conventional finite element model may produce accurate simulation of the tracer cloud provided that the adequately fine space discretization of the grid compatible with the support scale of measurements and the adequately fine time discretization are made. This demands large computing resources. The development of a more finely discretized model for execution on a vector processor is underway. 21 refs

  3. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  4. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves

    International Nuclear Information System (INIS)

    Doughty, Christine

    2007-01-01

    Numerical models of geologic storage of carbon dioxide (CO 2 ) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO 2 and wetting-phase brine. When a problem includes both injection of CO 2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO 2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a non-hysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO 2 storage are simulated with TOUGH2, a multiphase, multicomponent code for flow and transport through geological media. Both non-hysteretic and hysteretic formulations are used, to illustrate the applicability and limitations of non-hysteretic methods. The first application considers leakage of CO 2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation

  5. The Parabolic Variational Inequalities for Variably Saturated Water Flow in Heterogeneous Fracture Networks

    Directory of Open Access Journals (Sweden)

    Zuyang Ye

    2018-01-01

    Full Text Available Fractures are ubiquitous in geological formations and have a substantial influence on water seepage flow in unsaturated fractured rocks. While the matrix permeability is small enough to be ignored during the partially saturated flow process, water seepage in heterogeneous fracture systems may occur in a non-volume-average manner as distinguished from a macroscale continuum model. This paper presents a systematic numerical method which aims to provide a better understanding of the effect of fracture distribution on the water seepage behavior in such media. Based on the partial differential equation (PDE formulations with a Signorini-type complementary condition on the variably saturated water flow in heterogeneous fracture networks, the equivalent parabolic variational inequality (PVI formulations are proposed and the related numerical algorithm in the context of the finite element scheme is established. With the application to the continuum porous media, the results of the numerical simulation for one-dimensional infiltration fracture are compared to the analytical solutions and good agreements are obtained. From the application to intricate fracture systems, it is found that water seepage flow can move rapidly along preferential pathways in a nonuniform fashion and the variably saturated seepage behavior is intimately related to the geometrical characteristics orientation of fractures.

  6. Transport of synthetic colloids through single saturated fractures: A literature review

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1995-07-01

    Colloids having the same surface charge sign as the bulk of the geologic media in a groundwater system may be able to travel through the system faster than soluble species because they will follow fluid streamlines more closely and they should have less tendency to diffuse into pores or dead spaces in the media than soluble species. Synthetic colloids with uniform, controlled properties may be ideal for serving as open-quotes worst-caseclose quotes tracers that provide lower-bound estimates of contaminant travel times in hydrologic systems. This report discusses a review of the literature pertaining to colloid transport in single saturated natural fractures. After a brief background discussion to put the literature review in perspective, the phenomenon of colloid transport in saturated fractures is divided into three major topics, each of which is reviewed in detail: (1) saturated fluid flow through fractures; (2) colloid transport by convection, diffusion, and force fields; and (3) colloid interactions with surfaces. It is suggested that these phenomena be accounted for in colloid transport models by using (1) lubrication theory to describe water flow through fractures, (2) particle tracking methods to describe colloid transport in fractures, and (3) a kinetic boundary layer approximation to describe colloid interactions with fracture walls. These methods offer better computational efficiency and better experimental accessibility to model parameters than rigorously solving the complete governing equations

  7. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  8. Multiscale optimization of saturated poroelastic actuators

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    A multiscale method for optimizing the material micro structure in a macroscopically heterogeneous saturated poroelastic media with respect to macro properties is presented. The method is based on topology optimization using the homogenization technique, here applied to the optimization of a bi...

  9. Skills and Strategies for Media Education.

    Science.gov (United States)

    Thoman, Elizabeth

    1999-01-01

    To thrive in our media-saturated culture, children must become media literate and learn five lessons: media messages are constructed by a few for the many; constructions involve creative languages; different people experience the same media message differently; media are primarily profit-driven businesses; and media have embedded values and…

  10. Gluon saturation in a saturated environment

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-01-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.

  11. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  12. Saturated poroelastic actuators generated by topology optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2011-01-01

    the coupling of internal fluid pressure and elastic shear stresses a slab of the optimized porous material deflects/deforms when a pressure is imposed and an actuator is created. Several phenomenologically based constraints are imposed in order to get a stable force transmitting actuator.......In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizing...

  13. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  14. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  15. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal

    International Nuclear Information System (INIS)

    Dridi, W.

    2005-04-01

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  16. Gluon Saturation and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Sichtermann, Ernst

    2016-12-15

    The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.

  17. Migrations of 60-Co and 137-Cs in Saturated and unsaturated Soil at Serpong Nuclear Research Center

    International Nuclear Information System (INIS)

    Lubis, E; Untara

    1996-01-01

    The migrations of 60-Co and 137-Cs in saturated and unsaturated soil at Serpong Nuclear Research Center was investigated. The objectives of this investigation are to find the geological and hydrological parameters, especially for estimating the migrations of radionuclides in porous media with advection-dispersion equations. The result showed that the porosity (η) and density (ρ ) of saturated soil are 27.6% and 1.35 g/cm3, and in the unsaturated soil are 18.9% and 1.41 g/cm3. The coefficients distributions (Kd) of 60-Co and 137-Cs in saturated and unsaturated soil are 1.6 - 8.9 and 3.2 - 7.7 respectively. The hydrodinamic coefficients (Dx) and dispersivity (αx) of C0-60 in saturated and unsaturated soil are 0.85 cm2/second and 2.4 x 10-3 cm, and for 137-Cs are 0.91 cm2/second and 2.54 x 10E3 cm

  18. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  19. Facile and Green Synthesis of Saturated Cyclic Amines

    Directory of Open Access Journals (Sweden)

    Arruje Hameed

    2017-10-01

    Full Text Available Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  20. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  1. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  2. Fast neutron (14 MeV) attenuation analysis in saturated core samples and its application in well logging

    International Nuclear Information System (INIS)

    Amin Attarzadeh; Mohammad Kamal Ghassem Al Askari; Tagy Bayat

    2009-01-01

    To introduce the application of nuclear logging, it is appropriate to provide a motivation for the use of nuclear measurement techniques in well logging. Importance aspects of the geological sciences are for instance grain and porosity structure and porosity volume of the rocks, as well as the transport properties of a fluid in the porous media. Nuclear measurements are, as a rule non-intrusive. Namely, a measurement does not destroy the sample, and it does not interfere with the process to be measured. Also, non- intrusive measurements are often much faster than the radiation methods, and can also be applied in field measurements. A common type of nuclear measurement employs neutron irradiation. It is powerful technique for geophysical analysis. In this research we illustrate the detail of this technique and it's applications to well logging and oil industry. Experiments have been performed to investigate the possibilities of using neutron attenuation measurements to determine water and oil content of rock sample. A beam of 14 MeV neutrons produced by a 150 KV neutron generator was attenuated by different samples and subsequently detected with plastic scintillators NE102 (Fast counter). Each sample was saturated with water and oil. The difference in neutron attenuation between dry and wet samples was compared with the fluid content determined by mass balance of the sample. In this experiment we were able to determine 3% of humidity in standard sample model (SiO 2 ) and estimate porosity in geological samples when saturated with different fluids. (Author)

  3. Influence of the transversal diffusion/dispersion on the radionuclide migration in porous media - investigation of analytically solvable problems for geological layer structures. Der Einfluss der transversalen Diffusion/Dispersion auf die Migration von Radionukliden in poroesen Medien - Untersuchung analytisch loesbarer Probleme fuer geolog. Schichtstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Schmocker, U

    1980-07-01

    Repositories in geological formations are planned for the final disposal of radioactive wastes produced by nuclear power. Generally, water entry leading to leaching of the waste matrix is considered as the critical process which can result in release of radionuclides from a waste repository. In risk analyses for waste repositories the migration of radionuclides through the geosphere is usually described mathematically by a one-dimensional transport model. On the other hand the hydrological calculational models used for determining the critical migration paths are invariably two- or three-dimensional. A one-dimensional transport calculation always gives conservative results for a specific migration path because the influence of the transverse dispersion/diffusion effect is neglected. This effect results in an additional decrease of the nuclide concentration along the migration path. On the other hand radionuclides can spread to adjacent geological formations which are not taken into account in a one-dimensional model. If the water velocities in these formations are higher than along the original (one-dimensional) migration path or if the distance to the biosphere (e.g. lake, river or well) is shorter, then the process of the transverse diffusion/dispersion can represent an additional risk. The present work deals with the influence of the transverse diffusion/dispersion effect on the migration of radionuclides through the geosphere. We restrict ourselves to migration in porous media which is the standard approach of most existing transport models. For modelling the transport of radionuclides in fissured systems there exist only a few preliminary calculational approaches to date. We are mainly interested in analytically soluble problems which take into account the transverse diffusion/dispersion effect. This procedure permits investigation of the most important effects in a simple and direct manner. 17 refs., 36 figs., 2 tabs.

  4. Saturated Zone Colloid-Facilitated Transport

    International Nuclear Information System (INIS)

    Wolfsberg, A.; Reimus, P.

    2001-01-01

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  5. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  6. The Danish tax on saturated fat

    DEFF Research Database (Denmark)

    Vallgårda, Signild; Holm, Lotte; Jensen, Jørgen Dejgård

    2015-01-01

    arguments and themes involved in the debates surrounding the introduction and the repeal. SUBJECTS/METHODS: An analysis of parliamentary debates, expert reports and media coverage; key informant interviews; and a review of studies about the effects of the tax on consumer behaviour. RESULTS: A tax......BACKGROUND/OBJECTIVES: Health promoters have repeatedly proposed using economic policy tools, taxes and subsidies, as a means of changing consumer behaviour. As the first country in the world, Denmark introduced a tax on saturated fat in 2011. It was repealed in 2012. In this paper, we present...... indicates that the tax was effective in changing consumer behaviour....

  7. Applications of geological labs on chip for CO_2 storage issues

    International Nuclear Information System (INIS)

    Morais, Sandy

    2016-01-01

    CO_2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO_2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature micro-fluidic tools to investigate the different mechanisms associated with CO_2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 ≤ T ≤ 50 C, 50 ≤ p ≤ 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO_2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO_2/aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels. Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media [fr

  8. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  9. Surface wave propagation in a fluid-saturated incompressible ...

    Indian Academy of Sciences (India)

    dilatational and one rotational elastic waves in fluid-saturated porous solids. Biot theory ..... If the pore liquid is absent or gas is filled in the pores, then ρF ..... Biot M A (1962) Mechanics of deformation and acoustic propagation in porous media.

  10. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  11. Using Media Literacy to Explore Stereotypes of Mexican Immigrants.

    Science.gov (United States)

    Vargas, Lucila; dePyssler, Bruce

    1998-01-01

    Examines media portrayals of Mexican immigrants, and interplay between these images and portrayals of U.S.-born Latinos. Argues that examining media images is imperative because the influence of media saturation is almost overwhelming. Suggests a media-literacy framework for developing abilities for interpreting media and giving students control…

  12. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  13. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    is required. However, it draws attention to some of the relevant geoethical issues within forensic geology and forensic geoscience. This paper also highlights the need for the development of a set of resources; references and guidelines, standards and protocols, a code of conduct (including for example integrity, accountability, honesty, professional fairness, courtesy, trustworthiness), data sharing and information transparency, education and training, multi-disciplinary collaboration, development of research, fair debate, evaluating uncertainty and risk, regulation and accreditation, effective communication and diplomacy, attendance at crime scenes, presenting evidence in courts of law, dealing with the media and elimination of potential bias. The uptake of Forensic Geoscience brings with it considerable challenges arising from the direct and often very sensitive human interactions. By developing this ethical component to the work that the IUGS-IFG group does, combines technical approaches with sensitive solutions, and also in parallel helps define an ethical framework for forensic geoscientists' research and practice in addressing these challenges.

  14. An efficient implicit-pressure/explicit- saturation-method-based shifting-matrix algorithm to simulate two-phase, immiscible flow in porous media with application to CO2 sequestration in the subsurface

    KAUST Repository

    Salama, Amgad

    2013-07-04

    The flow of two or more immiscible fluids in porous media is widespread, particularly in the oil industry. This includes secondary and tertiary oil recovery and carbon dioxide (CO2) sequestration. Accurate predictions of the development of these processes are important in estimating the benefits and consequences of the use of certain technologies. However, this accurate prediction depends--to a large extent--on two things. The first is related to our ability to correctly characterize the reservoir with all its complexities; the second depends on our ability to develop robust techniques that solve the governing equations efficiently and accurately. In this work, we introduce a new robust and efficient numerical technique for solving the conservation laws that govern the movement of two immiscible fluids in the subsurface. As an example, this work is applied to the problem of CO2 sequestration in deep saline aquifers; however, it can also be extended to incorporate more scenarios. The traditional solution algorithms to this problem are modeled after discretizing the governing laws on a generic cell and then proceed to the other cells within loops. Therefore, it is expected that calling and iterating these loops multiple times can take a significant amount of computer time. Furthermore, if this process is performed with programming languages that require repeated interpretation each time a loop is called, such as Matlab, Python, and others, much longer time is expected, particularly for larger systems. In this new algorithm, the solution is performed for all the nodes at once and not within loops. The solution methodology involves manipulating all the variables as column vectors. By use of shifting matrices, these vectors are shifted in such a way that subtracting relevant vectors produces the corresponding difference algorithm. It has been found that this technique significantly reduces the amount of central-processing-unit (CPU) time compared with a traditional

  15. PERIKLANAN DALAM MEDIA BARU (Advertising In The New Media )

    OpenAIRE

    Errika Dwi Setya Watie

    2016-01-01

    Advertising is currently getting a huge challenge. the number of ads , it is realized or not, effects on saturation of advertising. New era media presents new communications media to the community. This condition should be recognized by anyone working in the advertising, because the development of advertising is in line with a new media movement, so the expectansy of the intended market segment will be achieved better. Today, the challenge of a new style of advertising has been answered b...

  16. Application of X-ray CT investigation of CO{sub 2}-brine flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lanlan; Liu, Yu; Song, Yongchen; Yang, Mingjun; Zhao, Yuechao; Zhao, Jiafei; Zhang, Yi; Shen, Zijian [Dalian University of Technology, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian (China); Xue, Ziqiu [Research Institute of Innovative Technology for the Earth, Kizugawa City, Kyoto (Japan); Suekane, Tetsuya [Tokyo Institute Technology, Department of Energy Sciences, Nagatsuta, Yokohama (Japan)

    2015-05-15

    A clear understanding of two-phase flows in porous media is important for investigating CO{sub 2} geological storage. In this study, we conducted an experiment of CO{sub 2}/brine flow process in porous media under sequestration conditions using X-ray CT technique. The flow properties of relative permeability, porosity heterogeneity, and CO{sub 2} saturation were observed in this experiment. The porous media was packed with glass beads having a diameter of 0.2 mm. The porosity distribution along the flow direction is heterogeneous owing to the diameter and shape of glass beads along the flow direction. There is a relationship between CO{sub 2} saturation and porosity distribution, which changes with different flow rates and fractional flows. The heterogeneity of the porous media influences the distribution of CO{sub 2}; moreover, gravity, fractional flows, and flow rates influence CO{sub 2} distribution and saturation. The relative permeability curve was constructed using the steady-state method. The results agreed well with the relative permeability curve simulated using pore-network model. (orig.)

  17. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  18. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  19. Study of numerical schemes for two-phase flow in porous media for any meshes: application to storage of nuclear waste

    International Nuclear Information System (INIS)

    Angelini, O.

    2010-01-01

    The two-phase flow in porous media is a complex phenomenon and which relate to many industrial problems. EDF works on the feasibility and the safety of a storage in deep geologic layer of nuclear waste. In this domain the simulation of the two-phase flow in porous media is particularly important in at least three domains: first of all during the phase of ventilation of the galleries of the storage which could de-saturate the rock and so modify its properties, but also during the phase of re-saturation of the materials and finally during the arrival of the water on the metal parts contained in the storage which will then involve phenomena of corrosion and a hydrogen release. In this context, EDF wishes to obtain robust numerical methods without restrictive condition on the mesh. This work is dedicated at first to the development of the finite volume scheme SUSHI (Scheme Using Stabilization and Hybrid Interfaces) in the code of mechanics of EDF, Code Aster in order to simulate the two-phase flow in porous media. This scheme was developed in 2D and in 3D. At the same time a new formulation which allows to simulate in a uniform way the flows in saturated and unsaturated porous media for miscible and immiscible problems is proposed. Various studies simulating difficulties related to the problems of the storage of nuclear waste in deep geological layers were study. We can quote the study of a bi-material which advances the capillary re-balancing of a material by an other one possessing properties and initial very heterogeneous conditions in saturation. We will also quote the study of the injection of hydrogen in an porous media initially saturated in pure water which is proposed by the benchmark 'two-phase Flow' proposed by the GNR MOMAS. This study had for objective to bring to light the good treatment of the appearance of a phase in a saturated porous media and thus the relevance of our new formulation to study with a way unified a problem of saturated flow and a

  20. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  1. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  2. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  4. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  5. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  6. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  7. Multiphase flow and transport in porous media

    Science.gov (United States)

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  8. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal; Couplage entre corrosion et comportement diphasique dans un milieu poreux: Application a l'evolution d'un stockage des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2005-04-15

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  9. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    Science.gov (United States)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  10. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  11. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  12. Scale-Dependent Solute Dispersion in Variably Saturated Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bott, Yi-Ju [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-29

    This work was performed to support performance assessment (PA) calculations for the Integrated Disposal Facility (IDF) at the Hanford Site. PA calculations require defensible estimates of physical, hydraulic, and transport parameters to simulate subsurface water flow and contaminant transport in both the near- and far-field environments. Dispersivity is one of the required transport parameters.

  13. Transport of E. coli in saturated and unsaturated porous media ...

    Indian Academy of Sciences (India)

    G Madumathi

    to reflect the groundwater contamination caused by leaking septic tanks and leach pits. Experiments were ... Even in Malaysia, where almost 100% of domestic wastewater is treated ...... teria may be moving along with food and other nutrients,.

  14. Corrosion rate of nuclear glass in saturated media

    International Nuclear Information System (INIS)

    Fillet, S.; Vernaz, E.; Nogues, J.L.; Jacquet-Francillon, N.

    1986-01-01

    Leaching experiments under a static mode have shown that, after a given time, the concentration of the solubilized elements reaches an apparent steady state which can be detected by a plateau in the curve of cumulated leach rates vs time. Since the real slope of this plateau is a key datum to modernize the source term, works related to the evaluation of this slope and based on a statistical approach have been necessary. Twelve static leaching experiments carried out for one year at 90 0 C were scrutinized. Various glasses, both active and nonactive, akin to the LWR French reference glass were involved. Previously, an abnormally high corrosion rate had been found after 12 months of testing. This feature could have been interpreted as a further leaching step occuring after the plateau period. The corrosion rates at 90 0 C with deionized water are compared to those gained from integral tests at 90 0 C

  15. Partially saturated media : from DEM simulation to thermodynamic interpretation

    NARCIS (Netherlands)

    Chalak, Caroline; Chareyre, Bruno; Nikooee, E.; Darve, Felix

    2017-01-01

    An extended numerical model of pendular bridge for spherical grains is introduced, enabling the determination of interfacial areas. On this basis, the free energy of interfaces is defined, and its changes are found to balance the mechanical work exerted by the bridge on the particles of a two-grain

  16. SOCIAL MEDIA

    Science.gov (United States)

    RESPONSIBILITY CENTCOM COALITION MEDIA SOCIAL MEDIA NEWS ARTICLES PRESS RELEASES IMAGERY VIDEOS TRANSCRIPTS VISITORS AND PERSONNEL FAMILY CENTER FAMILY READINESS CENTCOM WEBMAIL SOCIAL MEDIA SECURITY ACCOUNTABILITY HomeMEDIASOCIAL MEDIA Social Media CENTCOM'S ENGLISH SOCIAL MEDIA ACCOUNTS There are many U.S. military commands

  17. Interactions Between Stratigraphy and Interfacial Properties on Flow and Trapping in Geologic Carbon Storage

    Science.gov (United States)

    Liang, Bo; Clarens, Andres F.

    2018-01-01

    Gas leakage from geologic carbon storage sites could undermine the long-term goal of reducing emissions to the atmosphere and negatively impact groundwater resources. Despite this, there remain uncertainties associated with the transport processes that would govern this leakage. These stem from the complex interaction between governing forces (e.g., gravitational, viscous, and capillary), the heterogeneous nature of the porous media, and the characteristic length scales of these leakage events, all of which impact the CO2 fluid flow processes. Here we assessed how sub-basin-scale horizons in porous media could impact the migration and trapping of a CO2 plume. A high-pressure column packed with two layers of sand with different properties (e.g., grain size and wettability) was used to create a low-contrast stratigraphic horizon. CO2 in supercritical or liquid phase was injected into the bottom of the column under various conditions (e.g., temperature, pressure, and capillary number) and the transport of the resulting plume was recorded using electrical resistivity. The results show that CO2 trapping was most strongly impacted by shifting the wettability balance to mixed-wet conditions, particularly for residual saturation. A 16% increase in the cosine of the contact angle for a mixed-wet sand resulted in nearly twice as much residual trapping. Permeability contrast, pressure, and temperature also impacted the residual saturation but to a lesser extent. Flow rate affected the dynamics of saturation profile development, but the effect is transient, suggesting that the other effects observed here could apply to a broad range of leakage conditions.

  18. Repulsion-based model for contact angle saturation in electrowetting.

    Science.gov (United States)

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  19. Saturated Zone Flow and Transport Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, Kevin J.; Perman, Roseanne C.

    1998-01-01

    This report presents results of the Saturated Zone Flow and Transport Expert Elicitation (SZEE) project for Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The DOE's Yucca Mountain Site Characterization Project (referred to as the YMP) is intended to evaluate the suitability of the site for construction of a mined geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The SZEE project is one of several that involve the elicitation of experts to characterize the knowledge and uncertainties regarding key inputs to the Yucca Mountain Total System Performance Assessment (TSPA). The objective of the current project was to characterize the uncertainties associated with certain key issues related to the saturated zone system in the Yucca Mountain area and downgradient region. An understanding of saturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the saturated flow processes, including uncertainty in both the models used to represent the physical processes controlling saturated zone flow and transport, and the parameter values used in the models. So that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and

  20. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  1. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  2. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  3. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  4. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  5. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  6. Media use and brain development during adolescence

    NARCIS (Netherlands)

    Crone, Eveline A.; Konijn, Elly A.

    2018-01-01

    The current generation of adolescents grows up in a media-saturated world. However, it is unclear how media influences the maturational trajectories of brain regions involved in social interactions. Here we review the neural development in adolescence and show how neuroscience can provide a deeper

  7. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  8. Geologic disposal of radioactive waste, 1983

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-10-01

    Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10 -4 Sv/y. 50 references, 11 figures, 6 tables

  9. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  10. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  11. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  12. Receptor saturation in roentgen films

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  13. Geologic flow characterization using tracer techniques

    International Nuclear Information System (INIS)

    Klett, R.D.; Tyner, C.E.; Hertel, E.S. Jr.

    1981-04-01

    A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included

  14. Media education.

    Science.gov (United States)

    Strasburger, Victor C

    2010-11-01

    The American Academy of Pediatrics recognizes that exposure to mass media (eg, television, movies, video and computer games, the Internet, music lyrics and videos, newspapers, magazines, books, advertising) presents health risks for children and adolescents but can provide benefits as well. Media education has the potential to reduce the harmful effects of media and accentuate the positive effects. By understanding and supporting media education, pediatricians can play an important role in reducing harmful effects of media on children and adolescents.

  15. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  16. Mechanics of non-saturated soils

    International Nuclear Information System (INIS)

    Coussy, O.; Fleureau, J.M.

    2002-01-01

    This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)

  17. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  18. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  19. Saturation in dual radiation action

    International Nuclear Information System (INIS)

    Rossi, H.H.; Zaider, M.

    1988-01-01

    The theory of dual radiation action (TDRA) was developed with the aim of applying microdosimetry to radiobiology. It therefore can deal only with the first phases in a long chain of events that results in patent effects. It is, however, clear that the initial spatial and temporal pattern of energy deposition has a profound influence on the ultimate outcome. As often happens, the early formulation of the theory contained a number of simplifying assumptions. Although most of these were explicitly stated when the first version of the TDRA was published experimental data obtained when the limitations are important were cited as contrary evidence causing considerable confusion. A more advanced version eliminated some of the restrictions but there remain others, one of which relates to certain aspects of saturation which are addressed here

  20. Simulation of trickle irrigation, an extension to the US Geological Survey's computer program VS2D

    Science.gov (United States)

    Healy, R.W.

    1987-01-01

    A method is presented for simulating water movement through unsaturated porous media in response to a constant rate of application from a surface source. Because the rate at which water can be absorbed by soil is limited, the water will pond; therefore the actual surface area over which the water is applied may change with time and in general will not be known beforehand. An iterative method is used to determine the size of this ponded area at any time. This method will be most useful for simulating trickling irrigation, but also may be of value for simulating movement of water is soils as the result of an accidental spill. The method is an extension to the finite difference computer program VS2D developed by the U.S. Geological Survey, which simulates water movement through variably saturated porous media. The simulated region can be a vertical, 2-dimensional cross section for treatment of a surface line source or an axially symmetric, 3-dimensional cylinder for a point source. Five test problems, obtained from the literature , are used to demonstrate the ability of the method to accurately match analytical and experimental results. (Author 's abstract)

  1. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  2. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  3. Media Komunitas dan Media Literacy

    Directory of Open Access Journals (Sweden)

    Pawito .

    2013-12-01

    Full Text Available Abstract:This essay deals with community media in relation to media literacy. After a short discussion on a number of community media characters is made the essay goes further with somewhat detail theoretical presumptions of the roles of media community with respect primarily to the development as Amartya Sen mentioned about. The author suggests that community media may play some significant roles in the development including (a disseminating information (from varieties of perspective, (b facilitating public discussion, (c helping to reach solutions of problems, (d encouraging participations, and (e encouraging the development of media literacy. Regarding the last point the author remarks that media community may have a dual-roles i.e facilitating community’s member in media participation and facilitating community’s member in media education.

  4. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  5. Culinary art in media

    Directory of Open Access Journals (Sweden)

    Radojičić Dragana

    2009-01-01

    Full Text Available The subject of diet culture is beyond the scope of this paper. Therefore, I concentrated on several examples which best illustrate the presence of culinary art and diet in media. That is, I used 72 articles from the magazine Gloria with the food subject (2006-2009. Diet and culinary arts are omnipresent in media globally. As a rule, many offers recommend recipes and items considered traditional, with a wide range of recipes offered in Serbia alone. Internet also offers many web sites with various diets and recipes. All in all, domestic readers of local journals and magazine can find a variety of fashionable recipes from all over the world, most of the time with limited instructions or groceries not easily obtained at the local market. Bon ton is also lacking while diet and food choices continue to saturate all forms of social behavior as well as recipes serving as communication within a given culture.

  6. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  7. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  8. A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters

    DEFF Research Database (Denmark)

    Canga, Eriona; Iversen, Bo Vangsø; Kjærgaard, Charlotte

    2013-01-01

    Knowledge of the saturated hydraulic conductivity (Ksat) of porous filters used in water treatment technologies is important for optimizing the retention of nutrients and pollutants. This parameter determines the hydraulic capacity, which together with the Chemical properties of the filter media...

  9. Prediction of the saturated hydraulic conductivity from Brooks and Corey’s water retention parameters

    NARCIS (Netherlands)

    Nasta, P.; Vrugt, J.A.; Romano, N.

    2013-01-01

    Prediction of flow through variably saturated porous media requires accurate knowledge of the soil hydraulic properties, namely the water retention function (WRF) and the hydraulic conductivity function (HCF). Unfortunately, direct measurement of the HCF is time consuming and expensive. In this

  10. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  11. PERIKLANAN DALAM MEDIA BARU (Advertising In The New Media

    Directory of Open Access Journals (Sweden)

    Errika Dwi Setya Watie

    2016-03-01

    Full Text Available Advertising is currently getting a huge challenge. the number of ads , it is realized or not, effects on saturation of advertising. New era media presents new communications media to the community. This condition should be recognized by anyone working in the advertising, because the development of advertising is in line with a new media movement, so the expectansy of the intended market segment will be achieved better. Today, the challenge of a new style of advertising has been answered by the professions related to a new advertising which is driven by the appearance and the popularity of the new social media. One of the new profession known by and used in advertising is a Buzzer. The principle work of Buzzer is similar to WOM (Word Of Mouth. However, it should also be remembered that the selection of buzzer is also important, so that the purpose of advertising can be achieved.

  12. Patterning via optical saturable transitions

    Science.gov (United States)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.

  13. Sensorial saturation for infants' pain.

    Science.gov (United States)

    Bellieni, Carlo Valerio; Tei, Monica; Coccina, Francesca; Buonocore, Giuseppe

    2012-04-01

    Sensorial saturation (SS) is a multisensorial stimulation consisting of delicate tactile, gustative, auditory and visual stimuli. This procedure consists of simultaneously: attracting the infant's attention by massaging the infant's face; speaking to the infant gently, but firmly, and instilling a sweet solution on the infant's tongue. We performed a systematic Medline search of for articles focusing on human neonatal studies related to SS. The search was performed within the last 10 years and was current as of January 2012. We retrieved 8 articles that used a complete form of SS and 2 articles with an incomplete SS. Data show that the use of SS is effective in relieving newborns' pain. Oral solution alone are less effective than SS, but the stimuli without oral sweet solution are ineffective. the partial forms of SS have some effectiveness, but minor than the complete SS. Only one article showed lack of SS as analgesic method, after endotracheal suctioning. SS can be used for all newborns undergoing blood samples or other minor painful procedures. It is more effective than oral sugar alone. SS also promotes interaction between nurse and infant and is a simple effective form of analgesia for the neonatal intensive care unit.

  14. Δ isobars and nuclear saturation

    Science.gov (United States)

    Ekström, A.; Hagen, G.; Morris, T. D.; Papenbrock, T.; Schwartz, P. D.

    2018-02-01

    We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the Δ -isobar Δ (1232 ) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use pion-nucleon (π N ) low-energy constants (LECs) from a Roy-Steiner analysis of π N scattering data, optimize the LECs in the contact potentials up to NNLO to reproduce low-energy nucleon-nucleon scattering phase shifts, and constrain the three-nucleon interaction at NNLO to reproduce the binding energy and point-proton radius of 4He. For heavier nuclei we use the coupled-cluster method to compute binding energies, radii, and neutron skins. We find that radii and binding energies are much improved for interactions with explicit inclusion of Δ (1232 ) , while Δ -less interactions produce nuclei that are not bound with respect to breakup into α particles. The saturation of nuclear matter is significantly improved, and its symmetry energy is consistent with empirical estimates.

  15. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  16. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.T.; Scriven, L.E.

    1991-07-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numerical methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.

  17. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  18. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  19. Locative media

    CERN Document Server

    Wilken, Rowan

    2014-01-01

    Not only is locative media one of the fastest growing areas in digital technology, but questions of location and location-awareness are increasingly central to our contemporary engagements with online and mobile media, and indeed media and culture generally. This volume is a comprehensive account of the various location-based technologies, services, applications, and cultures, as media, with an aim to identify, inventory, explore, and critique their cultural, economic, political, social, and policy dimensions internationally. In particular, the collection is organized around the perception that the growth of locative media gives rise to a number of crucial questions concerning the areas of culture, economy, and policy.

  20. Media Entrepreneurship

    DEFF Research Database (Denmark)

    Khajeheian, Datis

    2017-01-01

    Media Entrepreneurship has been an ambiguous, unclear and controversial concept and despite of growing academic efforts in the last decade, it is still a poorly defined subject. This paper is an effort to fill this gap by providing a comprehensive definition of media entrepreneurship. Firstly......, a literature review conducted and entrepreneurship, media, opportunity and innovation as building blocks of media entrepreneurship explained. Then by using of a mixed of bibliographic method and a Delphi method with multi-stage analysis process, a consensual definition of media entrepreneurship proposed...... entrepreneurship....

  1. Media Framing

    DEFF Research Database (Denmark)

    Pedersen, Rasmus T.

    2017-01-01

    The concept of media framing refers to the way in which the news media organize and provide meaning to a news story by emphasizing some parts of reality and disregarding other parts. These patterns of emphasis and exclusion in news coverage create frames that can have considerable effects on news...... consumers’ perceptions and attitudes regarding the given issue or event. This entry briefly elaborates on the concept of media framing, presents key types of media frames, and introduces the research on media framing effects....

  2. Sensitive Media

    Directory of Open Access Journals (Sweden)

    Malinowska Anna

    2017-12-01

    Full Text Available The paper engages with what we refer to as “sensitive media,” a concept associated with developments in the overall media environment, our relationships with media devices, and the quality of the media themselves. Those developments point to the increasing emotionality of the media world and its infrastructures. Mapping the trajectories of technological development and impact that the newer media exert on human condition, our analysis touches upon various forms of emergent affect, emotion, and feeling in order to trace the histories and motivations of the sensitization of “the media things” as well as the redefinition of our affective and emotional experiences through technologies that themselves “feel.”

  3. Media Ecology

    Directory of Open Access Journals (Sweden)

    Marina Ašković

    2015-05-01

    Full Text Available Does the trend in which electronic media are gradually becoming extension of human body have to move towards full enslavement of a human and his personality, or the same human will unpredictably, with the aid of his personal media literacy, exit the whirls of media and technological censorships? Personality crisis is closely related to the crisis of language no matter how contradicted to global ideology of transnational transhumanism it may seem. Considering the fact that recent media presentations of the world are based on commercialization of environmentalism, philosophical and aesthetic thought appears as an important subject of ecology. As media mediates, the scenery of civilized living increasingly becomes more appealing even though it derives from commercial and political background. Consequently, the future of humanity depends by large on the philosophy of media. Media have to truly ecologise returning the humanum to its essence making it into the extension of the natural world.

  4. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.

    2012-01-01

    Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated

  5. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  6. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    Science.gov (United States)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas

  7. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  8. Uruguayan South Geology

    International Nuclear Information System (INIS)

    Guillemain, H.

    1980-01-01

    This monograph is about the sedimentary geological formation in the southern of Uruguay. According to the previous Gondwana studies there are several concordances between the Uruguayan and Brazilian ground.

  9. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  10. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  11. Hydro-mechanical modelling of a shaft seal in crystalline and sedimentary host rock media using COMSOL

    Energy Technology Data Exchange (ETDEWEB)

    Priyanto, D.G. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Shaft seals are components of the engineered barriers system considered for closure of a Deep Geological Repository (DGR). These seals would be installed in strategic locations of the shafts, where significant fracture zones (FZ) are located and would serve to limit upward flow of groundwater from the repository level towards the surface. This paper presents the results of hydro-mechanical (HM) numerical modelling exercises to evaluate the performance of a shaft seal using a finite element computer code, COMSOL. This study considered a variety of host geological media as part of generic assessments of system evolution in a variety of environments including five hypothetical sedimentary and crystalline host rock conditions. Four simulations of a shaft seal in different sedimentary rocks were completed, including: shale with isotropic permeability; shale with anisotropic permeability; limestone with isotropic permeability; and limestone with anisotropic permeability. The other simulation was a shaft seal in crystalline rock with isotropic permeability. Two different stages were considered in these HM simulations. Stages 1 and 2 simulated the groundwater flow into an open shaft and after installation of shaft sealing components, respectively. As expected, the models were able to simulate that installation of the shaft seal limits groundwater flow through the shaft. Based on the conditions and assumptions defined for the host media and fracture features examined in this study, the following conclusions can be drawn from the results of the numerical modelling exercises. A shaft that remained open for a longer time was beneficial with respect to delaying of seal saturation because it could reduce the groundwater flow rate around the fracture zone. Delaying saturation time indicates slower movement of the groundwater or other substances that may be transported with the groundwater. The core of the shaft seal (i.e., the bentonite-sand mixture (BSM)) became fully saturated

  12. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  13. Advances in planetary geology

    International Nuclear Information System (INIS)

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed

  14. Constraining local 3-D models of the saturated-zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Barr, G.E.; Shannon, S.A.

    1994-01-01

    A qualitative three-dimensional analysis of the saturated zone flow system was performed for a 8 km x 8 km region including the potential Yucca Mountain repository site. Certain recognized geologic features of unknown hydraulic properties were introduced to assess the general response of the flow field to these features. Two of these features, the Solitario Canyon fault and the proposed fault in Drill Hole Wash, appear to constrain flow and allow calibration

  15. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  16. Media Flow

    DEFF Research Database (Denmark)

    Kabel, Lars

    2016-01-01

    News and other kinds of journalistic stories, 16-17 hours a day, all year round, on all platforms, also the moderated social media. The key research thesis behind this article is that the continuous and speedy stream of news stories and media content now is becoming the centre of the production...... processes and the value creation in converged multimedia newsrooms. The article identify new methods and discuss editorial challenges in handling media flow....

  17. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  18. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    acceptable if the environmental consequences were characterized by sufficiently low radiological risk. Rock salt and argillaceous sediments are considered the most favorable media since they behave plastically and large masses of these materials should be capable of withstanding significant diastrophism without acquiring secondary permeability. However it is possible that in areas of great tectonic stability and in particularly favorable geological situations other materials, less intrinsically advantageous, might also be acceptable [fr

  19. Assessing species saturation: conceptual and methodological challenges.

    Science.gov (United States)

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  20. Saturation and forward jets at HERA

    International Nuclear Information System (INIS)

    Marquet, C.; Peschanski, R.; Royon, C.

    2004-01-01

    We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options

  1. Scintillation probe with photomultiplier tube saturation indicator

    International Nuclear Information System (INIS)

    Ruch, J.F.; Urban, D.J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs

  2. Media use and brain development during adolescence.

    Science.gov (United States)

    Crone, Eveline A; Konijn, Elly A

    2018-02-21

    The current generation of adolescents grows up in a media-saturated world. However, it is unclear how media influences the maturational trajectories of brain regions involved in social interactions. Here we review the neural development in adolescence and show how neuroscience can provide a deeper understanding of developmental sensitivities related to adolescents' media use. We argue that adolescents are highly sensitive to acceptance and rejection through social media, and that their heightened emotional sensitivity and protracted development of reflective processing and cognitive control may make them specifically reactive to emotion-arousing media. This review illustrates how neuroscience may help understand the mutual influence of media and peers on adolescents' well-being and opinion formation.

  3. Radioactive waste disposal in deep geologic deposits. Associated research problems

    International Nuclear Information System (INIS)

    Rousset, G.

    1992-01-01

    This paper describes the research associated problems for radioactive waste disposal in deep geologic deposits such granites, clays or salt deposits. After a brief description of the underground disposal, the author studies the rheology of sedimentary media and proposes rheological models applied to radioactive wastes repositories. Waste-rock interactions, particularly thermal effects and temperature distribution versus time. 17 refs., 14 figs

  4. Effect of geological medium on seismic signals from underground ...

    Indian Academy of Sciences (India)

    underground nuclear explosion event in a composite media with faults and complex ... faults, in situ stresses and tectonic strains, location of the free surface with respect .... at the elastic radius are the local geological formations, porosity, water con- ... the problem for a longer duration Sommerfeld (1949) radiation boundary ...

  5. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  6. Instructional Media

    African Journals Online (AJOL)

    This can be summed up in a few words: Students can learn a great deal from any of the media. Under most of the conditions tested, they could learn as much as from ... Beyond physical conditions (deafness) there is little reason to expect a differential media. Scientia Militaria, South African Journal of Military Studies, Vol 13 ...

  7. Mixed Media

    Science.gov (United States)

    Peterson, Erin

    2010-01-01

    While institutions do not often have a hook as compelling as an eagerly awaited movie, great content is critical for media relations success--and coupling it with the right distribution channel can ensure the story finds the right audience. Even better, retooling it for several media platforms can extend the life and reach of a story. The changes…

  8. Media darling

    CERN Multimedia

    Chalmers, Matthew

    2008-01-01

    He is the media-friendly face of particle physics, appearing on countless TV and radio shows in the run-up to the opening of CERN's Large Hadron Collider. Matthew Chalmers discovers how Brian Cox finds the time to be both a physicist and a media personality. (2 pages)

  9. Media Art

    DEFF Research Database (Denmark)

    Ekman, Ulrik

    2015-01-01

    environments, experience time, and develop identities individually and socially. Interviews with working media artists lend further perspectives on these cultural transformations. Drawing on cultural theory, new media art studies, human-computer interaction theory, and software studies, this cutting-edge book...... critically unpacks the complex ubiquity-effects confronting us every day....

  10. Effects of Faulted Stratigraphy on Saturated Zone Flow Beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cohen, Andrew J.B.; Oldenburg, Curtis M.

    1999-01-01

    The S 4 Z Model (''sub-site-scale saturated zone'') is a 3-D TOUGH2 model that was developed to study the saturated zone (SZ) at Yucca Mountain, Nevada, and to aid in the design and analysis of hydrologic tests. Yucca Mountain is the proposed site for a nuclear waste repository for the United States. The model covers an area of approximately 100 km 2 around Yucca Mountain, as shown in Figure 1. The proposed repository is located in the unsaturated zone, immediately above the area of equidimensional gridblocks east of Solitario Canyon fault, which defines the crest of Yucca Mountain. The finely discretized region near the center of the domain corresponds to the area near a cluster of boreholes used for hydraulic and tracer testing. This discretization facilitates simulation of tests conducted there. The hydrogeologic structure beneath the mountain is comprised of dipping geologic units of variable thickness which are offset by faults. One of the primary objectives of the S 4 Z modeling effort is to study the potential effects of the faulted structure on flow. Therefore, replication of the geologic structure in the model mesh is necessary. This paper summarizes (1) the mesh discretization used to capture the faulted geologic structure, and (2) a model simulation that illustrates the significance of the geologic structure on SZ flow and the resulting macrodispersion

  11. Computed Tomography Scanning to Understand Micro-to-Macro Controls on Multiphase Flow during Geologic Carbon Storage; NETL-TRS-3-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 24.

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin M. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Moore, Johnathan E. [National Energy Technology Lab. (NETL) and AECOM, Morgantown, WV (United States); Tudek, John K. [National Energy Technology Lab. (NETL) and AECOM, Morgantown, WV (United States); Gill, Magdalena K [National Energy Technology Lab. (NETL) and ORISE, Morgantown, WV (United States)

    2017-03-01

    Evaluation of the fate and transport of carbon dioxide (CO2) in deep reservoirs is crucial to the development of long-term geologic carbon sequestration (GCS) technologies. In this report, various studies using computed tomography (CT) scanning are utilized in conjunction with traditional flow tests to observe the multi-scale phenomena associated with CO2 injection in geologic media. Pore scale analyses were performed to determine the infiltration characteristics of CO2 into a brine saturated reservoir rock. Multiphase floods were performed to evaluate the saturation of CO2 into a brine-saturated reservoir rock and determine how structural changes within the lithology affect such interactions. Additionally, CO2 induced swelling of unconventional reservoir rock was evaluated with respect to reductions in fracture transmissivity due to matrix swelling. These studies are just a few examples of the benefits of multi-scale CT imaging in conjunction with traditional laboratory methodology to gain a better understanding of the interactions between CO2 and the lithologies it interacts with during GCS.

  12. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  13. Minimum K_2,3-saturated Graphs

    OpenAIRE

    Chen, Ya-Chen

    2010-01-01

    A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.

  14. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  15. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  16. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  17. Media violence.

    Science.gov (United States)

    Cantor, J

    2000-08-01

    Research on the effects of media violence is not well understood by the general public. Despite this fact, there is an overwhelming consensus in the scientific literature about the unhealthy effects of media violence. Meta-analyses show that media-violence viewing consistently is associated with higher levels of antisocial behavior, ranging from the trivial (imitative violence directed against toys) to the serious (criminal violence), with many consequential outcomes in between (acceptance of violence as a solution to problems, increased feelings of hostility, and the apparent delivery of painful stimulation to another person). Desensitization is another well-documented effect of viewing violence, which is observable in reduced arousal and emotional disturbance while witnessing violence, the reduced tendency to intervene in a fight, and less sympathy for the victims of violence. Although there is evidence that youth who are already violent are more likely to seek out violent entertainment, there is strong evidence that the relationship between violence viewing and antisocial behavior is bidirectional. There is growing evidence that media violence also engenders intense fear in children which often lasts days, months, and even years. The media's potential role in solutions to these problems is only beginning to be explored, in investigations examining the uses and effects of movie ratings, television ratings, and the V-chip, and the effects of media literacy programs and public education efforts. Future research should explore important individual differences in responses to media violence and effective ways to intervene in the negative effects.

  18. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass

  19. SATURATED ZONE IN-SITU TESTING

    International Nuclear Information System (INIS)

    REIMUS, P.W.

    2004-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid

  20. Flow and fracture in water-saturated, unconstrained granular beds

    Directory of Open Access Journals (Sweden)

    Germán eVaras

    2015-06-01

    Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.

  1. FLASH: A finite element computer code for variably saturated flow

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-05-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A

  2. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  3. Geology and land use

    Science.gov (United States)

    Brown, R.D.

    1990-01-01

    Geologists' eyes are trained to find and trace such natural landmarks as flood plains, landslide scars, retreating shoreline bluffs, or surface traces of active earthquake faults. more and more often, in developing areas, we find these obvious signs of trouble being erased by urban development. A geological hazard concealed by landscaping or hosing is fully as dangerous as when it is visible.

  4. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  5. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  6. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  7. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  8. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  9. Groundwater Chemistry Regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China

    Directory of Open Access Journals (Sweden)

    Xinyan Li

    2018-03-01

    Full Text Available Knowledge of hydrochemical processes in groundwater helps to identify the relationship between geochemical processes and groundwater quality as well as to understand the hydrochemical evaluation of groundwater, which is important for the sustainable management of groundwater resources. This study aims to identify the chemical characteristics of groundwater in the area of Tongchuan City, China. A total of 58 groundwater samples were collected. A hierarchical cluster analysis divided samples into three clusters and six sub-clusters (cluster 1a, 1b, 2a, 2b, 3a, 3b according to hydrochemical facies. Graphical plots of multiple ionic ratios, saturation indices, and ion exchange indices were employed to examine hydrochemical processes that result in different hydrochemical facies of each cluster. Results show the predominance of carbonate and silicate weathering in cluster 1, silicate weathering in cluster 2, and carbonate weathering in cluster 3. Ionic exchange is a ubiquitous process among all clusters. The distribution of clusters is related to the regional geology, which may result in different hydrochemical processes. Two stratigraphic sections identify the differences in hydrochemical processes resulting from complex stratum structures and varied aquifer media. Cluster 2a shows an interesting difference in water chemistry along the groundwater flow path. Further study by oxygen and hydrogen isotope indicated that mixing between Quaternary and the Permian aquifers resulting from faulting is the main reason for the distinctive characteristic of cluster 2a.

  10. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  11. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  12. Effects of thermally generated convection on the migration of radionuclides in saturated geologic formation

    International Nuclear Information System (INIS)

    Nguyen, H.D.; Paik, Seungho; Rood, A.S.

    1994-01-01

    The problem of radionuclide migration in the presence of simultaneous forced and free convection in parallel flows is studied numerically by a hybrid spectral numerical technique. In this method, the momentum, energy, and mass conservation equations together with Boussinesq approximations are solved using a combined Galerkin and collocation method in conjunction with the backward Euler for time integration. Several cases are simulated with varying buoyancy parameters and Peclet number for prescribed thermal output and leach rates at the surface of a spherical canister. The results indicate that the actions of the buoyancy force are either to aid or oppose the main flow which can lead to an elongation of the concentration plume in the streamwise or transverse direction. It is also found that for a fixed Peclet number, influence of buoyancy force remains noticeable even when buoyancy parameter is an order of magnitude smaller than the Peclet number. (author)

  13. From Augmentation Media to Meme Media.

    Science.gov (United States)

    Tanaka, Yuzuru

    Computers as meta media are now evolving from augmentation media vehicles to meme media vehicles. While an augmentation media system provides a seamlessly integrated environment of various tools and documents, meme media system provides further functions to edit and distribute tools and documents. Documents and tools on meme media can easily…

  14. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  15. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  16. Interger multiplication with overflow detection or saturation

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.J.; Balzola, P.I.; Akkas, A.; Brocato, R.W.

    2000-01-11

    High-speed multiplication is frequently used in general-purpose and application-specific computer systems. These systems often support integer multiplication, where two n-bit integers are multiplied to produce a 2n-bit product. To prevent growth in word length, processors typically return the n least significant bits of the product and a flag that indicates whether or not overflow has occurred. Alternatively, some processors saturate results that overflow to the most positive or most negative representable number. This paper presents efficient methods for performing unsigned or two's complement integer multiplication with overflow detection or saturation. These methods have significantly less area and delay than conventional methods for integer multiplication with overflow detection and saturation.

  17. Tracking Controller for Intrinsic Output Saturated Systems in Presence of Amplitude and Rate Input Saturations

    DEFF Research Database (Denmark)

    Chater, E.; Giri, F.; Guerrero, Josep M.

    2014-01-01

    We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...

  18. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.

    2012-01-01

    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  19. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  20. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  1. Nonlinear saturation of the Rayleigh Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)

  2. Saturable absorption in detonation nanodiamond dispersions

    Science.gov (United States)

    Vanyukov, Viatcheslav; Mikheev, Gennady; Mogileva, Tatyana; Puzyr, Alexey; Bondar, Vladimir; Lyashenko, Dmitry; Chuvilin, Andrey

    2017-07-01

    We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a light-induced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking.

  3. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  4. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  5. Introduction to ore geology

    International Nuclear Information System (INIS)

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint

  6. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  7. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  8. Calibration of the Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    Zyvoloski, G. A.

    2001-01-01

    The purpose of the flow calibration analysis work is to provide Performance Assessment (PA) with the calibrated site-scale saturated zone (SZ) flow model that will be used to make radionuclide transport calculations. As such, it is one of the most important models developed in the Yucca Mountain project. This model will be a culmination of much of our knowledge of the SZ flow system. The objective of this study is to provide a defensible site-scale SZ flow and transport model that can be used for assessing total system performance. A defensible model would include geologic and hydrologic data that are used to form the hydrogeologic framework model; also, it would include hydrochemical information to infer transport pathways, in-situ permeability measurements, and water level and head measurements. In addition, the model should include information on major model sensitivities. Especially important are those that affect calibration, the direction of transport pathways, and travel times. Finally, if warranted, alternative calibrations representing different conceptual models should be included. To obtain a defensible model, all available data should be used (or at least considered) to obtain a calibrated model. The site-scale SZ model was calibrated using measured and model-generated water levels and hydraulic head data, specific discharge calculations, and flux comparisons along several of the boundaries. Model validity was established by comparing model-generated permeabilities with the permeability data from field and laboratory tests; by comparing fluid pathlines obtained from the SZ flow model with those inferred from hydrochemical data; and by comparing the upward gradient generated with the model with that observed in the field. This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report (AMR) Development Plan ''Calibration of the Site-Scale Saturated Zone Flow Model'' (CRWMS M and O 1999a)

  9. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  10. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  11. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  12. Numerical modeling of radionuclide migration in water-saturated planar fracture: study of performance of bentonite in the far-field region

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Claudia S. da; Alvim, Antonio C.M., E-mail: csilveira@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear

    2011-07-01

    The analysis of radionuclide migration in fractured porous media is an important part of the safety assessment of a deep geologic disposal for high level radioactive wastes. In this work, numerical solution for simple geometry was developed to study radionuclide migration, including decay chain from a hypothetical repository, whereas the initial region of fracture is filled with bentonite which expanded from EBS (Engineered Barrier System). The following cases were considered: convective transport with constant velocity along the fracture, longitudinal hydrodynamic dispersion in the fracture along the fracture axis, molecular diffusion from fracture into rock matrix, sorption within rock matrix, sorption onto the surface of the fracture, radioactive decay, decay chain, and diffusion in bentonite extrusion region. For conservative analysis, the porous matrix adjacent to the fracture was subdivided into two different subdomains, each with different set of parameters and considering that the radionuclides were available for migration in the solubility limit, at fracture inlet, from the initial time. The partial differential equations that govern the physical system were discretized by finite differences, by using the Implicit Euler Method with forward scheme in the convective term. In this study, numerical simulation was performed for 100, 1000 and 10000 years, with and without bentonite extrusion, in order to compare the migration retardation obtained by bentonite located at the beginning of the fracture in saturated environment. The numerical simulation results showed the importance of extruded area in the far field region of the fractured host rock. (author)

  13. Numerical modeling of radionuclide migration in water-saturated planar fracture: study of performance of bentonite in the far-field region

    International Nuclear Information System (INIS)

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2011-01-01

    The analysis of radionuclide migration in fractured porous media is an important part of the safety assessment of a deep geologic disposal for high level radioactive wastes. In this work, numerical solution for simple geometry was developed to study radionuclide migration, including decay chain from a hypothetical repository, whereas the initial region of fracture is filled with bentonite which expanded from EBS (Engineered Barrier System). The following cases were considered: convective transport with constant velocity along the fracture, longitudinal hydrodynamic dispersion in the fracture along the fracture axis, molecular diffusion from fracture into rock matrix, sorption within rock matrix, sorption onto the surface of the fracture, radioactive decay, decay chain, and diffusion in bentonite extrusion region. For conservative analysis, the porous matrix adjacent to the fracture was subdivided into two different subdomains, each with different set of parameters and considering that the radionuclides were available for migration in the solubility limit, at fracture inlet, from the initial time. The partial differential equations that govern the physical system were discretized by finite differences, by using the Implicit Euler Method with forward scheme in the convective term. In this study, numerical simulation was performed for 100, 1000 and 10000 years, with and without bentonite extrusion, in order to compare the migration retardation obtained by bentonite located at the beginning of the fracture in saturated environment. The numerical simulation results showed the importance of extruded area in the far field region of the fractured host rock. (author)

  14. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    correlated through the whole region and described using the GeoSciML vocabularies. A hierarchical schema is provided for the Piemonte Geological Map that gives the parental relations between several orders of GeologicUnits referring to mostly recurring geological objects and main GeologicEvents, in a logical framework compliant with GeoSciML and INSPIRE data models. The classification criteria and the Hierarchy Schema used to define the GEOPiemonteMap Legend, as well as the intended meanings of the geological concepts used to achieve the overall classification schema, are explicitly described in several WikiGeo pages (implemented by "MediaWiki" open source software, https://www.mediawiki.org/wiki/MediaWiki). Moreover, a further step toward a formal classification of the contents (both data and interpretation) of the GEOPiemonteMap was triggered, by setting up an ontological framework, named "OntoGeonous", in order to achieve a thorough semantic characterization of the Map.

  15. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  16. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  17. Oxygen general saturation after bronchography under general ...

    African Journals Online (AJOL)

    Thirty-six patients undergoing bronchography or bronchoscopy under general anaesthesia were continuously monitored by pulse oximetry for 5 hours after these procedures. Significant falls in oxygen saturation were observed in the first hour and were of most clinical relevance in patients with preexisting pulmonary ...

  18. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  19. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    the existence and propagation of four waves in the medium. Three of the waves are ... predicted infinite speed for propagation of ther- mal signals. Lord and ..... saturated reservoir rock (North-sea Sandstone) is chosen for the numerical model ...

  20. Saturated fat, carbohydrates and cardiovascular disease

    NARCIS (Netherlands)

    Kuipers, R. S.; de Graaf, D. J.; Luxwolda, M. F.; Muskiet, M. H. A.; Dijck-Brouwer, D. A. J.; Muskiet, F. A. J.

    The dietary intake of saturated fatty acids (SAFA) is associated with a modest increase in serum total cholesterol, but not with cardiovascular disease (CVD). Replacing dietary SAFA with carbohydrates (CHO), notably those with a high glycaemic index, is associated with an increase in CVD risk in

  1. Saturation at Low X and Nonlinear Evolution

    International Nuclear Information System (INIS)

    Stasto, A.M.

    2002-01-01

    In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale Q s . We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution. (author)

  2. Saturation of bentonite dependent upon temperature

    International Nuclear Information System (INIS)

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    Document available in extended abstract form only. The fundamental idea behind the long-term safe operation of a deep repository is the use of the Multi-barrier system principle. Barriers may well differ according to the type of host rock in which the repository is located. It is assumed that the buffer in the granitic host rock environment will consist of swelling clays which boast the ideal properties for such a function i.e. low permeability, high swelling pressure, self-healing ability etc. all of which are affected primarily by mineralogy and dry density. Water content plays a crucial role in the activation of swelling pressure as well as, subsequently, in the potential self healing of the various contact areas of the numerous buffer components made from bentonite. In the case of a deep repository, a change in water content is not only connected with the possible intake of water from the host rock, but also with its redistribution owing to changes in temperature after the insertion of the heat source (disposal waste package containing spent fuel) into the repository 'nest'. The principal reason for the experimental testing of this high dry density material is the uncertainty with regard to its saturation ability (final water content or the degree of saturation) at higher temperatures. The results of the Mock-Up-CZ experiment showed that when the barrier is constantly supplied with a saturation medium over a long time period the water content in the barrier as well as the degree of saturation settle independently of temperature. The Mock-Up-CZ experiment was performed at temperatures of 30 deg. - 90 deg. C in the barrier; therefore it was decided to experimentally verify this behaviour by means of targeted laboratory tests. A temperature of 110 deg. C was added to the set of experimental temperatures resulting in samples being tested at 25 deg. C, 95 deg. C and 110 deg. C. The degree of saturation is defined as the ratio of pore water volume to pore

  3. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Unknown

    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate. 431. Table 1. Competitive oxygenation of tetralin and cyclooctene with sodium periodate catalyzed by different manga- .... Teacher Education University. My grateful thanks also extend to Dr D Mohajer for his useful sugges- tions. References. 1.

  4. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    but which can actually be used for processes, which pro- duce interesting ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the .... The solid product obtained from the glycolysis of PET was bis(hydroxy ethyl ...

  5. Media Training

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    With the LHC starting up soon, the world's media are again turning their attention to CERN. We're all likely to be called upon to explain what is happening at CERN to media, friends and neighbours. The seminar will be given by BBC television news journalists Liz Pike and Nadia Marchant, and will deal with the kind of questions we're likely to be confronted with through the restart period. The training is open for everybody. Make sure you arrive early enough to get a seat - there are only 200 seats in the Globe. The session will also be webcast: http://webcast.cern.ch/

  6. Dispersion of radioactive tracers (Energy transport in geological media)

    International Nuclear Information System (INIS)

    Moltyaner, G.L.; Wills, A.

    1991-01-01

    The idea of adding a gamma-emitting tracer like radioiodine to groundwater to measure its velocity offers a new approach to contaminant transport studies. In fact, the groundwater velocity is acquired by measuring, in situ, changes that the flowing water and sedimentary matrix jointly impose on the electromagnetic field generated by radioiodine. The information is encoded in the measured field intensity and it is transmitted continuously from the source to a radiation detector by electromagnetic energy photons. In situ sensed data acquired by scanning dry boreholes provide information on joint variations of static (sedimentary matrix) and dynamic (flowing water) elements of the aquifer over its depth. The spatial structure of the aquifer heterogeneities may be modelled in terms of the space-correlation coefficient between two velocities at two points a specified distance apart. This gives a new method for defining aquifer heterogeneities by the introduction of kinematically significant length scales of velocity variation without invoking Darcy's law and the concept of hydraulic conductivity. The dimensions of aquifer heterogeneities are defined in a longitudinal sense, along the mean flow direction, and in a transverse sense, in the transverse to flow direction. Two hierarchical scales of motion, local and integral, are introduced to characterize the mixing process caused by aquifer heterogeneity and depositional heterogeneity, respectively. At the microscopic and local scales, transport processes are characterized by the three-dimensional diffusion equation with, generally speaking, variable coefficients. At the integral scale, aquifer heterogeneities impose conditions on the transport such that for shallow aquifers the transport may be modelled by the dispersion equation with constant coefficients in one longitudinal dimension. 3 figs., 25 refs

  7. Migration of radionuclides in geologic media: Fundamental research needs

    International Nuclear Information System (INIS)

    Reed, D.T.; Zachara, J.M.; Wildung, R.E.; Wobber, F.J.

    1990-01-01

    An assessment of the fundamental research needs in understanding and predicting the migration of radionuclides in the subsurface is provided. Emphasis is on the following three technical areas: (1) aqueous speciation of radionuclides, (2) the interaction of radionuclides with substrates, and (3) intermediate-scale interaction studies. This research relates to important issues associated with environmental restoration and remediation of DOE sites contaminated with mixed radionuclide-organic wastes. 64 refs., 1 fig., 1 tab

  8. Stochastic models of solute transport in highly heterogeneous geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.

    2009-09-15

    A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.

  9. Models of sorption and migration of radionuclides in geologic media

    International Nuclear Information System (INIS)

    Fukui, Masami

    1987-01-01

    Full understanding of the transportation of nuclides by groundwater is essential in designing an underground radioactive waste disposal site. What is the most important is to clarify in detail the process of sorption of nuclides by rock and soil. This report outlines various theories and experimental data that are currently available. In addition, studies made in various countries are reviewed and some problems are pointed out. First, a review is made of studies that deal with adsorption and behaviors of contaminants in natural barriers (rock, soil). Next, migration models that have been developed in studying migration processes in the field of chemical engineering or behaviors of agricultural chemicals in the field of soil physics are examined to see if they can be applied to investigations of the migration of radioactive contaminants in a porous medium. Finally, a review is made of basic underground migration models that are used in various countries in studying deep underground disposal of long-life radionuclides. Some laboratory experiments on TRU nuclides in rock are also outlined. (Nogami, K.)

  10. Migration of colloids of radionuclides in geologic media

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Ogawa, Hiromichi

    2001-01-01

    Radionuclide migration in underground environment is affected by the presence of colloids in ground water. As the colloids in flow systems may be trapped or collected to solid surfaces, filtration effect results from. In the present study, dependence of collector efficiency on flow velocity and on heterogeneity of solid surfaces were theoretically and experimentally investigated using DLVO (Electric double-layer and Van der Waals force) and Smoluchowski-Levich approximation and the following results were obtained: Effluent to inflow ratio of colloids obtained from the column experiments can be analyzed to give collector efficiency for single particle. The dependence of collector efficiency on flow velocity was found to be smaller than that deduced from the previously proposed models. A model in which flow system affects the Brownian motion of colloids gives a smaller flow-velocity dependence of collector efficiency. On the contrary, the heterogeneity of solid surface taken into consideration in the model increases the flow velocity dependence. (S. Ohno)

  11. Study on the migration of radionuclide through geological media

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Han, Kyung Won; Han, Pil Soo; Cho, Won Jin; Lee, Jae Owan; Park, Chung Kyun; Choi, Heui Joo; Lee, Youn Myoung; Yang, Ho Yeon

    1987-05-01

    In Korea, Two disposal alternatives such as shallow land burial and rock cavern disposal of low- and intermediate- level waste are most applaudable options currently receiving attention. For each disposal method, Safety assessment is necessary to estimate the performance of a disposal system and to predict probable radiological consequences. In the present study, rock cavern disposal method is proposed as a most favorable alternative in view of Korean situation

  12. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    Science.gov (United States)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  13. Transient temperature distributions in geological media surrounding radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Beyerlein, S W; Sunderland, J E [Massachusetts Univ., Amherst (USA). Dept. of Mechanical Engineering

    1981-01-01

    Closed form analytical solutions are presented for the transient temperature distributions resulting from underground radioactive waste disposal. The thermal source term is represented by point or spherical sources whose strength decreases exponentially with time. The transient temperature distributions can be determined above the disposal horizon over a time interval of hundreds of years.

  14. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  15. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    International Nuclear Information System (INIS)

    Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.

    2015-01-01

    Injection of anthropogenic carbon dioxide (CO 2 ) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO 2 that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S nw ) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S nw . In either pore networks, the specific interfacial length is linearly proportional to S nw during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S nw for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement

  16. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  17. Social Media Sites

    Science.gov (United States)

    Media Sites Site Registration Contact Us Search AF.mil: Home > AF Sites > Social Media Sites Social Media Welcome to the Air Force social media directory! The directory is a one-stop shop of official Air Force social media pages across various social media sites. Social media is all about

  18. Thermal loading effects on geological disposal

    International Nuclear Information System (INIS)

    Come, B.; Venet, P.

    1984-01-01

    A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport

  19. Simulation of CO2 Injection in Porous Media with Structural Deformation Effect

    KAUST Repository

    Negara, Ardiansyah

    2011-06-18

    Carbon dioxide (CO2) sequestration is one of the most attractive methods to reduce the amount of CO2 in the atmosphere by injecting it into the geological formations. Furthermore, it is also an effective mechanism for enhanced oil recovery. Simulation of CO2 injection based on a suitable modeling is very important for explaining the fluid flow behavior of CO2 in a reservoir. Increasing of CO2 injection may cause a structural deformation of the medium. The structural deformation modeling in carbon sequestration is useful to evaluate the medium stability to avoid CO2 leakage to the atmosphere. Therefore, it is important to include such effect into the model. The purpose of this study is to simulate the CO2 injection in a reservoir. The numerical simulations of two-phase flow in homogeneous and heterogeneous porous media are presented. Also, the effects of gravity and capillary pressure are considered. IMplicit Pressure Explicit Saturation (IMPES) and IMplicit Pressure-Displacements and an Explicit Saturation (IMPDES) schemes are used to solve the problems under consideration. Various numerical examples were simulated and divided into two parts of the study. The numerical results demonstrate the effects of buoyancy and capillary pressure as well as the permeability value and its distribution in the domain. Some conclusions that could be derived from the numerical results are the buoyancy of CO2 is driven by the density difference, the CO2 saturation profile (rate and distribution) are affected by the permeability distribution and its value, and the displacements of the porous medium go to constant values at least six to eight months (on average) after injection. Furthermore, the simulation of CO2 injection provides intuitive knowledge and a better understanding of the fluid flow behavior of CO2 in the subsurface with the deformation effect of the porous medium.

  20. Contrast media

    International Nuclear Information System (INIS)

    Decazes, Ph.

    2004-01-01

    The Guerbet firm, which holds 69% of the capital on the contrast media for medical imagery, could sale about 20% of this capital in order to accelerate its development in the United States, one of its next market with the Japan. (O.M.)

  1. Otitis media

    NARCIS (Netherlands)

    Rovers, MM; Schilder, AGM; Zielhuis, GA; Rosenfeld, RM

    2004-01-01

    Otitis media (OM) continues to be one of the most common childhood infections and is a major cause of morbidity in children. The pathogenesis of OM is multifactorial, involving the adaptive and native immune system, Eustachian-tube dysfunction, viral and bacterial load, and genetic and environmental

  2. Social Media

    Science.gov (United States)

    2010-05-01

    Digital Marketing and Ecommerce Professionals. 29 January 2010. 20 May 2010. <http://econsultancy.com/blog/5324-20+-mind-blowing-social- media...Statistics Revisited.” Econsultancy | Community of Digital Marketing and Ecommerce Professionals. 29 Jan. 2010. 20 May 2010. <http://econsultancy.com/blog

  3. Streaming Media

    Science.gov (United States)

    Pulley, John

    2009-01-01

    At a time when the evolutionary pace of new media resembles the real-time mutation of certain microorganisms, the age-old question of how best to connect with constituents can seem impossibly complex--even for an elite institution plugged into the motherboard of Silicon Valley. Identifying the most effective vehicle for reaching a particular…

  4. Okinawa, Japan: Geologic Battleground

    Science.gov (United States)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the

  5. Lectures in isotope geology

    International Nuclear Information System (INIS)

    Jaeger, E.; Hunziker, J.C.

    1979-01-01

    Designed for a introductory course in geochronology and the geochemistry of stable isotopes, this text has been written by recognized experts in the field. Emphasis is on the interpretation and on applications, and examples of these are offered along with each technique. Extraterrestrial applications have been avoided and the treatment of pure experimentation has been kept at a minimum. This text will be appreciated by geologists who want to learn more about methods used in isotope geology, how they can be applied, and how to gauge their usefulness. (orig.) [de

  6. Saturated Zone In-Situ Testing

    International Nuclear Information System (INIS)

    Reimus, P. W.; Umari, M. J.

    2003-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  7. Saturated Zone In-Situ Testing

    Energy Technology Data Exchange (ETDEWEB)

    P. W. Reimus; M. J. Umari

    2003-12-23

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  8. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  9. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  10. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2013-08-01

    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  11. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  12. Geologic environmental study

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ( 1 8O, 2 H, 1 3C, 3 4S, 8 7Sr, 1 5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  13. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  14. Scaling of saturation amplitudes in baroclinic instability

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-01-01

    By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates

  15. Saturated tearing modes in tokamaks with divertors

    International Nuclear Information System (INIS)

    Bateman, G.

    1982-12-01

    We have developed a self-consistent theory of saturated tearing modes capable of predicting multiple magnetic island widths in tokamaks with no assumptions on the cross-sectional shape, aspect ratio, or plasma pressure. We are in the process of implementing this algorithm in the form of a computer code. We propose: (1) to complete, refine, document and publish this computer code; (2) to carry out a survey in which we vary the current profile, aspect ratio, cross-sectional shape, and pressure profile in order to determine their effect on saturated tearing mode magnetic island widths; and (3) to determine the effect of some externally applied magnetic perturbation harmonics on these magnetic island widths. Particular attention will be paid to the coupling between different helical harmonics, the effect of multiple magnetic islands on the profiles of temperature, pressure and current, and the potential of magnetic island overlap leading to a disruptive instability

  16. Tearing mode saturation with finite pressure

    International Nuclear Information System (INIS)

    Lee, J.K.

    1988-01-01

    With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)

  17. The danish tax on saturated fat

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Smed, Sinne

    Denmark introduced a new tax on saturated fat in food products with effect from October 2011. The objective of this paper is to make an effect assessment of this tax for some of the product categories most significantly affected by the new tax, namely fats such as butter, butter-blends, margarine...... on saturated fat in food products has had some effects on the market for the considered products, in that the level of consumption of fats dropped by 10 – 20%. Furthermore, the analysis points at shifts in demand from high-price supermarkets towards low-price discount stores – a shift that seems to have been...... utilized by discount chains to raise the prices of butter and margarine by more than the pure tax increase. Due to the relatively short data period with the tax being active, interpretation of these findings from a long-run perspective should be done with considerable care. It is thus recommended to repeat...

  18. [Chronic otitis mediaChronic Otitis Media].

    Science.gov (United States)

    Kohles, N; Schulz, T; Eßer, D

    2015-11-01

    There are 2 different kinds of chronic otitis media: Otitis media chronica mesotympanalis and otitis media chronica epitympanalis (cholesteatoma). The incidence of chronic otitis media as reported in literature differs in a wide range. The incidence rates vary between 0.45 and 46%. Both, otitis media chronica mesotympanalis and cholesteatoma, lead to eardrum perforation due to lengthy and recurring inflammations. Furthermore, chronic otitis media is characterized by frequently recurring otorrhea and conductive hearing loss. Georg Thieme Verlag KG Stuttgart · New York.

  19. Stabilization of Neutral Systems with Saturating Actuators

    Directory of Open Access Journals (Sweden)

    F. El Haoussi

    2012-01-01

    to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

  20. Gluon saturation beyond (naive) leading logs

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, Guillaume

    2014-12-15

    An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.

  1. THE SATURATION OF SASI BY PARASITIC INSTABILITIES

    International Nuclear Information System (INIS)

    Guilet, Jerome; Sato, Jun'ichi; Foglizzo, Thierry

    2010-01-01

    The standing accretion shock instability (SASI) is commonly believed to be responsible for large amplitude dipolar oscillations of the stalled shock during core collapse, potentially leading to an asymmetric supernovae explosion. The degree of asymmetry depends on the amplitude of SASI, but the nonlinear saturation mechanism has never been elucidated. We investigate the role of parasitic instabilities as a possible cause of nonlinear SASI saturation. As the shock oscillations create both vorticity and entropy gradients, we show that both Kelvin-Helmholtz and Rayleigh-Taylor types of instabilities are able to grow on a SASI mode if its amplitude is large enough. We obtain simple estimates of their growth rates, taking into account the effects of advection and entropy stratification. In the context of the advective-acoustic cycle, we use numerical simulations to demonstrate how the acoustic feedback can be decreased if a parasitic instability distorts the advected structure. The amplitude of the shock deformation is estimated analytically in this scenario. When applied to the set up of Fernandez and Thompson, this saturation mechanism is able to explain the dramatic decrease of the SASI power when both the nuclear dissociation energy and the cooling rate are varied. Our results open new perspectives for anticipating the effect, on the SASI amplitude, of the physical ingredients involved in the modeling of the collapsing star.

  2. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  3. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.

    1990-07-01

    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  4. Multipactor saturation in parallel-plate waveguides

    International Nuclear Information System (INIS)

    Sorolla, E.; Mattes, M.

    2012-01-01

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  5. Mass transfer in water-saturated concretes

    International Nuclear Information System (INIS)

    Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.

    1990-01-01

    Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed

  6. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  7. Radionuclide transport through heteogeneous media

    International Nuclear Information System (INIS)

    Hadermann, J.

    1980-01-01

    One-dimensional radionuclide migration for conevective water transport with sorption and longitudinal dispersion is investigated. A semianalytic solution for layered media with piecewise constant parametes can be written when taking into account mass conservation and approximate flux conservation at interlayer boundaries. The solution is analytic in the first layer and allows for a recursive calculation in the following layers. Scaling laws for the relevant parameters can be formulated. Numerical examples exhibit the importance of at least a single highly sorbing layer. Small values of dispersivity may not lead to a conservative estimate of conservation at the geological column's end

  8. On Media Education

    Science.gov (United States)

    Fedorov, Alexander

    2008-01-01

    This monograph analyzes the theory and practice of media education and media literacy. The book also includes the list of Russian media education literature and addresses of websites of the associations for media education.

  9. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  10. Otitis media.

    Science.gov (United States)

    Schilder, Anne G M; Chonmaitree, Tasnee; Cripps, Allan W; Rosenfeld, Richard M; Casselbrant, Margaretha L; Haggard, Mark P; Venekamp, Roderick P

    2016-09-08

    Otitis media (OM) or middle ear inflammation is a spectrum of diseases, including acute otitis media (AOM), otitis media with effusion (OME; 'glue ear') and chronic suppurative otitis media (CSOM). OM is among the most common diseases in young children worldwide. Although OM may resolve spontaneously without complications, it can be associated with hearing loss and life-long sequelae. In developing countries, CSOM is a leading cause of hearing loss. OM can be of bacterial or viral origin; during 'colds', viruses can ascend through the Eustachian tube to the middle ear and pave the way for bacterial otopathogens that reside in the nasopharynx. Diagnosis depends on typical signs and symptoms, such as acute ear pain and bulging of the tympanic membrane (eardrum) for AOM and hearing loss for OME; diagnostic modalities include (pneumatic) otoscopy, tympanometry and audiometry. Symptomatic management of ear pain and fever is the mainstay of AOM treatment, reserving antibiotics for children with severe, persistent or recurrent infections. Management of OME largely consists of watchful waiting, with ventilation (tympanostomy) tubes primarily for children with chronic effusions and hearing loss, developmental delays or learning difficulties. The role of hearing aids to alleviate symptoms of hearing loss in the management of OME needs further study. Insertion of ventilation tubes and adenoidectomy are common operations for recurrent AOM to prevent recurrences, but their effectiveness is still debated. Despite reports of a decline in the incidence of OM over the past decade, attributed to the implementation of clinical guidelines that promote accurate diagnosis and judicious use of antibiotics and to pneumococcal conjugate vaccination, OM continues to be a leading cause for medical consultation, antibiotic prescription and surgery in high-income countries.

  11. Media matters.

    Science.gov (United States)

    Martinez, L M

    1995-01-01

    The impact of the mass media on woman's status was addressed at two 1995 conferences: the Fourth World Conference on Women, held in Beijing, China, and the Congress of the World Association for Christian Communication, held in Puebla, Mexico. The globalization process facilitated by the mass media has served to increase the power of patriarchy, with no advantages to the cause of women's rights. Coverage of popular movements has been suppressed out of deference to male-controlled governments. Coverage of the Beijing Conference highlighted celebrities and personal stories, to the exclusion of the economic and political issues under debate. Television has commodified women, reinforcing their oppression. On the other hand, the alternative media, which tend to be decentralized, democratic, low-cost, and low in technology, are presenting women as subjects rather than objects and deconstructing gender stereotypes. Of concern, however, is the tendency of computer technology to widen the gap between social classes and developed and developing countries. Women must use information networks to disseminate information on women's rights and strengthen the links between women throughout the world.

  12. Technical issues in the geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Weart, W.D.

    1980-01-01

    The status of technical understanding regarding radioactive waste repositories in geologic media is improving at a rapid rate. Within a few years the knowledge regarding non-salt repositories will be on a par with that which now exists for salt. To date there is no technical reason to doubt that geologic repositories in several different geologic media can be safely implemented to provide long-term isolation of radioactive wastes. Indeed, for bedded salt, there is now sufficient knowledge to allow all the identified phenomena to be bounded with satisfactory resultant consequences. It is possible to now proceed with technical confidence in an orderly development of a bedded-salt repository at a satisfactory site. This development would call for in-situ experiments, at the earliest possible stage, to confirm or validate the predictions made for the site. These in-situ experiments will be necessary for each repository in a different rock type. If, for non-technical reasons, repository development is delayed, field test facilities should be located as soon as possible in geologic settings typical of proposed repositories. Extensive testing to resolve generic issues will allow subsequent development of repositories to proceed more rapidly with only minimal in-situ testing required to resolve site-specific concerns

  13. Near-field geologic environment as an effective barrier against radionuclide transport

    International Nuclear Information System (INIS)

    Umeki, H.; Sakuma, H.; Ishiguro, K.; Hatanaka, K.; Naito, M.

    1993-01-01

    A generic performance assessment of the geologic disposal system of HLW in Japan has been carried out by the Power Reactor and Nuclear Fuel Development Corporation (PNC) in accordance with the overall HLW management program defined by the Japanese Atomic Energy Commission. A massive engineered barrier system, consisting of vitrified waste, carbon-steel overpack and thick bentonite buffer, is introduced to ensure a long-term performance of the disposal system considering a wide range of geologic environment. A major part of the total performance of the disposal system is borne by the engineered barrier system given a geologic environment that assures and complements the performance of such engineered barrier system. The performance of the natural barrier system coupled with the strong engineered barrier system was investigated by sensitivity analyses. Two types of conceptual model were considered for the analysis to describe radionuclide transport in geologic media and the range of relevant parameters was given by taking the variation of the geologic environment in Japan into account. The results show that the degree of retardation of radionuclide transport chosen in the geologic media varies significantly depending on the parameter values chosen. However, it is indicated that there are realistic combinations of those geologic parameter values which could provide a sufficient degree of retardation within a range of only a few tens of meters from the engineered barrier system. The relative importance of the near-field geologic environment is also discussed

  14. Media Education Initiatives by Media Organizations: The Uses of Media Literacy in Hong Kong Media

    Science.gov (United States)

    Chu, Donna; Lee, Alice Y. L.

    2014-01-01

    As more media organizations have engaged in media education, this paper investigates the goals and practices of these activities. This article coins media education initiatives by media organizations with the term "media-organization media literac"y (MOML). Four MOML projects in Hong Kong were selected for examination. Built on critical…

  15. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  16. Geology of National Parks

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  17. Geological terrain models

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  18. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  19. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  20. Radon as geological tracer

    International Nuclear Information System (INIS)

    Lacerda, T.; Anjos, R.M.; Silva, A.A.R. da; Yoshimura, E.M.

    2012-01-01

    Full text: This work presents measurements of 222 Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40 K, 232 Th and 23 '8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222 Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m -3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  1. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  2. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  3. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  4. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  5. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  6. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  7. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  8. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  9. To the question the unity of composition of fluids of heterogeneous geological objects.

    Science.gov (United States)

    Galant, Yuri

    2017-04-01

    Creation of Unit Theory Oil Generation based on a number of the provisions, one of which is the unity of the hydrocarbon composition in various geological objects. Studies conducted in various geological conditions and tectonic - magmatic environment. In studying the hydrocarbon composition of various geological objects, untraditional for petroleum geology (igneous rocks, metamorphic rocks, mineral deposits, etc.) progressively manifested that hydrocarbons are also distributed and have the following features. Studies have shown: 1. The composition of the hydrocarbon components presented by, light hydrocarbons, heavy hydrocarbons up to including hexane, normal forms, isoforms, saturated and unsaturated hydrocarbons. 2. Hydrocarbon composition and the ratio of methane to heavy hydrocarbons corresponds to the composition of gases gas fields. 3. The composition and the ratio of hydrocarbons do not depend on genetic types of heterogeneous geological objects. 4. Gas saturation meets the prevailing structure of rocks - pores or fractures. The foregoing allows us to speak of a single source of generating and delivering hydrocarbons in the Earth's Crust, regardless of the geological situation. I.e. the presence of hydrocarbons in the Earth's Crust is UNITED! 5. From a practical point of view - virtually unconventional for hydrocarbons rock can serve as unconventional hydrocarbon resources.

  10. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  11. VAM2D: Variably saturated analysis model in two dimensions

    International Nuclear Information System (INIS)

    Huyakorn, P.S.; Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs

  12. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam

  13. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2011-01-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen

  14. Calcium phosphate saturation in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Temperature, inorganic phosphate concentration and pH seem to be the major factors influencing the degree of saturation of calcium phosphate in sea water. Two water regions can be demarcated in the study area based on the saturation patterns...

  15. Automated agitation management accounting for saturation dynamics.

    Science.gov (United States)

    Rudge, A D; Chase, J G; Shaw, G M; Lee, D

    2004-01-01

    Agitation-sedation cycling in critically ill is damaging to patient health and increases length of and cost. A physiologically representative model of the agitation-sedation system is used as a platform to evaluate feedback controllers offering improved agitation management. A heavy-derivative controller with upper and infusion rate bounds maintains minimum plasma concentrations through a low constant infusion, and minimizes outbursts of agitation through strong, timely boluses. controller provides improved agitation management using from 37 critically ill patients, given the saturation of effect at high concentration. Approval was obtained the Canterbury Ethics Board for this research.

  16. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  17. Elevated transferrin saturation and risk of diabetes

    DEFF Research Database (Denmark)

    Ellervik, Christina; Mandrup-Poulsen, Thomas; Andersen, Henrik Ullits

    2011-01-01

    OBJECTIVE We tested the hypothesis that elevated transferrin saturation is associated with an increased risk of any form of diabetes, as well as type 1 or type 2 diabetes separately. RESEARCH DESIGN AND METHODS We used two general population studies, The Copenhagen City Heart Study (CCHS, N = 9......,121) and The Copenhagen General Population Study (CGPS, N = 24,195), as well as a 1:1 age- and sex-matched population-based case-control study with 6,129 patients with diabetes from the Steno Diabetes Centre and 6,129 control subjects, totaling 8,535 patients with diabetes and 37,039 control subjects. RESULTS...

  18. Rectifier transformer saturation on commutation failure

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1989-01-01

    The rectifier transformer's service differs from the power transformer's service because of the rectifier load. Under certain fault conditions, such as a commutation failure, d.c. magnetization may be introduced into the rectifier transformer cores, resulting in possible saturation of the magnetic circuit, thus in degradation of the performance of the transformer. It is the purpose of this paper to present an approach for evaluating the electromagnetic transient process under such a fault condition. The studies were made on the operating 1000MVA converter system at the Princeton Plasma Physics Laboratory

  19. Robust record preservation system on geological repository

    International Nuclear Information System (INIS)

    Ohuchi, J.; Torata, S.; Tsuboya, T.

    2004-01-01

    Long-term record preservation system on geological disposal of High Level Radioactive Wastes (HLW) has been investigated as the institutional control by RWMC, Japan. Geological disposal of HLW, being based on the passive safe concept, has been considered not to necessitate the human controls to maintain its long-term safety. However how to complement the safety case on geological disposal is an important issue in each countries to progress the repository program with the step-wise decisions process during the long-term period up to several hundreds years. Although we cannot predict the future society, we need to realize the robust and redundant system for preserving records, which should be accessible, retrievable and understandable for the unpredicted future generations. First of all, we held a Rome workshop in January 2003 to exchange views on the matter, resulted in the suggestion directing the discussion on the record management and long-term preservation and retrieval of information regarding radioactive waste. Second, we considered the balance of active and passive system to strengthen the robustness. Another significance of long-term record preservation is to send current generation an implicit message, 'doing our best for future generations', in addition to aiming at both warning and their own decision-making. We call it 'meta-signal' to current generation. Thirdly, we demonstrated the laser-engraving technology to have converted five hundreds pages of an A4 sized report with human readable font sizes to 42 square silicon carbide plates, 10cm x10cm and 1mm in thickness. Silicon carbide would be an alternative to paper and might be possible to be an alternative to microfilm utilized as digital recording media. Another case study is the future generations' accessibility to the preserved records. (author)

  20. Media Matter

    Directory of Open Access Journals (Sweden)

    Holger Pötzsch

    2017-02-01

    Full Text Available The present contribution maps materialist advances in media studies. Based on the assumption that matter and materiality constitute significant aspects of communication processes and practices, I introduce four fields of inquiry - technology, political economy, ecology, and the body - and argue that these perspectives enable a more comprehensive understanding of the implications of contemporary technologically afforded forms of interaction. The article shows how each perspective can balance apologetic and apocalyptic approaches to the impact of in particular digital technologies, before it demonstrates the applicability of an integrated framework with reference to the techno-politics of NSA surveillance and the counter-practices of WikiLeaks.

  1. Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi

    Directory of Open Access Journals (Sweden)

    Ahmed F. Alfahaid, R.Y. Sakr

    2012-10-01

    Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures.  The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.

  2. Media education and media influence on youth

    OpenAIRE

    LILÁK, Karel

    2011-01-01

    Bachelor´s work is focused on the questions of the medial education and the medias themselves. This work also investigate with the influence of the action of medias to the students of apprenticeship. The first part of the theoretical work has generally explains what is media education, what is its significance for society and for the benefit of education in school. They are given functions, types and objectives of media education and communications capabilities via the media. The second part ...

  3. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  4. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  5. Lawrence Livermore Laboratory Nuclear Test Effects and Geologic Data Bank

    International Nuclear Information System (INIS)

    Howard, N.W.

    1976-01-01

    Data on the geology of the USERDA Nevada Test Site have been collected for the purpose of evaluating the possibility of release of radioactivity at proposed underground nuclear test sites. These data, including both the rock physical properties and the geologic structure and stratigraphy of a large number of drill-hole sites, are stored in the Lawrence Livermore Laboratory Earth Sciences Division Nuclear Test Effects and Geologic Data Bank. Retrieval programs can quickly provide a geological and geophysical comparison of a particular site with other sites where radioactivity was successfully contained. The data can be automatically sorted, compared, and averaged, and information listed according to site location, drill-hole construction, rock units, depth to key horizons and to the water table, and distance to faults. These programs also make possible ordered listings of geophysical properties (interval bulk density, overburden density, interval velocity, velocity to the surface, grain density, water content, carbonate content, porosity, and saturation of the rocks). The characteristics and capabilities of the data bank are discussed

  6. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  7. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  8. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  9. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  10. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2012-08-15

    A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.

  11. Particle Correlations in Saturated QCD Matter

    CERN Document Server

    Baier, R; Nardi, M; Wiedemann, Urs Achim; Baier, Rudolf; Kovner, Alex; Nardi, Marzia; Wiedemann, Urs Achim

    2005-01-01

    We study quantitatively angular correlations in the two-particle spectrum produced by an energetic probe scattering off a dense hadronic target with sizeable saturation momentum. To this end, two parton inclusive cross sections for arbitrary projectiles with small color charge density are derived in the eikonal formalism. Our results are the following: For large momenta of the observed particles, the perturbative limit with characteristic back-to-back correlation is recovered. As the trigger momenta get closer to the saturation scale Q_s, the angular distribution broadens. When the momenta are significantly smaller than Q_s, the azimuthal distribution is broad but still peaked back-to-back. However, in a narrow momentum range (0.5 - 1.5) Q_s, we observe that the azimuthal correlation splits into a double peak with maxima displaced away from 180 degree. We argue that it is the soft multiple scattering physics that is responsible for the appearance of this shift in the angle of maximal correlation. We also poin...

  12. Simulation of saturated tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Nguyen, Canh N.; Bateman, Glenn; Kritz, Arnold H.

    2004-01-01

    A quasi-linear model, which includes the effect of the neoclassical bootstrap current, is developed for saturated tearing modes in order to compute magnetic island widths in axisymmetric toroidal plasmas with arbitrary aspect ratio and cross-sectional shape. The model is tested in a simple stand-alone code and is implemented in the BALDUR [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1982)] predictive modeling code. It is found that the widths of tearing mode islands increase with decreasing aspect ratio and with increasing elongation. Also, the island widths increase when the gradient of the current density increases at the edge of the islands and when the current density inside the islands is suppressed, such as the suppression caused by the near absence of the bootstrap current within the islands. In simulations of tokamak discharges, it is found that tearing mode island widths oscillate in time in response to periodic sawtooth crashes. The local enhancements in the transport produced by magnetic islands have a noticeable effect on global plasma confinement in simulations of low aspect ratio, high beta tokamaks, where saturated tearing mode islands can occur with widths that are greater than 15% of the plasma minor radius

  13. Thermal effects on tearing mode saturation

    International Nuclear Information System (INIS)

    Kim, J.S.; Chu, M.S.; Greene, J.M.

    1988-01-01

    The effect of geometry on tearing modes, saturated states of tearing modes, and the thermal effect on tearing modes are presented. The configuration of current and magnetic fields are quite different in slabs and in Tokamaks. However, for any magnetic island regardless of geometry and heating conditions, at island saturation the product of resistivity and current is the same at magnetic O and X lines. The temperature perturbation effect on the nonlinear development of tearing modes is investigated. Thermal conduction along the field lines is much faster than that in the perpendicular direction, and thus the temperature profile follows the island structure. Utilizing Spitzer's conductivity relation, the temperature perturbation is modelled as helical components of resistivity. For a usual tearing mode unstable Tokamak, where shear is positive, the islands continue to grow to a larger size when the islands are cooled. When they are heated, the island sizes are reduced. The temperature perturbation can induce islands even for equilibria stable with respect to tearing modes. Again, the islands appear when cooling takes place. The equilibria with the cooled islands show enhanced field line stochasticity, thus enhanced heat transport. Therefore, thermal instability can be directly related to pressure disruptions. (author)

  14. Facilitated transport near the carrier saturation limit

    Directory of Open Access Journals (Sweden)

    Anawat Sungpet

    2002-11-01

    Full Text Available Permeation of ethylbenzene, styrene and 1-hexene through perfluorosulfonate ionomer membranes was carried out with the feed concentrations ranging from 1 M to pure. On comparison, fluxes of ethylbenzene through the Ag+-form membrane were the lowest. Only a small increase in ethylbenzene flux was observed after the feed concentration exceeded 3 M, indicating the existence of carrier saturation. The increase in styrene flux was suppressed to some degree at high concentration driving forces. In contrast, 1-hexene flux was the highest and continued to increase even at very high feed concentrations. After the experiments with pure feeds, extraction of the solutes from the membranes revealed that 62.5% of Ag+ ions reacted with 1-hexene as against 40.6% for styrene and 28.9% for ethylbenzene. Equilibrium constants, determined by distribution method, of 1-hexene, styrene and ethylbenzene were 129, 2.2 and 0.7 M-1 respectively, which suggested that stability of the complex was a key factor in the carrier saturation phenomenon.

  15. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  16. SITE-SCALE SATURATED ZONE TRANSPORT

    International Nuclear Information System (INIS)

    S. KELLER

    2004-01-01

    This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical analysis (FEHM) computer code, (FEHM V2.20, STN: 10086

  17. Wetting phase permeability in a partially saturated horizontal fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1994-01-01

    Fractures within geologic media can dominate the hydraulic properties of the system. Therefore, conceptual models used to assess the potential for radio-nuclide migration in unsaturated fractured rock such as that composing Yucca Mountain, Nevada, must be consistent with flow processes in individual fractures. A major obstacle to the understanding and simulation of unsaturated fracture flow is the paucity of physical data on both fracture aperture structure and relative permeability. An experimental procedure is developed for collecting detailed data on aperture and phase structure from a transparent analog fracture. To facilitate understanding of basic processes and provide a basis for development of effective property models, the simplest possible rough-walled fracture is used. Stable phase structures of varying complexity are created within the horizontal analog fracture. Wetting phase permeability is measured under steady-state conditions. A process based model for wetting phase relative permeability is then explored. Contributions of the following processes to reduced wetting phase permeability under unsaturated conditions are considered: reduction in cross-sectional flow area, increased path length, localized flow restriction, and preferential occupation of large apertures by the non-wetting phase

  18. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  19. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    Mueller, W.H.; Schneider, B.; Staeuble, J.

    1984-01-01

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  20. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.