WorldWideScience

Sample records for satellites maps office

  1. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  2. Northern Everglades, Florida, satellite image map

    Science.gov (United States)

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  3. South Florida Everglades: satellite image map

    Science.gov (United States)

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  4. Office of Satellite and Product Operations

    Science.gov (United States)

    ; Strategy » International Agreements » POES Current » GOES Current History » History in Images » POES History » GOES History OSPO Information » Access and Distribution Policy » Organization Chart  Branch utilizes interactive processing technology to integrate multiple satellite sensor data streams

  5. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  6. Satellite derived bathymetry: mapping the Irish coastline

    Science.gov (United States)

    Monteys, X.; Cahalane, C.; Harris, P.; Hanafin, J.

    2017-12-01

    Ireland has a varied coastline in excess of 3000 km in length largely characterized by extended shallow environments. The coastal shallow water zone can be a challenging and costly environment in which to acquire bathymetry and other oceanographic data using traditional survey methods or airborne LiDAR techniques as demonstrated in the Irish INFOMAR program. Thus, large coastal areas in Ireland, and much of the coastal zone worldwide remain unmapped using modern techniques and is poorly understood. Earth Observations (EO) missions are currently being used to derive timely, cost effective, and quality controlled information for mapping and monitoring coastal environments. Different wavelengths of the solar light penetrate the water column to different depths and are routinely sensed by EO satellites. A large selection of multispectral imagery (MS) from many platforms were examined, as well as from small aircrafts and drones. A number of bays representing very different coastal environments were explored in turn. The project's workflow is created by building a catalogue of satellite and field bathymetric data to assess the suitability of imagery captured at a range of spatial, spectral and temporal resolutions. Turbidity indices are derived from the multispectral information. Finally, a number of spatial regression models using water-leaving radiance parameters and field calibration data are examined. Our assessment reveals that spatial regression algorithms have the potential to significantly improve the accuracy of the predictions up to 10m WD and offer a better handle on the error and uncertainty budget. The four spatial models investigated show better adjustments than the basic non-spatial model. Accuracy of the predictions is better than 10% WD at 95% confidence. Future work will focus on improving the accuracy of the predictions incorporating an analytical model in conjunction with improved empirical methods. The recently launched ESA Sentinel 2 will become the

  7. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  8. Mapping Water Use and Drought with Satellite Remote Sensing

    OpenAIRE

    Anderson, Martha

    2014-01-01

    Mapping water use and drought with satellite remote sensing. Martha C. Anderson, Bill Kustas, Feng Gao, Kate Semmens. USDA-Agricultural Research Service Hydrology and Remote Sensing Laboratory, Beltsville, MD. Chris Hain NOAA-NESDIS

  9. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  10. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  11. Mapping soil heterogeneity using RapidEye satellite images

    Science.gov (United States)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  12. Technical note Flood map development by coupling satellite maps ...

    African Journals Online (AJOL)

    Flood maps are important for local authorities in designing mitigation plans to minimise damage and loss due to flooding. In recent years, flood events in the Sarawak River Basin, Malaysia have caused damage to property, loss of life and disruption of productive activities. Currently, the available flood map for Sarawak River ...

  13. Satellite Maps Deliver More Realistic Gaming

    Science.gov (United States)

    2013-01-01

    When Redwood City, California-based Electronic Arts (EA) decided to make SSX, its latest snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was NASA's ASTER Global Digital Elevation Map, made available by the Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.

  14. The use of NOAA AVHRR satellite data for mapping sediment ...

    African Journals Online (AJOL)

    The use of NOAA AVHRR satellite data for mapping sediment variability in the marine and coastal environment. ... The area near Big Constance Lake, which has a persistently higher concentration of suspended sediment around the year, is a suspected non-depositional area. The southwest winds cause a circulation in the ...

  15. Mapping ocean tides with satellites - A computer simulation

    Science.gov (United States)

    Won, I. J.; Kuo, J. T.; Jachens, R. C.

    1978-01-01

    As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.

  16. Earth mapping - aerial or satellite imagery comparative analysis

    Science.gov (United States)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  17. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches

    International Nuclear Information System (INIS)

    Asner, Gregory P

    2009-01-01

    Large-scale carbon mapping is needed to support the UNFCCC program to reduce deforestation and forest degradation (REDD). Managers of forested land can potentially increase their carbon credits via detailed monitoring of forest cover, loss and gain (hectares), and periodic estimates of changes in forest carbon density (tons ha -1 ). Satellites provide an opportunity to monitor changes in forest carbon caused by deforestation and degradation, but only after initial carbon densities have been assessed. New airborne approaches, especially light detection and ranging (LiDAR), provide a means to estimate forest carbon density over large areas, which greatly assists in the development of practical baselines. Here I present an integrated satellite-airborne mapping approach that supports high-resolution carbon stock assessment and monitoring in tropical forest regions. The approach yields a spatially resolved, regional state-of-the-forest carbon baseline, followed by high-resolution monitoring of forest cover and disturbance to estimate carbon emissions. Rapid advances and decreasing costs in the satellite and airborne mapping sectors are already making high-resolution carbon stock and emissions assessments viable anywhere in the world.

  18. 76 FR 73601 - Request for Comments on Additional USPTO Satellite Offices for the Nationwide Workforce Program

    Science.gov (United States)

    2011-11-29

    ...) Improve recruitment of patent examiners, including data on employment rates and other economic factors in... additional factors the USPTO should consider in comparing regions. While the Office welcomes and values all... future satellite office locations will be made based on the criteria outlined in the AIA and in line with...

  19. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    Science.gov (United States)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  20. Coral Bleaching Products - Office of Satellite and Product Operations

    Science.gov (United States)

    satellite remotely sensed global sea surface temperature (SST) measurements and derived indices of coral HotSpots, Degree Heating Weeks, Time Series, SST Contour Charts, Ocean Surface Winds, and On-site Buoys as the product, are derived from Coral Bleaching HotSpots and Degree Heating Weeks (DHW) values measured

  1. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  2. Satellite SAR wind resource mapping in China (SAR-China)

    Energy Technology Data Exchange (ETDEWEB)

    Badger, M.

    2009-07-15

    The project 'Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China' is funded by the EU-China Energy and Environment Programme (EEP) and runs for one year (August 2008 - August 2009). The project is lead by the China Meteorological Administration (CMA) and supported by SgurrEnergy Ltd. Risoe National Laboratory for Sustainable Energy at the Technical University of Denmark (Risoe DTU) has been commissioned to perform a satellite based wind resource analysis as part of the project. The objective of this analysis is to map the wind resource offshore at a high spatial resolution (1 km). The detailed wind resource maps will be used, in combination with other data sets, for an assessment of potential sites for offshore wind farm development along the coastline from Fujian to Shandong in China. (au)

  3. Satellite Map of Port-au-Prince, Haiti-2010-Infrared

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  4. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  5. Mapping reference evapotranspiration from meteorological satellite data and applications

    Directory of Open Access Journals (Sweden)

    Ming-Hwi Yao

    2017-01-01

    Full Text Available Reference evapotranspiration (ETo is an agrometeorological variable widely used in hydrology and agriculture. The FAO-56 Penman-Monteith combination method (PM method is a standard for computing ETo for water management. However, this scheme is limited to areas where climatic data with good quality are available. Maps of 10-day averaged ETo at 5 km × 5 km grid spacing for the Taiwan region were produced by multiplying pan evaporation (Epan, derived from ground solar radiation (GSR retrieved from satellite images using the Heliosat-3 method, by a fixed pan coefficient (Kp. Validation results indicated that the overall mean absolute percentage error (MAPE and normalized root-mean-square deviation (NRMSD were 6.2 and 7.7%, respectively, when compared with ETo computed by the PM method using spatially interpolated 10-day averaged daily maximum and minimum temperature datasets and GSR derived from satellite inputs. Land coefficient (KL values based on the derived ETo estimates and long term latent heat flux measurements, were determined for the following landscapes: Paddy rice (Oryza sativa, subtropical cypress forest (Chamaecyparis obtusa var. formosana and Chamaecyparis formosensis, warm-to-temperate mixed rainforest (Cryptocarya chinensis, Engelhardtia roxburghiana, Tutcheria shinkoensis, and Helicia formosana, and grass marsh (Brachiaria mutica and Phragmites australis. The determined land coefficients are indispensable to scale ETo in estimating regional evapotranspiration.

  6. Recurrent Neural Networks to Correct Satellite Image Classification Maps

    Science.gov (United States)

    Maggiori, Emmanuel; Charpiat, Guillaume; Tarabalka, Yuliya; Alliez, Pierre

    2017-09-01

    While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.

  7. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    Science.gov (United States)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  8. Inexpensive land-use maps extracted from satellite data

    Science.gov (United States)

    Barney, T. W.; Barr, D. J.; Elifrits, C. D.; Johannsen, C. J.

    1979-01-01

    Satellite images are interpretable with minimal skill and equipment by employing method which uses false color composite print of image of area transmitted from Landsat satellite. Method is effective for those who have little experience with satellite imagery, little time, and little money available.

  9. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  10. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  11. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    Science.gov (United States)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  12. Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping

    DEFF Research Database (Denmark)

    Ziegler, Bent Lindvig; Blanke, Mogens

    2002-01-01

    High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... will compromise measurement accuracy, unless they are accurately compensated by on-board thrusters. The paper concerns the design of a control system to performing such delicate drag compensation. A six degrees-of-freedom model for the satellite is developed with the model including dynamics of the satellite...

  13. NOAA Office for Coastal Management (OCM) Lake Level Data: Mapping Confidence

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  14. NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence (Hawaii)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  15. NOAA Office for Coastal Management Sea Level Rise Data: Mapping Confidence

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  16. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  17. Current trends in satellite based emergency mapping - the need for harmonisation

    Science.gov (United States)

    Voigt, Stefan

    2013-04-01

    During the past years, the availability and use of satellite image data to support disaster management and humanitarian relief organisations has largely increased. The automation and data processing techniques are greatly improving as well as the capacity in accessing and processing satellite imagery in getting better globally. More and more global activities via the internet and through global organisations like the United Nations or the International Charter Space and Major Disaster engage in the topic, while at the same time, more and more national or local centres engage rapid mapping operations and activities. In order to make even more effective use of this very positive increase of capacity, for the sake of operational provision of analysis results, for fast validation of satellite derived damage assessments, for better cooperation in the joint inter agency generation of rapid mapping products and for general scientific use, rapid mapping results in general need to be better harmonized, if not even standardized. In this presentation, experiences from various years of rapid mapping gained by the DLR Center for satellite based Crisis Information (ZKI) within the context of the national activities, the International Charter Space and Major Disasters, GMES/Copernicus etc. are reported. Furthermore, an overview on how automation, quality assurance and optimization can be achieved through standard operation procedures within a rapid mapping workflow is given. Building on this long term rapid mapping experience, and building on the DLR initiative to set in pace an "International Working Group on Satellite Based Emergency Mapping" current trends in rapid mapping are discussed and thoughts on how the sharing of rapid mapping information can be optimized by harmonizing analysis results and data structures are presented. Such an harmonization of analysis procedures, nomenclatures and representations of data as well as meta data are the basis to better cooperate within

  18. Validation of Satellite Snow Cover Maps in North America and Norway

    Science.gov (United States)

    Hall, Dorothy K.; Solberg, Rune; Riggs, George A.

    2002-01-01

    Satellite-derived snow maps from NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) have been produced since February of 2000. The global maps are available daily at 500-m resolution, and at a climate-modeling grid (CMG) resolution of 1/20 deg (approximately 5.6 km). We compared the 8-day composite CMG MODIS-derived global maps from November 1,2001, through March 21,2002, and daily CMG maps from February 26 - March 5,2002, with National Oceanic and Atmospheric Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System (IMS) 25-km resolution maps for North America. For the Norwegian study area, national snow maps, based on synoptic measurements as well as visual interpretation of AVHRR images, published by the Det Norske Meteorologiske Institutt (Norwegian Meteorological Institute) (MI) maps, as well as Landsat ETM+ images were compared with the MODIS maps. The MODIS-derived maps agreed over most areas with the IMS or MI maps, however, there are important areas of disagreement between the maps, especially when the 8-day composite maps were used. It is concluded that MODIS daily CMG maps should be studied for validation purposes rather than the 8-day composite maps, despite the limitations imposed by cloud obscuration when using the daily maps.

  19. Albedo and color maps of the Saturnian satellites

    International Nuclear Information System (INIS)

    Buratti, B.J.; Mosher, J.A.; Johnson, T.V.

    1990-01-01

    The paper discusses the production of maps of the albedos and colors of Mimas, Enceladus, Tethys, Dione, and Rhea over the full range of their imaged surfaces. Voyager images were used to prepare maps of the normal reflectances and color ratios (0.58/0.41 micron) of these satelites. 67 refs

  20. Simulation of seagrass bed mapping by satellite images based on the radiative transfer model

    Science.gov (United States)

    Sagawa, Tatsuyuki; Komatsu, Teruhisa

    2015-06-01

    Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.

  1. Simultaneous Localization and Mapping for Satellite Rendezvous and Proximity Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Simultaneous Localization and Mapping (SLAM) attempts to estimate a vehicle’s position and orientation (localization) and the location of an initially unknown number...

  2. Satellites vs. fiber optics based networks and services - Road map to strategic planning

    Science.gov (United States)

    Marandi, James H. R.

    An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.

  3. Towards automated statewide land cover mapping in Wisconsin using satellite remote sensing and GIS techniques

    International Nuclear Information System (INIS)

    Cosentino, B.L.; Lillesand, T.M.

    1991-01-01

    Attention is given to an initial research project being performed by the University of Wisconsin-Madison, Environmental Remote Sensing Center in conjunction with seven local, state, and federal agencies to implement automated statewide land cover mapping using satellite remote sensing and geographical information system (GIS) techniques. The basis, progress, and future research needs for this mapping program are presented. The research efforts are directed toward strategies that integrate satellite remote sensing and GIS techniques in the generation of land cover data for multiple users of land cover information. The project objectives are to investigate methodologies that integrate satellite data with other imagery and spatial data resident in emerging GISs in the state for particular program needs, and to develop techniques that can improve automated land cover mapping efficiency and accuracy. 10 refs

  4. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  5. TRANSFER OF TECHNOLOGY FOR CADASTRAL MAPPING IN TAJIKISTAN USING HIGH RESOLUTION SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    R. Kaczynski

    2012-07-01

    Full Text Available European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m

  6. Using satellite imagery for crime mapping in South Africa

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2002-12-01

    Full Text Available In South Africa, as with may developing countries, there are informal settlements on the fringes of some towns and cities. Maps of these areas generally do not exist, making it difficult for authorities to plan for, and work in, these areas...

  7. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  8. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    International Nuclear Information System (INIS)

    Azmi, S M; Ahmad, Baharin; Ahmad, Anuar

    2014-01-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps

  9. SAT-MAP-CLIMATE project results[SATellite base bio-geophysical parameter MAPping and aggregation modelling for CLIMATE models

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.; Woetmann Nielsen, N.; Soegaard, H.; Boegh, E.; Hesselbjerg Christensen, J.; Jensen, N.O.; Schultz Rasmussen, M.; Astrup, P.; Dellwik, E.

    2002-08-01

    Earth Observation (EO) data from imaging satellites are analysed with respect to albedo, land and sea surface temperatures, land cover types and vegetation parameters such as the Normalized Difference Vegetation Index (NDVI) and the leaf area index (LAI). The observed parameters are used in the DMI-HIRLAM-D05 weather prediction model in order to improve the forecasting. The effect of introducing actual sea surface temperatures from NOAA AVHHR compared to climatological mean values, shows a more pronounced land-sea breeze effect which is also observable in field observations. The albedo maps from NOAA AVHRR are rather similar to the climatological mean values so for the HIRLAM model this is insignicant, yet most likely of some importance in the HIRHAM regional climate model. Land cover type maps are assigned local roughness values determined from meteorological field observations. Only maps with a spatial resolution around 25 m can adequately map the roughness variations of the typical patch size distribution in Denmark. A roughness map covering Denmark is aggregated (ie area-average non-linearly) by a microscale aggregation model that takes the non-linear turbulent responses of each roughness step change between patches in an arbitrary pattern into account. The effective roughnesses are calculated into a 15 km by 15 km grid for the HIRLAM model. The effect of hedgerows is included as an added roughness effect as a function of hedge density mapped from a digital vector map. Introducing the new effective roughness maps into the HIRLAM model appears to remedy on the seasonal wind speed bias over land and sea in spring. A new parameterisation on the effective roughness for scalar surface fluxes is developed and tested on synthetic data. Further is a method for the estimation the evapotranspiration from albedo, surface temperatures and NDVI succesfully compared to field observations. The HIRLAM predictions of water vapour at 12 GMT are used for atmospheric correction of

  10. Satellite Power System (SPS) mapping of exclusion areas for rectenna sites

    Science.gov (United States)

    Blackburn, J. B., Jr.; Bavinger, B. A.

    1978-01-01

    The areas of the United States that were not available as potential sites for receiving antennas that are an integral part of the Satellite Power System concept are presented. Thirty-six variables with the potential to exclude the rectenna were mapped and coded in a computer. Some of these variables exclude a rectenna from locating within the area of its spatial influence, and other variables potentially exclude the rectenna. These maps of variables were assembled from existing data and were mapped on a grid system.

  11. DESERT ECOSYSTEMS: MAPPING, MONITORING & ASSESSMENT USING SATELLITE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    A. S. Arya

    2012-09-01

    Full Text Available Desert ecosystems are unique but fragile ecosystems , mostly vulnerable to a variety of degradational processes like water erosion, vegetal degradation, salinity, wind erosion , water logging etc. Some researchers consider desertification to be a process of change, while others view it as the end result of a process of change. There is an urgent need to arrest the process of desertification and combat land degradation. Under the auspices of the United Nations Convention to Combat Desertification (UNCCD, Space Applications Centre, Ahmedabad has undertaken the task of mapping, monitoring and assessment of desertification carrying out pilot project in hot and cold desert regions in drylands on 1:50,000 scale followed by systematic Desertification Status Mappaing (DSM of India on 1:500,000 scale.

  12. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  13. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch

    2016-11-01

    Full Text Available Most applications of land cover maps that have been derived from satellite data over the Arctic require higher thematic detail than available in current global maps. A range of application studies has been reviewed, including up-scaling of carbon fluxes and pools, permafrost feature mapping and transition monitoring. Early land cover mapping studies were driven by the demand to characterize wildlife habitats. Later, in the 1990s, up-scaling of in situ measurements became central to the discipline of land cover mapping on local to regional scales at several sites across the Arctic. This includes the Kuparuk basin in Alaska, the Usa basin and the Lena Delta in Russia. All of these multi-purpose land cover maps have been derived from Landsat data. High resolution maps (from optical satellite data serve frequently as input for the characterization of periglacial features and also flux tower footprints in recent studies. The most used map to address circumpolar issues is the CAVM (Circum Arctic Vegetation Map based on AVHRR (1 km and has been manually derived. It provides the required thematic detail for many applications, but is confined to areas north of the treeline, and it is limited in spatial detail. A higher spatial resolution circumpolar land cover map with sufficient thematic content would be beneficial for a range of applications. Such a land cover classification should be compatible with existing global maps and applicable for multiple purposes. The thematic content of existing global maps has been assessed by comparison to the CAVM and regional maps. None of the maps provides the required thematic detail. Spatial resolution has been compared to used classes for local to regional applications. The required thematic detail increases with spatial resolution since coarser datasets are usually applied over larger areas covering more relevant landscape units. This is especially of concern when the entire Arctic is addressed. A spatial

  14. Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIs-based weighted linear combination method. First , six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor's relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall. 1

  15. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    International Nuclear Information System (INIS)

    Nguyen, Thanh T N; Bui, Hung Q; Pham, Ha V; Luu, Hung V; Man, Chuc D; Pham, Hai N; Le, Ha T; Nguyen, Thuy T

    2015-01-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM 2.5 data compared to ground-based PM 2.5 (n = 285, r 2  = 0.411, RMSE = 20.299 μg m −3 and RE = 39.789%). Further, validation of satellite-derived PM 2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r 2  = 0.455, RMSE = 21.512 μg m −3 , RE = 45.236% and n = 45, r 2  = 0.444, RMSE = 8.551 μg m −3 , RE = 46.446% respectively). Also, our satellite-derived PM 2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM 2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects. (letter)

  16. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    Science.gov (United States)

    Nguyen, Thanh T. N.; Bui, Hung Q.; Pham, Ha V.; Luu, Hung V.; Man, Chuc D.; Pham, Hai N.; Le, Ha T.; Nguyen, Thuy T.

    2015-09-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM2.5 data compared to ground-based PM2.5 (n = 285, r2 = 0.411, RMSE = 20.299 μg m-3 and RE = 39.789%). Further, validation of satellite-derived PM2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r2 = 0.455, RMSE = 21.512 μg m-3, RE = 45.236% and n = 45, r2 = 0.444, RMSE = 8.551 μg m-3, RE = 46.446% respectively). Also, our satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects.

  17. Mapping turbidity in the Charles River, Boston using a high-resolution satellite.

    Science.gov (United States)

    Hellweger, Ferdi L; Miller, Will; Oshodi, Kehinde Sarat

    2007-09-01

    The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).

  18. INTEGRATION OF PALSAR AND ASTER SATELLITE DATA FOR GEOLOGICAL MAPPING IN TROPICS

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This research investigates the integration of the Phased Array type L-band Synthetic Aperture Radar (PALSAR and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER satellite data for geological mapping applications in tropical environments. The eastern part of the central belt of peninsular Malaysia has been investigated to identify structural features and mineral mapping using PALSAR and ASTER data. Adaptive local sigma and directional filters were applied to PALSAR data for detecting geological structure elements in the study area. The vegetation, mineralogic and lithologic indices for ASTER bands were tested in tropical climate. Lineaments (fault and fractures and curvilinear (anticline or syncline were detected using PALSAR fused image of directional filters (N-S, NE-SW, and NW-SE.Vegetation index image map show vegetation cover by fusing ASTER VNIR bands. High concentration of clay minerals zone was detected using fused image map derived from ASTER SWIR bands. Fusion of ASTER TIR bands produced image map of the lithological units. Results indicate that data integration and data fusion from PALSAR and ASTER sources enhanced information extraction for geological mapping in tropical environments.

  19. The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests

    Directory of Open Access Journals (Sweden)

    Astrid Verhegghen

    2016-11-01

    Full Text Available In this study, the recently launched Sentinel-2 (S2 optical satellite and the active radar Sentinel-1 (S1 satellite supported by active fire data from the MODIS sensor were used to detect and monitor forest fires in the Congo Basin. In the context of a very strong El Niño event, an unprecedented outbreak of fires was observed during the first months of 2016 in open forests formations in the north of the Republic of Congo. The anomalies of the recent fires and meteorological situation compared to historical data show the severity of the drought. Burnt areas mapped by the S1 SAR and S2 Multi Spectral Instrument (MSI sensors highlight that the fires occurred mainly in Marantaceae forests, characterized by open tree canopy cover and an extensive tall herbaceous layer. The maps show that the origin of the fires correlates with accessibility to the forest, suggesting an anthropogenic origin. The combined use of the two independent and fundamentally different satellite systems of S2 and S1 captured an extent of 36,000 ha of burnt areas, with each sensor compensating for the weakness (cloud perturbations for S2, and sensitivity to ground moisture for S1 of the other.

  20. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  1. Near-Infrared Mapping Spectrometer for investigation of Jupiter and its satellites

    International Nuclear Information System (INIS)

    Aptaker, I.M.

    1988-01-01

    The Near-Infrared-Mapping Spectrometer (NIMS) is one of the science instruments in the Galileo mission, which will explore Jupiter and its satellites in the mid-1990's. The NIMS experiment will map geological units on the surfaces of the Jovian satellites and characterize their mineral content; and, for the atmosphere of Jupiter, investigate cloud properties and the spatial and temporal variability of molecular abundances. The optics are gold-coated reflective and consist of a telescope and a grating spectrometer. The balance of the instrument includes a 17-detector (silicon and indium antimonide) focal plane array, a tuning fork chopper, microprocessor-controlled electronics, and a passive radiative cooler. A wobbling secondary mirror in the telescope provides 20 pixels in one dimension of spatial scanning in a pushbroom mode with 0.5 mr x 0.5 mr instantaneous field of view. The spectral range is 0.7-5.2 microns; resolution is 0.025 micron. NIMS is the first infrared experiment to combine both spatial and spectral mapping capability in one instrument

  2. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    Science.gov (United States)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  3. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  4. Validation of satellite SAR offshore wind speed maps to in-situ data, microscale and mesoscale model results

    DEFF Research Database (Denmark)

    Hasager, C.B.; Astrup, Poul; Barthelmie, R.J.

    2002-01-01

    the assumption of no error in the SAR wind speed maps and for an uncertainty of ± 10% at a confidence level of 90%. Around 100 satellite SAR scenes may be available for some sites on Earth but far few at other sites. Currently the numberof available satellite SAR scenes is increasing rapidly with ERS-2, RADARSAT......A validation study has been performed in order to investigate the precision and accuracy of the satellite-derived ERS-2 SAR wind products in offshore regions. The overall project goal is to develop a method for utilizing the satellite wind speed maps foroffshore wind resources, e.g. in future...... band in which the SAR wind speed observations have a strong negative bias. The bathymetry of Horns Rev combined with tidal currents give rise to bias in the SAR wind speed maps near areas of shallow, complex bottom topography in some cases. Atotal of 16 cases were analyzed for Horns Rev. For Maddalena...

  5. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe-Bronge, Laine; Wester, Kjell [SwedPower, Stockholm (Sweden)

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km{sup 2} ) and a local level (1 km{sup 2} ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two

  6. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    International Nuclear Information System (INIS)

    Boresjoe-Bronge, Laine; Wester, Kjell

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km 2 ) and a local level (1 km 2 ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two steps. In

  7. Combining forest inventory, satellite remote sensing, and geospatial data for mapping forest attributes of the conterminous United States

    Science.gov (United States)

    Mark Nelson; Greg Liknes; Charles H. Perry

    2009-01-01

    Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...

  8. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-10-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively; and this is done for the first time on a global basis, even for less active areas. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  9. Minimizing Gaps of Daily Ndvi Map with Geostationary Satellite Remote Sensing Data

    Science.gov (United States)

    Lee, S.; Ryu, Y.; Jiang, C.

    2015-12-01

    Satellite based remote sensing has been used to monitor plant phenology. Numerous studies have generally utilized normalized difference vegetation index (NDVI) to quantify phenological patterns and changes in regional to the global scales. Obtaining the NDVI values during summer in East Asian Monsoon regions is important because most plants grow vigorously in this season. However, satellite derived NDVI data are error prone to clouds during most of the period. Various methods have attempted to reduce the effect of cloud in temporal and spatial NDVI monitoring; the fundamental solution is to have a large data pool that includes multiple images in short period and supplements NDVI values in same period. Multiple images of geostationary satellite in a day can be a method to expand the pool. In this study, we suggest an approach that minimizes data gaps in NDVI of the day through geostationary satellite derived NDVI composition. We acquired data from Geostationary Ocean Color Imager (GOCI) which is a satellite that was launched to monitor ocean around the Korean peninsula, China, Japan and Russia. The satellite observes eight times per day (09:00 - 16:00, every hour) at 500 x 500 m resolution from 2011 to 2015. GOCI red- and near infrared radiance was converted into surface reflectance by using 6S Radiative Transfer Model (6S). We calculated NDVI tiles for each of observed eight tiles per day and made one day NDVI through maximum-value composite method. We evaluated the composite GOCI derived NDVI by comparing with daily MODIS-derived NDVI (composited from MOD09GA and MYD09GA), 16-day Landsat 8-derived NDVI, and in-situ light emitting diode (LED) NDVI measurements at a homogeneous deciduous forest and rice paddy sites. We found that GOCI-derived NDVI maps revealed little data gaps compared to MODIS and Landsat, and GOCI derived NDVI time series were smoother than MODIS derived NDVI time series in summer. GOCI-derived NDVI agreed well with in-situ observations of NDVI

  10. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Science.gov (United States)

    Kuhlmann, G.; Hartl, A.; Cheung, H. M.; Lam, Y. F.; Wenig, M. O.

    2014-02-01

    The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2) onto a longitude-latitude grid (level 3). The algorithm is designed for the Ozone Monitoring Instrument (OMI) and can easily be employed for similar instruments - for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI). Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly developed gridding

  11. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  12. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2014-02-01

    Full Text Available The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2 onto a longitude–latitude grid (level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can easily be employed for similar instruments – for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly

  13. Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping

    Directory of Open Access Journals (Sweden)

    Dimitris G. Stavrakoudis

    2014-07-01

    Full Text Available This study investigates the effectiveness of combining multispectral very high resolution (VHR and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM. The classification result from the hyperspectral image is then resampled to the multispectral’s spatial resolution and the two sources are combined using a simple yet efficient fusion operator. Thus, the complementary information provided from the two sources is effectively exploited, without having to resort to computationally demanding and time-consuming typical data fusion or vector stacking approaches. The effectiveness of the proposed methodology is validated in a complex Mediterranean forest landscape, comprising spectrally similar and spatially intermingled species. The decision fusion scheme resulted in an accuracy increase of 8% compared to the classification using only the multispectral imagery, whereas the increase was even higher compared to the classification using only the hyperspectral satellite image. Perhaps most importantly, its accuracy was significantly higher than alternative multisource fusion approaches, although the latter are characterized by much higher computation, storage, and time requirements.

  14. Satellite Map of Port-au-Prince, Haiti-2010-Natural Color

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  15. Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2016-10-01

    Full Text Available Remote sensing offers a low-cost method for developing spatially continuous crop production statistics across large areas and through time. Nevertheless, it has been difficult to characterize the production of individual smallholder farms, given that the land-holding size in most areas of South Asia (<2 ha is smaller than the spatial resolution of most freely available satellite imagery, like Landsat and MODIS. In addition, existing methods to map yield require field-level data to develop and parameterize predictive algorithms that translate satellite vegetation indices to yield, yet these data are costly or difficult to obtain in many smallholder systems. To overcome these challenges, this study explores two issues. First, we employ new high spatial (2 m and temporal (bi-weekly resolution micro-satellite SkySat data to map sowing dates and yields of smallholder wheat fields in Bihar, India in the 2014–2015 and 2015–2016 growing seasons. Second, we compare how well we predict sowing date and yield when using ground data, like crop cuts and self-reports, versus using crop models, which require no on-the-ground data, to develop and parameterize prediction models. Overall, sow dates were predicted well (R2 = 0.41 in 2014–2015 and R2 = 0.62 in 2015–2016, particularly when using models that were parameterized using self-report sow dates collected close to the time of planting and when using imagery that spanned the entire growing season. We were also able to map yields fairly well (R2 = 0.27 in 2014–2015 and R2 = 0.33 in 2015–2016, with crop cut parameterized models resulting in the highest accuracies. While less accurate, we were able to capture the large range in sow dates and yields across farms when using models parameterized with crop model data and these estimates were able to detect known relationships between management factors (e.g., sow date, fertilizer, and irrigation and yield. While these results are specific to our study

  16. Mapping Russian forest biomass with data from satellites and forest inventories

    International Nuclear Information System (INIS)

    Houghton, R A; Butman, D; Bunn, A G; Krankina, O N; Schlesinger, P; Stone, T A

    2007-01-01

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass

  17. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  18. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    Science.gov (United States)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  19. Mapping Russian forest biomass with data from satellites and forest inventories

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Butman, D [Yale School of Forestry and Environmental Science, Yale University, New Haven, CT 06511 (United States); Bunn, A G [Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, WA 98225-9181 (United States); Krankina, O N [Department of Forest Science, Oregon State University, 202 Richardson Hall, Corvallis, OR 97331-5752 (United States); Schlesinger, P [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Stone, T A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2007-10-15

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.

  20. Systematical estimation of GPM-based global satellite mapping of precipitation products over China

    Science.gov (United States)

    Zhao, Haigen; Yang, Bogang; Yang, Shengtian; Huang, Yingchun; Dong, Guotao; Bai, Juan; Wang, Zhiwei

    2018-03-01

    As the Global Precipitation Measurement (GPM) Core Observatory satellite continues its mission, new version 6 products for Global Satellite Mapping of Precipitation (GSMaP) have been released. However, few studies have systematically evaluated the GSMaP products over mainland China. This study quantitatively evaluated three GPM-based GSMaP version 6 precipitation products for China and eight subregions referring to the Chinese daily Precipitation Analysis Product (CPAP). The GSMaP products included near-real-time (GSMaP_NRT), microwave-infrared reanalyzed (GSMaP_MVK), and gauge-adjusted (GSMaP_Gau) data. Additionally, the gauge-adjusted Integrated Multi-Satellite Retrievals for Global Precipitation Measurement Mission (IMERG_Gau) was also assessed and compared with GSMaP_Gau. The analyses of the selected daily products were carried out at spatiotemporal resolutions of 1/4° for the period of March 2014 to December 2015 in consideration of the resolution of CPAP and the consistency of the coverage periods of the satellite products. The results indicated that GSMaP_MVK and GSMaP_NRT performed comparably and underdetected light rainfall events (Pearson linear correlation coefficient (CC), fractional standard error (FSE), and root-mean-square error (RMSE) metrics during the summer. Compared with GSMaP_NRT and GSMaP_MVK, GSMaP_Gau possessed significantly improved metrics over mainland China and the eight subregions and performed better in terms of CC, RMSE, and FSE but underestimated precipitation to a greater degree than IMERG_Gau. As a quantitative assessment of the GPM-era GSMaP products, these validation results will supply helpful references for both end users and algorithm developers. However, the study findings need to be confirmed over a longer future study period when the longer-period IMERG retrospectively-processed data are available.

  1. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  2. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  3. Temporal resolution requirements of satellite constellations for 30 m global burned area mapping

    Science.gov (United States)

    Melchiorre, A.; Boschetti, L.

    2017-12-01

    Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one

  4. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index

    Science.gov (United States)

    Yang, Dedi; Chen, Jin; Zhou, Yuan; Chen, Xiang; Chen, Xuehong; Cao, Xin

    2017-06-01

    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area.

  5. Seagrass mapping in Greek territorial waters using Landsat-8 satellite images

    Science.gov (United States)

    Topouzelis, Konstantinos; Makri, Despina; Stoupas, Nikolaos; Papakonstantinou, Apostolos; Katsanevakis, Stelios

    2018-05-01

    Seagrass meadows are among the most valuable coastal ecosystems on earth due to their structural and functional roles in the coastal environment. This study demonstrates remote sensing's capacity to produce seagrass distribution maps on a regional scale. The seagrass coverage maps provided here describe and quantify for the first time the extent and the spatial distribution of seagrass meadows in Greek waters. This information is needed for identifying priority conservation sites and to help coastal ecosystem managers and stakeholders to develop conservation strategies and design a resilient network of protected marine areas. The results were based on an object-based image analysis of 50 Landsat-8 satellite images. The time window of image acquisition was between June 2013 and July 2015. In total, the seagrass coverage in Greek waters was estimated at 2619 km2. The largest coverages of individual seagrass meadows were found around Lemnos Island (124 km2), Corfu Island (46 km2), and East Peloponnese (47 km2). The accuracy assessment of the detected areas was based on 62 Natura 2000 sites, for which habitat maps were available. The mean total accuracy for all 62 sites was estimated at 76.3%.

  6. Forest mapping and change analysis, using satellite imagery in Zagros mountain Iran, Islamic Republic o

    International Nuclear Information System (INIS)

    Torahi, A.A.

    2013-01-01

    A methodology to map and monitor land cover change using multi temporal Landsat Thematic Mapper (TM) and ASTER data in Zagros mountains of Iran for 1990, 1998, and 2006 was developed. Land- use/cover mapping is achieved through interpretation of Landsat TM satellite images of 1990, 1998 and TERRA-ASTER image of 2006 using ENVI 4.3. Basedon the Anderson land-use/cover classification system, land-use and land-covers are classified as forest land, range land, water bodies, agricultural land and residential land.The unsupervised image classification method was carried out prior to field visit, in order to determine strata for ground truth. Fieldwork was carried out to collect data for training and validating land use/cover interpretation from satellite image of 2006, and for qualitative description of the characteristics of each land use/cover class. The land - use/cover maps of 1990,1998 and 2006 were produced by using supervised image classification technique based on the Maximum Likelihood Classifier (MLC) and 132 training samples. Error matrices as cross-tabulations of the mapped class vs. the reference class were used to assess classification accuracy. Overall accuracy, users and produce accuracies, and the Kappa statistic were then derived from the error matrices. A multi-date post-classification comparison change detection algorithm was used to determine changes in land cover in three intervals, 1990,1998, 1998, 2006 and 1990, 2006.To evaluate the maps change for the 1990 to 2006 interval, areas classified as change and no-change were randomly sampled and checked whether they were correctly classified. The maps showed that between 1990 and 2006 the amount of forest land decreased from 67% to 38.5% of the total area, while rangelands, agriculture, settlement and surface water increased from 30.8% to 45%, 1.2% to.0%, 0.3% to 7.5% and 0.6% to 1.8%, respectively.In 1990,1998 and 2006, the area was dominated by dense forest (35.9%, 28.9%, 29.3%), open forest and

  7. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...

  8. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    International Nuclear Information System (INIS)

    Baccini, A; Laporte, N; Goetz, S J; Sun, M; Dong, H

    2008-01-01

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha -1 for a range of biomass between 0 and 454 Mg ha -1 . Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R 2 = 0.90) between the GLAS height metrics and predicted AGB.

  9. Detection of a weak meddy-like anomaly from high-resolution satellite SST maps

    Directory of Open Access Journals (Sweden)

    Mikhail Emelianov

    2012-09-01

    Full Text Available Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.

  10. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  11. Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite

    Science.gov (United States)

    Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.

    2015-12-01

    Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.

  12. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  13. How does sustainability certification affect the design process? Mapping final design projects at an architectural office

    DEFF Research Database (Denmark)

    Landgren, Mathilde; Jensen, Lotte Bjerregaard

    2017-01-01

    process and informing the industry of them. This has led to optimised design processes such as Integrated Energy Design, in which many decisions related to energy consumption and indoor climate are made in the early design stages. The current tendency is to use an expanded notion of sustainability......, derived from the sustainability certification system itself, and to apply it even in the early design process. This perspective emphasises all phases of the life cycle of a building. The goal of the present study was to map how a Danish architectural office approached sustainability in the projects......The context of the study is the very strict regulation of energy consumption for operating buildings in Denmark. It is difficult to meet the requirements by system optimisation in the final design phase, so recent research has focused on ways of meeting the target by adapting the whole design...

  14. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data.

    Science.gov (United States)

    Villa, Paolo; Malucelli, Francesco; Scalenghe, Riccardo

    2018-01-15

    Peri-urbanisation is the expansion of compact urban areas towards low-density settlements. This phenomenon directly challenges the agricultural landscape multifunctionality, including its carbon (C) storage capacity. Using satellite data, we mapped peri-urban C stocks in soil and built-up surfaces over three areas from 1993 to 2014 in the Emilia-Romagna region, Italy: a thinly populated area around Piacenza, an intermediate-density area covering the Reggio Emilia-Modena conurbation and a densely anthropized area developing along the coast of Rimini. Satellite-derived maps enabled the quantitative analysis of spatial and temporal features of urban growth and soil sealing, expressed as the ratio between C in built-up land and organic C in soils (Cc/Co). The three areas show substantial differences in C stock balance and soil sealing evolution. In Piacenza (Cc/Co=0.07 in 1993), although questioned by late industrial expansion and connected residential sprawl (Cc/Co growth by 38%), most of the new urbanisation spared the best rural soils. The Reggio Emilia-Modena conurbation, driven by the polycentricism of the area and the heterogeneity of economic sectors (Cc/Co rising from 0.08 to 0.14 from 1993 to 2014), balances sprawl and densification. Rimini, severely sealed since the 1960s (Cc/Co=0.23 in 1993), densifies its existing settlements and develops an industrial expansion of the hinterland, with Cc/Co growth accelerating from +15% before 2003 to +36% for the last decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields

    NARCIS (Netherlands)

    Hamzeh, Saied; Naseri, Abd Ali; Alavipanah, Seyed Kazem; Bartholomeus, Harm; Herold, Martin

    2016-01-01

    This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image

  16. Collaborative, Rapid Mapping of Water Extents During Hurricane Harvey Using Optical and Radar Satellite Sensors

    Science.gov (United States)

    Muench, R.; Jones, M.; Herndon, K. E.; Bell, J. R.; Anderson, E. R.; Markert, K. N.; Molthan, A.; Adams, E. C.; Shultz, L.; Cherrington, E. A.; Flores, A.; Lucey, R.; Munroe, T.; Layne, G.; Pulla, S. T.; Weigel, A. M.; Tondapu, G.

    2017-12-01

    On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of images to

  17. Collaborative, Rapid Mapping of Water Extents During Hurricane Harvey Using Optical and Radar Satellite Sensors

    Science.gov (United States)

    Muench, Rebekke; Jones, Madeline; Herndon, Kelsey; Schultz, Lori; Bell, Jordan; Anderson, Eric; Markert, Kel; Molthan, Andrew; Adams, Emily; Cherrington, Emil; hide

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and record flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds and by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of

  18. A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016 for Flood Hazard Mapping in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Niranga Alahacoon

    2018-03-01

    Full Text Available Critical information on a flood-affected area is needed in a short time frame to initiate rapid response operations and develop long-term flood management strategies. This study combined rainfall trend analysis using Asian Precipitation—Highly Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE gridded rainfall data with flood maps derived from Synthetic Aperture Radar (SAR and multispectral satellite to arrive at holistic spatio-temporal patterns of floods in Sri Lanka. Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR data were used to map flood extents for emergency relief operations while eight-day Moderate Resolution Imaging Spectroradiometer (MODIS surface reflectance data for the time period from 2001 to 2016 were used to map long term flood-affected areas. The inundation maps produced for rapid response were published within three hours upon the availability of satellite imagery in web platforms, with the aim of supporting a wide range of stakeholders in emergency response and flood relief operations. The aggregated time series of flood extents mapped using MODIS data were used to develop a flood occurrence map (2001–2016 for Sri Lanka. Flood hotpots identified using both optical and synthetic aperture average of 325 km2 for the years 2006–2015 and exceptional flooding in 2016 with inundation extent of approximately 1400 km2. The time series rainfall data explains increasing trend in the extreme rainfall indices with similar observation derived from satellite imagery. The results demonstrate the feasibility of using multi-sensor flood mapping approaches, which will aid Disaster Management Center (DMC and other multi-lateral agencies involved in managing rapid response operations and preparing mitigation measures.

  19. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  20. Relasphone—Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping

    Directory of Open Access Journals (Sweden)

    Matthieu Molinier

    2016-10-01

    Full Text Available Due to the high cost of traditional forest plot measurements, the availability of up-to-date in situ forest inventory data has been a bottleneck for remote sensing image analysis in support of the important global forest biomass mapping. Capitalizing on the proliferation of smartphones, citizen science is a promising approach to increase spatial and temporal coverages of in situ forest observations in a cost-effective way. Digital cameras can be used as a relascope device to measure basal area, a forest density variable that is closely related to biomass. In this paper, we present the Relasphone mobile application with extensive accuracy assessment in two mixed forest sites from different biomes. Basal area measurements in Finland (boreal zone were in good agreement with reference forest inventory plot data on pine ( R 2 = 0 . 75 , R M S E = 5 . 33 m 2 /ha, spruce ( R 2 = 0 . 75 , R M S E = 6 . 73 m 2 /ha and birch ( R 2 = 0 . 71 , R M S E = 4 . 98 m 2 /ha, with total relative R M S E ( % = 29 . 66 % . In Durango, Mexico (temperate zone, Relasphone stem volume measurements were best for pine ( R 2 = 0 . 88 , R M S E = 32 . 46 m 3 /ha and total stem volume ( R 2 = 0 . 87 , R M S E = 35 . 21 m 3 /ha. Relasphone data were then successfully utilized as the only reference data in combination with optical satellite images to produce biomass maps. The Relasphone concept has been validated for future use by citizens in other locations.

  1. Evaluation of World View-2 Satellite Data for Mapping Seaweed Beds Along Karachi Coast

    Science.gov (United States)

    Danish Siddiqui, Muhammad; Abdullah, Muhammad

    2016-07-01

    study. STUDY AREA Buleji, a small coastal village along Karachi coast in the country of Pakistan, is selected for this study. At this side seaweed resources are present. Its center lies at a latitude of 24o 51' 20" and a longitude of 66o 48' 24.2" METHODOLOGY In this research, high-resolution Worldview -2 satellite data have been used.WorldView-2 delivers 1.85 meter multispectral and 0.46 meter panchromatic images. A 0.5 meter multispectral pan sharpened image was developed by fusing these two images. Indices, such as normalized difference vegetative index (NDVI) and another index developed through spectral signatures, have been applied on worldview-2 imagery. Image enhancement technique, principal component analysis (PCA) is applied on the same image. Bathymetry map of the study area has been composed by relative bathymetry remote sensing technique. This map is later verified by the depth nautical chart and found satisfactory. For assessment of environmental parameters, freely available MODIS daily SST product has been acquired. MODIS product was converted to tiff (Tagged Image File Format) format and projected for further processing. SST image was reclassified using GIS technique and was overlaid on satellite images to detect the favorable temperature range for seaweed growth. CONCLUSION Since the macro-habitats and benthic communities around Pakistan coastline have not yet been properly mapped and defined, this study will be an outline for the protection of marine biodiversity and habitat of many sea species which rely on seaweeds for their sustenance. Regular monitoring and mapping are important to regulate the growth of seaweeds and their dependent species to maintain their biological associations which will eventually maintain the equilibrium among various species in the marine ecosystem. Seaweed is also important for the production of many consumable items and with proper import/export policies its marketing can ultimately help strengthen the country's economy

  2. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  3. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  4. Typhoon Doksuri Flooding in 2017 - High-Resolution Inundation Mapping and Monitoring from Sentinel Satellite SAR Data

    Science.gov (United States)

    Nghiem, S. V.; Nguyen, D. T.

    2017-12-01

    In 2017, typhoons and hurricanes have inflicted catastrophic flooding across extensive regions in many countries on several continents, including Asia and North America. The U.S. Federal Emergency Management Agency (FEMA) requested urgent support for flood mapping and monitoring in an emergency response to the devastating flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Because Sentinel SAR operates at C-band microwave frequency, it can be used for flood mapping regardless of could cover conditions typically associated with storms, and thus can provide immediate results without the need to wait for the clouds to clear out. In Southeast Asia, Typhoon Doksuri caused significant flooding across extensive regions in Vietnam and other countries in September 2017. Figure 1 presents the flood mapping result over a region around Hà Tĩnh (north central coast of Vietnam) showing flood inundated areas (in yellow) on 16 September 2017 together with pre-existing surface water (in blue) on 4 September 2017. This is just one example selected from a larger flood map covering an extensive region of about 250 km x 680 km all along the central coast of Vietnam.

  5. Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling

    Science.gov (United States)

    Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805

  6. Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information

    International Nuclear Information System (INIS)

    Polo, J.; Bernardos, A.; Navarro, A.A.; Fernandez-Peruchena, C.M.; Ramírez, L.; Guisado, María V.; Martínez, S.

    2015-01-01

    Highlights: • Satellite-based, reanalysis data and measurements are combined for solar mapping. • Plant output modeling for PV and CSP results in simple expressions of solar potential. • Solar resource, solar potential are used in a GIS for determine technical solar potential. • Solar resource and potential maps of Vietnam are presented. - Abstract: The present paper presents maps of the solar resources in Vietnam and of the solar potential for concentrating solar power (CSP) and for grid-connected photovoltaic (PV) technology. The mapping of solar radiation components has been calculated from satellite-derived data combined with solar radiation derived from sunshine duration and other additional sources of information based on reanalysis for several atmospheric and meteorological parameters involved. Two scenarios have been selected for the study of the solar potential: CSP Parabolic Trough of 50 MWe and grid-connected Flat Plate PV plant of around 1 MWe. For each selected scenario plant performance simulations have been computed for developing simple expressions that allow the estimation of the solar potential from the annual solar irradiation and the latitude of every site in Vietnam. Finally, Geographic Information Systems (GIS) have been used for combining the solar potential with the land availability according each scenario to deliver the technical solar potential maps of Vietnam

  7. Comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations

    International Nuclear Information System (INIS)

    Lanyi, G.E.; Roth, T.

    1988-01-01

    Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage. 15 references

  8. Validation of satellite SAR offshore wind speed maps to in-situ data, microscala and mesoscale model results

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Barthelmie, R; Dellwik, E; Hoffmann Joergensen, B; Gylling Mortensen, N; Nielsen, M; Pryor, S; Rathmann, O

    2002-05-01

    A validation study has been performed in order to investigate the precision and accuracy of the satellite-derived ERS-2 SAR wind products in offshore regions. The overall project goal is to develop a method for utilizing the satellite wind speed maps for offshore wind resources, e.g. in future planning of offshore wind farms. The report describes the validation analysis in detail for three sites in Denmark, Italy and Egypt. The site in Norway is analyzed by the Nansen Environmental and Remote Sensing Centre (NERSC). Wind speed maps and wind direction maps from Earth Observation data recorded by the ERS-2 SAR satellite have been obtained from the NERSC. For the Danish site the wind speed and wind direction maps have been compared to in-situ observations from a met-mast at Horns Rev in the North Sea located 14 km offshore. The SAR wind speeds have been area-averaged by simple and advanced footprint modelling, ie. the upwind conditions to the meteorological mast are explicitly averaged in the SAR wind speed maps before comparison. The comparison results are very promising with a standard error of {+-} 0.61 m s{sup -1}, a bias {approx}2 m s{sup -1} and R{sup 2} {approx}0.88 between in-situ wind speed observations and SAR footprint averaged values at 10 m level. Wind speeds predicted by the local scale model LINCOM and the mesoscale model KAMM2 have been compared to the spatial variations in the SAR wind speed maps. The finding is a good correspondence between SAR observations and model results. Near the coast is an 800 m wide band in which the SAR wind speed observations have a strong negative bias. The bathymetry of Horns Rev combined with tidal currents give rise to bias in the SAR wind speed maps near areas of shallow, complex bottom topography in some cases. A total of 16 cases were analyzed for Horns Rev. For Maddalena in Italy five cases were analyzed. At the Italian site the SAR wind speed maps were compared to WAsP and KAMM2 model results. The WAsP model

  9. Using infrared spectroscopy and satellite data to accurately monitor remote volcanoes and map their eruptive products

    Science.gov (United States)

    Ramsey, M. S.

    2011-12-01

    The ability to detect the onset of new activity at a remote volcano commonly relies on high temporal resolution thermal infrared (TIR) satellite-based observations. These observations from sensors such as AVHRR and MODIS are being used in innovative ways to produce trends of activity, which are critical for hazard response planning and scientific modeling. Such data are excellent for detection of new thermal features, volcanic plumes, and tracking changes over the hour time scale, for example. For some remote volcanoes, the lack of ground-based monitoring typically means that these sensors provide the first and only confirmation of renewed activity. However, what is lacking is the context of the higher spatial scale, which provides the volcanologist with meter-scale information on specific temperatures and changes in the composition and texture of the eruptive products. For the past eleven years, the joint US-Japanese ASTER instrument has been acquiring image-based data of volcanic eruptions around the world, including in the remote northern Pacific region. There have been more ASTER observations of Kamchatka volcanoes than any other location on the globe due mainly to an operational program put into place in 2004. Automated hot spot alarms from AVHRR data trigger ASTER acquisitions using the instrument's "rapid response" mode. Specifically for Kamchatka, this program has resulted in more than 700 additional ASTER images of the most thermally-active volcanoes (e.g., Shiveluch, Kliuchevskoi, Karymsky, Bezymianny). The scientific results from this program at these volcanoes will be highlighted. These results were strengthened by several field seasons used to map new products, collect samples for laboratory-based spectroscopy, and acquire TIR camera data. The fusion of ground, laboratory and space-based spectroscopy provided the most accurate interpretation of the eruptions and laid the ground work for future VSWIR/TIR sensors such as HyspIRI, which are a critically

  10. Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    Science.gov (United States)

    Williams, Jack G.; Rosser, Nick J.; Kincey, Mark E.; Benjamin, Jessica; Oven, Katie J.; Densmore, Alexander L.; Milledge, David G.; Robinson, Tom R.; Jordan, Colm A.; Dijkstra, Tom A.

    2018-01-01

    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response.

  11. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  12. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  13. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  14. NOAA Office of Exploration and Research > About OER > Organization > Map of

    Science.gov (United States)

    About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate of Staff and Affiliate Locations About OER Organization Map of Staff and Affiliate Locations Home About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate

  15. Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale

    Science.gov (United States)

    Priem, Frederik; Okujeni, Akpona; van der Linden, Sebastian; Canters, Frank

    2016-10-01

    The value of characteristic reflectance features for mapping urban materials has been demonstrated in many experiments with airborne imaging spectrometry. Analysis of larger areas requires satellite-based multispectral imagery, which typically lacks the spatial and spectral detail of airborne data. Consequently the need arises to develop mapping methods that exploit the complementary strengths of both data sources. In this paper a workflow for sub-pixel quantification of Vegetation-Impervious-Soil urban land cover is presented, using medium resolution multispectral satellite imagery, hyperspectral endmember libraries and Support Vector Regression. A Landsat 8 Operational Land Imager surface reflectance image covering the greater metropolitan area of Brussels is selected for mapping. Two spectral libraries developed for the cities of Brussels and Berlin based on airborne hyperspectral APEX and HyMap data are used. First the combined endmember library is resampled to match the spectral response of the Landsat sensor. The library is then optimized to avoid spectral redundancy and confusion. Subsequently the spectra of the endmember library are synthetically mixed to produce training data for unmixing. Mapping is carried out using Support Vector Regression models trained with spectra selected through stratified sampling of the mixed library. Validation on building block level (mean size = 46.8 Landsat pixels) yields an overall good fit between reference data and estimation with Mean Absolute Errors of 0.06, 0.06 and 0.08 for vegetation, impervious and soil respectively. Findings of this work may contribute to the use of universal spectral libraries for regional scale land cover fraction mapping using regression approaches.

  16. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  17. Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements

    Science.gov (United States)

    Chevallier, Frédéric; Broquet, Grégoire; Pierangelo, Clémence; Crisp, David

    2017-07-01

    The column-average dry air-mole fraction of carbon dioxide in the atmosphere (XCO2) is measured by scattered satellite measurements like those from the Orbiting Carbon Observatory (OCO-2). We show that global continuous maps of XCO2 (corresponding to level 3 of the satellite data) at daily or coarser temporal resolution can be inferred from these data with a Kalman filter built on a model of persistence. Our application of this approach on 2 years of OCO-2 retrievals indicates that the filter provides better information than a climatology of XCO2 at both daily and monthly scales. Provided that the assigned observation uncertainty statistics are tuned in each grid cell of the XCO2 maps from an objective method (based on consistency diagnostics), the errors predicted by the filter at daily and monthly scales represent the true error statistics reasonably well, except for a bias in the high latitudes of the winter hemisphere and a lack of resolution (i.e., a too small discrimination skill) of the predicted error standard deviations. Due to the sparse satellite sampling, the broad-scale patterns of XCO2 described by the filter seem to lag behind the real signals by a few weeks. Finally, the filter offers interesting insights into the quality of the retrievals, both in terms of random and systematic errors.

  18. Region 9 Tribal Grant Program - Project Officer and Tribal Contact Information Map Service

    Science.gov (United States)

    This compilation of geospatial data is for the purpose of managing and communicating information about current EPA project officers, tribal contacts, and tribal grants, both internally and with external stakeholders.

  19. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    Science.gov (United States)

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  20. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information

    Science.gov (United States)

    Luo, Juhua; Duan, Hongtao; Ma, Ronghua; Jin, Xiuliang; Li, Fei; Hu, Weiping; Shi, Kun; Huang, Wenjiang

    2017-05-01

    Spatial information of the dominant species of submerged aquatic vegetation (SAV) is essential for restoration projects in eutrophic lakes, especially eutrophic Taihu Lake, China. Mapping the distribution of SAV species is very challenging and difficult using only multispectral satellite remote sensing. In this study, we proposed an approach to map the distribution of seven dominant species of SAV in Taihu Lake. Our approach involved information on the life histories of the seven SAV species and eight distribution maps of SAV from February to October. The life history information of the dominant SAV species was summarized from the literature and field surveys. Eight distribution maps of the SAV were extracted from eight 30 m HJ-CCD images from February to October in 2013 based on the classification tree models, and the overall classification accuracies for the SAV were greater than 80%. Finally, the spatial distribution of the SAV species in Taihu in 2013 was mapped using multilayer erasing approach. Based on validation, the overall classification accuracy for the seven species was 68.4%, and kappa was 0.6306, which suggests that larger differences in life histories between species can produce higher identification accuracies. The classification results show that Potamogeton malaianus was the most widely distributed species in Taihu Lake, followed by Myriophyllum spicatum, Potamogeton maackianus, Potamogeton crispus, Elodea nuttallii, Ceratophyllum demersum and Vallisneria spiralis. The information is useful for planning shallow-water habitat restoration projects.

  1. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  2. Modelling risk of tick exposure in southern Scandinavia using machine learning techniques, satellite imagery, and human population density maps

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    30 sites (forests and meadows) in each of Denmark, southern Norway and south-eastern Sweden. At each site we measured presence/absence of ticks, and used the data obtained along with environmental satellite images to run Boosted Regression Tree machine learning algorithms to predict overall spatial...... and Sweden), areas with high population densities tend to overlap with these zones.Machine learning techniques allow us to predict for larger areas without having to perform extensive sampling all over the region in question, and we were able to produce models and maps with high predictive value. The results...

  3. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    2016-07-07

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  4. An Effort to Map and Monitor Baldcypress Forest Areas in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data

    Science.gov (United States)

    Spruce, Joseph P.; Sader, Steve; Smoot, James

    2012-01-01

    This presentation discusses a collaborative project to develop, test, and demonstrate baldcypress forest mapping and monitoring products for aiding forest conservation and restoration in coastal Louisiana. Low lying coastal forests in the region are being negatively impacted by multiple factors, including subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, annual insect-induced forest defoliation, timber harvesting, and conversion to urban land uses. Coastal baldcypress forests provide invaluable ecological services in terms of wildlife habitat, forest products, storm buffers, and water quality benefits. Before this project, current maps of baldcypress forest concentrations and change did not exist or were out of date. In response, this project was initiated to produce: 1) current maps showing the extent and location of baldcypress dominated forests; and 2) wetland forest change maps showing temporary and persistent disturbance and loss since the early 1970s. Project products are being developed collaboratively with multiple state and federal agencies. Products are being validated using available reference data from aerial, satellite, and field survey data. Results include Landsat TM- based classifications of baldcypress in terms of cover type and percent canopy cover. Landsat MSS data was employed to compute a circa 1972 classification of swamp and bottomland hardwood forest types. Landsat data for 1972-2010 was used to compute wetland forest change products. MODIS-based change products were applied to view and assess insect-induced swamp forest defoliation. MODIS, Landsat, and ASTER satellite data products were used to help assess hurricane and flood impacts to coastal wetland forests in the region.

  5. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    Science.gov (United States)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  6. IMAGE FUSION APPLIED TO SATELLITE IMAGERY FOR THE IMPROVED MAPPING AND MONITORING OF CORAL REEFS: A PROPOSAL

    Directory of Open Access Journals (Sweden)

    M. Gholoum

    2012-07-01

    Full Text Available A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine

  7. Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico

    Directory of Open Access Journals (Sweden)

    Jesús A. Aguilar-Maldonado

    2018-06-01

    Full Text Available The Yucatán Peninsula hosts worldwide-known tourism destinations that concentrate most of the Mexico tourism activity. In this region, tourism has exponentially increased over the last years, including wildlife oriented tourism. Rapid tourism development, involving the consequent construction of hotels and tourist commodities, is associated with domestic sewage discharges from septic tanks. In this karstic environment, submarine groundwater discharges are very important and highly vulnerable to anthropogenic pollution. Nutrient loadings are linked to harmful algal blooms, which are an issue of concern to local and federal authorities due to their recurrence and socioeconomic and human health costs. In this study, we used satellite products from MODIS (Moderate Resolution Imaging Spectroradiometer to calculate and map the satellite Inherent Optical Properties (IOP Index. We worked with different scenarios considering both holiday and hydrological seasons. Our results showed that the satellite IOP Index allows one to build baseline information in a sustainable mid-term or long-term basis which is key for ecosystem-based management.

  8. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    Science.gov (United States)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  9. Web Based Rapid Mapping of Disaster Areas using Satellite Images, Web Processing Service, Web Mapping Service, Frequency Based Change Detection Algorithm and J-iView

    Science.gov (United States)

    Bandibas, J. C.; Takarada, S.

    2013-12-01

    Timely identification of areas affected by natural disasters is very important for a successful rescue and effective emergency relief efforts. This research focuses on the development of a cost effective and efficient system of identifying areas affected by natural disasters, and the efficient distribution of the information. The developed system is composed of 3 modules which are the Web Processing Service (WPS), Web Map Service (WMS) and the user interface provided by J-iView (fig. 1). WPS is an online system that provides computation, storage and data access services. In this study, the WPS module provides online access of the software implementing the developed frequency based change detection algorithm for the identification of areas affected by natural disasters. It also sends requests to WMS servers to get the remotely sensed data to be used in the computation. WMS is a standard protocol that provides a simple HTTP interface for requesting geo-registered map images from one or more geospatial databases. In this research, the WMS component provides remote access of the satellite images which are used as inputs for land cover change detection. The user interface in this system is provided by J-iView, which is an online mapping system developed at the Geological Survey of Japan (GSJ). The 3 modules are seamlessly integrated into a single package using J-iView, which could rapidly generate a map of disaster areas that is instantaneously viewable online. The developed system was tested using ASTER images covering the areas damaged by the March 11, 2011 tsunami in northeastern Japan. The developed system efficiently generated a map showing areas devastated by the tsunami. Based on the initial results of the study, the developed system proved to be a useful tool for emergency workers to quickly identify areas affected by natural disasters.

  10. Assessing the Suitability of Future Multi- and Hyperspectral Satellite Systems for Mapping the Spatial Distribution of Norway Spruce Timber Volume

    Directory of Open Access Journals (Sweden)

    Sascha Nink

    2015-09-01

    Full Text Available The availability of accurate and timely information on timber volume is important for supporting operational forest management. One option is to combine statistical concepts (e.g., small area estimates with specifically designed terrestrial sampling strategies to provide estimations also on the level of administrative units such as forest districts. This may suffice for economic assessments, but still fails to provide spatially explicit information on the distribution of timber volume within these management units. This type of information, however, is needed for decision-makers to design and implement appropriate management operations. The German federal state of Rhineland-Palatinate is currently implementing an object-oriented database that will also allow the direct integration of Earth observation data products. This work analyzes the suitability of forthcoming multi- and hyperspectral satellite imaging systems for producing local distribution maps for timber volume of Norway spruce, one of the most economically important tree species. In combination with site-specific inventory data, fully processed hyperspectral data sets (HyMap were used to simulate datasets of the forthcoming EnMAP and Sentinel-2 systems to establish adequate models for estimating timber volume maps. The analysis included PLS regression and the k-NN method. Root Mean Square Errors between 21.6% and 26.5% were obtained, where k-NN performed slightly better than PLSR. It was concluded that the datasets of both simulated sensor systems fulfill accuracy requirements to support local forest management operations and could be used in synergy. Sentinel-2 can provide meaningful volume distribution maps in higher geometric resolution, while EnMAP, due to its hyperspectral coverage, can contribute complementary information, e.g., on biophysical conditions.

  11. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    Science.gov (United States)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  12. The Lightning Mapping Imager (LMI) on the FY-4 satellite and a typical application experiment using the LMI data

    Science.gov (United States)

    Huang, F.; Hui, W.; Li, X.; Liu, R.; Zhang, Z.; Zheng, Y.; Kang, N.

    2017-12-01

    The Lightning Mapping Imager (LMI) on the FY-4A satellite, which was launched successfully in December 2016, is the first satellite-based lightning detector from space independently developed in China, and one of the world's first two stationary satellite LMIs. The optical imaging technique with a 400x600 CCD array plane and a frequency of 500 frames/s is adopted in the FY-4A LMI to perform real-time and continuous observation of total lightening in the Chinese mainland and adjacent areas. As of July 2017, the in-orbit test shows that the lightening observation date could be accurately obtained by the FY-4A LMI, and that the geo-location could be verified by the ground lightening observation network over China. Since the beginning of the 2017 flood season, every process of strong thunderstorms has been monitored by the FY-4A LMI throughout the various areas of China, and of these are used as a typical application case in this talk. On April 8 and 9, 2017, a strong convective precipitation process occurred in the middle-lower reaches of the Yangtze River, China. The observation data of the FY-4A LMI are used to monitor the occurrence, development, shift and extinction of the thunderstorm track. By means of analyzing the station's synchronous precipitation observation data, it is indicated that the moving track of the thunderstorm is not completely consistent with that of the precipitation center, and while the distribution areas of thunderstorm and precipitation are consistent to a certain extent, a significant difference also exists. This difference is mainly caused by the convective precipitation and stratus precipitation area during the precipitation process. Through comparative analysis, the preliminary satellite and foundation lightening observation data show a higher consistency. However, the time of lightening activity observed by satellite is one hour earlier than that of the ground observation, which is likely related to the total lightning observation by

  13. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat

    Czech Academy of Sciences Publication Activity Database

    Koo, D.H.; Tiwari, V.K.; Hřibová, Eva; Doležel, Jaroslav; Friebe, B.; Gill, B.S.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 314-321 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-situ hybridization * chromosome addition lines * resistance genes lr57 * repetitive dna * triticum-ovatum * powdery mildew * plant genome * bread wheat * leaf rust * identification * Aegilops geniculata * Chromosome identification * Fluorescence in situ hybridization * Satellite DNA * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  14. Producing a satellite-derived map and modelling Spartina alterniflora expansion for Willapa Bay in Washington State

    Science.gov (United States)

    Berlin, Cynthia Jane

    1998-12-01

    This research addresses the identification of the areal extent of the intertidal wetlands of Willapa Bay, Washington, and the evaluation of the potential for exotic Spartina alterniflora (smooth cordgrass) expansion in the bay using a spatial geographic approach. It is hoped that the results will address not only the management needs of the study area but provide a research design that may be applied to studies of other coastal wetlands. Four satellite images, three Landsat Multi-Spectral (MSS) and one Thematic Mapper (TM), are used to derive a map showing areas of water, low, middle and high intertidal, and upland. Two multi-date remote sensing mapping techniques are assessed: a supervised classification using density-slicing and an unsupervised classification using an ISODATA algorithm. Statistical comparisons are made between the resultant derived maps and the U.S.G.S. topographic maps for the Willapa Bay area. The potential for Spartina expansion in the bay is assessed using a sigmoidal (logistic) growth model and a spatial modelling procedure for four possible growth scenarios: without management controls (Business-as-Usual), with moderate management controls (e.g. harvesting to eliminate seed setting), under a hypothetical increase in the growth rate that may reflect favorable environmental changes, and under a hypothetical decrease in the growth rate that may reflect aggressive management controls. Comparisons for the statistics of the two mapping techniques suggest that although the unsupervised classification method performed satisfactorily, the supervised classification (density-slicing) method provided more satisfactory results. Results from the modelling of potential Spartina expansion suggest that Spartina expansion will proceed rapidly for the Business-as-Usual and hypothetical increase in the growth rate scenario, and at a slower rate for the elimination of seed setting and hypothetical decrease in the growth rate scenarios, until all potential

  15. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    Science.gov (United States)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  16. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  17. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    Science.gov (United States)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  18. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  19. Mapping Offshore Winds Around Iceland Using Satellite Synthetic Aperture Radar and Mesoscale Model Simulations

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Nawri, Nikolai

    2015-01-01

    effects, gap flow, coastal barrier jets, and atmospheric gravity waves are not only observed in SAR, but are also modeled well from HARMONIE. Offshore meteorological observations are not available, but wind speed and wind direction measurements from coastal meteorological masts are found to compare well...... to nearby offshore locations observed by SAR. More than 2500 SAR scenes from the Envisat ASAR wide swathmode are used for wind energy resource estimation. The wind energy potential observed from satellite SAR shows high values above 1000 Wm −2 in coastal regions in the south, east, and west, with lower...

  20. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2012-07-01

    Full Text Available Floodplain lakes and peatlands in the middle Mahakam lowland area are considered as ecologically important wetland in East Kalimantan, Indonesia. However, due to a lack of data, the hydrological functioning of the region is still poorly understood. Among remote sensing techniques that can increase data availability, radar is well-suitable for the identification, mapping, and measurement of tropical wetlands, for its cloud unimpeded sensing and night and day operation. Here we aim to extract flood extent and flood occurrence information from a series of radar images of the middle Mahakam lowland area. We explore the use of Phased Array L-band Synthetic Aperture Radar (PALSAR imagery for observing flood inundation dynamics by incorporating field water level measurements. Water level measurements were carried out along the river, in lakes and in peatlands, using pressure transducers. For validation of the open water flood occurrence map, bathymetry measurements were carried out in the main lakes. A series of PALSAR images covering the middle and lower Mahakam area in the years 2007 through 2010 were collected. A fully inundated region can be easily recognized on radar images from a dark signature. Open water flood occurrence was mapped using a threshold value taken from radar backscatter of the permanently inundated river and lakes areas. Radar backscatter intensity analysis of the vegetated floodplain area revealed consistently high backscatter values, indicating flood inundation under forest canopy. We used those values as the threshold for flood occurrence mapping in the vegetated area.

  1. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    Science.gov (United States)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  2. Mapping Submerged Habitats and Mangroves of Lampi Island Marine National Park (Myanmar from in Situ and Satellite Observations

    Directory of Open Access Journals (Sweden)

    Claudia Giardino

    2015-12-01

    Full Text Available In this study we produced the first thematic maps of submerged and coastal habitats of Lampi Island (Myanmar from in situ and satellite data. To focus on key elements of bio-diversity typically existing in tropical islands the detection of corals, seagrass, and mangrove forests was addressed. Satellite data were acquired from Landsat-8; for the purpose of validation Rapid-Eye data were also used. In situ data supporting image processing were collected in a field campaign performed from 28 February to 4 March 2015 at the time of sensors overpasses. A hybrid approach based on bio-optical modeling and supervised classification techniques was applied to atmospherically-corrected Landsat-8 data. Bottom depth estimations, to be used in the classification process of shallow waters, were in good agreement with depth soundings (R2 = 0.87. Corals were classified with producer and user accuracies of 58% and 77%, while a lower accuracy (producer and user accuracies of 50% was found for the seagrass due to the patchy distribution of meadows; accuracies more than 88% were obtained for mangrove forests. The classification indicated the presence of 18 mangroves sites with extension larger than 5 km2; for 15 of those the coexistence of corals and seagrass were also found in the fronting bays, suggesting a significant rate of biodiversity for the study area.

  3. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    Science.gov (United States)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  4. Satellite Derived Seafloor Bathymetry and Habitat Mapping on a Shallow Carbonate Platform: Campeche Bank, México.

    Science.gov (United States)

    Garza-Perez, J. R.; Rankey, E. C.; Rodriguez-Vázquez, R. A.; Naranjo-Garcia, M. J.

    2017-12-01

    Extensive and consistent high-resolution seafloor mapping is a difficult task involving important financial resources, intensive field work and careful planning; thus there is a paucity of this type of mapping products both in spatial distribution and through time. Remote sensed imagery has supported continuous mapping efforts elsewhere, but extensive seafloor mapping, even in shallow regions keeps being elusive. Challenges to this effort include cloud cover, surface sun-glint, and water turbidity caused by sediment resuspension and primary productivity. Nevertheless, using high-quality satellite imagery (Landsat-8 OLI -30x30m/pixel- and GeoEye-1 -2x2m/pixel) and rigorous pre-processing (atmospheric correction, de-glinting and water-column light extinction compensation), resulting data contribute towards the advancement of seafloor mapping. The Yucatan Peninsula in México is a carbonate ramp devoid of significant orographic features and surface water bodies. Its submerged portion is the Campeche Bank, gently sloping towards the Gulf of Mexico. The bottom features several distinct blankets composed by medium-fine sediment (dominated by pelecypods, gastropods, foraminifera, lithoclasts, calcareous peloids and algal nodules, Halimeda plaques and coralline algae fragments), and a reef unit with several bank-type coral reefs. Outside the coral reefs, biotic cover down to 20 m deep is dominated by macroalgae (red, brown, green), coralline and filamentous algae with sharp seasonal changes in abundance, from almost nil during north-winds (Oct. - Jan.) to high during dry (Feb.- May) and rainy seasons (Jun. - Sept.), with changes of dominance by algae groups between dry and rainy seasons. This bloom is favored by increases in sunlight and nutrients carried by the Caribbean current upwelling washing the Campeche Bank. Beyond 20 m depth, sandy plains dominate the seascape. Corals, octocorals, sponges and tunicates are spatially restricted to bottoms with thin layers of

  5. Improved land use classification from Landsat and Seasat satellite imagery registered to a common map base

    Science.gov (United States)

    Clark, J.

    1981-01-01

    In the case of Landsat Multispectral Scanner System (MSS) data, ambiguities in spectral signature can arise in urban areas. A study was initiated in the belief that Seasat digital SAR could help provide the spectral separability needed for a more accurate urban land use classification. A description is presented of the results of land use classifications performed on Landsat and preprocessed Seasat imagery that were registered to a common map base. The process of registering imagery and training site boundary coordinates to a common map has been reported by Clark (1980). It is found that preprocessed Seasat imagery provides signatures for urban land uses which are spectrally separable from Landsat signatures. This development appears to significantly improve land use classifications in an urban setting for class 12 (Commercial and Services), class 13 (Industrial), and class 14 (Transportation, Communications, and Utilities).

  6. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  7. Mapping Aquatic Vegetation in a Tropical Wetland Using High Spatial Resolution Multispectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Timothy G. Whiteside

    2015-09-01

    Full Text Available Vegetation plays a key role in the environmental function of wetlands. The Ramsar-listed wetlands of the Magela Creek floodplain in Northern Australia are identified as being at risk from weeds, fire and climate change. In addition, the floodplain is a downstream receiving environment for the Ranger Uranium Mine. Accurate methods for mapping wetland vegetation are required to provide contemporary baselines of annual vegetation dynamics on the floodplain to assist with analysing any potential change during and after minesite rehabilitation. The aim of this study was to develop and test the applicability of geographic object-based image analysis including decision tree classification to classify WorldView-2 imagery and LiDAR-derived ancillary data to map the aquatic vegetation communities of the Magela Creek floodplain. Results of the decision tree classification were compared against a Random Forests classification. The resulting maps showed the 12 major vegetation communities that exist on the Magela Creek floodplain and their distribution for May 2010. The decision tree classification method provided an overall accuracy of 78% which was significantly higher than the overall accuracy of the Random Forests classification (67%. Most of the error in both classifications was associated with confusion between spectrally similar classes dominated by grasses, such as Hymenachne and Pseudoraphis. In addition, the extent of the sedge Eleocharis was under-estimated in both cases. This suggests the method could be useful for mapping wetlands where statistical-based supervised classifications have achieved less than satisfactory results. Based upon the results, the decision tree method will form part of an ongoing operational monitoring program.

  8. A new map of global urban extent from MODIS satellite data

    International Nuclear Information System (INIS)

    Schneider, A; Friedl, M A; Potere, D

    2009-01-01

    Although only a small percentage of global land cover, urban areas significantly alter climate, biogeochemistry, and hydrology at local, regional, and global scales. To understand the impact of urban areas on these processes, high quality, regularly updated information on the urban environment-including maps that monitor location and extent-is essential. Here we present results from efforts to map the global distribution of urban land use at 500 m spatial resolution using remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our approach uses a supervised decision tree classification algorithm that we process using region-specific parameters. An accuracy assessment based on sites from a stratified random sample of 140 cities shows that the new map has an overall accuracy of 93% (k = 0.65) at the pixel level and a high level of agreement at the city scale (R 2 = 0.90). Our results (available at http://sage.wisc.edu/urbanenvironment.html) also reveal that the land footprint of cities occupies less than 0.5% of the Earth's total land area.

  9. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature

    Science.gov (United States)

    Marques da Silva, J. R.; Damásio, C. V.; Sousa, A. M. O.; Bugalho, L.; Pessanha, L.; Quaresma, P.

    2015-06-01

    Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: "thermal integral over air temperature (accumulated degree-days)". The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.

  10. Historical satellite data used to map Pan-Amazon forest cover

    Science.gov (United States)

    Kalluri, Satya; Desch, Arthur; Curry, Troy; Altstatt, Alice; Devers, Didier; Townshend, John; Tucker, Compton

    Deforestation in the Brazilian Amazon is well documented and the contributions of Brazilian deforestation to global change have been extensively discussed in both scientific and popular literature [e.g., Skole and Tucker, 1993]. However, deforestation within the non-Brazilian tropics of South America has received much less attention. The Pan-Amazon region covering Venezuela, Colombia, Ecuador, Peru, and Bolivia comprises ˜2 million km2 of tropical forest that is under increasing pressure from logging and development. Wall-to-wall high-resolution forest cover maps are needed to properly document the complex distribution patterns of deforestation in the Pan-Amazon [Tucker and Townshend, 2000]. The Deforestation Mapping Group at the University of Marylands Global Land Cover Facility is using Landsat data to generate tropical forest cover maps in this region (Figure l). The study shows that while rates of forest loss are generally lower than those in Brazil, there are hot spots where deforestation rates run as high as 2,200 km2 yr1.

  11. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the

  12. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  13. A new web-based system for unsupervised classification of satellite images from the Google Maps engine

    Science.gov (United States)

    Ferrán, Ángel; Bernabé, Sergio; García-Rodríguez, Pablo; Plaza, Antonio

    2012-10-01

    In this paper, we develop a new web-based system for unsupervised classification of satellite images available from the Google Maps engine. The system has been developed using the Google Maps API and incorporates functionalities such as unsupervised classification of image portions selected by the user (at the desired zoom level). For this purpose, we use a processing chain made up of the well-known ISODATA and k-means algorithms, followed by spatial post-processing based on majority voting. The system is currently hosted on a high performance server which performs the execution of classification algorithms and returns the obtained classification results in a very efficient way. The previous functionalities are necessary to use efficient techniques for the classification of images and the incorporation of content-based image retrieval (CBIR). Several experimental validation types of the classification results with the proposed system are performed by comparing the classification accuracy of the proposed chain by means of techniques available in the well-known Environment for Visualizing Images (ENVI) software package. The server has access to a cluster of commodity graphics processing units (GPUs), hence in future work we plan to perform the processing in parallel by taking advantage of the cluster.

  14. Mapping Submerged Aquatic Vegetation Using RapidEye Satellite Data: The Example of Lake Kummerow (Germany

    Directory of Open Access Journals (Sweden)

    Christine Fritz

    2017-07-01

    Full Text Available Submersed aquatic vegetation (SAV is sensitive to changes in environmental conditions and plays an important role as a long-term indictor for the trophic state of freshwater lakes. Variations in water level height, nutrient condition, light availability and water temperature affect the growth and species composition of SAV. Detailed information about seasonal variations in littoral bottom coverage are still unknown, although these effects are expected to mask climate change-related long-term changes, as derived by snapshots of standard monitoring methods included in the European Water Framework Directive. Remote sensing offers concepts to map SAV quickly, within large areas, and at short intervals. This study analyses the potential of a semi-empirical method to map littoral bottom coverage by a multi-seasonal approach. Depth-invariant indices were calculated for four Atmospheric & Topographic Correction (ATCOR2 atmospheric corrected RapidEye data sets acquired at Lake Kummerow, Germany, between June and August 2015. RapidEye data evaluation was supported by in situ measurements of the diffuse attenuation coefficient of the water column and bottom reflectance. The processing chain was able to differentiate between SAV and sandy sediment. The successive increase of SAV coverage from June to August was correctly monitored. Comparisons with in situ and Google Earth imagery revealed medium accuracies (kappa coefficient = 0.61, overall accuracy = 72.2%. The analysed time series further revealed how water constituents and temporary surface phenomena such as sun glint or algal blooms influence the identification success of lake bottom substrates. An abundant algal bloom biased the interpretability of shallow water substrate such that a differentiation of sediments and SAV patches failed completely. Despite the documented limitations, mapping of SAV using RapidEye seems possible, even in eutrophic lakes.

  15. Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study

    Science.gov (United States)

    Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola

    2014-10-01

    The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to

  16. Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR

    Science.gov (United States)

    Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.

    2017-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground

  17. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  18. World map of ELF/VLF emissions as observed by a low-orbiting satellite

    International Nuclear Information System (INIS)

    Parrot, M.

    1990-01-01

    Statistical studies were performed of the intensities of the ELF/VLF emissions observed by the low-orbiting satellite AUREOL-3. Data were obtained from filterbanks and the frequency range of observations extends from a few tens of Hz up to 15 kHz. The most important phenomena observed are ELF hiss and VLF hiss. Electric and magnetic components are used. Thus, representation of the waves intensities in geographical coordinates was made at different frequencies. The relative ability of natural waves (whistler, hiss) and man-made waves, such as powerful VLF transmitters or powerline harmonic radiations (PLHR), to precipitate particles in the slot region, is studied. Using geomagnetical representation, it is shown that ELF hiss is maximum between 06 and 20 Magnetic Local Time and in the invariant latitude range 50 0 -70 0 as usual, but geographic representation indicates that the waves are intensified at the longitudes of VLF transmitters and near the South Atlantic Anomaly (SAA). The SAA plays a dominant role in the localization of the strongest ELF hiss. Weakest intensities are observed to the east of the SAA. As to the VLF hiss, the maximum intensity is related to regions of enhanced thunderstorm activity, and may be influenced by powerline harmonic radiations (PLHR) over USA. Comparisons with past work, experimental as well as theoretical, are made

  19. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  20. A Method of Mapping Burned Area Using Chinese FengYun-3 MERSI Satellite Data

    Science.gov (United States)

    Shan, T.

    2017-12-01

    Wildfire is a naturally reoccurring global phenomenon which has environmental and ecological consequences such as effects on the global carbon budget, changes to the global carbon cycle and disruption to ecosystem succession. The information of burned area is significant for post disaster assessment, ecosystems protection and restoration. The Medium Resolution Spectral Imager (MERSI) onboard FENGYUN-3C (FY-3C) has shown good ability for fire detection and monitoring but lacks recognition among researchers. In this study, an automated burned area mapping algorithm was proposed based on FY-3C MERSI data. The algorithm is generally divided into two phases: 1) selection of training pixels based on 1000-m resolution MERSI data, which offers more spectral information through the use of more vegetation indices; and 2) classification: first the region growing method is applied to 1000-m MERSI data to calculate the core burned area and then the same classification method is applied to the 250-m MERSI data set by using the core burned area as a seed to obtain results at a finer spatial resolution. An evaluation of the performance of the algorithm was carried out at two study sites in America and Canada. The accuracy assessment and validation were made by comparing our results with reference results derived from Landsat OLI data. The result has a high kappa coefficient and the lower commission error, indicating that this algorithm can improve the burned area mapping accuracy at the two study sites. It may then be possible to use MERSI and other data to fill the gaps in the imaging of burned areas in the future.

  1. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    Science.gov (United States)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  2. Land Cover Characterization and Mapping of South America for the Year 2010 Using Landsat 30 m Satellite Data

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2014-10-01

    Full Text Available Detailed and accurate land cover and land cover change information is needed for South America because the continent is in constant flux, experiencing some of the highest rates of land cover change and forest loss in the world. The land cover data available for the entire continent are too coarse (250 m to 1 km for resource managers, government and non-government organizations, and Earth scientists to develop conservation strategies, formulate resource management options, and monitor land cover dynamics. We used Landsat 30 m satellite data of 2010 and prepared the land cover database of South America using state-of-the-science remote sensing techniques. We produced regionally consistent and locally relevant land cover information by processing a large volume of data covering the entire continent. Our analysis revealed that in 2010, 50% of South America was covered by forests, 2.5% was covered by water, and 0.02% was covered by snow and ice. The percent forest area of South America varies from 9.5% in Uruguay to 96.5% in French Guiana. We used very high resolution (<5 m satellite data to validate the land cover product. The overall accuracy of the 2010 South American 30-m land cover map is 89% with a Kappa coefficient of 79%. Accuracy of barren areas needs to improve possibly using multi-temporal Landsat data. An update of land cover and change database of South America with additional land cover classes is needed. The results from this study are useful for developing resource management strategies, formulating biodiversity conservation strategies, and regular land cover monitoring and forecasting.

  3. Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping Terrestrial Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Yunjun Yao

    2014-01-01

    Full Text Available Satellite-based vegetation indices (VIs and Apparent Thermal Inertia (ATI derived from temperature change provide valuable information for estimating evapotranspiration (LE and detecting the onset and severity of drought. The modified satellite-based Priestley-Taylor (MS-PT algorithm that we developed earlier, coupling both VI and ATI, is validated based on observed data from 40 flux towers distributed across the world on all continents. The validation results illustrate that the daily LE can be estimated with the Root Mean Square Error (RMSE varying from 10.7 W/m2 to 87.6 W/m2, and with the square of correlation coefficient (R2 from 0.41 to 0.89 (p < 0.01. Compared with the Priestley-Taylor-based LE (PT-JPL algorithm, the MS-PT algorithm improves the LE estimates at most flux tower sites. Importantly, the MS-PT algorithm is also satisfactory in reproducing the inter-annual variability at flux tower sites with at least five years of data. The R2 between measured and predicted annual LE anomalies is 0.42 (p = 0.02. The MS-PT algorithm is then applied to detect the variations of long-term terrestrial LE over Three-North Shelter Forest Region of China and to monitor global land surface drought. The MS-PT algorithm described here demonstrates the ability to map regional terrestrial LE and identify global soil moisture stress, without requiring precipitation information.

  4. Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy

    Directory of Open Access Journals (Sweden)

    Federico Raspini

    2015-11-01

    Full Text Available Pre- event and event landslide deformations have been detected and measured for the landslide that occurred on 3 December 2013 on the south-western slope of the Montescaglioso village (Basilicata Region, southern Italy. In this paper, ground displacements have been mapped through an integrated analysis based on a series of high resolution SAR (Synthetic Aperture Radar images acquired by the Italian constellation of satellites COSMO-SkyMed. Analysis has been performed by exploiting both phase (through multi-image SAR interferometry and amplitude information (through speckle tracking techniques of the satellite images. SAR Interferometry, applied to images taken before the event, revealed a general pre-event movement, in the order of a few mm/yr, in the south-western slope of the Montescaglioso village. Highest pre-event velocities, ranging between 8 and 12 mm/yr, have been recorded in the sector of the slope where the first movement of the landslide took place. Speckle tracking, applied to images acquired before and after the event, allowed the retrieval of the 3D deformation field produced by the landslide. It also showed that ground displacements produced by the landslide have a dominant SSW component, with values exceeding 10 m for large sectors of the landslide area, with local peaks of 20 m in its central and deposit areas. Two minor landslides with a dominant SSE direction, which were detected in the upper parts of the slope, likely also occurred as secondary phenomena as consequence of the SSW movement of the main Montescaglioso landslide.

  5. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  6. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    Science.gov (United States)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled

  7. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    Science.gov (United States)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields

  8. Satellite Based Probabilistic Snow Cover Extent Mapping (SCE) at Hydro-Québec

    Science.gov (United States)

    Teasdale, Mylène; De Sève, Danielle; Angers, Jean-François; Perreault, Luc

    2016-04-01

    Over 40% of Canada's water resources are in Quebec and Hydro-Quebec has developed potential to become one of the largest producers of hydroelectricity in the world, with a total installed capacity of 36,643 MW. The Hydro-Québec fleet park includes 27 large reservoirs with a combined storage capacity of 176 TWh, and 668 dams and 98 controls. Thus, over 98% of all electricity used to supply the domestic market comes from water resources and the excess output is sold on the wholesale markets. In this perspective the efficient management of water resources is needed and it is based primarily on a good river flow estimation including appropriate hydrological data. Snow on ground is one of the significant variables representing 30% to 40% of its annual energy reserve. More specifically, information on snow cover extent (SCE) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in northern regions since the snowmelt provides the water that fills the reservoirs and is subsequently used for hydropower generation. For several years Hydro Quebec's research institute ( IREQ) developed several algorithms to map SCE and SWE. So far all the methods were deterministic. However, given the need to maximize the efficient use of all resources while ensuring reliability, the electrical systems must now be managed taking into account all risks. Since snow cover estimation is based on limited spatial information, it is important to quantify and handle its uncertainty in the hydrological forecasting system. This paper presents the first results of a probabilistic algorithm for mapping SCE by combining Bayesian mixture of probability distributions and multiple logistic regression models applied to passive microwave data. This approach allows assigning for each grid point, probabilities to the set of the mutually exclusive discrete outcomes: "snow" and "no snow". Its performance was evaluated using the Brier score since it is particularly appropriate to

  9. Mapping Pyroclastic Flow Inundation Using Radar and Optical Satellite Images and Lahar Modeling

    Directory of Open Access Journals (Sweden)

    Chang-Wook Lee

    2018-01-01

    Full Text Available Sinabung volcano, located above the Sumatra subduction of the Indo-Australian plate under the Eurasian plate, became active in 2010 after about 400 years of quiescence. We use ALOS/PALSAR interferometric synthetic aperture radar (InSAR images to measure surface deformation from February 2007 to January 2011. We model the observed preeruption inflation and coeruption deflation using Mogi and prolate spheroid sources to infer volume changes of the magma chamber. We interpret that the inflation was due to magma accumulation in a shallow reservoir beneath Mount Sinabung and attribute the deflation due to magma withdrawal from the shallow reservoir during the eruption as well as thermoelastic compaction of erupted material. The pyroclastic flow extent during the eruption is then derived from the LAHARZ model based on the coeruption volume from InSAR modeling and compared to that derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ image. The pyroclastic flow inundation extents between the two different methods agree at about 86%, suggesting the capability of mapping pyroclastic flow inundation by combing radar and optical imagery as well as flow modeling.

  10. 3-Dimentional Mapping Coastal Zone using High Resolution Satellite Stereo Imageries

    International Nuclear Information System (INIS)

    Hong, Zhonghua; Liu, Fengling; Zhang, Yun

    2014-01-01

    The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. The results of geometric processing of a Shanghai coastal zone from 0.7-m-resolution QuickBird Geo stereo images are presented firstly. The geo-positioning accuracy of ground point determination with vendor-provided rigorous physical model (RPM) parameters is evaluated and systematic errors are found when compared with ground control points surveyed by GPS real-time kinematic (GPS-RTK) with 5cm accuracy. A bias-compensation process in image space that applies a RPM bundle adjustment to the RPM-calculated 3D ground points to correct the systematic errors is used to improve the geo-positioning accuracy. And then, a area-based matching (ABM) method is used to generated the densely corresponding points of left and right QuickBird images. With the densely matching points, the 3-dimentinal coordinates of ground points can be calculated by using the refined geometric relationship between image and ground points. At last step, digital surface model (DSM) can be achieved automatically using interpolation method. Accuracies of the DSM as assessed from independent checkpoints (ICPs) are approximately 1.2 m in height

  11. Hyperspectral and multispectral satellite sensors for mapping chlorophyll content in a Mediterranean Pinus sylvestris L. plantation

    Science.gov (United States)

    Navarro-Cerrillo, Rafael Mª; Trujillo, Jesus; de la Orden, Manuel Sánchez; Hernández-Clemente, Rocío

    2014-02-01

    A new generation of narrow-band hyperspectral remote sensing data offers an alternative to broad-band multispectral data for the estimation of vegetation chlorophyll content. This paper examines the potential of some of these sensors comparing red-edge and simple ratio indices to develop a rapid and cost-effective system for monitoring Mediterranean pine plantations in Spain. Chlorophyll content retrieval was analyzed with the red-edge R750/R710 index and the simple ratio R800/R560 index using the PROSPECT-5 leaf model and the Discrete Anisotropic Radiative Transfer (DART) and experimental approach. Five sensors were used: AHS, CHRIS/Proba, Hyperion, Landsat and QuickBird. The model simulation results obtained with synthetic spectra demonstrated the feasibility of estimating Ca + b content in conifers using the simple ratio R800/R560 index formulated with different full widths at half maximum (FWHM) at the leaf level. This index yielded a r2 = 0.69 for a FWHM of 30 nm and r2 = 0.55 for a FWHM of 70 nm. Experimental results compared the regression coefficients obtained with various multispectral and hyperspectral images with different spatial resolutions at the stand level. The strongest relationships where obtained using high-resolution hyperspectral images acquired with the AHS sensor (r2 = 0.65) while coarser spatial and spectral resolution images yielded a lower root mean square error (QuickBird r2 = 0.42; Landsat r2 = 0.48; Hyperion r2 = 0.56; CHRIS/Proba r2 = 0.57). This study shows the need to estimate chlorophyll content in forest plantations at the stand level with high spatial and spectral resolution sensors. Nevertheless, these results also show the accuracy obtained with medium-resolution sensors when monitoring physiological processes. Generating biochemical maps at the stand level could play a critical rule in the early detection of forest decline processes enabling their use in precision forestry.

  12. Mapping Forest Canopy Height Across Large Areas by Upscaling ALS Estimates with Freely Available Satellite Data

    Directory of Open Access Journals (Sweden)

    Phil Wilkes

    2015-09-01

    Full Text Available Operational assessment of forest structure is an on-going challenge for land managers, particularly over large, remote or inaccessible areas. Here, we present an easily adopted method for generating a continuous map of canopy height at a 30 m resolution, demonstrated over 2.9 million hectares of highly heterogeneous forest (canopy height 0–70 m in Victoria, Australia. A two-stage approach was utilized where Airborne Laser Scanning (ALS derived canopy height, captured over ~18% of the study area, was used to train a regression tree ensemble method; random forest. Predictor variables, which have a global coverage and are freely available, included Landsat Thematic Mapper (Tasselled Cap transformed, Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index time series, Shuttle Radar Topography Mission elevation data and other ancillary datasets. Reflectance variables were further processed to extract additional spatial and temporal contextual and textural variables. Modeled canopy height was validated following two approaches; (i random sample cross validation; and (ii with 108 inventory plots from outside the ALS capture extent. Both the cross validation and comparison with inventory data indicate canopy height can be estimated with a Root Mean Square Error (RMSE of ≤ 31% (~5.6 m at the 95th percentile confidence interval. Subtraction of the systematic component of model error, estimated from training data error residuals, rescaled canopy height values to more accurately represent the response variable distribution tails e.g., tall and short forest. Two further experiments were carried out to test the applicability and scalability of the presented method. Results suggest that (a no improvement in canopy height estimation is achieved when models were constructed and validated for smaller geographic areas, suggesting there is no upper limit to model scalability; and (b training data can be captured over a small

  13. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon

    Science.gov (United States)

    Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.

    2017-09-01

    Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).

  14. IDENTIFYING LOCAL SCALE CLIMATE ZONES OF URBAN HEAT ISLAND FROM HJ-1B SATELLITE DATA USING SELF-ORGANIZING MAPS

    Directory of Open Access Journals (Sweden)

    C. Z. Wei

    2016-10-01

    Full Text Available With the increasing acceleration of urbanization, the degeneration of the environment and the Urban Heat Island (UHI has attracted more and more attention. Quantitative delineation of UHI has become crucial for a better understanding of the interregional interaction between urbanization processes and the urban environment system. First of all, our study used medium resolution Chinese satellite data-HJ-1B as the Earth Observation data source to derive parameters, including the percentage of Impervious Surface Areas, Land Surface Temperature, Land Surface Albedo, Normalized Differential Vegetation Index, and object edge detector indicators (Mean of Inner Border, Mean of Outer border in the city of Guangzhou, China. Secondly, in order to establish a model to delineate the local climate zones of UHI, we used the Principal Component Analysis to explore the correlations between all these parameters, and estimate their contributions to the principal components of UHI zones. Finally, depending on the results of the PCA, we chose the most suitable parameters to classify the urban climate zones based on a Self-Organization Map (SOM. The results show that all six parameters are closely correlated with each other and have a high percentage of cumulative (95% in the first two principal components. Therefore, the SOM algorithm automatically categorized the city of Guangzhou into five classes of UHI zones using these six spectral, structural and climate parameters as inputs. UHI zones have distinguishable physical characteristics, and could potentially help to provide the basis and decision support for further sustainable urban planning.

  15. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data

    International Nuclear Information System (INIS)

    Alcantara, Camilo; Kuemmerle, Tobias; Griffiths, Patrick; Hostert, Patrick; Knorn, Jan; Müller, Daniel; Sieber, Anika; Baumann, Matthias; Bragina, Eugenia V; Radeloff, Volker C; Prishchepov, Alexander V; Schierhorn, Florian

    2013-01-01

    The demand for agricultural products continues to grow rapidly, but further agricultural expansion entails substantial environmental costs, making recultivating currently unused farmland an interesting alternative. The collapse of the Soviet Union in 1991 led to widespread abandonment of agricultural lands, but the extent and spatial patterns of abandonment are unclear. We quantified the extent of abandoned farmland, both croplands and pastures, across the region using MODIS NDVI satellite image time series from 2004 to 2006 and support vector machine classifications. Abandoned farmland was widespread, totaling 52.5 Mha, particularly in temperate European Russia (32 Mha), northern and western Ukraine, and Belarus. Differences in abandonment rates among countries were striking, suggesting that institutional and socio-economic factors were more important in determining the amount of abandonment than biophysical conditions. Indeed, much abandoned farmland occurred in areas without major constraints for agriculture. Our map provides a basis for assessing the potential of Central and Eastern Europe’s abandoned agricultural lands to contribute to food or bioenergy production, or carbon storage, as well as the environmental trade-offs and social constraints of recultivation. (letter)

  16. Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana: A Case Study in Bundaberg, Australia

    Directory of Open Access Journals (Sweden)

    Andrew Robson

    2017-11-01

    Full Text Available Accurate pre-harvest estimation of avocado (Persea americana cv. Haas yield offers a range of benefits to industry and growers. Currently there is no commercial yield monitor available for avocado tree crops and the manual count method used for yield forecasting can be highly inaccurate. Remote sensing using satellite imagery offers a potential means to achieve accurate pre-harvest yield forecasting. This study evaluated the accuracies of high resolution WorldView (WV 2 and 3 satellite imagery and targeted field sampling for the pre-harvest prediction of total fruit weight (kg·tree−1 and average fruit size (g and for mapping the spatial distribution of these yield parameters across the orchard block. WV 2 satellite imagery was acquired over two avocado orchards during 2014, and WV3 imagery was acquired in 2016 and 2017 over these same two orchards plus an additional three orchards. Sample trees representing high, medium and low vigour zones were selected from normalised difference vegetation index (NDVI derived from the WV images and sampled for total fruit weight (kg·tree−1 and average fruit size (g per tree. For each sample tree, spectral reflectance data was extracted from the eight band multispectral WV imagery and 18 vegetation indices (VIs derived. Principal component analysis (PCA and non-linear regression analysis was applied to each of the derived VIs to determine the index with the strongest relationship to the measured total fruit weight and average fruit size. For all trees measured over the three year period (2014, 2016, and 2017 a consistent positive relationship was identified between the VI using near infrared band one and the red edge band (RENDVI1 to both total fruit weight (kg·tree−1 (R2 = 0.45, 0.28, and 0.29 respectively and average fruit size (g (R2 = 0.56, 0.37, and 0.29 respectively across all orchard blocks. Separate analysis of each orchard block produced higher R2 values as well as identifying different

  17. Determining the best phenological state for accurate mapping of Phragmites australis in wetlands using time series multispectral satellite data

    Science.gov (United States)

    Rupasinghe, P. A.; Markle, C. E.; Marcaccio, J. V.; Chow-Fraser, P.

    2017-12-01

    Phragmites australis (European common reed), is a relatively recent invader of wetlands and beaches in Ontario. It can establish large homogenous stands within wetlands and disperse widely throughout the landscape by wind and vehicular traffic. A first step in managing this invasive species includes accurate mapping and quantification of its distribution. This is challenging because Phragimtes is distributed in a large spatial extent, which makes the mapping more costly and time consuming. Here, we used freely available multispectral satellite images taken monthly (cloud free images as available) for the calendar year to determine the optimum phenological state of Phragmites that would allow it to be accurately identified using remote sensing data. We analyzed time series, Landsat-8 OLI and Sentinel-2 images for Big Creek Wildlife Area, ON using image classification (Support Vector Machines), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). We used field sampling data and high resolution image collected using Unmanned Aerial Vehicle (UAV; 8 cm spatial resolution) as training data and for the validation of the classified images. The accuracy for all land cover classes and for Phragmites alone were low at both the start and end of the calendar year, but reached overall accuracy >85% by mid to late summer. The highest classification accuracies for Landsat-8 OLI were associated with late July and early August imagery. We observed similar trends using the Sentinel-2 images, with higher overall accuracy for all land cover classes and for Phragmites alone from late July to late September. During this period, we found the greatest difference between Phragmites and Typha, commonly confused classes, with respect to near-infrared and shortwave infrared reflectance. Therefore, the unique spectral signature of Phragmites can be attributed to both the level of greenness and factors related to water content in the leaves during late

  18. Mapping Fish Community Variables by Integrating Field and Satellite Data, Object-Based Image Analysis and Modeling in a Traditional Fijian Fisheries Management Area

    Directory of Open Access Journals (Sweden)

    Stacy Jupiter

    2011-03-01

    Full Text Available The use of marine spatial planning for zoning multi-use areas is growing in both developed and developing countries. Comprehensive maps of marine resources, including those important for local fisheries management and biodiversity conservation, provide a crucial foundation of information for the planning process. Using a combination of field and high spatial resolution satellite data, we use an empirical procedure to create a bathymetric map (RMSE 1.76 m and object-based image analysis to produce accurate maps of geomorphic and benthic coral reef classes (Kappa values of 0.80 and 0.63; 9 and 33 classes, respectively covering a large (>260 km2 traditional fisheries management area in Fiji. From these maps, we derive per-pixel information on habitat richness, structural complexity, coral cover and the distance from land, and use these variables as input in models to predict fish species richness, diversity and biomass. We show that random forest models outperform five other model types, and that all three fish community variables can be satisfactorily predicted from the high spatial resolution satellite data. We also show geomorphic zone to be the most important predictor on average, with secondary contributions from a range of other variables including benthic class, depth, distance from land, and live coral cover mapped at coarse spatial scales, suggesting that data with lower spatial resolution and lower cost may be sufficient for spatial predictions of the three fish community variables.

  19. Enhanced-Resolution Satellite Microwave Brightness Temperature Records for Mapping Boreal-Arctic Landscape Freeze-Thaw Heterogeneity

    Science.gov (United States)

    Kim, Y.; Du, J.; Kimball, J. S.

    2017-12-01

    The landscape freeze-thaw (FT) status derived from satellite microwave remote sensing is closely linked to vegetation phenology and productivity, surface energy exchange, evapotranspiration, snow/ice melt dynamics, and trace gas fluxes over land areas affected by seasonally frozen temperatures. A long-term global satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) was developed using similar calibrated 37GHz, vertically-polarized (V-pol) brightness temperatures (Tb) from SMMR, SSM/I, and SSMIS sensors. The FT-ESDR shows mean annual spatial classification accuracies of 90.3 and 84.3 % for PM and AM overpass retrievals relative surface air temperature (SAT) measurement based FT estimates from global weather stations. However, the coarse FT-ESDR gridding (25-km) is insufficient to distinguish finer scale FT heterogeneity. In this study, we tested alternative finer scale FT estimates derived from two enhanced polar-grid (3.125-km and 6-km resolution), 36.5 GHz V-pol Tb records derived from calibrated AMSR-E and AMSR2 sensor observations. The daily FT estimates are derived using a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using ERA-Interim reanalysis based SAT, downscaled using a digital terrain map and estimated temperature lapse rates. The resulting polar-grid FT records for a selected study year (2004) show mean annual spatial classification accuracies of 90.1% (84.2%) and 93.1% (85.8%) for respective PM (AM) 3.125km and 6-km Tb retrievals relative to in situ SAT measurement based FT estimates from regional weather stations. Areas with enhanced FT accuracy include water-land boundaries and mountainous terrain. Differences in FT patterns and relative accuracy obtained from the enhanced grid Tb records were attributed to several factors, including different noise contributions from underlying Tb processing and spatial mismatches between Tb

  20. Habitat Mapping and Change Assessment of Coastal Environments: An Examination of WorldView-2, QuickBird, and IKONOS Satellite Imagery and Airborne LiDAR for Mapping Barrier Island Habitats

    Directory of Open Access Journals (Sweden)

    Matthew J. McCarthy

    2014-03-01

    Full Text Available Habitat mapping can be accomplished using many techniques and types of data. There are pros and cons for each technique and dataset, therefore, the goal of this project was to investigate the capabilities of new satellite sensor technology and to assess map accuracy for a variety of image classification techniques based on hundreds of field-work sites. The study area was Masonboro Island, an undeveloped area in coastal North Carolina, USA. Using the best map results, a habitat change assessment was conducted between 2002 and 2010. WorldView-2, QuickBird, and IKONOS satellite sensors were tested using unsupervised and supervised methods using a variety of spectral band combinations. Light Detection and Ranging (LiDAR elevation and texture data pan-sharpening, and spatial filtering were also tested. In total, 200 maps were generated and results indicated that WorldView-2 was consistently more accurate than QuickBird and IKONOS. Supervised maps were more accurate than unsupervised in 80% of the maps. Pan-sharpening the images did not consistently improve map accuracy but using a majority filter generally increased map accuracy. During the relatively short eight-year period, 20% of the coastal study area changed with intertidal marsh experiencing the most change. Smaller habitat classes changed substantially as well. For example, 84% of upland scrub-shrub experienced change. These results document the dynamic nature of coastal habitats, validate the use of the relatively new Worldview-2 sensor, and may be used to guide future coastal habitat mapping.

  1. Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory - 1 (SRL1) Carbon Monoxide Second by Second data

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPS Overview The MAPS experiment measures the global distribution of carbon monoxide (CO) mixing ratios in the free troposphere. Because of MAPS' previous flights...

  2. Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory - 2 (SRL2) Carbon Monoxide Second by Second data

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPS Overview The MAPS experiment measures the global distribution of carbon monoxide (CO) mixing ratios in the free troposphere. Because of MAPS' previous flights...

  3. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  4. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  5. Assessment of Machine Learning Algorithms for Automatic Benthic Cover Monitoring and Mapping Using Towed Underwater Video Camera and High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Hassan Mohamed

    2018-05-01

    Full Text Available Benthic habitat monitoring is essential for many applications involving biodiversity, marine resource management, and the estimation of variations over temporal and spatial scales. Nevertheless, both automatic and semi-automatic analytical methods for deriving ecologically significant information from towed camera images are still limited. This study proposes a methodology that enables a high-resolution towed camera with a Global Navigation Satellite System (GNSS to adaptively monitor and map benthic habitats. First, the towed camera finishes a pre-programmed initial survey to collect benthic habitat videos, which can then be converted to geo-located benthic habitat images. Second, an expert labels a number of benthic habitat images to class habitats manually. Third, attributes for categorizing these images are extracted automatically using the Bag of Features (BOF algorithm. Fourth, benthic cover categories are detected automatically using Weighted Majority Voting (WMV ensembles for Support Vector Machines (SVM, K-Nearest Neighbor (K-NN, and Bagging (BAG classifiers. Fifth, WMV-trained ensembles can be used for categorizing more benthic cover images automatically. Finally, correctly categorized geo-located images can provide ground truth samples for benthic cover mapping using high-resolution satellite imagery. The proposed methodology was tested over Shiraho, Ishigaki Island, Japan, a heterogeneous coastal area. The WMV ensemble exhibited 89% overall accuracy for categorizing corals, sediments, seagrass, and algae species. Furthermore, the same WMV ensemble produced a benthic cover map using a Quickbird satellite image with 92.7% overall accuracy.

  6. Korišćenje satelitskih snimaka za vođenje radne karte / Use of satellite images in situation map design

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2010-01-01

    the working map; addition of new data; coding of the working map. Preparation for computer-based map design Computer-added map design demands and implies existence of appropriate programs with proper program tools, as well as adequate scanned or in vector form presented maps. On a suitable memorized base, that shows relevant geographic space, tactical symbols from digital topographic key are entered. USING AERIAL PHOTOS FOR MAKING A WORKING MAP Data going to be entered into a situation map are collected during monitoring and recording by different sensors from the land, air and space. Apart from visual inspection, as the oldest one, today there are various technical monitoring and recording means: photography, air photography, radars, infrared, television, video, radio ones and other. In the process of photo decoding, symbols are used to characterize particular objects, details and phenomena on the relief that disclose them. These symbols can be direct ones, such as shape, size and hue of an object, and indirect ones, such as relation among objects, traces of activities and object shadows. THE EXPERIMENT The subject of this experiment is a satellite photo presenting the area of the city of Belgrade, made by the IKONOS 2 satellite of The European Space Imaging Company. It belongs to the GEO Ortho Kit products category, which means that it is approximately geo-referenced (conveyed into a referent coordinate system and completely ortho- rectified. In order to complete the experiment, besides this satellite image, an appropriate topographic map (TM was provided. For the purpose of creating a working map and its updating by newly detected military objects due to the image interpretation and analysis, TM 50 (a map of the scale of 1:50 000 was selected. MODELS OF COORDINATE TRANSFORMATION Mathematical models of transformation are based on the fact that the Earth represents a three-dimensional object of a spheroidal shape. The crucial problem appears to be a need to properly

  7. Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data

    Science.gov (United States)

    Zhu, Likai; Radeloff, Volker C.; Ives, Anthony R.

    2017-06-01

    Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat's sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat

  8. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping

    Directory of Open Access Journals (Sweden)

    Jennifer N. Hird

    2017-12-01

    Full Text Available Modern advances in cloud computing and machine-leaning algorithms are shifting the manner in which Earth-observation (EO data are used for environmental monitoring, particularly as we settle into the era of free, open-access satellite data streams. Wetland delineation represents a particularly worthy application of this emerging research trend, since wetlands are an ecologically important yet chronically under-represented component of contemporary mapping and monitoring programs, particularly at the regional and national levels. Exploiting Google Earth Engine and R Statistical software, we developed a workflow for predicting the probability of wetland occurrence using a boosted regression tree machine-learning framework applied to digital topographic and EO data. Working in a 13,700 km2 study area in northern Alberta, our best models produced excellent results, with AUC (area under the receiver-operator characteristic curve values of 0.898 and explained-deviance values of 0.708. Our results demonstrate the central role of high-quality topographic variables for modeling wetland distribution at regional scales. Including optical and/or radar variables into the workflow substantially improved model performance, though optical data performed slightly better. Converting our wetland probability-of-occurrence model into a binary Wet-Dry classification yielded an overall accuracy of 85%, which is virtually identical to that derived from the Alberta Merged Wetland Inventory (AMWI: the contemporary inventory used by the Government of Alberta. However, our workflow contains several key advantages over that used to produce the AMWI, and provides a scalable foundation for province-wide monitoring initiatives.

  9. Monturaqui meteorite impact crater, Chile: A field test of the utility of satellite-based mapping of ejecta at small craters

    Science.gov (United States)

    Rathbun, K.; Ukstins, I.; Drop, S.

    2017-12-01

    Monturaqui Crater is a small ( 350 m diameter), simple meteorite impact crater located in the Atacama Desert of northern Chile that was emplaced in Ordovician granite overlain by discontinuous Pliocene ignimbrite. Ejecta deposits are granite and ignimbrite, with lesser amounts of dark impact melt and rare tektites and iron shale. The impact restructured existing drainage systems in the area that have subsequently eroded through the ejecta. Satellite-based mapping and modeling, including a synthesis of photographic satellite imagery and ASTER thermal infrared imagery in ArcGIS, were used to construct a basic geological interpretation of the site with special emphasis on understanding ejecta distribution patterns. This was combined with field-based mapping to construct a high-resolution geologic map of the crater and its ejecta blanket and field check the satellite-based geologic interpretation. The satellite- and modeling-based interpretation suggests a well-preserved crater with an intact, heterogeneous ejecta blanket that has been subjected to moderate erosion. In contrast, field mapping shows that the crater has a heavily-eroded rim and ejecta blanket, and the ejecta is more heterogeneous than previously thought. In addition, the erosion rate at Monturaqui is much higher than erosion rates reported elsewhere in the Atacama Desert. The bulk compositions of the target rocks at Monturaqui are similar and the ejecta deposits are highly heterogeneous, so distinguishing between them with remote sensing is less effective than with direct field observations. In particular, the resolution of available imagery for the site is too low to resolve critical details that are readily apparent in the field on the scale of 10s of cm, and which significantly alter the geologic interpretation. The limiting factors for effective remote interpretation at Monturaqui are its target composition and crater size relative to the resolution of the remote sensing methods employed. This

  10. Preliminary hard and soft bottom seafloor substrate map derived from an supervised classification of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from a supervised classification from multispectral World View-2 satellite imagery of Ni'ihau Island,...

  11. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    Science.gov (United States)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived

  12. Estimation and Mapping Forest Attributes Using “k Nearest Neighbor” Method on IRS-P6 LISS III Satellite Image Data

    Directory of Open Access Journals (Sweden)

    Amir Eslam Bonyad

    2015-06-01

    Full Text Available In this study, we explored the utility of k Nearest Neighbor (kNN algorithm to integrate IRS-P6 LISS III satellite imagery data and ground inventory data for application in forest attributes (DBH, trees height, volume, basal area, density and forest cover type estimation and mapping. The ground inventory data was based on a systematic-random sampling grid and the numbers of sampling plots were 408 circular plots in a plantation in Guilan province, north of Iran. We concluded that kNN method was useful tool for mapping at a fine accuracy between 80% and 93.94%. Values of k between 5 and 8 seemed appropriate. The best distance metrics were found Euclidean, Fuzzy and Mahalanobis. Results showed that kNN was accurate enough for practical applicability for mapping forest areas.

  13. Application of the Lean Office philosophy and mapping of the value stream in the process of designing the banking units of a financial company

    Directory of Open Access Journals (Sweden)

    Nelson Antônio Calsavara

    2016-09-01

    Full Text Available The purpose of this study is to conduct a critical analysis of the effects of Lean Office on the design process of the banking units of a financial company and how the implementation of this philosophy may contribute to productivity, thus reducing implementation time. A literature review of the Toyota Production System was conducted, as well as studies on its methods, with advancement to lean thinking and consistent application of Lean philosophies in services and Office. A bibliographic and documentary survey of the Lean processes and procedures for opening bank branches was taken. A Current State Map was developed, modeling the current operating procedures. Soon after the identification and analysis of waste, proposals were presented for reducing deadlines and eliminating and grouping stages, with consequent development of the Future State Map, implementation and monitoring of stages, and the measurement of estimated time gains in operation, demonstrating an estimated 45% reduction, in days, from start to end of the process, concluding that the implementation of the Lean Office philosophy contributed to the process.

  14. Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran

    Science.gov (United States)

    Ahmadirouhani, Reyhaneh; Rahimi, Behnam; Karimpour, Mohammad Hassan; Malekzadeh Shafaroudi, Azadeh; Afshar Najafi, Sadegh; Pour, Amin Beiranvand

    2017-10-01

    Syste'm Pour l'Observation de la Terre (SPOT) remote sensing satellite data have useful characteristics for lineament extraction and enhancement related to the tectonic evaluation of a region. In this study, lineament features in the Bajestan area associated with the tectonic significance of the Lut Block (LB), east Iran were mapped and characterized using SPOT-5 satellite data. The structure of the Bajestan area is affected by the activity of deep strike-slip faults in the boundary of the LB. Structural elements such as faults and major joints were extracted, mapped, and analyzed by the implementation of high-Pass and standard kernels (Threshold and Sobel) filters to bands 1, 2 and 3 of SPOT-5 Level 2 A scene product of the Bajestan area. Lineament map was produced by assigning resultant filter images to red-green-blue (RGB) colour combinations of three main directions such as N-S, E-W and NE-SW. Results derived from image processing technique and statistical assessment indicate that two main orientations, including NW-SE with N-110 azimuth and NE-SW with N-40 azimuth, were dominated in the Bajestan area. The NW-SE trend has a high frequency in the study area. Based on the results of remote sensing lineament analysis and fieldwork, two dextral and sinistral strike-slip components were identified as main fault trends in the Bajestan region. Two dextral faults have acted as the cause of shear in the south and north of the Bajestan granitoid mass. Furthermore, the results indicate that the most of the lineaments in this area are extensional fractures corresponding to both the dykes emplacement and hydrothermal alteration zones. The application of SPOT-5 satellite data for structural analysis in a study region has great capability to provide very useful information of a vast area with low cost and time-consuming.

  15. Active Fire Mapping Program

    Science.gov (United States)

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  16. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    Directory of Open Access Journals (Sweden)

    François Peyret

    2013-01-01

    Full Text Available Reliable GPS positioning in city environment is a key issue: actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results.

  17. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    Science.gov (United States)

    Peyraud, Sébastien; Bétaille, David; Renault, Stéphane; Ortiz, Miguel; Mougel, Florian; Meizel, Dominique; Peyret, François

    2013-01-01

    Reliable GPS positioning in city environment is a key issue actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results. PMID:23344379

  18. U.S. Environmental Protection Agency Office of Enforcement and Compliance Assurance New Mapping Tool for Enforcement Cases

    Data.gov (United States)

    U.S. Environmental Protection Agency — The new mapping tool shows facilities in the United States where the EPA concluded formal environmental enforcement actions between October 1, 2008 and September 30,...

  19. Land use maps of the Tanana and Purcell Mountain areas, Alaska, based on Earth Resources Technology Satellite imagery

    Science.gov (United States)

    Anderson, J. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS imagery in photographic format was used to make land use maps of two areas of special interest to native corporations under terms of the Alaska Native Claims Settlement Act. Land selections are to be made in these areas, and the maps should facilitate decisions because of their comprehensive presentation of resource distribution information. The ERTS images enabled mapping broadly-defined land use classes in large areas in a comparatively short time. Some aerial photography was used to identify colors and shades of gray on the various images. The 14 mapped land use categories are identified according to the classification system under development by the U.S. Geological Survey. These maps exemplify a series of about a dozen diverse Alaskan areas. The principal resource depicted is vegetation, and clearly shown are vegetation units of special importance, including stands possibly containing trees of commercial grade and stands constituting wildlife habitat.

  20. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  1. The relationship of field burn severity measures to satellite-derived Burned Area Reflectance Classification (BARC) maps

    Science.gov (United States)

    Andrew Hudak; Penelope Morgan; Carter Stone; Pete Robichaud; Terrie Jain; Jess Clark

    2004-01-01

    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn...

  2. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    Science.gov (United States)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  3. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    Science.gov (United States)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  4. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    Science.gov (United States)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  5. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    Science.gov (United States)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  6. Randomness-Based Scale-Chromatic Image Analysis for Interactive Mapping on Satellite-Roadway-Vehicle Network

    Directory of Open Access Journals (Sweden)

    Kohji Kamejima

    2007-08-01

    Full Text Available A new framework is presented for integrating satellite/avionics sensors with onboard vision to support information intensive maneuvering. Real time bindings of the bird's eye observation and the driver's view via GPS provides \\textit{as-is} basis for perception and decision. Randomness-based roadway pattern model is implemented by fractal coding scheme associating bird's eye and frontal views. The feasibility of the framework with resquirements for vison system is discussed through concept modeling and experimental studies.

  7. Randomness-Based Scale-Chromatic Image Analysis for Interactive Mapping on Satellite-Roadway-Vehicle Network

    Directory of Open Access Journals (Sweden)

    Kohji Kamejima

    2007-08-01

    Full Text Available A new framework is presented for integrating satellite/avionics sensors with onboard vision to support information intensive maneuvering. Real time bindings of the bird's eye observation and the driver's view via GPS provides extit{as-is} basis for perception and decision. Randomness-based roadway pattern model is implemented by fractal coding scheme associating bird's eye and frontal views. The feasibility of the framework with resquirements for vison system is discussed through concept modeling and experimental studies.

  8. Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station

    Science.gov (United States)

    Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł

    2017-12-01

    To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.

  9. Primena satelitskih snimaka za dopunu sadržaja topografskih karata / An application of satellite images for improving the content of topographic maps

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2010-10-01

    Full Text Available Neažurnost sadržaja topografskih karata (TK, uslovljena ponajviše stvarnim ekonomskim teškoćama pri izradi novih i dopuni postojećih izdanja, kao i nedovoljnost i sve teže stanje pri izradi ostalih geotopografskih materijala (GTM, u velikoj meri otežavaju geotopografsko obezbeđenje (GTOb vojske u miru, kao i u svim periodima pripreme i vođenja ratnih dejstava. Rešenje ovog problema je u iznalaženju adekvatnog načina upotrebe proizvoda svih vrsta daljinskih snimanja, a naročito u obradi kvalitetnih satelitskih snimaka. Kao najbolji pokazatelj velikih mogućnosti daljinske detekcije, korišćenjem satelitskih snimaka, u kartografskoj praksi primenom kvalitetnih softverskih rešenja, u radu je predstavljena dopuna topografske karte nedostajućim topografskim sadržajem. / Lack of updated content of topographic maps (TMs, mainly due to economic issues regarding the publishing of existing or revised TMs, substantially affects geo-topographic supply (GTS of the Army both in peace and warfare time, as well as shortage of other geo-topographic materials (GTMs. The solution to this problem is in finding an appropriate method of using products of all types of remote sensing, high quality satellite images in particular. Having shown the best possibilities of remote sensing while using satellite images in mapping through the quality software solutions, the author presents an addition to topographic maps based on missing topographic data. Introduction Numerous natural and social phenomena are constantly observed, surveyed, registered and analyzed. Permanent or periodical satellite surveillance and recording for different purposes are growing in importance. The purposes can range from meteorological issues, through study of large water surfaces to military intelligence, etc. These recording can be used in making topographic, thematic and working maps as well as other geo-topographic material. Processing and analyzing of ikonos2 satellite images

  10. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  11. Morphodynamics of nearshore rhythmic sandbars in a mixed-energy environment (SW France): I. Mapping beach changes using visible satellite imagery

    Science.gov (United States)

    Lafon, V.; De Melo Apoluceno, D.; Dupuis, H.; Michel, D.; Howa, H.; Froidefond, J. M.

    2004-10-01

    This paper presents a new method to analyze the morphology and migration of shallow water sandbanks based on the retrieval of maps from high-resolution Spot satellite imagery. This approach was applied to the study of intertidal ridge and runnel systems and subtidal crescents that border the southwest coast of France. Maps were obtained from 16 Spot images recorded between 1986 and 2000. Ridge and runnel shapes, with regard to a reference level, were delineated using a watercolor reflectance code parameterized and validated with field data. Crescent plan shapes, which appear on the images due to water transparency or breaking-induced foam, were directly extracted. The spatial maps show that, in conformity with field surveys, the mean alongshore spacing of intertidal systems and crescents range from 370 ± 146 m (variability is indicated by standard deviation) to 462 ± 188 m, and from 579 ± 200 to 818 ± 214 m, respectively. Several couples of images also show that ridge and runnel systems and crescents move in the longshore drift direction (southward) by about 2.4-3.1 and 1 m day -1, respectively. Alongshore migration rates of intertidal systems are confirmed by field surveys, whilst crescent dynamics cannot be validated because there is no in situ data available. To complete these measurements, an analysis of the influence of wave climate on both the shape and movements of these rhythmic sedimentary patterns is proposed in a companion paper.

  12. Investigating the Capability of IRS-P6-LISS IV Satellite Image for Pistachio Forests Density Mapping (case Study: Northeast of Iran)

    Science.gov (United States)

    Hoseini, F.; Darvishsefat, A. A.; Zargham, N.

    2012-07-01

    In order to investigate the capability of satellite images for Pistachio forests density mapping, IRS-P6-LISS IV data were analyzed in an area of 500 ha in Iran. After geometric correction, suitable training areas were determined based on fieldwork. Suitable spectral transformations like NDVI, PVI and PCA were performed. A ground truth map included of 34 plots (each plot 1 ha) were prepared. Hard and soft supervised classifications were performed with 5 density classes (0-5%, 5-10%, 10-15%, 15-20% and > 20%). Because of low separability of classes, some classes were merged and classifications were repeated with 3 classes. Finally, the highest overall accuracy and kappa coefficient of 70% and 0.44, respectively, were obtained with three classes (0-5%, 5-20%, and > 20%) by fuzzy classifier. Considering the low kappa value obtained, it could be concluded that the result of the classification was not desirable. Therefore, this approach is not appropriate for operational mapping of these valuable Pistachio forests.

  13. Urban and Rural Landslide Hazard and Exposure Mapping Using Landsat and Corona Satellite Imagery for Tehran and the Alborz Mountains, Iran

    Directory of Open Access Journals (Sweden)

    Alexander Fekete

    2017-01-01

    Full Text Available Tehran, Karaj, Quazvin and nearby rural areas in the Alborz Mountains, Iran are prone to earthquake and landslide hazards. Risks for settlement areas, transport infrastructure and pastoralist areas exist due to a combination of natural as well as man-made factors. This study analyses data derived from satellite and airborne sensors, specifically, Landsat and declassified Corona data to identify landslide occurrence and urban sprawl. In a Geographic Information System, other data such as geology, topography, road network and river flows were integrated from various sources. A digital elevation model (DEM was computed based on contour lines that were extracted from topographic maps. The DEM allows for mapping topographic factors such as slope angle and aspect. Finally, change detection analysis has documented urban sprawl in massive dimensions since the 1970s. A multi-criteria landslide hazard and exposure zonation map was developed for a small rural area where several settlements and segments of roads were affected by landslides. The estimated risk areas were then overlaid with real landslide occurrences. The match of hypothetical and real event occurrence areas demonstrated the feasibility of this approach. The main contribution of this paper is to inform about recent landslide risks in Iran and how certain factors can be derived from spatial information.

  14. Mapping wetlands in Nova Scotia with multi-beam RADARSAT-2 Polarimetric SAR, optical satellite imagery, and Lidar data

    Science.gov (United States)

    Jahncke, Raymond; Leblon, Brigitte; Bush, Peter; LaRocque, Armand

    2018-06-01

    Wetland maps currently in use by the Province of Nova Scotia, namely the Department of Natural Resources (DNR) wetland inventory map and the swamp wetland classes of the DNR forest map, need to be updated. In this study, wetlands were mapped in an area southwest of Halifax, Nova Scotia by classifying a combination of multi-date and multi-beam RADARSAT-2 C-band polarimetric SAR (polSAR) images with spring Lidar, and fall QuickBird optical data using the Random Forests (RF) classifier. The resulting map has five wetland classes (open-water/marsh complex, open bog, open fen, shrub/treed fen/bog, swamp), plus lakes and various upland classes. Its accuracy was assessed using data from 156 GPS wetland sites collected in 2012 and compared to the one obtained with the current wetland map of Nova Scotia. The best overall classification was obtained using a combination of Lidar, RADARSAT-2 HH, HV, VH, VV intensity with polarimetric variables, and QuickBird multispectral (89.2%). The classified image was compared to GPS validation sites to assess the mapping accuracy of the wetlands. It was first done considering a group consisting of all wetland classes including lakes. This showed that only 69.9% of the wetland sites were correctly identified when only the QuickBird classified image was used in the classification. With the addition of variables derived from lidar, the number of correctly identified wetlands increased to 88.5%. The accuracy remained the same with the addition of RADARSAT-2 (88.5%). When we tested the accuracy for identifying wetland classes (e.g. marsh complex vs. open bog) instead of grouped wetlands, the resulting wetland map performed best with either QuickBird and Lidar, or QuickBird, Lidar, and RADARSAT-2 (66%). The Province of Nova Scotia's current wetland inventory and its associated wetland classes (aerial-photo interpreted) were also assessed against the GPS wetland sites. This provincial inventory correctly identified 62.2% of the grouped wetlands

  15. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2015-09-01

    Full Text Available Crop area extent estimates and crop type maps provide crucial information for agricultural monitoring and management. Remote sensing imagery in general and, more specifically, high temporal and high spatial resolution data as the ones which will be available with upcoming systems, such as Sentinel-2, constitute a major asset for this kind of application. The goal of this paper is to assess to what extent state-of-the-art supervised classification methods can be applied to high resolution multi-temporal optical imagery to produce accurate crop type maps at the global scale. Five concurrent strategies for automatic crop type map production have been selected and benchmarked using SPOT4 (Take5 and Landsat 8 data over 12 test sites spread all over the globe (four in Europe, four in Africa, two in America and two in Asia. This variety of tests sites allows one to draw conclusions applicable to a wide variety of landscapes and crop systems. The results show that a random forest classifier operating on linearly temporally gap-filled images can achieve overall accuracies above 80% for most sites. Only two sites showed low performances: Madagascar due to the presence of fields smaller than the pixel size and Burkina Faso due to a mix of trees and crops in the fields. The approach is based on supervised machine learning techniques, which need in situ data collection for the training step, but the map production is fully automatic.

  16. Structural Analysis of Components of the Students for the Exploration and Development of Space Satellite (SEDSAT) for the Small Expendable Deployer System (SEDS) Project Office

    Science.gov (United States)

    Maddux, Gary A.

    1998-01-01

    During the time frame allocated by the delivery order, members of the UAH Applied Research Program, with the cooperation of representatives from NASA investigated and conducted stress analysis of the SEDSAT1 satellite. The main area of concern was with the design of the deployable 10 m antennas. The placement of the holes for the antenna door hinge pin was too close to the edge of the antenna canister. Because of the load placed on the hinge pin, the stress analysis of this area suggested that more space would be needed between the holes and the edge of the material. Due to other conflicts, SEDSATI was removed from flying on the space shuttle and moved to the Delta Launch Vehicle. This changed many of the design requirements for the mounting and deployment of the satellite that forced a new design for the satellite. Once this happened, the stress analysis became obsolete, and the task was concluded.

  17. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-05-01

    Full Text Available Signals from Global Navigation Satellite Systems (GNSS were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice… can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS.

  18. Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions

    Directory of Open Access Journals (Sweden)

    Jiahui Han

    2017-03-01

    Full Text Available Oilseed rape (Brassica napus L. is one of the three most important oil crops in China, and is regarded as a drought-tolerant oilseed crop. However, it is commonly sensitive to waterlogging, which usually refers to an adverse environment that limits crop development. Moreover, crop growth and soil irrigation can be monitored at a regional level using remote sensing data. High spatial resolution optical satellite sensors are very useful to capture and resist unfavorable field conditions at the sub-field scale. In this study, four different optical sensors, i.e., Pleiades-1A, Worldview-2, Worldview-3, and SPOT-6, were used to estimate the dry above-ground biomass (AGB of oilseed rape and track the seasonal growth dynamics. In addition, three different soil water content field experiments were carried out at different oilseed rape growth stages from November 2014 to May 2015 in Northern Zhejiang province, China. As a significant indicator of crop productivity, AGB was measured during the seasonal growth stages of the oilseed rape at the experimental plots. Several representative vegetation indices (VIs obtained from multiple satellite sensors were compared with the simultaneously-collected oilseed rape AGB. Results showed that the estimation model using the normalized difference vegetation index (NDVI with a power regression model performed best through the seasonal growth dynamics, with the highest coefficient of determination (R2 = 0.77, the smallest root mean square error (RMSE = 104.64 g/m2, and the relative RMSE (rRMSE = 21%. It is concluded that the use of selected VIs and high spatial multiple satellite data can significantly estimate AGB during the winter oilseed rape growth stages, and can be applied to map the variability of winter oilseed rape at the sub-field level under different waterlogging conditions, which is very promising in the application of agricultural irrigation and precision agriculture.

  19. Object-based random forest classification of Landsat ETM+ and WorldView-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia

    Science.gov (United States)

    Melville, Bethany; Lucieer, Arko; Aryal, Jagannath

    2018-04-01

    This paper presents a random forest classification approach for identifying and mapping three types of lowland native grassland communities found in the Tasmanian Midlands region. Due to the high conservation priority assigned to these communities, there has been an increasing need to identify appropriate datasets that can be used to derive accurate and frequently updateable maps of community extent. Therefore, this paper proposes a method employing repeat classification and statistical significance testing as a means of identifying the most appropriate dataset for mapping these communities. Two datasets were acquired and analysed; a Landsat ETM+ scene, and a WorldView-2 scene, both from 2010. Training and validation data were randomly subset using a k-fold (k = 50) approach from a pre-existing field dataset. Poa labillardierei, Themeda triandra and lowland native grassland complex communities were identified in addition to dry woodland and agriculture. For each subset of randomly allocated points, a random forest model was trained based on each dataset, and then used to classify the corresponding imagery. Validation was performed using the reciprocal points from the independent subset that had not been used to train the model. Final training and classification accuracies were reported as per class means for each satellite dataset. Analysis of Variance (ANOVA) was undertaken to determine whether classification accuracy differed between the two datasets, as well as between classifications. Results showed mean class accuracies between 54% and 87%. Class accuracy only differed significantly between datasets for the dry woodland and Themeda grassland classes, with the WorldView-2 dataset showing higher mean classification accuracies. The results of this study indicate that remote sensing is a viable method for the identification of lowland native grassland communities in the Tasmanian Midlands, and that repeat classification and statistical significant testing can be

  20. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    Science.gov (United States)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  1. On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions

    Directory of Open Access Journals (Sweden)

    Beatriz Revilla-Romero

    2015-11-01

    Full Text Available Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision-making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using 10 major flood events recorded over 2012–2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS and the Global Flood Awareness System (GloFAS. Furthermore, we compared the GFDS flood maps with those from NASA’s two Moderate Resolution Imaging Spectroradiometer (MODIS sensors. Results reveal that: (1 general agreement was found between the GFDS and MODIS flood detection systems, (2 large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and (3 the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large-scale flood monitoring tools.

  2. Using satellite remote sensing to model and map the distribution of Bicknell's thrush (Catharus bicknelli) in the White Mountains of New Hampshire

    Science.gov (United States)

    Hale, Stephen Roy

    Landsat-7 Enhanced Thematic Mapper satellite imagery was used to model Bicknell's Thrush (Catharus bicknelli) distribution in the White Mountains of New Hampshire. The proof-of-concept was established for using satellite imagery in species-habitat modeling, where for the first time imagery spectral features were used to estimate a species-habitat model variable. The model predicted rising probabilities of thrush presence with decreasing dominant vegetation height, increasing elevation, and decreasing distance to nearest Fir Sapling cover type. To solve the model at all locations required regressor estimates at every pixel, which were not available for the dominant vegetation height and elevation variables. Topographically normalized imagery features Normalized Difference Vegetation Index and Band 1 (blue) were used to estimate dominant vegetation height using multiple linear regression; and a Digital Elevation Model was used to estimate elevation. Distance to nearest Fir Sapling cover type was obtained for each pixel from a land cover map specifically constructed for this project. The Bicknell's Thrush habitat model was derived using logistic regression, which produced the probability of detecting a singing male based on the pattern of model covariates. Model validation using Bicknell's Thrush data not used in model calibration, revealed that the model accurately estimated thrush presence at probabilities ranging from 0 to account for more total individuals and reproductive output than higher density less abundant land area. Efforts to conserve areas of highest individual density under the assumption that density reflects habitat quality could target the smallest fraction of the total population.

  3. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    Science.gov (United States)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  4. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  5. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme.

    Science.gov (United States)

    Valderrama-Landeros, L; Flores-de-Santiago, F; Kovacs, J M; Flores-Verdugo, F

    2017-12-14

    Optimizing the classification accuracy of a mangrove forest is of utmost importance for conservation practitioners. Mangrove forest mapping using satellite-based remote sensing techniques is by far the most common method of classification currently used given the logistical difficulties of field endeavors in these forested wetlands. However, there is now an abundance of options from which to choose in regards to satellite sensors, which has led to substantially different estimations of mangrove forest location and extent with particular concern for degraded systems. The objective of this study was to assess the accuracy of mangrove forest classification using different remotely sensed data sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and WorldView-2) for a system located along the Pacific coast of Mexico. Specifically, we examined a stressed semiarid mangrove forest which offers a variety of conditions such as dead areas, degraded stands, healthy mangroves, and very dense mangrove island formations. The results indicated that Landsat-8 (30 m per pixel) had  the lowest overall accuracy at 64% and that WorldView-2 (1.6 m per pixel) had the highest at 93%. Moreover, the SPOT-5 and the Sentinel-2 classifications (10 m per pixel) were very similar having accuracies of 75 and 78%, respectively. In comparison to WorldView-2, the other sensors overestimated the extent of Laguncularia racemosa and underestimated the extent of Rhizophora mangle. When considering such type of sensors, the higher spatial resolution can be particularly important in mapping small mangrove islands that often occur in degraded mangrove systems.

  6. Committee on Earth Observation Satellites (CEOS) Systems Engineering Office (SEO). Ocean Surface Topography (OST) Workshop, Ruedesheim an Rhein, Germany. [CEOS SEO Status Report

    Science.gov (United States)

    Killough, Brian D., Jr.

    2008-01-01

    The CEOS Systems Engineering Office will present a 2007 status report of the CEOS constellation process, present a new systems engineering framework, and analysis results from the GEO Societal Benefit Area (SBA) assessment and the OST constellation requirements assessment.

  7. Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite no. 1 wide field of view imagery

    Science.gov (United States)

    Ai, Jinquan; Gao, Wei; Gao, Zhiqiang; Shi, Runhe; Zhang, Chao

    2017-04-01

    Spartina alterniflora is an aggressive invasive plant species that replaces native species, changes the structure and function of the ecosystem across coastal wetlands in China, and is thus a major conservation concern. Mapping the spread of its invasion is a necessary first step for the implementation of effective ecological management strategies. The performance of a phenology-based approach for S. alterniflora mapping is explored in the coastal wetland of the Yangtze Estuary using a time series of GaoFen satellite no. 1 wide field of view camera (GF-1 WFV) imagery. First, a time series of the normalized difference vegetation index (NDVI) was constructed to evaluate the phenology of S. alterniflora. Two phenological stages (the senescence stage from November to mid-December and the green-up stage from late April to May) were determined as important for S. alterniflora detection in the study area based on NDVI temporal profiles, spectral reflectance curves of S. alterniflora and its coexistent species, and field surveys. Three phenology feature sets representing three major phenology-based detection strategies were then compared to map S. alterniflora: (1) the single-date imagery acquired within the optimal phenological window, (2) the multitemporal imagery, including four images from the two important phenological windows, and (3) the monthly NDVI time series imagery. Support vector machines and maximum likelihood classifiers were applied on each phenology feature set at different training sample sizes. For all phenology feature sets, the overall results were produced consistently with high mapping accuracies under sufficient training samples sizes, although significantly improved classification accuracies (10%) were obtained when the monthly NDVI time series imagery was employed. The optimal single-date imagery had the lowest accuracies of all detection strategies. The multitemporal analysis demonstrated little reduction in the overall accuracy compared with the

  8. The near real-time solar irradiance mapping in California based on satellite data and economic and emission benefits analysis

    OpenAIRE

    Liu, Honglei

    2008-01-01

    As the most abundant, sustainable, and green energy source on the earth, solar energy has the potential to resolve environmental problems such as climate change and air pollution caused by fossil energy. Real-time solar irradiance mapping, which gives the real-time data on local solar energy distribution, would provide valuable information and lead to more efficient use of solar energy. State of California (CA) is abundant in solar energy. However, the data of real-time direct ...

  9. Using NASA Satellite Observations to Map Wildfire Risk in the United States for Allocation of Fire Management Resources

    Science.gov (United States)

    Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.

    2017-12-01

    Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.

  10. Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques

    Science.gov (United States)

    Salama, R. B.; Tapley, I.; Ishii, T.; Hawkes, G.

    1994-10-01

    Aerial photographs (AP) and Landsat (TM) colour composites were used to map the geomorphology, geology and structures of the Salt River System of Western Australia. Geomorphic features identified are sand plains, dissected etchplain, colluvium, lateritic duricrust and rock outcrops. The hydrogeomorphic units include streams, lakes and playas, palaeochannels and palaeodeltas. The structural features are linear and curvilinear lineaments, ring structures and dolerite dykes. Suture lines control the course of the main river channel. Permeable areas around the circular granitic plutons were found to be the main areas of recharge in the uplands. Recharge was also found to occur in the highly permeable areas of the sandplains. Discharge was shown to be primarily along the main drainage lines, on the edge of the circular sandplains, in depressions and in lakes. The groundwater occurrence and hydrogeological classification of the recharge potential of the different units were used to classify the mapped areas into recharge and discharge zones. The results also show that TM colour composites provide a viable source of data comparable with AP for mapping and delineating areas of recharge and discharge on a regional scale.

  11. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    Science.gov (United States)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  12. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery

    Science.gov (United States)

    Nascimento, Wilson R.; Souza-Filho, Pedro Walfir M.; Proisy, Christophe; Lucas, Richard M.; Rosenqvist, Ake

    2013-01-01

    Mapping and monitoring mangrove ecosystems is a crucial objective for tropical countries, particularly where human disturbance occurs and because of uncertainties associated with sea level and climatic fluctuation. In many tropical regions, such efforts have focused largely on the use of optical data despite low capture rates because of persistent cloud cover. Recognizing the ability of Synthetic Aperture Radar (SAR) for providing cloud-free observations, this study investigated the use of JERS-1 SAR and ALOS PALSAR data, acquired in 1996 and 2008 respectively, for mapping the extent of mangroves along the Brazilian coastline, from east of the Amazon River mouth, Pará State, to the Bay of São José in Maranhão. For each year, an object-orientated classification of major land covers (mangrove, secondary vegetation, gallery and swamp forest, open water, intermittent lakes and bare areas) was performed with the resulting maps then compared to quantify change. Comparison with available ground truth data indicated a general accuracy in the 2008 image classification of all land covers of 96% (kappa = 90.6%, tau = 92.6%). Over the 12 year period, the area of mangrove increased by 718.6 km2 from 6705 m2 to 7423.60 km2, with 1931.0 km² of expansion and 1213 km² of erosion noted; 5493 km² remained unchanged in extent. The general accuracy relating to changes in mangroves was 83.3% (Kappa 66.1%; tau 66.7%). The study confirmed that these mangroves constituted the largest continuous belt globally and were experiencing significant change because of the dynamic coastal environment and the influence of sedimentation from the Amazon River along the shoreline. The study recommends continued observations using combinations of SAR and optical data to establish trends in mangrove distributions and implications for provision of ecosystem services (e.g., fish/invertebrate nurseries, carbon storage and coastal protection).

  13. Satellite Capabilities Mapping - Utilizing Small Satellites

    Science.gov (United States)

    2010-09-01

    climate and space measurements. The report shows that federal agencies lack a strategy for the long-term provision of space weather (SWx) data [3...energy across the entire electromagnetic spectrum containing x-rays, ultraviolet, visible light , infrared, and radio waves. The sun also radiates a...atmosphere, galactic cosmic rays, trapped particles, ionospheric scintillation, auroral emissions, in-situ plasma measurements and other selected space

  14. Land cover characterization and mapping of South America for the year 2010 using Landsat 30 m satellite data

    Science.gov (United States)

    Giri, Chandra; Long, Jordan

    2014-01-01

    Detailed and accurate land cover and land cover change information is needed for South America because the continent is in constant flux, experiencing some of the highest rates of land cover change and forest loss in the world. The land cover data available for the entire continent are too coarse (250 m to 1 km) for resource managers, government and non-government organizations, and Earth scientists to develop conservation strategies, formulate resource management options, and monitor land cover dynamics. We used Landsat 30 m satellite data of 2010 and prepared the land cover database of South America using state-of-the-science remote sensing techniques. We produced regionally consistent and locally relevant land cover information by processing a large volume of data covering the entire continent. Our analysis revealed that in 2010, 50% of South America was covered by forests, 2.5% was covered by water, and 0.02% was covered by snow and ice. The percent forest area of South America varies from 9.5% in Uruguay to 96.5% in French Guiana. We used very high resolution (change database of South America with additional land cover classes is needed. The results from this study are useful for developing resource management strategies, formulating biodiversity conservation strategies, and regular land cover monitoring and forecasting.

  15. Towards an Automatic Framework for Urban Settlement Mapping from Satellite Images: Applications of Geo-referenced Social Media and One Class Classification

    Science.gov (United States)

    Miao, Zelang

    2017-04-01

    Currently, urban dwellers comprise more than half of the world's population and this percentage is still dramatically increasing. The explosive urban growth over the next two decades poses long-term profound impact on people as well as the environment. Accurate and up-to-date delineation of urban settlements plays a fundamental role in defining planning strategies and in supporting sustainable development of urban settlements. In order to provide adequate data about urban extents and land covers, classifying satellite data has become a common practice, usually with accurate enough results. Indeed, a number of supervised learning methods have proven effective in urban area classification, but they usually depend on a large amount of training samples, whose collection is a time and labor expensive task. This issue becomes particularly serious when classifying large areas at the regional/global level. As an alternative to manual ground truth collection, in this work we use geo-referenced social media data. Cities and densely populated areas are an extremely fertile land for the production of individual geo-referenced data (such as GPS and social network data). Training samples derived from geo-referenced social media have several advantages: they are easy to collect, usually they are freely exploitable; and, finally, data from social media are spatially available in many locations, and with no doubt in most urban areas around the world. Despite these advantages, the selection of training samples from social media meets two challenges: 1) there are many duplicated points; 2) method is required to automatically label them as "urban/non-urban". The objective of this research is to validate automatic sample selection from geo-referenced social media and its applicability in one class classification for urban extent mapping from satellite images. The findings in this study shed new light on social media applications in the field of remote sensing.

  16. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study

    Science.gov (United States)

    Wylie, B.K.; Meyer, D.J.; Tieszen, L.L.; Mannel, S.

    2002-01-01

    Quantification of biophysical parameters is needed by terrestrial process modeling and other applications. A study testing the role of multispectral data for monitoring biophysical parameters was conducted over a network of grassland field sites in the Great Plains of North America. Grassland biophysical parameters [leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), and biomass] and their relationships with ground radiometer normalized difference vegetation index (NDVI) were established in this study (r2=.66–.85) from data collected across the central and northern Great Plains in 1995. These spectral/biophysical relationships were compared to 1996 field data from the Tallgrass Prairie Preserve in northeastern Oklahoma and showed no consistent biases, with most regression estimates falling within the respective 95% confidence intervals. Biophysical parameters were estimated for 21 “ground pixels” (grids) at the Tallgrass Prairie Preserve in 1996, representing three grazing/burning treatments. Each grid was 30×30 m in size and was systematically sampled with ground radiometer readings. The radiometric measurements were then converted to biophysical parameters and spatially interpolated using geostatistical kriging. Grid-based biophysical parameters were monitored through the growing season and regressed against Landsat Thematic Mapper (TM) NDVI (r2=.92–.94). These regression equations were used to estimate biophysical parameters for grassland TM pixels over the Tallgrass Prairie Preserve in 1996. This method maintained consistent regression development and prediction scales and attempted to minimize scaling problems associated with mixed land cover pixels. A method for scaling Landsat biophysical parameters to coarser resolution satellite data sets (1 km2) was also investigated.

  17. Assessing and mapping the severity of soil erosion using the 30-m Landsat multispectral satellite data in the former South African homelands of Transkei

    Science.gov (United States)

    Seutloali, Khoboso E.; Dube, Timothy; Mutanga, Onisimo

    2017-08-01

    Soil erosion is increasingly recognised as the principal cause of land degradation, loss of agricultural land area and siltation of surrounding water waterbodies. Accurate and up-to-date soil erosion mapping is key in understanding its severity if these negative impacts are to be minimised and affected areas rehabilitated. The aim of this work was to map the severity of soil erosion, based on the 30-m Landsat series multispectral satellite data in the former South African homelands of Transkei between the year 1994 and 2010. Further, the study assessed if the observed soil erosion trends and morphology that existed in this area could be explained by biophysical factors (i.e. slope, stream erosivity, topographic wetness index) retrieved from the 30-m ASTER Digital Elevation Model (DEM). The results of this study indicate that the Transkei region experiences varying erosion levels from moderate to very severe. The large portion of the land area under the former homelands was largely affected by rill erosion with approximately 74% occurring in the year 1984 and 54% in 2010. The results also revealed specific thresholds of soil erosion drivers. These include steeper areas (≥30°), high stream power index greater than 2.0 (stream erosivity), relatively lower vegetation cover (≤15%) and low topographic wetness index (≤5%). The results of this work demonstrate the severity of soil erosion in the Southern African former homelands of Transkei for the year 1984 and 2010. Additionally, this work has demonstrated the significance of the 30-m Landsat multispectral sensor in examining soil erosion occurrence at a regional scale where in-depth field work still remains a challenging task.

  18. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    Science.gov (United States)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  19. [Application of small remote sensing satellite constellations for environmental hazards in wetland landscape mapping: taking Liaohe Delta, Liaoning Province of Northeast China as a case].

    Science.gov (United States)

    Yang, Yuan-Zheng; Chang, Yu; Hu, Yuan-Man; Liu, Miao; Li, Yue-Hui

    2011-06-01

    To timely and accurately acquire the spatial distribution pattern of wetlands is of significance for the dynamic monitoring, conservation, and sustainable utilization of wetlands. The small remote sensing satellite constellations A/B stars (HJ-1A/1B stars) for environmental hazards were launched by China for monitoring terrestrial resources, which could provide a new data source of remote sensing image acquisition for retrieving wetland types. Taking Liaohe Delta as a case, this paper compared the accuracy of wetland classification map and the area of each wetland type retrieved from CCD data (HJ CCD data) and TM5 data, and validated and explored the applicability and the applied potential of HJ CCD data in wetland resources dynamic monitoring. The results showed that HJ CCD data could completely replace Landsat TM5 data in feature extraction and remote sensing classification. In real-time monitoring, due to its 2 days of data acquisition cycle, HJ CCD data had the priority to Landsat TM5 data (16 days of data acquisition cycle).

  20. Measurement of Air Pollution from Satellites (MAPS) Space Radar Laboratory - 2 (SRL2) Carbon Monoxide 5 degree by 5 degree data

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPS OverviewThe MAPS experiment measures the global distribution of carbon monoxide (CO) mixing ratios in the free troposphere. Because of MAPS' previous flights on...

  1. Comparison of satellite imagery and infrared aerial photography as vegetation mapping methods in an arctic study area: Jameson Land, East Greenland

    DEFF Research Database (Denmark)

    Hansen, Birger Ulf; Mosbech, Anders

    1994-01-01

    Remote Sensing, vegetation mapping, SPOT, Landsat TM, aerial photography, Jameson Land, East Greenland......Remote Sensing, vegetation mapping, SPOT, Landsat TM, aerial photography, Jameson Land, East Greenland...

  2. Satellite line mapping in Eu3+–Ce3+ and Pr3+–Ce3+ codoped Y2SiO5

    International Nuclear Information System (INIS)

    Serrano, D.; Karlsson, J.; Zheng, L.; Dong, Y.; Ferrier, A.; Goldner, P.; Walther, A.; Rippe, L.; Kröll, S.

    2016-01-01

    In this work we perform a high-resolution spectroscopic investigation of Eu 3+ –Ce 3+ and Pr 3+ –Ce 3+ codoped Y 2 SiO 5 crystals. Satellite line spectra were recorded at low temperatures around the Eu 3+ : 7 F 0 → 5 D 0 and the Pr 3+ : 3 H 4 → 1 D 2 transitions. It is observed that the incorporation of Ce 3+ as a codopant notably changes the Eu 3+ and Pr 3+ satellite line patterns. Satellite lines measured in singly doped Eu 3+ :Y 2 SiO 5 were found at the same spectral positions in Eu 3+ –Ce 3+ codoped crystals. These coincident lines were concluded to be due to pairs of Eu 3+ ions. Extra satellite lines appeared in the codoped crystals, which were assigned to Ce 3+ related structures such as Ce 3+ –Eu 3+ pairs. The analysis of the Pr 3+ satellite line spectra presents further challenges. Satellite lines associated to Pr 3+ pairs show weaker intensity, presumably due to the efficient quenching of the Pr 3+1 D 2 emission through cross-relaxation paths ( 1 D 2 → 1 G 4 ; 3 H 4 → 3 F 4 ). The investigation of the Eu 3+ and Pr 3+ satellite line patterns in Y 2 SiO 5 is particularly interesting for their exploitation in rare-earth based quantum computation schemes. - Highlights: • We recorded Eu and Pr satellite lines in Y 2 SiO 5 with and without Ce as a codopant. • The presence of Ce leads to the appearance of extra satellite lines in the spectra. • The satellite lines are associated to minor crystal sites such as ion pairs. • Less than 100 ion pairs were detected per satellite line. • The exploitation of the satellite line structure is proposed for quantum computing.

  3. Topographic mapping

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.

  4. US EPA Office of Research and Development Community-Focused Exposure and Risk Screening Tool (C-FERST) Air Pollutants 2011 web mapping service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays all air-related layers used in the USEPA Community/Tribal-Focused Exposure and Risk Screening Tool (C/T-FERST) mapping application...

  5. US EPA Office of Research and Development Community-Focused Exposure and Risk Screening Tool (C-FERST) Air web mapping service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays all air-related layers used in the USEPA Community/Tribal-Focused Exposure and Risk Screening Tool (C/T-FERST) mapping application...

  6. Mapping the low salinity Changjiang Diluted Water using satellite-retrieved colored dissolved organic matter (CDOM) in the East China Sea during high river flow season

    Science.gov (United States)

    Sasaki, Hiroaki; Siswanto, Eko; Nishiuchi, Kou; Tanaka, Katsuhisa; Hasegawa, Toru; Ishizaka, Joji

    2008-02-01

    Absorption coefficients of colored dissolved organic matter (CDOM) [a g(λ)] were measured and relationship with salinity was derived in the East China Sea (ECS) during summer when amount of the Changjiang River discharge is large. Low salinity Changjiang Diluted Water (CDW) was observed widely in the shelf region and was considered to be the main origin of CDOM, resulting in a strong relationship between salinity and a g(λ). Error of satellite a g(λ) estimated by the present ocean color algorithm could be corrected by satellite-retrieved chlorophyll data. Satellite-retrieved salinity could be predicted with about +/-1.0 accuracy from satellite a g(λ) and the relation between salinity and a g(λ). Our study suggests that satellite-derived a g(λ) can be an indicator of the low salinity CDW during summer.

  7. Mapping Medicare Disparities Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Office of Minority Health has designed an interactive map, the Mapping Medicare Disparities Tool, to identify areas of disparities between subgroups of...

  8. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  9. New Perspectives on Active Tectonics: Observing Fault Motion, Mapping Earthquake Strain Fields, and Visualizing Seismic Events in Multiple Dimensions Using Satellite Imagery and Geophysical Data Base

    Science.gov (United States)

    Crippen, R.; Blom, R.

    1994-01-01

    By rapidly alternating displays of SPOT satellite images acquired on 27 July 1991 and 25 July 1992 we are able to see spatial details of terrain movements along fault breaks associated with the 28 June 1992 Landers, California earthquake that are virtually undetectable by any other means.

  10. Remote Sensing of Volcanic ASH at the Met Office

    Directory of Open Access Journals (Sweden)

    Marenco F.

    2016-01-01

    Full Text Available The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA, has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK will be much better equipped to deal with such a crisis, should it happen in the future.

  11. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    images used for mapping the vegetation cover types and other land cover types in Egypt. The mapping ranges from 1 km resolution to 30 m resolution. The aim is to provide satellite image mapping with land surface characteristics relevant for roughness mapping.......Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  12. NEPR Geographic Zone Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geographic zone map was created by interpreting satellite and aerial imagery, seafloor topography (bathymetry model), and the new NEPR Benthic Habitat Map...

  13. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  14. Shallow-water Benthic Habitats of the Northwestern Hawaiian Islands from Aggregated Habitat Cover Maps Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water, aggregated cover maps were produced by combining as many as four or more detailed habitat types into general cover categories. The original detailed...

  15. Aggregated Habitat Cover Maps Depicting the Shallow-water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water, aggregated cover maps were produced by combining as many as four or more detailed habitat types into general cover categories. The original detailed...

  16. 7 CFR 611.22 - Availability of satellite imagery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of satellite imagery. 611.22 Section 611... § 611.22 Availability of satellite imagery. Cloud-free maps of the United States based on imagery received from a satellite are prepared and released to the pubic by NRCS. The maps offer the first image of...

  17. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  18. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  19. Office Hysteroscopy

    OpenAIRE

    Hikmet Hassa; Basar Tekin; H. Mete Tanir; Bulent Cakmak

    2007-01-01

    Although hysteroscopy has evolved in recent years, its use in the office setting was not made practical until early 1980s with the introduction of small caliber hysteroscopes of less than 5- mm outer diameter.This innovation simplifies ambulatory uterine exploration and the office evaluation of patients with abnormal uterine bleeding. This article reviews current trends in office hysteroscopy and its areas of application in different forms of gynecological problems.

  20. Office Hysteroscopy

    Directory of Open Access Journals (Sweden)

    Hikmet Hassa

    2007-06-01

    Full Text Available Although hysteroscopy has evolved in recent years, its use in the office setting was not made practical until early 1980s with the introduction of small caliber hysteroscopes of less than 5- mm outer diameter.This innovation simplifies ambulatory uterine exploration and the office evaluation of patients with abnormal uterine bleeding. This article reviews current trends in office hysteroscopy and its areas of application in different forms of gynecological problems.

  1. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  2. 77 FR 72788 - Copyright Office Fees

    Science.gov (United States)

    2012-12-06

    ... proposed fees failed to recover half of the actual operating costs of the cable and satellite program, and... Study for Setting Cable and Satellite SOA Filing Fees The original cost study for the Office's...-personnel costs to address concerns that an aberrant year may have an undue impact on the proposed fees. The...

  3. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  4. Generation of seismic base map using satellite images in the southern deltaic area, People`s Republic of Bangladesh; Eisei data ni motozuku jishin tansa base map no sakusei (Bangladesh nanbu delta no rei)

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Y [Japan Energy Corp., Tokyo (Japan); Ochi, M [Nikko Exploration and Development Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-05-27

    Assuming a two-dimensional seismic survey in a mangrove jungle in the southeast part of People`s Republic of Bangladesh and trially making a basemap for the survey plan from images of satellites such as LANDSAT, the paper considered the use and marginal use in the case of using satellite remote sensing for such a use field. When utilizing water channels in the mangrove jungle in the southwest of Bangladesh and using the seismic survey method for shallow sea, it is important to grasp the distribution of channels in the planning stage of the survey. Satellite remote sensing data are extremely important for knowing the wide-regional information including factors of hourly variations. In the area for this survey, for directly recognizing the channel, it is good only if the difference in reflectance between water and substances except water is indicated in the image because of flatness of the topography. There was seen few difference in accuracy between the passive multispectral image and the active SAR image which is sensitive to topographical changes. 2 figs.

  5. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina

    Science.gov (United States)

    Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti

    2013-01-01

    Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...

  6. Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast)

    Science.gov (United States)

    Konstantinov, P. I.; Grishchenko, M. Y.; Varentsov, M. I.

    2015-12-01

    This article presents the results of a study of the urban heat island (UHI) in the city of Apatity during winter that were obtained according to the data of field meteorological measurements and satellite images. Calculations of the surface layer temperature have been made based on the surface temperature data obtained from satellite images. The experimental data on air temperature were obtained as a result of expeditionary meteorological observations, and the experimental data on surface temperature were obtained based on the data of the space hyperspectral Moderate-Resolution Imaging Spectroradiometer (MODIS) system, channels 31 and 32 (10.78-11.28 and 11.77-12.27 micrometers, respectively). As a result of the analysis of temperature fields, an intensive heat island (up to 3.2°C) has been identified that was estimated based on the underlying surface temperature, and its mean intensity over the observation period significantly exceeds the representative data for European cities in winter. It has also been established that the air temperature calculated according to the MODIS data is systematically higher under winter conditions than the air temperature from direct measurement data.

  7. Minding the gaps: new insights into R&D management and operational transitions of NOAA satellite products

    Science.gov (United States)

    Colton, Marie C.; Powell, Alfred M.; Jordan, Gretchen; Mote, Jonathon; Hage, Jerald; Frank, Donald

    2004-10-01

    The NESDIS Center for Satellite Applications and Research (STAR), formerly ORA, Office of Research and Applications, consists of three research and applications divisions that encompass satellite meteorology, oceanography, climatology, and cooperative research with academic institutions. With such a wide background of talent, and a charter to develop operational algorithms and applications, STAR scientists develop satellite-derived land, ice, ocean, and atmospheric environmental data products in support of all of NOAA"s mission goals. In addition, in close association with the Joint Center for Satellite Data Assimilation, STAR scientists actively work with the numerical modeling communities of NOAA, NASA, and DOD to support the development of new methods for assimilation of satellite data. In this new era of observations from many new satellite instruments, STAR aims to effectively integrate these data into multi-platform data products for utilization by the forecast and applications communities. Much of our work is conducted in close partnerships with other agencies, academic institutes, and industry. In order to support the nearly 400 current satellite-derived products for various users on a routine basis from our sister operations office, and to evolve to future systems requires an ongoing strategic planning approach that maps research and development activities from NOAA goals to user requirements. Since R&D accomplishments are not necessarily amenable to precise schedules, appropriate motivators and measures of scientific progress must be developed to assure that the product development cycle remains aligned with the other engineering segments of a satellite program. This article presents the status and results of this comprehensive effort to chart a course from the present set of operational satellites to the future.

  8. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  9. Mineral and Vegetation Maps of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada, Generated from ASTER Satellite Data

    Science.gov (United States)

    Rockwell, Barnaby W.

    2010-01-01

    Multispectral remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were analyzed to identify and map minerals, vegetation groups, and volatiles (water and snow) in support of geologic studies of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada. Digital mineral and vegetation mapping results are presented in both portable document format (PDF) and ERDAS Imagine format (.img). The ERDAS-format files are suitable for integration with other geospatial data in Geographic Information Systems (GIS) such as ArcGIS. The ERDAS files showing occurrence of 1) iron-bearing minerals, vegetation, and water, and 2) clay, sulfate, mica, carbonate, Mg-OH, and hydrous quartz minerals have been attributed according to identified material, so that the material detected in a pixel can be queried with the interactive attribute identification tools of GIS and image processing software packages (for example, the Identify Tool of ArcMap and the Inquire Cursor Tool of ERDAS Imagine). All raster data have been orthorectified to the Universal Transverse Mercator (UTM) projection using a projective transform with ground-control points selected from orthorectified Landsat Thematic Mapper data and a digital elevation model from the U.S. Geological Survey (USGS) National Elevation Dataset (1/3 arc second, 10 m resolution). Metadata compliant with Federal Geographic Data Committee (FGDC) standards for all ERDAS-format files have been included, and contain important information regarding geographic coordinate systems, attributes, and cross-references. Documentation regarding spectral analysis methodologies employed to make the maps is included in these cross-references.

  10. Potential of High-Resolution Satellite Imagery for Mapping Distribution and Evaluating Ecological Characteristics of Tree Species at the Angkor Monument, Cambodia

    Directory of Open Access Journals (Sweden)

    Tomita Mizuki

    2015-01-01

    Full Text Available Large trees play several vital roles in the Angkor monuments landscape. They protect biodiversity, enhance the tourism experience, and provide various ecosystem services to local residents. A clear understanding of forest composition and distribution of individual species, as well as timely monitoring of changes, is necessary for conservation of these trees. using traditional field work, obtaining this sort of data is time-consuming and labour-intensive. This research investigates classification of very high resolution remote sensing data as a tool for efficient analyses. QuickBird satellite imagery was used to clarify the tree species community in and around Preah Khan temple, to elucidate differences in ecological traits among the three dominant species (Dipterocarpus alatus, Lagerstroemia calyculata and Tetrameles nudiflora, and to identify crowns of the dominant species.

  11. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  12. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  13. Integrando desenhos e imagens de satélite no estudo de mudanças no uso e cobertura da terra Integrating sketch maps and satellite pictures in the study of changes in land coverage

    Directory of Open Access Journals (Sweden)

    Álvaro de Oliveira D'Antona

    2008-06-01

    Full Text Available Analisamos o procedimento de coleta e processamento de informações sobre uso e cobertura da terra, obtidas por desenhos feitos com moradores de lotes rurais, em um segmento da Rodovia Transamazônica, no Pará. Consideramos as peculiaridades dos dados de campo buscando integrá-los aos dados obtidos por satélite. Concluímos que o instrumento deve ser usado sistematicamente no aprimoramento de abordagens interdisciplinares para o estudo de mudanças ambientais.We analyzed the procedure of collecting and processing information in regard to land use and land coverage obtained from sketch maps created together with rural property owners in a settlement area along the Transamazonica, the Transamazon Highway, in Pará, Brazil. We assessed the special features of field data and integrated them with data from satellites. We concluded that these sketch maps can be used systematically to improve interdisciplinary approaches in the study of environmental changes.

  14. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  15. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    Science.gov (United States)

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  16. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites

    Science.gov (United States)

    Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; Elgner, S.; Erkeling, G.; Fueten, F.; Hiesinger, H.; Hoekzema, N. M.; Kersten, E.; Loizeau, D.; Matz, K.-D.; McGuire, P. C.; Mertens, V.; Michael, G.; Pasewaldt, A.; Pinet, P.; Preusker, F.; Reiss, D.; Roatsch, T.; Schmidt, R.; Scholten, F.; Spiegel, M.; Stesky, R.; Tirsch, D.; van Gasselt, S.; Walter, S.; Wählisch, M.; Willner, K.

    2016-07-01

    The High Resolution Stereo Camera (HRSC) of ESA's Mars Express is designed to map and investigate the topography of Mars. The camera, in particular its Super Resolution Channel (SRC), also obtains images of Phobos and Deimos on a regular basis. As HRSC is a push broom scanning instrument with nine CCD line detectors mounted in parallel, its unique feature is the ability to obtain along-track stereo images and four colors during a single orbital pass. The sub-pixel accuracy of 3D points derived from stereo analysis allows producing DTMs with grid size of up to 50 m and height accuracy on the order of one image ground pixel and better, as well as corresponding orthoimages. Such data products have been produced systematically for approximately 40% of the surface of Mars so far, while global shape models and a near-global orthoimage mosaic could be produced for Phobos. HRSC is also unique because it bridges between laser altimetry and topography data derived from other stereo imaging instruments, and provides geodetic reference data and geological context to a variety of non-stereo datasets. This paper, in addition to an overview of the status and evolution of the experiment, provides a review of relevant methods applied for 3D reconstruction and mapping, and respective achievements. We will also review the methodology of specific approaches to science analysis based on joint analysis of DTM and orthoimage information, or benefitting from high accuracy of co-registration between multiple datasets, such as studies using multi-temporal or multi-angular observations, from the fields of geomorphology, structural geology, compositional mapping, and atmospheric science. Related exemplary results from analysis of HRSC data will be discussed. After 10 years of operation, HRSC covered about 70% of the surface by panchromatic images at 10-20 m/pixel, and about 97% at better than 100 m/pixel. As the areas with contiguous coverage by stereo data are increasingly abundant, we also

  17. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  18. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI Satellite Data

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This study evaluates the capability of Earth Observing-1 (EO1 Advanced Land Imager (ALI data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  19. Satellite Maps and Relevant Compositional Properties of PM2.5 in Difficult Winter Situations and Comparisons to DISCOVER-AQ Airborne Sampling

    Science.gov (United States)

    Chatfield, Robert B.

    2016-01-01

    Mediterranean-climate regions like California's San Joaquin Valley are subject to severe wintertime particulate pollution affecting public health. We present maps of episodes and particulate diagnostics to aid diagnosis and amelioration. For abatement at sources, we require an understanding of sources and transport. Remote sensing should be of aid, but radiance-to-particle relationships are far different from methods which have been of use in the Eastern USA, Northern and Central Europe. Here are the problems: (a) Thin if very polluted mixed layers (MLs) yield optical depths, AOD, near the detection level, (b) bright and quite variegated surfaces (c) Unusual particle composition (e.g., predominance of NH4NO3 and fireplace buning aerosol), which complicate the relationship of AOD to PM2.5. Specialized analysis of MODIS-Aqua data to obtain AOD using the multi-angle (MAIAC) technique employed by Lyapustin and Wang. Meteorological analyses like NOAA's Rapid Analysis Product (RAP, or newer products like HRRR), which are formulated to remain close to observations (e.g. of water), provide useful ML information corroborated by DISCOVER-AQ in-situ and lidar observations. The many PM2.5 measurements allow a calibration of these products and thus maps of aerosol on many successive aerosol buildups. These calibrations also allow insight into compositional information relevant to MODIS retrievals, the product of aerosol density and specific scattering. We have found that the rich in-situ, lidar, and sun-photometer data sets of NASA'S DISCOVER-AQ data set (2013) of great aid. We will highlight the most interesting of many intercomparisons possible with this rich data set. We conclude with a description of new work to extend these insights to similar regions, e.g. the Imperial Valley of California, the Po Valley and maritime Southern Europe, and the litoral regions of Israel.

  20. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  1. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system

    Science.gov (United States)

    Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.

    2003-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost

  2. Combining Landsat TM multispectral satellite imagery and different modelling approaches for mapping post-fire erosion changes in a Mediterranean site

    Science.gov (United States)

    Petropoulos, George P.; Kairis, Orestis; Karamesouti, Mina; Papanikolaou, Ioannis D.; Kosmas, Constantinos

    2013-04-01

    South European countries are naturally vulnerable to wildfires. Their natural resources such as soil, vegetation and water may be severely affected by wildfires, causing an imminent environmental deterioration due to the complex interdependence among biophysical components. Soil surface water erosion is a natural process essential for soil formation that is affected by such interdependences. Accelerated erosion due to wildfires, constitutes a major restrictive factor for ecosystem sustainability. In 2007, South European countries were severely affected by wildfires, with more than 500,000 hectares of land burnt in that year alone, well above the average of the last 30 years. The present work examines the changes in spatial variability of soil erosion rates as a result of a wildfire event that took place in Greece in 2007, one of the most devastating years in terms of wildfire hazards. Regional estimates of soil erosion rates before and after the fire outbreak were derived from the Revised Universal Soil Loss Equation (RUSLE, Renard et al. 1991) and the Pan-European Soil Erosion Risk Assessment model (PESERA, Kirkby, 1999; Kirkby et al., 2000). Inputs for both models included climatic, land-use, soil type, topography and land use management data. Where appropriate, both models were also fed with input data derived from the analysis of LANDSAT TM satellite imagery available in our study area, acquired before and shortly after the fire suppression. Our study was compiled and performed in a GIS environment. In overall, the loss of vegetation from the fire outbreak caused a substantial increase of soil erosion rates in the affected area, particularly towards the steep slopes. Both tested models were compared to each other and noticeable differences were observed in the soil erosion predictions before and after the fire event. These are attributed to the different parameterization requirements of the 2 models. This quantification of sediment supply through the river

  3. Satellite information for wind energy applications

    DEFF Research Database (Denmark)

    Nielsen, M.; Astrup, Poul; Hasager, Charlotte Bay

    2004-01-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resourcestudies. Comparison results from complex...... terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined withroughness data from field observation or literature values. Land cover type maps constitute...... an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEMand land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface...

  4. Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data

    Directory of Open Access Journals (Sweden)

    Vladimir R. Wingate

    2016-08-01

    Full Text Available Woodlands and savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to subsistence and intensive agriculture or urbanized. This study investigates changes in land cover over four administrative regions of North Eastern Namibia within the Kalahari woodland savannah biome, covering a total of 107,994 km2. Land cover is mapped using multi-sensor Landsat imagery at decadal intervals from 1975 to 2014, with a post-classification change detection method. The dominant change observed was a reduction in the area of woodland savannah due to the expansion of agriculture, primarily in the form of small-scale cereal and pastoral production. More specifically, woodland savannah area decreased from 90% of the study area in 1975 to 83% in 2004, and then increased to 86% in 2014, while agricultural land increased from 6% to 12% between 1975 and 2014. We assess land cover changes in relation to towns, villages, rivers and roads and find most changes occurred in proximity to these. In addition, we find that most land cover changes occur within land designated as communally held, followed by state protected land. With widespread changes occurring across the African continent, this study provides important data for understanding drivers of change in the region and their impacts on the distribution of woodland savannahs.

  5. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.

  6. Evaluation of the Cloud Fields in the UK Met Office HadGEM3-UKCA Model Using the CCCM Satellite Data Product to Advance Our Understanding of the Influence of Clouds on Tropospheric Composition and Chemistry

    Science.gov (United States)

    Varma, Sunil; Voulgarakis, Apostolos; Liu, Hongyu; Crawford, James H.; White, James

    2016-01-01

    To determine the role of clouds in driving inter-annual and inter-seasonal variability of trace gases in the troposphere and lower stratosphere with a particular focus on the importance of cloud modification of photolysis. To evaluate the cloud fields and their vertical distribution in the HadGEM3 model utilizing CCCM, a unique 3-D cloud data product merged from multiple A-Train satellites (CERES, CloudSat, CALIPSO, and MODIS) developed at the NASA Langley Research Center.

  7. The Hydrosphere State (Hydros) Satellite Mission: An Earth System Pathfinder for Global Mapping of Soil Moisture and Land Freeze/Thaw

    Science.gov (United States)

    Entekhabi, D.; Njoku, E. G.; Spencer, M.; Kim, Y.; Smith, J.; McDonald, K. C.; vanZyl, J.; Houser, P.; Dorion, T.; Koster, R.; hide

    2004-01-01

    The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.

  8. Mail Office

    CERN Multimedia

    GS Department

    2009-01-01

    The Mail Office wishes to remind users that the CERN mail service is exclusively reserved for official CERN mail. All external official mail must be sent to the Mail Office in an unstamped envelope on which your name and Department must be clearly indicated below the official CERN address (see example) to help us to find you in the event that it cannot be delivered. If you wish to send private mail from the CERN site you must use the post offices at Meyrin (63-R-011) or Prévessin (866-R-C02). Please use "PRIORITY" envelopes only in the case of urgent mail. Any mail containing merchandise (i.e. anything other than documents) must be sent using an EDH shipping request form. INTERNAL MAIL Please remember to include the recipient’s MAILBOX number on the internal mail envelopes, either in the relevant box (new envelopes) or next to the name (old envelopes). This information, which can be found in the CERN PHONEBOOK, simplifies our t...

  9. The Advanced Stellar Compass onboard the Oersted satellite

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Eisenman, Allan R.; Liebe, Carl Christian

    1997-01-01

    In 1997 the first Danish satellite will be launched. The primarily scientific objective of the satellite is to map the magnetic field of the Earth. The attitude of the satellite is determined by an advanced stellar compass (star tracker). An advanced stellar compass consists of a CCD camera...

  10. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    noise signal level exceeds 10 times the normal background. EXPERIMENTS FOR SATELLITE ASTRONOMY 615 ANTENNA MONOPOLE -., PREAMPLFE = BANDPASS-FILTER...OUTPUT TO AND DETECTOR TELEMETRYCHANNELS (18) CALIBRATION NOISE MATRIX CLOCK NOISE SOURCE ’ON’ SOURCE COMMAND F ROM PROGRAMERP ANTENNA MONOPOLE FIGURE 13...Animal Tempera- ture Sensing for Studying the Effect of Prolonged Orbital Flight on the Circadian Rhythms of Pocket Mice . Unmanned Spacecraft Meeting

  11. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  12. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  13. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  14. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  15. Office of Child Care

    Science.gov (United States)

    ... for Children & Families Office of Child Care By Office Administration for Native Americans (ANA) Administration on Children, ... about the Child Care Rule > What is the Office of Child Care (OCC)? The Office of Child ...

  16. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  17. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  18. Future Satellite Gravimetry and Earth Dynamics

    CERN Document Server

    Flury, Jakob

    2005-01-01

    Currently, a first generation of dedicated satellite missions for the precise mapping of the Earth’s gravity field is in orbit (CHAMP, GRACE, and soon GOCE). The gravity data from these satellite missions provide us with very new information on the dynamics of planet Earth. In particular, on the mass distribution in the Earth’s interior, the entire water cycle (ocean circulation, ice mass balance, continental water masses, and atmosphere), and on changes in the mass distribution. The results are fascinating, but still rough with respect to spatial and temporal resolution. Technical progress in satellite-to-satellite tracking and in gravity gradiometry will allow more detailed results in the future. In this special issue, Earth scientists develop visions of future applications based on follow-on high-precision satellite gravimetry missions.

  19. Information technology road map 2015

    International Nuclear Information System (INIS)

    2009-09-01

    This book introduces information technology road map 2015 with presentation, process, plan and conclusion of it. It also has introduction of IT road map by field : information technology road map 2015 on the next-generation of semiconductor, display, light emitting diode and light industry, home network and home electronic appliances, digital TV and broadcasting, radio technology, satellite communications, mobile communication for the next-generation, BcN field, software, computer for the next-generation and security of knowledge information.

  20. NOAA Coastal Mapping Shoreline Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Mapping Shoreline Products from the Remote Sensing Division are primarily for application to the nautical charts produced by NOAA's Office of Coast...

  1. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  2. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  3. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  4. The National Map - Orthoimagery

    Science.gov (United States)

    Mauck, James; Brown, Kim; Carswell, William J.

    2009-01-01

    Orthorectified digital aerial photographs and satellite images of 1-meter (m) pixel resolution or finer make up the orthoimagery component of The National Map. The process of orthorectification removes feature displacements and scale variations caused by terrain relief and sensor geometry. The result is a combination of the image characteristics of an aerial photograph or satellite image and the geometric qualities of a map. These attributes allow users to: *Measure distance *Calculate areas *Determine shapes of features *Calculate directions *Determine accurate coordinates *Determine land cover and use *Perform change detection *Update maps The standard digital orthoimage is a 1-m or finer resolution, natural color or color infra-red product. Most are now produced as GeoTIFFs and accompanied by a Federal Geographic Data Committee (FGDC)-compliant metadata file. The primary source for 1-m data is the National Agriculture Imagery Program (NAIP) leaf-on imagery. The U.S. Geological Survey (USGS) utilizes NAIP imagery as the image layer on its 'Digital- Map' - a new generation of USGS topographic maps (http://nationalmap.gov/digital_map). However, many Federal, State, and local governments and organizations require finer resolutions to meet a myriad of needs. Most of these images are leaf-off, natural-color products at resolutions of 1-foot (ft) or finer.

  5. Satellite-based Drought Reporting on the Navajo Nation

    Science.gov (United States)

    McCullum, A. J. K.; Schmidt, C.; Ly, V.; Green, R.; McClellan, C.

    2017-12-01

    The Navajo Nation (NN) is the largest reservation in the US, and faces challenges related to water management during long-term and widespread drought episodes. The Navajo Nation is a federally recognized tribe, which has boundaries within Arizona, New Mexico, and Utah. The Navajo Nation has a land area of over 70,000 square kilometers. The Navajo Nation Department of Water Resources (NNDWR) reports on drought and climatic conditions through the use of regional Standardized Precipitation Index (SPI) values and a network of in-situ rainfall, streamflow, and climate data. However, these data sources lack the spatial detail and consistent measurements needed to provide a coherent understanding of the drought regime within the Nation's regional boundaries. This project, as part of NASA's Western Water Applications Office (WWAO), improves upon the recently developed Drought Severity Assessment Tool (DSAT) to ingest satellite-based precipitation data to generate SPI values for specific administrative boundaries within the reservation. The tool aims to: (1) generate SPI values and summary statistics for regions of interest on various timescales, (2) to visualize SPI values within a web-map application, and (3) produce maps and comparative statistical outputs in the format required for annual drought reporting. The co-development of the DSAT with NN partners is integral to increasing the sustained use of Earth Observations for water management applications. This tool will provide data to support the NN in allocation of drought contingency dollars to the regions most adversely impacted by declines in water availability.

  6. Northeast Puerto Rico and Culebra Island - Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  7. Northeast Puerto Rico and Culebra Island - Geographic Zone Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geographic zone map was created by interpreting satellite and aerial imagery, seafloor topography (bathymetry model), and the new NEPR Benthic Habitat Map...

  8. Detection of pear thrips damage using satellite imagery data

    Science.gov (United States)

    James E. Vogelmann; Barrett N. Rock

    1991-01-01

    This study evaluates the potential of measuring, mapping and monitoring sugar maple damage caused by pear thrips in southern Vermont and northwestern Massachusetts using satellite imagery data. Landsat Thematic Mapper (TM) data were obtained during a major thrips infestation in June 1988, and were compared with satellite data acquired during June 1984 (before pear...

  9. Mapa de riesgo de temperaturas extremas frías para el sur de la provincia de Buenos Aires usando datos satelitales y de superficie Frost risk map for the south of Buenos Aires province using satellite and surface data

    Directory of Open Access Journals (Sweden)

    Roberto De Ruyver

    2012-06-01

    Full Text Available Cerca del 40 % del área sembrada con trigo en Argentina se concentra en el sur de la provincia de Buenos Aires. Los eventos frecuentes de temperaturas extremas frías en la segunda quincena de octubre, coincidentes con un momento fenológico sensible del trigo, provocan daños de importancia en el cultivo. El presente trabajo tiene como objetivo proveer mapas de riesgo de temperaturas extremas frías para el período sensible del cultivo de trigo en esa región. Se utilizó información de los canales 3, 4 y 5 del satélite NOAA de 1,09 km² de resolución espacial, obtenidas en el Instituto de Clima y Agua del INTA-Castelar entre 2005 y 2008, y datos diarios de temperaturas mínimas del período 1961-2008 de 13 estaciones de superficie del Servicio Meteorológico Nacional (SMN y del Instituto Nacional de Tecnología Agropecuaria (INTA. Los resultados muestran que las áreas de mayor riesgo son aquellas que combinan menor altura sobre el nivel del mar y al mismo tiempo mayor distancia al mismo. Esta metodología puede ser extendida a otros cultivos y a otras regiones. Este tipo de análisis constituye una herramienta que puede ser útil en tareas de planificación tanto a nivel estatal como privado.Cold temperature can cause severe damage in crops when a cold front irruption occurs. This is especially true in some specific periods on the growing crops mainly during spring. This work presents frost risk maps for wheat. The region selected was the south of Buenos Aires province in Argentina. Wheat covers almost 2,2 million ha in south Buenos Aires area which represents 40% of the total wheat cultivated in Argentina At the same time, south Buenos Aires area suffers the biggest damage on wheat because of frost during spring time. The study was carried out based on channels 3, 4 and 5 of NOAA satellite images (1,09 km² spatial resolution. Images from 2005 to 2008 were available. Minimum daily temperatures from "Servicio Meteorológico Nacional

  10. Fermilab Education Office - FAQ

    Science.gov (United States)

    Search The Education Office FAQ - Frequently Asked Questions Click on the question to see the answer and the difference between the Education Office and the Lederman Science Center? The Education Office is store selling logo items and science toys. The Education Office staff works on both the 15th floor of

  11. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  12. Europe over the moon with new satellite

    CERN Document Server

    2002-01-01

    ESA has taken delivery of a 3kg device that it plans to use to complete the first high-resolution map of the moon. The D-CIXS (Demonstration of a Compact Imaging X-Ray Spectrometer) will be aboard the SMART-1 satellite to be launched from French Guyana in South America next February (1/2 page).

  13. The satellite archaeological survey of Egypt

    OpenAIRE

    Sparavigna, Amelia Carolina

    2011-01-01

    A recent announcement of some pyramids, buried under the sand of Egypt and discovered by means of infrared remote sensing, renewed the interest on the archaeological surveys aided by satellites. Here we propose the use of images, obtained from those of Google Maps after some processing to enhance their details, to locate archaeological remains in Egypt.

  14. Office 365 For Dummies

    CERN Document Server

    Withee, Ken

    2012-01-01

    The information you need to create a virtual office that can be accessed anywhere Microsoft Office 365 is a revolutionary technology that allows individuals and companies of all sizes to create and maintain a virtual office in the cloud. Featuring familiar Office Professional applications, web apps, Exchange Online, and Lync Online, Office 365 offers business professionals added flexibility and an easy way to work on the go. This friendly guide explains the cloud, how Office 365 takes advantage of it, how to use the various components, and the many possibilities offered by Office 365. It provi

  15. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  16. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  17. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  18. Map of Nasca Geoglyphs

    Science.gov (United States)

    Hanzalová, K.; Pavelka, K.

    2013-07-01

    The Czech Technical University in Prague in the cooperation with the University of Applied Sciences in Dresden (Germany) work on the Nasca Project. The cooperation started in 2004 and much work has been done since then. All work is connected with Nasca lines in southern Peru. The Nasca project started in 1995 and its main target is documentation and conservation of the Nasca lines. Most of the project results are presented as WebGIS application via Internet. In the face of the impending destruction of the soil drawings, it is possible to preserve this world cultural heritage for the posterity at least in a digital form. Creating of Nasca lines map is very useful. The map is in a digital form and it is also available as a paper map. The map contains planimetric component of the map, map lettering and altimetry. Thematic folder in this map is a vector layer of the geoglyphs in Nasca/Peru. Basis for planimetry are georeferenced satellite images, altimetry is created from digital elevation model. This map was created in ArcGis software.

  19. MAP OF NASCA GEOGLYPHS

    Directory of Open Access Journals (Sweden)

    K. Hanzalová

    2013-07-01

    Full Text Available The Czech Technical University in Prague in the cooperation with the University of Applied Sciences in Dresden (Germany work on the Nasca Project. The cooperation started in 2004 and much work has been done since then. All work is connected with Nasca lines in southern Peru. The Nasca project started in 1995 and its main target is documentation and conservation of the Nasca lines. Most of the project results are presented as WebGIS application via Internet. In the face of the impending destruction of the soil drawings, it is possible to preserve this world cultural heritage for the posterity at least in a digital form. Creating of Nasca lines map is very useful. The map is in a digital form and it is also available as a paper map. The map contains planimetric component of the map, map lettering and altimetry. Thematic folder in this map is a vector layer of the geoglyphs in Nasca/Peru. Basis for planimetry are georeferenced satellite images, altimetry is created from digital elevation model. This map was created in ArcGis software.

  20. Cultures in orbit: Satellite technologies, global media and local practice

    Science.gov (United States)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  1. ARC Code TI: Crisis Mapping Toolkit

    Data.gov (United States)

    National Aeronautics and Space Administration — The Crisis Mapping Toolkit (CMT) is a collection of tools for processing geospatial data (images, satellite data, etc.) into cartographic products that improve...

  2. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  3. CERN helps with the mapping of natural disasters

    CERN Multimedia

    Daisy Yuhas

    2010-01-01

    The headquarters of UNOSAT, the Operational Satellite Applications Programme of the United Nations Institute for Training and Research, are in an unassuming office, not far from Restaurant 2. There, UN experts are on hand twenty-four hours a day, seven days a week, waiting for an emergency message from anywhere on the globe and ready to respond. It was there that experts were called upon to respond to the recent earthquakes in Haiti and Chile, using CERN computing resources to develop some of the first response maps.   In the case of January’s earthquake in Haiti, an SMS message was received at 23:20, Geneva time, on January 12, only minutes after the quake. Immediately, UNOSAT began organizing and downloading satellite images for analysis, to create the very first maps used by relief workers in Haiti. In the weeks following, UNOSAT members were on shift continually, day and night, working nonstop to develop reports of the damage. UNOSAT also sent two staff members on the ground to ver...

  4. 78 FR 78257 - Verification of Statements of Account Submitted by Cable Operators and Satellite Carriers

    Science.gov (United States)

    2013-12-26

    ... royalty fees with the Office in order to use the statutory licenses that allow for the retransmission of... royalty fees that cable operators and satellite carriers file with the Office. See 17 U.S.C. 111(d)(6... new process to allow copyright owners to audit the SOAs and associated royalty payments. The Office...

  5. GIS Map of Mosaicked LandSat 7 ETM+ Satellite Imagery of the Marshall Islands, Micronesia Federated States, and the Republic of Palau from January 1, 1999 to December 31, 2003 (NODC Accession 0067475)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These maps show for the first time an accurate georeferenced mosaic of the Marshall Islands, the Federated States of Micronesia, the Republic of Palau and their...

  6. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    We propose a series of ultraviolet spectral observations of solid surfaces of selected solar system objects, specifically the Galilean satellites of Jupiter, several atmosphereless satellites of Saturn, and the asteroids, 5 Astraea, 18 Melpomene, 532 Herculina, 68 Leto, 31 Euphmsyne, 80 Sappho, 3 Juno, and 39 Laetitia. Historically such spectral observations have allowed for the Identification of spectrally active solid state materials on planetary surfaces. Furthermore, because the rotational properties are known for all the objects proposed for study, this technique will provide a longitude map of such materials on the objects' surfaces. The study of asteroid surface mineralogy is an important method of constraining solar system formation models. The asteroid spectra we have previously acquired with IUE have created unique subdivisions within the existent asteroid types. The new spectra will provide more sophisticated mineralogical characterizations of asteroid surface materials. Our other accomplishments with IUE include mapping of the distribution of condensed S02 on Io, identification of a longitudinal asymmetry on Europa associated with magnetospheric particle bombardment of the surface, and establishing the ultraviolet geometric albedo variation as a function of longitude for all the Galilean satellites. Because Io is the most volcanically active body In the solar system, and short tern variations in selected regions of the Jovian magnetosphere are known to occur, it is important to periodically check for temporal variations in the spectra of the Galilean satellites that may be due to variations n Io tectonic/volcanic activity, or magnetosphere changes. These proposed UV observations are critical to the design and operation of several instruments on Project Galileo, NASA's Jupiter Orbiter and Probe Mission. Spectra of Iapetus, Rhea and Dione have been acquired during the previous year; however, only at orbital locations near elongation. In addition, the dark

  7. Detailed maps of tropical forest types are within reach: forest tree communities for Trinidad and Tobago mapped with multiseason Landsat and multiseason fine-resolution imagery

    Science.gov (United States)

    Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad. Ramnarine

    2012-01-01

    Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...

  8. Rita Historical Page - Office of Satellite and Product Operations

    Science.gov (United States)

    Advisory Archive. Floater Imagery September 24/0015Z to 24/1345Z: Image: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Loop: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Gulf Of Mexico Imagery September

  9. Wilma Historical Page - Office of Satellite and Product Operations

    Science.gov (United States)

    Report and Advisory Archive. Floater Imagery October 24/0715Z to 24/1415Z: Image: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Loop: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Gulf Of Mexico Imagery

  10. Katrina Historical Page - Office of Satellite and Product Operations

    Science.gov (United States)

    . Floater Imagery August 28/1745Z to 29/0245Z: Image: AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Loop: AVN | BD : AVN | BD | FT | IR | IR2 | JSL | RB | RGB | VIS | WV Image (w/ Latitude & Longitude): AVN | BD

  11. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  12. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  13. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  14. NOAA Workforce Management Office

    Science.gov (United States)

    Management Fellows (PMFs) Program Coordination Office - Leadership Development Program (PCO-LDP) Employee (NRAP) Presidential Management Fellows (PMFs) Program Coordination Office - Leadership Development ) NOAA Leadership Seminar (NLS) NOAA Rotational Assignment Program (NRAP) Presidential Management Fellows

  15. HUD's Local Office Directory

    Data.gov (United States)

    Department of Housing and Urban Development — HUD is organized in 10 Regions. Each Region is managed by a Regional Administrator, who also oversees the Regional Office. Each Field Office within a Region is...

  16. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  17. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  18. Energy use in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  19. Fermilab Education Office - Contacts

    Science.gov (United States)

    Search The Office of Education and Public Outreach: Contacts All telephone numbers require area code Presentations for Presenters 840-3094 Office of Education and Public Outreach Spencer Pasero spasero@fnal.gov Education Office 840-3076 Fermilab Friends for Science Education General Questions Susan Dahl sdahl@fnal.gov

  20. Fermilab Education Office - Physicists

    Science.gov (United States)

    on Education Server, but to take full advantage of all of this site's features, you should turn Custom Search Connect with the Fermilab Education Office! Facebook Fermilab Education Office Join these groups: Science Adventures Group Teacher Resource Center Group Twitter Fermilab Education Office For more

  1. Office Computers: Ergonomic Considerations.

    Science.gov (United States)

    Ganus, Susannah

    1984-01-01

    Each new report of the office automation market indicates technology is overrunning the office. The impacts of this technology are described and some ways to manage and physically "soften" the change to a computer-based office environment are suggested. (Author/MLW)

  2. Satellite communication from user to user

    Science.gov (United States)

    Gern, Manfred

    Satellite communication systems which allow a multitude of user-to-user, point-to-point, and multipoint connections, are presented. The bit rates are 64 kbit/sec and multiples, up to 1.92 Mbit/sec. If required, the ground-stations are installed at the customer's site or at suitable locations in order to serve several customers. However, technical requirements for station location have also to be fulfulled, in order to avoid interference with terrestrial radio services. The increasing number of participants to Satellite Multi Service and INTELSAT Business Services imposes the solution of the problem of communication using cheap techniques. The changes of the German Federal Post Office also permit the economic use of satellite radio techniques for short distances.

  3. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  4. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO) - Lanai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  5. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Guam Weather Forecast Office (GUM WFO) - Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  6. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Boston Weather Forecast Office (BOX WFO) - Massachusetts and Rhode Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  7. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Caribou Weather Forecast Office (CAR WFO) - Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  8. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO) - Hawaii Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO) - Maui

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  10. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: National Weather Service Forecast Office - Charleston (CHS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  11. Wind Atlas for the Gulf of Suez Satellite Imagery and Analyses

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    (SAR) data derived from the European Remote Sensing Satellite (ERS) have been used to make wind speed maps for the Gulf of Suez. 2. “Land cover from Landsat TM imagery”. Landsat Thematic Mapper(TM) data have been used to establish true- and false-colour land cover maps, as well as land cover...... classification maps. 3. “Reporting on satellite information for the Wind Atlas for Egypt”. Along-Track Scanning Radiometer (ATSR) data from the European Remote Sensing Satellite (ERS) have been used to map the sea- and land-surface temperatures and albedos....

  12. NOAA Laboratory for Satellite Altimetry Sea Level Rise Products: Global and regional sea level time series and trend maps for the major ocean basins and marginal seas, based on measurements from satellite radar altimeters, from 1992-12-17 to 2017-08-11 (NCEI Accession 0125535)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains global and regional mean sea level time series and trend maps calculated on a continual basis since December 1992 by Laboratory for...

  13. Office 2013 simplified

    CERN Document Server

    Marmel, Elaine

    2013-01-01

    A basic introduction to learn Office 2013 quickly, easily, and in full color Office 2013 has new features and tools to master, and whether you're upgrading from an earlier version or using the Office applications for the first time, you'll appreciate this simplified approach. Offering a clear, visual style of learning, this book provides you with concise, step-by-step instructions and full-color screen shots that walk you through the applications in the Microsoft Office 2013 suite: Word, Excel, PowerPoint, Outlook, and Publisher.Shows you how to tackle dozens of Office 2013

  14. Office 2013 for dummies

    CERN Document Server

    Wang, Wallace

    2013-01-01

    Office 2013 For Dummies is the key to your brand new Office! Packed with straightforward, friendly instruction, this update to one of the bestselling Office books of all time gets you thoroughly up to speed and helps you learn how to take full advantage of the new features in Office 2013. After coverage of the fundamentals, you'll discover how to spice up your Word documents, edit Excel spreadsheets and create formulas, add pizazz to your PowerPoint presentation, and much more.Helps you harness the power of all five Office 2013 applications: Word, Excel, PowerPoint,

  15. Korea Earth Observation Satellite Program

    Science.gov (United States)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  16. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  17. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  18. Satellite services system overview

    Science.gov (United States)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  19. Coordinate systems and map projections

    CERN Document Server

    Maling, DH

    1992-01-01

    A revised and expanded new edition of the definitive English work on map projections. The revisions take into account the huge advances in geometrical geodesy which have occurred since the early years of satellite geodesy. The detailed configuration of the geoid resulting from the GEOS and SEASAT altimetry measurements are now taken into consideration. Additionally, the chapter on computation of map projections is updated bearing in mind the availability of pocket calculators and microcomputers. Analytical derivation of some map projections including examples of pseudocylindrical and polyconic

  20. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    -based observations become available. At present preliminary results are obtained using the routine methods. The first step in the process is to retrieve raw SAR data, calibrate the images and use a priori wind direction as input to the geophysical model function. From this process the wind speed maps are produced....... The wind maps are geo-referenced. The second process is the analysis of a series of geo-referenced SAR-based wind maps. Previous research has shown that a relatively large number of images are needed for achieving certain accuracies on mean wind speed, Weibull A and k (scale and shape parameters......Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy...

  1. Cosmology with the Planck Satellite

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Sketched out in 1992, selected by ESA in 1996, and launched in 2009, the Planck satellite was shut off in 2013, after a measuring mission that exceeded all expectations. The Planck collaboration delivered a first set of cosmological data and results in March 21st 2013, and the full set in February 2015. Part of the data delivery is a "definitive" map of the anisotropies of the Cosmic Microwave Background (CMB), its angular power spectrum together with their full statistical characterisation. The 2015 delivery also includes pioneering polarisation data. The temperature anisotropy map displays minuscule variations as a function of the observing direction, of rms ~100microK, of the fossil radiation around its mean temperature of 2.725K. Other maps reveal the CMB polarisation. The anisotropies are the imprint of the primordial fluctuations which initiated the growth of the large scale structures of the Universe, as transformed by their evolution, in particular during the first 370 000 years, as well as finer e...

  2. Auxiliary office chair

    OpenAIRE

    Pascual Osés, Maite

    2007-01-01

    The aim of this project is to develop an auxiliary office chair, which favorably will compete with the existing chairs on the market. Evolutions of ergonomical survey in the work environment and on the configuration of offices require new products which fulfill the requirements properly. In order to achieve it a survey about office chairs has been carried out: types, characteristics, ways of usage and products on the market besides a large antropometrical study and ergonomics related to work ...

  3. 77 FR 55783 - Verification of Statements of Account Submitted by Cable Operators and Satellite Carriers

    Science.gov (United States)

    2012-09-11

    ... the Office by cable operators and satellite carriers. Initial comments are available for review on the... Program Suppliers represent copyright owners that produce and/or syndicate movies, programs, and specials...

  4. Geomorphology of coastal environments from satellite images

    International Nuclear Information System (INIS)

    Da Rocha Ribeiro, R.; Velho, L.; Schossler, V.

    2010-01-01

    This study aims at recognizing coastal environments supported by data from the Landsat Thematic Mapper (TM) satellite. The digital processing of images, System Information Geographic (SIG) techniques and field observation in one section of the “Província Costeira do Rio Grande do Sul” between the Rio Grande and the São Gonçalo channels - resulted in a geomorphologic profile and mapping

  5. Satellite Communications Industry

    Science.gov (United States)

    1993-04-01

    Ariane $loom SAJAC 1 Hughes Satellite Japan 06/94 $150m SAJAC 2 Hughes Satellite Japan -- (spare) $150m SatcomHl GE GE Americom /95 $50m SOLIDARIDAD ...1 Hughes SCT (Mexico) 11/93 Ariane $loom SOLIDARIDAD 2 Hughes SCT (Mexico) /94 $loom Superbird Al Loral Space Com Gp (Jap) 11/92 Ariane $175m

  6. Partnership via Satellite.

    Science.gov (United States)

    Powell, Marie Clare

    1980-01-01

    Segments of the 1980 National Catholic Educational Association (NCEA) conference were to be telecast nationally by satellite. The author briefly explains the satellite transmission process and advises Catholic educators on how to pick up the broadcast through their local cable television system. (SJL)

  7. The satellite situation center

    International Nuclear Information System (INIS)

    Teague, M.J.; Sawyer, D.M.; Vette, J.I.

    1982-01-01

    Considerations related to the early planning for the International Magnetospheric Study (IMS) took into account the desirability of an establishment of specific entities for generating and disseminating coordination information for both retrospective and predictive periods. The organizations established include the IMS/Satellite Situation Center (IMS/SSC) operated by NASA. The activities of the SSC are related to the preparation of reports on predicted and actually achieved satellite positions, the response to inquiries, the compilation of information on satellite experiments, and the issue of periodic status summaries. Attention is given to high-altitude satellite services, other correlative satellite services, non-IMS activities of the SSC, a summary of the SSC request activity, and post-IMS and future activities

  8. Multi-office engineering

    International Nuclear Information System (INIS)

    Cowle, E.S.; Hall, L.D.; Koss, P.; Saheb, E.; Setrakian, V.

    1995-01-01

    This paper addresses the viability of multi-office project engineering as has been made possible in a large part by the computer age. Brief discussions are provided on two past projects describing the authors' initial efforts at multi-office engineering, and an in-depth discussion is provided on a current Bechtel project that demonstrates their multi-office engineering capabilities. Efficiencies and cost savings associated with executing an engineering project from multiple office locations was identified as a viable and cost-effective execution approach. The paper also discusses how the need for multi-office engineering came about, what is required to succeed, and where they are going from here. Furthermore, it summarizes the benefits to their clients and to Bechtel

  9. BEE FORAGE MAPPING BASED ON MULTISPECTRAL IMAGES LANDSAT

    Directory of Open Access Journals (Sweden)

    A. Moskalenko

    2016-10-01

    Full Text Available Possibilities of bee forage identification and mapping based on multispectral images have been shown in the research. Spectral brightness of bee forage has been determined with the use of satellite images. The effectiveness of some methods of image classification for mapping of bee forage is shown. Keywords: bee forage, mapping, multispectral images, image classification.

  10. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area

    Science.gov (United States)

    Ronald E. McRoberts

    2010-01-01

    Satellite image-based maps of forest attributes are of considerable interest and are used for multiple purposes such as international reporting by countries that have no national forest inventory and small area estimation for all countries. Construction of the maps typically entails, in part, rectifying the satellite images to a geographic coordinate system, observing...

  11. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    Science.gov (United States)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  12. Research on Topographic Map Updating

    Directory of Open Access Journals (Sweden)

    Ivana Javorović

    2013-04-01

    Full Text Available The investigation of interpretability of panchromatic satellite image IRS-1C integrated with multispectral Landsat TM image with the purpose of updating the topographic map sheet at the scale of 1:25 000 has been described. The geocoding of source map was based on trigonometric points of the map sheet. Satellite images were geocoded using control points selected from the map. The contents of map have been vectorized and topographic database designed. The digital image processing improved the interpretability of images. Then, the vectorization of new contents was made. The change detection of the forest and water area was defined by using unsupervised classification of spatial and spectral merged images. Verification of the results was made using corresponding aerial photographs. Although this methodology could not insure the complete updating of topographic map at the scale of 1:25 000, the database has been updated with huge amount of data. Erdas Imagine 8.3. software was used. 

  13. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  14. Fine-tuning satellite-based rainfall estimates

    Science.gov (United States)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  15. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    Science.gov (United States)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  16. A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data.

    Science.gov (United States)

    Dell'Acqua, Fabio; Iannelli, Gianni Cristian; Torres, Marco A; Martina, Mario L V

    2018-02-14

    Cash crops are agricultural crops intended to be sold for profit as opposed to subsistence crops, meant to support the producer, or to support livestock. Since cash crops are intended for future sale, they translate into large financial value when considered on a wide geographical scale, so their production directly involves financial risk. At a national level, extreme weather events including destructive rain or hail, as well as drought, can have a significant impact on the overall economic balance. It is thus important to map such crops in order to set up insurance and mitigation strategies. Using locally generated data-such as municipality-level records of crop seeding-for mapping purposes implies facing a series of issues like data availability, quality, homogeneity, etc. We thus opted for a different approach relying on global datasets. Global datasets ensure homogeneity and availability of data, although sometimes at the expense of precision and accuracy. A typical global approach makes use of spaceborne remote sensing, for which different land cover classification strategies are available in literature at different levels of cost and accuracy. We selected the optimal strategy in the perspective of a global processing chain. Thanks to a specifically developed strategy for fusing unsupervised classification results with environmental constraints and other geospatial inputs including ground-based data, we managed to obtain good classification results despite the constraints placed. The overall production process was composed using "good-enough" algorithms at each step, ensuring that the precision, accuracy, and data-hunger of each algorithm was commensurate to the precision, accuracy, and amount of data available. This paper describes the tailored strategy developed on the occasion as a cooperation among different groups with diverse backgrounds, a strategy which is believed to be profitably reusable in other, similar contexts. The paper presents the problem

  17. A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data

    Directory of Open Access Journals (Sweden)

    Fabio Dell’Acqua

    2018-02-01

    Full Text Available Cash crops are agricultural crops intended to be sold for profit as opposed to subsistence crops, meant to support the producer, or to support livestock. Since cash crops are intended for future sale, they translate into large financial value when considered on a wide geographical scale, so their production directly involves financial risk. At a national level, extreme weather events including destructive rain or hail, as well as drought, can have a significant impact on the overall economic balance. It is thus important to map such crops in order to set up insurance and mitigation strategies. Using locally generated data—such as municipality-level records of crop seeding—for mapping purposes implies facing a series of issues like data availability, quality, homogeneity, etc. We thus opted for a different approach relying on global datasets. Global datasets ensure homogeneity and availability of data, although sometimes at the expense of precision and accuracy. A typical global approach makes use of spaceborne remote sensing, for which different land cover classification strategies are available in literature at different levels of cost and accuracy. We selected the optimal strategy in the perspective of a global processing chain. Thanks to a specifically developed strategy for fusing unsupervised classification results with environmental constraints and other geospatial inputs including ground-based data, we managed to obtain good classification results despite the constraints placed. The overall production process was composed using “good-enough" algorithms at each step, ensuring that the precision, accuracy, and data-hunger of each algorithm was commensurate to the precision, accuracy, and amount of data available. This paper describes the tailored strategy developed on the occasion as a cooperation among different groups with diverse backgrounds, a strategy which is believed to be profitably reusable in other, similar contexts. The

  18. Office 2013 digital classroom

    CERN Document Server

    Holland, Walter

    2013-01-01

    This complete training package makes learning the new Office 2013 even easier! Featuring both a video training DVD and a full-color book, this training package is like having your own personal instructor guiding you through each lesson of learning Office 2013, all while you work at your own pace. The self-paced lessons allow you to discover the new features and capabilities of the new Office suite. Each lesson includes step-by-step instructions and lesson files, and provides valuable video tutorials that complement what you're learning and clearly demonstrate how to do tasks. This essential

  19. Office 2010 Bible

    CERN Document Server

    Walkenbach, John; Groh, Michael R

    2010-01-01

    The best of the best from the bestselling authors of Excel, Word, and PowerPoint Bibles !. Take your pick of applications from the Office 2010 suite and your choice of leading experts to show you how to use them. This Office 2010 Bible features the best-of-the-best content from the Excel 2010 Bible , by "Mr. Spreadsheet" John Walkenbach; the Word 2010 Bible by Microsoft MVP Herb Tyson; the PowerPoint 2010 Bible , by PowerPoint expert Faithe Wempen; and coverage of Access 2010 from Microsoft MVP Michael Alexander. If you want to quickly and effectively begin using Office 2010, start i

  20. Office of the Chief Financial Officer Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jeffrey

    2009-12-15

    Presented is the 2009 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office.

  1. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  2. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  3. SATELLITE CONSTELLATION DESIGN PARAMETER

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. SATELLITE CONSTELLATION DESIGN PARAMETER. 1. ORBIT CHARACTERISTICS. ORBITAL HEIGHT >= 20,000 KM. LONGER VISIBILITY; ORBITAL PERIOD. PERTURBATIONS(MINIMUM). SOLAR RADIATION PRESSURE (IMPACTS ECCENTRICITY); LUNI ...

  4. Using Satellite Remote Sensing to assist the National Weather Service (NWS) in Storm Damage Surveys

    Science.gov (United States)

    Schultz, L. A.; Molthan, A.; McGrath, K.; Bell, J. R.; Cole, T.; Burks, J.

    2016-12-01

    In recent years, the NWS has developed a GIS-based application, called the Damage Assessment Toolkit (DAT), to conduct storm surveys after severe weather events. At present, the toolkit is primarily used for tornado damage surveys and facilitates the identification of damage indicators in accordance with the Enhanced Fujita (EF) intensity scale by allowing surveyors to compare time- and geo-tagged photos against the EF scale guidelines. Mobile and web-based applications provide easy access to the DAT for NWS personnel while performing their duties in the field or office. Multispectral satellite remote sensing imagery has demonstrated benefits for the detection and mapping of damage tracks caused by tornadoes, especially for long-track events and/or areas not easily accessed by NWS personnel. For example, imagery from MODIS, Landsat 7, Landsat 8, ASTER, Sentinel 2, and commercial satellites, collected and distributed in collaboration with the USGS Hazards Data Distribution System, have been useful for refining track location and extent through a "bird's eye" view of the damaged areas. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been working with the NWS and USGS to provide imagery and derived products from polar-orbiting satellite platforms to assist in the detection and refinement of tornado tracks as part of a NASA Applied Science: Disasters project. Working closely with select Weather Forecast Offices (WFOs) and Regional Operations Centers (ROCs) in both the NWS Central and Southern regions, high- and medium-resolution (0.5 - 30 m and 250 m - 1 km resolutions, respectively) imagery and derived products have been provided to the DAT interface for evaluation of operational utility by the NWS for their use in both the field and in the office during post event analysis. Highlighted in this presentation will be case studies where the remotely sensed imagery assisted in the adjustment of a tornado track. Examples will be shown highlighting

  5. Features interior design offices

    OpenAIRE

    Novikov, A. S.; National Aviation University, Ukraine

    2014-01-01

    The article examines the laws and the formation of office space inthe current conditions and investigate the application of the latest technical tools aesthetics to improve the quality of design solutions.

  6. Planning for Office Automation.

    Science.gov (United States)

    Mick, Colin K.

    1983-01-01

    Outlines a practical approach to planning for office automation termed the "Focused Process Approach" (the "what" phase, "how" phase, "doing" phase) which is a synthesis of the problem-solving and participatory planning approaches. Thirteen references are provided. (EJS)

  7. NCEP Internal Office Notes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Centers for Environmental Prediction (NCEP) and its predecessors have produced internal publications, known as Office Notes, since the mid-1950's. In...

  8. Ecocitizen at the office

    CERN Multimedia

    Staff Association

    2014-01-01

    At the office, I do as I would at home At the office, just as at home, we need to stay warm, have light, be equipped (with office material, furniture). We thus need energy and raw materials. This consumption is not without consequences for our environment. How to reduce our consumption? In everyday life, we already have behaviours that allow us to save energy and resources, to sort our waste. At the office it is important to act in the same way as at home, as we spend a lot of time at our workplace. How to act more responsibly at the office, to reduce the environmental impact, and how to stay motivated? Computer, printer, copy machine… or coffee machine. There are quite a few electrical appliances which are indispensable in our office. Always turned on, or almost, they are also often inactive, and it is during these phases of inactivity that two thirds of their consumption occurs. The way one uses the computer is important in order to limit its consumption. Use the sleep mode with care. A c...

  9. Satellite Contributions to Global Change Studies

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need

  10. Commercial satellite data as support to the additional protocol declarations

    International Nuclear Information System (INIS)

    Joensson, Camilla; Andersson, Christer

    2001-01-01

    Full text: Objectives - The overall objective of the project is to show how commercial satellite data can be used for safeguard purposes both at SKI and the International Atomic Energy Agency. Furthermore this project will support IAEA in its process to develop methods to make the best use of provided information such as digitised maps and satellite images. Finally it will give IAEA a case study of the usefulness of satellite data for change detection purposes. Background - The protocol calls among others for an extended/complete declaration of all nuclear fuel cycle-related research and development activities as well as sites where nuclear material is or was customarily used. The declaration shall include descriptions of all buildings at the sites as well as maps. In parallel to the development of the additional protocol IAEA has started to use a variety of measures/techniques both to verify that declarations are complete and correct but also to be able to come to the conclusion that a state has no undeclared nuclear material or undeclared nuclear activities. One such technique is the use of commercial satellite data. The IAEA is now in the process of evaluating the usefulness and effectiveness of such data for safeguard purposes. In order to come to a decision on how to use satellite data IAEA is highly dependant on support from member states which can provide results from case studies etc. Analysis - This project shall provide SKI with digitised maps and commercial satellite data by the means of GIS to verify the descriptions provided by two of the nuclear operators. Furthermore those digital data can be included in the declaration given to IAEA. The overall aim is to enhance the quality of the Swedish declaration including support to IAEA to develop methods to use commercial satellite data. Results - The paper will present experiences and mapping results made during the work. (author)

  11. Essential climatic variables estimation with satellite imagery

    Science.gov (United States)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  12. Origin of the Local Group satellite planes

    Science.gov (United States)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  13. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  14. GEO Satellites as Space Weather Sensors

    Science.gov (United States)

    2016-04-26

    AFRL-AFOSR-VA-TR-2016-0161 GEO Satellites as Space Weather Sensors Kerri Cahoy MASSACHUSETTS INSTITUTE OF TECHNOLOGY 77 MASSACHUSETTS AVE CAMBRIDGE ... Cambridge , MA 02139 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AF Office of Scientific...Lohmeyer  and  Cahoy,  2013;   Lohmeyer,  et  al.,  2015].  From  the   statistical  analysis,  we  identified  that

  15. Applying satellite technology to energy and mineral exploration

    Science.gov (United States)

    Carter, William D.; Rowan, Lawrence C.

    1978-01-01

    IGCP Project 143 ("Remote Sensing and Mineral Exploration"), is a worldwide research project designed to make satellite data an operational geological tool along with the geologic pick, hand lens, topographic map, aerial photo and geophysical instruments and data that comprise the exploration package. While remote sensing data will not replace field exploration and mapping, careful study of such data prior to field work should make the effort more efficient.

  16. 365 MAPPING MALARIA CASE EVENT AND FACTORS OF ...

    African Journals Online (AJOL)

    Osondu

    Key words: Malaria case event; prevention; vulnerability; GIS; Nigeria. Introduction. The mapping of ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.4 2013 ... review articles Tanser et al., (2000), indicate that. Satellite ...

  17. Mapping and Naming the Moon

    Science.gov (United States)

    Whitaker, Ewen A.

    2003-12-01

    Preface; Introduction; Part I. First Era: From Prehistoric Images to Archetype Map: 1. Pre-telescopic lunar observations; 2. Early telescopic observations of the Moon; 3. Van Langren (Langrenus) and the birth of selenography; 4. Six more years of sporadic activity; Part II. Second Era: From Archetype to Maturity: 5. 140 years of sporadic activity; 6. A globe, tree rings, and a city; 7. Lunar cartography comes of age; Part III. Third Era: From proliferation to standardisation: 8. Lunar mapping in the Victorian period; 9. Nomenclature gets international attention; Part IV. The Space Age Demands Changes: 10. Setting up guidelines; 11. Planets and satellites set the rules. Appendices 1 - 22.

  18. Mapeamento de áreas aluvionares no semiárido brasileiro por meio de dados colaterais e imagens orbitais Mapping alluvial areas in semi-arid region of Brazil through collateral data and satellite images

    Directory of Open Access Journals (Sweden)

    Helio L. Lopes

    2013-07-01

    Full Text Available A região semiárida do Brasil possui grande potencial para armazenamento de água em áreas aluvionares, podendo potencializar a pequena agricultura. Verifica-se a necessidade de uma metodologia para mapeamento dessas áreas, com o objetivo de futuros estudos in loco para implantação de barragens subterrâneas e manejo correto dos solos aluvionares. Neste sentido, objetivou-se a aplicação de imagens Landsat- Mapeador Temático 5 em conjunto com dados colaterais, como a rede de drenagem, mapa de classes de solo e mapa de relevo para auxiliar na classificação de terraços aluviais. Teve-se, como área de estudo, a bacia do Rio Pajeú, no sertão do estado de Pernambuco. Buscou-se também, por meio de dados SRTM (Shuttle Radar Topography Mission, a avaliação topográfica das áreas classificadas. Verifica-se que a utilização única de dados orbitais traz classificação incongruente mas com a inserção de dados colaterais é possível obter melhores resultados na classificação. A rede de drenagem é fundamental no mascaramento de classificações espúrias. Quando procede à análise topográfica por meio de dados do SRTM das áreas classificadas como terraços aluvionares, observa-se a inconsistência desses dados.The semi-arid region of Brazil has great potential for storing water in alluvial areas, and may give support to small-scale family farming. There is a need to establish a methodology for mapping these areas with the objective of future studies to implement underground dams and suitable management of the soils that occur on alluvial terraces. In this way, the aim of this study was to apply Landsat-Thematic Mapper images together with collateral data such as the drainage network, map of soil classes and elevation data to assist in the classification of alluvial terraces. The study area was Pajeú River basin located in the 'Caatinga' ecosystem of the Pernambuco state. Topographic assessment of the alluvial areas was done by

  19. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    2007-01-01

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  20. Participatory Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    2016-01-01

    practice. In particular, mapping environmental damage, endangered species, and human-made disasters has become one focal point for environmental knowledge production. This type of digital map has been highlighted as a processual turn in critical cartography, whereas in related computational journalism...... of a geo-visualization within information mapping that enhances embodiment in the experience of the information. InfoAmazonia is defined as a digitally created map-space within which journalistic practice can be seen as dynamic, performative interactions between journalists, ecosystems, space, and species...

  1. Planck satellite to be presented to media

    Science.gov (United States)

    2007-01-01

    at Orsay (France) in the case of HFI, and by the Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) in Bologna (Italy) in that of LFI. There are also numerous subcontractors spread throughout Europe, with several more in the USA. For further information, please contact: ESA Media Relations Office Tel: +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Press event programme 1 February 2007, 10:00 am Alcatel Alenia Space 100 Boulevard du Midi, Cannes (France) 10:00 - 10:05 - Opening address, by Patrick Maute - Head of Optical Observation and Science Programmes - Alcatel Alenia Space, and by Jacques Louet - Head of Science Projects - ESA 10:05 - 10:15 - Herschel/Planck Mission overview, by Thomas Passvogel - Planck Project Manager - ESA 10:15 - 10:25 - Planck satellite, by Jean-Jacques Juillet - Programme Manager - Alcatel Alenia Space 10:25 - 10:35 - The scientific mission, by Jan Tauber - Planck Project Scientist - ESA 10:35 - 10:45 - The High-Frequency Instrument, by Jean-Loup Puget - HFI Principal Investigator 10:45 - 10:55 - The Low-Frequency Instrument, by Reno Mandolesi - LFI Principal Investigator 10:55 - 11:05 - Special guest - Nobel prize winner G.F. Smoot 11:05 - 11:25 - Questions and answers 11:25 - 12:35 - Visit of the integration room to see Planck spacecraft and face-to-face interviews 12:45 - 14:30 - Lunch hosted by Alcatel Alenia Space.

  2. Accuracy comparison between ZY-3 surveying and mapping satellite DSM and ASTER GDEM-a case of high altitude mountain areas%资源三号测绘卫星 DSM 与AST ER GDEM 精度对比分析--以高海拔山区为例

    Institute of Scientific and Technical Information of China (English)

    张弛; 葛莹; 王冲; 肖胜昌; 李云婷; 张骏源

    2016-01-01

    In order to evaluate the accuracy of DSM data of ZY‐3 surveying and mapping satellite ,this paper selects the ZY‐3 DSM data in the high altitude mountain areas as typical areas with 1∶10 000 DEM as contrastive reference data ,analyzes the ZY‐3 DSM data with ASTER GDEM as reference ,and compares their accuracy in terms of elevation accuracy and accuracy of terrain representation .The results show that on the whole the data quality of ZY‐3 DSM is better than ASTER GDEM .%为了评价国产资源三号测绘卫星DSM数据质量,选取地貌类型丰富的云南省高海拔山区为试验样区,以1∶10000实测地形图DEM为假定真值,以30 m分辨率ASTER GDEM 为评价参照,从高程精度和地形描述精度两方面着手,对国产资源三号测绘卫星DSM数据精确性进行分析。结果表明:国产资源三号测绘卫星DSM 数据精度整体高于ASTER GDEM 。

  3. The strategic security officer.

    Science.gov (United States)

    Hodges, Charles

    2014-01-01

    This article discusses the concept of the strategic security officer, and the potential that it brings to the healthcare security operational environment. The author believes that training and development, along with strict hiring practices, can enable a security department to reach a new level of professionalism, proficiency and efficiency. The strategic officer for healthcare security is adapted from the "strategic corporal" concept of US Marine Corps General Charles C. Krulak which focuses on understanding the total force implications of the decisions made by the lowest level leaders within the Corps (Krulak, 1999). This article focuses on the strategic organizational implications of every security officer's decisions in the constantly changing and increasingly volatile operational environment of healthcare security.

  4. The Nimbus satellites - Pioneering earth observers

    Science.gov (United States)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  5. Satellite failures revisited

    Science.gov (United States)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  6. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  7. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  8. Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex

    Directory of Open Access Journals (Sweden)

    Madhav Jagannathan

    2017-02-01

    Full Text Available Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia using multi-color fluorescent in situ hybridization (FISH probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia, and suggests the presence of unidentified satellite sequences in these species.

  9. Exobiology of icy satellites

    Science.gov (United States)

    Simakov, M. B.

    At the beginning of 2004 the total number of discovered planets near other stars was 119 All of them are massive giants and met practically in all orbits In a habitable zone from 0 8 up to 1 1 AU at less 11 planets has been found starting with HD 134987 and up to HD 4203 It would be naive to suppose existence of life in unique known to us amino-nucleic acid form on the gas-liquid giant planets Nevertheless conditions for onset and evolutions of life can be realized on hypothetical satellites extrasolar planets All giant planets of the Solar system have a big number of satellites 61 of Jupiter 52 of Saturn known in 2003 A small part of them consist very large bodies quite comparable to planets of terrestrial type but including very significant share of water ice Some from them have an atmosphere E g the mass of a column of the Titan s atmosphere exceeds 15 times the mass of the Earth atmosphere column Formation or capture of satellites is a natural phenomenon and satellite systems definitely should exist at extrasolar planets A hypothetical satellite of the planet HD 28185 with a dense enough atmosphere and hydrosphere could have biosphere of terrestrial type within the limits of our notion about an origin of terrestrial biosphere As an example we can see on Titan the largest satellite of Saturn which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance The most recent models of the Titan s interior lead to the conclusion that a substantial liquid layer

  10. Nuclear security officer training

    International Nuclear Information System (INIS)

    Harrington, W.F.

    1981-01-01

    Training has become complex and precise in today's world of critical review and responsibility. Entrusted to a security officer is the success or demise of large business. In more critical environments the security officer is entrusted with the monitoring and protection of life sensitive systems and devices. The awareness of this high visibility training requirement has been addressed by a limited few. Those involved in the nuclear power industry through dedication and commitment to the American public have without a doubt become leading pioneers in demanding training excellence

  11. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    ionosphere using IRI-Plas-G software. One of the outstanding features of IONOLAB-RAY is the opportunity of Global Ionospheric Map-Total Electron Content (GIM-TEC) assimilation. This feature enables more realistic representation of ionosphere, especially for the times when ionosphere deviates from the generalized models, such as during geomagnetic storms. This feature is critical to examine the effect of ionosphere on satellite signals under ionospheric storm conditions. In this study TURKSAT satellite data is used to compare the results of IONOLAB-RAY and evaluate the effect of ionosphere. TURKSAT is one of the world's leading companies providing all sorts of satellite communications through the satellites of TURKSAT as well as the other satellites. Providing services for voice, data, internet, TV, and radio broadcasting through the satellites across a wide area extending from Europe to Asia. The latest satellite of TURKSAT, namely Turksat 4B was launched on October 2015, before that various versions of TURKSAT satellites are launched since 1994. In the future enlargement of broadcasting area towards equatorial region is aimed, where the ionospheric anomalies and storms are highly expected. In the future this study can be applied to the satellite signals in equatorial regions and effects of ionosphere especially under storm conditions can be discussed. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  12. Autonomous Planetary 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    is discussed.Based on such features, 3-D representations may be compiled from two or more 2-D satellite images. The main purposes of such a mapping system are extraction of landing sites, objects of scientific interest and general planetary surveying. All data processing is performed autonomously onboard...

  13. Use of Openly Available Satellite Images for Remote Sensing Education

    Science.gov (United States)

    Wang, C.-K.

    2011-09-01

    With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.

  14. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  15. Concept Mapping

    Science.gov (United States)

    Technology & Learning, 2005

    2005-01-01

    Concept maps are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. Displaying information visually--in concept maps, word webs, or diagrams--stimulates creativity. Being able to think logically teaches…

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Baltimore/Washington Weather Forecast Office (LWX WFO) - Maryland (West of Chesapeake Bay)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  17. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Guam Weather Forecast Office (GUM WFO) - Saipan, Commonwealth of Northern Mariana Islands (CNMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  18. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Juan, Puerto Rico Weather Forecast Office (SJU WFO) - Puerto Rico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  19. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Gray/Portland Weather Forecast Office (GYX WFO) - Maine and New Hampshire

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  20. Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps

    Science.gov (United States)

    Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios

    2017-09-01

    The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.

  1. Historical Map & Chart Collection of NOAA's Nautical Charts, Hydrographic Surveys, Topographic Surveys, Geodetic Surveys, City Plans, and Civil War Battle Maps Starting from the mid 1700's

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Historical Map and Chart Collection of the Office of Coast Survey contains over 20000 historical maps and charts from the mid 1700s through the late 1900s. These...

  2. The American Satellite Company (ASC) satellite deployed from payload bay

    Science.gov (United States)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  3. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  4. Security Management and Safeguards Office

    Science.gov (United States)

    Bewley, Nathaniel M.

    2004-01-01

    The Security Management and Safeguards Office at NASA is here to keep the people working in a safe environment. They also are here to protect the buildings and documents from sabotage, espionage, and theft. During the summer of 2004, I worked with Richard Soppet in Physical Security. While I was working here I helped out with updating the map that we currently use at NASA Glenn Research Center, attended meetings for homeland security, worked with the security guards and the locksmith. The meetings that I attended for homeland security talked about how to protect ourselves before something happened, they told us to always be on the guard and look for anything suspicious, and the different ways that terrorist groups operate. When I was with the security guards I was taught how to check someone into the base, showed how to use a radar gun, observed a security guard make a traffic stop for training and was with them while they patrolled NASA Glenn Research Center to make sure things were running smooth and no one was in danger. When I was with the lock smith I was taught how to make keys and locks for the employees here at NASA. The lock smith also showed me that he had inventory cabinets of files that show how many keys were out to people and who currently has access to the rooms that they keys were made for. I also helped out the open house at NASA Glenn Research Center. I helped out by showing the Army Reserves, and Brook Park's SWAT team where all the main events were going to take place a week before the open house was going to begin. Then during the open house I helped out by making sure people had there IDS, checked through there bags, and handed out a map to them that showed where the different activities were going to take place. So the main job here at NASA Glenn Research Center for the Security Management and Safeguards Office is to make sure that nothing is stolen, sabotaged, and espionaged. Also most importantly make sure all the employees here at NASA are

  5. An Admissions Officer's Credentials

    Science.gov (United States)

    Chronicle of Higher Education, 2007

    2007-01-01

    Marilee Jones has resigned as a dean of admissions at the Massachusetts Institute of Technology after admitting that she had misrepresented her academic degrees when first applying to work at the university in 1979. As one of the nation's most prominent admissions officers--and a leader in the movement to make the application process less…

  6. ERGONOMIC OFFICE POSITION ANALYSIS

    Directory of Open Access Journals (Sweden)

    DUMITRU Bogdan

    2010-07-01

    Full Text Available This paper present the risks faced by people working in the office. In the next pages you will find some methods and suggestions how to prevent the appearance of occupational diseases. These suggestions can help anyone to rearrange his work place in order to make his job more pleasant and healthy.

  7. The Mindful Development Officer

    Science.gov (United States)

    Taft, Deb

    2012-01-01

    Delivering on a commitment to diversity in schools, colleges, and universities is a living, breathing endeavor for many members of the advancement community. While a diversity leadership agenda is set clearly from the top, advancement officers can and must play a critical role in this arena. Effective development and alumni leaders are uniquely…

  8. Office of the Ombudsman.

    Science.gov (United States)

    Office of Federal Student Aid (ED), Washington, DC.

    This pamphlet describes the Federal Student Aid Ombudsman, an impartial resource to help customers resolve student loan concerns when other approaches fail. The ombudsman helps resolve discrepancies in loan balances and payments, and helps customers understand interest and collection charges. The office helps resolve issues related to income tax…

  9. Users Office - Removal

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    As of 8 December 2010 and until the end of February 2011, the Users Office will move from Bldg. 60. New Location : Bldg. 510-R-033 Opening Hours: Monday, Tuesday, Thursday, Friday : 08.30 – 12.30 Monday to Friday: 14.00 – 16.00 Closed Wednesday mornings.

  10. Office-based anaesthesia

    African Journals Online (AJOL)

    infection, and consistency in nursing personnel. In the USA 17 -. 24% of all elective ambulatory surgery is ... knowledge base or personality to deal with the OBA environment. Compared with hospitals, office-based facilities currently ... disease or major cardiovascular risk factors). Intravenous access via a flexible cannula is.

  11. Financing medical office buildings.

    Science.gov (United States)

    Blake, J W

    1995-01-01

    This article discusses financing medical office buildings. In particular, financing and ownership options from a not-for-profit health care system perspective are reviewed, including use of tax-exempt debt, taxable debt, limited partnerships, sale, and real estate investment trusts (REITs).

  12. Viking lander tracking contributions to Mars mapping

    International Nuclear Information System (INIS)

    Michael, W.H. Jr.

    1979-01-01

    The major recent advances in planetary mapping have been accomplished through use of photography from orbiting satellites, as is the case for Mars with Mariner and Viking photographs. The requirement for greater precision demands that inputs to the photogrammatic process be more precisely defined. This paper describes how analyses of Doppler and ranging data from the Viking landers are contributing to more precise mapping of Mars in several specific areas. (Auth.)

  13. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  14. Hydrocarbons on Saturn's satellites Iapetus and Phoebe

    Science.gov (United States)

    Cruikshank, D.P.; Wegryn, E.; Dalle, Ore C.M.; Brown, R.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Nicholson, P.D.; Pendleton, Y.J.; Owen, T.C.; Filacchione, G.; Coradini, A.; Cerroni, P.; Capaccioni, F.; Jaumann, R.; Nelson, R.M.; Baines, K.H.; Sotin, Christophe; Bellucci, G.; Combes, M.; Langevin, Y.; Sicardy, B.; Matson, D.L.; Formisano, V.; Drossart, P.; Mennella, V.

    2008-01-01

    Material of low geometric albedo (pV ??? 0.1) is found on many objects in the outer Solar System, but its distribution in the saturnian satellite system is of special interest because of its juxtaposition with high-albedo ice. In the absence of clear, diagnostic spectral features, the composition of this low-albedo (or "dark") material is generally inferred to be carbon-rich, but the form(s) of the carbon is unknown. Near-infrared spectra of the low-albedo hemisphere of Saturn's satellite Iapetus were obtained with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft at the fly-by of that satellite of 31 December 2004, yielding a maximum spatial resolution on the satellite's surface of ???65 km. The spectral region 3-3.6 ??m reveals a broad absorption band, centered at 3.29 ??m, and concentrated in a region comprising about 15% of the low-albedo surface area. This is identified as the C{single bond}H stretching mode vibration in polycyclic aromatic hydrocarbon (PAH) molecules. Two weaker bands attributed to {single bond}CH2{single bond} stretching modes in aliphatic hydrocarbons are found in association with the aromatic band. The bands most likely arise from aromatic and aliphatic units in complex macromolecular carbonaceous material with a kerogen- or coal-like structure, similar to that in carbonaceous meteorites. VIMS spectra of Phoebe, encountered by Cassini on 11 June 2004, also show the aromatic hydrocarbon band, although somewhat weaker than on Iapetus. The origin of the PAH molecular material on these two satellites is unknown, but PAHs are found in carbonaceous meteorites, cometary dust particles, circumstellar dust, and interstellar dust. ?? 2007 Elsevier Inc. All rights reserved.

  15. Satellite Surveillance: Domestic Issues

    National Research Council Canada - National Science Library

    Best, Jr., Richard A; Elsea, Jennifer K

    2008-01-01

    ... and law enforcement purposes, in addition to the civil applications that have been supported for years. In 2007, it moved to transfer responsibility for coordinating civilian use of satellites to the Department of Homeland Security. The transfer occurred, however, apparently without notification of key congressional oversight committees.

  16. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  17. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  18. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  19. Satellite transmission of oceanographic data

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; DeSa, E.J.

    Oceanographic data collected on a research vessel has been transmitted to a shore laboratory using the INMARSAT maritime satellite The system configuration used, consisted of Satellite Communication Terminals interfaced to desk top computers...

  20. Satellite Ocean Heat Content Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  1. Monitoring Cyanobacteria with Satellites Webinar

    Science.gov (United States)

    real-world satellite applications can quantify cyanobacterial harmful algal blooms and related water quality parameters. Provisional satellite derived cyanobacteria data and different software tools are available to state environmental and health agencies.

  2. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  3. Near Real Time Processing Chain for Suomi NPP Satellite Data

    Science.gov (United States)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Since 2009, the EURAC satellite receiving station, located at Corno del Renon, in a free obstacle site at 2260 m a.s.l., has been acquiring data from Aqua and Terra NASA satellites equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The experience gained with this local ground segmenthas given the opportunity of adapting and modifying the processing chain for MODIS data to the Suomi NPP, the natural successor to Terra and Aqua satellites. The processing chain, initially implemented by mean of a proprietary system supplied by Seaspace and Advanced Computer System, was further developed by EURAC's Institute for Applied Remote Sensing engineers. Several algorithms have been developed using MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce Snow Cover, Particulate Matter estimation and Meteo maps. These products are implemented on a common processor structure based on the use of configuration files and a generic processor. Data and products have then automatically delivered to the customers such as the Autonomous Province of Bolzano-Civil Protection office. For the processing phase we defined two goals: i) the adaptation and implementation of the products already available for MODIS (and possibly new ones) to VIIRS, that is one of the sensors onboard Suomi NPP; ii) the use of an open source processing chain in order to process NPP data in Near Real Time, exploiting the knowledge we acquired on parallel computing. In order to achieve the second goal, the S-NPP data received and ingested are sent as input to RT-STPS (Real-time Software Telemetry Processing System) software developed by the NASA Direct Readout Laboratory 1 (DRL) that gives as output RDR files (Raw Data Record) for VIIRS, ATMS (Advanced Technology Micorwave Sounder) and CrIS (Cross-track Infrared Sounder)sensors. RDR are then transferred to a server equipped with CSPP2 (Community Satellite Processing Package) software developed by the University of

  4. Mapping racism.

    Science.gov (United States)

    Moss, Donald B

    2006-01-01

    The author uses the metaphor of mapping to illuminate a structural feature of racist thought, locating the degraded object along vertical and horizontal axes. These axes establish coordinates of hierarchy and of distance. With the coordinates in place, racist thought begins to seem grounded in natural processes. The other's identity becomes consolidated, and parochialism results. The use of this kind of mapping is illustrated via two patient vignettes. The author presents Freud's (1905, 1927) views in relation to such a "mapping" process, as well as Adorno's (1951) and Baldwin's (1965). Finally, the author conceptualizes the crucial status of primitivity in the workings of racist thought.

  5. Satellite Image Classification of Building Damages Using Airborne and Satellite Image Samples in a Deep Learning Approach

    Science.gov (United States)

    Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G.

    2018-05-01

    The localization and detailed assessment of damaged buildings after a disastrous event is of utmost importance to guide response operations, recovery tasks or for insurance purposes. Several remote sensing platforms and sensors are currently used for the manual detection of building damages. However, there is an overall interest in the use of automated methods to perform this task, regardless of the used platform. Owing to its synoptic coverage and predictable availability, satellite imagery is currently used as input for the identification of building damages by the International Charter, as well as the Copernicus Emergency Management Service for the production of damage grading and reference maps. Recently proposed methods to perform image classification of building damages rely on convolutional neural networks (CNN). These are usually trained with only satellite image samples in a binary classification problem, however the number of samples derived from these images is often limited, affecting the quality of the classification results. The use of up/down-sampling image samples during the training of a CNN, has demonstrated to improve several image recognition tasks in remote sensing. However, it is currently unclear if this multi resolution information can also be captured from images with different spatial resolutions like satellite and airborne imagery (from both manned and unmanned platforms). In this paper, a CNN framework using residual connections and dilated convolutions is used considering both manned and unmanned aerial image samples to perform the satellite image classification of building damages. Three network configurations, trained with multi-resolution image samples are compared against two benchmark networks where only satellite image samples are used. Combining feature maps generated from airborne and satellite image samples, and refining these using only the satellite image samples, improved nearly 4 % the overall satellite image

  6. The Users Office turns 20

    CERN Multimedia

    2009-01-01

    20 years ago, in the summer of 1989, an office was created to assist the thousands of users who come to CERN each year, working over the broad range of projects and collaborations. Chris Onions (right), head of the Users’ Office, with Bryan Pattison (left), the Office’s founder.Before the inception of the Users Office, it was common for users to spend at least an entire day moving from office to office in search of necessary documentation and information in order to make their stay official. "Though the Office has undergone various changes throughout its lifetime, it has persisted in being a welcoming bridge to facilitate the installation of visitors coming from all over the world", says Chris Onions, head of the Users Office. This September, the Office will celebrate its 20-year anniversary with a drink offered to representatives of the User community, the CERN management and staff members from the services with whom the Office is involved. &...

  7. NORSEWInD satellite wind climatology

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, Alexis

    The EU-NORSEWInD project www.norsewind.eu has taken place from August 2008 to July 2012 (4 years). NORSEWInD is short for Northern Seas Wind Index database. In the project ocean surface wind observations from space have been retrieved, processed and analysed. The overall aim of the work...... is to provide new offshore wind climatology map for the entire area of interest based on satellite remote sensing. This has been based on Synthetic Aperture Radar (SAR) from Envisat ASAR using 9000 scenes re-processed with ECMWF wind direction and CMOD-IFR. The number of overlapping samples range from 450...... in the Irish Sea to more than 1200 in most of the Baltic Sea. Wind resource statistics include maps at 2 km spatial resolution of mean wind speed, Weibull A and k, and energy density at 10 m above sea level. Uncertainty estimates on the number of available samples for each of the four parameters are presented...

  8. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  9. Genetic Mapping

    Science.gov (United States)

    ... greatly advanced genetics research. The improved quality of genetic data has reduced the time required to identify a ... cases, a matter of months or even weeks. Genetic mapping data generated by the HGP's laboratories is freely accessible ...

  10. Office hysteroscopy and adenomyosis.

    Science.gov (United States)

    Molinas, Carlos Roger; Campo, Rudi

    2006-08-01

    Adenomyosis, the heterotopic presence of endometrial glands and stroma within the myometrium, has traditionally been diagnosed by the pathologist in hysterectomy specimens. However, the recent development of high-quality non-invasive techniques such as transvaginal sonography (TVS), magnetic resonance imaging (MRI) and hysteroscopy has renewed interest in diagnosing adenomyosis in the office prior to any treatment. Hysteroscopy offers the advantage of direct visualization of the uterine cavity, and since nowadays it is performed in the office, it can be offered as a first-line diagnostic tool for evaluation of uterine abnormalities in patients with abnormal uterine bleeding and/or infertility. The available data clearly indicate that high-quality mini-hysteroscopes, saline as a distension medium, and atraumatic insertion technique are essential for the success of office hysteroscopy. The procedure is indicated in any situation in which an intrauterine anomaly is suspected; it is immediately preceded by a physical exam and a TVS to evaluate uterine characteristics, and it is followed by a second TVS to take advantage of the intracavitary fluid for a contrast image of the uterus. Although diagnostic hysteroscopy does not provide pathognomonic signs for adenomyosis, some evidence suggests that irregular endometrium with endometrial defects, altered vascularization, and cystic haemorrhagic lesion are possibly associated with the entity. In addition to the direct visualization of the uterine cavity, the hysteroscopic approach offers the possibility of obtaining endometrial/myometrial biopsies under visual control. Since they can be performed in the office, the combination of TVS, fluid hysteroscopy and contrast sonography is therefore a powerful screening tool for detecting endometrial and myometrial abnormalities in association with adenomyosis.

  11. Officer Accessions Flow Model

    Science.gov (United States)

    2011-07-31

    officers select their own BOLC-B dates completely divorced of their unit assignment and that unit’s ARFORGEN cycle. We reschedule all FY10 cohort LTs...for BOLC-B based upon unit priority based upon number of days until LAD. Rescheduling all FY10 cohort LTs for BOLC-B based upon unit priority...with specialty branches (doctors, lawyers, nurses , chaplains, etc) which have minimal representation in BCT-level units.  DCs are not generally

  12. Office software Individual coaching

    CERN Multimedia

    HR Department

    2010-01-01

    If one or several particular topics cause you sleepless nights, you can get the help of our trainer who will come to your workplace for a multiple of 1-hour slots . All fields in which our trainer can help are detailed in the course description in our training catalogue (Microsoft Office software, Adobe applications, i-applications etc.). Please discover these new courses in our catalogue! Tel. 74924

  13. Defining a Cancer Dependency Map | Office of Cancer Genomics

    Science.gov (United States)

    Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean.

  14. MAIL OFFICE Outgoing mail

    CERN Multimedia

    1999-01-01

    The Mail Office once again wishes to remind users that the Organisation's mail service is exclusively reserved for official mail._\tAll outgoing official mail must arrive at the Mail Office unfranked and with the sender's name and Division clearly marked under the Organsation's address (see example below).Private mail must be taken to the Post Offices at Meyrin (63-R-011) or Prévessin (866-R-C02)._\tPlease only use 'PRIORITY' envelopes for mail requiring priority handling. Internal mail_\tPlease do not forget to indicate your correspondent's 'MAILBOX' number on the internal mail envelopes either in the specific box provided (new envelopes) or next to his or her name (old envelopes). This will facilitate and accelerate the handling of your mail. Mailbox numbers can be found on: Macintosh\tin the 'Mailbox' field in 'VIPER'PC\tin the 'Mailbox' field of 'Phone book'Web: http://www.cern.ch/CERN/Phone.htmlin the 'MailBox' fieldonce you have selected your correspondent's name...

  15. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...

  16. Mental map and spatial thinking

    Science.gov (United States)

    Vanzella Castellar, Sonia Maria; Cristiane Strina Juliasz, Paula

    2018-05-01

    The spatial thinking is a central concept in our researches at the Faculty of Education of University of São Paulo (FE-USP). The cartography is fundamental to this kind of thinking, because it contributes to the development of the representation of space. The spatial representations are the drawings - mental maps - maps, chart, aerial photos, satellite images, graphics and diagrams. To think spatially - including the contents and concepts geographical and their representations - also corresponds to reason, defined by the skills the individual develops to understand the structure, function of a space, and describe your organization and relation to other spaces. The aim of this paper is to analyze the role of mental maps in the development of concepts of city and landscape - structuring concepts for school geography. The purpose is to analyze how students in Geography and Pedagogy - future teachers - and young children in Early Childhood Education think, feel, and appropriate these concepts. The analys is indicates the importance of developing mental map in activities with pedagogy and geography graduate student to know that students at school can be producers of maps. Cartography is a language and allows the student to develop the spatial and temporal relationships and notions such as orientation, distance and location, learning the concepts of geographical science. Mental maps present the basic features of the location such as the conditions - the features verified in one place - and the connections that is to understand how this place connects to other places.

  17. Infrared Astronomy Satellite

    Science.gov (United States)

    Ferrera, G. A.

    1981-09-01

    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.

  18. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  19. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  20. Annual Report 2008 -- Office of the Chief Financial Officer (OCFO)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jeffrey

    2008-12-22

    It is with great pleasure that I present to you the 2008 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office. Also included are some financial comparisons with other DOE Laboratories and a glossary of commonly used acronyms.

  1. Effects of office innovation on office workers' health and performance

    NARCIS (Netherlands)

    Meijer, Eline M.; Frings-Dresen, Monique H. W.; Sluiter, Judith K.

    2009-01-01

    The implementation of an innovative office concept (e.g. open-plan, flexible workplaces and a paperless office concept) on health and productivity among office workers was evaluated with questionnaires of 138 workers at baseline and 6 and 15 months afterwards. Work-related fatigue, general health,

  2. 77 FR 50759 - Noise Exposure Map Notice, Orlando Sanford International Airport, Sanford, FL

    Science.gov (United States)

    2012-08-22

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Noise Exposure Map Notice, Orlando... Maps submitted by the Sanford Airport Authority for Orlando Sanford International Airport under the... Aviation Administration, Orlando Airports District Office, 5950 Hazeltine National Drive, Citadel...

  3. VHR satellite imagery for humanitarian crisis management: a case study

    Science.gov (United States)

    Bitelli, Gabriele; Eleias, Magdalena; Franci, Francesca; Mandanici, Emanuele

    2017-09-01

    During the last years, remote sensing data along with GIS have been largely employed for supporting emergency management activities. In this context, the use of satellite images and derived map products has become more common also in the different phases of humanitarian crisis response. In this work very high resolution satellite imagery was processed to assess the evolution of Za'atari Refugee Camp, built in Jordan in 2012 by the UN Refugee Agency to host Syrian refugees. Multispectral satellite scenes of the Za'atari area were processed by means of object-based classifications. The main aim of the present work is the development of a semiautomated procedure for multi-temporal camp monitoring with particular reference to the dwellings detection. Whilst in the emergency mapping domain automation of feature extraction is widely investigated, in the field of humanitarian missions the information is often extracted by means of photointerpretation of the satellite data. This approach requires time for the interpretation; moreover, it is not reliable enough in complex situations, where features of interest are often small, heterogeneous and inconsistent. Therefore, the present paper discusses a methodology to obtain information for assisting humanitarian crisis management, using a semi-automatic classification approach applied to satellite imagery.

  4. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  5. Leonardo-BRDF: A New Generation Satellite Constellation

    Science.gov (United States)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in

  6. Virtuelt skrivebord med open office

    DEFF Research Database (Denmark)

    Nielsen, Kurt Gammelgaard

    2009-01-01

    SDUs erfaringer med projektet Port 22: en virtuel platform med Open Office som kontorpakke til studerende.......SDUs erfaringer med projektet Port 22: en virtuel platform med Open Office som kontorpakke til studerende....

  7. Office of Disability Employment Policy

    Science.gov (United States)

    ... STATES DEPARTMENT OF LABOR Facebook Twitter RSS Email Office of Disability Employment Policy (ODEP) Menu About ODEP ... LABOR DEPARTMENT Español A to Z Index Agencies Office of Inspector General Leadership Team Contact Us Subscribe ...

  8. The Office of Airline Information.

    Science.gov (United States)

    2015-01-01

    The Office of Airline Information (OAI) mandate is to collect, validate, compile and disseminate data on airline traffic, performance, finances, and fares. Each quarter, BTS Office of Airline Information (OAI) processes more than 3,800 filings sub...

  9. Analysis of Patient Visits and Collections After Opening a Satellite Pediatric Emergency Department.

    Science.gov (United States)

    Nichols, Katherine M; Caperell, Kerry; Cross, Keith; Duncan, Scott; Foster, Ben; Liu, Gil; Pritchard, Hank; Southard, Gary; Shinabery, Ben; Sutton, Brad; Kim, In K

    2018-04-01

    Satellite pediatric emergency departments (PEDs) have emerged as a strategy to increase patient capacity. We sought to determine the impact on patient visits, physician fee collections, and value of emergency department (ED) time at the primary PED after opening a nearby satellite PED. We also illustrate the spatial distribution of patient demographics and overlapping catchment areas for the primary and satellite PEDs using geographical information system. A structured, financial retrospective review was conducted. Aggregate patient demographic data and billing data were collected regarding physician fee charges, collections, and patient visits for both PEDs. All ED visits from January 2009 to December 2013 were analyzed. Geographical information system mapping using ArcGIS mapped ED patient visits. Patient visits at the primary PED were 53,050 in 2009 before the satellite PED opened. The primary PED visits increased after opening the satellite PED to 55,932 in 2013. The satellite PED visits increased to 21,590 in 2013. Collections per visit at the primary PED decreased from $105.13 per visit in 2011 to $86.91 per visit in 2013. Total collections at the satellite PED decreased per visit from $155.41 per visit in 2011 to $128.53 per visit in 2013. After opening a nearby satellite PED, patient visits at the primary PED did not substantially decrease, suggesting that there was a previously unrecognized demand for PED services. The collections per ED visit were greater at the satellite ED, likely due to a higher collection rate.

  10. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Middle

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  11. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New Jersey, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  12. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  13. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  14. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Connecticut

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  15. NOAA Office for Coastal Management Sea Level Rise Data: Coastal Flood Threshold Inundation Extent

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  17. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake St. Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  18. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Maryland, Southeast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  19. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Delaware

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  20. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Erie

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  1. NOAA Office for Coastal Management (OCM) Coastal Inundation Digital Elevation Model: U.S. Virgin Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  2. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  3. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New York, Hudson River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  4. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  5. NOAA Office for Coastal Management Sea Level Rise Data: Current Mean Higher High Water Inundation Extent

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  6. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: South Carolina, Horry County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  7. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: District of Columbia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  8. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Southern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Middle 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  10. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Middle 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  11. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Channel Islands, CA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  12. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New York, Metro

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  13. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Southern 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  14. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New Jersey, Middle

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  15. Ergonomics in the office environment

    Science.gov (United States)

    Courtney, Theodore K.

    1993-01-01

    Perhaps the four most popular 'ergonomic' office culprits are: (1) the computer or visual display terminal (VDT); (2) the office chair; (3) the workstation; and (4) other automated equipment such as the facsimile machine, photocopier, etc. Among the ergonomics issues in the office environment are visual fatigue, musculoskeletal disorders, and radiation/electromagnetic (VLF,ELF) field exposure from VDT's. We address each of these in turn and then review some regulatory considerations regarding such stressors in the office and general industrial environment.

  16. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  17. Rapid response flood detection using the MSG geostationary satellite

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Fensholt, Rasmus; Rasmussen, Laura Vang

    2011-01-01

    A novel technique for the detection of flooded land using satellite data is presented. This new method takes advantage of the high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) series of satellites to derive several p...... of data gathered during the 2009 flooding events in West Africa shows that the presented method can detect floods of comparable size to the SEVIRI pixel resolution on a short timescale, making it a valuable tool for large scale flood mapping....

  18. Is the Office Hour Obsolete?

    Science.gov (United States)

    Behrens, Susan

    2013-01-01

    A colleague can't make a coffee date at a time the author proposes because it would conflict with his office hour. No student has actually made an appointment with him during the hour, but he is committed to being in his office as promised in case someone drops by. The author's reaction to her colleague's faithfulness to his posted office hour…

  19. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  20. Integration of Satellite Tracking Data and Satellite Images for Detailed Characteristics of Wildlife Habitats

    Science.gov (United States)

    Dobrynin, D. V.; Rozhnov, V. V.; Saveliev, A. A.; Sukhova, O. V.; Yachmennikova, A. A.

    2017-12-01

    Methods of analysis of the results got from satellite tracking of large terrestrial mammals differ in the level of their integration with additional geographic data. The reliable fine-scale cartographic basis for assessing specific wildlife habitats can be developed through the interpretation of multispectral remote sensing data and extrapolation of the results to the entire estimated species range. Topographic maps were ordinated according to classified features using self-organizing maps (Kohonen's SOM). The satellite image of the Ussuriiskyi Nature Reserve area was interpreted for the analysis of movement conditions for seven wild Amur tigers ( Panthera tigris altaica) equipped with GPS collars. 225 SOM classes for cartographic visualization are sufficient for the detailed mapping of all natural complexes that were identified as a result of interpretation. During snow-free periods, tigers preferred deciduous and shrub associations at lower elevations, as well as mixed forests in the valleys of streams that are adjacent to sparse forests and shrub watershed in the mountain ranges; during heavy snow periods, the animals preferred the entire range of plant communities in different relief types, except for open sites in meadows and abandoned fields at foothills. The border zones of different biotopes were typically used by the tigers during all seasons. Amur tigers preferred coniferous forests for long-term movements.