WorldWideScience

Sample records for satellites europa ganymede

  1. New horizons mapping of Europa and Ganymede.

    Science.gov (United States)

    Grundy, W M; Buratti, B J; Cheng, A F; Emery, J P; Lunsford, A; McKinnon, W B; Moore, J M; Newman, S F; Olkin, C B; Reuter, D C; Schenk, P M; Spencer, J R; Stern, S A; Throop, H B; Weaver, H A

    2007-10-12

    The New Horizons spacecraft observed Jupiter's icy satellites Europa and Ganymede during its flyby in February and March 2007 at visible and infrared wavelengths. Infrared spectral images map H2O ice absorption and hydrated contaminants, bolstering the case for an exogenous source of Europa's "non-ice" surface material and filling large gaps in compositional maps of Ganymede's Jupiter-facing hemisphere. Visual wavelength images of Europa extend knowledge of its global pattern of arcuate troughs and show that its surface scatters light more isotropically than other icy satellites.

  2. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  3. Models of dust around Europa and Ganymede

    CERN Document Server

    Miljkovic, K; Mason, N J; Zarnecki, J C

    2012-01-01

    We use numerical models, supported by our laboratory data, to predict the dust densities of ejecta outflux at any altitude within the Hill spheres of Europa and Ganymede. The ejecta are created by micrometeoroid bombardment and five different dust populations are investigated as sources of dust around the moons. The impacting dust flux (influx) causes the ejection of a certain amount of surface material (outflux). The outflux populates the space around the moons, where a part of the ejecta escapes and the rest falls back to the surface. These models were validated against existing Galileo DDS (Dust Detector System) data collected during Europa and Ganymede flybys. Uncertainties of the input parameters and their effects on the model outcome are also included. The results of this model are important for future missions to Europa and Ganymede, such as JUICE (JUpiter ICy moon Explorer), recently selected as ESA's next large space mission to be launched in 2022.

  4. The water and oxygen exospheres of Europa and Ganymede

    Science.gov (United States)

    Plainaki, C.; Milillo, A.; Massetti, S.; Mura, A.; Saur, J.; Orsini, S.

    2013-09-01

    The exospheres of Jupiter's icy satellites Europa and Ganymede are mixtures of H2O, O2 and H2 and some minor constituents, like Na. H2O is released from the surface mainly through either direct sputtering, caused by the impact of energetic ions of Jupiter's magnetosphere, or sublimation. O2 and H2 are produced through chemical reactions among different products of H2O radiolytic decomposition. In the present study we investigate at first the Europa's exospheric characteristics under the external conditions that are likely in the Jupiter's magnetospheric environment, applying the Europa Global model of Exospheric Outgoing Neutrals (EGEON, [1]) for different configurations between the positions of Europa, Jupiter and the Sun. We show that the H2O exosphere around Europa is denser and more extended above the moon's trailing hemisphere. We find that solar illumination and preferable plasma impact direction together determine the spatial distribution of Europa's exosphere and the O2 release efficiency. We show that the modelled O2 densities are in good agreement with the analysis results from two HST observations of Europa's leading and trailing hemisphere. In order to investigate on the O2 exosphere of Ganymede, we apply the same model, making however some important modifications regarding the impacting ions precipitation regions and the satellite physical characteristics. The map of the ion precipitation to Ganymede's surface, is produced using a single-particle Monte Carlo model the simulates the trajectories of the ions inside the magnetic field, assumed to be described by the model of [2]. We present some first preliminary results on the spatial distribution of the H2O and O2 exosphere of Ganymede and discuss the escape.

  5. Plasma IMS Composition Measurements for Europa and Ganymede

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Hartle, R.; Lipatov, A.; Mahaffy, P.; Paterson, W.; Paschalidis, N.; Coplan, M.; Cassidy, T.

    2010-01-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4n surface composition to trace elemental [1] and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged.

  6. Chaotic motion of Europa and Ganymede and the Ganymede-Callisto dichotomy

    Science.gov (United States)

    Tittemore, William C.

    1990-01-01

    Europa and Ganymede may have undergone an episode of chaotic motion before the establishment of the current Laplace resonance involving the three inner GAlilean satellites. During this episode, the orbital eccentricities of both satellites may have increased dramatically. As a result, the mechanical stresses due to tidal deformation of the satellites' icy lithospheres may have been large enough to result in extensive fracturing, and tidal heating may have melted water ice in the mantles of both satellites, triggering the geological activity that has modified their surfaces since the heavy cratering period. The tidal effects on Ganymede during this episode provide an explanation of the dichotomy between it and Callisto, which have similar bulk properties but very different geological histories.

  7. Compositional Mapping of the Surfaces of Europa and Ganymede

    Science.gov (United States)

    Gruen, Eberhard; Horanyi, M.; Kempf, S.; Krueger, H.; Postberg, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.

    2010-10-01

    The determination of the global surface compositions of Europa and Ganymede is a prime objective of the Europa Jupiter System Mission (EJSM). Classical methods to analyze surfaces of airless planetary objects are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. All airless moons and planets are exposed to the ambient meteoroid bombardment that erodes the surface and generates ejecta particles. The Galileo dust detector (Krueger et al., Icarus, 164, 170, 2003) discovered tenuous ejecta clouds around all Galilean satellites. In-situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Depending on the altitude from which the dust measurements are taken, the position of origin on the surface can be determined with at least corresponding resolution. Since the detection rates are on the order of thousands per day, spatially resolved maps of the surface composition can be obtained. This `dust spectrometer’ approach provides key chemical and isotopic constraints for varying provinces on the surfaces, leading to better understanding of the body's geological evolution. Traces of mineral or organic components in an ice matrix can be identified and quantified even at low impact speeds >1 km/s. Compositional measurements by the Cassini Cosmic Dust Analyzer of ice grains emitted from Enceladus probed the deep interior of this satellite (Postberg et al., Nature, 459, 1098, 2009). New instrumentation has been developed that meet or exceeded the capabilities in sensitivity and mass resolution of all previous dust analyzers. The deployment of such dust analyzers on the Jupiter Europa Orbiter (JEO) and the Jupiter Ganymede Orbiter (JGO) missions will provide unprecedented information on the surface compositions of these satellites and their potential activity.

  8. The Jupiter Ganymede Orbiter : An ESA Contribution to the Europa-Jupiter System Mission

    Science.gov (United States)

    Drossart, Pierre; Blanc, M.; Lebreton, J. P.; Pappalardo, R. T.; Greeley, R.; Fujimoto, M.; EJSM/Jupiter Science Definition Team

    2008-09-01

    In the framework of an outer planets mission, under study after the NASA-Juno mission, the Europa-Jupiter System Mission (EJSM) would combine a fleet of up to three satellites in order to investigate in depth many questions related to the Jupiter System. These investigations are essential for our understanding of the emergence and evolution of habitable worlds, not only within the Solar System, but also for extrasolar planets investigations. Scientific targets of EJSM will focus on Europa and Ganymede as a key pair of Galilean satellites, to address the questions on their habitability, formation, and internal structure, as well as the coupling with the whole Jovian system : Jupiter's atmosphere and interior, magnetosphere and magnetodisk. .In combination with a Jupiter Europa Orbiter (JEO likely provided by NASA) and a Jupiter Magnetospheric Orbiter (JMO likely provided by JAXA), ESA is studying a Jupiter Ganymede Orbiter (JGO). The mission scenario includes a direct launch in 2020 with a transfer time to Jupiter of 6 years. After the orbit insertion around Jupiter, a first phase ( 2 years) will be devoted to Jupiter system and Callisto studies, with multiple flybys of Callisto planned at low altitude ( 200 km), followed by a Ganymede orbit insertion and extensive study of Ganymede ( 1 year). In-depth comparative study of inner (Io and Europa) and outer (Ganymede and Callisto) satellites with combined payload of JEO and JGO will address the question of the relative geological evolution of the satellites. On JGO, the transport phenomena in the magnetosphere of Jupiter will be studied in combination with JMO, and the Ganymede magnetosphere will be observed in situ. Jupiter atmosphere investigations on JGO will focus on coupling phenomena between troposphere, stratosphere and mesosphere, the stratospheric composition and the question of thermospheric heating.

  9. Plasma IMS Composition Measurements for Europa and Ganymede

    Science.gov (United States)

    Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Lipatov, A. S.; Paschalidis, N. P.; Coplan, M. A.; Cassidy, T. A.

    2010-12-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphases on Europa and Ganymede from these respective space agencies. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter’s magnetosphere and the Galilean satellites. For NASA’s Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter’s magnetosphere and 2) infer the 4π surface composition to trace elemental and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa’s sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa’s or Ganymede’s surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA’s Astrobiology Instrument Development Program (ASTID), would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged. The ASTID-supported IMS, applicable to the NASA spacecraft, is designed to operate in a high radiation environment with minor and trace ion detection capability. The latter goal is achieved by measuring pickup ions at spacecraft altitudes and using a 3D hybrid model of the interaction in order to construct 3D global model of the electric and magnetic fields around these bodies. The pickup ion trajectories can then be traced back down to the surface. In the case of Europa we also show that Europa’s ionosphere is

  10. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags

    Science.gov (United States)

    Hussmann, Hauke; Shoji, Daigo; Steinbrügge, Gregor; Stark, Alexander; Sohl, Frank

    2016-11-01

    Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers k_2 and h_2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags φ _{k_2} and φ _{h_2} of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference Δ φ = φ _{k_2}- φ _{h_2} can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities {Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system.

  11. The gravity fields of Ganymede, Callisto and Europa: how well can JUICE do?

    Science.gov (United States)

    Parisi, Marzia; Iess, Luciano; Finocchiaro, Stefano

    2014-05-01

    With 20 flybys of Callisto, 2 of Europa and an extended orbital phase around Ganymede, ESA's JUICE mission offers an excellent opportunity to investigate the interiors of the three Galilean satellites. All of these moons can host an internal ocean, but the evidence is compelling only for Europa, where Galileo's measurements of the induced magnetic field are not marred by an intrinsic field as for Ganymede. However, both Europa's and Ganymede's appear to be differentiated (Showman and Malhotra, 1999), and probably hosting a subsurface liquid water ocean underneath the icy surface (Khurana et al., 1998; Kivelson et al., 2002). But even for Callisto, which appears as an undifferentiated body of ice and rock (Showman and Malhotra, 1999), a global or partial subsurface ocean cannot be ruled out (Khurana et al., 1998). The determination of the interior structure of the Galilean satellites, one of the main goal of the JUICE mission, can be accomplished by a combination of gravity, altimetric and magnetic measurements. Gravity measurements are addressed by the 3GM (Geodesy and Geophysics of Jupiter and the Galilean Moons) by means of highly accurate Doppler tracking of the spacecraft from ground antennas. Precise range rate measurements are enabled by a dedicated Ka-band (32-34 GHz) transponder, heritage from the Juno and BepiColombo missions. The expected range rate accuracies are around 0.01 mm/s at 60 s integration time, at nearly all solar elongation angles. A complete cancellation of the interplanetary plasma noise is indeed possible by operating simultaneously the links at X and Ka band. The current mission profile envisages two, low altitude, orbital phases around Ganymede: a circular polar, orbit at an altitude of 500 km for the first 102 days, and circular polar orbit at an altitude of 200 km for the last 30 days. The low altitude will permit the determination of Ganymede's gravity field with a relative accuracy of about 10^-5 for both J2 and C22. The 18 tidal

  12. Can a future mission detect a habitable ecosystem on Europa, or Ganymede?

    Science.gov (United States)

    Chela Flores, Julian

    2010-05-01

    orbital probes in the future exploration of Jupiter's System (Gowen et al., 2009). There are alternative views on the effect of space weather on the radiation-induced S-cycles produced on the surficial molecules; but S is common to both interpretations (Carlson et al., 1999; McCord et al., 1999). The largest known S-fractionations are due to microbial reduction, and not to thermochemical processes. Besides, sulphate abiotic reductions are generally not as large as the biogenic ones (Kiyosu and Krouse, 1990). From experience with a natural population, this type of biota is able to fractionate efficiently the S-isotopes up to delta 34S of -70 per mil (Wortmann et al., 2001). Dissimilatory sulphate reducers are ubiquitous on Earth, producing the largest fractionations in the sulphur stable isotopes. These microbes are widely distributed in terrestrial anoxic environments.Consequently, sulphate reducers are the most evident candidates for the microorganisms populating a habitable Europan ecosystem. Microbial fractionation of stable S-isotopes argue in favour of penetrators for surveying the surface of not only Europa, but also of Ganymede, where surficial sulphur has been detected (McCord et al., 1997). The Europa-Jupiter System Mission (EJSM) intends to explore in the 2020s both of these satellites (Grasset et al., 2009). According to our hypothesis we predict that penetrators (supplied with mass spectrometry) should yield different results for fractionated sulphur. The icy patches on Europa should give substantial depletions of delta 34S, while measurements on Ganymede should give significantly lower values for the depletion of delta 34S. (Since the largest of the Galilean satellites lacks an ocean-core interface, according to our hypothesis it would not support life.) These diverging results—a large minus delta 34S for the Europan sulphur patches, and a small minus delta 34S for the Ganymede surficial sulphur—would provide a clear test for the hypothesis that a

  13. Plasma IMS Composition Measurements for Europa, Ganymede, and the Jovian System

    Science.gov (United States)

    Sittler, E. C., Jr.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Christian, E. R.; Lipatov, A. S.; Mahaffy, P R.; Paschalidis, N.; Sarantos, M.; Coplan, M. A.; Cassidy, T. A.; Wurz, P.

    2011-01-01

    NASA and ESA are now planning a reduced version of the joint Europa Jupiter System Mission (EJSM), potentially including a radically descoped Jupiter Europa Orbiter (JEO) but still with magnetometer and plasma instruments. Similar field and plasma instrumentation would also reside on ESA's Jupiter Ganymede Orbiter (JGO), which conceivably could carry out multiple flybys of Europa before entering orbit at Ganymede. We are developing the 3D Ion Mass Spectrometer (IMS) designed to measure both major and minor ion species within the high radiation environment of Jupiter's magnetosphere and the icy Galilean moons. The IMS covers the energy range from 10 eV to 30 keY, wide field-of-view (FOV) capability and 10-60 sec time resolution for major ions. This instrument has two main goals: 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the global surface composition to trace elemental and significant isotopic levels; these goals are also applicable for in-situ measurements at Ganymede and Callisto, and remotely everywhere via the iogenic plasma for 10. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second goal gives information about transfer of material between the Galilean moons, e.g. mainly from 10 to the other moons, and further allows detection of oceanic materials emergent to the moon surfaces from subsurface layers putatively including salt water oceans. Outgassed exospheric materials are probed by the IMS by measuring pickup ions accelerated up to spacecraft altitudes of approximately 100-200 km in electric fields extending through the local magnetospheric environment and moon exosphere to the surface. Our 3D hybrid kinetic model of the moon-magnetosphere interaction is used to construct a global model of electric and magnetic fields for tracing of pickup ion trajectories back to the sources at approximate surface resolution of 100 km. We

  14. Plasma IMS Composition Measurements for Europa, Ganymede, and the Jovian Systems

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Hartle, R.; Paterson ,W.; Christian, E.; Mahaffy, P.; Paschalidis, N.; Lipatov, A.; Sarantos, M.; Coplan, M.; Cassidy, T.; Wurz, P.

    2011-01-01

    NASA and ESA are now planning a reduced version of the joint Europa Jupiter System Mission (EJSM), potentially including a radically descoped Jupiter Europa Orbiter (JEO) but still with magnetometer and plasma instruments. Similar field and plasma instrumentation would also reside on ESA's Jupiter Ganymede Orbiter (JGO), which conceivably could carry out multiple flybys of Europa before entering orbit at Ganymede. We are developing the 3D Ion Mass Spectrometer (IMS) designed to measure both major and minor ion species within the high radiation environment of Jupiter s magnetosphere and the icy Galilean moons. The IMS covers the energy range from 10 eV to 30 keV, wide field-ofview (FOV) capability and 10-60 sec time resolution for major ions. This instrument has two main goals: 1) measure the plasma interaction between Europa and Jupiter s magnetosphere and 2) infer the global surface composition to trace elemental and significant isotopic levels; these goals are also applicable for in-situ measurements at Ganymede and Callisto, and remotely everywhere via the iogenic plasma for Io. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second goal gives information about transfer of material between the Galilean moons, e.g. mainly from Io to the other moons, and further allows detection of oceanic materials emergent to the moon surfaces from subsurface layers putatively including salt water oceans. Outgassed exospheric materials are probed by the IMS by measuring pickup ions accelerated up to spacecraft altitudes of approximately 100-200 km in electric fields extending through the local magnetospheric environment and moon exosphere to the surface. Our 3D hybrid kinetic model of the moon-magnetosphere interaction is used to construct a global model of electric and magnetic fields for tracing of pickup ion trajectories back to the sources at approximate surface resolution of 100 km. We

  15. Secondary craters from large impacts on Europa and Ganymede: Ejecta size-velocity distributions on icy worlds, and the scaling of ejected blocks

    Science.gov (United States)

    Singer, Kelsi N.; McKinnon, William B.; Nowicki, L. T.

    2013-09-01

    We have mapped fields of secondary craters around three large primary craters on Europa and Ganymede and estimated the size and velocity of the fragments that formed the secondaries using updated scaling equations for ice impacts. We characterize the upper envelope of the fragment size-velocity distribution to obtain a function for the largest fragments at a given ejection velocity. Power-law velocity exponents found in our study of icy satellite secondary fields are compared to the exponents found for similar studies of mercurian, lunar, and martian craters; for all but basin-scale impacts, fragment size decreases more slowly with increasing ejection velocity than on rocky bodies. Spallation theory provides estimates of the size of ejected spall plates at a given velocity, but this theory predicts fragments considerably smaller than are necessary to form most of our observed secondaries. In general, ejecta fragment sizes scale with primary crater diameter and decrease with increasing ejection velocity, υej, by 1/υej or greater, and point-source scaling implies a relation between the two. The largest crater represented in any of these studies, Gilgamesh on Ganymede, exhibits a relatively steep velocity dependence. Extrapolating the results to the escape speed for each icy moon yields the size of the largest fragment that could later re-impact to form a so-called sesquinary crater, either on the parent moon or a neighboring satellite. We find that craters above 2 km in diameter on Europa and Ganymede are unlikely to be sesquinaries.

  16. Europa Jupiter System Mission (EJSM): Exploration Of The Jovian System And Its Icy Satellites

    Science.gov (United States)

    Grasset, Olivier; Pappalardo, R.; Greeley, R.; Blanc, M.; Dougherty, M.; Bunce, E.; Lebreton, J.; Prockter, L.; Senske, D.; EJSM Joint Science Definition Team

    2009-09-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) Determine whether the Jupiter system harbors habitable worlds and (2) Characterize the processes that are operating within the Jupiter system. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with orbiters developed by NASA and ESA (future contributions by JAXA and Russia are also possible). The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most important, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM architecture provides opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and "stand-alone” measurements.

  17. Assessing the potential for passive radio sounding of Europa and Ganymede with RIME and REASON

    Science.gov (United States)

    Schroeder, Dustin M.; Romero-Wolf, Andrew; Carrer, Leonardo; Grima, Cyril; Campbell, Bruce A.; Kofman, Wlodek; Bruzzone, Lorenzo; Blankenship, Donald D.

    2016-12-01

    Recent work has raised the potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. Two radar sounding instruments, the Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been selected for ESA and NASA missions to Ganymede and Europa. Here, we revisit the projected performance of the passive sounding concept and assess the potential for its implementation as an additional mode for RIME and REASON. We find that the Signal to Noise Ratio (SNR) of passive sounding can approach or exceed that of active sounding in a noisy sub-Jovian environment, but that active sounding achieves a greater SNR in the presence of quiescent noise and outperforms passive sounding in terms of clutter. We also compare the performance of passive sounding at the 9 MHz HF center frequency of RIME and REASON to other frequencies within the Jovian decametric band. We conclude that the addition of a passive sounding mode on RIME or REASON stands to enhance their science return by enabling sub-Jovian HF sounding in the presence of decametric noise, but that there is not a compelling case for implementation at a different frequency.

  18. Dynamics of Artificial Satellites around Europa

    Directory of Open Access Journals (Sweden)

    Jean Paulo dos Santos Carvalho

    2013-01-01

    Full Text Available A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA and Jupiter Icy Moon Explorer (JUICE, ESA. In this paper, we search for orbits around Europa with long lifetimes. Here, we develop the disturbing potential in closed form up to the second order to analyze the effects caused on the orbital elements of an artificial satellite around Europa. The equations of motion are developed in closed form to avoid expansions in power series of the eccentricity and inclination. We found polar orbits with long lifetimes. This type of orbits reduces considerably the maintenance cost of the orbit. We show a formula to calculate the critical inclination of orbits around Europa taking into account the disturbing potential due to the nonspherical shape of the central body and the perturbation of the third body.

  19. The effects of laterally varying icy shell structure on the tidal response of Europa and Ganymede

    Science.gov (United States)

    Wahr, J. M.; A, G.; Zhong, S.

    2013-12-01

    One of the long-sought objectives of an icy moon orbiter or fly-by mission, has been to use tidal observations to help determine the existence of a liquid ocean and characteristics of the overlying icy shell. The radio science component of such a mission could be used to estimate the tidal potential Love number k2 for gravity. And if there is an on-board laser altimeter, it could be used to determine the radial displacement Love number h2. Knowledge of either of those Love numbers could provide information on the presence of an ocean beneath the icy outer shell, and the two Love numbers could be combined to place constraints on the thickness of the icy shell. Though if a subsurface ocean exists, complications could conceivably arise if the icy outer shell has significant lateral variations in elastic thickness or shear modulus, or if the ocean is not global in extent so that the icy shell is grounded in places but floating in others. In these cases, the tidal deformation pattern would not be represented as the sum of degree 2 harmonics, and so the results could not be characterized in terms of a single Love number. In this study, by solving a set of tidal loading problems with laterally variable icy shell structures (for which the existence of an ocean layer is assumed), we investigate how those structures might complicate the interpretation of the tide measurements, and we discuss how to extract information regarding the interior structure of Ganymede and Europa from measurements of their tidal response.

  20. Molecular dynamics estimates for the thermodynamic properties of the Fe-S liquid cores of the Moon, Io, Europa, and Ganymede

    Science.gov (United States)

    Kuskov, O. L.; Belashchenko, D. K.

    2016-05-01

    A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe-S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron-sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe-S solutions at sulfur concentrations of 0-18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon's outer Fe-S core (~5 GPa/2000 K), which contains 6-16 at % (3.5-10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3-7.0 g/cm3 and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the Apollo observations (Weber et al., 2011) to show a good consistency of the velocity of P-waves in the Moon's liquid core whereas the thermodynamic density of the Fe-S core is not consistent with the seismic models with ρ = 5.1-5.2 g/cm3 (Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5-10 wt %, the density of the Fe-S melt is 20-30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon's outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon's mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter's Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of

  1. The EJSM Jupiter-Ganymede Orbiter

    Science.gov (United States)

    Blanc, M.; Lebreton, J.-P.; Stankov, A.; Greeley, R.; Pappalardo, R. T.; Fujimoto, M.

    2008-09-01

    The Europa-Jupiter System Mission (EJSM), currently subject of a joint study by NASA, ESA and JAXA, would combine a fleet of three satellites in order to investigate in depth many questions related to the Jupiter System. These investigations are essential for our understanding of the emergence and evolution of habitable worlds, not only within the Solar System, but also for extrasolar planet investigations. Scientific targets of EJSM focus on Europa and Ganymede as a key pair of Galilean satellites, to address the questions on their habitability, formation, and internal structure, as well as the coupling with the whole Jovian system: Jupiter's atmosphere and interior, magnetosphere and magnetodisk.. In combination with a Jupiter Europa Orbiter (JEO that would be provided by NASA) and a Jupiter Magnetospheric Orbiter (JMO that would be provided by JAXA), ESA is studying a Jupiter Ganymede Orbiter (JGO). The mission scenario includes a launch in 2020 with a transfer time to Jupiter of ~6 years. After the orbit insertion around Jupiter, a first phase (~2 years) will be devoted to Jupiter system and Callisto studies, with multiple flybys of Callisto planned at low altitude (~200 km), followed by a Ganymede orbit insertion and extensive study of Ganymede (~1 year). In depth comparative study of inner (Io and Europe) and outer (Ganymede and Callisto) satellites with combined payload of JEO and JGO will address the question of the geologic relative evolution of the satellites. On JGO, the transport phenomena in the magnetosphere of Jupiter will be studied in combination with JMO, and the Ganymede magnetosphere will be observed in situ. Jupiter atmosphere investigations on JGO will focus on coupling phenomena between troposphere, stratosphere and mesosphere, the stratospheric composition and the question of thermospheric heating.

  2. Return to Europa: Overview of the Jupiter Europa Orbiter Mission

    Science.gov (United States)

    Clark, K.; Tan-Wang, G.; Boldt, J.; Greeley, R.; Jun, I.; Lock, R.; Ludwinski, J.; Pappalardo, R.; Van Houten, T.; Yan, T.

    2009-01-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO).

  3. Coordinates of features on the Galilean satellites

    Science.gov (United States)

    Davies, M. E.; Katayama, F. Y.

    1981-09-01

    Control nets of the four Galilean satellites have been established photogrammetrically from pictures taken by the two Voyager spacecraft during their flybys of Jupiter in 1979. Coordinates of 504 points on Io, 112 points on Europa, 1547 points on Ganymede, and 439 points on Callisto are listed. Selected points are identified on U.S. Geological Survey maps of the satellites. Measurements of these points were made on 234 pictures of Io, 115 pictures of Europa, 282 pictures of Ganymede, and 200 pictures of Callisto. The systems of longitude were defined by craters on Europa, Ganymede, and Callisto. Preliminary solutions have been found for the directions of the axes of rotation of the Galilean satellites. New mean radii have been determined as 1815 + or - 5 km for Io, 1569 + or - 10 km for Europa, 2631 + or - 10 km for Ganymede, and 2400 + or - 10 km for Callisto.

  4. Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Takashima, Takeshi; Yano, Hajime; Kasaba, Yasumasa; Takahashi, Yukihiro; Kimura, Jun; Okada, Tatsuaki; Kawakatsu, Yasuhiro; Tsuda, Yuichi; Kawaguchi, Jun-Ichiro; Funase, Ryu; Mori, Osamu; Morimoto, Mutsuko; Ikoma, Masahiro; Naganuma, Takeshi; Yamaji, Atsushi; Hussmann, Hauke; Kurita, Kei; Working Group, Jupiter

    EJSM (Europa Jupiter System Mission) is a planned Jovian system mission with three spacecraft aiming at coordinated observations of the Jovian satellites especially Europa and the magnetosphere, atmosphere and interior of Jupiter. It was formerly called "Laplace" mission. In October 2007, it was selected as one of future ESA scientific missions Cosmic Vision (2015-2025). From the beginning, Japanese group is participating in the discussion process of the mission. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetosphere Orbiter). On the other hand, ESA will take charge of JGO (Jupiter Ganymede Orbiter) and NASA will be responsible for JEO (Jupiter Europa Orbiter). In February 2009, EJSM is prioritized as the first candidate of outer planet flagship mission and mission study continues in the course of Cosmic Vision. The expected launch time of EJSM will be expected in 2020. Currently we are seeking a possibility to combine JMO with a proposed solar sail mission of JAXA for Jupiter and one of Trojan asteroids.

  5. Orbital Evolution of Impact Ejecta from Ganymede

    Science.gov (United States)

    Alvarellos, Jose Luis; Zahnle, Kevin J.; Dobrovolskis, Anthony R.; Hamill, Patrick

    2002-11-01

    We have numerically computed the orbital evolution of ˜10 3 particles representing high-speed ejecta from Gilgamesh, the largest impact basin on Ganymede. The integration includes the four Galilean satellites, Jupiter (including J2 and J4), Saturn, and the Sun. The integrations last 100,000 years. The particles are ejected at a variety of speeds and directions, with the fastest particles ejected at 1.4 times the escape speed vesc≡ 2GM G/R G of Ganymede. Ejecta with speeds v0.96 vesc, most particles escape Ganymede and achieve orbits about Jupiter. Eventually most (˜71%) of the jovicentric particles hit Ganymede, with 92% of these hitting within 1000 years. The accretion rate scales as 1/ t. Their impact sites are randomly distributed, as expected for planetocentric debris. We estimate that most of the resulting impact craters are a few kilometers across and smaller. The rest of the escaping ejecta are partitioned as follows: ˜3% hit Io; ˜10% hit Europa; ˜13% hit Callisto; 2% reach heliocentric space; and less than ˜1% hit Jupiter. Only two particles survived the entire 10 5-year integration. Ejecta from large impact events do not appear to be a plausible source of large craters on the Galilean satellites; however, such ejecta may account for the majority of small craters.

  6. Europa

    DEFF Research Database (Denmark)

    Hansen, Ole Erik

    2000-01-01

    Artiklen behandler, hvordan Europa blev centrum for den globale økonomiske udvikling, og hvilken rolle nationalstaterne har spillet for Europas udvikling. Derudover behandles det, hvordan den europæiske integrationsproces kan ses som et forsøg på at genskabe Europas centrale politiske og økonomiske...

  7. The Europa Jupiter System Mission

    Science.gov (United States)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the

  8. THE JOINT ESA-NASA EUROPA JUPITER SYSTEM MISSION (EJSM)

    Science.gov (United States)

    Lebreton, J.; Pappalardo, R. T.; Blanc, M.; Bunce, E. J.; Dougherty, M. K.; Erd, C.; Grasset, O.; Greeley, R.; Johnson, T. V.; Clark, K. B.; Prockter, L. M.; Senske, D. A.

    2009-12-01

    The joint "Europa Jupiter System Mission" (EJSM) is an international mission under study in collaboration between NASA and ESA. Its goal is to study Jupiter and its magnetosphere, the diversity of the Galilean satellites, the physical characteristics, composition and geology of their surfaces. Europa and Ganymede are two primary targets of the mission. The reference mission architecture consists of the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). The two primary goals of the mission are i) to determine whether the Jupiter system harbors habitable worlds and ii) to characterize the processes within the Jupiter system. The science objectives addressing the first goal are to: i) characterize and determine the extent of subsurface oceans and their relations to the deeper interior, ii) characterize the ice shells and any subsurface water, including the heterogeneity of the ice, and the nature of surface-ice-ocean exchange; iii) characterize the deep internal structure, differentiation history, and (for Ganymede) the intrinsic magnetic field; iv) compare the exospheres, plasma environments, and magnetospheric interactions; v) determine global surface composition and chemistry, especially as related to habitability; vi) understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. The science objectives for addressing the second goal are to: i) understand the Jovian satellite system, especially as context for Europa and Ganymede; ii) evaluate the structure and dynamics of the Jovian atmosphere; iii) characterize processes of the Jovian magnetodisk/magnetosphere; iv) determine the interactions occurring in the Jovian system; and v) constrain models for the origin of the Jupiter system. Both spacecraft would carry a complement of 11-12 instruments launch separately in 2020 and use a Venus-Earth-Earth Gravity Assist (VEEGA

  9. The EJSM Jupiter-Europa Orbiter: Mission Overview

    Science.gov (United States)

    Pappalardo, R. T.; Clark, K.; Greeley, R.; Hendrix, A. R.; Tan-Wang, G.; Lock, R.; van Houten, T.; Ludwinski, J.; Petropoulis, A.; Jun, I.; Boldt, J.; Kinnison, J.

    2008-09-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address key components of the complete EJSM science objectives and would be designed to function alone or in conjunction with the ESA-led Jupiter Ganymede Orbiter and JAXA-led Jupiter Magnetospheric Orbiter. The JEO mission concept uses a single orbiter flight system which would travel to Jupiter to perform a multi-year study of the Jupiter system and Europa, including 2.5-3 years of Jupiter system science and a comprehensive Europa orbit phase of upt ot a year. This abstract describes the design concept of this mission.

  10. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system

    OpenAIRE

    Grasset, O.; Dougherty, K; Coustenis, A.; Bunce, J; Erd, C.; Titov, D.; Blanc, M.; Coates, A; Drossart, P.; Fletcher, N; Hussmann, H.; Jaumann, R.; N. Krupp; Lebreton, P; O. Prieto-Ballesteros

    2013-01-01

    Past exploration of Jupiter's diverse satellite system has forever changed our understanding of the unique environments to be found around gas giants, both in our solar system and beyond. The detailed investigation of three of Jupiter's Galilean satellites (Ganymede, Europa, and Callisto), which are believed to harbour subsurface water oceans, is central to elucidating the conditions for habitability of icy worlds in planetary systems in general. The study of the Jupiter system and the possib...

  11. The Jupiter Ganymede Orbiter mission and spacecraft architecture

    Science.gov (United States)

    Boulade, Sebastien; Maliet, Eric; Saks, Noah; Lang, Rainer; Kemble, Steve

    2010-05-01

    The Europa Jupiter System Mission (EJSM) is a joint NASA-ESA mission candidate, featuring two planetary orbiters in Jovian environment. It will study Jupiter and its magnetosphere, the diversity of the Galilean satellites, the physical characteristics, composition and geology of their surfaces, with a resolution and coverage far beyond what was achieved by Galileo. It will determine their internal structure and the existence of subsurface oceans. It will study the Laplace resonance and its role in maintaining tidal heating. Constraints for the habitability of Europa over geologic timescales will be inferred from monitoring Io and Europa in the visible and infrared combined with precise determination of the satellites' orbital positions. To meet these science objectives, the EJSM mission will optimize the role of each platform. NASA-supplied Jupiter Europa Orbiter (JEO) will focus on the two "rocky" inner Galilean satellites, Io and Europa. Following a similar approach, ESA-procured Jupiter Ganymede Orbiter (JGO) will focus on the two "icy" outer Galilean satellites, Ganymede and Callisto. With these two orbiters around Europa and Ganymede, it will be possible to perform an in-depth comparison, to understand the origin of their geophysical dichotomy and to better understand the unique characteristics of Europa which may make it habitable. Coordination of observations between JEO and JGO could also bring important synergistic science. As part of this EJSM mission, the JGO spacecraft is now one of the candidates for the "L1" launch slot in the ESA Cosmic Vision 2015/2025 plan, with a foreseen launch in 2020. All studies candidate for this L mission concepts currently undergo parallel assessment studies until end of 2010, when two mission concepts will be selected for definition studies, until 2012. Eventually, the first L mission will be selected for industrial implementation starting in 2013. The mission scenario for JGO is based on a launch in 2020 with Ariane 5

  12. Broad search for trajectories from Earth to Callisto-Ganymede-JOI double-satellite-aided capture at Jupiter from 2020 to 2060

    Science.gov (United States)

    Lynam, Alfred E.

    2016-01-01

    Employing multiple gravity-assist flybys of Jupiter's Galilean moons can save a substantial amount of \\varDelta V when capturing into orbit about Jupiter. Using Callisto and Ganymede, the most massive and distant of the Galilean moons, as gravity-assist bodies reduces the Jupiter orbit insertion \\varDelta V cost, while allowing the spacecraft to remain above the worst of Jupiter's radiation belts. A phase-angle approach is used to find initial guesses for a Lambert targeter to find patched-conic Callisto-Ganymede transfers. A B-plane targeter using grid search methodology is used to backward target Earth to find launch conditions. Twenty-nine distinct patched-conic trajectories were found from Earth to Callisto-Ganymede-JOI capture throughout the search space from 2020-2060. Five promising trajectories were found that launch from Earth between July 11, 2023 and July 20, 2023, and arrive at Jupiter between February and September 2026. These trajectories were numerically integrated using GMAT and, in the author's opinion, are excellent candidates for use on NASA's planned Europa Clipper mission.

  13. Search for volatiles on icy satellites. I. Europa

    Science.gov (United States)

    Brown, R.H.; Cruikshank, D.P.; Tokunaga, A.T.; Smith, R.G.; Clark, R.N.

    1988-01-01

    New reflectance spectra have been obtained for both the leading and trailing sides of Europa, using the Cooled Grating Array Spectrometer (CGAS) of the NASA Infrared Telescope Facility (IRTF). The spectra are of higher precision than any yet obtained. Spectra of Europa's trailing side (central meridian longitude ???300??) obtained in 1985 show two weak absorptions near 2.2 and 2.3 ??m. Both of these features as well as others are seen in spectra obtained by R. N. Clark, R. B. Singer, P. D. Owensby, and F.P. Fanale (1980a, Bull. Amer. Astron. Soc. 12, 713-714) at similar central meridian longitude. Data obtained with an improved detector array in 1986, however, do not show the absorptions seen in the 1980 and 1985 spectra. It is not clear why the newest data do not show the apparent absorptions seen in previous years, but the suggestion is that either the 1980 and 1985 data are spurious or that the material responsible for the weak absorptions is no longer detectable. Analysis of the 1980 and 1985 data did not reveal any obvious source of systematic error capable of introducing spurious features, but we are skeptical of any explanation that cites transient deposition, movement, and/or destruction of material on Europa's trailing side to account for the nondetection of the features in the 1986 data. If the weak absorptions seen in the 1980 and 1985 data are real, they can be interpreted as indicating the transient spectroscopic presence of a molecular component on Europa's trailing side different from the water ice that is known to be the dominant surface constituent. Further monitoring is required to determine if the apparent absorptions are real. ?? 1988.

  14. Return to Europa: Overview of the Jupiter Europa orbiter mission

    Science.gov (United States)

    Clark, K.; Boldt, J.; Greeley, R.; Hand, K.; Jun, I.; Lock, R.; Pappalardo, R.; van Houten, T.; Yan, T.

    2011-08-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter's icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander.The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the EJSM; JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO). The JEO mission concept uses a single orbiter flight system that would travel to Jupiter by means of a multiple-gravity-assist trajectory and then perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months.The JEO mission would investigate various options for future surface landings. The JEO mission science objectives, as defined by the international EJSM Science Definition Team, include:Europa's ocean: Characterize the extent of the ocean and its relation to the deeper interior.Europa's ice shell: Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange.Europa's chemistry: Determine global surface compositions and chemistry, especially as related to habitability.Europa's geology: Understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ

  15. Chemistry in the near-surface atmosphere at Ganymede

    Science.gov (United States)

    Shematovich, V. I.

    2013-09-01

    Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy satellites in the Jovian and Kronian systems are of great importance for assessing the biological potential of these satellites. Depending on the satellite mass the formation of the rarefied exosphere with the relatively dense near-surface layer is possible as, for example, in the case of the relatively heavy Galilean satellites Europa and Ganymede in the Jovian system [1-3]. Ganymede is of special interest, because observations indicate that Ganymede has a significant O2 near - surface atmosphere, probably subsurface ocean, and is the only satellite with its own magnetosphere. Processes of formation of the rarefied gaseous envelope of Ganymede and chemical exchange between atmosphere and icy surface will be considered. The water vapour is usually the domin ant parent species in such gaseous envelope because of the ejection from the satellite icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface. The photochemis try of water vapour in the near - surface atmospheric layer [4] and the radiolysis of icy regolith [5] result in the supplement of the atmosphere by an admixture of H2, O2, OH and O. Returning molecules have species-dependent behaviour on contact with icy surface of the satellite and non-thermal energy distributions for the chemical radicals. The H2 and O2 molecules stick with very low efficiency and are immediately desorbed thermally, but returning H2O, OH, H and O stick to the grains in the icy regolith with unit efficiency. The suprathermal radicals OH, H, and O entering the regolith can drive the surface chemistry. The numerical kinetic model to investigate on the molecular level the chemistry of the atmosphere - surface interface of the rarefied Н2О-dominant gaseous envelope at Ganymede was developed. Such numerical model simulates the gas-phase and diffusive surface

  16. Shear failure of icy satellites: Present-day implications along Enceladus's Tiger Stripes and indications of past strike-slip faulting on Ganymede's Dardanus Sulcus

    Science.gov (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.

    2012-12-01

    The icy fractured surfaces of both Enceladus and Ganymede offer many candidate faults for studying both past and potentially present tectonic activity. Recent studies have suggested that Enceladus's "tiger stripe" fractures may be associated with tectonic strike-slip (shear) motions as a result of Coulomb failure, but low coefficients of friction were primarily considered in past stress models. Recent work suggests that friction is highly sensitive to the state of seismic fault slip; low friction (μf = 0.1-0.2) may be applicable in initial slip events and high friction (μf = 0.3-0.6) may be more appropriate for subsequent sliding velocities. On Ganymede, strike-slip tectonics is common, notably where a prominent fault offsets Dardanus Sulcus. We investigate the role of fault friction and orbital eccentricity in the development of Enceladus's tiger stripes and Ganymede's Dardanus Sulcus. We consider both tidal diurnal and non-synchronous rotation (NSR) stresses, as applicable, and compute Coulomb failure conditions for these target fractures. For the Enceladus tiger stripes, previous shear failure models showed that low coefficients of friction (μf = 0.1-0.2) and shallow fracture depths (2-4 km) provide a very active diurnal shear failure scenario. Our new simulations suggest that shear failure is also possible for friction coefficients as high as uf = 0.6 at depths of 2 km, but the lateral extent of failure is suppressed in comparison. For Ganymede's Dardanus Sulcus, we consider tidal stress scenarios for both present (0.0013) and possible past high (~0.05) eccentricity. We find that NSR shear stress resolved along the Dardanus fault is sufficient to induce failure to ~1.4 km depths for μf ~0.3. For past high eccentricity, diurnal stress would have modulated NSR stress by ~100 kPa through Ganymede's tidal cycle, which could have also induced shear heating and tidal walking mechanisms. Together, these tidally driven failure models for Enceladus and Ganymede are

  17. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    Science.gov (United States)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main

  18. Current Status of the EJSM Jupiter Europa Orbiter Flagship Mission Design

    Science.gov (United States)

    Clark, K.; Pappalardo, R.; Greeley, R.; Hendrix, A.; Boldt, J.; van Houten, T.; Jun, I.; Lock, R.; Ludwinski, J.; Rasmussen, R.; Tan-Wang, G.

    2008-12-01

    NASA and ESA have embarked on a joint study of a mission to Europa and the Jupiter system with orbiters developed by NASA, ESA, and possibly JAXA. An international Joint Jupiter Science Definition Team (JJSDT) is defining the science content for the Jupiter Europa Orbiter (JEO) mission study run by NASA and for the Jupiter Ganymede Orbiter (JGO) mission study run by ESA. Engineering teams for both missions are working closely with the JJSDT to define mission concepts that optimize science, cost, and risk. The NASA-led JEO mission addresses a scientifically rich subset of the complete EJSM science goals and is designed to stand alone or in conjunction with the ESA-led JGO. This paper focuses on the NASA-led JEO mission and will describe the concept in the context of a standalone mission. An orbital mission to Europa is driven by the desire to investigate an astrobiological archetype for icy satellite habitability, with a putative warm, salty, water ocean with plausible energy sources. Additionally, JEO will explore the Jupiter system to better understand how Europa's possible habitability is related to the formation scenario of the other Jovian satellites. The JEO mission will perform 2.5-3 years of Jupiter system science, including encounters with Io, Ganymede and Callisto, before insertion into orbit around Europa for a comprehensive set of science campaigns lasting for up to one year. This paper will highlight the JEO mission design and implementation concept. The work reported was sponsored by the National Aeronautics and Space Administration.

  19. Current Status of the EJSM Jupiter Europa Orbiter: Mission Design and Architecture

    Science.gov (United States)

    Grunthaner, Paula; Clark, K.; Pappalardo, R.; Greeley, R.; Hendrix, A.; Boldt, J.; Van Houten, T.; Jun, I.; Lock, R.; Ludwinski, J.; Rasmussen, R.; Tan-Wang, G.

    2008-09-01

    NASA and ESA have embarked on a joint study of a mission to Europa and the Jupiter system with orbiters developed by NASA, ESA, and possibly JAXA. An international Jupiter Joint Science Definition Team (JJSDT) is defining the science content for the Europa Orbiter (JEO) mission study run by NASA and for the Jupiter Ganymede Orbiter (JGO) mission study run by ESA. Engineering teams for both missions are working closely with the JJSDT to define mission concepts that optimize science, cost, and risk. The NASA-led JEO mission addresses a scientifically rich subset of the complete EJSM science goals and is designed to stand alone or in conjunction with the ESA-led JGO. This paper focuses on the NASA-led JEO mission and will describe the concept in the context of a standalone mission. An orbital mission to Europa is driven by the desire to investigate an astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible energy sources. Additionally, JEO will explore the Jupiter system to better understand how Europa's possible habitability is related to the formation scenario of the other Jovian satellites. The JEO mission will perform 2.5 to 3 years of Jupiter system science, including encounters with Io, Ganymede and Callisto, before insertion into orbit around Europa for a comprehensive set of science campaigns lasting for up to one year. This paper will highlight the JEO mission design and implementation concept. The work reported was sponsored by the National Aeronautics and Space Administration.

  20. Mass-radius relationships in icy satellites after Voyager

    Science.gov (United States)

    Lupo, M. J.

    1982-01-01

    Using improved data for the masses and radii of the satellites of Jupiter and Saturn, models accounting for self-compression effects are presented for the interiors of Europa, Ganymede, Callisto, Rhea, and Titan. For the differentiated models, two different possible scenarios for heat transport are treated, as well as two different compositions for the silicate component. Undifferentiated models are also treated. In each case, the models of Ganymede, Callisto, and Titan show noticeable similarities. It is found that estimates of the ice-rock ratio are dependent upon the assumptions made about the heat transport mechanisms, the rock composition, and on the distribution of rock and ice in the satellite's interior.

  1. Science of the Joint ESA-NASA Europa Jupiter System Mission (EJSM)

    Science.gov (United States)

    Blanc, Michel; Greeley, Ron

    2010-05-01

    The Europa Jupiter System Mission (EJSM), an international joint mission under study by NASA and ESA, has the overarching theme to investigate the emergence of habitable worlds around gas giants. Jupiter's diverse Galilean satellites—three of which are believed to harbor internal oceans—are the key to understanding the habitability of icy worlds. To this end, the reference mission architecture consists of the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO will execute a coordinated exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO carry sets of complementary instruments, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. Encompassed within the overall mission theme are two science goals, (1) Determine whether the Jupiter System harbors habitable worlds and (2) Characterize the processes within the Jupiter System. The science objectives addressed by the first goal are to: i) characterize and determine the extent of subsurface oceans and their relations to the deeper interior, ii) characterize the ice shells and any subsurface water, including the heterogeneity of the ice, and the nature of surface-ice-ocean exchange; iii) characterize the deep internal structure, differentiation history, and (for Ganymede) the intrinsic magnetic field; iv) compare the exospheres, plasma environments, and magnetospheric interactions; v) determine global surface composition and chemistry, especially as related to habitability; vi) understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. The science objectives for addressed by the second goal are to: i) understand the

  2. Evidence for a subsurface ocean on Europa

    Science.gov (United States)

    Carr, M.H.; Belton, M.J.S.; Chapman, C.R.; Davies, M.E.; Geissler, P.; Greenberg, R.; McEwen, A.S.; Tufts, B.R.; Greeley, R.; Sullivan, R.; Head, J.W.; Pappalardo, R.T.; Klaasen, K.P.; Johnson, T.V.; Kaufman, J.; Senske, D.; Moore, J.; Neukum, G.; Schubert, G.; Burns, J.A.; Thomas, P.; Veverka, J.

    1998-01-01

    Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower- resolution observations of much larger regions suggest that the phenomena reported here are widespread.

  3. Europa Clipper Mission Concept Preliminary Planetary Protection Approach

    Science.gov (United States)

    Jones, Melissa; Schubert, Wayne; Newlin, Laura; Cooper, Moogega; Chen, Fei; Kazarians, Gayane; Ellyin, Raymond; Vaishampayan, Parag; Crum, Ray

    2016-07-01

    sterilized to a level deemed to be unable to cause harmful contamination of any of the icy Galilean satellites (Europa, Ganymede and Callisto). Due to the intricacies of meeting the driving planetary protection requirement on the mission concept, the project has invested in early development studies to integrate a feasible approach for implementing these planetary protection requirements within the engineering constraints of the mission. Results of the following studies will be presented: evaluation of the impact of new Heat Microbial Reduction specifications on the mission; bulk material encapsulated bioburden; developing vapor hydrogen peroxide sterilization process for the integration environment. The overall planetary protection implementation approach will be discussed.

  4. Plasma IMS Composition Measurements for Europa and the Other Galilean Moons

    Science.gov (United States)

    Sittler, Edward; Cooper, John; Hartle, Richard; Lipatov, Alexander; Mahaffy, Paul; Paterson, William; Pachalidis, Nick; Coplan, Mike; Cassidy, Tim

    2010-01-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4 pi surface composition to trace elemental and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged. The composition of the global surfaces of Europa and Ganymede can be inferred from the measurement of ejected neutrals and pick-up ions using at minimum an in situ payload including MAG and IMS also fully capable of meeting Level 1 mission requirements for ocean detection and survey. Elemental and isotopic analysis of potentially extruded oceanic materials at the moon surfaces would further support the ocean objectives. These measurements should be made from a polar orbiting spacecraft about Europa or Ganymede at height 100 km. The ejecta produced by

  5. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto.

    Science.gov (United States)

    Khurana, K K; Kivelson, M G; Stevenson, D J; Schubert, G; Russell, C T; Walker, R J; Polanskey, C

    1998-10-22

    The Galileo spacecraft has been orbiting Jupiter since 7 December 1995, and encounters one of the four galilean satellites-Io, Europa, Ganymede and Callisto-on each orbit. Initial results from the spacecraft's magnetometer have indicated that neither Europa nor Callisto have an appreciable internal magnetic field, in contrast to Ganymede and possibly Io. Here we report perturbations of the external magnetic fields (associated with Jupiter's inner magnetosphere) in the vicinity of both Europa and Callisto. We interpret these perturbations as arising from induced magnetic fields, generated by the moons in response to the periodically varying plasma environment. Electromagnetic induction requires eddy currents to flow within the moons, and our calculations show that the most probable explanation is that there are layers of significant electrical conductivity just beneath the surfaces of both moons. We argue that these conducting layers may best be explained by the presence of salty liquid-water oceans, for which there is already indirect geological evidence in the case of Europa.

  6. Bombardment History of the Galilean Satellites and Derived Ages

    Science.gov (United States)

    Neukum, G.; Wagner, R.; Wolf, U.; Head, J. W., III; Pappalardo, R.; Chapman, C. R.; Merline, W.; Belton, M. S.

    1997-07-01

    During the first seven Galileo flybys, high resolution imagery of the three Galilean moons, Europa, Ganymede and Callisto have been obtained. The new imaging data allow to measure crater diameters as small as ~ 100 m. In combination with Voyager data, size-frequency distribution characteristics in the size range of ~ 100 m to ~ 100 km have been determined. Crater distributions show steep slopes (cumulative index about -3) at smaller diameters on each satellite and are shallower at larger diameters, similar to what is seen on the Moon and the asteroids Gaspra and Ida. % % At D = 1 km, crater densities differ by about a factor of 10 between % average dark terrain of Galileo Regio and youngest bright resurfaced areas % on Ganymede. % Crater densities on the most heavily cratered regions on both Ganymede and Callisto are fairly comparable. On Europa, crater densities have turned out to be about a factor of 10 lower than on the youngest bright terrain in the Uruk Sulcus region of Ganymede. The similarity to crater size-frequency distributions found in the inner solar system suggests a similar origin of the projectiles, probably mainly stemming from the asteroid belt, and the impact rate on the Galilean satellites may have had a lunar-like decay with time. Under this assumption, absolute ages may be derived making use of the idea of the ''marker horizon'', i. e. formation of the youngest basins, such as Gilgamesh on Ganymede, about 3.8 b.y. ago. Thus, the most densely cratered dark terrains on both Ganymede and Callisto have likely ages of 4.1 - 4.3 b.y. Basins such as Neith (on Ganymede) or Adlinda (on Callisto) yield likely ages of about 3.9 b.y. Some areas on Europa may be as old as 3 - 3.3 b.y. Other scenarios based on values proposed for the present-day comet impact rate in the Jovian system with non-lunar-like flux time dependences are conceivable and would result in generally younger ages, possibly as young as 10 m.y. These young ages and impact rates for Europa

  7. Pre-Dawn Temperatures on Ganymede

    Science.gov (United States)

    1997-01-01

    up to one hour. The motion of Galileo relative to Ganymede during this time causes distortions in the satellite shape on the image, which therefore appears slightly non-circular. The small overlapping circles that make up the image show the size of the area, about 450 kilometers (280 miles) across, covered by each individual PPR measurement. Blue spots in the dark sky in the left-hand portion of the image are due to noise.JPL manages the Galileo mission for NASA's Office of Space Science, Washington, D.C.

  8. The rotation of Titan and Ganymede

    Science.gov (United States)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  9. Galileo's first images of Jupiter and the Galilean satellites

    Science.gov (United States)

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  10. Plasma ion composition measurements for Europa

    Science.gov (United States)

    Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Christian, E. R.; Lipatov, A. S.; Mahaffy, P. R.; Paschalidis, N. P.; Coplan, M. A.; Cassidy, T. A.; Richardson, J. D.; Fegley, B.; Andre, N.

    2013-11-01

    Jupiter magnetospheric interactions and surface composition, both important to subsurface ocean detection for the Galilean icy moons Europa, Ganymede, and Callisto, can be measured using plasma ion mass spectrometry on either an orbiting spacecraft or one designed for multiple flybys of these moons. Detection of emergent oceanic materials at the Europa surface is more likely than at Ganymede and Callisto. A key challenge is to resolve potential intrinsic Europan materials from the space weathering patina of iogenic species implanted onto the sensible surface by magnetospheric interactions. Species-resolved measurements of pickup ion currents are also critical to extraction of oceanic induced magnetic fields from magnetospheric interaction background dominated by these currents. In general the chemical astrobiological potential of Europa should be determined through the combination of surface, ionospheric, and pickup ion composition measurements. The requisite Ion Mass Spectrometer (IMS) for these measurements would need to work in the high radiation environment of Jupiter's magnetosphere between the orbits of Europa and Ganymede, and beyond. A 3D hybrid model of the moon-magnetosphere interaction is also needed to construct a global model of the electric and magnetic fields, and the plasma environment, around Europa. Europa's ionosphere is probably usually dominated by hot pickup ions with 100-1000 eV temperatures, excursions to a "classical" cold ionosphere likely being infrequent. A field aligned ionospheric wind driven by the electron polarization electric field should arise and be measurable.

  11. The Europa Jupiter System Mission: Synergistic Science Enabled by JEO and JGO

    Science.gov (United States)

    Senske, D. A.; Pappalardo, R. T.; Prockter, L. M.; Lebreton, J.; Greeley, R.; Bunce, E. J.; Dougherty, M. K.; Grasset, O.; Titov, D.

    2010-12-01

    The Europa Jupiter System Mission (EJSM), a joint mission under study by NASA and ESA, has the overarching theme: The emergence of habitable worlds around gas giants. This mission would consist of two major flight elements, the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). The science which could be achieved by EJSM centers around three goals: (1) Explore Europa to investigate its habitability (JEO-focus); (2) Characterize Ganymede as a planetary object including its potential habitability (JGO-focus) and (3) Explore the Jupiter system as an archetype for gas giants (JEO + JGO). The last goal would be addressed primarily during the tour phase of the mission, lasting upwards of 2.5-years, whereby each spacecraft would perform multiple, Galilean satellite fly-bys and make measurements of Jupiter and the Jupiter system. The EJSM Jupiter baseline tour would provide abundant opportunities to perform coordinated Jupiter system science, including fields and particles/magnetometer observations; Jupiter atmosphere monitoring; Io monitoring; spacecraft-to-spacecraft radio occultations of various targets; Galilean satellite flybys; and distant observations of the Galilean moons, small moons, and rings. In realm of understanding the Jovian environment, fields and particles/magnetometer measurements could be carried out nearly continuously, providing unique multipoint measurements of the time-dependent three-dimensional structure of the magnetosphere. In terms of understanding the structure and dynamics of the Jupiter atmosphere, it would be possible to perform coordinated, long-duration (20+ hours), observations over regular periods to monitor weather and understand the behavior of individual storm systems. In a similar manner, regular monitoring of volcanic activity at Io would make it possible to assess the variability in levels of volcanic activity, characterize plume structure, and aid in determining heat flow and transport. Unique

  12. Plasma IMS Composition Measurements for Europa and the Other Galilean Moons

    Science.gov (United States)

    Sittler, Edward; Cooper, John; Hartle, Richard; Lipatov, Alexander; Mahaffy, Paul; Paterson, William; Pachalidis, Nick; Coplan, Mike; Cassidy, Tim

    2010-05-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4? surface composition to trace elemental [1] and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged. The composition of the global surfaces of Europa and Ganymede can be inferred from the measurement of ejected neutrals and pick-up ions using at minimum an in situ payload including MAG and IMS also fully capable of meeting Level 1 mission requirements for ocean detection and survey. Elemental and isotopic analysis of potentially extruded oceanic materials at the moon surfaces would further support the ocean objectives. These measurements should be made from a polar orbiting spacecraft about Europa or Ganymede at height ~ 100 km. The ejecta produced by

  13. The Galilean Satellites

    Science.gov (United States)

    1998-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission

  14. The Q Values of the Galilean Satellites and their Tidal Contributions to the Deceleration of Jupiter's Rotation

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Cheng-Zhi Zhang

    2004-01-01

    The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.

  15. The geology of Ganymede

    Science.gov (United States)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  16. Radar probing of Jovian icy moons: Understanding subsurface water and structure detectability in the JUICE and Europa missions

    Science.gov (United States)

    Heggy, Essam; Scabbia, Giovanni; Bruzzone, Lorenzo; Pappalardo, Robert T.

    2017-03-01

    Radar probing of Jovian icy satellites is fundamental for understanding the moons' origin and their thermal evolution as potential habitable environments in our Solar System. Using the current state of knowledge of the geological and geophysical properties of Ganymede, Europa and Callisto, we perform a comprehensive radar detectability study to quantify the exploration depth and the lower limit for subsurface identification of water and key tectonic structural elements. To achieve these objectives, we establish parametric dielectric models that reflect different hypotheses on the formation and thermal evolution of each moon. The models are then used for FDTD radar propagation simulations at the 9-MHz sounding frequency proposed for both ESA JUICE and NASA Europa missions. We investigate the detectability above the galactic noise level of four predominant subsurface features: brittle-ductile interfaces, shallow faults, brine aquifers, and the hypothesized global oceans. For Ganymede, our results suggest that the brittle-ductile interface could be within radar detectability range in the bright terrains, but is more challenging for the dark terrains. Moreover, understanding the slope variation of the brittle-ductile interface is possible after clutter reduction and focusing. For Europa, the detection of shallow subsurface structural elements few kilometers deep (such as fractures, faults and brine lenses) is achievable and not compromised by surface clutter. The objective of detecting the potential deep global ocean on Europa is also doable under both the convective and conductive hypotheses. Finally, for Callisto, radar waves can achieve an average penetration depth of ∼15 km, although the current understanding of Callisto's subsurface dielectric properties does not suggest sufficiently strong contrasts to produce unambiguous radar returns.

  17. Ion pick-up near the icy Galilean satellites

    Science.gov (United States)

    Volwerk, M.; Khurana, K. K.

    2010-12-01

    The ion pick-up near the icy Galilean satellites is studied using ion cyclotron waves. Using Galileo magnetometer data, we show evidence for the existence of ion cyclotron waves, which are generated by pick-up of freshly ionized particles. Near Europa, in the wake various kinds of ions are detected, which were already predicted to be present on the moon. Upstream of the moon there is evidence for water ion pick-up, which could facilitate the slow down of the plasma flow. Ganymede shows evidence for either water or oxygen pick up on the flanks of the magnetosphere. Callisto shows indication of hydrogen pick-up from its atmosphere.

  18. Galilean Satellite Atmospheres and Aurora in Eclipse

    Science.gov (United States)

    Retherford, Kurt

    Io, Europa, and Ganymede all demonstrate unique displays of auroral and atmospheric emis-sions, and all three routinely pass into Jupiter's shadow. Callisto on the other hand very rarely passes into eclipse by Jupiter, and no auroral emissions have been detected there to date. In eclipse, Io's dayside surface temperature is known to rapidly drop from 120 K to 90 K, which is sufficient to diminish the sublimation component of the atmosphere across most of the surface and possibly results in an atmosphere mostly made directly from volcanos. While surface sputtering by magnetospheric particles is likely the primary source of the icy satel-lite atmospheres for Ganymede and Europa, little observational evidence is available regarding the relative contribution of the smaller sublimation components and potential changes in icy surface temperatures near the sub-solar point in eclipse. Eclipse observations of auroral emis-sions generally have the ability to correlate changes in the atmosphere with changes in surface temperature and/or photochemistry. They also offer the practical advantage of little or no confusion from reflected sunlight. We will review the present auroral observations available for investigating the behavior of Galilean satellite atmospheres in eclipse.

  19. Tests of Microchannel Plate (MCP) Detector Response to MeV Electrons in Support of Juno, JUICE, and Europa Mission UVS Instrument Investigations

    Science.gov (United States)

    Retherford, K. D.; Davis, M. W.; Greathouse, T. K.; Monreal, R. M.; Blase, R. C.; Raut, U.; Steffl, A. J.; Cooke, C. M.; Siegmun, O.; Gladstone, G. R.

    2016-10-01

    We report our efforts to optimize our UV Spectrograph (UVS) instruments for operating in the intense radiation environment of Jupiter for studying the ocean worlds of Europa and Ganymede in order to share our lessons learned.

  20. Craters and basins on Ganymede and Callisto - Morphological indicators of crustal evolution

    Science.gov (United States)

    Passey, Q. R.; Shoemaker, E. M.

    The morphologic characteristics of craters and palimpsests on Ganymede and Callisto are surveyed, and the crustal properties of these satellites and the evolution of the properties are studied. The morphology of bowl-shaped craters, smooth-floored craters, craters without central peaks, craters with central pits, chain craters on Callisto, the Gilgamesh and Western Equatorial Basins on Ganymede, crater palimpsests and penepalimpsests, multiring structures on Callisto, and the Galileo Regio rimmed furrow system on Ganymede are described individually. The crustal evolution is addressed by examining the development of the Galileo Regio system, the distribution of crater retention ages, the record of ray clusters, the thermal history of the lithosphere of Ganymede, and the origin of the central pits. It is suggested that as the lithosphere of each satellite cooled and thickened, crater retentivity spread as a wave from the polar regions and the antapex toward the apex; at any given location, progressively larger craters were retained with the passage of time.

  1. Jovian Tour Design for Orbiter and Lander Missions to Europa

    Science.gov (United States)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2013-01-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a flyby mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total delta v and radiation dose would be reduced by exploiting multi-body dynamics and avoiding phasing loops in the Ganymede-to- Europa transfer. Tour 11-O3, 12-L1 and 12-L4 are presented in details and their performaces compared to other tours from previous Europa mission studies.

  2. Thermal migration of water on the Galilean satellites

    Energy Technology Data Exchange (ETDEWEB)

    Purves, N.G.; Pilcher, C.B.

    1980-01-01

    We have modeled the thermal migration of water on the Galilean satellites under the assumption of ballistic molecular trajectories. It is found that water migrating owing to solar radiation on an ice-covered satellite will build up in temperate latitudes, in general not reaching the poles. As much as 50 m of ice may have been lost by this process from the equatorial regions of Europa over the age of the solar system. The disappearance of patches of ice - for instance, the bright rays surrounding some impact craters - from the equatorial regions of Ganymede and Callisto may approach a value (the irreversible evaporation rate) three orders of magnitude larger than the net equatorial loss rate for ice-covered Europa. The presence of water ice pole caps on Ganymede extending to the latitudes at which thermal migration becomes important suggests that some process distributed an extensive, thin covering of water on the satellite, and that the equatorial regions were subsequently cleared by the thermal process.

  3. Pensar Europa

    Directory of Open Access Journals (Sweden)

    Sonia Reverter

    2012-02-01

    Full Text Available Como dijo el profesor Fernando Montero "hay que reconocer que Europa es una extraña entidad, a mitad camino entre los seres reales y las ficciones". Desde el mismo mito de Europa, como princesa fenicia raptada por Zeus convertido en un toro blanco y llevada a Creta, hasta el discurso actual que promueve una idea de Europa como entidad transnacional, nos hallamos frente a la realidad de Europa como cuna de ideas e idea ella misma. La reflexividad que caracteriza al pensamiento filosófico y a la racionalidad crítica vuelve su mirada hacia la misma razón que se piensa, por tanto, a sí misma. Y es en ese punto en el que la cultura europea se ha destacado y tal vez debamos admitir también, se ha desgastado. Europa, desde la racionalidad de los griegos hasta la crisis de la razón actual ha pensado sobre sí misma al preguntarse por la razón misma. Podemos decir, de alguna manera, que Europa se piensa a sí misma al pensar en la razón humana. En este número monográfico de Recerca presentamos precisamente eso, una reflexión de Europa, que es a su vez una reflexión sobre algunos de los temas no sólo abiertos en ese quehacer constante que Europa se ha convertido, sino de gran calado para lo que Europa en un futuro pueda ser.

  4. Physical Structure and Tidal Distortion of Ganymede: Implications for the JUICE mission

    Science.gov (United States)

    Wagner, F. W.; Sohl, F.; Hussmann, H.

    2013-09-01

    Since the ESA-led mission JUICE (Jupiter Icy moons Explorer) has been selected for launch in 2022, Ganymede, Jupiter's largest satellite, has become of major scientific interest. Hence, we have constructed models of Ganymede's interior that satisfy the satellite's mean density and polar moment-of-inertia factor to obtain key structural parameters such as the radial displacement Love number h2. If a global subsurface ocean is present on Ganymede, h2 can be expected in the range of 1.16 to 1.50 governed primarily by the size of the liquid reservoir. Precise measurements of h2 will provide constraints on the thickness and rheology of Ganymede's ice and liquid layers and help to distinguish between individual structural models. Furthermore, our modeling yields tidal amplitudes of the order of a few meters, which are measurable by the GALA (GAnymede Laser Altimeter) experiment on board of the JUICE spacecraft. We also calculated the expected amplitude patterns of diurnal tidal stresses at Ganymede's surface and find values up to 5 kPa.

  5. Europa Explorer Operational Scenarios Development

    Science.gov (United States)

    Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.

    2008-01-01

    In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.

  6. Convection in Icy Satellites: Implications for Habitability and Planetary Protection

    Science.gov (United States)

    Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    Solid-state convection and endogenic resurfacing in the outer ice shells of the icy Galilean satellites (especially Europa) may contribute to the habitability of their internal oceans and to the detectability of any biospheres by spacecraft. If convection occurs in an ice I layer, fluid motions are confined beneath a thick stagnant lid of cold, immobile ice that is too stiff to participate in convection. The thickness of the stagnant lid varies from 30 to 50% of the total thickness of the ice shell, depending on the grain size of ice. Upward convective motions deliver approximately 10(exp 9) to 10(exp 13) kg yr(sup -1) of ice to the base of the stagnant lid, where resurfacing events driven by compositional or tidal effects (such as the formation of domes or ridges on Europa, or formation of grooved terrain on Ganymede) may deliver materials from the stagnant lid onto the surface. Conversely, downward convective motions deliver the same mass of ice from the base of the stagnant lid to the bottom of the satellites ice shells. Materials from the satellites surfaces may be delivered to their oceans by downward convective motions if material from the surface can reach the base of the stagnant lid during resurfacing events. Triggering convection from an initially conductive ice shell requires modest amplitude (a few to tens of kelvins) temperature anomalies to soften the ice to permit convection, which may require tidal heating. Therefore, tidal heating, compositional buoyancy, and solid-state convection in combination may be required to permit mass transport between the surfaces and oceans of icy satellites. Callisto and probably Ganymede have thick stagnant lids with geologically inactive surfaces today, so forward contamination of their surfaces is not a significant issue. Active convection and breaching of the stagnant lid is a possibility on Europa today, so is of relevance to planetary protection policy.

  7. Modeling the Europa plasma torus

    Science.gov (United States)

    Schreier, Ron; Eviatar, Aharon; Vasyliunas, Vytenis M.; Richardson, John D.

    1993-12-01

    The existence of a torus of plasma generated by sputtering from Jupiter's satellite Europa has long been suspected but never yet convincingly demonstrated. Temperature profiles from Voyager plasma observations indicate the presence of hot, possibly freshly picked-up ions in the general vicinity of the orbit of Europa, which may be interpreted as evidence for a local plasma torus. Studies of ion partitioning in the outer regions of the Io torus reveal that the oxygen to sulfur mixing ratio varies with radial distance; this may indicates that oxygen-rich matter is injected from a non-Io source, most probably Europa. We have constructed a quantitative model of a plasma torus near the orbit of Europa which takes into account plasma input from the Io torus, sputtering from the surface of Europa, a great number of ionization and charge exchange processes, and plasma loss by diffusive transport. When the transport time is chosen so that the model's total number density in consistent with the observed total plasma density, the contribution from Europa is found to be significant although not dominant. The model predicts in detail the ion composition, charge states, and the relative fractions of hot Europa-generated and (presumed) cold Io-generated ions. The results are generally consistent with observations from Voyager and can in principle (subject to limitations of data coverage) be confirmed in more detail by Ulysses.

  8. 2D-model of oxygen emissions lines for Europa

    Science.gov (United States)

    Cessateur, Gaël; Barthelemy, Mathieu; Lilensten, Jean; Rubin, Martin; Maggiolo, Romain; De Keyser, Johan

    2017-04-01

    The Jovian moon Europa is an interesting case study as an archetype for icy satellites, and will be one of the primary targets of the ESA JUICE mission which should be launched in 2022. Hosting a thin neutral gas atmosphere mainly composed of O2 and H2O, Europa can be studied by its airglow and dayglow emissions. A 1D photochemistry model has first been developed to assess the impact of the solar UV flux on the visible emission, such as the red and green oxygen lines (Cessateur et al. 2016). For limb polar viewing, red line emissions can reach a few hundreds of Rayleigh close to the surface. The impact of the precipitating electrons has also been studied. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). A 2D emission model has thus been developed to estimate the airglow emissions. When electrons are the major source of the visible emissions, the solar UV flux can be responsible for up to 15% of those emissions for some specific line of sight. Oxygen emission lines in the UV have also been considered, such as 130.5 and 135.6 nm. For the latter, we did estimate some significant line emissions reaching 700 Rayleigh for a polar limb viewing angle close to the surface. Oxygen emission lines are significant (higher than 10 R) for altitudes lower than 100 km for all lines, except for the red line emissions where emissions are still above 10 R up to 200 km from the surface. A sensitivity study has also been performed in order to assess the impact of the uncertainties relative to the dissociative-excitation cross sections. Cessateur G, Barthelemy M & Peinke I. Photochemistry-emission coupled model for Europa and Ganymede. J. Space Weather Space Clim., 6, A17, 2016 Rubin, M., et al. Self-consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere, J. Geophys. Res. Space Physics, 120, 3503-3524, 2015

  9. Plans and Combined Operations of the Flight Elements of the Europa Jupiter System Mission (EJSM)

    Science.gov (United States)

    Erd, Christian; Clark, K.; Ejsm System Teams

    2010-05-01

    The Europa Jupiter System Mission (EJSM) is a joint NASA-ESA mission candidate, where ESA would provide the Jupiter Ganymede Orbiter (JGO) and NASA would provide the Jupiter Europa Orbiter (JEO). Both spacecraft are foreseen to be launched in 2020, allowing for a joint exploration of the Jovian system, and the Galilean moons. The planning of the development, implementation and combined science phase will be described in the poster.

  10. EUROPA Multiple-Flyby Trajectory Design

    Science.gov (United States)

    Buffington, Brent; Campagnola, Stefano; Petropoulos, Anastassios

    2012-01-01

    As reinforced by the 2011 NRC Decadal Survey, Europa remains one of the most scientifically intriguing targets in planetary science due to its potential suitability for life. However, based on JEO cost estimates and current budgetary constraints, the Decadal Survey recommended-and later directed by NASA Headquarters-a more affordable pathway to Europa exploration be derived. In response, a flyby-only proof-of-concept trajectory has been developed to investigate Europa. The trajectory, enabled by employing a novel combination of new mission design techniques, successfully fulfills a set of Science Definition Team derived scientific objectives carried out by a notional payload including ice penetrating radar, topographic imaging, and short wavelength infrared observations, and ion neutral mass spectrometry in-situ measurements. The current baseline trajectory, referred to as 11-F5, consists of 34 Europa and 9 Ganymede flybys executed over the course of 2.4 years, reached a maximum inclination of 15 degrees, has a deterministic delta v of 157 m/s (post-PJR), and has a total ionizing dose of 2.06 Mrad (Si behind 100 mil Al, spherical shell). The 11-F5 trajectory and more generally speaking, flyby-only trajectories-exhibit a number of potential advantages over an Europa orbiter mission.

  11. Science potential from a Europa lander.

    Science.gov (United States)

    Pappalardo, R T; Vance, S; Bagenal, F; Bills, B G; Blaney, D L; Blankenship, D D; Brinckerhoff, W B; Connerney, J E P; Hand, K P; Hoehler, T M; Leisner, J S; Kurth, W S; McGrath, M A; Mellon, M T; Moore, J M; Patterson, G W; Prockter, L M; Senske, D A; Schmidt, B E; Shock, E L; Smith, D E; Soderlund, K M

    2013-08-01

    The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.

  12. Trajectory Design for the Europa Clipper Mission Concept

    Science.gov (United States)

    Buffington, Brent

    2014-01-01

    Europa is one of the most scientifically intriguing targets in planetary science due to its potential suitability for extant life. As such, NASA has funded the California Institute of Technology Jet Propulsion Laboratory and the Johns Hopkins University Applied Physics Laboratory to jointly determine and develop the best mission concept to explore Europa in the near future. The result of nearly 4 years of work--the Europa Clipper mission concept--is a multiple Europa flyby mission that could efficiently execute a number of high caliber science investigations to meet Europa science priorities specified in the 2011 NRC Decadal Survey, and is capable of providing reconnaissance data to maximize the probability of both a safe landing and access to surface material of high scientific value for a future Europa lander. This paper will focus on the major enabling component for this mission concept--the trajectory. A representative trajectory, referred to as 13F7-A21, would obtain global-regional coverage of Europa via a complex network of 45 flybys over the course of 3.5 years while also mitigating the effects of the harsh Jovian radiation environment. In addition, 5 Ganymede and 9 Callisto flybys would be used to manipulate the trajectory relative to Europa. The tour would reach a maximum Jovicentric inclination of 20.1 deg. have a deterministic (Delta)V of 164 m/s (post periapsis raise maneuver), and a total ionizing dose of 2.8 Mrad (Si).

  13. Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice

    Science.gov (United States)

    Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotin, Christophe

    2014-06-01

    The large icy moons of Jupiter contain vast quantities of liquid water, a key ingredient for life. Ganymede and Callisto are weaker candidates for habitability than Europa, in part because of the model-based assumption that high-pressure ice layers cover their seafloors and prevent significant water-rock interaction. Water-rock interactions may occur, however, if heating at the rock-ice interface melts the high pressure ice. Highly saline fluids would be gravitationally stable, and might accumulate under the ice due to upward migration, refreezing, and fractionation of salt from less concentrated liquids. To assess the influence of salinity on Ganymede's internal structure, we use available phase-equilibrium data to calculate activity coefficients and predict the freezing of water ice in the presence of aqueous magnesium sulfate. We couple this new equation of state with thermal profiles in Ganymede's interior-employing recently published thermodynamic data for the aqueous phase-to estimate the thicknesses of layers of ice I, III, V, and VI. We compute core and silicate mantle radii consistent with available constraints on Ganymede's mass and gravitational moment of inertia. Mantle radii range from 800 to 900 km for the values of salt and heat flux considered here (4-44 mW m-2 and 0 to 10 wt% MgSO4). Ocean concentrations with salinity higher than 10 wt% have little high pressure ice. Even in a Ganymede ocean that is mostly liquid, achieving such high ocean salinity is permissible for the range of likely S/Si ratios. However, elevated salinity requires a smaller silicate mantle radius to satisfy mass and moment-of-inertia constraints, so ice VI is always present in Ganymede's ocean. For lower values of heat flux, oceans with salinity as low as 3 wt% can co-exist with ice III. Available experimental data indicate that ice phases III and VI become buoyant for salinity higher than 5 wt% and 10 wt%, respectively. Similar behavior probably occurs for ice V at salinities

  14. Global Europa

    DEFF Research Database (Denmark)

    Manners, Ian

    2010-01-01

    The mythology of the European Union (EU) in world politics can be told and untold in many different ways. This article focuses on the lore or stories of who did what to whom, the ideological projection of the past onto the present and the escapist pleasure of story telling in looking at the mytho......The mythology of the European Union (EU) in world politics can be told and untold in many different ways. This article focuses on the lore or stories of who did what to whom, the ideological projection of the past onto the present and the escapist pleasure of story telling in looking...... at the mythology of ‘global Europa' - the EU in the world. It concludes with a reflection on the way in which the many diverse myths of global Europa compete for daily attention, whether as lore, ideology, or pleasure. In this respect the mythology of global Europa is part of our everyday existence, part of the EU...

  15. Europa central

    Directory of Open Access Journals (Sweden)

    Karel BARTOSEK

    2010-02-01

    Full Text Available La investigación francesa continúa interesándose por Europa Central. Desde luego, hay límites a este interés en el ambiente general de mi nueva patria: en la ignorancia, producto del largo desinterés de Francia por este espacio después de la Segunda Guerra Mundial, y en el comportamiento y la reflexión de la clase política y de los medios de comunicación (una anécdota para ilustrar este ambiente: durante la preparación de nuestro coloquio «Refugiados e inmigrantes de Europa Central en el movimiento antifascista y la Resistencia en Francia, 1933-1945», celebrado en París en octubre de 1986, el problema de la definición fue planteado concreta y «prácticamente». ¡Y hubo entonces un historiador eminente, para quién Alemania no formaría parte de Europa Central!.

  16. Obliquity of the Galilean satellites: The influence of a global internal liquid layer

    CERN Document Server

    Baland, R -M; Van Hoolst, T

    2012-01-01

    The obliquity of the Galilean satellites is small but not yet observed. Studies of cycloidal lineaments and strike-slip fault patterns on Europa suggest that Europa's obliquity is about 1 deg, although theoretical models of the obliquity predict the obliquity to be one order of magnitude smaller for an entirely solid Europa. Here, we investigate the influence of a global liquid layer on the obliquity of the Galilean satellites. Io most likely has a fully liquid core, while Europa, Ganymede, and Callisto are thought to have an internal global liquid water ocean beneath an external ice shell. We use a model for the obliquity based on a Cassini state model extended to the presence of an internal liquid layer and the internal gravitational and pressure torques induced by the presence of this layer. We find that the obliquity of Io only weakly depends on the different internal structure models considered, because of the weak influence of the liquid core which is therefore almost impossible to detect through observ...

  17. Mass-radius relationships in icy satellites

    Science.gov (United States)

    Lupo, M. J.; Lewis, J. S.

    1979-01-01

    Using published laboratory data for H2O ice, a modeling technique was developed by which the bulk density, density and temperature profile, rotational moment of inertia, central pressure, and location of the rock-ice interface can all be obtained as a function of the radius, the heliocentric distance, and the silicate composition. Models of the interiors of Callisto, Ganymede, Europa, Rhea, and Titan are given, consistent with present mass and radius data. The radius and mass of spheres of ice under self-gravitation for two different temperature classes are given (103 and 77 deg K). Measurements of mass, radius and I/MR2 by spacecraft can be interpreted by this model to yield substantial information about the internal structure and the ice/rock ratio of the icy satellites of Jupiter and Saturn.

  18. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  19. On the formation of Ganymede's surface brightness asymmetries: Kinetic simulations of Ganymede's magnetosphere

    Science.gov (United States)

    Fatemi, S.; Poppe, A. R.; Khurana, K. K.; Holmström, M.; Delory, G. T.

    2016-05-01

    Ganymede possesses strong surface brightness asymmetries both between its polar cap and equatorial regions and between its leading and trailing hemispheres. Here we test the hypothesis that these asymmetries are due to differential Jovian plasma and energetic particle precipitation to the surface with the combination of a hybrid plasma model (kinetic ions and fluid electrons) and a particle tracing model. We describe the hybrid model, the first of its kind applied to Ganymede, and compare the results to both Galileo observations and previous MHD and MHD-EPIC models of Ganymede. We calculate spatially resolved precipitating Jovian ion fluxes to the surface of Ganymede for energies 1 particle fluxes are the primary driver for altering the surface brightness of Ganymede.

  20. Measuring Ganymede's tidal deformation by laser altimetry: application to the GALA Experiment

    Science.gov (United States)

    Steinbrügge, Gregor; Hussmann, Hauke; Stark, Alexander; Oberst, Jürgen

    2014-05-01

    Measurements of Ganymede's induced magnetic field suggest a salty water layer under the icy crust (Kivelson et al. 2002), in agreement with thermal models based on heat transfer and energy balance equations (e.g., Spohn and Schubert, 2003). Due to the small density contrast between ice-I and liquid water, interior structure models (e.g. Sohl et al. 2003) consistent with Ganymede's moment of inertia and total mass cannot constrain the ice thickness or ocean depth. In order to reduce the ambiguity of the structural models and to constrain the ice thickness, it has been proposed to measure the dynamic response of Ganymede's ice shell to tidal forces exerted by Jupiter characterized by the Love numbers h2 and k2. Similar strategies have been investigated in application to Europa (Wu 2001, Wahr 2006, Hussmann 2011). The body tide Love number h2 depends on the tidal frequency (main tidal cycle is the 7.15 days period of revolution), the internal structure, and the rheology, in particular on the presence of fluid layers, and the thickness and rigidity of an overlaying ice shell. Combined with measurements of the Love number k2, which can be inferred from radio science experiments, and a simultaneous determination of linear combinations of h2 and k2 the obtained data would significantly reduce the ambiguity in structural models (Wahr et al. 2006). A way to determine tidal effects in Ganymede's topography and therefore the h2 value by a spacecraft in orbit is the crossover method: Different orbit tracks will intersect at certain surface locations at different times so that the tidal signal can be extracted from a differential altimetry measurement. The Ganymede Laser Altimeter GALA is one of the instruments selected for the Jupiter Icy Moon Explorer (JUICE). The GALA instrument will perform globally distributed altitude measurements from a low circular orbit. The main challenges for the determination of the tidal amplitude are Ganymede's high surface roughness and low

  1. On the orbital variability of Ganymede's atmosphere

    Science.gov (United States)

    Leblanc, F.; Oza, A. V.; Leclercq, L.; Schmidt, C.; Cassidy, T.; Modolo, R.; Chaufray, J. Y.; Johnson, R. E.

    2017-09-01

    Ganymede's atmosphere is produced by radiative interactions with its surface, sourced by the Sun and the Jovian plasma. The sputtered and thermally desorbed molecules are tracked in our Exospheric Global Model (EGM), a 3-D parallelized collisional model. This program was developed to reconstruct the formation of the upper atmosphere/exosphere of planetary bodies interacting with solar photon flux and magnetospheric and/or the solar wind plasmas. Here, we describe the spatial distribution of the H2O and O2 components of Ganymede's atmosphere, and their temporal variability along Ganymede's rotation around Jupiter. In particular, we show that Ganymede's O2 atmosphere is characterized by time scales of the order of Ganymede's rotational period with Jupiter's gravity being a significant driver of the spatial distribution of the heaviest exospheric components. Both the sourcing and the Jovian gravity are needed to explain some of the characteristics of the observed aurora emissions. As an example, the O2 exosphere should peak at the equator with systematic maximum at the dusk equator terminator. The sputtering rate of the H2O exosphere should be maximum on the leading hemisphere because of the shape of the open/close field lines boundary and displays some significant variability with longitude.

  2. Stability of Frozen Orbits Around Europa

    Science.gov (United States)

    Cardoso Dos Santos, Josué; Vilhena de Moraes, R.; Carvalho, J. S.

    2013-05-01

    Abstract (2,250 Maximum Characters): A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA) and Jupiter IcyMoon Explorer (JUICE, ESA). In this work we are formulating theories and constructing computer programs to be used in the design of aerospace tasks as regards the stability of artificial satellite orbits around planetary satellites. The studies are related to translational motion of orbits around planetary satellites considering polygenic perturbations due to forces, such as the nonspherical shape of the central body and the perturbation of the third body. The equations of motion will be developed in closed form to avoid expansions in eccentricity and inclination. For a description of canonical formalism are used the Delaunay canonical variables. The canonical set of equations, which are nonlinear differential equations, will be used to study the stability of orbits around Europa. We will use a simplified dynamic model, which considers the effects caused by non-uniform distribution of mass of Europa (J2, J3 and C22) and the gravitational attraction of Jupiter. Emphasis will be given to the case of frozen orbits, defined as having almost constant values of eccentricity, inclination, and argument of pericentre. An approach will be used to search for frozen orbits around planetary satellites and study their stability by applying a process of normalization of Hamiltonian. Acknowledges: FAPESP

  3. Status of the Ganymede Laser Altimeter (GALA) for ESA's Jupiter Icy Moons Explorer (JUICE)

    Science.gov (United States)

    Hussmann, Hauke; Luedicke, Fabian

    2017-04-01

    The Ganymede Laser Altimeter (GALA) is one of the instruments selected for ESA's Jupiter Icy Moons Explorer (JUICE). A fundamental goal of any exploratory space mission is to characterize and measure the shape, topography, and rotation of the target bodies. A state of the art tool for this task is laser altimetry because it can provide absolute topographic height and position with respect to a body centered reference system. With respect to Ganymede, the GALA instrument aims at mapping of global, regional and local topography; confirming the global subsurface ocean and further characterization of the water-ice/liquid shell by monitoring the dynamic response of the ice shell to tidal forces; providing constraints on the forced physical librations and spin-axis obliquity; determining Ganymede's shape; obtaining detailed topographic profiles across the linear features of grooved terrain, impact structures, possible cryo-volcanic features and other different surface units; providing information about slope, roughness and albedo (at 1064nm) of Ganymede's surface. After several flyby's (Ganymede, Europa, Callisto) it is scheduled that the JUICE orbiter will enter first into an elliptical orbit (200 km x 10.000 km) for around 150 days and then into a circular orbit (500 km) around Ganymede for 130 days. Accordingly to the different orbits and trajectories, distances to the moons respectively, the spot size of the GALA laser varies between 21 m and 140 m. GALA uses the direct-detection (classical) approach of laser altimetry. Laser pulses are emitted at a wavelength of 1064 nm by using an actively Q-switched Nd:Yag laser. The pulse energy and pulse repetition frequency are 17 mJ at 30 Hz (nominal), respectively. For targeted observations and flybys the frequency can be switched to 50 Hz. The emission time of each pulse is measured by the detector. The beam is reflected from the surface and received at a 25 cm diameter telescope. The returning laser pulse is refocused onto

  4. Europa Imaging Highlights during GEM

    Science.gov (United States)

    1998-01-01

    During the two year Galileo Europa Mission (GEM), NASA's Galileo spacecraft will focus intensively on Jupiter's intriguing moon, Europa. This montage shows samples of some of the features that will be imaged during eight successive orbits. The images in this montage are in order of increasing orbit from the upper left (orbit 11) to the lower right (orbit 19).DESCRIPTIONS AND APPROXIMATE RESOLUTIONSTriple bands and dark spots1.6 kilometers/pixelConamara Chaos1.6 kilometers/pixelMannan'an Crater1.6 kilometers/ pixelCilix1.6 kilometers/pixelAgenor Linea and Thrace Macula2 kilometers/pixelSouth polar terrain2 kilometers/pixelRhadamanthys Linea1.6 kilometers/pixelEuropa plume search7 kilometers/pixel1. Triple bands and dark spots were the focus of some images from Galileo's eleventh orbit of Jupiter. Triple bands are multiple ridges with dark deposits along the outer margins. Some extend for thousands of kilometers across Europa's icy surface. They are cracks in the ice sheet and indicate the great stresses imposed on Europa by tides raised by Jupiter, as well as Europa's neighboring moons, Ganymede and Io. The dark spots or 'lenticulae' are spots of localized disruption.2. The Conamara Chaos region reveals icy plates which have broken up, moved, and rafted into new positions. This terrain suggests that liquid water or ductile ice was present near the surface. On Galileo's twelfth orbit of Jupiter, sections of this region with resolutions as high as 10 meters per picture element will be obtained.3. Mannann'an Crater is a feature newly discovered by Galileo in June 1996. Color and high resolution images (to 40 meters per picture element) from Galileo's fourteenth orbit of Jupiter will offer a close look at the crater and help characterize how impacts affect the icy surface of this moon.4. Cilix, a large mound about 1.5 kilometers high, is the center of Europa's coordinate system. Its concave top and what may be flow like features to the southwest of the mound are

  5. Europa Imaging Highlights during GEM

    Science.gov (United States)

    1998-01-01

    During the two year Galileo Europa Mission (GEM), NASA's Galileo spacecraft will focus intensively on Jupiter's intriguing moon, Europa. This montage shows samples of some of the features that will be imaged during eight successive orbits. The images in this montage are in order of increasing orbit from the upper left (orbit 11) to the lower right (orbit 19).DESCRIPTIONS AND APPROXIMATE RESOLUTIONSTriple bands and dark spots1.6 kilometers/pixelConamara Chaos1.6 kilometers/pixelMannan'an Crater1.6 kilometers/ pixelCilix1.6 kilometers/pixelAgenor Linea and Thrace Macula2 kilometers/pixelSouth polar terrain2 kilometers/pixelRhadamanthys Linea1.6 kilometers/pixelEuropa plume search7 kilometers/pixel1. Triple bands and dark spots were the focus of some images from Galileo's eleventh orbit of Jupiter. Triple bands are multiple ridges with dark deposits along the outer margins. Some extend for thousands of kilometers across Europa's icy surface. They are cracks in the ice sheet and indicate the great stresses imposed on Europa by tides raised by Jupiter, as well as Europa's neighboring moons, Ganymede and Io. The dark spots or 'lenticulae' are spots of localized disruption.2. The Conamara Chaos region reveals icy plates which have broken up, moved, and rafted into new positions. This terrain suggests that liquid water or ductile ice was present near the surface. On Galileo's twelfth orbit of Jupiter, sections of this region with resolutions as high as 10 meters per picture element will be obtained.3. Mannann'an Crater is a feature newly discovered by Galileo in June 1996. Color and high resolution images (to 40 meters per picture element) from Galileo's fourteenth orbit of Jupiter will offer a close look at the crater and help characterize how impacts affect the icy surface of this moon.4. Cilix, a large mound about 1.5 kilometers high, is the center of Europa's coordinate system. Its concave top and what may be flow like features to the southwest of the mound are

  6. Origin and Evolution of Europa's Oxygen Exosphere

    Science.gov (United States)

    Oza, Apurva V.; Leblanc, Francois; Schmidt, Carl; Johnson, Robert E.

    2016-10-01

    Europa's icy surface is constantly bombarded by sulfur and oxygen ions originating from the Io plasma torus. The momentum transferred to molecules in Europa's surface results in the sputtering of water ice, populating a water product exosphere. We simulate Europa's neutral exosphere using a ballistic 3D Monte Carlo routine and find that the O2 exosphere, while global, is not uniformly symmetric in Europa local time. The O2 exosphere, sourced at a rate of ~ 5 kg/s with a disk-averaged column density of NO2 ~ 2.5 x 1014 O2/cm2, preferentially accumulates towards Europa's dusk. These dawn-dusk atmospheric inhomogeneities escalate as the surface-bounded O2 dissociates into an atomic O corona via electron impact. The inhomogeneities persist and evolve throughout the satellite's orbit, implying a diurnal cycle of the exosphere, recently evidenced by a detailed HST oxygen aurorae campaign (Roth et al. 2016). We conclude that the consistently observed 50% increase in FUV auroral emission from dusk to dawn is principally driven by the day-to-night thermal diffusion of O2 coupled with the Coriolis acceleration. This leads to a dawn-to-dusk gradient, peaking at Europa's leading hemisphere. This exospheric oxygen cycle, dependent on both orbital longitude and magnetic latitude, is fundamentally due to the bulk-sputtering vector changing with respect to the subsolar and subjovian points throughout the orbit. In principle, a similar mechanism should be present at other tidally-locked, rapidly orbiting satellite exospheres.

  7. Near-infrared brightness of the Galilean satellites eclipsed in Jovian shadow: A new technique to investigate Jovian upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Arimatsu, K.; Matsuura, S.; Shirahata, M.; Wada, T. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Egami, E. [Department of Astronomy, Arizona University, Tucson, AZ 85721 (United States); Hayano, Y.; Minowa, Y. [Hawaii Observatory, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Honda, C. [Research Center for Advanced Information Science and Technology, Aizu Research Cluster for Space Science, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8589 (Japan); Kimura, J. [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kuramoto, K.; Takahashi, Y. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Nakajima, K. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Nakamoto, T. [Department of Earth and Planetary Sciences, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Surace, J., E-mail: tsumura@astr.tohoku.ac.jp [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-07-10

    Based on observations from the Hubble Space Telescope and the Subaru Telescope, we have discovered that Europa, Ganymede, and Callisto are bright around 1.5 μm even when not directly lit by sunlight. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was 10{sup –6}-10{sup –7} of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 μm, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 μm by the Spitzer Space Telescope, but it was not detected, suggesting a significant wavelength dependence. It is still unknown why they are luminous even when in the Jovian shadow, but forward-scattered sunlight by hazes in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us with a new technique to investigate the Jovian atmospheric composition. Investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.

  8. A Case for Microorganisms on Comets, Europa and the Polar Ice Caps of Mars

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.

    2003-01-01

    Microbial extremophiles live on Earth wherever there is liquid water and a source of energy. Observations by ground-based observatories, space missions, and satellites have provided strong evidence that water ice exists today on comets, Europa, Callisto, and Ganymede and in the snow, permafrost, glaciers and polar ice caps of Mars. Studies of the cryoconite pools and ice bubble systems of Antarctica suggest that solar heating of dark rocks entrained in ice can cause localized melting of ice providing ideal conditions for the growth of microbial communities with the creation of micro-environments where trapped metabolic gasses produce entrained isolated atmospheres as in the Antarctic ice-bubble systems. It is suggested that these considerations indicate that several groups of microorganisms should be capable of episodic growth within liquid water envelopes surrounding dark rocks in cometary ices and the permafrost and polar caps of Mars. We discuss some of the types of microorganisms we have encountered within the permafrost and snow of Siberia, the cryoconite pools of Alaska, and frozen deep within the Antarctic ice sheet above Lake Vostok.

  9. The EJSM Jupiter-Europa Orbiter: Science Objectives

    Science.gov (United States)

    Pappalardo, R. T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lebreton, J.-P.

    2008-09-01

    Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). We focus here on the science objectives and heritage of JEO.

  10. A Jupiter Ganymede Orbiter for the EJSM mission: the JGO assessment phase study by the Thales Alenia Space consortium

    Science.gov (United States)

    Poncy, Joel; Couzin, Patrice; Mercier, Manuel; Boschetti, Demis

    2010-05-01

    ESA and NASA have undertaken advanced studies of a common mission to Jupiter's system, EJSM (Europa Jupiter System Mission). This mission comprises two spacecrafts launched independently in 2020 and reaching the system in 2026. This is a one-in-a-generation opportunity for Europe to contribute significantly to the science of this part of the Solar System, and as such, all efforts shall subsequently be made to maximize the scientific return without jeopardizing the technical and programmatic feasibility of the mission. A sub-glacial ocean on Europa and potentially two others on Ganymede and Callisto, the monitoring of Io's volcanic activity, the upper atmosphere of Jupiter, its rings, its tens of irregular moons, the tides, the magnetic fields of Jupiter and Ganymede and the behaviour of the plasma, the list of science objectives is not only impressive but also generates enthusiasm in the mission. In this NASA-ESA joint mission, NASA will take charge of both Io and Europa with the Jupiter Europa Orbiter (JEO). Europe will get a fascinating share with the Jupiter Ganymede Orbiter (JGO), which will achieve the close study of the two largest and outermost Galilean moons Ganymede and Callisto and in addition, at-a-distance, the observation of the other targets mentioned above. ESA has awarded three industrial contracts for an assessment phase of JGO. As leader of one of the consortia, Thales Alenia Space is proud to present in this poster its achievements on this exciting mission. The requirements are discussed and the mission drivers identified. The main trades and the resulting architecture are recalled, along with the main selection drivers. The major system interrelated trades have covered the launcher and propulsion type, the number of regulated phases, the strategy for communications and science timeline, the need for HGA pointing, the sizing and configuration of the Solar Array, the accommodation of external appendages, the accommodation of the payload, the

  11. Life on Europa?

    Science.gov (United States)

    Shylaja, B. S.

    1997-06-01

    The notion of life has always fascinated curious minds. From prehistoric days, fancy voyages to other colonies and visits from non-earthly beings have been creatively imagined. Apart from science fictions, the last few centuries saw many observational investigations of "cities of Moon", "colonies of Mars" and so on. However, the sophisticated tools of the modern era quickly put a full stop to these developments revealing that the other planets are not hospitable, and infact hostile for a life form like ours to exist there. That explains why in the last few decades the efforts shifted to observing the satellites of large planets. The anxiety grew with the knowledge of their atmospheric structure, chemical composition and volcanic activity. Detection of water, albeit frozen, was a welcome surprise. The flyby of Voyager and Pioneer provided ample evidence for the presence of water, one of the most important ingredients for the germination of the seed of life. The detection of the fossil of a microorganism on a stone believed to have fallen from Mars, boosted the scientists zeal to pursue the research, although the date for life on Mars (more than 3 billion years ago) is not very convincing. Last year, many scientists, from different branches like astrophysics, geology, oceanography, biology and astrogeology discussed the possibilities of life elsewhere in the universe. The focal point was not Mars, but Europa, one of the Galilean satellites of Jupiter. Their studies based on Voyager images supported the possibility of liquid water beneath the frozen sheets of ice. However, heat is also an essential parameter. Europa, being at a distance five times the sun-earth separation can have only 1/25th the warmth of the earth. Then, where does it get the necessary warmth from? There are other important sources of heat in many of these satellites that lie concealed from our view. They are the volcanoes. If present, can these keep the water warm below the ice sheets? The unmanned

  12. Sounding of Icy Galilean Satellites by Surface Observatories

    Science.gov (United States)

    Khurana, K. K.; Banerdt, W. B.; Johnson, T. V.; Russell, C. T.; Kivelson, M. G.; Davis, P. M.; Vidale, J. E.

    2001-01-01

    Several independent geological and geophysical investigations suggest that Europa and Ganymede contain subsurface oceans. Using Jupiter's rotating magnetic field as a primary signal, the magnetometer experiment onboard Galileo has measured secondary induction signals emanating from Europa, Ganymede, and surprisingly Callisto. The strong electromagnetic induction from these moons suggests that large global electrical conductors are located just below their icy crusts. A detailed analysis reveals that global salty oceans with salinity similar to the Earth's ocean and thicknesses in the range of approx. 6-100 kms can explain the induction observed by the Galileo magnetometer. Additional information is contained in the original extended abstract.

  13. 木卫三的动力学参数%A Study of Dynamical Parameters of Ganymede

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    木卫三是太阳系中最大的一颗天然卫星。当伽利略飞船于1996年6月和9月两次飞经木卫三时,定出了二阶带谐和扇谐Stokes系数J2和C22。本文利用最新的木卫三的物理参数,首先建立了一组内部结构模型,然后估算出木卫三的若干动力学参数,并与月球的相应值进行比较,结果表明这两个天然卫星最显著的不同是,木卫三满足静力学平衡条件,而月球偏离了静力学平衡条件。%Jupiter's satellite Ganymede is the largest satellite in the Solar system.The Galileo spacecraft when passing close to Ganymede in June and September 1996 resulted in determining the second zonal J2 and the second sectorial C22 Stokes parameters.Using the updated physical parameters,we constructed a group of internal models of Ganymede,and estimated some dynamical parameters for these models.By means of comparison with the Moon we make the following conclusions:  1.The moment-of-inertia factor,I/MR2=0.311,of Ganymede is the lowest yet obtained for any solid body in the solar system,and implies that Ganymede has an outer silicate core surrounding a melted metal (Fe or Fe-FeS) inner core.  2.The conclusion can be drawn about the hydrostatic equilibrium of Ganymede at present.That is to say,equation (13) hold true for Ganymede.  3.The calculated results for Ganymede and the Moon indicate that the two satellites are similar to each other in their dynamical flattening,  4.The parametric model,GA-1,listed in Table 5 of this paper can be used for reference in theoretical researches for the future.

  14. Penetrators for in situ subsurface investigations of Europa

    Science.gov (United States)

    Gowen, R. A.; Smith, A.; Fortes, A. D.; Barber, S.; Brown, P.; Church, P.; Collinson, G.; Coates, A. J.; Collins, G.; Crawford, I. A.; Dehant, V.; Chela-Flores, J.; Griffiths, A. D.; Grindrod, P. M.; Gurvits, L. I.; Hagermann, A.; Hussmann, H.; Jaumann, R.; Jones, A. P.; Joy, K. H.; Karatekin, O.; Miljkovic, K.; Palomba, E.; Pike, W. T.; Prieto-Ballesteros, O.; Raulin, F.; Sephton, M. A.; Sheridan, S.; Sims, M.; Storrie-Lombardi, M. C.; Ambrosi, R.; Fielding, J.; Fraser, G.; Gao, Y.; Jones, G. H.; Kargl, G.; Karl, W. J.; Macagnano, A.; Mukherjee, A.; Muller, J. P.; Phipps, A.; Pullan, D.; Richter, L.; Sohl, F.; Snape, J.; Sykes, J.; Wells, N.

    2011-08-01

    We present the scientific case for inclusion of penetrators into the Europan surface, and the candidate instruments which could significantly enhance the scientific return of the joint ESA/NASA Europa-Jupiter System Mission (EJSM). Moreover, a surface element would provide an exciting and inspirational mission highlight which would encourage public and political support for the mission.Whilst many of the EJSM science goals can be achieved from the proposed orbital platform, only surface elements can provide key exploration capabilities including direct chemical sampling and associated astrobiological material detection, and sensitive habitability determination. A targeted landing site of upwelled material could provide access to potential biological material originating from deep beneath the ice.Penetrators can also enable more capable geophysical investigations of Europa (and Ganymede) interior body structures, mineralogy, mechanical, magnetic, electrical and thermal properties. They would provide ground truth, not just for the orbital observations of Europa, but could also improve confidence of interpretation of observations of the other Jovian moons. Additionally, penetrators on both Europa and Ganymede, would allow valuable comparison of these worlds, and gather significant information relevant to future landed missions. The advocated low mass penetrators also offer a comparatively low cost method of achieving these important science goals.A payload of two penetrators is proposed to provide redundancy, and improve scientific return, including enhanced networked seismometer performance and diversity of sampled regions.We also describe the associated candidate instruments, penetrator system architecture, and technical challenges for such penetrators, and include their current status and future development plans.

  15. A Common Origin for Ridge-and-Trough Terrain on Icy Satellites by Sluggish Lid Convection

    CERN Document Server

    Barr, Amy C

    2014-01-01

    Ridge and trough terrain is a common landform on icy satellites of the outer solar system. Examples include the grooved terrain on Ganymede, gray bands on Europa, coronae on Uranus's moon Miranda, and ridges and troughs in the northern plains of Saturn's small, but active, moon Enceladus. Regardless of setting, the heat flow and strain rates associated with the formation of each of these terrains are similar: heat flows of order tens to a hundred milliwatts per meter squared, and deformation rates of order $10^{-16}$ to $10^{-12}$ s$^{-1}$. Barr (2008) and Hammond & Barr (2014a) have previously shown that the conditions associated with the formation of ridge and trough terrain on Ganymede and the south polar terrain on Enceladus are consistent with solid-state ice shell convection in a shell with a weak surface. Here, we show that sluggish lid convection can simultaneously create the heat flow and deformation appropriate for the formation of ridge and trough terrains on a number of satellites. This conclu...

  16. Oceans, Ice Shells, and Life on Europa

    Science.gov (United States)

    Schenk, Paul

    2002-01-01

    The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic

  17. Global Geologic Map of Europa

    Science.gov (United States)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  18. 3D multispecies collisional model of Ganymede's atmosphere

    Science.gov (United States)

    Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.

    2016-10-01

    Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.

  19. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  20. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  1. Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of

    Science.gov (United States)

    1979-01-01

    Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of earth's moon, is apparently covered by water ice, as indicated by ground spectrometers and its brightness. In this view, global scale dark sreaks discovered by Voyager 1 that criss-cross the the satelite are becoming visible. Bright rayed impact craters, which are abundant on Ganymede and Callisto, would be easily visible at this range, suggesting that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  2. Jupiter Magnetospheric Orbiter and Trojan Asteroid Explorer in EJSM (Europa Jupiter System Mission)

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Takashima, Takeshi; Yano, Hajime; Kasaba, Yasumasa; Takahashi, Yukihiro; Kimura, Jun; Tsuda, Yuichi; Funase, Ryu; Mori, Osamu

    2010-05-01

    Europa Jupiter System Mission (EJSM) is an international mission to explore and Jupiter, its satellites and magnetospheric environment in 2020s. EJSM consists of (1) The Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, and (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA (Japan Aerospace Exploration Agency). In February 2009, NASA and ESA decided to continue the study of EJSM as a candidate of the outer solar system mission. JMO will have magnetometers, low-energy plasma spectrometers, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, an ENA imager, an EUV spectrometer, and a dust detector. Collaborating with plasma instruments on board JEO and JGO, JMO will investigate the fast and huge rotating magnetosphere to clarify the energy procurement from Jovian rotation to the magnetosphere, to clarify the interaction between the solar wind the magnetosphere. Especially when JEO and JGO are orbiting around Europa and Ganymede, respectively, JMO will measure the outside condition in the Jovian magnetosphere. JMO will clarify the characteristics of the strongest accelerator in the solar system with the investigation of the role of Io as a source of heavy ions in the magnetosphere. JAXA started a study of a solar power sail for deep space explorations. Together with a solar sail (photon propulsion), it will have very efficient ion engines where electric power is produced solar panels within the sail. JAXA has already experienced ion engine in the successful Hayabusa mission, which was launched in 2003 and is still in operation in 2010. For the purpose of testing solar power sail technology, an engineering mission IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) will be launched in 2010 together with Venus Climate Orbiter PLANET-C. The shape of the IKAROS' membrane is square, with a diagonal distance of 20m. It is made of polyimide film only 0.0075mm

  3. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  4. Farvel til Europa

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2016-01-01

    Brexit-konsekvens. Da det gik ned ad bakke for Italien efter 1492, fortsatte venezianerne med at fejre deres berømte karneval, som tiltrak besøgende fra hele Europa. Det samme kan ske for os i EU i dag. Det er heller ikke så ringe, men vi i Europa kan bare ikke påtvinge verden vores normer. Heller...

  5. Towards a complete caracterisation of Ganymede's environnement

    Science.gov (United States)

    Cessateur, Gaël; Barthélémy, Mathieu; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Mbemba Kabuiku, Lydie

    2013-04-01

    In the framework to the JUICE mission to the Jovian system, a complete picture of the interaction between Ganymede's atmosphere and external forcing is needed. This will definitely allow us to constrain instrument performances according to the mission objectives. The main source of information regarding the upper atmosphere is the non LTE UV-Visible-near IR emissions. Those emissions are both induce by the incident solar UV flux and particle precipitations. This work aims at characterizing the impact from those external forcing, and then at deriving some key physical parameters that are measurable by an orbiter, namely the oxygen red line at 630 nm or the resonant oxygen line at 130 nm for example. We will also present the 4S4J instrument, a proposed EUV radiometer, which will provides the solar local EUV flux, an invaluable parameter for the JUICE mission. Based on new technologies and a new design, only two passbands are considered for reconstructing the whole EUV spectrum.

  6. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    Science.gov (United States)

    Prentice, A. J. R.

    1999-01-01

    The origin of Jupiter and the Galilean satellite system is examined in the light of the new data that has been obtained by the NASA Galileo Project. In particular, special attention is given to a theory of satellite origin which was put forward at the start of the Galileo Mission and on the basis of which several predictions have now been proven successful. These predictions concern the chemical composition of Jupiter's atmosphere and the physical structure of the satellites. According to the proposed theory of satellite origin, each of the Galilean satellites formed by chemical condensation and gravitational accumulation of solid grains within a concentric family of orbiting gas rings. These rings were cast off equatorially by the rotating proto-Jovian cloud (PJC which contracted gravitationally to form Jupiter some 4 1/2 billion years ago. The PJC formed from the gas and grains left over from the gas ring that had been shed at Jupiter's orbit by the contracting proto-solar cloud (PSC Supersonic turbulent convection provides the means for shedding discrete gas rings. The temperatures T (sub n) of the system of gas rings shed by the PSC and PJC vary with their respective mean orbital radii R (sub n) (n = 0, 1,2,...) according as T (sub n) proportional to R (sub n) (exp -0.9). If the planet Mercury condenses at 1640 K, so accounting for the high density of that planet via a process of chemical fractionation between iron and silicates, then T (sub n) at Jupiter's orbit is 158 K. Only 35% of the water vapour condenses out. Thus fractionation between rock and ice, together with an enhancement in the abundance of solids relative to gas which takes place through gravitational sedimentation of solids onto the mean orbit of the gas ring, ensures nearly equal proportions of rock and ice in each of Ganymede and Callisto. Io and Europa condense above the H20 ice point and consist solely of hydrated rock (h-rock). The Ganymedan condensate consists of h-rock and H20 ice. For

  7. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  8. Hubble Gallery of Jupiter's Galilean Satellites

    Science.gov (United States)

    1995-01-01

    This is a Hubble Space Telescope 'family portrait' of the four largest moons of Jupiter, first observed by the Italian scientist Galileo Galilei nearly four centuries ago. Located approximately one-half billion miles away, the moons are so small that, in visible light, they appear as fuzzy disks in the largest ground-based telescopes. Hubble can resolve surface details seen previously only by the Voyager spacecraft in the early 1980s. While the Voyagers provided close-up snapshots of the satellites, Hubble can now follow changes on the moons and reveal other characteristics at ultraviolet and near-infrared wavelengths.Over the past year Hubble has charted new volcanic activity on Io's active surface, found a faint oxygen atmosphere on the moon Europa, and identified ozone on the surface of Ganymede. Hubble ultraviolet observations of Callisto show the presence of fresh ice on the surface that may indicate impacts from micrometeorites and charged particles from Jupiter's magnetosphere.Hubble observations will play a complementary role when the Galileo spacecraft arrives at Jupiter in December of this year.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  9. Detection of an oxygen atmosphere on Jupiter's moon Europa.

    Science.gov (United States)

    Hall, D T; Strobel, D F; Feldman, P D; McGrath, M A; Weaver, H A

    1995-02-23

    Europa, the second large satellite out from Jupiter, is roughly the size of Earth's Moon, but unlike the Moon, it has water ice on its surface. There have been suggestions that an oxygen atmosphere should accumulate around such a body, through reactions which break up the water molecules and form molecular hydrogen and oxygen. The lighter H2 molecules would escape from Europa relatively easily, leaving behind an atmosphere rich in oxygen. Here we report the detection of atomic oxygen emission from Europa, which we interpret as being produced by the simultaneous dissociation and excitation of atmospheric O2 by electrons from Jupiter's magnetosphere. Europa's molecular oxygen atmosphere is very tenuous, with a surface pressure about 10(-11) that of the Earth's atmosphere at sea level.

  10. Current Status of the Jupiter Europa Orbiter (JEO): Science & Science Implementation

    Science.gov (United States)

    Pappalardo, Robert T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A.; Lebreton, J.; Prockter, L.; Joint Jupiter Science Definition Team

    2008-09-01

    The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). The overarching goal of JEO is to explore Europa to investigate its habitability. Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. A mission to Europa has been studied for a decade and has strong links to and recommendations from NASA reports. The conditions at Europa are well-understood, and JEO is prepared for the radiation environment at Europa. Europa science is mature, and hypotheses are well-formed. Five broad investigations have been defined to address the overarching goal: the Ocean, the Ice Shell, Chemistry, Geology and the Jupiter System. Measuring Europa's tides provides a simple and definitive test of the existence of an internal ocean - and the ocean and ice shell can be studied and characterized. Composition and chemistry form the linkages that enable understanding Europa's potential for life and habitability in the context of geologic processes, probe the interior structure, and record the evolution of the surface under the influence of internal and external processes. The search for recent or current geologic activity is important for understanding the origin of landforms, and especially significant for understanding Europa's potential for habitability. Understanding the Jupiter system as a whole is critical for placing Europa in its context as a member of the Jovian satellite system and for understanding the origin and evolution of the system, including

  11. Current Status of the Jupiter Europa Orbiter (JEO): Science and Science Implementation

    Science.gov (United States)

    Pappalardo, R. T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lebreton, J.; Prockter, L.; JEO Definition Team

    2008-12-01

    The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). The overarching goal of JEO is to explore Europa to investigate its habitability. Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. A mission to Europa has been studied for a decade and has strong links to and recommendations from NASA reports. The conditions at Europa are well-understood, and JEO is prepared for the radiation environment at Europa. Europa science is mature, and hypotheses are well-formed. Five broad investigations have been defined to address the overarching goal: the Ocean, the Ice Shell, Chemistry, Geology and the Jupiter System. Measuring Europa's tides provides a simple and definitive test of the existence of an internal ocean - and the ocean and ice shell can be studied and characterized. Composition and chemistry form the linkages that enable understanding Europa's potential for life and habitability in the context of geologic processes, probe the interior structure, and record the evolution of the surface under the influence of internal and external processes. The search for recent or current geologic activity is important for understanding the origin of landforms, and especially significant for understanding Europa's potential for habitability. Understanding the Jupiter system as a whole is critical for placing Europa in its context as a member of the Jovian satellite system and for understanding the origin and evolution of the system, including

  12. New global maps of Europa's lineaments

    Science.gov (United States)

    Cremonese, Gabriele; Lucchetti, Alice; Simioni, Emanuele

    2016-10-01

    Physical models have been developed to successfully explain the orientations and locations of many fractures observed on Europa's surface. Between the different fractures located on the surface of the icy satellite global-scale lineaments are present. These features are correlated with tidal stress suggesting that they initiated at tensile cracks in response to non-synchronous rotation (Geissler et al., 1998, Geissler et al. 1999). In this work we completed a global map of all type of lineaments presented on the surface of Europa, including also cycloidal lineaments that are interpreted to be tensile cracks that form due to diurnal stresses from Europa's orbital eccentricity (Hoppa et al., 1999).We enhanced the mapping of lineaments in comparison to what previously published, tracking about 5500 lineaments located everywhere on the surface of the icy satellite. We analyze these features in terms of their orientation and location using 2D methods, such as stereo plots and rose diagrams, showing that our preliminary results are in agreement with previous studies (McEwen et al. 1986). In addition, we visualize our results taking into account the 3D information to perform a detailed analysis of lineaments constraining their orientation and behavior. The aim of this work is to characterize the mapped lineaments and investigate the timing of their formation in order to correlate our results with proposed stress pattern models.

  13. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  14. Europa's Great Lakes

    Science.gov (United States)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-04-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.

  15. Early Formulation Model-centric Engineering on NASA's Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, Ivair; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; Wagner, David

    2012-01-01

    The proposed Jupiter Europa Orbiter and Jupiter Ganymede Orbiter missions were formulated using current state-of-the-art MBSE facilities: - JPL's TeamX, Rapid Mission Architecting - ESA's Concurrent Design Facility - APL's ACE Concurrent Engineering Facility. When JEO became an official "pre-project" in Sep 2010, we had already developed a strong partnership with JPL's Integrated Model Centric Engineering (IMCE) initiative; decided to apply Architecting and SysML-based MBSE from the beginning, begun laying these foundations to support work in Phase A. Release of Planetary Science Decadal Survey and FY12 President's Budget in March 2011 changed the landscape. JEO reverted to being a pre-phase A study. A conscious choice was made to continue application of MBSE on the Europa Study, refocused for early formulation. This presentation describes the approach, results, and lessons.

  16. Polymerization of building blocks of life on Europa and other icy moons

    CERN Document Server

    Kimura, Jun

    2015-01-01

    The outer solar system may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons, Europa, Ganymede, and possibly Callisto, may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the universe. Recently, in-situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the Jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface...

  17. High spatial resolution radiation budget for Europe: derived from satellite data, validation of a regional model; Raeumlich hochaufgeloeste Strahlungsbilanz ueber Europa: Ableitung aus Satellitendaten, Validation eines regionalen Modells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2000-07-01

    Since forty years instruments onboard satellites have been demonstrated their usefulness for many applications in the field of meteorology and oceanography. Several experiments, like ERBE, are dedicated to establish a climatology of the global Earth radiation budget at the top of the atmosphere. Now the focus has been changed to the regional scale, e.g. GEWEX with its regional sub-experiments like BALTEX. To obtain a regional radiation budget for Europe in the first part of the work the well calibrated measurements from ScaRaB (scanner for radiation budget) are used to derive a narrow-to-broadband conversion, which is applicable to the AVHRR (advanced very high resolution radiometer). It is shown, that the accuracy of the method is in the order of that from SCaRaB itself. In the second part of the work, results of REMO have been compared with measurements of ScaRaB and AVHRR for March 1994. The model reproduces the measurements overall well, but it is overestimating the cold areas and underestimating the warm areas in the longwave spectral domain. Similarly it is overestimating the dark areas and underestimating the bright areas in the solar spectral domain. (orig.)

  18. Thermal Convection in High-Pressure Ice Layers Beneath a Buried Ocean within Titan and Ganymede

    Science.gov (United States)

    Tobie, G.; Choblet, G.; Dumont, M.

    2014-12-01

    Deep interiors of large icy satellites such as Titan and Ganymede probably harbor a buried ocean sandwiched between low pressure ice and high-pressure ice layers. The nature and location of the lower interface of the ocean involves equilibration of heat and melt transfer in the HP ices and is ultimately controlled by the amount heat transferred through the surface ice Ih layer. Here, we perform 3D simulations of thermal convection, using the OEDIPUS numerical tool (Choblet et al. GJI 2007), to determine the efficiency of heat and mass transfer through these HP ice mantles. In a first series of simulations with no melting, we show that a significant fraction of the HP layer reaches the melting point. Using a simple description of water production and transport, our simulations demonstrate that the melt generation in the outermost part of the HP ice layer and its extraction to the overlying ocean increase the efficiency of heat transfer and reduce strongly the internal temperature. structure and the efficiency of the heat transfer. Scaling relationships are proposed to describe the cooling effect of melt production/extraction and used to investigate the consequences of internal melting on the thermal history of Titan and Ganymede's interior.

  19. Ganymede crater dimensions - Implications for central peak and central pit formation and development

    Science.gov (United States)

    Bray, Veronica J.; Schenk, Paul M.; Jay Melosh, H.; Morgan, Joanna V.; Collins, Gareth S.

    2012-01-01

    The morphology of impact craters on the icy Galilean satellites differs from craters on rocky bodies. The differences are thought due to the relative weakness of ice and the possible presence of sub-surface water layers. Digital elevation models constructed from Galileo images were used to measure a range of dimensions of craters on the dark and bright terrains of Ganymede. Measurements were made from multiple profiles across each crater, so that natural variation in crater dimensions could be assessed and averaged scaling trends constructed. The additional depth, slope and volume information reported in this work has enabled study of central peak formation and development, and allowed a quantitative assessment of the various theories for central pit formation. We note a possible difference in the size-morphology progression between small craters on icy and silicate bodies, where central peaks occur in small craters before there is any slumping of the crater rim, which is the opposite to the observed sequence on the Moon. Conversely, our crater dimension analyses suggest that the size-morphology progression of large lunar craters from central peak to peak-ring is mirrored on Ganymede, but that the peak-ring is subsequently modified to a central pit morphology. Pit formation may occur via the collapse of surface material into a void left by the gradual release of impact-induced volatiles or the drainage of impact melt into sub-crater fractures.

  20. Glukus himeros: pederastic influence on the myth of Ganymede.

    Science.gov (United States)

    Provencal, Vernon

    2005-01-01

    Pederastic influence on the myth of Ganymede enables it to evolve, in a continuous line of development easily traced in the history of Greek literature from Homer to Plato, into a homoerotic emblem of the spiritual union of the human and divine. Continuity in this history is marked by the thematic use of the Homeric phrase gammalambdaupsilonkappaùvarsigma 'ímicroepsilonrhoomicronvarsigma (glukus himeros, sweet longing) to describe sexual desire in association with the Ganymede myth in the Hymn to Aphrodite, Pindar and Plato.

  1. Europa i Forandring

    DEFF Research Database (Denmark)

    Kelstrup, Morten; Martinsen, Dorte Sindbjerg; Wind, Marlene

    EUROPA I FORANDRING er en grundbog i studiet af EU, skrevet af tre af Danmarks førende EU-forskere. Denne udvidede 2. udgave dækker udviklingen frem til og med foråret 2012. Den sætter som første udgaven fokus på EU's politiske og retlige system, herunder bl.a. EU-institutionernes opbygning og fu...

  2. Europa i forandring

    DEFF Research Database (Denmark)

    Kelstrup, Morten; Martinsen, Dorte Sindbjerg; Wind, Marlene

    perspektiver i EU's udvikling, herunder perspektiverne i Brexit. EUROPA I FORANDRING er båret af den overbevisning, at man for at forstå EU må forstå den uløseligt tætte sammenhæng mellem ret og politik. Det europæiske samarbejde er baseret på en unik retsorden, som er afgørende for politikken i EU. Man kan...

  3. Recovery of Europa's geophysical attributes with the radio science component of a Europa Multiple-Flyby Mission

    Science.gov (United States)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2016-10-01

    NASA has approved the development of a multiple-flyby mission to Jupiter's satellite Europa. Important science questions about Europa's interior structure and sub-surface ocean can be addressed by measuring Europa's gravity field, tidal Love number, and spin state. The mission's radio science investigation will rely on tracking the Doppler shift between the spacecraft and Deep Space Network (DSN) antennas. Here, we simulate the X-band two-way coherent Doppler link between the spacecraft and DSN antennas to evaluate the precision with which geophysical parameters can be recovered. We use the project's 15F10 reference trajectory and simulate Doppler measurements within ±2 h of the spacecraft's closest approach to Europa for each one of 42 flybys. After adding noise to the simulated observables, we solve for Europa's GM, degree and order 2 gravity coefficients (J2 and C22), tidal love number k2, pole position (right ascension and declination), and spin rate. The results of our simulations show that the precision in the recovery of geophysical parameters is sufficient to answer questions related to the presence of a global ocean in some tracking scenarios but not in others. We compare our results to an independent analysis by the Europa Mission Gravity Science Working Group (GSWG, 2016).

  4. Uncovering local magnetospheric processes governing the morphology and variability of Ganymede's aurora using three-dimensional multifluid simulations of Ganymede's magnetosphere

    Science.gov (United States)

    Payan, A. P.; Paty, C. S.; Retherford, K. D.

    2015-01-01

    investigate local magnetospheric processes governing the morphology and variability of Ganymede's aurora depending on its position with respect to the center of the Jovian plasma sheet. We couple an existing three-dimensional multifluid simulation to a new aurora brightness model developed for this study. With this, we are able to qualitatively and quantitatively show that the short- and long-period variabilities observed in Ganymede's auroral footprint at Jupiter are also predicted to be present in the brightness and morphology of the aurora at Ganymede. We also examine the relationship between acceleration structures and precipitation of electrons in Ganymede's neutral atmosphere by looking at the component of the electric field parallel to Ganymede's magnetic field. Our results confirm that regions of electron accelerations coincide with regions of brightest auroral emissions, as expected. Finally, we identify the likely source regions of electrons generating the aurora at Ganymede and discuss the plasma dynamic mechanisms likely responsible for these accelerations.

  5. New Observations of UV Emissions from Europa

    Science.gov (United States)

    McGrath, Melissa; Sparks, William

    2009-01-01

    The recent top prioritization of the Europa Jupiter System Mission for the next outer solar system flagship mission is refocusing attention on Europa and the other Galilean satellites and their contextual environments in the Jupiter system. Surface sputtering by magnetospheric plasma generates a tenuous atmosphere for Europa, dominated by 02 gas. This tenuous gas is in turn excited by plasma electrons, producing ultraviolet and visible emissions. Two sets of imaging observations have been published to date, UV images from the Hubble Space Telescope, and visible eclipse images from Cassini. Three additional sets of HST UV observations were acquired in February 2007, April 2007 and June 2009. The signal to noise ratio in these data are not high, however, given the paucity of data and its increasing importance in terms of planning for EJSM, we have attempted to extract as much new information as possible from these data. This talk will summarize our analysis to date, and discuss them in terms of existing models, which attempt to explain the image morphology either in terms of the underlying source production and loss processes, or in terms of the plasma interaction with the exosphere.

  6. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  7. Orbiter, Flyby and Lander Mission Concepts for Investigating Europa's Habitability

    Science.gov (United States)

    Prockter, L. M.

    2012-04-01

    Coauthors: R. T. Pappalardo (1), F. Bagenal (2), A. C. Barr (3), B. G. Bills (1), D. L. Blaney (1), D. D. Blankenship (4), W. Brinckerhoff (5), J. E. P. Connerney (5), K. Hand (1), T. Hoehler (6), W. Kurth (7), M. McGrath (8), M. Mellon (9), J. M. Moore (6), D. A. Senske (1), E. Shock (10), D. E. Smith (11), T. Gavin (1), G. Garner (1), T. Magner (12), B. C. Cooke (1), R. Crum (1), V. Mallder (12), L. Adams (12), K. Klaasen (1), G. W. Patterson (12), and S. D. Vance (1); 1: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; 2: University of Colorado, Boulder, CO, USA; 3: Brown University, Providence, RI, USA; 4: University of Texas Institute for Geophysics, Austin, TX, USA; 5: NASA Goddard Space Flight Center, Greenbelt, MD, USA; 6: NASA Ames Research Center, Mountain View, CA, USA; 7: University of Iowa, Iowa City, IA, USA; 8: NASA Marshall Space Flight Center, Huntsville, AL, USA; 9: Southwest Research Institute, Boulder, CO, USA; 10: Arizona State University, Tempe, AZ, USA; 11: Massachusetts Institute of Technology, Cambridge, MA, USA; 12: Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. Introduction: Assessment of Europa's habitability requires understanding whether the satellite possesses the three "ingredients" for life: water, chemistry, and energy. The National Research Council's Planetary Decadal Survey [1] placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept [2] is incompatible with NASA's projected planetary science budget. Thus, in April 2011, NASA enlisted a small Europa Science Definition Team (ESDT) to consider Europa mission options that might be more feasible over the next decade from a programmatic perspective. The ESDT has studied three Europa mission concepts: a Europa orbiter, a Europa multiple-flyby mission, and a Europa lander. These share an overarching goal: Explore Europa to investigate its habitability

  8. Diffuse Aurora on Ganymede Driven by Electrostatic Waves

    Science.gov (United States)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.; Singh, O. N., II

    2016-12-01

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earlier works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50-70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.

  9. Geologic mapping of Europa

    Science.gov (United States)

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central

  10. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    Science.gov (United States)

    Bland, Michael; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-01-01

    Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event

  11. Consejo de Europa

    Directory of Open Access Journals (Sweden)

    Montes Fernández, Francisco José

    2014-03-01

    Full Text Available La génesis, evolución estructura, funcionamiento, financiación y una sucinta relación de actividades del Consejo de Europa es el contenido resumido de este trabajo. La importancia del Consejo es que se encuentran representados en él todos los países europeos a diferencia de la Unión donde por el momento solo están de pleno derecho los admitidos y las competencias son notablemente diferentes aquí son más sociales y mucho menos económicas

  12. Danmark og EUropa

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2015-01-01

    selvmodsigende betegnelse forklarer mange, om end ikke alle, sider af det samarbejde, der har udviklet sig gennem de sidste tres år. Med udgangspunkt i en analyse af arven fra nederlaget i 1864 og Danmarks forvandling fra en flersproget stat, det Oldenborgske monarki, til nutidens homogene nationalstat – dog......I kraft af sin geografiske placering midt i Europa og særlige politiske kultur, der skyldes den dobbelte arv fra historien, passer Danmark på en paradoksal måde til det europæiske samarbejde, der af mange grunde har udviklet sig til en uplanlagt og uforudset ’føderation af nationalstater’. Denne...

  13. Large Impact Features on Europa: Results of the Galileo Nominal Mission

    Science.gov (United States)

    Moore, Johnnie N.; Asphaug, E.; Sullivan, R.J.; Klemaszewski, J.E.; Bender, K.C.; Greeley, R.; Geissler, P.E.; McEwen, A.S.; Turtle, E.P.; Phillips, C.B.; Tufts, B.R.; Head, J. W.; Pappalardo, R.T.; Jones, K.B.; Chapman, C.R.; Belton, M.J.S.; Kirk, R.L.; Morrison, D.

    1998-01-01

    The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer ~10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply

  14. Classification of Satellite Resonances in the Solar System

    Science.gov (United States)

    Luan, Jing; Goldreich, Peter

    2017-01-01

    Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io–Europa, Europa–Ganymede, and Enceladus–Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas–Tethys and Titan–Hyperion MMRs, and their resonant arguments are the only ones to exhibit substantial librations. Could there be a causal connection between the libration amplitude and the presence of a separatrix? Our suspicions were aroused by Goldreich & Schlichting, who demonstrate that sufficiently deep in a MMR, eccentricity damping could destabilize librations. However, our investigation reveals that libration amplitudes in both the Mimas–Tethys and Titan–Hyperion MMRs are fossils. Although the Mimas–Tethys MMR is overstable, its libration amplitude grows on the tidal damping timescale of Mimas’s inclination, which is considerably longer than a Hubble time. On the other hand, the Titan–Hyperion MMR is stable, but tidal damping of Hyperion’s eccentricity is too weak to have affected the amplitude of its libration.

  15. Orbit Determination Covariance Analysis for the Europa Clipper Mission

    Science.gov (United States)

    Ionasescu, Rodica; Martin-Mur, Tomas; Valerino, Powtawche; Criddle, Kevin; Buffington, Brent; McElrath, Timothy

    2014-01-01

    A new Jovian satellite tour is proposed by NASA, which would include numerous flybys of the moon Europa, and would explore its potential habitability by characterizing the existence of any water within and beneath Europa's ice shell. This paper describes the results of a covariance study that was undertaken on a sample tour to assess the navigational challenges and capabilities of such a mission from an orbit determination (OD) point of view, and to help establish a delta V budget for the maneuvers needed to keep the spacecraft on the reference trajectory. Additional parametric variations from the baseline case were also investigated. The success of the Europa Clipper mission will depend on the science measurements that it will enable. Meeting the requirements of the instruments onboard the spacecraft is an integral part of this analysis.

  16. Europa Composition Using Visible to Short Wavelength Infrared Spectroscopy

    Science.gov (United States)

    Blaney, Diana L.; Dalton, J. B.; Green, R. O.; Hibbits, K.; McCord, T.; Murchie, S.; Piccioni, G.; Tosi, F.

    2010-10-01

    One of the major goals of the Jupiter Europa Orbiter (JEO) is to understand the chemistry of Europa's inorganic and organic materials. Europa's surface material composition is controlled by the original materials forming Europa and by their differentiation and chemical alterations. Material is probably still being transported to the surface by active processes in the interior. At the surface, the material is exposed to the effects of vacuum and temperature, irradiated by solar UV, and bombarded by material entrained in Jupiter's magnetic field. The materials on the surface and their distributions are evidence of the processes operating, both endogenic and exogenic. These processes include effects of a subsurface liquid ocean and its chemistry; the mechanisms of material emplacement from below; and photolysis and radiolysis. Visible to Short Wavelength Infrared (VSWIR) spectroscopy is a well-understood technique for mapping key inorganic, organic, and volatile compositions on remote surfaces such as Europa. Key spectral absorption features have been detected in both the icy and the non-icy Europa materials and many important constituents of the surface have been identified or proposed (e.g. hydrated salts, sulfuric acid hydrate, organics, CO2, H2O2, SO2). The determination of planetary surface composition from remote infrared spectroscopy depends upon adequate signal-to-noise, spectral resolution, and spatial scale to distinguish the diagnostic spectral features of the compounds of interest. For icy satellites, laboratory reference spectra obtained at the temperatures of the target bodies are also required. We have compared diagnostic spectral features in cryogenic laboratory spectra of hydrated salts relevant to Europa in order to optimize detection of these materials under realistic mission conditions. Effects of spectral resolution, signal to noise ratio, and areal mixtures are explored to determine the impacts on detection. This work was carried out at the Jet

  17. Tidal response of Europa's subsurface ocean

    Science.gov (United States)

    Karatekin, Özgür; Comblen, Richard; Toubeau, Jonathan; Deleersnijder, Eric; van Hoolst, Tim; Dehant, Veronique

    2010-05-01

    Observations of Cassini and Galileo spacecrafts suggest the presence of subsurface global water oceans under the icy shells of several satellites of Jupiter and Saturn. Previous studies have shown that in the presence of subsurface oceans, time-variable tides cause large periodic surface displacements and that tidal dissipation in the icy shell becomes a major energy source that can affect long-term orbital evolution. However, in most studies so far, the dynamics of these satellite oceans have been neglected. In the present study, we investigate the tidal response of the subsurface ocean of Europa to a time-varying potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities and surface displacements will be presented.

  18. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  19. Akon - A Penetrator for Europa

    Science.gov (United States)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  20. terrestres en Europa

    Directory of Open Access Journals (Sweden)

    M. Vilà

    2006-01-01

    Full Text Available Los impactos ecológicos de las especies introducidas constituyen uno de los aspectos menos investigados de la ecología de las invasiones, especialmente en Europa. La mayor parte de los estudios realizados se han restringido a especies que tienen un impacto económico inmediato. Hemos revisado la literatura centrada en los efectos de plantas y animales vertebrados terrestres invasores sobre especies nativas y ecosistemas receptores en Europa. Las plantas invasoras pueden interferir con las especies nativas por competencia o mediante la producción de sustancias alelopáticas. A escala de comunidad, el impacto más estudiado ha sido la disminución de la biodiversidad y el desplazamiento local de alguna de ellas. Las plantas invasoras también pueden interferir con niveles tróficos superiores; tal es el caso de la competencia por polinizadores. A escala de ecosistema, las invasoras pueden modificar los ciclos de nutrientes (por ejemplo, especies fijadoras de N, la disponibilidad de agua, e incluso alterar los regímenes de perturbación. En el caso de la invasión por vertebrados, si la especie ocupa el mismo nicho ecológico que una especie nativa, una de las dos puede llegar a interferir con la otra. Normalmente, estas interferencias entre especies son causadas por competencia por el alimento u por otros recursos, depredación directa o transferencia de patógenos. Los vertenrados invasores también pueden provocar alteraciones considerables en la estructura de la vegetación y en la sucesión.

  1. Large-scale inpact depressions and variations of the heat flow on Ganymede

    Science.gov (United States)

    Kozenko, A. V.

    1989-06-01

    It is proposed that large-scale impact craters provide boundary conditions for the thermal and rheological history of Ganymede. On Ganymede as in the case of the moon, the ratio of the depth to the radius of the impact crater is about 1/5. Models of the heat flow from Ganymede suggest that the most realistic depths h for Gilgamesh and Hathor are 29 and 12 km, respectively.

  2. Neutral atmosphere near the icy surface of Jupiter's moon Ganymede

    Science.gov (United States)

    Shematovich, V. I.

    2016-07-01

    The paper discusses the formation and dynamics of the rarefied gas envelope near the icy surface of Jupiter's moon Ganymede. Being the most massive icy moon, Ganymede can form a rarefied exosphere with a relatively dense near-surface layer. The main parent component of the gas shell is water vapor, which enters the atmosphere due to thermal degassing, nonthermal radiolysis, and other active processes and phenomena on the moon's icy surface. A numerical kinetic simulation is performed to investigate, at the molecular level, the formation, chemical evolution, and dynamics of the mainly H2O- and O2-dominant rarefied gas envelopes. The ionization processes in these rarefied gas envelopes are due to exposure to ultraviolet radiation from the Sun and the magnetospheric plasma. The chemical diversity of the icy moon's gas envelope is attributed to the primary action of ultraviolet solar photons and plasma electrons on the rarefied gas in the H2O- or O2-dominant atmosphere. The model is used to calculate the formation and development of the chemical diversity in the relatively dense near-surface envelope of Ganymede, where an important contribution comes from collisions between parent molecules and the products of their photolysis and radiolysis.

  3. Tether-mission design for multiple flybys of moon Europa

    Science.gov (United States)

    Sanmartin, J. R. S.; Charro, M. C.; Sanchez-Arriaga, G. S. A.; Sanchez-Torres, A. S. T.

    2015-10-01

    A tether mission to carry out multiple flybys of Jovian moon Europa is here presented. There is general agreement on elliptic-orbit flybys of Europa resulting in cost to attain given scientific goals lower than if actually orbiting the moon, tethers being naturally fit to fly-by rather than orbit moons1. The present mission is similar in this respect to the Clipper mission considered by NASA, the basic difference lying in location of periapsis, due to different emphasis on mission-challenge metrics. Clipper minimizes damaging radiation-dose by avoiding the Jupiter neighborhood and its very harsh environment; periapsis would be at Europa, apoapsis as far as moon Callisto. As in all past outer-planet missions, Clipper faces, however, critical power and propulsion needs. On the other hand, tethers can provide both propulsion and power, but must reach near the planet to find high plasma density and magnetic field values, leading to high induced tether current, and Lorentz drag and power. The bottom line is a strong radiation dose under the very intense Radiation Belts of Jupiter. Mission design focuses on limiting dose. Perijove would be near Jupiter, at about 1.2-1.3 Jovian radius, apojove about moon Ganymede, corresponding to 1:1 resonance with Europa, so as to keep dose down: setting apojove at Europa, for convenient parallel flybys, would require two perijove passes per flyby (the Ganymede apojove, resulting in high eccentricity, about 0.86, is also less requiring on tether operations). Mission is designed to attain reductions in eccentricity per perijove pass as high as Δe ≈ - 0.04. Due the low gravity-gradient, tether spinning is necessary to keep it straight, plasma contactors placed at both ends taking active turns at being cathodic. Efficiency of capture of the incoming S/C by the tether is gauged by the ratio of S/C mass to tether mass; efficiency is higher for higher tape-tether length and lower thickness and perijove. Low tether bowing due to the Lorentz

  4. Digitalisierung des Kulturellen Erbes (Europas)

    NARCIS (Netherlands)

    Gruber, Marion

    2011-01-01

    Gruber, M. R. (2011, 13 December). Digitalisierung des Kulturellen Erbes (Europas). Guest lecture at the IPMZ - Institute of Mass Communication and Media Research, Devision Media Change & Innovation, University of Zurich, Switzerland.

  5. On the Persistence of an Ocean on Europa

    Science.gov (United States)

    Travis, B.; Palguta, J.; Schubert, G.

    2008-12-01

    Data from the Galileo mission indicate that Europa possesses a liquid ocean beneath its icy shell. However, the thickness of the outer ice shell and the depth of the ocean remain uncertain. The past state of the outer H2O layer is even less constrained. We present results of a computational model of the thermal evolution of Europa's interior, that suggest an ocean could have existed beneath an ice shell throughout most of Europa's history, maintained in part by pore water convection in the silicate mantle. Our numerical simulator predicts a thermal history by solving the time-dependent governing equations of mass, momentum and energy conservation in spherical coordinates. The various processes included in the simulations are hydrothermal convection (through silicate mantle pores), thermal diffusion, salt transport, phase changes, radiogenic heating, parameterized convection in the ocean and ice layers, and tidal dissipative heating (tdh) in an ice shell. The vigor of hydrothermal convection is characterized by the Rayleigh number, which depends on the product, kH, where k is mantle permeability and H is the thickness of the convecting layer. Studies of terrestrial permeabilities are used to constrain the permeability of Europa's silicate mantle. Significant permeability has been found on Earth at depths up to 25 km. Accounting for differing gravity, this scales to about 200 km on Europa. There is considerable uncertainty as to when tidal dissipative heating may have commenced in Europa; we adopt Yoder's analysis in which the Laplace resonance among Io, Europa, and Ganymede formed about 500 Myr ago. Despite the 4 Gyr period in our model without tdh, we find that an ocean layer can be maintained by pore water convection in the mantle. This ocean layer, not as thick as when tdh is active, varies in depth with latitude, and thins slowly over time. Concurrently, parameterized convection in the ice shell occurs, and is non-uniform in space and time. Water heated in the

  6. Seismic detectability of meteorite impacts on Europa

    Science.gov (United States)

    Tsuji, Daisuke; Teanby, Nicholas

    2016-04-01

    Europa, the second of Jupiter's Galilean satellites, has an icy outer shell, beneath which there is probably liquid water in contact with a rocky core. Europa, may thus provide an example of a sub-surface habitable environment so is an attractive object for future lander missions. In fact, the Jupiter Icy Moon Explorer (JUICE) mission has been selected for the L1 launch slot of ESA's Cosmic Vision science programme with the aim of launching in 2022 to explore Jupiter and its potentially habitable icy moons. One of the best ways to probe icy moon interiors in any future mission will be with a seismic investigation. Previously, the Apollo seismic experiment, installed by astronauts, enhanced our knowledge of the lunar interior. For a recent mission, NASA's 2016 InSight Mars lander aims to obtain seismic data and will deploy a seismometer directly onto Mars' surface. Motivated by these works, in this study we show how many meteorite impacts will be detected using a single seismic station on Europa, which will be useful for planning the next generation of outer solar system missions. To this end, we derive: (1) the current small impact flux on Europa from Jupiter impact rate models; (2) a crater diameter versus impactor energy scaling relation for ice by merging previous experiments and simulations; (3) scaling relations for seismic signals as a function of distance from an impact site for a given crater size based on analogue explosive data obtained on Earth's icy surfaces. Finally, resultant amplitudes are compared to the noise level of a likely seismic instrument (based on the NASA InSight mission seismometers) and the number of detectable impacts are estimated. As a result, 0.5-3.0 local/regional small impacts (i.e., direct P-waves through the ice crust) are expected to be detected per year, while global-scale impact events (i.e., PKP-waves refracted through the mantle) are rare and unlikely to be detected by a short duration mission. We note that our results are

  7. Constraining the Europa Neutral Torus

    Science.gov (United States)

    Smith, Howard T.; Mitchell, Donald; mauk, Barry; Johnson, Robert E.; clark, george

    2016-10-01

    "Neutral tori" consist of neutral particles that usually co-orbit along with their source forming a toroidal (or partial toroidal) feature around the planet. The distribution and composition of these features can often provide important, if not unique, insight into magnetospheric particles sources, mechanisms and dynamics. However, these features can often be difficult to directly detect. One innovative method for detecting neutral tori is by observing Energetic Neutral Atoms (ENAs) that are generally considered produced as a result of charge exchange interactions between charged and neutral particles.Mauk et al. (2003) reported the detection of a Europa neutral particle torus using ENA observations. The presence of a Europa torus has extremely large implications for upcoming missions to Jupiter as well as understanding possible activity at this moon and providing critical insight into what lies beneath the surface of this icy ocean world. However, ENAs can also be produced as a result of charge exchange interactions between two ionized particles and in that case cannot be used to infer the presence of neutral particle population. Thus, a detailed examination of all possible source interactions must be considered before one can confirm that likely original source population of these ENA images is actually a Europa neutral particle torus. For this talk, we examine the viability that the Mauk et al. (2003) observations were actually generated from a neutral torus emanating from Europa as opposed to charge particle interactions with plasma originating from Io. These results help constrain such a torus as well as Europa source processes.

  8. Habitability potential of satellites around Jupiter and Saturn

    Science.gov (United States)

    Coustenis, Athena; Raulin, Francois; Encrenaz, Therese; Grasset, Olivier; Solomonidou, Anezina

    2016-07-01

    In looking for habitable conditions in the outer solar system recent research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally conceived. The outer solar system satellites provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the development and/or maintenance of life. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the cores of orbiting icy moons. Europa and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [2] which, in the case of Europa [3], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in geysers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated environments to look for

  9. Europa: Initial Galileo Geological Observations

    Science.gov (United States)

    Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.

    1998-01-01

    Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.

  10. Rheology of Lava Flows on Europa and the Emergence of Cryovolcanic Domes

    Science.gov (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    There is ample evidence that Europa is currently geologically active. Crater counts suggest that the surface is no more than 90 Myr old, and cryovolcanism may have played a role in resurfacing the satellite in recent geological times. Europa's surface exhibits many putative cryovolcanic features, and previous investigations have suggested that a number of domes imaged by the Galileo spacecraft may be volcanic in origin. Consequently, several Europa domes have been modeled as viscous effusions of cryolava. However, previous models for the formation of silicic domes on the terrestrial planets contain fundamental shortcomings. Many of these shortcomings have been alleviated in our new modeling approach, which warrants a re-assessment of the possibility of cryovolcanic domes on Europa.

  11. 莲花Europa S

    Institute of Scientific and Technical Information of China (English)

    刘磊; arns(摄影)

    2007-01-01

    在开发Europa S之初,莲花公司提出了一个对于熟悉莲花车型风格的车迷们很陌生的理念。他们要求新的Europa S不但要保持灵活、快速且充满激情的一贯犀利风格。而且还要为驾乘者提供较高的舒适性

  12. The Ultraviolet Spectrograph on the Europa Mission (Europa-UVS)

    Science.gov (United States)

    Retherford, K. D.; Gladstone, R.; Greathouse, T. K.; Steffl, A.; Davis, M. W.; Feldman, P. D.; McGrath, M. A.; Roth, L.; Saur, J.; Spencer, J. R.; Stern, S. A.; Pope, S.; Freeman, M. A.; Persyn, S. C.; Araujo, M. F.; Cortinas, S. C.; Monreal, R. M.; Persson, K. B.; Trantham, B. J.; Versteeg, M. H.; Walther, B. C.

    2015-12-01

    NASA's Europa multi-flyby mission is designed to provide a diversity of measurements suited to enrich our understanding of the potential habitability of this intriguing ocean world. The Europa mission's Ultraviolet Spectrograph, Europa-UVS, is the sixth in a series of successful ultraviolet imaging spectrographs (Rosetta-Alice, New Horizons Pluto-Alice, LRO-LAMP) and, like JUICE-UVS (now under Phase B development), is largely based on the most recent of these to fly, Juno-UVS. Europa-UVS observes photons in the 55-210 nm wavelength range, at moderate spectral and spatial resolution along a 7.5° slit. Three distinct apertures send light to the off-axis telescope mirror feeding the long-slit spectrograph: i) a main entrance airglow port is used for most observations (e.g., airglow, aurora, surface mapping, and stellar occultations); ii) a high-spatial-resolution port consists of a small hole in an additional aperture door, and is used for detailed observations of bright targets; and iii) a separate solar port allows for solar occultations, viewing at a 60° offset from the nominal payload boresight. Photon event time-tagging (pixel list mode) and programmable spectral imaging (histogram mode) allow for observational flexibility and optimal science data management. As on Juno-UVS, the effects of penetrating electron radiation on electronic parts and data quality are mitigated through contiguous shielding, filtering of pulse height amplitudes, management of high-voltage settings, and careful use of radiation-hard parts. The science goals of Europa-UVS are to: 1) Determine the composition & chemistry, source & sinks, and structure & variability of Europa's atmosphere, from equator to pole; 2) Search for and characterize active plumes in terms of global distribution, structure, composition, and variability; 3) Explore the surface composition & microphysics and their relation to endogenic & exogenic processes; and 4) Investigate how energy and mass flow in the Europa

  13. Design for CubeSat-based dust and radiation studies at Europa

    Science.gov (United States)

    Goel, Ashish; Krishnamoorthy, Siddharth; Swenson, Travis; West, Stephen; Li, Alan; Crew, Alexander; Phillips, Derek James; Screve, Antoine; Close, Sigrid

    2017-07-01

    Europa is one of the icy moons of Jupiter and the possibility of an ocean of liquid water beneath its icy crust makes it one of the most fascinating destinations for exploration in the solar system. NASA's Europa Multiple Flyby Mission (EMFM, formerly Europa Clipper) is slated to visit the icy moon in a timeframe near the year 2022 to study the habitability of Europa. CubeSats carried along by the primary mission can supplement the measurements made, at a relatively low cost, and with the added benefits of involving students at universities in this challenging endeavor. Further, such a mission holds the key to extending the applicability of CubeSats to interplanetary missions. In this paper, we present the design of the Europa Radiation and Dust Observation Satellite (ERDOS), a 3U CubeSat designed to be deployed by the Europa Multiple Flyby Mission to carry out measurements of the radiation and dust environment, before impacting Europa's surface. We present a detailed design for a CubeSat-based secondary mission, and discuss the science goals that may be accomplished by such a mission. Further, we discuss results from a comprehensive analysis of various engineering challenges associated with an interplanetary CubeSat mission, such as radiation shielding and thermal environment control. Our results show that a short duration CubeSat-based flyby mission is feasible when the CubeSat is carried on board the primary mission until the Jovian system is reached. Such a flyby mission can provide important supplementary information to the primary mission about Europa's environment at a closer range and lead to a substantial increase in scientific knowledge about surface processes on Europa.

  14. Inmigraciones en Europa

    Directory of Open Access Journals (Sweden)

    Cebrián, Juan A.

    2012-12-01

    Full Text Available In an interval of only six decades 1950-2010, we have witnessed the five centuries old emigration process interruption that has shaped modern European history. At the end of World War II begins an intense opposite migration flow from former European colonies to their historic metropolis, which had also incorporated other areas that never had that relationship of dependency. This phenomenon is undoubtedly the most important contemporary social process that has taken place in Europe. Such a transformation could only occur by the confluence of important complementary factors. In separate sections of this article we present the main causes of recent immigrations in Europe and what flows within Europe and from other continents can be identified. Second, we explore the key aspects of immigration: demographics, gender and labor market. Then, we study the problems of integration in the host societies and immigration policies that facilitate it. We ended our discussion with references to the singular case of Spain.

    En un intervalo de sólo seis décadas 1950-2010, hemos sido testigos de la interrupción del proceso multisecular emigratorio que ha marcado toda la historia moderna europea. Al término de la Segunda Guerra Mundial comienza un intenso reflejo de movilidad opuesta, desde las antiguas colonias europeas hacia su metrópoli histórica, que se ha contagiado también a otras áreas que nunca tuvieron esa relación de dependencia. Este fenómeno constituye, sin duda, el proceso social contemporáneo más importante que ha tenido lugar en Europa. Una transformación así sólo ha podido ocurrir por la confluencia de importantes factores complementarios. En diferentes apartados de este artículo exponemos las principales causas de la inmigración reciente en Europa y qué flujos intraeuropeos y procedentes de otros continentes pueden identificarse. En segundo término, nos interesamos por los aspectos claves del fenómeno inmigratorio

  15. Kind of Blue - Europa Blues

    DEFF Research Database (Denmark)

    Mortensen, Tore; Kirkegaard, Peter

    2009-01-01

    Bidraget reflekterer over sammenhænge mellem to værker fra det musikalske og litterære område. Det drejer sig om Miles Davis' Kind of Blue fra 1959 og Arne Dahls krimi, Europa Blues fra 2001. Den grundlæggende indfaldsvinkel er det performative, den frie, men samtidigt disciplinerede musikalske...

  16. The Europa Clipper mission concept

    Science.gov (United States)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  17. A Pragmatic Path to Investigating Europa's Habitability

    Science.gov (United States)

    Pappalardo, R. T.; Bagenal, F.; Barr, A. C.; Bills, B. G.; Blaney, D. L.; Blankenship, D. D.; Connerney, J. E.; Kurth, W. S.; McGrath, M. A.; Moore, J. M.; Prockter, L. M.; Senske, D. A.; Smith, D. E.; Garner, G. J.; Magner, T. J.; Cooke, B. C.; Mallder, V.; Crum, R.

    2011-12-01

    Assessment of Europa's habitability will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes. The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept is incompatible with NASA's projected planetary science budget. Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options. In its preliminary findings, the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives. An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit. An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing. This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources. More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, which is better suited to handle larger masses and higher data volumes. Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over multiple years, avoiding an excessively high peak in the funding profile. Implementation of each spacecraft would be greatly simplified compared to previous Europa mission concepts, minimizing new development while achieving the key Europa science objectives. We

  18. Exploring A Thermal-Orbital Feedback Mechanism At Europa

    Science.gov (United States)

    Walker, Matthew; Mitchell, Jonathan L.; Bills, Bruce

    2016-10-01

    We present a geophysical model of the Europa system to describe it's structural, orbital, and thermal states. In doing so, we examine the potential for feedback mechanisms to occur which can produce oscillatory behavior in shell thickness, eccentricity, and heat flux, due to the coupled nature of the relevant processes. We implement a tidal heating model to describe the heat flux into the body. This model depends primarily on the shell structure as well as the orbital eccentricity. The model has the capacity to consider multilayered bodies for which the interior structure can evolve over time. Furthermore, the tidal heating model is fully three dimensionally resolved, having the ability to predict radial and lateral variations in heating throughout Europa. This allows us to predict particular locations on Europa that should have the maximum surface heat flux. This heating model is coupled to the orbital evolution as well. Tidal dissipation pulls energy out of the orbit, effectively reducing the semi-major axis and eccentricity, circularizing the orbit. This would slow, and even shut down, the tidal heating at Europa, however, the Galilean Satellites' Laplace resonance continuously transfers energy back into Europa's orbit, keeping the tidal dissipation active. We compare the tidal heat input to the heat conducted out of the ice shell, which is a function of shell thickness, among other things. Heat transfer into or out of the ice compensates any imbalance of heat. This heating, in turn, leads to structural variations of the shell. For example, if tidal heating is greater than the heat conducted out of the shell, the remaining balance goes into sensible and latent heats which thin the shell (thus increasing the surface heat output to balance that which is tidally input). Oppositely, when conducted heat output is greater than the tidal heating, the shell thickens. Shell thickness variations then result in global extension or contraction, due to the density difference

  19. On the origin of alkali metals in Europa exosphere

    Science.gov (United States)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  20. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  1. A Search for Magnesium in Europa's Atmosphere

    CERN Document Server

    Horst, Sarah M

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  2. Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features

    Science.gov (United States)

    Greenberg, R.; Geissler, P.; Hoppa, G.; Tufts, B.R.; Durda, D.D.; Pappalardo, R.; Head, J.W.; Greeley, R.; Sullivan, R.; Carr, M.H.

    1998-01-01

    Europa's orbital eccentricity, driven by the resonance with Io and Ganymede, results in "diurnal" tides (3.5-day period) and possibly in nonsynchronous rotation. Both diurnal variation and nonsynchronous rotation can create significant stress fields on Europa's surface, and both effects may produce cracking. Patterns and time sequences of apparent tectonic features on Europa include lineaments that correlate with both sources of stress, if we take into account nonsynchronous rotation, after initial crack formation, by amounts ranging up to several tens of degrees. For example, the crosscutting time sequence of features in the Cadmus and Minos Linea region is consistent with a combined diurnal and nonsynchronous tensile-stress field, as it evolves during tens of degrees of nonsynchronous rotation. Constraints on the rotation rate from comparing Voyager and Galileo images show that significant rotation requires 104yr, but could be fast enough to have allowed significant rotation since the last global resurfacing, even if such resurfacing was as recent as a few million years ago. Once cracking is initiated, diurnal tides work cracks so that they open and close daily. Although the daily effect is small, over 105yr double ridges could plausibly be built along the cracks with sizes and morphologies consistent with observed structures, according to a model in which underlying liquid water fills the open cracks, partially freezes, and is extruded during the daily closing of the cracks. Thus, several lines of observational and theoretical evidence can be integrated if we assume nonsynchronous rotation and the existence of a liquid water layer. ?? 1998 Academic Press.

  3. High Resolution Integral Field Spectroscopy of Europa's Sodium Clouds: Evidence for a Component with Origins in Iogenic Plasma.

    Science.gov (United States)

    Schmidt, C.; Johnson, R. E.; Mendillo, M.; Baumgardner, J. L.; Moore, L.; O'Donoghue, J.; Leblanc, F.

    2015-12-01

    With the object of constraining Iogenic contributions and identifying drivers for variability, we report new observations of neutral sodium in Europa's exosphere. An R~20000 integral field spectrograph at McDonald Observatory is used to generate Doppler maps of sodium cloud structures with a resolution of 2.8 km/s/pixel. In the five nights of observations since 2011, measurements on UT 6.15-6.31 May 2015 uniquely feature fast (10s of km/s) neutral sodium clouds extending nearly 100 Europa radii, more distant than in any previous findings. During these measurements, the satellite geometry was favorable for the transfer of Na from Io to Europa, located at 1:55 to 4:00 and 3:38 to 4:39 Jovian local time, respectively. Eastward emission (away from Jupiter) extends 10-20 Europa radii retaining the moon's rest velocity, while westward emission blue-shifts with distance, and a broad range of velocities are measured, reaching at least 70 km/s at 80 Europa radii. These cloud features are distinct from Io's "banana" and "stream" features, the distant Jupiter-orbiting nebula, and from terrestrial OH and Na contaminant emissions. Io's production was quiescent during this observation, following an extremely active phase in February 2015. These results are consistent with previous findings that Europa's Na exosphere has peak emission between midnight and dawn Jovian local time and support the idea that sodium escape from Io can significantly enhance the emission intensity measured at Europa.

  4. Europa Clipper: A Multiple Flyby Mission Concept to Explore Europa's Habitability

    Science.gov (United States)

    Patterson, G. W.; Pappalardo, R. T.; Prockter, L. M.; Senske, D. A.; Vance, S. D.

    2012-09-01

    Europa is a potentially habitable world that is likely to be geologically and chemically active today. Many well-defined and focused science questions regarding past and present habitability may be addressed by exploring Europa. The National Research Council's 2011 Planetary Decadal Survey placed Europa science among its highest priorities, but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept, which was prioritized in the Survey, was incompatible with NASA's projected planetary science budget. Thus, NASA initiated a study to consider more fiscally viable Europa mission scenarios. Among the options considered, a multipleflyby mission concept (now named the "Europa Clipper") was found to have exceptional science merit while also meeting the challenge from NASA and the Decadal Survey for a reduced-scope Europa mission relative to JEO.

  5. Europa--Jupiter's Icy Ocean Moon

    Science.gov (United States)

    Lowes, L.

    1999-01-01

    Europa is a puzzle. The sixth largest moon in our solar system, Europa confounds and intrigues scientists. Few bodies in the solar system have attracted as much scientific attention as this moon of Jupiter because of its possible subsurface ocean of water. The more we learn about this icy moon, the more questions we have.

  6. Analysis of mutual events of Galilean satellites observed from VBO during 2014-2015

    Science.gov (United States)

    Vasundhara, R.; Selvakumar, G.; Anbazhagan, P.

    2017-06-01

    Results of analysis of 23 events of the 2014-2015 mutual event series from the Vainu Bappu Observatory are presented. Our intensity distribution model for the eclipsed/occulted satellite is based on the criterion that it simulates a rotational light curve that matches the ground-based light curve. Dichotomy in the scattering characteristics of the leading and trailing sides explains the basic shape of the rotational light curves of Europa, Ganymede and Callisto. In the case of Io, the albedo map (courtesy United States Geological Survey) along with global values of scattering parameters works well. Mean values of residuals in (O - C) along and perpendicular to the track are found to be -3.3 and -3.4 mas, respectively, compared to 'L2' theory for the seven 2E1/2O1 events. The corresponding rms values are 8.7 and 7.8 mas, respectively. For the five 1E3/1O3 events, the along and perpendicular to the track mean residuals are 5.6 and 3.2 mas, respectively. The corresponding rms residuals are 6.8 and 10.5 mas, respectively. We compare the results using the chosen model (Model 1) with a uniform but limb-darkened disc (Model 2). The residuals with Model 2 of the 2E1/2O1 and 1E3/1O3 events indicate a bias along the satellite track. The extent and direction of bias are consistent with the shift of the light centre from the geometric centre. Results using Model 1, which intrinsically takes into account the intensity distribution, show no such bias.

  7. A Pragmatic Path to Investigating Europa's Habitability

    Science.gov (United States)

    Pappalardo; Bengenal; Bar; Bills; Blankenship; Connerney; Kurth; McGrath; Moore; Prockter; Senske; Smith; Garner; Magner; Hibbard; Cooke

    2011-01-01

    Assessment of Europa's habitability, as an overarching science goal, will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes, The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (1EO) mission concept is incompatible with NASA's projected planetary science budget Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options, In its preliminary findings (May, 2011), the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives, An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing, This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources, More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, that is better situated to handle larger masses and higher data volumes, and which aims to limit radiation exposure, Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over mUltiple years, avoiding an excessively high peak in the funding profile, Implementation of each spacecraft would be greatly simplified compared to previous Europa mission

  8. Jovian magnetospheric weathering of Europa's nonice surface material

    Science.gov (United States)

    Hibbitts, Charles A.; Paranicas, Christopher; Blaney, Diana L.; Murchie, Scott; Seelos, Frank

    2016-10-01

    Jovian plasma and energetic charged particles bombard the Galilean satellites. These satellites vary from volcanically active (Io) to a nearly primordial surface (Callisto). These satellites are imbedded in a harsh and complex particle radiation environment that weathers their surfaces, and thus are virtual laboratories for understanding how particle bombardment alters the surfaces of airless bodies. Europa orbits deeply in the Jovian radiation belts and may have an active surface, where space weathering and geologic processes can interact in complex ways with a range of timescales. At Europa's surface temperature of 80K to 130K, the hydrated nonice material and to a lesser extent, water ice, will be thermally stable over geologic times and will exhibit the effects of weathering. The ice on the surface of Europa is amorphous and contains trace products such as H2O2 [1] due to weathering. The nonice material, which likely has an endogenic component [2] may also be partially amorphous and chemically altered as a result of being weathered by electrons, Iogenic sulfur, or other agents [3]. This hydrated salt or frozen brine likely compositionally 'matures' over time as the more weakly bound constituents are preferentially removed compared with Ca and Mg [4]. Electron bombardment induces chemical reactions through deposition of energy (e.g., ionizations) possibly explaining some of the nonice material's redness [5,6]. Concurrently, micrometeroid gardening mixes the upper surface burying weathered and altered material while exposing both fresh material and previous altered material, potentially with astrobiological implications. Our investigation of the spectral alteration of nonice analog materials irradiated by 10s keV electrons demonstrates the prevalence of this alteration and we discuss relevance to potential measurements by the Europa MISE instrument.References: [1] Moore, M. and R. Hudson, (2000), Icarus, 145, 282-288; [2] McCord et al., (1998), Science, 280, 1242

  9. Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa

    Directory of Open Access Journals (Sweden)

    J. P. S. Carvalho

    2014-01-01

    Full Text Available Space missions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, because missions to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time, evaluated by the integral of those forces over the time. This value depends on the dynamical model and on the orbit of the spacecraft. The perturbing forces considered are the third-body perturbation that comes from Jupiter and the J2, J3, and C22 terms of the gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital elements.

  10. System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa

    Science.gov (United States)

    Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter

    2004-11-01

    The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.

  11. Cassini Imaging of Auroral Emissions on the Galilean Satellites

    Science.gov (United States)

    Geissler, P.; McEwen, A.; Porco, C.

    2001-05-01

    Cassini captured several sequences of images showing Io, Europa and Ganymede while the moons were eclipsed by Jupiter. Io was the best studied of the satellites, with 4 eclipses successfully recorded. Earlier eclipse imaging by Galileo (Geissler et al., Science 295, 870-874) had shown colorful atmospheric emissions from Io and raised questions concerning their temporal variability and the identity of the emitting species. With its high data rate and numerous filter combinations, Cassini was able to fill some of the gaps in our knowledge of Io's visible aurorae. Io's bright equatorial glows were detected at previously unknown wavelengths and were also seen in motion. One eclipse took place on 12/29/2000 while Io was far from the plasma torus center. The pair of equatorial glows near the sub-Jupiter and anti-Jupiter points appeared about equal in brightness and changed little in location or intensity over a two hour period. Io crossed the plasma torus center during the next eclipse on 1/01/2001, as it passed through System III magnetic longitudes from 250 to 303 degrees. The equatorial glows were seen to shift in latitude during this eclipse, tracking the tangent points of the jovian magnetic field lines. This behaviour is similar to that observed for ultraviolet and other atomic emissions, and confirms that these visible glows are powered by Birkeland currents connecting Io and Jupiter. The eclipse on 1/05/2001 provided the best spectral measurements of the aurorae. The equatorial glows were detected at near ultraviolet wavelengths, consistent with their interpretation as molecular SO2 emissions. More than 100 kR were recorded in the ISS UV3 filter (300-380 nm) along with a similar intensity in BL1 (290-500 nm), comparable to Galileo estimates. At least 50 kR were detected in UV2 images (265-330 nm). No detection was made in UV1 (235-280 nm), allowing us to place an upper limit of about 100 kR. A new detection of the equatorial glows was made in the IR1 band (670

  12. Active formation of 'chaos terrain' over shallow subsurface water on Europa.

    Science.gov (United States)

    Schmidt, B E; Blankenship, D D; Patterson, G W; Schenk, P M

    2011-11-16

    Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.

  13. Surface composition of Europa based on VLT observations

    Science.gov (United States)

    Ligier, N.; Poulet, F.; Carter, J.

    2016-12-01

    Jupiter's moon Europa may harbor a global salty ocean under an 80-170 km thick outer layer consisting of an icy crust (Anderson et al. 1998). Meanwhile, the 10-50 My old surface, dated by cratering rates (Pappalardo et al. 1999) implies rapid surface recycling and reprocessing that could result in tectonic activity (Kattenhorn et al. 2014) and plumes (Roth et al. 2014). The surface could thus exhibit fingerprints of chemical species, as minerals characteristics of an ocean-mantle interaction and/or organics of exobiological interest, directly originating from the subglacial ocean. In order to re-investigate the composition of Europa's surface, a global mapping campaign of the satellite was performed with the near-infrared integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) and large signal noise ratio in comparison to previous observations are adequate to detect sharp absorptions in the wavelength range 1.45-2.45 μm. In addition, the spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s ( 35 by 70 km on Europa's surface), thus permitting a global scale study. Several icy and non-icy compounds were detected and mapped at process likely engendered by the Io plasma torus, the crystalline form is found to be approximately twice as abundant as the amorphous ice based on the analysis of the 1.65 μm band. If the surface is dominated by small and mid-sized water ice grains (25-200 μm), crystalline water-ice grains exhibit spatial inhomogeneities in their distribution. The sulfuric acid hydrate distribution exhibits the typical "bullseye" feature on the trailing hemisphere. The presence of Mg-bearing chlorinated salts (chloride, chlorate, and perchlorate) is supported by linear spectral modeling of the data, while the presence of sulfate salts is challenged. The distribution of some of these species is

  14. The ``Perrier Oceans'' Of Europa And Enceladus (Invited)

    Science.gov (United States)

    Matson, D.; Johnson, T. V.; Lunine, J. I.; Castillo, J. C.

    2010-12-01

    Icy satellites of the outer solar system can have subsurface oceans that contain significant amounts of dissolved gases. Crawford and Stevenson in their 1988 study of Europa introduced the term “Perrier Ocean” as a descriptive appellation for such situations. When pressure is reduced, for example as a consequence of faulting, over water from a Perrier ocean, gas comes out of solution in the form of bubbles. The density of the liquid is immediately reduced, and if the bubble volume is sufficient the fluid can become buoyant with respect to the icy crust. If so, the seawater-bubble mixture can rise to the surface or very near to the surface. Europa and Enceladus may represent the end-member examples of Perrier oceans. Today, Europa appears passive whereas Enceladus is erupting. Some characteristics seen at Enceladus that may be indicative of an active Perrier ocean are eruptive plumes and localized, relatively warm (“hot-spot”) thermal anomalies of significantly high heat flow (i.e., >15 GW of integrated power over Enceladus’ South Polar Region). Since Enceladus is smaller than Europa it is easier for it to erupt because less work has to be done against gravity to bring water to the surface. Crawford and Stevenson found that under today’s conditions eruptions at Europa would be difficult but not necessarily impossible. However, in the past, when the icy crust was thinner, the interior warmer, eruption of liquid to the surface regions could have been easier. Morphological evidence for past eruptions from a Perrier ocean is not necessarily unambiguous in that it may admit alternate interpretations. However, the best evidence for relatively recent activity may be some sort of thermal signature. Such anomalies may be observable to depths of tens of meters in relatively clean ice by space-borne high-precision microwave radiometry and ground-penetrating radar. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under

  15. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  16. Navigational Challenges for a Europa Flyby Mission

    Science.gov (United States)

    Martin-Mur, Tomas J.; Ionasescu, Rodica; Valerino, Powtawche; Criddle, Kevin; Roncoli, Ralph

    2014-01-01

    Jupiter's moon Europa is a prime candidate in the search for present-day habitable environments outside of the Earth. A number of missions have provided increasingly detailed images of the complex surface of Europa, including the Galileo mission, which also carried instruments that allowed for a limited investigation of the environment of Europa. A new mission to Europa is needed to pursue these exciting discoveries using close-up observations with modern instrumentation designed to address the habitability of Europa. In all likelihood the most cost effective way of doing this would be with a spacecraft carrying a comprehensive suite of instruments and performing multiple flybys of Europa. A number of notional trajectory designs have been investigated, utilizing gravity assists from other Galilean moons to decrease the period of the orbit and shape it in order to provide a globally distributed coverage of different regions of Europa. Navigation analyses are being performed on these candidate trajectories to assess the total Delta V that would be needed to complete the mission, to study how accurately the flybys could be executed, and to determine which assumptions most significantly affect the performance of the navigation system.

  17. Geologic Maps of the Dardanus Sulcus (Jg-6), Misharu (Jg-10), Nabu (Jg-11), and Namtar (Jg-14) Quadrangles of Ganymede

    Science.gov (United States)

    Maxwell, Ted A.; Marvin, Ursula B.

    2001-01-01

    Ganymede is the largest (~5,200 km diameter) of the Jovian satellites. Surficial features on Ganymede, as recorded by the Voyager 1 and 2 spacecraft (Smith and others, 1979a; 1979b), indicate a complex history of crustal formation. Several episodes of crustal modification led to the formation of curvilinear systems of furrows in dark terrain, the emplacement of light materials, and the creation of grooves in light terrain. Prior to exploration of the Jovian system by spacecraft, Earth-based observations established that the surface of Ganymede is dominated by water ice with various admixtures of fine silicate (rock) material (Pilcher and others, 1972; Sill and Clark, 1982). No agreement yet exists as to the amount of water in the near surface material; early estimates based on spectral reflectance data suggested that half the surface was covered by nearly pure water ice, whereas later studies by Clark (1981) indicated that up to 95% of the surface could be water ice and still be consistent with spectroscopic data. The Pioneer encounters with the Jovian system in 1973 and 1974 confirmed that Ganymede was made up of patches of light and dark terrain but did not have the spatial resolution needed to determine the percent cover of water ice, or geologic relations of surface materials. Not until the Voyager encounters was the surface seen with sufficient detail to enable geologic mapping. On the basis of albedo contrasts, surface morphology, crater density, and superposition relations, geologic mapping was done using principles and techniques that have been applied to the Earth, Moon, and other terrestrial planets (Wilhelms, 1972). Considerable uncertainty exists in applying such methods to bodies having icy crusts, as the internal processes that produce their surface configurations are poorly understood, and the resolution of the Voyager images is barely sufficient to show the detail required to interpret structural and stratigraphic relations. With the exception of

  18. Zwischenbilanz und Verbesserungspotenziale der Europa-2020-Strategie

    DEFF Research Database (Denmark)

    Leschke, Janine

    2016-01-01

    Während die Instrumente der Economic Governance während der Krise erheblich gestärkt wurden, sind im Bereich der sozialen Dimension Europas keine Fortschritte zu verzeichnen. Die in erster Linie auf strikter überwachte und zentral gesteuerte Budgetpolitiken setzenden Verfahren im Europäischen...... Semester haben die ohnehin bestehende Nachrangigkeit sozialer Ziele in der EU weiterhin gefestigt. Dieser Beitrag zieht eine Zwischenbilanz der Europa-2020-Strategie. Der Fokus liegt auf dem Widerspruch zwischen den sozial- und beschäftigungspolitischen Zielen und den gleichzeitigen Vorgaben zur...... werden Verbesserungspotenziale der Europa-2020-Strategie diskutiert....

  19. Jupiter Icy Moons Explorer (JUICE): Science Objectives, Mission and Instruments (abstract)

    NARCIS (Netherlands)

    Gurvits, L.; Plaut, J.J.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Hartogh, P.; Hussmann, H.; Iess, L.; Jaumann, R.; Langevin, Y.; Palumbo, P.; Piccioni, G...; Titov, D.; Wahlund, J.E.

    2014-01-01

    The JUpiter ICy Moons Explorer (JUICE) is a European Space Agency mission that will fly by and observe the Galilean satellites Europa, Ganymede and Callisto, characterize the Jovian system in a lengthy Jupiter-orbit phase, and ultimately orbit Ganymede for in-depth studies of habitability, evolution

  20. On the Clustering of Europa's Small Craters

    Science.gov (United States)

    Bierhaus, E. B.; Chapman, C. R.; Merline, W. J.

    2001-01-01

    We analyze the spatial distribution of Europa's small craters and find that many are too tightly clustered to result from random, primary impacts. Additional information is contained in the original extended abstract.

  1. Europa en de Terugkeer van de Geschiedenis

    NARCIS (Netherlands)

    Segers, Mathieu

    2016-01-01

    Segers onderzoekt het getroebleerde Europa van vandaag. Hij doet dit aan de vooravond van het 'thrillerjaar' 2017, waarin er verkiezingen zullen zijn in Nederland, Frankrijk en Duitsland, en een eerst besluit over de Brexit genomen zal worden.

  2. The EJSM Jupiter Europa Orbiter: Planning Payload

    Science.gov (United States)

    Pappalardo, R. T.; Clark, K.; Greeley, R.; Hendrix, A. R.; Boldt, J.; Tan-Wang, G.; Lock, R.; van Houten, T.; Ludwinski, J.

    2008-09-01

    In the decade since the first return of Europa data by the Galileo spacecraft, the scientific understanding of Europa has greatly matured leading to the formulation of sophisticated new science objectives to be addressed through the acquisition of new data. The Jupiter Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM) designed to obtain data in support of these new science objectives. The JEO planning payload, while notional, is used to quantify engineering aspects of the mission and spacecraft design, and operational scenarios required to obtain the data necessary to meet the science objectives. The instruments were defined to understand the viability of an approach to meet the measurement objectives, perform in the radiation environment and meet the planetary protection requirements. The actual instrument suite would ultimately be the result of an Announcement of Opportunity (AO) selection process carried out by NASA.

  3. MISE: A Search for Organics on Europa

    Science.gov (United States)

    Whalen, Kelly; Lunine, Jonathan I.; Blaney, Diana L.

    2017-01-01

    NASA’s planned Europa Flyby Mission will try to assess the habitability of Jupiter’s moon, Europa. One of the selected instruments on the mission is the Mapping Imaging Spectrometer for Europa (MISE). MISE is a near-infrared imaging spectrometer that takes spectra in the 0.8-5 micron range, and it will be capable of mapping Europa’s surface chemical composition. A primary goal of the MISE instrument is to determine if Europa is capable of supporting life by searching for amino acid signatures in the infrared spectra. We present spectra of pure amino acid at MISE’s resolution, and we analyze the effect of chirality on these spectra. Lastly, we present model spectra for diluted/mixed amino acids to simulate more realistic concentrations. We show MISE can distinguish between different types of amino acids, such as isoleucine, leucine, and their enantiomers.

  4. Science of the Europa Multiple Flyby Mission

    Science.gov (United States)

    Pappalardo, Robert T.; Senske, David A.; Prockter, Louise; Hand, Kevin P.; Goldstein, Barry; Europa Science Team

    2016-10-01

    The Europa Multiple Flyby Mission, in formulation for launch in the 2020s, would investigate the habitability of Jupiter's moon Europa. The mission would send a solar-powered, radiation-tolerant spacecraft into an elliptical orbit about Jupiter to conduct more than 40 close flybys of Europa, most in the range 25 km-100 km. The payload comprises a suite of nine science instruments that together would support three key objectives: detailed investigation of Europa's interior, both its internal ocean (including its salinity and depth) and its ice shell (including thickness and potential water pockets within); composition of the icy surface, notably dark reddish areas that may evince linkages between the ocean and the surface; and geology at the regional and local scales, especially areas that may show signs of recent or current activity. The science objectives and project status will be summarized.

  5. MALDI for Europa Planetary Science and Exobiology

    Science.gov (United States)

    Wdowiak, T. J.; Agresti, D. G.; Clemett, S. J.

    2000-01-01

    TOF MS for Europa landed science can identify small molecules of the cryosphere and complex biomolecules upwelling from a subsurface water ocean. A matrix-assisted laser-desorption ionization (MALDI) testbed for cryo-ice mixtures is being developed.

  6. Hydrogen peroxide on the surface of Europa

    Science.gov (United States)

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  7. Hartvig Frisch og "Pest over Europa"

    DEFF Research Database (Denmark)

    Fledelius, Karsten

    2013-01-01

    Vil populistiske bevægelser i dagens Europa udhule demokratiet og skabe stater med en formel retsorden, som bliver vendt mod syndebukke og udnyttes til diskrimination af etniske, sociale og religiøse mindretal – som i 1930erne?......Vil populistiske bevægelser i dagens Europa udhule demokratiet og skabe stater med en formel retsorden, som bliver vendt mod syndebukke og udnyttes til diskrimination af etniske, sociale og religiøse mindretal – som i 1930erne?...

  8. El puente Europa en Innsbruck

    Directory of Open Access Journals (Sweden)

    Schmidt, W.

    1964-10-01

    Full Text Available To link up the Central Europe and the Southern Europe road system across the Alps, a road bridge has been recently built, which runs 190 m above the bottom of the valley of the Sill river. This structure has been named the Europa Bridge. The Brenner Pass is very suitable for winter traffic by road, in spite of its height of 1370 m above sea level. The bridge deck consists of a metallic box girder. The total length of 657 ms has been divided into six spans. Three of them are 91 m long, two are 108 m long, and the central span is 198 m long. The main features of this bridge are its supports, which rise to a height far above anything so far previously attempted. The highest pile is 160 m long, from the ground to the deck. The piles are hollow inside, and have been internally divided by means of two partitions, which extend throughout the total height. Horizontal thrust is allowed for by a series of horizontal diaphragms, spaced every 20 m. Due to the accumulation, on the surface of the valley, of thick layers of surface soil carried down by the river, the foundations have had to be established at a great depth. The piles have been built with the aid of sliding formwork. The design and erection of the bridge has been done by the Vereinigte Osterreichische Eisen un Stahlwerke, AG., and the work was directed by Ing. Dipl. Josef Gruber.Para unir la red viaria de Europa Central con el Sur del Continente a través del Paso del Brenner, en los Alpes austro-italianos, se ha construido recientemente un puente para carretera—con una altura de 190 m sobre el fondo del valle del río Sill—denominado Puente de Europa. El paso trasalpino del Brenner presenta condiciones muy favorables para la circulación por carretera en invierno, a pesar de sus 1.370 m de altitud. El tablero está constituido por una viga, cajón metálica. Los 657 m de longitud total del puente propiamente dicho se han subdividido en seis tramos: tres de 81, dos de 108 y uno central de

  9. Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry

    Science.gov (United States)

    Schenk, Paul M.; Moore, Jeffrey M.

    1995-09-01

    The morphology of volcanic features on Ganymede differs significantly from that on the terrestrial planets. Few if any major volcanic landforms, such as thick flows or shield volcanoes, have been identified to date. Using new stereo Voyager images, we have searched Ganymede for relief-generating volcanic constructs. We observed seven major types of volcanic structures, including several not previously recognized. The oldest are broad flat-topped domes partially filling many older craters in dark terrain. Similar domes occur on Enceladus. Together with smooth dark deposits, these domes indicate that the volcanic history of the dark terrain is complex. Bright terrain covers vast areas, although the style of emplacement remains unclear. Smooth bright materials embay and flood older terrains, and may have been emplaced as low-viscosity fluids. Associated with smooth bright material are a number of scalloped-shaped, semi-enclosed scarps that cut into preexisting terrain. In planform these structures resemble terrestrial calderas. The youngest volcanic materials identified are a series of small flows that may have flooded the floor of the multiring impact structure Gilgamesh, forming a broad dome. The identification of volcanic constructs up to 1 km thick is the first evidence for extrusion of moderate-to-high viscosity material on Ganymede. Viscosity and yield strength estimates for these materials span several orders of magnitude, indicating that volcanic materials on Ganymede have a range of compositions and/or were extruded under a wide range of conditions and/or eruptive styles.

  10. El proceso constitucional en Europa

    Directory of Open Access Journals (Sweden)

    Peter Häberle

    2014-01-01

    Full Text Available PRIMERA PARTE: EL PROCESO DE CONSTITUCIONALIZACIÓN EN EL ESTADO NACIONAL CLÁSICO (PROCEDIMIENTOS Y CONTENIDOS: DESARROLLOS CONTEXTUALES 1. El proceso constitucional clásico 2. Procedimientos de elaboración constitucional -pluralistas- más recientes: el ejemplo español (1978 Incursión A: La confrovertida vía hacia la unidad alemana: adhesión de la aún rda y/o constitución común alemana 3. Contenidos y funciones de una constitución de estado constitucional Incursión B: "Ferecho constitucional nacional europeo": el déficit español SEGUNDA PARTE: PROCESO DE ELABORACIÓN CONSTITUCIONAL NACIONAL EN EL CONTEXTO DE EUROPA, EN SENTIDO AMPLIO Y RESTRINGIDO: LA APERTURA DEL ESTADO CONSTITUCIONAL, EUROPEIZACIÓN E INTERNACIONALIZACIÓN. PROCEDIMIENTOS Y CONTENIDOS 1. La transformación del estado constitucional nacional: apertura a la cooperación regional (europea y a la cooperación mundial 2. Irradiaciones desde el plano de la ue 3. Consecuencias: conformación previa de estructuras constitucionales en el plano común europeo TERCERA PARTE: EL PROCESO CONSTITUCIONAL DE LA UE: DESDE LOS TRATADOS DE ROMA HASTA LA ACTUALIDAD (PROCEDIMIENTOS Y CONTENIDOS 1. La "vieja" CEE o bien UE/CE- procedimientos y calificación jurídica 2. Los "nuevos" procedimientos UE/CE y su cualificación jurídica: el modelo de la convención 3. Contenidos constitucionales en el plano de la UE 3.1 La carta de los derechos fundamentales de la UE (2000 como valiosa constitución parcial; su influjo e irradiación político-constitucional 3.2 17 proyectos en el banco de pruebas A. "Exhibición" y "competición" de los más jóvenes proyectos constitucionales -mi propio enfoque B. Aspectos comunes de los proyectos C. En particular: el proyecto constitucional de D.L. Garrido.(Sept/Oct. de 2002 3.3 El proyecto constitucional "definitivo" de la UE (2003: de momento, última etapa textual Incursión C: Un enfoque propio: el "jurista europeo" en el taller constitucional

  11. Improving Tidal Measurements about Europa Using the Properties of Unstable Periodic Orbits

    Science.gov (United States)

    Boone, Dylan; Scheeres, D. J.

    2012-10-01

    The NASA Jupiter Europa Orbiter mission requires a circular, near-polar orbit to measure Europa's Love numbers, geophysical coefficients which give insight into whether a liquid ocean exists. This type of orbit about planetary satellites is known to be unstable. The effects of Jupiter's tidal gravity are seen in changes in Europa's gravity field and surface deformation, which are sensed through doppler tracking over time and altimetry measurements respectively. These two measurement types separately determine the h and k Love numbers, a combination of which bounds how thick the ice shell of Europa is and whether liquid water is present. This work shows how the properties of an unstable periodic orbit about Europa generate preferred measurement directions in the orbit determination process for estimating science parameters. We generate an error covariance over seven days for the orbiter state and science parameters and then disperse the orbit initial conditions in a Monte Carlo simulation according to this covariance. The dispersed orbits are shown to have a bias toward longer lifetimes and we discuss this as an effect of the stable and unstable manifolds of the periodic orbit. The stable manifold represents contraction forward in time and the unstable manifold represents expansion forward in time. However, using an epoch formulation of a square-root information filter, measurements aligned with the unstable manifold mapped back in time add more information to the orbit determination process than measurements aligned with the stable manifold. This corresponds to a contraction in the uncertainty of the estimate of the desired parameters, including the Love numbers. Low altitude, near-polar periodic orbits with these characteristics are discussed along with the estimation results for the Love numbers, orbiter state, and orbit lifetime. These results are applicable to other measurements and planetary satellites since the mathematical model is the same.

  12. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    Science.gov (United States)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  13. Radiation Chemistry of Potential Europa Plumes

    Science.gov (United States)

    Gudipati, M. S.; Henderson, B. L.

    2014-12-01

    Recent detection of atomic hydrogen and atomic oxygen and their correlation to potential water plumes on Europa [Roth, Saur et al. 2014] invoked significant interest in further understanding of these potential/putative plumes on Europa. Unlike on Enceladus, Europa receives significant amount of electron and particle radiation. If the plumes come from trailing hemisphere and in the high radiation flux regions, then it is expected that the plume molecules be subjected to radiation processing. Our interest is to understand to what extent such radiation alterations occur and how they can be correlated to the plume original composition, whether organic or inorganic in nature. We will present laboratory studies [Henderson and Gudipati 2014] involving pulsed infrared laser ablation of ice that generates plumes similar to those observed on Enceladus [Hansen, Esposito et al. 2006; Hansen, Shemansky et al. 2011] and expected to be similar on Europa as a starting point; demonstrating the applicability of laser ablation to simulate plumes of Europa and Enceladus. We will present results from electron irradiation of these plumes to determine how organic and inorganic composition is altered due to radiation. Acknowledgments:This research was enabled through partial funding from NASA funding through Planetary Atmospheres, and the Europa Clipper Pre-Project. B.L.H. acknowledges funding from the NASA Postdoctoral Program for an NPP fellowship. Hansen, C. J., L. Esposito, et al. (2006). "Enceladus' water vapor plume." Science 311(5766): 1422-1425. Hansen, C. J., D. E. Shemansky, et al. (2011). "The composition and structure of the Enceladus plume." Geophysical Research Letters 38. Henderson, B. L. and M. S. Gudipati (2014). "Plume Composition and Evolution in Multicomponent Ices Using Resonant Two-Step Laser Ablation and Ionization Mass Spectrometry." The Journal of Physical Chemistry A 118(29): 5454-5463. Roth, L., J. Saur, et al. (2014). "Transient Water Vapor at Europa's South

  14. Landform Erosion and Volatile Redistribution on Ganymede and Callisto

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.

    2009-01-01

    We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].

  15. Tidal Love numbers of membrane worlds: Europa, Titan, and Co

    CERN Document Server

    Beuthe, Mikael

    2015-01-01

    Under tidal forcing, icy satellites with subsurface oceans deform as if the surface were a membrane stretched around a fluid layer. `Membrane worlds' is thus a fitting name for these bodies and membrane theory provides the perfect toolbox to predict tidal effects. I describe here a new membrane approach to tidal perturbations based on the general theory of viscoelastic-gravitational deformations of spherically symmetric bodies. The massive membrane approach leads to explicit formulas for viscoelastic tidal Love numbers which are exact in the limit of zero crust thickness. The accuracy on $k_2$ and $h_2$ is better than one percent if the crust thickness is less than five percents of the surface radius, which is probably the case for Europa and Titan. The new approach allows for density differences between crust and ocean and correctly includes crust compressibility. This last feature makes it more accurate than the propagation matrix method. Membrane formulas factorize shallow and deep interior contributions, ...

  16. Featured Image: Active Cryovolcanism on Europa?

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    Nighttime thermal image from the Galileo Photopolarimeter-Radiometer, revealing a thermal anomaly around the region where the plumes were observed. [Sparks et al. 2017]This image shows a 1320 900 km, high-resolution Galileo/Voyager USGS map of the surface of Europa, one of Jupiters moons. In March 2014, observations of Europa revealed a plume on its icy surface coming from somewhere within the green ellipse. In February 2016, another plume was observed, this time originating from somewhere within the cyan ellipse. In addition, a nighttime thermal image from the Galileo Photopolarimeter-Radiometer has revealed a thermal anomaly a region of unusually high temperature near the same location. In a recent study led by William Sparks (Space Telescope Science Institute), a team of scientists presents these observations and argues that they provide mounting evidence of active water-vapor venting from ongoing cryovolcanism beneath Europas icy surface. If this is true, then Europas surface is active and provides access to the liquid water at depth boosting the case for Europas potential habitability and certainly making for an interesting target point for future spacecraft exploration of this moon. For more information, check out the paper below!CitationW. B. Sparks et al 2017 ApJL 839 L18. doi:10.3847/2041-8213/aa67f8

  17. Heat transfer of ascending cryomagma on Europa

    Science.gov (United States)

    Quick, Lynnae C.; Marsh, Bruce D.

    2016-06-01

    Jupiter's moon Europa has a relatively young surface (60-90 Myr on average), which may be due in part to cryovolcanic processes. Current models for both effusive and explosive cryovolcanism on Europa may be expanded and enhanced by linking the potential for cryovolcanism at the surface to subsurface cryomagmatism. The success of cryomagma transport through Europa's crust depends critically on the rate of ascent relative to the rate of solidification. The final transport distance of cryomagma is thus governed by initial melt volume, ascent rate, overall ascent distance, transport mechanism (i.e., diapirism, diking, or ascent in cylindrical conduits), and melt temperature and composition. The last two factors are especially critical in determining the budget of expendable energy before complete solidification. Here we use these factors as constraints to explore conditions under which cryomagma may arrive at Europa's surface to facilitate cryovolcanism. We find that 1-5 km radius warm ice diapirs ascending from the base of a 10 km thick stagnant lid can reach the shallow subsurface in a partially molten state. Cryomagma transport may be further facilitated if diapirs travel along pre-heated ascent paths. Under certain conditions, cryolava transported from 10 km depths in tabular dikes or pipe-like conduits may reach the surface at temperatures exceeding 250 K. Ascent rates for these geometries may be high enough that isothermal transport is approached. Cryomagmas containing significant amounts of low eutectic impurities can also be delivered to Europa's surface by propagating dikes or pipe-like conduits.

  18. Timing of chaotic terrain formation in Argadnel Regio, Europa, and implications for geological history

    Science.gov (United States)

    Parro, Laura M.; Ruiz, Javier; Pappalardo, Robert T.

    2016-10-01

    Chaos terrains are among the most prominent landforms of Europa, and are generally among the youngest features recorded on the surface. Chaos units were formed by to endogenic activity, maybe related to solid-state convection and thermal diapirism in the ice shell, perhaps aided by melting of salt-rich ice bodies below the surface. In this work, we analyze the different units of chaotic terrain in a portion of Argadnel Regio, a region located on the anti-Jovian hemisphere of Europa, and their possible timing in the general stratigraphic framework of this satellite. Two different chaos units can be differentiated, based on surface texture, morphology, and cross-cutting relationships with other units, and from interpretations based on pre-existing surface restoration through elimination of a low albedo band. The existence of two stratigraphically different chaos units implies that conditions for chaos formation occurred during more than a single discreet time on Europa, at least in Argadnel Regio, and perhaps in other places. The existence of older chaos units on Europa might be related to convective episodes possibly favored by local conditions in the icy shell, such as variations in grain size, abundance of non-water ice-components, or regional thickness of the brittle lithosphere or the entire ice shell.

  19. Simulation of Na D emission near Europa during eclipse

    Science.gov (United States)

    Cassidy, T.A.; Johnson, R.E.; Geissler, P.E.; Leblanc, F.

    2008-01-01

    The Cassini imaging science subsystem observed Europa in eclipse during Cassini's Jupiter flyby. The disk-resolved observations revealed a spatially nonuniform emission in the wavelength range of 200-1050 nm (clear filters). By building on observations and simulations of Europa's Na atmosphere and torus we find that electron-excited Na in Europa's tenuous atmosphere can account for the observed emission if the Na is ejected preferentially from Europa's dark terrain. Copyright 2008 by the American Geophysical Union.

  20. Ice-volcanism due to tidal stress on Europa

    Institute of Scientific and Technical Information of China (English)

    LI Li; CHEN Chuxin

    2003-01-01

    Tectonism would be driven by tidal heat on Europa, and there may be ice-volcano on the surface of active Europa. We assume that ice-volcano would spurt out due to tidal stress, and calculate the velocity and height of the spurt inscale. We also find out the approximate distribution of the active volcanoes on Europa.

  1. Between ice and gas: CO2 on the icy satellites of Jupiter and Saturn

    Science.gov (United States)

    Hibbitts, C.

    2010-12-01

    CO2 exists in the surfaces of the icy Galilean and Saturnian satellites [1-6], yet despite its discovery over a decade ago on Ganymede, and five years ago on the Saturnian satellites, its nature is still debated [7]. On the Galilean satellites Callisto and Ganymede, the CO2 that is detected is bound to, or trapped within, the non-ice materials that prevent it from sublimating or otherwise escaping from the surface. On Europa, it resides within both the ice and nonice materials [8,9]. While greater abundances of CO2 may exist in the interiors of these moons, or small amounts may be continually created through particle bombardment of the surface, the observed CO2 is only a trace material, with a few hundred molecules responsible for the deepest absorption features and an estimated molar abundance of 0.1% [2; 10-12]. Yet its presence may provide essential clues to processes that shape the surfaces of the moon [13] and potentially key to understanding the composition of potential oceans in the subsurfaces. We continue measurements of the infrared properties associated with CO2 adsorbed onto nonice materials under pressures and at temperatures relevant to these icy satellites using bidirectional reflectance spectroscopy from ~ 1.5 to 5.5 μm. Previous measurements, using transmission spectroscopy, demonstrated both a compositional and a temperature dependence on the spectral signature of adsorbed CO2 [14]. Bidirectional spectroscopy enables detection of lower concentrations of adsorbate on fine-grained materials such as clays due to their large surface area to volume ratios and thus large surface areas that may be covered by adsorbate [15]. The effectiveness of transmission spectroscopy was also limited by the strong absorption of light within the pressed sample and its impermeability, which limited the coverage by adsorbate to the pellet’s outer surface. All measurements demonstrate that CO2 adsorbs onto montmorillonite clays, possibly due to its quadrupole moment

  2. Habitability in High Radiation Environments: The Case for Gaia at Europa

    Science.gov (United States)

    Cooper, J. F.

    2004-12-01

    In the paper of Cooper et al. (2001) we concluded, in relation to our work on magnetospheric irradiation of Europa and the other icy galilean moons of Jupiter, that 'icy satellites with significant heat, irradiation, and subsurface water resources may provide common abodes for life throughout the universe'. This expanded the original proposal of Chyba (2000) and his later works that radiolytic production of oxidants and simple hydrocarbons on Europa's icy surface could support evolution and survival of life within a Europan subsurface ocean. In the general case of icy planets and moons the radiation environment does not have to interact directly with the surface but could also provide energy for life through radiation-induced chemistry in thick atmospheres chemically coupled to icy surfaces with hydrocarbon reservoirs as on Titan. The Gaia model for Earth implies that the entire planet operates with atmospheric, geologic, and geochemical processes conducive to life. Essential requirements for Gaia are an oxidizing atmospheric environment at planetary surfaces, where oxidants like molecular oxygen are produced by radiation processes (mediated by photosynthetic chemistry on Earth but more directly produced by radiolysis on Europa), reservoirs of liquid water and hydrocarbons on or below the surface, other reduced materials in the interior, and geologic processes which drive chemical exchange between the chemically oxidized surface and reduced interior environments. At Europa a thin oxygen atmosphere is observed and arises from magnetospheric interaction, and there is much evidence for active resurfacing likely related to solid-state convection and diapiric processes within a thick crust of soft ice overlying a liquid ocean. These processes on Europa are analogous to that of the tectonic conveyer belt that continually recycles carbon, oxygen, and other essential materials for life between the atmosphere, surface, and interior on Earth. The ice crust at Europa could be

  3. Confirmation of Water Plumes on Europa

    Science.gov (United States)

    Sparks, William

    Evidence was found for plumes of water ice venting from the polar regions of Europa (Roth et al 2014a) - FUV detection of off-limb line emission from the dissociation products of water. We find additional evidence for the presence of ice plumes on Europa from HST transit imaging observations (Sparks et al 2016). The evidence for plumes remains marginal, 4-sigma, and there is considerable debate as to their reality. SOFIA can potentially resolve this issue with an unambiguous direct detection of water vapor using EXES. Detection of the fundamental vibrational mode of water vapor at 6 micron, as opposed to the atomic constituents of water, would prove that the plumes exist and inform us of their physical chemistry through quantitative consideration of the balance between water vapor and its dissociation products, hydrogen and oxygen. We propose to obtain spectra of the leading and trailing hemispheres separately, with trailing as the higher priority. These provide two very different physical environments and plausibly different degrees of activity. If the plumes of Europa arise from the deep ocean, we have gained access to probably the most astrobiologically interesting location in the Solar System, and clarify an issue of major strategic importance in NASAs planning for its multi-billion dollar mission to Europa.

  4. Core ethical values: EuropaBio.

    Science.gov (United States)

    2002-01-01

    EuropaBio, the European Association for BioIndustries, represents 40 companies operating world wide and 14 national association (totaling around 600 small and medium-sized enterprises) involved in the research, development, testing, manufacturing, marketing, sales and distribution of biotechnology products and services in the fields of healthcare, agriculture, food and the environment.

  5. Hartvig Frisch og "Pest over Europa"

    DEFF Research Database (Denmark)

    Fledelius, Karsten

    2013-01-01

    Vil populistiske bevægelser i dagens Europa udhule demokratiet og skabe stater med en formel retsorden, som bliver vendt mod syndebukke og udnyttes til diskrimination af etniske, sociale og religiøse mindretal – som i 1930erne?...

  6. Cryovolcanic Emplacement of Domes on Europa

    Science.gov (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical sin- gularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 10(exp 3) and 10(exp 6) sq m/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  7. La nueva novela hispanoamericana ante Europa

    Directory of Open Access Journals (Sweden)

    Manuel Zapata Olivella

    1964-01-01

    Full Text Available Hace exactamente medio siglo -1905- Unamuno se burlaba de los escritores hispanoamericanos a quienes consumía el antojo de descubrir a Europa a los europeos en vez de describir lo que tenían ante sus ojos.

  8. L'Europa accelera sul progetto Grid

    CERN Document Server

    2003-01-01

    "Il consorzio pan-europeo Egee sta pilotando a Bruxelles la complessa operazione che dotera' l'Europa di un mercato comune delle risorse di calcolo sulla base del modello Grid (griglia di calcolo, trasporto e distribuzione di dati)" (1 page).

  9. Forschung weltweit anerkannt: lernen von Europa

    CERN Multimedia

    Lorbeere, K

    2006-01-01

    Europa is better than its reputation. On one hand, the old continent, with the CERN, has the most modern research center for particle physics of the world; in addition, international groupings of companies as Microsoft use the research laboratories in Europe and thus use the know-how of the European scientists

  10. MHD-EPIC: Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere.

    Science.gov (United States)

    Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.

  11. Linking Europa's plume activity to tides, tectonics, and liquid water

    CERN Document Server

    Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

    2015-01-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

  12. Europa the ocean moon : search for an alien biosphere

    CERN Document Server

    Greenberg, Richard

    2004-01-01

    Europa - The Ocean Moon tells the story of the Galileo spacecraft probe to Jupiter's moon, Europa. It provides a detailed description of the physical processes, including the dominating tidal forces that operate on Europa, and includes a comprehensive tour of Europa using images taken by Galileo's camera. The book reviews and evaluates the interpretative work carried out to date, providing a philosophical discussion of the scientific process of analyzing results and the pitfalls that accompany it. It also examines the astrobiological constraints on this possible biosphere, and implications for future research, exploration and planetary biological protection. Europa - The Ocean Moon provides a unique understanding of the Galileo images of Europa, discusses the theory of tidal processes that govern its icy ridged and disrupted surface, and examines in detail the physical setting that might sustain extra-terrestrial life in Europa's ocean and icy crust.

  13. Europa's Ocean Can Be Sustained By Hydrothermal Plumes and Salt Transport

    Science.gov (United States)

    Travis, B. J.; Palguta, J.; Schubert, G.

    2011-12-01

    Data returned by the Galileo spacecraft provide considerable evidence that Jupiter's satellite Europa possesses a liquid ocean beneath its solid, icy outer shell. However, it is not known if that ocean has existed throughout Europa's history. Previous thermal evolution models of Europa suggest that without active tidal dissipative heating (TDH), a global liquid ocean layer would eventually freeze long before the present. However, previous models have not coupled all the various thermal and flow processes that may be operating in Europa. Recently, we have developed a whole-moon numerical model for Europa. This model couples radiogenic heating, thermal diffusion, hydrothermal convection and salt transport in mantle pore water, hydrothermal flow and transport in an ocean layer, parameterized convection in the ice shell, and change of phase between ice and liquid water. Application of our model suggests that, even without TDH active until recently, hydrothermal convection in a salty, rocky mantle can sustain flow in an ocean layer throughout Europa's post-differentiation history. The model thermal history covers three phases: (i) an initial, roughly 0.5 Gyr-long period of radiogenic heating and differentiation, (ii) a long period from 0.5 Gyr to 4 Gyr with continuing radiogenic heating but no TDH (following Yoder, Nature 279: 767-770, 1979), and (iii) a final period covering the last 0.5 Gyr until present day, during which TDH is active. In our model, hydrothermal plumes develop throughout phases II and III, transporting heat and salt from Europa's silicate mantle to its ocean. The outer ice shell thickens over time, growing to about 75 km in depth. When TDH becomes active, the ice shell melts quickly to a thickness of about 10 km, and then stabilizes at roughly 20 to 25 km thickness, leaving an ocean 80 km deep. Parameterized convection in the ice shell is spatially non-uniform and changes over time, reflecting its ties to the evolving deeper ocean-mantle dynamics. A

  14. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    Science.gov (United States)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  15. pH and salinity evolution of Europa's brines: Raman spectroscopy study of fractional precipitation at 1 and 300 bar.

    Science.gov (United States)

    Muñoz-Iglesias, Victoria; Bonales, Laura J; Prieto-Ballesteros, Olga

    2013-08-01

    Several lines of evidence indicate the existence of salty liquid water below the icy surface of the satellite Europa. Depending on the chemical composition of the original interior brines, minerals that precipitate will be varied as will be the resulting physicochemical parameters of the evolving solutions such as pH and salinity. These parameters are determinants apropos to the study of the possible habitability of the satellite. In this work, experiments of fractional precipitation by cooling of several brines with different chemical composition (acid, alkaline, and neutral) were performed at 1 and 300 bar. The gradual decrease in temperature leads to mineral precipitation and changes in salinity and pH values. During the experiment, Raman spectroscopy was used to analyze quantitatively the variation of the salt concentration in the aqueous solutions. The obtained laboratory data indicate the manner in which cryomagma differentiation might occur on Europa. These endogenous processes of differentiation require planetary energy, which seems to have been plentiful during Europa's geological history. Ultimately, the dissipation of part of that energy is translated to a higher complexity of the cryopetrology in Europa's crust. From the results, we conclude that fractional differentiation processes of briny cryomagmas produce several types of igneous salty mineral suites on icy moons.

  16. Europa: Characterization and interpretation of global spectral surface units

    Science.gov (United States)

    Nelson, M.L.; McCord, T.B.; Clark, R.N.; Johnson, T.V.; Matson, D.L.; Mosher, J.A.; Soderblom, L.A.

    1986-01-01

    The Voyager global multispectral mosaic of the Galilean satellite Europa (T. V. Johnson, L. A. Soderblom, J. A. Mosher, G. E. Danielson, A. F. Cook, and P. Kupferman, 1983, J. Geophys. Res. 88, 5789-5805) was analyzed to map surface units with similar optical properties (T. B. McCord, M. L. Nelson, R. N. Clark, A. Meloy, W. Harrison, T. V. Johnson, D. L. Matson, J. A. Mosher, and L. Soderblom, 1982, Bull Amer. Astron. Soc. 14, 737). Color assignments in the unit map are indicative of the spectral nature of the unit. The unit maps make it possible to infer extensions of the geologic units mapped by B. K. Lucchitta and L. A. Soderblom (1982, in Satellites of Jupiter, pp. 521-555, Univ. of Arizona Press, Tucson) beyond the region covered in the high-resolution imagery. The most striking feature in the unit maps is a strong hemispheric asymmetry. It is seen most clearly in the ultraviolet/violet albedo ratio image, because the asymmetry becomes more intense as the wavelength decreases. It appears as if the surface has been darkened, most intensely in the center of the trailing hemisphere and decreasing gradually, essentially as the cosine of the angle from the antapex of motion, to a minimum in the center of the leading hemisphere. The cosine pattern suggests that the darkening is exogenic in origin and is interpreted as evidence of alteration of the surface by ion bombardment from the Jovian magnetosphere. ?? 1986.

  17. Tides on Membrane Worlds: Europa, Titan and Co.

    Science.gov (United States)

    Beuthe, M.

    2014-12-01

    Once seen as exotic, global subsurface oceans are now considered to be a likely feature of many large icy satellites, with Europa and Titan as prime candidates. Under tidal forcing, the icy crust deforms as a viscoelastic membrane decoupled from the deep interior by the ocean layer. Regarding tidal effects, these satellites thus deserve more to be called `membrane worlds' rather than `ocean worlds'. I describe here the viscoelastic membrane approach, a new powerful tool to compute all tidal effects in a laterally uniform crust with depth-dependent rheology. This approach leads to simple analytical formulas for viscoelastic tidal Love numbers, with an accuracy better than one percent for h2 and k2, and a few percents for l2. This accuracy is sufficient for most applications. Membrane formulas clearly show how Love numbers depend on the interior structure (primarily the crust rigidity, crust thickness, ocean density and mean density). This method also yields simple analytical formulas for viscoelastic tidal stresses and tidal dissipation in the crust. All in all, the viscoelastic membrane approach is a good alternative to software encoding the full theory of viscoelastic-gravitational deformations.

  18. Non-uniform thickness in Europa's icy shell: implications for astrobiology mission design

    Science.gov (United States)

    Fairén, A.; Amils, R.

    The exploration of Europa's subsurface ocean is hardly constrained by the presence of an outer ice shell of unknown thickness: a somewhat thin crust would allow easier access to the ocean below. Current estimates for the thickness of Europa's icy surface range from a few km [1] to a few tens of km [2], the shell overlying a liquid water ocean up to 150 km thick [3,4,5]. The surface is believed to be young (mean age of 30-80 Myr [6]) and geologically active [7,8,9], as it is sparsely cratered. Here we report geological evidence indicating that the thickness of Europa's ice crust is actually a complex combination of thicker and thinner areas, highlighting the implications of such structure in the future exploration of the inner ocean. Detailed geologic mapping of impact craters, palimpsests and chaotic terrains distribution on Europa's surface, offers an initial approach to a comprehensive description of the thickness variation in the ice shell. Our analysis is based in: (1) Crater distribution, morphology, diameter and depth. Seminal work by Schenk [2] of transitions in crater shape/diameter suggested enhanced structural collapse of craters with diameter >27-33 km, that will consequently form multiring basins, due to weaker ice or a global ocean at depths >19-25 km. This being true, strictly can only be interpreted regionally: multiring basins indicate regions where the ice shell is thick; in those regions where the icy surface is thin, a bolide impact will breach the ice and leave neither crater nor multiring basin behind, but probably Ganymede's type palimpsests. (2) Palimpsest-type features distribution, indicating regions where the ice shell is too thin to support crater formation after big bolide impacts. In Ganymede, palimpsests are circular, low albedo and relief features formerly formed by impacts [10,11]. (3) Chaotic terrain distribution, considering features tens to hundreds of km across, that may be the evidence for very thin ice areas (from ˜ 2 km to

  19. Geodesy and cartography methods of exploration of the outer planetary systems: Galilean satellites and Enceladus

    Science.gov (United States)

    Zubarev, Anatoliy; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina

    Introduction. While Galilean satellites have been observed by different spacecrafts, including Pioneer, Voyager-1 and -2, Galileo, New Horizons, and Enceladus by Cassini and Voyager-2, only data from Galileo, Cassini and the two Voyagers are useful for precise mapping [1, 2]. For purposes of future missions to the system of outer planets we have re-computed the control point network of the Io, Ganymede and Enceladus to support spacecraft navigation and coordinate knowledge. Based on the control networks, we have produced global image mosaics and maps. Geodesy approach. For future mission Laplace-P we mainly focused on Ganymede which coverage is nearly complete except for polar areas (which includes multispectral data). However, large differences exist in data resolutions (minimum global resolution: 30 km/pixel). Only few areas enjoy coverage by highest resolution images, so we suggest to obtain regional Digital Elevation Models (DEMs) from stereo images for selected areas. Also using our special software, we provide calculation of illumination conditions of Ganymede surface in various representations [3]. Finally, we propose a careful evaluation of all available data from the previous Voyager and Galileo missions to re-determine geodetic control and rotation model for other Galilean satellites - Callisto and Europe. Mapping. Based on re-calculated control point networks and global mosaics we have prepared new maps for Io, Ganymede and Enceladus [4]. Due to the difference in resolution between the images, which were also taken from different angles relative to the surface, we can prepare only regional high resolution shape models, so for demonstrating of topography and mapping of the satellites we used orthographic projection with different parameters. Our maps, which include roughness calculations based on our GIS technologies [5], will also be an important tool for studies of surface morphology. Conclusions. Updated data collection, including new calculation of

  20. Radiation Environment for the Jupiter Europa Orbiter

    Science.gov (United States)

    Jun, Insoo

    2008-09-01

    One of the major challenges for the Jupiter Europa Orbiter (JEO) mission would be that the spacecraft should be designed to survive an intense radiation environment expected at Jupiter and Europa. The proper definition of the radiation environments is the important first step, because it could affect almost every aspects of mission and spacecraft design. These include optimizing the trajectory to minimize radiation exposure, determining mission lifetime, selecting parts, materials, detectors and sensors, shielding design, etc. The radiation environments generated for the 2008 JEO study will be covered, emphasizing the radiation environment mainly responsible for the total ionizing dose (TID) and displacement damage dose (DDD). The latest models developed at JPL will be used to generate the TID and DDD environments. Finally, the major radiation issues will be summarized, and a mitigation plan will be discussed.

  1. The Earth transiting the Sun as seen from Jupiter's moons: detection of an inverse Rossiter-McLaughlin effect produced by the Opposition Surge of the icy Europa

    CERN Document Server

    Molaro, Paolo; Monaco, Lorenzo; Zaggia, Simone; Lovis, Christophe

    2015-01-01

    We report on a multi-wavelength observational campaign which followed the Earth's transit on the Sun as seen from Jupiter on 5 Jan the 2014. Simultaneous observations of Jupiter's moons Europa and Ganymede obtained with HARPS from La Silla, Chile, and HARPS-N from La Palma, Canary Islands, were performed to measure the Rossiter-McLaughlin effect due to the Earth's passage using the same technique successfully adopted for the 2012 Venus Transit (Molaro et al 2013). The expected modulation in radial velocities was of about 20 cm/s but an anomalous drift as large as 38 m/s, i.e. more than two orders of magnitude higher and opposite in sign, was detected instead. The consistent behaviour of the two spectrographs rules out instrumental origin of the radial velocity drift and BiSON observations rule out the possible dependence on the Sun's magnetic activity. We suggest that this anomaly is produced by the Opposition Surge on Europa's icy surface, which amplifies the intensity of the solar radiation from a portion o...

  2. Europa e Africa - Anatomia di un incontro

    DEFF Research Database (Denmark)

    Zoppi, Marco

    Available at: - http://ebook.edizionieiffel.com/product.php?id_product=36 or on AMAZON at:  http://www.amazon.it/Europa-Africa-Anatomia-Marco-Zoppi-ebook/dp/B01DPSBE6C/ref=sr_1_1?ie=UTF8&qid=1460205243&sr=8-1&keywords=marco+zoppi The book title translates as: "Europe and Africa: anatomy of an enc...

  3. Tides on Europa: the membrane paradigm

    CERN Document Server

    Beuthe, Mikael

    2014-01-01

    Jupiter's moon Europa has a thin icy crust which is decoupled from the mantle by a subsurface ocean. The crust thus responds to tidal forcing as a deformed membrane, cold at the top and near melting point at the bottom. In this paper I develop the membrane theory of viscoelastic shells with depth-dependent rheology with the dual goal of predicting tidal tectonics and computing tidal dissipation. Two parameters characterize the tidal response of the membrane: the effective Poisson's ratio $\\bar\

  4. Afrikanische Migranten vor der "Festung Europa"

    OpenAIRE

    2006-01-01

    "Eine wachsende Zahl Afrikaner flieht vor kriegerischer Gewalt und wirtschaftlicher Not nach Europa. Die EU schottet ihre Außengrenzen ab. Die Fluchtrouten werden dadurch gefährlicher, Tausende finden den Tod. Dabei nützt eine geregelte Zuwanderung aus Afrika allen Beteiligten. Nicht zuletzt kann sie dazu beitragen, die überalterten EU-Mitgliedstaaten vor dem drohenden wirtschaftlichen Niedergang zu bewahren. Grenzüberschreitende Migrationen innerhalb Afrikas sind weitaus umfangreicher als di...

  5. Europa Propulsion Valve Seat Material Testing

    Science.gov (United States)

    Addona, Brad M.

    2017-01-01

    The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.

  6. Compositional Mapping of Europa's Surface with SUDA

    Science.gov (United States)

    Kempf, S.; Sternovsky, Z.; Horanyi, M.; Hand, K. P.; Srama, R.; Postberg, F.; Altobelli, N.; Gruen, E.; Gudipati, M. S.; Schmidt, J.; Zolotov, M. Y.; Tucker, S.; Hoxie, V. C.; Kohnert, R.

    2015-12-01

    The Surface Mass Analyzer (SUDA) measures the composition of ballistic dust particles populating the thin exospheres that were detected around each of the Galilean moons. Since these grains are direct samples from the moons' icy surfaces, unique composition data will be obtained that will help to define and constrain the geological activities on and below the moons' surface. SUDA will make a vital contribution to NASA's mission to Europa and provide key answers to its main scientific questions about the surface composition, habitability, the icy crust, and exchange processes with the deeper interior of the Jovian icy moon Europa. SUDA is a time-of- flight, reflectron-type impact mass spectrometer, optimised for a high mass resolution which only weakly depends on the impact location. The small size, low mass and large sensitive area meet the challenging demands of mission to Europa. A full-size prototype SUDA instrument was built in order to demonstrate its performance through calibration experiments at the dust accelerator at NASA's IMPACT institute at Boulder, CO, with a variety of cosmo-chemically relevant dust analogues. The effective mass resolution of m/Δm of 150-300 is achieved for mass range of interest m = 1-150.

  7. Loss rates of Europa's tenuous atmosphere

    Science.gov (United States)

    Lucchetti, Alice; Plainaki, Christina; Cremonese, Gabriele; Milillo, Anna; Cassidy, Timothy; Jia, Xianzhe; Shematovich, Valery

    2016-10-01

    Loss processes in Europa's tenuous atmosphere are dominated by plasma-neutral interactions. Based on the updated data of the plasma conditions in the vicinity of Europa (Bagenal et al. 2015), we provide estimations of the atmosphere loss rates for the H2O, O2 and H2 populations. Due to the high variability of the plasma proprieties, we perform our investigation for three sample plasma environment cases identified by Bagenal et al. as hot/low density, cold/high density, and an intermediate case. The role of charge-exchange interactions between atmospheric neutrals and three different plasma populations, i.e. magnetospheric, pickup, and ionospheric ions, is examined in detail. Our assumptions related to the pickup and to the ionospheric populations are based on the model by Sittler et al. (2013). We find that O2-O2+ charge-exchange is the fastest loss process for the most abundant atmospheric species O2, though this loss process has been neglected in previous atmospheric models. Using both the revised O2 column density obtained from the EGEON model (Plainaki et al., 2013) and the current loss rate estimates, we find that the upper limit for the volume integrated loss rate due to O2-O2+ charge exchange is in the range (13-51)×1026 s-1, depending on the moon's orbital phase and illumination conditions. The results of the current study are relevant to the investigation of Europa's interaction with Jupiter's magnetospheric plasma.

  8. The role of the Hall effect in the global structure and dynamics of planetary magnetospheres: Ganymede as a case study

    CERN Document Server

    Dorelli, John C; Collinson, Glyn; Tóth, Gábor

    2015-01-01

    We present high resolution Hall MHD simulations of Ganymede's magnetosphere demonstrating that Hall electric fields in ion-scale magnetic reconnection layers have significant global effects not captured in resistive MHD simulations. Consistent with local kinetic simulations of magnetic reconnection, our global simulations show the development of intense field-aligned currents along the magnetic separatrices. These currents extend all the way down to the moon's surface, where they may contribute to Ganymede's aurora. Within the magnetopause and magnetotail current sheets, Hall currents in the reconnection plane accelerate ions to the local Alfv\\'en speed in the out-of-plane direction, producing a global system of ion drift belts that circulates Jovian magnetospheric plasma throughout Ganymede's magnetosphere. We discuss some observable consequences of these Hall-induced currents and ion drifts: the appearance of a sub-Jovian "double magnetopause" structure, an Alfv\\'enic ion jet extending across the upstream m...

  9. The Role of the Hall Effect in Global Structure and Dynamics of Planetary Magnetospheres: Ganymede as a Case Study

    Science.gov (United States)

    Dorelli, J. C.; Glocer, Alex; Collinson, Glyn; Toth, Gabor

    2015-01-01

    We present high-resolution Hall MHD simulations of Ganymede's magnetosphere demonstrating that Hall electric fields in ion-scale magnetic reconnection layers have significant global effects not captured in resistive MHD simulations. Consistent with local kinetic simulations of magnetic reconnection, our global simulations show the development of intense field-aligned currents along the magnetic separatrices. These currents extend all the way down to the moon's surface, where they may contribute to Ganymede's aurora. Within the magnetopause and magnetotail current sheets, Hall J x B forces accelerate ions to the local Alfven speed in the out-of-plane direction, producing a global system of ion drift belts that circulates Jovian magnetospheric plasma throughout Ganymede's magnetosphere. We discuss some observable consequences of these Hall-induced currents and ion drifts: the appearance of a sub-Jovian 'double magnetopause' structure, an Alfvenic ion jet extending across the upstream magnetopause, and an asymmetric pattern of magnetopause Kelvin-Helmholtz waves.

  10. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  11. Assessing the mineralogy and hydration of rocky cores of satellites: insights from experiments and thermodynamics

    Science.gov (United States)

    Reynard, B.; Neri, A.; Sotin, C.

    2016-12-01

    Icy satellites and similar objects likely form from a mixture of hydrated rocky material, such as the CI chondrites, and various amounts of ices. Mass-balance estimates show that hydrous silicates such as serpentine, and brucite, the simple Mg-Fe hydroxide, dominate fully hydrated mineralogy. The inferred iron content of these minerals is, however, very dependent on assumptions of iron redox state, and whether it forms sulfides or segregates into a metal core. From the determination of the moment of inertia inferred from gravity measurements at Jupiter and Saturn by the Galileo and Cassini spacecraft, Ganymede and Europa would have a differentiated iron-rich core whereas Titan and Enceladus would not. Whatever the case, iron content is generally significantly higher than that of the terrestrial ultrabasic rocks used as analogs in modeling of hydrated satellite cores. Thus, we investigated the phase relations of iron-rich ultrabasic systems based on chondritic composition by combining thermodynamic modeling and preliminary high-pressure experiments. Our starting composition model is that of CI carbonaceous chondrites. Stable mineral assemblages are calculated with the PerpleX package (Connolly, 1990), assuming excess water, and various amounts of iron in the silicate phase through varying the amount of iron sulfide (troilite) or iron oxide (magnetite). Results show stable hydrated minerals are serpentine, chlorite, brucite, Na-phlogopite and in extreme cases, talc in the 1.5-5 GPa range relevant to bodies larger than about 1000 km in radius. Dehydration temperatures are extremely sensitive to the iron content, hence on the chosen amount of iron bearing phase (troilite or magnetite), and to a lower extent on average CI composition. An experimental approach was developed to simulate hydrous alteration of CI-like material. A mixture of synthetic silicates, troilite, and organic compounds, to which excess water is added, is used. Mineralogy and composition is checked

  12. Fingerprints of endogenous process on Europa through linear spectral modeling of ground-based observations (ESO/VLT/SINFONI)

    Science.gov (United States)

    Ligier, Nicolas; Carter, John; Poulet, François; Langevin, Yves; Dumas, Christophe; Gourgeot, Florian

    2016-04-01

    Jupiter's moon Europa harbors a very young surface dated, based on cratering rates, to 10-50 M.y (Zahnle et al. 1998, Pappalardo et al. 1999). This young age implies rapid surface recycling and reprocessing, partially engendered by a global salty subsurface liquid ocean that could result in tectonic activity (Schmidt et al. 2011, Kattenhorn et al. 2014) and active plumes (Roth et al. 2014). The surface of Europa should contain important clues about the composition of this sub-surface briny ocean and about the potential presence of material of exobiological interest in it, thus reinforcing Europa as a major target of interest for upcoming space missions such as the ESA L-class mission JUICE. To perform the investigation of the composition of the surface of Europa, a global mapping campaign of the satellite was performed between October 2011 and January 2012 with the integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) is suitable to detect any narrow mineral signature in the wavelength range 1.45-2.45 μm. The spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s (~35 by 70 km on Europa's surface), thus permitting a global scale study. Until recently, a large majority of studies only proposed sulfate salts along with sulfuric acid hydrate and water-ice to be present on Europa's surface. However, recent works based on Europa's surface coloration in the visible wavelength range and NIR spectral analysis support the hypothesis of the predominance of chlorine salts instead of sulfate salts (Hand & Carlson 2015, Fischer et al. 2015). Our linear spectral modeling supports this new hypothesis insofar as the use of Mg-bearing chlorines improved the fits whatever the region. As expected, the distribution of sulfuric acid hydrate is correlated to the Iogenic sulfur ion implantation flux distribution (Hendrix et al

  13. A highly integrated payload suite for Europa

    Science.gov (United States)

    Bentley, M.; Kraft, S.; Steiger, R.; Varlet, F.; Voigt, D.; Falkner, P.; Peacock, A.

    The four Galilean moons have always held a public and scientific fascination due to their diverse and dynamic nature. Amongst the moons, Europa holds a special place for its potential liquid water ocean, beneath its icy crust. This prospect of water places Europa on a par with Mars in terms of its viability for harbouring life. The first hints of Europa's icy surface came from early telescopic observations, which noted an unusually high albedo. Ground based spectroscopy then demonstrated absorption features of relatively pure water ice. Imagery from Pioneer, Voyager, and more recently Galileo confirm this, with the kilometre scale resolution of Galileo showing what appear to be ice flows. The lack of cratering, pointing to a geologically recent surface, furthermore suggests that liquid water could well exist today. The Galileo Europa Mission (GEM) provided much more extensive data during its 8 close orbits, including limited areas of extremely high resolution imaging (6 m), and radio science that confirmed the differentiated nature of Europa. However, many fundamental questions remain that can best be answered by a dedicated orbiter. For example: - Does a liquid water ocean exist? What it its extent vertically and laterally? - What is the composition of the crust? - What are the geological processes operating? The importance of these most basic questions have inspired mission proposals from all of the major space agencies. In Europe, ESA have performed a study into a mission called the "Jupiter Minisat Explorer" in order to identify the key technologies that would have to be developed [1]. The key technological challenges are caused by the harsh Jovian radiation environment, the lack of solar energy available and the thermal problems of such a cold environment. Last, but not least, a payload must be designed that satisfies these requirements and is both low power and low mass. All of these factors dictate the use of a Highly Integrated Payload Suite (HIPS). Such a

  14. Jupiter Europa Orbiter Architecture Definition Process

    Science.gov (United States)

    Rasmussen, Robert; Shishko, Robert

    2011-01-01

    The proposed Jupiter Europa Orbiter mission, planned for launch in 2020, is using a new architectural process and framework tool to drive its model-based systems engineering effort. The process focuses on getting the architecture right before writing requirements and developing a point design. A new architecture framework tool provides for the structured entry and retrieval of architecture artifacts based on an emerging architecture meta-model. This paper describes the relationships among these artifacts and how they are used in the systems engineering effort. Some early lessons learned are discussed.

  15. Europa Science Platforms and Kinetic Energy Probes

    Science.gov (United States)

    Hays, C. C.; Klein, G. A.

    2003-01-01

    This presentation will outline a proposed mission for the Jupiter Icy Moons Orbiter (JIMO). The mission outlined will concentrate on an examination of Europa. Some of the primary science goals for the JIMO mission are: 1) to answer broad science questions, 2) improved knowledge of Jovian system; specifically, lunar geological and geophysical properties, 3) chemical composition of Jovian lunar surfaces and subterranean matter, and 4) the search for life. In order to address these issues, the experiment proposed here will deploy orbiting, surface, and subterranean science platforms.

  16. El software agropecuario en Europa e Israel

    OpenAIRE

    Giorgini, Diana A.; Marchiori, O. E.; Giorgini, H. J.; Sierra, Eduardo Mario

    1995-01-01

    p.213-218 En los últimos años ha aparecido una gran variedad de programas de computación diseñados específicamente para uso agropecuario, dando nacimiento a lo que se ha dado en llamar A grosoftware. La disponibilidad de información proveniente de Europa e Israel ha permitido trazar un panorama detallado del estado actual y tendencia de esta importante actividad que parece destinada a modificar sustancialmente la forma de operación y control de la totalidad del sistema productivo agropecua...

  17. Surface Irradiation of Jupiter's Moon Europa

    Science.gov (United States)

    Rubin, M.; Tenishev, V.; Combi, M. R.; Jia, X.; Hansen, K. C.; Gombosi, T. I.

    2010-12-01

    Jupiter’s moon Europa has a complex and tightly coupled interaction with the Jovian magnetosphere. Neutral gas of the moon’s exosphere is ionized and picked up by the corotating plasma that sweeps past Europa at a relative velocity of almost 100 km/s. This pick-up process alters the magnetic and electric field topology around Europa, which in turn affects the trajectories of the pick-up ions as well as the thermal and hot magnetospheric ions that hit the moon’s icy surface. In turn these surface-impinging ions are the responsible source for the sputtered neutral atmosphere, which itself is again crucial for the exospheric mass loading of the surrounding plasma. We use the magnetohydrodynamics (MHD) model BATSRUS to model the interaction of Europa with the Jovian magnetosphere. The model accounts for the exospheric mass loading, ion-neutral charge exchange, and ion-electron recombination [Kabin et al. (J. Geophys. Res., 104, A9, 19,983-19,992, 1999)]. The derived magnetic and electric fields are then used in our Test Particle Monte Carlo (TPMC) model to integrate individual particle trajectories under the influence of the Lorentz force. We take the measurements performed by Galileo’s Energetic Particle Detector (EPD) [Williams et al. (Sp. Sci. Rev. 60, 385-412, 1992) and Cooper et al. (Icarus 149, 133-159, 2001)] and the Plasma Analyzer (PLS) [Paterson et al. (J. Geophys. Res., 104, A10, 22,779-22,791, 1999)] as boundary conditions. Using a Monte Carlo technique allows to individually track ions in a wide energy range and to individually calculate their energy deposition on the moon’s surface. The sputtering yield is a function of incident particle type, energy, and mass. We use the measurements performed by Shi et al. (J. Geophys. Res., 100, E12, 26,387-26,395, 1995) to turn the modeled impinging ion flux into a neutral gas production rate at the surface. We will show preliminary results of this work with application to the missions to the Jupiter system

  18. BIZANCIO, LOS ESLAVOS Y EUROPA ORIENTAL

    Directory of Open Access Journals (Sweden)

    José Marín Riveros

    2009-01-01

    Full Text Available Resumen: en este estudio, se presenta una reflexión acerca del concepto de Europa Oriental y, luego, una revisión de la historiografía acerca del origen de los eslavos, discutiendo las tesis tradicionales, la de Pritsak y la de Curta, según la etnogénesis, la etnonimia y la etnicidad.in this article, the author presents an analytical view about de concept "East Europe" and, then, an historiographical revision about the origin of the Slavic people, discussing the traditional thesis, Pritsak's thesis and Curta's thesis, i.e., commenting the ideas of ethnogenesis, ethnonimia and ethnicity.

  19. A new concept for the exploration of Europa.

    Science.gov (United States)

    Rampelotto, Pabulo Henrique

    2012-06-01

    The Europa Jupiter System Mission (EJSM) is the major Outer Planet Flagship Mission in preparation by NASA. Although well designed, the current EJSM concept may present problematic issues as a Flagship Mission for a long-term exploration program that will occur over the course of decades. For this reason, the present work reviews the current EJSM concept and presents a new strategy for the exploration of Europa. In this concept, the EJSM is reorganized to comprise three independent missions focused on Europa. The missions are split according to scientific goals, which together will give a complete understanding of the potential habitability of Europa, including in situ life's signal measurements. With this alternative strategy, a complete exploration of Europa would be possible in the next decades, even within a politically and economically constrained environment.

  20. Strike-Slip Faulting Processes on Ganymede: Global Morphological Mapping and Structural Interpretation of Grooved and Transitional Terrains

    Science.gov (United States)

    Burkhard, L. M.; Cameron, M. E.; Smith-Konter, B. R.; Seifert, F.; Pappalardo, R. T.; Collins, G. C.

    2015-12-01

    Ganymede's fractured surface reveals many large-scale, morphologically distinct regions of inferred distributed shear and strike-slip faulting that may be important to the structural development of its surface and in the transition from dark to light (grooved) materials. To better understand the role of strike-slip tectonism in shaping Ganymede's complex icy surface, we perform a detailed mapping of key examples of strike-slip morphologies (i.e., en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) from Galileo and Voyager images. We focus on complex structures associated with grooved terrain (e.g. Nun Sulcus, Dardanus Sulcus, Tiamat Sulcus, and Arbela Sulcus) and terrains transitional from dark to light terrain (e.g. the boundary between Nippur Sulcus and Marius Regio, including Byblus Sulcus and Philus Sulcus). Detailed structural interpretations suggest strong evidence of strike-slip faulting in some regions (i.e., Nun and Dardanus Sulcus); however, further investigation of additional strike-slip structures is required of less convincing regions (i.e., Byblus Sulcus). Where applicable, these results are synthesized into a global database representing an inferred sense of shear for many of Ganymede's fractures. Moreover, when combined with existing observations of extensional features, these results help to narrow down the range of possible principal stress directions that could have acted at the regional or global scale to produce grooved terrain on Ganymede.

  1. What causes an icy fault to slip? Investigating strike-slip failure conditions on Ganymede at Dardanus and Tiamat Sulcus.

    Science.gov (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Collins, G. C.; Seifert, F.; Pappalardo, R. T.

    2015-12-01

    Ganymede exhibits two geologically distinct terrains known as dark and light (grooved) terrain. The mechanism for a transition from dark to light terrain remains unclear; however, inferences of strike-slip faulting and distributed shear zones suggest that strike-slip tectonism may be important to the structural development of Ganymede's surface and in this transition. Here we investigate the role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both dark and grooved terrains. Using numerical code SatStress, we calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. Specifically, we investigate the role of fault friction and orbital eccentricity in the development of ~45 km of right-lateral offset at Dardanus Sulcus and a possible case of Sulcus. We compute Coulomb failure conditions for these target fractures and consider tidal stress scenarios for both present eccentricity (0.0013) and possible past high (~0.05) eccentricity of Ganymede. We find that while diurnal stresses are not large enough to support strike-slip failure at present or past eccentricities, models that include both diurnal and NSR stress readily generate shear and normal stress magnitudes that could give rise to shear failure. Results for a past high eccentricity assuming a low coefficient of friction (μf = 0.2) suggest shear failure is possible down to depths of 1-2 km along both Dardanus and Tiamat. For a high coefficient of friction (μf = 0.6), failure is limited to about 1 km depth at Dardanus and Tiamat, although confined to small episodic slip windows for the latter. Moreover, our models predict a right-lateral sense of slip, in agreement with inferred offset observed at both regions. Based on these results, we infer that past shear failure on Ganymede is possible when NSR is a driving stress mechanism. We complement this study with a detailed morphological mapping of strike-slip morphologies (en echelon

  2. Application of Geologic Mapping Techniques and Autonomous Feature Detection to Future Exploration of Europa

    Science.gov (United States)

    Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.

    2013-12-01

    Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or

  3. Antarctic Analog for Dilational Bands on Europa

    Science.gov (United States)

    Hurford, T. A.; Brunt, K. M.

    2014-01-01

    Europa's surface shows signs of extension, which is revealed as lithospheric dilation expressed along ridges, dilational bands and ridged bands. Ridges, the most common tectonic feature on Europa, comprise a central crack flanked by two raised banks a few hundred meters high on each side. Together these three classes may represent a continuum of formation. In Tufts' Dilational Model ridge formation is dominated by daily tidal cycling of a crack, which can be superimposed with regional secular dilation. The two sources of dilation can combine to form the various band morphologies observed. New GPS data along a rift on the Ross Ice Shelf, Antarctica is a suitable Earth analog to test the framework of Tufts' Dilational Model. As predicted by Tufts' Dilational Model, tensile failures in the Ross Ice Shelf exhibit secular dilation, upon which a tidal signal can be seen. From this analog we conclude that Tufts' Dilational Model for Europan ridges and bands may be credible and that the secular dilation is most likely from a regional source and not tidally driven.

  4. Antarctic analog for dilational bands on Europa

    Science.gov (United States)

    Hurford, T. A.; Brunt, K. M.

    2014-09-01

    Europa's surface shows signs of extension, which is revealed as lithospheric dilation expressed along ridges, dilational bands and ridged bands. Ridges, the most common tectonic feature on Europa, comprise a central crack flanked by two raised banks a few hundred meters high on each side. Together these three classes may represent a continuum of formation. In Tufts' Dilational Model ridge formation is dominated by daily tidal cycling of a crack, which can be superimposed with regional secular dilation. The two sources of dilation can combine to form the various band morphologies observed. New GPS data along a rift on the Ross Ice Shelf, Antarctica is a suitable Earth analog to test the framework of Tufts' Dilational Model. As predicted by Tufts' Dilational Model, tensile failures in the Ross Ice Shelf exhibit secular dilation, upon which a tidal signal can be seen. From this analog we conclude that Tufts' Dilational Model for Europan ridges and bands may be credible and that the secular dilation is most likely from a regional source and not tidally driven.

  5. The Europa Imaging System (EIS): Investigating Europa's geology, ice shell, and current activity

    Science.gov (United States)

    Turtle, Elizabeth; Thomas, Nicolas; Fletcher, Leigh; Hayes, Alexander; Ernst, Carolyn; Collins, Geoffrey; Hansen, Candice; Kirk, Randolph L.; Nimmo, Francis; McEwen, Alfred; Hurford, Terry; Barr Mlinar, Amy; Quick, Lynnae; Patterson, Wes; Soderblom, Jason

    2016-07-01

    NASA's Europa Mission, planned for launch in 2022, will perform more than 40 flybys of Europa with altitudes at closest approach as low as 25 km. The instrument payload includes the Europa Imaging System (EIS), a camera suite designed to transform our understanding of Europa through global decameter-scale coverage, topographic and color mapping, and unprecedented sub- meter-scale imaging. EIS combines narrow-angle and wide-angle cameras to address these science goals: • Constrain the formation processes of surface features by characterizing endogenic geologic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure and potential near-surface water. • Search for evidence of recent or current activity, including potential plumes. • Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar. • Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. EIS Narrow-angle Camera (NAC): The NAC, with a 2.3°° x 1.2°° field of view (FOV) and a 10-μμrad instantaneous FOV (IFOV), achieves 0.5-m pixel scale over a 2-km-wide swath from 50-km altitude. A 2-axis gimbal enables independent targeting, allowing very high-resolution stereo imaging to generate digital topographic models (DTMs) with 4-m spatial scale and 0.5-m vertical precision over the 2-km swath from 50-km altitude. The gimbal also makes near-global (>95%) mapping of Europa possible at ≤50-m pixel scale, as well as regional stereo imaging. The NAC will also perform high-phase-angle observations to search for potential plumes. EIS Wide-angle Camera (WAC): The WAC has a 48°° x 24°° FOV, with a 218-μμrad IFOV, and is designed to acquire pushbroom stereo swaths along flyby ground-tracks. From an altitude of 50 km, the WAC achieves 11-m pixel scale over a 44-km

  6. Detection of Solid Tides on Europa Through Ground-Tracking of a Low-Altitude, Altimeter- Equipped Orbiter

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Bardella, M.

    2007-12-01

    The possibility of detecting a global liquid ocean beneath the icy crust of Europa without the use of landers or ice penetrators rests on the measurement of the Love numbers h2 and k2. These are respectively related to the radial deformation of the surface and the consequent tidally-induced variation of the gravitational field of this icy satellite. Depending on the rigidity of the icy crust, the response of the Europan surface to the tidal forces gives an indication of the depth of a possible subsurface ocean. Previous studies in this area have addressed the detection of tidal surface deformations through the analysis of the tidally induced orbital perturbations of a Europan orbiter. As a preliminary study in preparation for future missions to Europa, as in the LAPLACE proposal to the European Space Agency, the approach followed here is to introduce the presence of an onboard altimeter. In this study we then generate synthetic measurements taken from an altimeter-equipped, low-altitude orbiter, supplemented with Earth-based tracking of the orbiter. For simplicity, ground-tracking is simulated as a range data-type. Altimeter measurements are simulated using parameters based on available models for the interior of Europa derived from Galileo mission data. Reference orbits were obtained by numerical investigations of the dynamically unstable near-Europa environment. Orbits were found to be stable over periods of approximately one to three months at altitudes of 100 km and inclinations varying from 75 degrees to 105 degrees. The measurements are consequently simulated over a period of one to two months. Under the hypothesis that Europan gravity field information of sufficient accuracy has been obtained in the first phase of the mission, the simulations address the detection of the solid tide related Love parameters h2 and k2. Results of this sensitivity study will be presented for a variety of orbital configurations with the aim to help in the design of future Europa

  7. Near-infrared Brightness of the Galilean Satellites Eclipsed in Jovian Shadow: A New Technique to Investigate Jovian Upper Atmosphere

    CERN Document Server

    Tsumura, K; Egami, E; Hayano, Y; Honda, C; Kimura, J; Kuramoto, K; Matsuura, S; Minowa, Y; Nakajima, K; Nakamoto, T; Shirahata, M; Surace, J; Takahashi, Y; Wada, T

    2014-01-01

    We have discovered that Europa, Ganymede and Callisto are bright around 1.5 {\\mu}m even when not directly lit by sunlight, based on observations from the Hubble Space Telescope and the Subaru Telescope. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was $10^{-6}$-$10^{-7}$ of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 {\\mu}m, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 {\\mu}m by the Spitzer Space Telescope but it was not detected, suggesting a significant wavelength dependence. The reason why they are luminous even when in the Jovian shadow is still unknown, but forward-scattered sunlight by haze in the Jovian upper atmosphere is proposed as the most pla...

  8. Studies of outer planet satellites, Mercury and Uranus

    Science.gov (United States)

    Mckinnon, William B.; Schenk, Paul M.

    1987-01-01

    Arguments were made, based on geometry, for both an impact and an internal origin for the ancient, partially preserved furrow system of Ganymede. It was concluded that furrows were not concentric, but could be impact related if multiringed structures on icy satellites are initially noncircular. The geometry of the Valhalla ring structure on Callisto was examined in order to assess the circularity of an unmodified ring system. The Ganymede furrow system was remapped to make use of improvements in coordinate control. The least-squares center of curvature for all furrows in the Marius and Galileao Regio is -20.7, and 179.2 degrees. Furrows in Marius and Galileo Regio are reasonably concentric, and are much more circular than previously estimated. The perceived present nonalignment of the assumed originally concentric furrows were used to argue for large-scale lateral motion of dark terrain blocks in Ganymede's crust, presumably in association with bright terrain formation., The overall alignment of furrows as well as the inherent scatter in centers of curvature from subregions of Galileo and Marius do not support this hypothesis.

  9. Energetic neutral atoms emitted from ice by ion bombardment under Ganymede surface conditions

    Science.gov (United States)

    Wieser, Martin; Barabash, Stas; Futaana, Yoshifumi; Wurz, Peter

    2013-04-01

    Magnetospheric or solar wind ions directly interacting with a planetary surface result in backscattering or sputtering of energetic neutral atoms. One example is the solar wind interaction with the surface of the Moon, where the produced energetic neutral atoms were observed by the Sub-keV Atom Reflecting Analyzer instrument (SARA) on Chandrayaan-1. At Jupiter, magnetospheric plasma interacts in a similar way with the surface of the Galilean moons. However, the emission of energetic neutral atoms from "dirty" ices as found e.g. on Ganymede's surface is poorly understood. We set up an experiment to study the ion to surface interaction under Ganymede surface environment conditions using the unique capabilities of the MEFISTO test facility at University of Bern. Ions of various species and energies up to 33 keV/q were impacted on a block of ice made from a mixture of water, NaCl and dry ice. The energetic neutral atoms produced by the interaction were detected with the prototype of the Jovian Neutrals Analyzer instrument (JNA.) JNA is proposed as part of the Particle Environment Package (PEP) for ESA's JUICE mission to Jupiter and instrument is based on the Energetic Energetic Neutral Atom instrument (ENA) built for the BepiColombo Magnetospheric Orbiter. We present energy spectra for different ion beam species and energetic neutral atom species combinations. The data show high yields for energetic neutral atoms up to the upper end of the instrument energy range of 3.3 keV. The energy spectra of the neutral atom flux emitted from the ice could only partially be fitted by the Sigmund-Thompson formula. In some cases, but not all, a Maxwellian distribution provides a reasonable description of the data.

  10. Multi-Fluid Moment Simulations of Ganymede using the Next-Generation OpenGGCM

    Science.gov (United States)

    Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Raeder, J.

    2015-12-01

    We coupled the multi-fluid moment code Gkeyll[1,2] to the next-generation OpenGGCM[3], and studied the reconnection dynamics at the Ganymede. This work is part of our effort to tackle the grand challenge of integrating kinetic effects into global fluid models. The multi-fluid moment model integrates kinetic effects in that it can capture crucial kinetic physics like pressure tensor effects by evolving moments of the Vlasov equations for each species. This approach has advantages over previous models: desired kinetic effects, together with other important effects like the Hall effect, are self-consistently embedded in the moment equations, and can be efficiently implemented, while not suffering from severe time-step restriction due to plasma oscillation nor artificial whistler modes. This model also handles multiple ion species naturally, which opens up opportunties in investigating the role of oxygen in magnetospheric reconnection and improved coupling to ionosphere models. In this work, the multi-fluid moment solver in Gkeyll was wrapped as a time-stepping module for the high performance, highly flexible next-generation OpenGGCM. Gkeyll is only used to provide the local plasma solver, while computational aspects like parallelization and boundary conditions are handled entirely by OpenGGCM, including interfacing to other models like ionospheric boundary conditions provided by coupling with CTIM [3]. The coupled code is used to study the dynamics near Ganymede, and the results are compared with MHD and Hall MHD results by Dorelli et al. [4]. Hakim, A. (2008). Journal of Fusion Energy, 27, 36-43. Hakim, A., Loverich, J., & Shumlak, U. (2006). Journal of Computational Physics, 219, 418-442. Raeder, J., Larson, D., Li, W., Kepko, E. L., & Fuller-Rowell, T. (2008). Space Science Reviews, 141(1-4), 535-555. Dorelli, J. C., Glocer, A., Collinson, G., & Tóth, G. (2015). Journal of Geophysical Research: Space Physics, 120.

  11. An ice crystal model for jupiter's moon Europa

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; schmidt, Karen Guldbae

    2003-01-01

    A simple model for crystal growth in the ice shell of Europa has been made in order to estimate the size of ice crystals at Europa's surface. If mass is lost from the surface of Europa due to sputtering processes, and the ice thickness is constant in time, ice crystals will be transported upwards...... in the ice shell. The crystals will therefore grow under varying conditions through the shell.The model predicts that ice crystals are 4 cm-80 m across at the surface. For the preferred parameter values, a crystal size of the order of 7 m is calculated. Udgivelsesdato: 1 june...

  12. Plume and surface feature structure and compositional effects on Europa's global exosphere: Preliminary Europa mission predictions

    Science.gov (United States)

    Teolis, B. D.; Wyrick, D. Y.; Bouquet, A.; Magee, B. A.; Waite, J. H.

    2017-03-01

    A Europa plume source, if present, may produce a global exosphere with complex spatial structure and temporal variability in its density and composition. To investigate this interaction we have integrated a water plume source containing multiple organic and nitrile species into a Europan Monte Carlo exosphere model, considering the effect of Europa's gravity in returning plume ejecta to the surface, and the subsequent spreading of adsorbed and exospheric material by thermal desorption and re-sputtering across the entire body. We consider sputtered, radiolytic and potential plume sources, together with surface adsorption, regolith diffusion, polar cold trapping, and re-sputtering of adsorbed materials, and examine the spatial distribution and temporal evolution of the exospheric density and composition. These models provide a predictive basis for telescopic observations (e.g. HST, JWST) and planned missions to the Jovian system by NASA and ESA. We apply spacecraft trajectories to our model to explore possible exospheric compositions which may be encountered along proposed flybys of Europa to inform the spatial and temporal relationship of spacecraft measurements to surface and plume source compositions. For the present preliminary study, we have considered four cases: Case A: an equatorial flyby through a sputtered only exosphere (no plumes), Case B: a flyby over a localized sputtered 'macula' terrain enriched in non-ice species, Case C: a south polar plume with an Enceladus-like composition, equatorial flyby, and Case D: a south polar plume, flyby directly through the plume.

  13. Integracion monetaria, crisis y austeridad en Europa

    Directory of Open Access Journals (Sweden)

    Héctor Guillén Romo

    2011-01-01

    Full Text Available Partiendo de un análisis de la construcción neoliberal de la integración monetaria europea se analizan la crisis económica griega y las políticas de austeridad de corte hayekiano que se están utilizando para enfrentarla. Tras caracterizar teóricamente dichas políticas, se analiza cómo su generalización en Europa contribuye a profundizar la crisis europea comprometiendo la reactivación de la economía mundial. No obstante, la causa de la crisis es la pérdida de soberanía monetaria de cada país y el financiamiento del Estado se sustenta a través de los inversionistas financieros bancarios y no bancarios.

  14. Integracion monetaria, crisis y austeridad en Europa

    OpenAIRE

    2011-01-01

    Partiendo de un análisis de la construcción neoliberal de la integración monetaria europea se analizan la crisis económica griega y las políticas de austeridad de corte hayekiano que se están utilizando para enfrentarla. Tras caracterizar teóricamente dichas políticas, se analiza cómo su generalización en Europa contribuye a profundizar la crisis europea comprometiendo la reactivación de la economía mundial. No obstante, la causa de la crisis es la pérdida de soberanía monetaria de cada país ...

  15. Evolución de Europa

    Directory of Open Access Journals (Sweden)

    Mauro Cappelletti

    2015-10-01

    Full Text Available Traducción de Guillermo Tempesta, PhD Instituto Universitario Europeo; investigador de la Fundación JUS. Supervisión del Dr. Augusto Mario Morello.Disertación pronunciada por el académico correspondiente Dr. Mauro Cappelletti, en la Academia Nacional de Derecho y Ciencias de Buenos Aires, el 29 de julio de 1993.La información ha sido extraída del célebre tratado en dos volúmenes de HASTINGS RASHDALL, Las Universidades de Europa en LaEdad Media, l' edición, Oxford, Clarendon Press, 1885; 2' edición 1936, pp. 152-156, 178, 184 et passim. 

  16. Europa: Perspectives on an Ocean World

    Science.gov (United States)

    Singer, K. N.; McKinnon, W. B.; Pappalardo, R. T.; Khurana, K. K.

    2009-12-01

    Europa possesses an outer icy shell; this much has been clear since Voyager. That Europa’s shell is also floating is now generally accepted as well, thanks to observations by Galileo. The existence of a low density outer “H2O” layer, 80-170 km in thickness, seems well established. Magnetic induction evidence strongly suggests a conducting near-surface layer and/or interior — a saline ocean. Cycloidal ridges, originating as tidally driven cycloidal fractures, apparently formed in a stress regime dominated by diurnal tides, but could not form in a tidally flexing ice shell grounded to the silicate interior — again supporting decoupling by an ocean. These points are not seriously in contention. Beyond this there is less agreement, especially as to the thickness of the shell overlying the ocean, the icy shell’s composition and rheology, and whether the icy shell more-or-less responds passively to tidal strains and heating from Europa’s interior, or whether it plays a more active role by means of solid state convection. Europa poses many important scientific questions, but in short, how have Europa’s icy shell and ocean and rocky interior evolved through geological time, and most fundamentally, what astrobiological potential do the icy shell and ocean below possess? Impact crater counts indicate that Europa’s surface is youthful, with a nominal age of just 40-90 Myr, based on cometary bombardment models. Thus, if geological evidence suggests an ocean at the time Europa’s surface features formed, the ocean is probably still there today. Improvements in modeling of ice rheology, of convection, and of tidal heating now suggest that a convecting ice shell is compatible with an underlying ocean. Thermal models and geological observations (such as pit, uplift and small chaos diameters and depths or heights) both point to an ice shell ~20 km thick, with observational evidence for both a change in tectonic style and a secular decrease in geological activity

  17. Il volto cosmopolita dell’Europa

    Directory of Open Access Journals (Sweden)

    Anna Taglioli

    2010-05-01

    Full Text Available Il saggio intende leggere l’Europa attraverso il concetto di cosmopolitismo che ne riflette la natura, la storia e le possibilità future. Idea e ideale etico-normativo di comunanza e di apertura alla differenza la nozione si trasforma in modalità ibride nel corso della storia europea e permette di visualizzare le dinamiche di resistenza e di mutamento che vanno componendo il percorso di unificazione. Da imperativo e progetto razionale il cosmopolitismo va riconfigurandosi come nuova modalità percettiva, acquista un valore empirico-analitico in una realtà che sembra farsi strutturalmente cosmopolita e apre la riflessione sulle trasformazioni democratiche dell’Unione e sul ruolo che è chiamata ad assolvere per rispondere alla sfide della contemporaneità.

  18. Analytical model of Europa's O2 exosphere

    Science.gov (United States)

    Milillo, Anna; Plainaki, Christina; De Angelis, Elisabetta; Mangano, Valeria; Massetti, Stefano; Mura, Alessandro; Orsini, Stefano; Rispoli, Rosanna

    2016-10-01

    The origin of the exosphere of Europa is its water ice surface. The existing exosphere models, assuming either a collisionless environment (simple Monte Carlo techniques) or a kinetic approach (Direct Monte Carlo Method) both predict that the major constituent of the exosphere is molecular oxygen. Specifically, O2 is generated at the surface through radiolysis and chemical interactions of the water dissociation products. The non-escaping O2 molecules circulate around the moon impacting the surface several times, due to their long lifetime and due to their non- sticking, suffering thermalization to the surface temperature after each impact. In fact, the HST observations of the O emission lines proved the presence of an asymmetric atomic Oxygen distribution, related to a thin asymmetric molecular Oxygen atmosphere. The existing Monte Carlo models are not easily applicable as input of simulations devoted to the study of the plasma interactions with the moon. On the other hand, the simple exponential density profiles cannot well depict the higher temperature/higher altitudes component originating by radiolysis. It would thus be important to have a suitable and user-friendly model able to describe the major exospheric characteristics to use as a tool. This study presents an analytical 3D model that is able to describe the molecular Oxygen exosphere by reproducing the two-component profiles and the asymmetries due to diverse configurations among Europa, Jupiter and the Sun. This model is obtained by a non-linear fit procedure of the EGEON Monte Carlo model (Plainaki et al. 2013) to a Chamberlain density profile. Different parameters of the model are able to describe various exosphere properties thus allowing a detailed investigation of the exospheric characteristics. As an example a discussion on the exospheric temperatures in different configurations and space regions is given.

  19. Bright prospects for radar detection of Europa's ocean

    Science.gov (United States)

    Aglyamov, Yury; Schroeder, Dustin M.; Vance, Steven D.

    2017-01-01

    The surface of Europa has been hypothesized to include an ice regolith layer from hundreds of meters to kilometers in thickness. However, contrary to previous claims, it does not present a significant obstacle to searching for Europa's ocean with radar sounding. This note corrects prior volume scattering loss analyses and expands them to includes observational and thermo-mechanical constraints on pore size and regolith depth. This provides a more physically realistic range of potential ice-regolith volume-scattering losses for radar sounding observations of Europa's ice shell in the HF and VHF frequency bands. We conclude that, for the range of physical processes and material properties observed or hypothesized for Europa, volume scattering losses are not likely to pose a major obstacle to radar penetration.

  20. Energy Implications of Fragmentation Processes in Europa's Ice Shell

    Science.gov (United States)

    Walker, C. C.; Schmidt, B. E.

    2014-02-01

    We use fragmentation theory, commonly used in weapons/blast analysis, to study Europa's chaos terrain. We constrain the energy required within the ice shell for such features to form, as well as other material properties important for habitability.

  1. Europa Nostra medal Tartusse / Karin Hallas-Murula

    Index Scriptorium Estoniae

    Hallas-Murula, Karin, 1957-

    2002-01-01

    Alvar Aalto projekteeritud Tammekannu villa (1932) Tartus pälvis Europa Nostra medali, mis antakse eriti õnnestunult renoveeritud objektile. Villa renoveeriti soome arhitekti Tapani Mustoneni projekti järgi

  2. Precision and Accuracy of Topography Measurements on Europa

    Science.gov (United States)

    Greenberg, R.; Hurford, T. A.; Foley, M. A.; Varland, K.

    2007-03-01

    Reports of the death of the melt-through model for chaotic terrain on Europa have been greatly exaggerated, to paraphrase Mark Twain. They are based on topographic maps of insufficient quantitative accuracy and precision.

  3. Europa Nostra medal Tartusse / Karin Hallas-Murula

    Index Scriptorium Estoniae

    Hallas-Murula, Karin, 1957-

    2002-01-01

    Alvar Aalto projekteeritud Tammekannu villa (1932) Tartus pälvis Europa Nostra medali, mis antakse eriti õnnestunult renoveeritud objektile. Villa renoveeriti soome arhitekti Tapani Mustoneni projekti järgi

  4. The Europa Seismic Package (ESP): 2. Meeting the Environmental Challenge

    Science.gov (United States)

    Kedar, S.; Pike, W. T.; Standley, I. M.; Calcutt, S. B.; Bowles, N.; Blaes, B.; Irom, F.; Mojarradi, M.; Vance, S. D.; Bills, B. G.

    2016-10-01

    We outline a pathway for adapting the SP microseismometer delivered to InSight to provide a Europa Seismic Package that overcomes the three significant challenges in the environmental conditions, specifically gravity, temperature and radiation.

  5. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    Science.gov (United States)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Case, Anthony W.; Grey, Matthew P.; Kim, Cindy K.; Battista, Corina C.; Rymer, Abigail; Paty, Carol S.; Jia, Xianzhe; Stevens, Michael L.; Khurana, Krishan; Kivelson, Margaret G.; Slavin, James A.; Korth, Haje H.; Smith, Howard T.; Krupp, Norbert; Roussos, Elias; Saur, Joachim

    2016-10-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa.Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by

  6. Modeling of Stress Triggered Faulting at Agenor Linea, Europa

    Science.gov (United States)

    Nahm, A. L.; Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.

    2012-04-01

    To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Agenor Linea (AL), a ~1500 km long, E-W trending, 20-30 km wide zone of geologically young deformation located in the southern hemisphere of Europa which forks into two branches at its eastern end. The orientation of AL is consistent with tensile stresses resulting from long-term decoupled ice shell rotation (non-synchronous rotation [NSR]) as well as dextral shear stresses due to diurnal flexure of the ice shell. Its brightness and lack of cross-cutting features make AL a candidate for recent or current activity. Several observations indicate that right-lateral strike-slip faulting has occurred, such as left-stepping en echelon fractures in the northern portion of AL and the presence of an imbricate fan or horsetail complex at AL's western end. To calculate tidal stresses on Europa, we utilize SatStress, a numerical code that calculates tidal stresses at any point on the surface of a satellite for both diurnal and NSR stresses. We adopt SatStress model parameters appropriate to a spherically symmetric ice shell of thickness 20 km, underlain by a global subsurface ocean: shear modulus G = 3.5 GPa, Poisson ratio ν = 0.33, gravity g= 1.32 m/s2, ice density ρ = 920 kg/m3, satellite radius R= 1.56 x 103 km, satellite mass M= 4.8 x 1022 kg, semimajor axis a= 6.71 x 105 km, and eccentricity e= 0.0094. In this study we assume a coefficient of friction μ = 0.6 and consider a range of vertical fault depths zto 6 km. To assess shear failure at AL, we adopt a model based on the Coulomb failure criterion. This model balances stresses that promote and resist the motion of a fault, simultaneously accounting for both normal and shear tidal and NSR stresses, the coefficient of friction of ice, and additional stress at depth due to the overburden pressure. In this model, tidal shear stresses drive strike-slip motions

  7. Can the biogenicity of Europa's surfical sulfur be tested simultaneously with penetrators and ion traps?

    Science.gov (United States)

    Chela-Flores, J.; Bhattacherjee, A. B.; Dudeja, S.; Kumar, N.; Seckbach, J.

    2009-04-01

    with microbial mats—well understood in the context of the Antarctic dry valley lakes for the expulsion of a large quantity of sulfur—are used in tests on the icy surface of Europa, it is pertinent to evaluate the stopping-depth for the harsh radiation on the Europan surface. Recently, we have estimated the stopping-depth that should be probed by penetrators in proposed missions, such as LAPLACE, or in future projects. We find, in agreement with others (Greenberg, 2005), that beyond a few millimeters a penetrator would be testing biogeochemistry without any interference from radiation effects (Dudeja et al., 2009). Simultaneously with the penetrators there is an alternative suitable technology available. The isotopic S fractionation on the cloud surrounding Europa should reflect to a large extent the same biogenically-driven S fractionation that is taking place on the surface. We should recall that the origin of the cloud is due to particles that have been expelled by hypervelocity impacts of micrometeoroids on the surface. The instrumentation of ion-trap mass spectrometry has already been successfully completed for tests on a comet nucleus (the Ptolemy instrument and the Rosetta space mission). Ion traps have once again been in the planning stages for their eventual application in LAPLACE, or elsewhere (Todd et al., 2006; Taylor et al., 2007). Since the cloud around Europa is constantly being replenished by the above-mentioned micrometeorites, it would be reasonable to expect the cloud to mirror the large S-isotope deviations that may be caused locally by the assumed sulfate-reducing microorganisms. Consequently, dust detectors in orbit around this satellite should record similar large fluctuations of the Luria-Delbrück type that we have conjectured to take place on Europa's icy surface. This possibility has been explained in detail recently (Chela-Flores and Kumar, 2008). Consequently, we argue in favor that the instrumentation to be selected should include

  8. Mutual eclipses of J2 Europa by J1 Io observed at Yunnan Observatory in 2009

    Institute of Scientific and Technical Information of China (English)

    Xi-Liang Zhang; Zhong Liu

    2011-01-01

    Mutual events between natural satellites include mutual occultation and mutual eclipse.Mutual eclipse is another kind of mutual occultation as viewed from the center of the Sun instead of the Earth.Two mutual eclipses of J2 Europa by Jl Io (2009 Aug.28 and Sept.12) were observed at Yunnan Observatory during the PHEMU09 international campaign.We will calculate the astrometric data of these Galilean satellites by analyzing and fitting the light curves we obtained.The limb-darkening was considered during modeling the light intensity of eclipsed satellites in the penumbra zone,by taking the Lommel-Seeliger scattering law into account.Several dynamical quantities,such as the relative coordinates of the eclipsing satellite from the eclipsed one △α cos δ and △δ,impact parameter and mid-time corresponding to the impact parameter and the deviations O - C of observed △α cos δ and △δ relative to ephemerides,were obtained for each event respectively.

  9. Engineering a Solution to Jupiter Exploration

    Science.gov (United States)

    Clark, Karla; Magner, Thomas; Lisano, Michael; Pappalardo, Robert

    2010-01-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) explore Europa to investigate its habitability, (2) characterize Ganymede as a planetary object including its potential habitability and (3) explore the Jupiter system as an archetype for gas giants. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with conceptual orbiters developed by NASA and ESA. The baseline EJSM architecture consists of two primary elements operating simultaneously in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most importantly, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM baseline architecture would provide opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and stand

  10. Understanding the Variability of Europa's Interaction with the Jovian Magnetosphere

    Science.gov (United States)

    Khurana, Krishan; Jia, Xianzhe; Paranicas, Chris; Cassidy, Timothy; Hansen, Kenneth

    2014-05-01

    Field and plasma observations from the vicinity of Europa by the Galileo spacecraft show that Europa's response to the corotating field and plasma impinging on it is binary in nature. Galileo successfully encountered Europa 10 times during its mission. During nine of these flybys, the interaction between Europa and Jupiter was observed to be fairly modest. The modeling of magnetic data from these flybys shows that the interaction currents were in the range of 0.5 MA and the plasma addition to the corotating flow was between 2 - 8 kg/s. However, during one of the flybys, namely E12, the field and plasma perturbations were observed to be extremely large. During this flyby, the magnetic field was observed to almost double in strength from its nominal value of 450 nT. The plasma density in the environment was also extremely high during this flyby (exceeding 800 particles/cm-3 compared to the nominal values of 50-100 particles/cm3 expected near Europa's orbit). The energetic ion fluxes on the other hand were seen to drop significantly in count presumably from ion losses and cooling in Europa's environment. In order to understand the two interaction states of Europa observed so far, we have now developed quantitative 3-D MHD models of plasma interactions of Europa with Jupiter's magnetosphere. In these models we include the effects of plasma pick-up and plasma interaction with a realistic exosphere as well as the contribution of the electromagnetic induction. We will present results of these quantitative models and show that the plasma interaction is strongest when Europa is located at the center of Jupiter's current sheet. We find that plasma mass loading rates are extremely variable over time. We will investigate various mechanisms by which such variability in mass-loading could be produced including episodically enhanced sputtering from trapped gaseous molecules in ice and enhanced plasma interaction with a vent(s) generated dense exosphere. The new model will aid

  11. The Earth transiting the Sun as seen from Jupiter's moons: detection of an inverse Rossiter-McLaughlin effect produced by the opposition surge of the icy Europa

    Science.gov (United States)

    Molaro, P.; Barbieri, M.; Monaco, L.; Zaggia, S.; Lovis, C.

    2015-10-01

    We report on a multiwavelength observational campaign which followed the Earth's transit on the Sun as seen from Jupiter on 2014 January 2014. Simultaneous observations of Jupiter's moons Europa and Ganymede obtained with high accuracy radial velocity planetary searcher (HARPS) from La Silla, Chile and HARPS-N from La Palma, Canary Islands were performed to measure the Rossiter-McLaughlin effect due to the Earth's passage using the same technique successfully adopted for the 2012 Venus Transit. The expected modulation in radial velocities was of ≈20 cm s-1 but an anomalous drift as large as ≈38 m s-1, i.e. more than two orders of magnitude higher and opposite in sign, was detected instead. The consistent behaviour of the two spectrographs rules out instrumental origin of the radial velocity drift and Birmingham Solar Oscillations Network observations rule out the possible dependence on the Sun's magnetic activity. We suggest that this anomaly is produced by the opposition surge on Europa's icy surface, which amplifies the intensity of the solar radiation from a portion of the solar surface centred around the crossing Earth which can then be observed as a sort of inverse Rossiter-McLaughlin effect. in fact, a simplified model of this effect can explain in detail most features of the observed radial velocity anomalies, namely the extensions before and after the transit, the small differences between the two observatories and the presence of a secondary peak closer to Earth passage. This phenomenon, observed here for the first time, should be observed every time similar Earth alignments occur with rocky bodies without atmospheres. We predict that it should be observed again during the next conjunction of Earth and Jupiter in 2026.

  12. Flujos migratorios hacia Europa: actualidad y perspectivas

    Directory of Open Access Journals (Sweden)

    Cabré, Anna

    2002-06-01

    Full Text Available Not available

    De los 376 millones de habitantes que en 2000 registraba Eurostat como residentes en los quince países de la Unión Europea, aproximadamente 18,5 tenían nacionalidad extranjera, lo que representaba el 5% del total, entre ellos 13 millones eran de nacionalidad de países extracomunitarios, ascendiendo el porcentaje al 3,5% del total, a esos datos se debería añadir una bolsa de inmigrantes no contabilizados de difícil estimación, pero que en todo caso en conjunto no rebasaría el 7% de la población residente en la Unión. Dicha población de nacionalidad extranjera se ha incrementado notablemente durante la década de los noventa a consecuencia de la aceleración de los flujos migratorios destinados a Europa, con alrededor de 700 mil de entradas anuales (Eurostat, 2000.

  13. DSMC simulation of Europa water vapor plumes

    Science.gov (United States)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  14. Tírez lake as a terrestrial analog of Europa.

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Rodríguez, Nuria; Kargel, Jeffrey S; Kessler, Carola González; Amils, Ricardo; Remolar, David Fernández

    2003-01-01

    Tírez Lake (La Mancha, central Spain) is proposed as a terrestrial analogue of Europa's ocean. The proposal is based on the comparison of the hydrogeochemistry of Tírez Lake with the geochemical features of the alteration mineralogy of meteoritic precursors and with Galileo's Near Infrared Mapping Spectrometer data on Europa's surface. To validate the astrobiological potential of Tírez Lake as an analog of Europa, different hydrogeochemical, mineral, and microbial analyses were performed. Experimental and theoretical modeling helped to understand the crystallization pathways that may occur in Europa's crust. Calculations about the oxidation state of the hypothetical Europan ocean were estimated to support the sulfate-rich neutral liquid model as the origin of Europa's observed hydrated minerals and to facilitate their comparison with Tírez's hydrogeochemistry. Hydrogeochemical and mineralogical analyses showed that Tírez waters corresponded to Mg-Na-SO(4)-Cl brines with epsomite, hexahydrite, and halite as end members. A preliminary microbial ecology characterization identified two different microbial domains: a photosynthetically sustained community represented by planktonic/benthonic forms and microbial mat communities, and a subsurficial anaerobic realm in which chemolithotrophy predominates. Fluorescence in situ hybridization has been used to characterize the prokaryotic diversity of the system. The subsurficial community seemed to be dominated by sulfate-reducing bacteria and methanogens. Frozen Tírez brines were analyzed by Fourier-transform infrared techniques providing spectra similar to those reported previously using pure components and to the Galileo spectral data. Calorimetric measurements of Tírez brines showed pathways and phase metastability for magnesium sulfate and sodium chloride crystallization that may aid in understanding the processes involved in the formation of Europa's icy crust. The use of fluorescence hybridization techniques for

  15. A Search for Signs of Life and Habitability on Europa

    Science.gov (United States)

    McKay, C. P.; Eicken, H.; Neuer, S.; Sogin, M.; Waite, H.; Warmflash, D.

    2003-12-01

    Europa is a key target in the search for life beyond the Earth because of consistent evidence that below the icy surface there is liquid water. Future missions to Europa could confirm the presence and nature of the ocean and determine the thickness of the ice layer. Confirming the presence of an ocean and determining the habitability of Europa are key astrobiology science objectives. Nevertheless, the highest priority objective for astrobiology will be a search for life. How could a search for life be accomplished on a near-term mission given the thick ice cover? One answer may lie in the surface materials. If Europa has an ocean, and if that ocean contains life, and if water from the ocean is carried up to the surface, then signs of life may be contained in organic material on the surface. Organics that derive from biological processes (dead organisms) are distinct from organics derived from non-biological processes in several aspects. First, biology is selective and specific in its use of molecules. For example, Earth life uses 20 left-handed amino acids. Second, biology can leave characteristic isotopic patterns. Third, biology often produces large complex molecules in high concentrations, for example lipids. Organic material that has been on the surface of Europa for long periods of time would be reprocessed by the strong radiation field probably erasing any signature of biological origin. Evidence of life in the ocean may be found on the surface of Europa if regions of the surface contained relatively recent material carried up from the ocean through cracks in the icy lithosphere. But organic material that has been on the surface of Europa for long periods of time would be reprocessed by the strong radiation field probably erasing any signature of biological origin. Thus, the detailed analysis required may not be possible via remote sensing but direct sampling of the material below the radiation processed upper meter is probably required.

  16. Far-infrared photometric observations of the outer planets and satellites with Herschel-PACS

    CERN Document Server

    Müller, T G; Nielbock, M; Moreno, R; Klaas, U; Moór, A; Linz, H; Feuchtgruber, H

    2016-01-01

    We present all Herschel PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The derived flux densities are tied to the standard PACS photometer response calibration, which is based on repeated measurements of five fiducial stars. The overall absolute flux uncertainty is dominated by the estimated 5% model uncertainty of the stellar models in the PACS wavelength range between 60 and 210 micron. A comparison with the corresponding planet and satellite models shows excellent agreement for Uranus, Neptune, and Titan, well within the specified 5%. Callisto is brighter than our model predictions by about 4-8%, Ganymede by about 14-21%. We discuss possible reasons for the model offsets. The measurements of these very bright point-like sources, together with observations of stars and asteroids, show the high reliability of the PACS photometer observation...

  17. A Europa do Conhecimento e da Aprendizagem: Principais Comportamentos espaciais da "Europa dos 27"

    Directory of Open Access Journals (Sweden)

    Rui Jorge Gama Fernandes

    2012-10-01

    Full Text Available No contexto da nova economia do conhecimento e da aprendizagem, a Europa tem procurado novos paradigmas de desenvolvimento como resposta a novas diferenciações espaciais entre países com lógicas contextuais diferentes. No sentido de se perceber as dinâmicas dos países da Europa a 27, é central analisar um conjunto de indicadores que permitam refletir sobre as trajetórias relacionadas com o conhecimento, a inovação e as tecnologias de informação e comunicação (TIC. Procura-se assim entender os diferentes padrões espaciais a partir de um conjunto de dimensões e indicadores, identificando comportamentos comuns com base num tratamento estatístico multivariado. Utiliza-se uma análise fatorial de componentes principais e uma análise classificatória, para se encontrar fatores que traduzam não só a tendência dos padrões espaciais com características semelhantes, procurando refletir sobre o papel das políticas de desenvolvimento regional.

  18. Analysis of Preferred Directions in Phase Space for Tidal Measurements at Europa

    Science.gov (United States)

    Boone, D.; Scheeres, D. J.

    2012-12-01

    The NASA Jupiter Europa Orbiter mission requires a circular, near-polar orbit to measure Europa's Love numbers, geophysical coefficients which give insight into whether a liquid ocean exists. This type of orbit about planetary satellites is known to be unstable. The effects of Jupiter's tidal gravity are seen in changes in Europa's gravity field and surface deformation, which are sensed through doppler tracking over time and altimetry measurements respectively. These two measurement types separately determine the h and k Love numbers, a combination of which bounds how thick the ice shell of Europa is and whether liquid water is present. This work shows how the properties of an unstable periodic orbit about Europa generate preferred measurement directions in position and velocity phase space for the orbit determination process. We generate an error covariance over seven days for the orbiter state and science parameters using a periodic orbit and then disperse the orbit initial conditions in a Monte Carlo simulation according to this covariance. The dispersed orbits are shown to have a bias toward longer lifetimes and we discuss this as an effect of the stable and unstable manifolds of the periodic orbit. Using an epoch formulation of a square-root information filter, measurements aligned with the unstable manifold mapped back in time add more information to the orbit determination process than measurements aligned with the stable manifold. This corresponds to a contraction in the uncertainty of the estimate of the desired parameters, including the Love numbers. We demonstrate this mapping mathematically using a representation of the State Transition Matrix involving its eigenvectors and eigenvalues. Then using the properties of left and right eigenvectors, we show how measurements in the orbit determination process are mapped in time leading to a concentration of information at epoch. We present examples of measurements taken on different time schedules to show the

  19. Europa Habitability and Extant Life Exploration with Combined Flyby-Lander-Orbiter Mission

    Science.gov (United States)

    Blanc, M.; Jones, G.; Prieto-Ballesteros, O.; Mimoun, D.; Masters, A.; Kempf, S.; Iess, L.; Martins, Z.; Lorenz, R.; Lasue, J.; Andre, N.; Bills, B. G.; Choblet, G.; Collins, G.; Cremonese, G.; Garnier, P.; Hand, K.; Hartogh, P.; Khurana, K. K.; Stephan, K.; Tosi, F.; Vance, S. D.; van Hoolst, T.; Westall, F.; Wolwerk, M.; Cooper, J. F.; Sittler, E. C.; Brinckerhoff, W.; Hurford, T.; Europa Initiative

    2016-10-01

    The optimal configuration for investigation of habitability and any extant life at Europa would be a combined constellation of flyby, lander, and orbiter spacecraft. The Europa Initiative is designing a small orbiter as part of this constellation.

  20. The Plasma Instrument for Magnetic Sounding (PIMS) for the Europa Mission

    Science.gov (United States)

    Westlake, J. H.; McNutt, R. L.; Kasper, J. C.; Case, A. W.; Rymer, A. M.; Stevens, M. L.; Jia, X.; Paty, C.; Khurana, K. K.; Kivelson, M. G.; Slavin, J. A.; Smith, H. T.; Korth, H.; Krupp, N.; Roussous, E.; Saur, J.

    2016-10-01

    We present the Plasma Instrument for Magnetic Sounding (PIMS) selected for the Europa Mission. We specifically address how PIMS plasma measurements will improve the accuracy of magnetic sounding of Europa's subsurface ocean.

  1. The Europa Seismic Package (ESP): 1. Selecting a Broadband Microseismometer for Ocean Worlds.

    Science.gov (United States)

    Pike, W. T.; Standley, I. M.; Calcutt, S. B.; Kedar, S.; Vance, S. D.; Bills, B. G.

    2016-10-01

    We summarize the requirements that would enable a seismic system to provide a probe of the habitability of Europa and introduce a candidate microseismometer for a Europa Seismic Package, comparing to potential competitor technologies.

  2. Exogenic and endogenic albedo and color patterns on Europa

    Science.gov (United States)

    Mcewen, A. S.

    1986-01-01

    New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.

  3. Salts and radiation products on the surface of Europa

    CERN Document Server

    Brown, M E

    2013-01-01

    The surface of Europa could contain the compositional imprint of a underlying interior ocean, but competing hypotheses differ over whether spectral observations from the Galileo spacecraft show the signature of ocean evaporates or simply surface radiation products unrelated to the interior. Using adaptive optics at the W.M. Keck Observatory, we have obtained spatially resolved spectra of most of the disk of Europa at a spectral resolution ~40 times higher than seen by the Galileo spacecraft. These spectra show a previously undetected distinct signature of magnesium sulfate salts on Europa, but the magnesium sulfate is confined to the trailing hemisphere and spatially correlated with the presence of radiation products like sulfuric acid and SO2. On the leading, less irradiated, hemisphere, our observations rule out the presence of many of the proposed sulfate salts, but do show the presence of distorted water ice bands. Based on the association of the potential MgSO4, detection on the trailing side with other ...

  4. Energy, chemical disequilibrium, and geological constraints on Europa.

    Science.gov (United States)

    Hand, Kevin P; Carlson, Robert W; Chyba, Christopher F

    2007-12-01

    Europa is a prime target for astrobiology. The presence of a global subsurface liquid water ocean and a composition likely to contain a suite of biogenic elements make it a compelling world in the search for a second origin of life. Critical to these factors, however, may be the availability of energy for biological processes on Europa. We have examined the production and availability of oxidants and carbon-containing reductants on Europa to better understand the habitability of the subsurface ocean. Data from the Galileo Near-Infrared Mapping Spectrometer were used to constrain the surface abundance of CO(2) to 0.036% by number relative to water. Laboratory results indicate that radiolytically processed CO(2)-rich ices yield CO and H(2)CO(3); the reductants H(2)CO, CH(3)OH, and CH(4) are at most minor species. We analyzed chemical sources and sinks and concluded that the radiolytically processed surface of Europa could serve to maintain an oxidized ocean even if the surface oxidants (O(2), H(2)O(2), CO(2), SO(2), and SO(4) (2)) are delivered only once every approximately 0.5 Gyr. If delivery periods are comparable to the observed surface age (30-70 Myr), then Europa's ocean could reach O(2) concentrations comparable to those found in terrestrial surface waters, even if approximately 10(9) moles yr(1) of hydrothermally delivered reductants consume most of the oxidant flux. Such an ocean would be energetically hospitable for terrestrial marine macrofauna. The availability of reductants could be the limiting factor for biologically useful chemical energy on Europa.

  5. In Pursuit of Analogs for Europa's Dynamics & Potential Habitats

    Science.gov (United States)

    Schmidt, Britney E.; Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.

    2010-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for imaging these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successfully deployed at Earth's Moon and Mars. It is a distinct possibility that water within or just below the ice on Europa has played a role in forming some of its dynamic terrain. Observations of rotated blocks and dark floor materials may suggest that brines existed in the near subsurface and enabled the formation of such features. The University of Texas High Capability Airborne Radar Sounder (HiCARS) developed to study Antarctic ice sheet dynamics has been configured to test observation scenarios for Europa. We discuss recent results from the 60 MHz HiCARS system over brine infiltrated Antarctic marine ice as an analog for processes affecting the formation of pits and chaos. Basal melt occurring below terrestrial marine ice is directly analogous to processes that may operate on Europa if the shell is "thin,” and will be similar to processes occurring instead within the ice sheet in the case of a thicker, multi-layer ice sheet where enriched brines may remain liquid within the shell. A key site for further investigation of conductive and "convective” ices is found in the polythermal glaciers in the Arctic, and the case for this exploration will be illuminated.

  6. A semi-analytical model for exploring Galilean satellites formation from a massive disk

    CERN Document Server

    Miguel, Yamila

    2015-01-01

    A better knowledge of Jovian satellites' origins will bring light on the environment that surrounded Jupiter during its formation and can help us to understand the characteristics of this unique satellite system. We developed a semi-analytical model to investigate Jupiter's regular satellite formation and present the results of our population synthesis calculations. We performed simulations adopting a massive, static, low-viscosity circumplanetary disk model, in agreement with a current study of magnetorotational instability in a circum-planetary disk. We find that the high gas density leads to very rapid migration of satellitesimals due to gas drag and type II migration of satellites in a faster disk-dominated mode. A large concentration of solids, large building blocks and longer type II migration time-scales favor formation and survival of large satellites. However, bodies as massive as Ganymede and those located far away from Jupiter, such as Callisto, are difficult to form with this scenario.

  7. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  8. On the formation of the atmosphere of Europa

    Science.gov (United States)

    Liang, Mao-Chang; Shemansky, D. E.; Yung, Yuk

    2016-10-01

    Europa was observed to possess spatiotemporal variability in water above the surface. In addition, there were reports of a tenuous atmosphere that interacts with the magnetospheric plasma. To explain the presence of an ionosphere in a thin atmosphere, we developed a photochemistry-transport model that includes ion-neutral chemistry and diffusive transport. We examine sources of neutrals from Europa's surface geophysical activity and from ion sputtering at the surface by particles from the Jovian magnetosphere. Sensitivity of the results to the surface and magnetospheric activities is presented and discussed.

  9. "Sniffing" Jupiter's moon Europa through ground-based IR observations

    Science.gov (United States)

    Paganini, Lucas; Mumma, Michael J.; Hurford, Terry; Roth, Lorenz; Villanueva, Geronimo Luis

    2016-10-01

    The ability to sample possible plumes from the subsurface ocean in Europa represents a major step in our search for extraterrestrial life. If plumes exist, sampling the effluent material would provide insights into their chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. Most of the difficulties in detecting plumes come from the less frequent observational coverage of Europa, which contrasts strongly with the frequent Cassini flybys of Enceladus (Spencer & Nimmo 2013). Recent observations have been taken with HST/STIS in 2014/2015, but results have shown no evident confirmation of the 2012 plume detection (Roth et al. 2014, 2015). Future in situ observations (Europa Mission) will provide definitive insights, but not before the spacecraft's arrival in ~2025, thus an interim approach is needed to inform such space mission planning and to complement existing observations at other wavelengths.In 2015, we initiated a strong campaign to build a comprehensive survey of possible plumes on Europa through high-resolution IR spectroscopy with Keck/NIRSPEC. We were awarded 10 nights out of 15 total nights available for Key Strategic Mission Support projects for the 2016A, 2016B, 2017A, and 2017B semesters under NASA time with the Keck Observatory. In 2016A, we observed Europa during 10 half-nights and will continue to do so for another 10 half-nights in 2017A. We target a serendipitous search of gaseous activity from Europa to confirm and constrain the chemical composition of possible Europan plumes that can aid the investigation of physical processes underlying (or on) its surface. Ultimately, we seek to: (1) provide information that can inform planning for NASA's Europa mission, (2) further our current understanding of Europa's gas environment, and (3) complement studies that are currently underway with other facilities (like the Hubble Space Telescope). In this presentation, we will discuss preliminary results

  10. Historia contemporánea de Europa. Siglo XX

    OpenAIRE

    Samaniego Boneu, Mercedes

    2009-01-01

    Materiales de clase: 1. I. 1900-1919: LA RUPTURA DEL EQUILIBRIO DE PODERES. Tema 1: La expansión mundial del gran capitalismo y sus consecuencias.El fracaso del pacifismo y la explosión de conflictos político-sociales. La I guerra mundial; Tema 2: La Revolución rusa y la construcción del Estado socialista; 2. II. 1919-1945: LA EUROPA DE ENTREGUERRAS Y LAS NUEVAS TENSIONES. Tema 3: La reconstrucción de Europa. Los felices años veinte ; Tema 4: La crisis de las democracias parlamentarias; Tema...

  11. Sulfuric acid on Europa and the radiolytic sulfur cycle

    Science.gov (United States)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  12. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    Science.gov (United States)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  13. Unmasking Europa the search for life on Jupiter's ocean moon

    CERN Document Server

    Greenberg, Richard

    2008-01-01

    Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a f

  14. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  15. How do the physical properties of ice influence the habitability of outer solar system satellites? (Invited)

    Science.gov (United States)

    Nimmo, F.

    2009-12-01

    A possible definition of a habitable environment is one that has liquid water, a range of suitable prebiotic compounds (however defined), and a source of energy. An ocean-bearing icy satellite can provide the first two quite easily, as well as giving protection from radiation. The third requirement is most readily provided by redox reactants, which may arise from hydrothermal activity, solar ultraviolet radiation, or impacts [1-4]. Reactants produced at the surface must thus be transported through the ice shell to the underlying liquid, while hydrothermal activity requires contact between hot silicates and the ocean. Large satellites, such as Ganymede, possessing denser ice phases beneath the ocean are thus less plausibly habitable. As far as ice properties are concerned, there are two key issues. The first is the ability of ice to insulate an underlying ocean, thus controlling its lifetime. This depends on whether the ice is convecting (which in turn depends on grain size, shell thickness, basal temperature etc. [5]), the extent to which the ice shell is tidally heated, and the thermal conductivity of the ice (clathrates are good insulators [6]). For instance, Enceladus is sufficiently small that its putative ocean is expected to freeze on timescales of tens of Myr [7], reducing its potential habitability. On the other hand, ice shells above ammonia-rich oceans are likely to have lower basal temperatures and thus freeze more slowly [8]. The second issue is the extent to which the ice allows communication between the surface and subsurface. Getting material from the surface to the ocean, or vice versa, is difficult because convecting ice typically has a thick, stagnant lid [9]. But there may be situations in which this stagnant lid does not occur, for instance if the ice has a low yield strength. Brittle failure might also allow communication between the ocean and the surface [9] (as appears to happen at Enceladus [10]), while melt production due to shear heating

  16. A technique for processing of planetary images with heterogeneous characteristics for estimating geodetic parameters of celestial bodies with the example of Ganymede

    Science.gov (United States)

    Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.

    2016-09-01

    The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).

  17. Una rete nell’Europa medievale

    Directory of Open Access Journals (Sweden)

    Ester Brambilla Pisoni

    2012-06-01

    Full Text Available La diffusione del libro nel Medioevo potrebbe essere riletta alla luce di una metafora attuale sebbene non scevra di aspetti dialettici: quella della “rete”. All’ubicazione spazio-temporale del libro nei monasteri medievali, contraddistinta da fisicità e permanenza, si sotituisce oggi un formato digitale e virtuale, che porta ad una sorta di decontestualizzazione e alla continuità del flusso di informazioni, contribuendo alla diffusione capillare del sapere. L’ottica di universalità e globalità accomuna tuttavia entrambe le epoche. Alcuni concetti-chiave dell’informatica potrebbero infatti declinarsi in ambito medievale: Server-Client per la raccolta, la conservazione e la trasmissione delle conoscenze da parte dei monasteri, quali centri del sapere in Europa, agli uomini di cultura; Firewall, per alludere alla necessità di tutelare i manoscritti, mediante la copiatura e la diffusione dei codici; Community, ad indicare non solo la comunità religiosa o monastica in senso stretto, bensì l’apertura ad una costruzione del sapere mediante un’azione partecipativa. I problemi dell’autenticità delle fonti, dell’acriticità delle informazioni e la pratica delle citazioni trovano un precedente significativo nelle Sententiae di Pietro Lombardo: una sorta di “biblioteca virtuale” grazie alla collezione di passi dalla Sacra Scrittura e da fonti latine e greche, paragonabile a un moderno modello enciclopedico di sapere. The diffusion of the book in the Middle Ages could be critically read through a modern metaphor: the “net”. The space-temporal coordinates of the book shift from being physical and permanent in the Medieval monasteries, to being de-contextualized and continue in the flow of information of digital and virtual format. However the universal and global perspective is common to the contemporary and the Medieval periods. In fact some key-words of computer science could be applied to the Medieval context: Server

  18. Mid-IR Spectral Search for Salt SIgnatures on Europa

    Science.gov (United States)

    Becker, Tracy M.; Retherford, Kurt D.; Hanley, Jennifer; Greathouse, Thomas K.; Tsang, Constantine; Roth, Lorenz

    2016-10-01

    We present mid-IR spectra of Europa's leading and trailing hemispheres obtained with the NASA IRTF/TEXES instrument on March 28 and March 30, 2015. The observations span from ~10 - 11 microns with a resolving power of R ~2500. Few observations of Europa have been made at these wavelengths, and the high spectral resolution of the instrument enables the identification of distinguishing spectral features in this relatively unexplored bandpass. While the leading hemisphere of Europa consists of relatively pure water ice, the trailing hemisphere's surface contains a mix of ice and some other component, causing the surface to appear reddish at visible wavelengths. We compare the spectra from the trailing hemisphere with those from the leading, pure-ice hemisphere and with recent laboratory measurements of chlorinated salts, which have distinct spectral signatures at these wavelengths. We find that the signal obtained from Europa's leading hemisphere is 5-10 times lower than the signal obtained from the trailing hemisphere, likely due to a temperature difference between the hemispheres. We discern several spectral features that are present in the trailing hemisphere but not in the spectra of the leading hemisphere, though the explanation for these features is not yet apparent.

  19. Europa Cinemas auhindas Sõpruse kino / Katrin Rajasaare ; interv. Annika Koppel

    Index Scriptorium Estoniae

    Rajasaare, Katrin

    2005-01-01

    Euroopa ja Vahemere regiooni kinopidajaid ühendav organisatsioon Europa Cinemas kuulutas Sõpruse kino aasta parimaks noorsooürituste korraldamise kategoorias. Oma tööst räägib Sõpruse juht, kes käis ka 18. nov. Budapestis auhinda vastu võtmas

  20. Kontrol af konventionelle våben i Europa

    DEFF Research Database (Denmark)

    Hoffmann, Rune; Kierulf, John; Pradhan-Blach, Flemming

    Rapporten indledes med en historisk gennemgang af tilblivelsen og udviklingen af Traktat om Konventionelle Væbnede Styrker i Europa (CFE), som blev iværksat af NATO og det tidligere Warszawapagten i 1973. Traktaten fastsætter et loft for antallet af kampvogne, pansrede kampkøretøjer, artilleripje...

  1. Azione/Reazione: il futurismo in Belgio e in Europa

    Directory of Open Access Journals (Sweden)

    Günter Berghaus

    2013-12-01

    Full Text Available Recensione di: Bart van den Bossche, Giuseppe Manica & Carmen Van den Bergh (a cura di, Azione/ Reazione: Il futurismo in Belgio e in Europa. Atti del Convegno Internazionale Bruxelles/Lovanio, 19-20 novembre 2009, Firenze, Franco Cesati Editore, 2012, 336 p., ISBN:9788876674372, € 30,00.

  2. Europa Cinemas auhindas Sõpruse kino / Katrin Rajasaare ; interv. Annika Koppel

    Index Scriptorium Estoniae

    Rajasaare, Katrin

    2005-01-01

    Euroopa ja Vahemere regiooni kinopidajaid ühendav organisatsioon Europa Cinemas kuulutas Sõpruse kino aasta parimaks noorsooürituste korraldamise kategoorias. Oma tööst räägib Sõpruse juht, kes käis ka 18. nov. Budapestis auhinda vastu võtmas

  3. CRISI E RINASCITA DELL'EUROPA: ECHI DEL DIBATTITO FENOMENOLOGICO

    Directory of Open Access Journals (Sweden)

    Michele Lenoci

    2014-01-01

    Full Text Available Il saggio, attraverso un'analisi delle riflessioni di Husserl e Scheler, si propone di esaminare la loro concezione sull'Europa e la tradizione culturale europea, mettendo in rilievo l'evoluzione e lo sviluppo delle loro posizioni avanti e dopo la prima Guerra mondiale.

  4. La apatridia y la crisis de refugiados en Europa

    OpenAIRE

    Berényi, Katalin

    2016-01-01

    La Unión Europea debe emitir una directiva sobre estándares comunes para los procedimientos de determinación de la apatridia para así mitigar los impactos particulares de esta condición en el contexto de la continua crisis de refugiados en Europa.

  5. Kontrol af konventionelle våben i Europa

    DEFF Research Database (Denmark)

    Hoffmann, Rune; Kierulf, John; Pradhan-Blach, Flemming

    Rapporten indledes med en historisk gennemgang af tilblivelsen og udviklingen af Traktat om Konventionelle Væbnede Styrker i Europa (CFE), som blev iværksat af NATO og det tidligere Warszawapagten i 1973. Traktaten fastsætter et loft for antallet af kampvogne, pansrede kampkøretøjer, artilleripje......Rapporten indledes med en historisk gennemgang af tilblivelsen og udviklingen af Traktat om Konventionelle Væbnede Styrker i Europa (CFE), som blev iværksat af NATO og det tidligere Warszawapagten i 1973. Traktaten fastsætter et loft for antallet af kampvogne, pansrede kampkøretøjer......, artilleripjecer, kampfly og angrebshelikoptere med udstyr i Europa. Efter opløsningen af Warszawapagten og Sovjetunionen blev deltagerlandene i 1996 enige om at ændre CFE-strukturen. Der blev derfor udformet en tilpasning af traktaten for at imødekomme den ændrede geopolitiske situation i Europa. Ændringen er...... aldrig formelt trådt i kraft, og i 2007 besluttede Rusland at suspendere landets deltagelse i den oprindelige CFE-traktat, indtil alle NATO-landene havde ratificeret tilpasningsaftalen. Rusland har i skrivende stund stadig ikke ophævet sin suspension, og siden 2007 har der fra forskellig side været...

  6. The Europa Imaging System (EIS), a Camera Suite to investigate Europa's Geology, Ice Shell, and Potential for Current Activity

    Science.gov (United States)

    Turtle, E. P.; McEwen, A. S.; Osterman, S. N.; Boldt, J. D.; Strohbehn, K.; EIS Science Team

    2016-10-01

    EIS NAC and WAC use identical rad-hard rapid-readout 4k × 2k CMOS detectors for imaging during close (≤25 km) fast ( 4.5 km/s) Europa flybys. NAC achieves 0.5 m/pixel over a 2-km swath from 50 km, and WAC provides context pushbroom stereo imaging.

  7. Energy efficiency in Europa-Park by intelligent ventilation control; Energieeffizienz im Europa-Park durch intelligente Lueftungsregelung

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Edgar [CentraLine c/o Honeywell GmbH, Schoenaich (Germany)

    2010-07-01

    With more than 100 attractions and many shows on a floor space of nearly 85 ha, Europa-Park Rust is Germany's biggest and most forward pleasure ground, both in terms of size and attractivity as well as in terms of energy efficiency. In addition to heat pumps and solar systems, the park also has smart control systems. (orig.)

  8. Hydrothermal synthesis of hydrocarbons at low temperature. Implications for sustaining a biosphere in Europa

    Science.gov (United States)

    Navarro-Gonzalez, Rafael; Montoya, Lilia; Davis, Wanda; McKay, Chris

    Observational evidence from Earth-borne systems and space missions as well as theoretical arguments suggest that Jupiter's satellite Europa could be geologically active today and may possess an ocean of liquid water of about 100 km deep underneath the icy surface about 10 km thickness. The existence of an aqueous ocean is an important requirement for life, as we know it. However, a biosphere also depends of an adequate energy source to drive the most fundamental biological processes such as metabolism, growth, reproduction, etc. Methanogenesis associated with hydrothermal vents may potentially drive a biosphere in an European ocean. We report here on the production of a large variety of hydrocarbons in hydrothermal systems at low temperatures (150° C). The chemical composition of the hydrothermal vent gases was derived from a thermochemical model that assumes that Europa had a cometary (solar, less H) abundance at high temperatures characteristic of a vent. Specifically the following gas mixture was used: 45% CO2 , 45% CH4, and 10 % N2 . A 500 ml stainless steel reactor was filled with 200 ml triply distilled water and the gas mixture at 1 bar at 25° C. In some experiments 3 g of pyrite were added into the reaction vessel. The system was heated for 24 hrs in the temperature range from 100 to 375° C. At the completion of the experiment, the reaction was quenched to 25° C and the gas mixture was analyzed by GC-FTIR-MS techniques. In the absence of pyrite, methane is oxidized to carbon dioxide with the possible production of hydrogen. In contrast in the presence of pyrite, methane is converted into a suite of hydrocarbons from C2 to C7 containing all possible isomers. The production of these compounds was found at temperatures as low as 150° C. In order to get a better understanding of the chemical mechanism involved in the synthesis of hydrocarbons and explore the effect on the initial oxidation state of the carbon used, we performed additional experiments in

  9. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    Science.gov (United States)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the

  10. Tidal dissipation in creeping ice and the thermal evolution of Europa

    Science.gov (United States)

    McCarthy, Christine; Cooper, Reid F.

    2016-06-01

    The thermal and mechanical evolution of Europa and comparable icy satellites-the physics behind creating and sustaining a subsurface water ocean-depends almost entirely on the mechanical dissipation of tidal energy in ice to produce heat, the mechanism(s) of which remain poorly understood. In deformation experiments, we combine steady-state creep and low-frequency, small-strain periodic loading, similar conditions in which tectonics and tidal flexing are occurring simultaneously. The data reveal that the relevant, power-law attenuation in ice (i) is non-linear, depending on strain amplitude, (ii) is independent of grain size, and (iii) exceeds in absorption the prediction of the Maxwell solid model by an order of magnitude. The Maxwell solid model is widely used to model the dynamics of planetary ice shells, so this discrepancy is important. The prevalent understanding of damping in the geophysical context is that it is controlled by chemical diffusion on grain boundaries, which renders attenuation strongly dependent on grain size. In sharp contrast, our results indicate instead the importance of intracrystalline dislocations and their spatial interactions as the critical structural variable affecting dissipation. These dislocation structures are controlled by stress and realized by accumulated plastic strain. Thus, tectonics and attenuation are coupled, which, beyond the icy satellite/subsurface ocean problem, has implications also for understanding the attenuation of seismic waves in deforming regions of the Earth's upper mantle.

  11. Grooved Terrain on Ganymede: First Results from Galileo High-Resolution Imaging

    Science.gov (United States)

    Pappalardo, R.T.; Head, J.W.; Collins, G.C.; Kirk, R.L.; Neukum, G.; Oberst, J.; Giese, B.; Greeley, R.; Chapman, C.R.; Helfenstein, P.; Moore, Johnnie N.; McEwen, A.; Tufts, B.R.; Senske, D.A.; Herbert, Breneman H.; Klaasen, K.

    1998-01-01

    High-resolution Galileo imaging has provided important insight into the origin and evolution of grooved terrain on Ganymede. The Uruk Sulcus target site was the first imaged at high resolution, and considerations of resolution, viewing geometry, low image compression, and complementary stereo imaging make this region extremely informative. Contrast variations in these low-incidence angle images are extreme and give the visual impression of topographic shading. However, photometric analysis shows that the scene must owe its character to albedo variations. A close correlation of albedo variations to topography is demonstrated by limited stereo coverage, allowing extrapolation of the observed brightness and topographic relationships to the rest of the imaged area. Distinct geological units are apparent across the region, and ridges and grooves are ubiquitous within these units. The stratigraphically lowest and most heavily cratered units ("lineated grooved terrain") generally show morphologies indicative of horst-and-graben-style normal faulting. The stratigraphically highest groove lanes ("parallel ridged terrain") exhibit ridges of roughly triangular cross section, suggesting that tilt-block-style normal faulting has shaped them. These extensional-tectonic models are supported by crosscutting relationships at the margins of groove lanes. Thus, a change in tectonic style with time is suggested in the Uruk Sulcus region, varying from horst and graben faulting for the oldest grooved terrain units to tilt block normal faulting for the latest units. The morphologies and geometries of some stratigraphically high units indicate that a strike-slip component of deformation has played an important role in shaping this region of grooved terrain. The most recent tectonic episode is interpreted as right-lateral transtension, with its tectonic pattern of two contemporaneous structural orientations superimposed on older units of grooved terrain. There is little direct evidence for

  12. Interpretation of Radar Data from the Icy Galilean Satellites and Triton

    Science.gov (United States)

    Gurrola, Eric Michael

    1995-01-01

    We extend Eshleman's (Science 234, 1986, 587-590) analysis of an icy buried crater model and show that it can explain anomalous 3.5 and 13 cm-lambda radar echoes from the icy Galilean satellites- -radar albedos sigma~ 0.7 -2.6, circular and linear polarization ratios mu C~1.5 and mu L~0.5, and Doppler spectra with cosmTheta scattering law exponents m~1 -2. The model hypothesizes that radio waves are totally internally reflected N times from the walls of buried craters --tens of meters in radii with a water-ice overburden of permittivity varepsilon_1~3.2 varepsilon_0 that is larger than the permittivity varepsilon_2 of the material (probably porous ice) below the crater walls--and are brought to a focus, appearing to come from annular "glory halos" inside the craters, which break up into several coherent glints, each of azimuthal extent H, filling the halo to fraction F. We use geometrical and wave optics to include effects not accounted for by Eshleman, including: the ice overburden, arbitrary crater position, and crater shadowing. The values N = 3 and varepsilon_2/varepsilon _1 = 0.63 give mu_ {C} = 1.6, muL = 0.4, m = 1.9, and spectra that agree well with the general trends in the observations. With FH/ lambda = 10, the areal densities of buried craters on the three satellites required to fit the observed radar albedos are, 0.38, 0.21, and 0.10 for Europa, Ganymede, and Callisto. We determine that Triton's N_2 atmosphere's surface pressure is 1.4 +/- 0.1 Pa and "equivalent isothermal temperature" is 42 +/- 4 K using least squares inversion of the 3.6 and 13 cm-lambda Voyager 2 radio occultation phase data with an exponential model of the atmospheric contribution to the phase (1.7 rad at 3.6 cm-lambda in lower 60 km) and a polynomial model of the nonlinear phase drift (1 rad per 100 km altitude) of the Voyager ultrastable oscillator (USO). Assuming vapor pressure equilibrium between the N_2 gas and ice, the surface temperature is 37.5 +/- 0.5 K, which, together

  13. Europa's small impactor flux and seismic detection predictions

    Science.gov (United States)

    Tsuji, Daisuke; Teanby, Nicholas A.

    2016-10-01

    Europa is an attractive target for future lander missions due to its dynamic surface and potentially habitable sub-surface environment. Seismology has the potential to provide powerful new constraints on the internal structure using natural sources such as faults or meteorite impacts. Here we predict how many meteorite impacts are likely to be detected using a single seismic station on Europa to inform future mission planning efforts. To this end, we derive: (1) the current small impactor flux on Europa from Jupiter impact rate observations and models; (2) a crater diameter versus impactor energy scaling relation for icy moons by merging previous experiments and simulations; and (3) scaling relations for seismic signal amplitudes as a function of distance from the impact site for a given crater size, based on analogue explosive data obtained on Earth's ice sheets. Finally, seismic amplitudes are compared to predicted noise levels and seismometer performance to determine detection rates. We predict detection of 0.002-20 small local impacts per year based on P-waves travelling directly through the ice crust. Larger regional and global-scale impact events, detected through mantle-refracted waves, are predicted to be extremely rare (10-8-1 detections per year), so are unlikely to be detected by a short duration mission. Estimated ranges include uncertainties from internal seismic attenuation, impactor flux, and seismic amplitude scaling. Internal attenuation is the most significant unknown and produces extreme uncertainties in the mantle-refracted P-wave amplitudes. Our nominal best-guess attenuation model predicts 0.002-5 local direct P detections and 6 × 10-6-0.2 mantle-refracted detections per year. Given that a plausible Europa landed mission will only last around 30 days, we conclude that impacts should not be relied upon for a seismic exploration of Europa. For future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be a

  14. An analysis of Jupiter data from the RAE-1 satellite

    Science.gov (United States)

    Carr, T. D.

    1974-01-01

    The analysis of Radio Astronomy Explorer Satellite data are presented. Radio bursts from Jupiter are reported in the frequency range 4700 KHz to 45 KHz. Strong correlations with lo were found at 4700, 3930, and 2200 KHz, while an equally strong Europa effect was observed at 1300, 900, and 700 KHz. Histograms indicating the relative probability and the successful identification of Jupiter activity were plotted, using automatic computer and visual search techniques.

  15. Water generation and transport below Europa's strike-slip faults

    Science.gov (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2016-12-01

    Jupiter's moon Europa has a very young surface with the abundance of unique terrains that indicate recent endogenic activity. Morphological models as well as spectral observations suggest that it might possess shallow lenses of liquid water within its outer ice shell. Here we investigate the generation and possible accumulation of liquid water below the tidally activated strike-slip faults using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. Our results suggest that generation of shallow partially molten regions underneath Europa's active strike-slip faults is possible, but their lifetime is constrained by the formation of Rayleigh-Taylor instabilities due to the negative buoyancy of the melt. Once formed, typically within a few million years, these instabilities efficiently transport the meltwater through the shell. Consequently, the maximum water content in the partially molten regions never exceeds 10% which challenges their possible detection by future exploration mission.

  16. Thermo-Chemical Convection in Europa's Icy Shell with Salinity

    Science.gov (United States)

    Han, L.; Showman, A. P.

    2005-01-01

    Europa's icy surface displays numerous pits, uplifts, and chaos terrains that have been suggested to result from solid-state thermal convection in the ice shell, perhaps aided by partial melting. However, numerical simulations of thermal convection show that plumes have insufficient buoyancy to produce surface deformation. Here we present numerical simulations of thermochemical convection to test the hypothesis that convection with salinity can produce Europa's pits and domes. Our simulations show that domes (200-300 m) and pits (300-400 m) comparable to the observations can be produced in an ice shell of 15 km thick with 5-10% compositional density variation if the maximum viscosity is less than 10(exp 18) Pa sec. Additional information is included in the original extended abstract.

  17. Svensk korttegner trak Europas grænse

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2015-01-01

    Historisk set. At Europa slutter ved Ural var et vilkårligt valg til et politisk formål på et bestemt tidspunkt i historien. Men siden Moskva-fyrstendømmet i 1552 ekspanderede ind i Sibirien, har Rusland både været europæisk og asiatisk.......Historisk set. At Europa slutter ved Ural var et vilkårligt valg til et politisk formål på et bestemt tidspunkt i historien. Men siden Moskva-fyrstendømmet i 1552 ekspanderede ind i Sibirien, har Rusland både været europæisk og asiatisk....

  18. Tidal reorientation and the fracturing of Jupiter's moon Europa

    Science.gov (United States)

    Mcewen, A. S.

    1986-01-01

    The lineaments on Europa are discussed in terms of the orientation of the lineaments relative to the tensile stress trajectories due to tidal distortions and to nonsynchronous rotation. The cracks are noticeable by their darker albedo compared to the presumed water ice surrounding them. The stress trajectories for tidal distortion of a thin elastic shell are superimposed on Mercator projection maps of the lineaments. It is shown that the lineaments are mainly oriented at high angles to the tensile stress trajectories that would be expected for regularly occurring nonsynchronous rotation, i.e., extensional fractures would appear. The reorientation motions which would cause the fractures are estimated. It is suggested that the fractures occur episodically to release stresses built up on the tensile surface of the crust during the continuous nonsynchronous rotation of Europa.

  19. The EJSM Jupiter-Europa Orbiter: Planning Payload

    Science.gov (United States)

    Tan-Wang, G.; Pappalardo, R. T.; Boldt, J.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lock, R. E.; van Houten, T.; Ludwinski, J.

    2008-12-01

    In the decade since the first return of Europa data by the Galileo spacecraft, the scientific understanding of Europa has greatly matured leading to the formulation of sophisticated new science objectives to be addressed through the acquisition of new data. The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM) designed to obtain data in support of these new science objectives. The JEO planning payload, while notional, is used to quantify engineering aspects of the mission and spacecraft design, and operational scenarios required to obtain the data necessary to meet the science objectives. The instruments were defined to demonstrate the viability of meeting the measurement objectives, performing while in the background radiation environment, and the ability to meet stringent planetary protection requirements. The actual instrument suite would ultimately be the result of an Announcement of Opportunity (AO) selection process carried out by NASA. The JEO planning payload consists of a notional set of remote sensing instruments, fields-and-plasma instruments, and both X-band and Ka band telecommunications systems which provide Doppler and range data for accurate orbit reconstruction. For JEO, the sensor portions of the instruments are located on the nadir facing deck of the spacecraft while a shared chassis houses the electronics portion of the instruments making optimal use of radiation shielding mass. A spacecraft supplied 10 meter boom is deployed for use by the JEO Magnetometer. All instruments are co-aligned and nominally nadir pointing for simplification of spacecraft operations. Instrument articulation required for target motion compensation, limb viewing or other purposes will be implemented within the instrument. Spacecraft telemetry and telecommand interfaces are nominally Spacewire for high-bandwidth instruments and Mil-Std-1553 for low-bandwidth instruments. Instrument power is provided by a

  20. Qualitative Methoden in Europa. Die Vielfalt der Sozialforschung

    OpenAIRE

    2005-01-01

    Der Aufsatz bietet eine Einführung in die FQS-Schwerpunktausgabe über qualitative Methoden in Europa. Er schildert die besondere Situation der qualitativen Forschung in diesem Raum, die durch Vielfalt und Einheit geprägt ist. Vielfalt, denn die verschiedenen geistigen Traditionen und institutionellen Strukturen der Sozialwissenschaft, die den Hintergrund der qualitativen Forschung bilden, unterscheiden sich zwischen den einzelnen Ländern beträchtlich. Vielfalt verweist auf eine Reihe von selb...

  1. Qualitative Methoden in Europa. Die Vielfalt der Sozialforschung

    OpenAIRE

    Knoblauch, Hubert; Flick, Uwe; Maeder, Christoph

    2005-01-01

    Der Aufsatz bietet eine Einführung in die FQS-Schwerpunktausgabe über qualitative Methoden in Europa. Er schildert die besondere Situation der qualitativen Forschung in diesem Raum, die durch Vielfalt und Einheit geprägt ist. Vielfalt, denn die verschiedenen geistigen Traditionen und institutionellen Strukturen der Sozialwissenschaft, die den Hintergrund der qualitativen Forschung bilden, unterscheiden sich zwischen den einzelnen Ländern beträchtlich. Vielfalt verweist auf eine Reihe von selb...

  2. Lander rocket exhaust effects on Europa regolith nitrogen assays

    Science.gov (United States)

    Lorenz, Ralph D.

    2016-08-01

    Soft-landings on large worlds such as Europa or our Moon require near-surface retropropulsion, which leads to impingement of the rocket plume on the surface. Surface modification by such plumes was documented on Apollo and Surveyor, and on Mars by Viking, Curiosity and especially Phoenix. The low temperatures of the Europan regolith may lead to efficient trapping of ammonia, a principal component of the exhaust from monopropellant hydrazine thrusters. Deposited ammonia may react with any trace organics, and may overwhelm the chemical and isotopic signatures of any endogenous nitrogen compounds, which are likely rare on Europa. An empirical correlation of the photometrically-altered regions ('blast zones') around prior lunar and Mars landings is made, indicating A=0.02T1.5, where A is the area in m2 and W is the lander weight (thus, ~thrust) at landing in N: this suggests surface alteration will occur out to a distance of ~9 m from a 200 kg lander on Europa.

  3. Riding the Banzai Pipeline at Jupiter: Balancing Low Delta-V and Low Radiation to Reach Europa

    Science.gov (United States)

    McElrath, Timothy P.; Campagnola, Stefano; Strange, Nathan J.

    2012-01-01

    Europa's tantalizing allure as a possible haven for life comes cloaked in a myriad of challenges for robotic spacecraft exploration. Not only are the propulsive requirements high and the solar illumination low, but the radiation environment at Jupiter administers its inexorable death sentence on any electronics dispatched to closely examine the satellite. So to the usual trades of mass, delta-V, and cost, we must add radiation dose, which tugs the trajectory solution in a contrary direction. Previous studies have concluded that adding radiation shielding mass is more efficient than using ?V to reduce the exposure time, but that position was recently challenged by a study focusing on delivering simple landers to the Europa surface. During this work, a new trajectory option was found to occupy a strategic location in the delta-V/radiation continuum - we call it the "Banzai pipeline" due to the visual similarity with the end-on view down a breaking wave, as shown in the following figures.

  4. Estimates of Europa's ice shell thickness and strain rate from flanking cracks and bulge along Ridge R

    Institute of Scientific and Technical Information of China (English)

    ZHAN Zhongwen; CHEN Chuxin

    2006-01-01

    Europa,the second Galilean satellite outward from Jupiter,has an outer layer of water of about 100 km thick and an outmost ice shell.The thickness of the ice shell is very important in understanding Europa's habitability and thermal history,but estimates from different studies are very inconsistent,ranging from 0.2 to 30 km.Here we obtain an estimate of the ice shell thickness from locations of flanking crack and forebulge along Ridge R.Considering the water's heating process to nearby ice shell in the crack,a flexure model is applied and it suggests the thickness of an ice shell to be 500-1500 m without a convective layer.Compared with previous studies using the same method but ignoring the water's heating process,the rationality and accuracy have been improved dramatically in our results.We also get some constraints on the strain rate ε and the characteristic temperature Tc,which defines the base of the elastic layer.

  5. Space Weathering Perspectives on Europa Amidst the Tempest of the Jupiter Magnetospheric System

    Science.gov (United States)

    Cooper, J. F.; Hartle, R. E.; Lipatov, A. S.; Sittler, E. C.; Cassidy, T. A.; Ip. W.-H.

    2010-01-01

    Europa resides within a "perfect storm" tempest of extreme external field, plasma, and energetic particle interactions with the magnetospheric system of Jupiter. Missions to Europa must survive, functionally operate, make useful measurements, and return critical science data, while also providing full context on this ocean moon's response to the extreme environment. Related general perspectives on space weathering in the solar system are applied to mission and instrument science requirements for Europa.

  6. Moons of the solar system from giant Ganymede to dainty Dactyl

    CERN Document Server

    Hall III, James A

    2016-01-01

    This book captures the complex world of planetary moons, which are more diverse than Earth's sole satellite might lead you to believe. New missions continue to find more of these planetary satellites, making an up to date guide more necessary than ever.  Why do Mercury and Venus have no moons at all? Earth's  Moon, of course, is covered in the book with highly detailed maps. Then we move outward to the moons of Mars, then on to many of the more notable asteroid moons, and finally to a list of less-notable ones. All the major moons of the gas giant planets are covered in great detail, while the lesser-known satellites of these worlds are also touched on.  Readers will learn of the remarkable trans-Neptunian Objects – Pluto, Eris, Sedna, Quaoar –including many of those that have been given scant attention in the literature. More than just objects to read about, the planets' satellites provide us with important information about the history of the solar system. Projects to help us learn more abo...

  7. Prime note sulla tutela penale dei culti nei Paesi dell’Est Europa

    Directory of Open Access Journals (Sweden)

    Giovanni Cimbalo

    2011-05-01

    Full Text Available Testo della relazione tenuta al Convegno “La Carta e la Corte” (Ferrara, 27 ottobre 2007 destinata alla pubblicazione negli Atti.SOMMARIO: 1. Alcune considerazioni preliminari sullo status delle Confessioni religiose nei paesi dell’Est Europa - 2. I nuovi orientamenti del diritto penale nell’Est Europa - 3. Le norme statali in materia di tutela penale dei culti e del sentimento religioso. 3. Le norme penali relative ai culti e a al sentimento religioso prima del 1992 nei Paesi dell’Est Europa - 4. Tipologie e tecniche legislative di tutela penale dei culti dopo il 1992 nei Paesi dell’Est Europa - 5. Alcune sommarie considerazioni.

  8. Mapping the Topography of Europa: The Galileo-Clipper Story

    Science.gov (United States)

    Schenk, Paul M.

    2014-11-01

    The renewed effort to return to Europa for global mapping and landing site selection raises the question: What do we know about Europa topography and how do we know it? The question relates to geologic questions of feature formation, to the issue of ice shell thickness, mechanical strength, and internal activity, and to landing hazards. Our topographic data base for Europa is sparse indeed (no global map is possible), but we are not without hope. Two prime methods have been employed in our mapping program are stereo image and shape-from-shading (PC) slope analyses. On Europa, we are fortunate that many PC-DEM areas are also controlled by stereo-DEMs, mitigating the long-wavelength uncertainties in the PC data. Due to the Galileo antenna malfunction, mapping is limited to no more than 20% of the surface, far less than for any of the inner planets. Thirty-seven individual mapping sites have been identified, scattered across the globe, and all have now been mapped. Excellent stereo mapping is possible at all Sun angles, if resolution is below ~350 m. PC mapping is possible at Sun angles greater than ~60 degrees, if emission angles are less than ~40 degrees. The only extended contiguous areas of topographic mapping larger than 150 km across are the two narrow REGMAP mapping mosaics extending pole-to-pole along longitudes 85 and 240 W. These are PC-only and subject to long-wavelength uncertainties and errors, especially in the north/south where oblique imaging produces layover. Key findings include the mean slopes of individual terrain types (Schenk, 2009), topography across chaos (Schenk and Pappalardo, 2004), topography of craters and inferences for ice shell thickness (Schenk, 2002; Schenk and Turtle, 2009), among others. A key discovery, despite the limited data, is that Europan terrains rarely have topographic amplitude greater than 250 meters, but that regionally Europa has imprinted on it topographic amplitudes of +/- 1 km, in the form of raised plateaus and

  9. The effect of ionizing photons (VUV + soft X-rays) in the equatorial and polar surfaces of the Europa moon

    Science.gov (United States)

    Pilling, Sergio; Alexandre Souza Bergantini, M.

    Europa is the sixth-closest moon of the planet Jupiter, and the smallest of the four Galilean satellites, but still the sixth-largest moon in the Solar System being only slightly smaller than Earth's Moon. Its cold surface is covered mainly by water ice and a small fraction of other molecular frozen species such as CO _{2}, NH _{3}, and SO _{2}. Since Europa has only a very thin O _{2} rich atmosphere, the surface is constantly exposed to space ionizing agents such as UV and soft X-rays photons, electrons and ions. In this work we investigate the effects produced by vacuum ultraviolet (VUV) and soft X-rays (and possibly secondary electrons) on the surface of Europa Moon, simulating this way the space weathering and the prebiotic photochemistry induced by solar photons on this moon. The experiments have been performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator (SGM) beamline in the Brazilian Synchrotron Light Source (LNLS) at Campinas, Brazil. The beamline was operated in off-focus and white beam mode, which produces a wide band spectral range of photons, mainly from 6 eV up to 1200 eV, with the total average flux at the sample of about 1x10 (14) photons cm (-2) s (-1) . The experiments simulate roughly 10.7 years of solar irradiation (energy delivered) on the Europa surface. In-situ sample analyses were performed by a Fourier transform infrared spectrometer. The samples were produced by the adsorption of a gaseous mixture containing H _{2}O:CO _{2}:NH _{3}:SO _{2} (10:1:1:1) at very low temperature (12 K) and than were slowly heated (2 K/min) to the temperatures in which the irradiation occur, i.e. at 90K and 50K, simulating this way the equatorial and polar regions of the moon. This scenario simulates the cold molecular delivery from comets in the early phases of this Jupiter’s moon. The infrared spectra of irradiated samples have presented the formation

  10. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Science.gov (United States)

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  11. Reflectance spectra of hydrated chlorine salts: The effect of temperature with implications for Europa

    Science.gov (United States)

    Hanley, Jennifer; Dalton, J. Brad; Chevrier, Vincent F.; Jamieson, Corey S.; Barrows, R. Scott

    2014-11-01

    Hydrated chlorine salts are expected to exist on a variety of planetary bodies, including inner planets such as Mars and outer planet satellites such as Europa. However, detection by remote sensing has been limited due to a lack of comparison data in spectral libraries. In addition, at low temperatures spectral features of many H2O-bearing species deviate from their room temperature behavior. Thus, we acquired spectra of NaCl, NaClO4·nH2O, MgCl2·nH2O, Mg(ClO4)2·6H2O, and Mg(ClO3)2·6H2O from 0.35 to 2.5 µm at both 298 and 80 K to observe the effects of temperature on diagnostic spectral features. In the near-infrared, the strongest spectral features often arise from water molecules. Increasing hydration states increases the depth and width of water bands. Interestingly, at low temperature these bands become narrower with sharper, better defined minima, allowing individual bands to be more easily resolved. We also measured frozen eutectic solutions of NaCl, MgCl2, and KCl. We show that while care must be taken to acquire laboratory spectra of all hydrated phases at the relevant conditions (e.g., temperature and pressure) for the planetary body being studied, chlorine salts do possess distinct spectral features that should allow for their detection by remote sensing.

  12. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Science.gov (United States)

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  13. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  14. Epidemiología del tabaquismo en Europa

    Directory of Open Access Journals (Sweden)

    Fernández Esteve

    2002-01-01

    Full Text Available El tabaco es la causa de mortalidad prevenible más importante en los países europeos, en los que da cuenta de más de medio millón de muertes anuales. El objetivo de este trabajo es revisar la epidemiología del tabaquismo en Europa, atendiendo a la visión de conjunto sobre el impacto del tabaquismo, a la prevalencia del consumo y a su evolución en la última década, así como revisar otras características relacionadas con la difusión y mantenimiento del tabaquismo: la producción y los precios del tabaco. Treinta de cada 100 europeos adultos fuma cigarrillos a diario. En los países de la Unión Europea se estima que 1 de cada 10 adultos fumadores morirá a causa de los efectos del tabaco, razón que se eleva a 1 de cada 5 en los países del este de Europa. La prevalencia de fumadores desciende entre los hombres adultos en algunos países de la Unión Europea, mientras que aumenta en las mujeres, sobre todo jóvenes, del sur y del este de Europa. Se debe insistir en las medidas para controlar el consumo de tabaco y prevenirlo, tales como la prohibición del consumo en lugares públicos, la prohibición real de la publicidad directa e indirecta, la reducción del cultivo, o el incremento de precios. Estas acciones se deben diseñar, coordinar y desarrollar en y desde los diferentes sectores involucrados en la lucha contra el tabaco, con la participación de redes civiles impulsadas desde los diferentes niveles administrativos (local, regional, nacional con la decisiva participación de organismos y organizaciones supranacionales.

  15. Cooperación judicial penal en Europa

    OpenAIRE

    Carmona Ruano, Miguel; González Vega, Ignacio U.; Moreno Catena, Víctor; Arnáiz Serrano, Amaya

    2013-01-01

    Directores: Miguel Carmona Ruano, Ignacio U. González Vega, Víctor Moreno Catena. Coordinadora: Amaya Arnáiz Serrano Unión Europea Evolución de la Cooperación Judicial Penal Internacional: en especial, la Cooperación Judicial Penal en Europa / Amaya Arnáiz Serrano. -- El cambio de paradigma y el principio de reconocimiento mutuo y sus implicaciones. Perspectivas del Tratado de Lisboa / Víctor Moreno Catena. -- El fortalecimiento de la confianza mutua: garantías procesales del imputad...

  16. Possible problematic situations for the Europa cryorobotic mission

    Science.gov (United States)

    Kereszturi, A.

    We analyzed some possible dangerous and problematic situations which can take place during the descend of the Europa exlporer cryorobot inside the ice crust. Our work summarizing the followings: 1. consequences of the differences in the ice thickness and time of descend based on our and other workers' ice thickness estimations, 2. consequences of the tectonic movements in the crust during the descend of the cryorobot, 3. consequences of salt rich diapiric/cryomagmatic intrusions on the descend of the probe, 4. consequences of liquid water bodies inside the ice crust during the descend, 5. usage of the whole cryorobot below the ice crust as a robotic submarine.

  17. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    Finarelli, Margaret G.

    2004-04-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  18. Ocean acoustic circumpropagation in the ice seas of Europa

    OpenAIRE

    Leighton, T.G.; Finfer, D.C.; P. R. White

    2007-01-01

    In recent years increased attention has been paid to the potential uses of acoustics for\\ud extraterrestrial exploration. A number of important papers have discussed propagation\\ud on Europa, primarily with respect to sound in the ice sheet which is believed to cover\\ud a salt water ocean. The models used to date assume a flat ice surface and a\\ud gravitational acceleration which does not vary with depth. Models of long range\\ud acoustic propagation through Europa’s ice seas require models wh...

  19. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    2004-01-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  20. Vital Signs: Seismology of Europa and Other Ocean World

    Science.gov (United States)

    Kedar, S.; Vance, S.; Anandakrishnan, S.; Banerdt, W. B.; Bills, B. G.; Castillo, J. C.; Huang, H. H.; Jackson, J. M.; Lognonne, P. H.; Lorenz, R. D.; Panning, M. P.; Pike, W. T.; Stähler, S. C.; Tsai, V. C.

    2016-12-01

    Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. The InSight mission and concepts for a Europa Lander and a Lunar Geophysical Network present unique opportunies for seismology to play a critical role in constraining interior structure and thermal state. In oceanic icy worlds, measuring the radial depths of compositional interfaces using seismology in a broad frequency range can sharpen inferences of interior structures deduced from gravity and magnetometry studies, such as those planned for NASA's proposed Europa Mission and ESA's JUICE mission. Seismology may also offer information about fluid motions within or beneath ice, which complements magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these structures and processes in the future calls for detailed modeling of seismic sources and signatures, in order to develop the most suitable instrumentation. We will present results of simulations of plausible seismic sources and wave-field propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow, a possible seismic source similar to that seen from turbulent flow in terrestrial rivers; downflow of dense brines from chaos regions on Europa into its underlying ocean, which possibly resemble riverine flows and flows through glacial channels and ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006). JGR, E12009:doi:10.1029/2006JE002710. Kovach, R. L. and Chyba, C. F. (2001). Icarus, 150

  1. Los iura propria en Europa en el siglo XIII

    OpenAIRE

    Wolf, Armin

    1994-01-01

    La legislación es una conquista ya del siglo XIII, una época en la que se da el paso del derecho oral al derecho escrito. El autor elabora una sistematización conceptual y fijación del contenido de la variada termilogía normativa, a base de gráficos y ejemplos tomados de los diferentes países de Europa. Legislation is already an achievement in the 13th. century, epoch in which the step is taken from the oral law to the wnten one. The author elaborates a conceptual sistematiz...

  2. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  3. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  4. Modeling of stress-triggered faulting and displacement magnitude along Agenor Linea, Europa

    Science.gov (United States)

    Nahm, A.; Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.

    2012-12-01

    We investigate the relationship between shear and normal stresses at Agenor Linea (AL) to better understand the role of tidal stress sources and implications for faulting on Europa. AL is a ~1500 km long, E-W trending, 20-30 km wide zone of geologically young deformation located in the southern hemisphere, and it forks into two branches at its eastern end. Based on photogeological evidence and stress orientation predictions, AL is primarily a right-lateral strike slip fault and may have accommodated up to 20 km of right-lateral slip. We compute tidal shear and normal stresses along present-day AL using SatStress, a numerical code that calculates tidal stresses at any point on the surface of a satellite for both diurnal and non-synchronous rotation (NSR) stresses. We adopt model parameters appropriate for Europa with a spherically symmetric, 20 km thick ice shell underlain by a global subsurface ocean and assume a coefficient of friction μ = 0.6. Along AL, shear stresses are primarily right-lateral (~1.8 MPa), while normal stresses are predominantly compressive along the west side of the structure (~0.7 MPa) and tensile along the east side (~2.9 MPa). Failure along AL is assessed using the Coulomb failure criterion, which states that shear failure occurs when the shear stress exceeds the frictional resistance of the fault. Where fault segments meet these conditions for shear failure, coseismic displacements are determined (assuming complete stress drop). We calculate shallow displacements as large as ~50 m at 1 km depth and ~10 m at 3 km depth. Triggered stresses from coseismic fault slip may also contribute to the total slip. We investigate the role of stress triggering by computing the change in Coulomb failure stress (ΔCFS) along AL. Where slip has occurred, negative ΔCFS is calculated; positive ΔCFS values indicate segments where failure is promoted. Positive ΔCFS is calculated at the western tip and the intersection of the branches with the main fault at a

  5. Joint Europa Mission (JEM) : A multi-scale study of Europa to characterize its habitability and search for life.

    Science.gov (United States)

    Blanc, Michel; Prieto Ballesteros, Olga; Andre, Nicolas; Cooper, John F.

    2017-04-01

    Europa is the closest and probably the most promising target to perform a comprehensive characterization of habitability and search for extant life. We propose that NASA and ESA join forces to design an ambitious planetary mission we call JEM (for Joint Europa Mission) to reach this objective. JEM will be assigned the following overarching goal: Understand Europa as a complex system responding to Jupiter system forcing, characterize the habitability of its potential biosphere, and search for life in its surface, sub-surface and exosphere. Our observation strategy to address these goals will combine three scientific measurement sequences: measurements on a high-latitude, low-latitude Europan orbit providing a continuous and global mapping of planetary fields (magnetic and gravity) and of the neutral and charged environment during a period of three months; in-situ measurements at the surface, using a soft lander operating during 35 days, to search for bio-signatures at the surface and sub-surface and operate a geophysical station; measurements of the chemical composition of the very low exosphere and plumes in search for biomolecules. The implementation of these three observation sequences will rest on the combination of two science platforms equipped with the most advanced instrumentation: a soft lander to perform all scientific measurements at the surface and sub-surface at a selected landing site, and a carrier/relay/orbiter to perform the orbital survey and descent sequences. In this concept, the orbiter will perform science operations during the relay phase on a carefully optimized halo orbit of the Europa-Jupiter system before moving to its final Europan orbit. The design of both orbiter and lander instruments will have to accommodate the very challenging radiation mitigation and Planetary Protection issues. The proposed lander science platform is composed of a geophysical station and of two complementary astrobiology facilities dedicated to bio

  6. Seguridad energética rusa: entre Europa y China

    Directory of Open Access Journals (Sweden)

    Antonio Sánchez

    2008-05-01

    Full Text Available Dentro de la seguridad energética rusa aparece como una debilidad importante la concentración de recursos en unos pocos clientes, en concreto en la UE. Por este motivo, las autoridades rusas están tratando de diversificar destinos de venta, tratando de abrir otros mercados, en especial en extremo oriente y, en particular en China. Esto acrecienta su seguridad energética, pero debilita la europea en caso de que la UE no adopte medidas activas. El abastecimiento a Europa desde Rusia, especialmente de gas, depende también de tres grandes limitaciones. En primer lugar, que existan nuevos yacimientos y su posibilidad de movilizarlos conforme aumenten las necesidades europeas. En segundo lugar, aparece el problema del surgimiento de competidores por el gas ruso y, en particular, recientemente se ha subrayado el papel de China como futuro cliente de gas ruso. En tercer lugar, se encuentra la posibilidad de que Rusia pueda ejercer un control especial sobre la oferta de gas mundial, que condicione en cantidad o/y precio el abastecimiento a Europa.

  7. Contributions to Crustal Mechanics on Europa from Subterranean Ocean Vibrations

    Science.gov (United States)

    Hayes, Robert

    2016-03-01

    The recent discovery of subduction zones on Europa demonstrated a significant step forward in understanding the moon's surface mechanics. This work promotes the additional consideration that the surface mechanics have contributions from small relative pressure differentials in the subsurface ocean that create cracks in the surface which are then filled, sealed and healed. Crack formation can be small, as interior pressure can relatively easily breach the surface crust, generating cracks followed by common fracture formation backfilled with frozen liquid. This process will slowly increase the overall surface area of the moon with each sealed crack and fracture increasing the total surface area. This creeping growth of surface area monotonically decreases subsurface pressure which can eventually catastrophically subduct large areas of surface and so is consistent with current knowledge of observational topology on Europa. This tendency is attributed to a relatively lower energy threshold to crack the surface from interior overpressures, but a higher energy threshold to crush the spherical surface due to subsurface underpressures. Proposed mechanisms for pressure differentials include tidal forces whose Fourier components build up the resonant oscillatory modes of the subsurface ocean creating periodic under and overpressure events below the crust. This mechanism provides a means to continually reform the surface of the moon over short geological time scales. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.

  8. San Andreas-sized Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  9. Big data - modelling of midges in Europa using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Cuellar, Ana Carolina; Kjær, Lene Jung; Skovgaard, Henrik

    2017-01-01

    -absence and monthly abundance data of Culicoides from 1005 sites across 9 countries (Spain, France, Denmark, Poland, Switzerland, Austria, Poland, Sweden, Norway) collected between the years 2007 and 2013. The dataset included information on the vector species abundance (number of specimens caught per night), GPS...

  10. A NEW UNDERSTANDING OF THE EUROPA ATMOSPHERE AND LIMITS ON GEOPHYSICAL ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Shemansky, D. E.; Liu, X.; Yoshii, J. [Planetary and Space Science Division, Space Environment Technologies, Pasadena, CA 91107 (United States); Yung, Y. L. [Division of Geological and Planetary Sciences, California Institute of Technology, CA 91125 (United States); Hansen, C. J. [Planetary Science Institute, 109 S. Puerto Drive, Ivins, UT 84738 (United States); Hendrix, A. R. [Planetary Science Institute, Los Angeles, CA 91001 (United States); Esposito, L. W., E-mail: dshemansky@spacewx.com [Laboratory for Atmospheric and Space Physics, University of Colorado, CO 80303 (United States)

    2014-12-20

    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ∼25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ≤4.5 × 10{sup 25} atoms s{sup –1} two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H{sub 2}O

  11. Kinetic modeling of the composition and dynamics of volatile's distribution in Europa's exosphere

    Science.gov (United States)

    Tenishev, V.; Borovikov, D.; Tucker, O. J.; Combi, M. R.; Rubin, M.; Jia, X.; Gombosi, T. I.

    2014-12-01

    The surface-bound Europa's exosphere is tightly connected to both the Jovian magnetosphere as well as to Europa's icy surface. The neutral species in the exosphere are mostly produced by the Jovian magnetospheric ion sputtering of the water ice surface and direct ejection from Europa's plume. Here, we present results of our model study of the distribution of the neutral species in Europa's exosphere, their escape and migration over the moon's surface. The work is a part of a more global effort aimed at fully coupled understanding of the interaction between Europa's exosphere and Jovian magnetosphere. The modeled neutral species are produced via sputtering (O2 and H2O), directly ejected into the plume (H2O), or produced via photolytic or electron impact reactions (OH, O2, O, H). The computational domain extends to altitudes up to ~10 RE, which exceeds the radius of Europa's Hill sphere (~8.5 RE, Miljkovic et al., 2012). Jupiter's and Europa's gravity are taken into consideration. The modeling is performed using our kinetic Adaptive Mesh Particle Simulator (Tenishev et al., 2013), where the exospheric species are represented by a large set of the model particles governed by the same physical laws as those of the real exosphere. The calculated HI and OI brightness synthetic images are compared with those obtained with Hubble Space Telescope (Roth et al., 2014).

  12. Europa frente a lo extraño

    Directory of Open Access Journals (Sweden)

    Bernhard Waldenfels

    2012-02-01

    Full Text Available "Pensar Europa en sus fronteras", como ya en 1992 proponían un grupo de filósofos de la Universidad de Estrasburgo -Denis Guénoun, Philippe Lacoue-Labarthe, Jean-Luc Nancy, Daniel Payot-, significa considerar qué es eso de la "geofilosofía de Europa" como una cuestión imprescindible que conlleva toda reflexión veraz en torno a la idea de Europa. El debate al que invitaron a una serie diversa de colegas y amigos, procedentes de diferentes naciones, planteaba la posibilidad misma de una identificación de Europa, así como la profundidad, esto es, la misma violencia que esta posibilidad (o imposibilidad conlleva, como los hechos de la más reciente y rabiosa actualidad han confirmado una y otra vez desde aquellas fechas. La propuesta era todo menos fútil. En efecto, como es bien sabido y ellos mismos expresaron unos meses después, en julio de 1993, lo bien cierto es que ha habido terribles furores desencadenados y atroces desgarramientos tanto intra como extraeuropeos, que como mínimo nos urgen a pensar si el proyecto de lo que merece llamarse un 'mundo' puede o no puede confundirse con la exclusiva exportación de aquello que Europa habría inventado, producido e identificado. El futuro parece atenazado por dos figuras mórbidas, dos pesadillas simétricas, la mítica de un planeta homogéneo, como una gigantesca Europa que se extendiera por doquier, y la de una Europa recluida, encerrada en sus imprecisas e inciertas fronteras, una especie de barricadas o trincheras aislantes para que ella devorase en solitario el espejismo de su supuesto bienestar. Esta deplorable alternativa concita parte de nuestras responsabilidades, pues los escenarios del futuro se alimentan necesariamente de formas y de proposiciones de pensamiento, que vale la pena tratar de sopesar y de comprender. A este reto respondió la reflexión del profesor Bernhard Waldenfeis con una memorable intervención, publicada primero en  francés de

  13. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    Science.gov (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  14. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  15. Insights Into Ice-Ocean Interactions on Earth and Europa

    Science.gov (United States)

    Lawrence, J.; Schmidt, B. E.; Winslow, L.; Doran, P. T.; Kim, S.; Walker, C. C.; Buffo, J.; Skidmore, M. L.; Soderlund, K. M.; Blankenship, D. D.; Bramall, N. E.; Johnson, A.; Rack, F. R.; Stone, W.; Kimball, P.; Clark, E.

    2016-12-01

    Europa and Earth appear to be drastically different worlds, yet below their icy crusts the two likely share similar oceanic conditions including temperatures, pressures (relatively), and salinity. Earth's ice shelves provide an important analog for the physiochemical, and potentially microbial, characteristics of icy worlds. NASA's ASTEP program funded Sub-Ice Marine and PLanetary-analog Ecosystems (SIMPLE) to help address the fundamental processes occurring at ice ocean interfaces, the extent and limitations of life in sub-ice environments, and how environmental properties and biological communities interact. The relationships between currents, temperature, and salinity with physical processes such as melt, freeze, and marine ice accretion at the basal surfaces of ice shelves influence habitability yet are poorly understood even on Earth. Resultant processes such as the inclusion of ocean-derived material in ice shelves and the transport of biotics from the interface towards the surface via ablation, convection, and diapirism also have important astrobiological implications for Europa.Here, we present results from CTD and imaging data gathered at multiple locations beneath the McMurdo Ice Shelf (MIS) to highlight how the ice and ocean interact in a Europan analog environment. Over the course of three years, the SIMPLE team observed heterogeneity in the water column and basal ice beneath the MIS. During the recent 2015 field season we deployed ARTEMIS, an AUV capable of characterizing the interface over multiple kilometer missions, and conducted daily CTD casts to 480 m (bottom depth 529 m) in November adjacent to the terminus of the MIS to capture temporal variation in the water column. These casts show the presence of transient water masses related to the tidal period, each containing a single or double temperature minimum (down to -1.97 °C from -1.93 °C) between 60 to 150 m depth. Further comparisons between years and sampling locations demonstrate the

  16. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    Science.gov (United States)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  17. The Search for a Habitable Europa: Radar, Water and an Active Ice Shell

    Science.gov (United States)

    Blankenship, D. D.; Schmidt, B. E.; Young, D. A.; Schroeder, D. M.; Greenbaum, J. S.

    2011-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for detecting these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successful at the Moon and Mars.

  18. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    Science.gov (United States)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-02-01

    A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (˜0.7 g/cm2). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe

  19. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  20. Seismic Investigations of Europa and Other Ocean Worlds

    Science.gov (United States)

    Vance, Steve; Tsai, Victor; Kedar, Sharon; Bills, Bruce; Castillo-Rogez, Julie; Jackson, Jennifer

    2016-04-01

    Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. Developing missions (InSight, Europa Lander, Lunar Geophysical Network) identify seismology as a critical measurement to constrain interior structure and thermal state. In oceanic icy worlds, pinpointing the radial depths of compositional interfaces using seismology in a broad frequency range can address uncertainty in interior structures inferred from gravity and magnetometry studies, such as those planned for NASA's Europa and ESA's JUICE missions. Seismology also offers information about fluid motions within or beneath ice, which complement magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these with future missions will require detailed modeling of seismic sources and signatures in order to develop the most suitable instrumentation. We evaluate seismic sources and their propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow (le Bars et al. 2015), a possible seismic source similar to that seen from turbulent flow in terrestrial rivers (Tsai et al., 2012; Gimbert et al., 2014; Chao et al., 2015); downflow of dense brines from chaos regions on Europa into its underlying ocean (Sotin et al. 2002), possibly resembling riverine flows and flows through glacial channels (Tsai and Rice 2012); ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum (Kedar 2011, Ardhuin 2015). Ardhuin, F., Gualtieri, L., and Stutzmann, E. (2015). GRL., 42. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006

  1. El "refarming" de las bandas GSM en Europa

    OpenAIRE

    Ovando Chico, María Catalina; Moral Caballero, Antolín; Perez Martinez, Jorge Enrique

    2010-01-01

    La política de gestión del espectro radioeléctrico en Europa se encuentra en un proceso de adecuación a los cambios tecnológicos actuales. La liberalización de las bandas GSM, habitualmente denominada Refarming, junto con la aparición de nuevas bandas de frecuencias designadas a la banda ancha móvil juega un papel central en dicho proceso. El propósito de este artículo es presentar, mediante un análisis descriptivo, las políticas públicas que los países Europeos han considerado, o están consi...

  2. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  3. Geology and Origin of Europa's Mitten Feature (Murias Chaos)

    Science.gov (United States)

    Figueredo, P. H.; Chuang, F. C.; Rathbun, J.; Kirk, R. L.; Greeley, R.

    2002-01-01

    The "Mitten" (provisionally named Murias Chaos by the International Astronomical Union) is a region of elevated chaos-like terrain in the leading hemisphere of Europa. Its origin had been explained under the currently debated theories of melting through a thin lithosphere or convection within a thick one. Galileo observations reveal several characteristics that suggest that the Mitten is distinct from typical chaos terrain and point to a different formational process. Photoclinometric elevation estimates suggest that the Mitten is slightly elevated with respect to the surrounding terrain; geologic relations indicate that it must have raised significantly from the plains in its past, resembling disrupted domes on Europa's trailing hemisphere. Moreover, the Mitten material appears to have extruded onto the plains and flowed for tens of kilometers. The area subsequently subsided as a result of isostatic adjustment, viscous relaxation, and/or plains loading. Using plate flexure models, we estimated the elastic lithosphere in the area to be several kilometers thick. We propose that the Mitten originated by the ascent and extrusion of a large thermal diapir. Thermal-mechanical modeling shows that a Mitten-sized plume would remain sufficiently warm and buoyant to pierce through the crust and flow unconfined on the surface. Such a diapir probably had an initial radius between 5 and 8 km and an initial depth of 20-40 km, consistent with a thick-lithosphere model. In this scenario the Mitten appears to represent the surface expression of the rare ascent of a large diapir, in contrast to lenticulae and chaos terrain, which may form by isolated and clustered small diapirs, respectively.

  4. Emplacement of Volcanic Domes on Venus and Europa

    Science.gov (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    Placing firmer constraints on the emplacement timescales of visible volcanic features is essential to obtaining a better understanding of the resurfacing history of Venus. Fig. 1 shows a Magellan radar image and topography for a putative venusian lava dome. 175 such domes have been identified, having diameters that range from 19 - 94 km, and estimated thicknesses as great as 4 km [1-2]. These domes are thought to be volcanic in origin [3], having formed by the flow of a viscous fluid (i.e., lava) onto the surface. Among the unanswered questions surrounding the formation of Venus steep-sided domes are their emplacement duration, composition, and the rheology of the lava. Rheologically speaking, maintenance of extremely thick, 1-4 km flows necessitates higher viscosity lavas, while the domes' smooth upper surfaces imply the presence of lower viscosity lavas [2-3]. Further, numerous quantitative issues, such as the nature and duration of lava supply, how long the conduit remained open and capable of supplying lava, the volumetric flow rate, and the role of rigid crust in influencing flow and final morphology all have implications for subsurface magma ascent and local surface stress conditions. The surface of Jupiter's icy moon Europa exhibits many putative cryovolcanic constructs [5-7], and previous workers have suggested that domical positive relief features imaged by the Galileo spacecraft may be volcanic in origin [5,7-8] (Fig. 2). Though often smaller than Venus domes, if emplaced as a viscous fluid, formation mechanisms for europan domes may be similar to those of venusian domes [7]. Models for the emplacement of venusian lava domes (e.g. [9-10]) have been previously applied to the formation of putative cryolava domes on Europa [7].

  5. Las torres Puerta de Europa, Madrid-España

    Directory of Open Access Journals (Sweden)

    Domínguez del Castillo, Tomás

    1996-08-01

    Full Text Available The functionality is the main aspect of the urban area of the twin towers located at the end of the "Paseo de la Castellana" (Madrid. With a tilting of 15º over the vertical and crossing directions, such architectonic area is detached for its place and design of facilities and installations. The structural system is very complex due to the high technology applied for its construction, what made very difficult the ending of project. The "Puerta de Europa" towers will be used for office rental and they are (due to the structural system and quality of construction materials used one of the most important buildings due to not only to the quality of materials and design, but also due to their security and control centralized systems.

    La funcionalidad preside el conjunto urbanístico formado por las dos torres situadas al final del Paseo de la Castellana. Con una inclinación de 15º sobre su vertical y hacia un punto común, dicho conjunto arquitectónico destaca, sobre todo, por su ubicación, diseño de instalaciones y servicios. Se destaca la complejidad de su sistema estructural que, unida a la alta tecnología empleada en su construcción, dificultaron la consecución del proyecto. Las torres Puerta de Europa, destinadas al alquiler de oficinas, son unos edificios cuya terminación -con la diversidad de materiales constructivos empleados- constituye, en sí misma, una de las de más alta calidad del momento, con sistemas de control y seguridad centralizados e integrados.

  6. Geology and origin of Europa's "Mitten" feature (Murias Chaos)

    Science.gov (United States)

    Figueredo, P.H.; Chuang, F.C.; Rathbun, J.; Kirk, R.L.; Greeley, R.

    2002-01-01

    The "Mitten" (provisionally named Murias Chaos by the International Astronomical Union) is a region of elevated chaos-like terrain in the leading hemisphere of Europa. Its origin had been explained under the currently debated theories of melting through a thin lithosphere or convection within a thick one. Galileo observations reveal several characteristics that suggest that the Mitten is distinct from typical chaos terrain and point to a different formational process. Photoclinometric elevation estimates suggest that the Mitten is slightly elevated with respect to the surrounding terrain; geologic relations indicate that it must have raised significantly from the plains in its past, resembling disrupted domes on Europa's trailing hemisphere. Moreover, the Mitten material appears to have extruded onto the plains and flowed for tens of kilometers. The area subsequently subsided as a result of isostatic adjustment, viscous relaxation, and/or plains loading. Using plate flexure models, we estimated the elastic lithosphere in the area to be several kilometers thick. We propose that the Mitten originated by the ascent and extrusion of a large thermal diapir. Thermal-mechanical modeling shows that a Mitten-sized plume would remain sufficiently warm and buoyant to pierce through the crust and flow unconfined on the surface. Such a diapir probably had an initial radius between 5 and 8 km and an initial depth of 20-40 km, consistent with a thick-lithosphere model. In this scenario the Mitten appears to represent the surface expression of the rare ascent of a large diapir, in contrast to lenticulae and chaos terrain, which may form by isolated and clustered small diapirs, respectively.

  7. Galileo's Multiinstrument Spectral View of Europa's Surface Composition

    Science.gov (United States)

    Fanale, F.P.; Granahan, J.C.; McCord, T.B.; Hansen, G.; Hibbitts, C.A.; Carlson, R.; Matson, D.; Ocampo, A.; Kamp, L.; Smythe, W.; Leader, F.; Mehlman, R.; Greeley, R.; Sullivan, R.; Geissler, P.; Barth, C.; Hendrix, A.; Clark, B.; Helfenstein, P.; Veverka, J.; Belton, M.J.S.; Becker, K.; Becker, T.

    1999-01-01

    We have combined spectral reflectance data from the Solid State Imaging (SSI) experiment, the Near-Infrared Mapping Spectrometer (NIMS), and the Ultraviolet Spectrometer (UVS) in an attempt to determine the composition and implied genesis of non-H2O components in the optical surface of Europa. We have considered four terrains: (1) the "dark terrains" on the trailing hemisphere, (2) the "mottled terrain," (3) the linea on the leading hemisphere, and (4) the linea embedded in the dark terrain on the trailing hemisphere. The darker materials in these terrains exhibit remarkably similar spectra in both the visible and near infrared. In the visible, a downturn toward shorter wavelengths has been attributed to sulfur. The broad concentrations of dark material on the trailing hemisphere was originally thought to be indicative of exogenic sulfur implantation. While an exogenic cause is still probable, more recent observations by the UVS team at higher spatial resolution have led to their suggestions that the role of the bombardment may have primarily been to sputter away overlying ice and to reveal underlying endogenic non-H2O contaminants. If so, this might explain why the spectra in all these terrains are so similar despite the fact that the contaminants in the linea are clearly endogenic and those in the mottled terrain are almost certainly so. In the near infrared, all these terrains exhibit much more asymmetrical bands at 1.4 and 2.0 ??m at shorter wavelengths than spectra from elsewhere on Europa. It has been argued that this is because the water molecules are bound in hydrated salts. However, this interpretation has been challenged and it has also been argued that pure coarse ice can exhibit such asymmetric bands under certain conditions. The nature of this controversy is briefly discussed, as are theoretical and experimental studies bearing on this problem. ?? 1999 Academic Press.

  8. On Chlorine Salts: Their Detection, Stability and implications for Water on Mars and Europa

    Science.gov (United States)

    Hanley, Jennifer

    2013-10-01

    Chlorine salts (e.g. chlorides, chlorates and perchlorates) are an important factor in the stability of water on the surfaces of planetary bodies. Here we have shown that perchlorate and chlorate salts will lower the freezing point of water, allowing it to be liquid down to ~204 K. These salts will also slow down the evaporation rate, extending the lifetime of the liquid water solution. Chlorine salts have been detected on Mars, which has significant implications for the stability of water and hence its habitability. To study their effects on the stability of water on planetary surfaces, we need to first locate where these chlorine salts exist; this is typically done by remote sensing. To date, only anhydrous chlorides have been remotely detected, mostly due to the lack of hydrated chlorine salts in the spectral libraries used to identify features. To address this deficit, we measured reflectance spectra for numerous chlorine salts. Hydration bands were most common in near-infrared spectra, with band depth and width increasing with increasing hydration state. In the mid-infrared, oxychlorine salts exhibit spectral features due to Cl-O vibrations. We also investigated the spectral features of these salts at low temperature (80 K) to compare with remote sensing data of the outer satellites, specifically Europa. At low temperature, water bands become narrower and shallower than their room temperature counterparts. We show that chlorine salts do possess distinct spectral features that should allow for their detection by remote sensing, though care must be taken to acquire laboratory spectra of all hydrated phases at the relevant conditions (e.g. temperature, pressure) for the planetary body being studied.

  9. Bioluminescence: A Potentially Convergent Signature of Life in Future Exploration of Europa's Subsurface Ocean

    Science.gov (United States)

    Flores Martinez, C. L.

    2014-02-01

    This presentation deals with theoretical and evolutionary aspects pertaining to the nature and degree of biological complexity that is expectable among putative organisms on Europa. Bioluminescence is suggested as a new type of biosignature.

  10. Cryogenic Ice Penetration Mechanics for Investigating the Existence of Life on the Jupiter Moon Europa Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key challenge is that ice properties at the temperatures that exist on Europa are not well characterized. Our previous studies have shown that hardness as well as...

  11. The 3 $\\mu$m Spectrum of Jupiter's Irregular Satellite Himalia

    CERN Document Server

    Brown, M E

    2014-01-01

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 $\\mu$m spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 $\\mu$m absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids is surprising and difficult to reconcile with models of the origin of the irregular satellites.

  12. THE 3 μm SPECTRUM OF JUPITER's IRREGULAR SATELLITE HIMALIA

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M. E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Rhoden, A. R., E-mail: mbrown@caltech.edu, E-mail: Alyssa.Rhoden@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2014-10-01

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 μm spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 μm absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids is surprising and difficult to reconcile with models of the origin of the irregular satellites.

  13. A multifluid magnetohydrodynamic simulation of the interaction between Jupiter's magnetosphere and its moon Europa

    Science.gov (United States)

    Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K. K.; Kivelson, M.; Tenishev, V.; Toth, G.; van der Holst, B.; Wurz, P.

    2015-12-01

    Jupiter's moon Europa is believed to contain a subsurface water ocean whose finite electrical conductance imposes clear induction signatures on the magnetic field in its surroundings. The evidence rests heavily on measurements performed by the magnetometer on board the Galileo spacecraft during multiple flybys of the moon. Europa's interaction with the Jovian magnetosphere has become a major target of research in planetary science, partly because of the potential of a salty ocean to harbor life outside our own planet. Thus it is of considerable interest to develop numerical simulations of the Europa-Jupiter interaction that can be compared with data in order to refine our knowledge of Europa's subsurface structure. In this presentation we show aspects of Europa's interaction with the Jovian magnetosphere extracted from a multifluid magnetohydrodynamics (MHD) code BATS-R-US recently developed at the University of Michigan. The model dynamically separates magnetospheric and pick-up ions and is capable of capturing some of the physics previously accessible only to kinetic approaches. The model utilizes an adaptive grid to maintain the high spatial resolution on the surface required to resolve the portion of Europa's neutral atmosphere with a scale height of a few tens of kilometers that is in thermal equilibrium. The model also derives the electron temperature, which is crucial to obtain the local electron impact ionization rates and hence the plasma mass loading in Europa's atmosphere. We compare our results with observations made by the plasma particles and fields instruments on the Galileo spacecraft to validate our model. We will show that multifluid MHD is able to reproduce the basic features of the plasma moments and magnetic field observations obtained during the Galileo E4 and E26 flybys at Europa.

  14. Para uma nova visão da Europa: aprender com o Sul

    Directory of Open Access Journals (Sweden)

    Boaventura de Sousa Santos

    Full Text Available Resumo O preconceito colonial constitui a chave para compreendermos a dificuldade que a Europa tem em aprender com o mundo, isto é, em reconhecer histórias, práticas, saberes e soluções para além da história e das teorias, alegadamente universais, produzidas no ocidente. Num momento em que várias crises assombram a Europa, parece existir uma janela de oportunidade para que, numa lógica de aprendizagens globais e de reconhecimentos recíprocos, a Europa possa abrir-se a aprender com o Sul, superando o pensamento abissal da modernidade. Este artigo procura compreender as condições para aprendizagens globais que permitam a reinvenção da Europa. Num primeiro momento, é analisado o lugar da Europa no mundo, considerando o auge do seu poder colonial e o mundo pós-colonial em que hoje vivemos. Em segundo lugar, são apresentadas as condições que podem permitir uma nova visão de uma Europa, a partir do hoje, que está fora dela. Por fim, são apresentados exemplos de aprendizagens mútuas em quatro áreas temáticas: direitos humanos, economia, democracia e constitucionalismo.

  15. Understanding Europa's Ice Shell and Subsurface Water Through Terestrial Analogs for Flyby Radar Sounding

    Science.gov (United States)

    Blankenship, D. D.; Grima, C.; Young, D. A.; Schroeder, D. M.; Soderlund, K. M.; Gim, Y.; Plaut, J. J.; Patterson, G.; Moussessian, A.

    2015-12-01

    The recently approved NASA mission to Europa proposes to study this ice-covered moon of Jupiter though a series of fly-by observations of its surface and subsurface from a spacecraft in Jovian orbit. The science goal of this mission is to "explore Europa to investigate its habitability". One of the primary instruments in the selected scientific payload is a multi-frequency, multi-channel ice penetrating radar system. The "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" will play a critical role in achieving the mission's habitability driven science objectives, which include characterizing the distribution of any shallow subsurface water, searching for an ice-ocean interface and evaluating a spectrum of ice-ocean-atmosphere exchange hypotheses. The development of successful measurement and data interpretation techniques for exploring Europa will need to leverage knowledge of analogous terrestrial environments and processes. Towards this end, we will discuss a range of terrestrial radioglaciological analogs for hypothesized physical, chemical, and biological processes on Europa and present airborne data collected with the University of Texas dual-frequency radar system over a variety of terrestrial targets. These targets include water filled fractures, brine rich ice, water lenses, accreted marine ice, and ice surfaces with roughness ranging from firn to crevasse fields and will provide context for understanding and optimizing the observable signature of these processes in future radar data collected at Europa.

  16. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  17. Examining Microbial Survival During Infall onto Europa: An Important Limit on the Origin of Potential European Life

    Science.gov (United States)

    Fries, M.; Conrad, P.; Matney, M.; Steele, A.

    2015-01-01

    Previous work shows that transfer of material from Earth to Europa is statistically possible, opening the question of whether terrestrial biota may have transferred to Europa to populate that world. Transfer of viable organisms is a function of parameters such as ejection shock, radiation exposure, and others, applied across four phases in the transfer process: ejection from the parent body, transport through interplanetary space, infall onto the target world, and biological adaptation. If terrestrial biota could survive transport to Europa, then biology on Europa may be either the product of a separate and unrelated origin or they are the descendants of transferred terrestrial organisms. If, however, transfer of viable organisms is impossible, then any biota present on Europa must be the product of a biological origin independent from terrestrial life. We will investigate the survival likelihood of material falling onto Europa.

  18. Epidemiología del tabaquismo en Europa

    Directory of Open Access Journals (Sweden)

    Esteve Fernández

    2002-01-01

    Full Text Available El tabaco es la causa de mortalidad prevenible más importante en los países europeos, en los que da cuenta de más de medio millón de muertes anuales. El objetivo de este trabajo es revisar la epidemiología del tabaquismo en Europa, atendiendo a la visión de conjunto sobre el impacto del tabaquismo, a la prevalencia del consumo y a su evolución en la última década, así como revisar otras características relacionadas con la difusión y mantenimiento del tabaquismo: la producción y los precios del tabaco. Treinta de cada 100 europeos adultos fuma cigarrillos a diario. En los países de la Unión Europea se estima que 1 de cada 10 adultos fumadores morirá a causa de los efectos del tabaco, razón que se eleva a 1 de cada 5 en los países del este de Europa. La prevalencia de fumadores desciende entre los hombres adultos en algunos países de la Unión Europea, mientras que aumenta en las mujeres, sobre todo jóvenes, del sur y del este de Europa. Se debe insistir en las medidas para controlar el consumo de tabaco y prevenirlo, tales como la prohibición del consumo en lugares públicos, la prohibición real de la publicidad directa e indirecta, la reducción del cultivo, o el incremento de precios. Estas acciones se deben diseñar, coordinar y desarrollar en y desde los diferentes sectores involucrados en la lucha contra el tabaco, con la participación de redes civiles impulsadas desde los diferentes niveles administrativos (local, regional, nacional con la decisiva participación de organismos y organizaciones supranacionales.Tobacco is the most important preventable cause of mortality in European countries, accounting for over half a million deaths per year. A review is presented on the epidemiology of tobacco smoking in Europe, using a comprehensive approach on the health effects of smoking, the prevalence of tobacco consumption, and its evolution in the past decade. Tobacco industry efforts to promote and maintain smoking through

  19. Geometry and spatial distribution of lenticulae on Europa

    Science.gov (United States)

    Culha, C.; Manga, M.

    2015-12-01

    Title: Geometry and spatial distribution of lenticulae on Europa Order of Authors: Cansu Culha (Stanford University); Michael Manga (University of California, Berkeley) The surface of Europa contains several types of elliptical features, collectively called lenticulae. These features may have positive relief (domes) or negative relief (pits), may disrupt the crust (chaos), or discolor the surface (spots); some lenticulae have attributes of both domes and chaos (dome/chaos). We map the location, dimensions and shapes of all these features and their interactions with other surface features. We find (1) pits and domes have similar sizes; (2) pits are clustered in certain regions of the surface whereas domes, dome/chaos, and chaos terrains are more uniformly distributed; (3) chaos are larger than the other lenticulae; (4) lineaments do not divert their paths around lenticulae. Taken together, these observations are consistent with conceptual models in which lenticulae are created by convection or intrusion of liquid water bodies within the ice shell. Additionally, the observations are consistent with the notion that each type of lenticulae is a surface expression of dynamics within the ice shell at a different stage of the lenticulae evolution. The similar size and shape of pits and domes suggests that one may evolve into the other. Because domes are more numerous and more uniformly distributed than pits, they are more likely to represent the end stage of this evolution assuming the end-stage leaves a longer-lasting surface expression. We find no examples of lineaments crossing pits but lineaments do cross some chaos, implying that pits are younger than chaos and consistent with pits being the earliest stage in the evolution of lenticulae. Models also predict that larger features are more likely to disrupt the crust, which is consistent with dome/chaos and chaos being larger than pits and domes. The absence of lineaments deflected by lenticulae implies either that the

  20. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues.

    Science.gov (United States)

    Marion, Giles M; Fritsen, Christian H; Eicken, Hajo; Payne, Meredith C

    2003-01-01

    The putative ocean of Europa has focused considerable attention on the potential habitats for life on Europa. By generally clement Earth standards, these Europan habitats are likely to be extreme environments. The objectives of this paper were to examine: (1) the limits for biological activity on Earth with respect to temperature, salinity, acidity, desiccation, radiation, pressure, and time; (2) potential habitats for life on Europa; and (3) Earth analogues and their limitations for Europa. Based on empirical evidence, the limits for biological activity on Earth are: (1) the temperature range is from 253 to 394 K; (2) the salinity range is a(H2O) = 0.6-1.0; (3) the desiccation range is from 60% to 100% relative humidity; (4) the acidity range is from pH 0 to 13; (5) microbes such as Deinococcus are roughly 4,000 times more resistant to ionizing radiation than humans; (6) the range for hydrostatic pressure is from 0 to 1,100 bars; and (7) the maximum time for organisms to survive in the dormant state may be as long as 250 million years. The potential habitats for life on Europa are the ice layer, the brine ocean, and the seafloor environment. The dual stresses of lethal radiation and low temperatures on or near the icy surface of Europa preclude the possibility of biological activity anywhere near the surface. Only at the base of the ice layer could one expect to find the suitable temperatures and liquid water that are necessary for life. An ice layer turnover time of 10 million years is probably rapid enough for preserving in the surface ice layers dormant life forms originating from the ocean. Model simulations demonstrate that hypothetical oceans could exist on Europa that are too cold for biological activity (T salinities are high, which would restrict life to extreme halophiles. An acidic ocean (if present) could also potentially limit life. Pressure, per se, is unlikely to directly limit life on Europa. But indirectly, pressure plays an important role in

  1. Feniks Europa: naoorlogs Europa en de late 'ontdekking' van de holocaust [Review of: T. Judt Postwar: a history of Europe since 1945

    NARCIS (Netherlands)

    Melching, W.

    2007-01-01

    Historicus Willem Melching las de vuistdikke Postwar: a history of Europe since 1945 van de Britse auteur, historicus en professor Tony Judt. Hij prijst het boek, plaatst kanttekeningen en becommentarieert een aantal onderwerpen: de ‘herrijzenis van Europa uit de as van stalinisme, fascisme, nazisme

  2. Ciudades, barrios y gobernanza multiescalar en la Europa urbana

    Directory of Open Access Journals (Sweden)

    Frank Moulaert

    2014-01-01

    Full Text Available Las políticas urbanas, especialmente aquellas orientadas al desarrollo de barrios, carecen de consistencia en el tiempo y en su "régimen urbano". En Europa, durante las últimas dos décadas, la política urbana ha experimentado un movimiento pendular, desde una política centrada en el barrio de corte social-comunitaria en la década de 1990, hacia una política para la ciudad manejada por la economía y el mercado inmobiliario en los 2000, y el llamado urgente de los últimos años a reintroducir innovación social y barrios en la política urbana. A partir de experiencias de innovación social en ciudades europeas y de sus formas de gobierno, pero también de cómo desafían a las autoridades públicas, este artículo extrae lecciones sobre innovación social, desarrollo urbano y formas de gobierno más sólidas en el tiempo y en relación con el contexto. Constancia en el financiamiento, articulación y aprendizaje recíproco en la gobernanza y una ética comunitaria solidaria parecen ser las bases de dicha solidez.

  3. El rapto de Europa... una y otra vez

    Directory of Open Access Journals (Sweden)

    Eduardo GARCIA SÁNCHEZ

    2009-12-01

    Full Text Available RESUMEN: El registro inferopaleolítico de Europa permite establecer un mínimo de tres fases de poblamiento del subcontinente. Las evidencias seguras de actividad antrópica más antigua, localizadas todas ellas en la Península Ibérica, son escasas y se datan entre 1,5 y 1,25 Ma BP. No existen datos que indiquen su continuidad. Las similitudes de estos conjuntos líticos con las colecciones documentadas circa 1,8 Ma BP en Dmanisi (Georgia invitan a considerar la posibilidad de que todos estos yacimientos manifiesten una dispersión de homínidos con origen en África oriental. La misma parece estar relacionada con las transformaciones de faunas apreciadas en el Cáucaso, Próximo Oriente y Europa en torno al límite Plio-Pleistoceno convencional, episodio que implicó la difusión de especies africanas en estos ecosistemas. Una segunda fase de poblamiento del continente, restringido al área mediterránea, está representada por una nómina de yacimientos algo más nutrida. La misma parece no prolongarse más allá de la transición Pleistoceno inferior/ Pleistoceno medio, datándose entre OIS 25-OIS 24 y la transición OIS 19-OIS 18. Los datos paleoantropológicos y arqueológicos de estos yacimientos parecen señalar un origen asiático para estas poblaciones, cuya penetración en Europa coincide con el episodio de reemplazo faunístico Galeriense, que implicó la difusión de taxa asiáticos en los ecosistemas europeos. Tras un aparente hiato del registro europeo, a partir de la transición OIS 16-OIS 15, se cuenta con evidencia de actividad antrópica más abundante. El rango geográfico ocupado por grupos de homínidos se amplió hasta alcanzar áreas tan septentrionales como el sur de Gran Bretaña y el norte de Alemania durante las fases isotópicas pares. En términos generales, los yacimientos correspondientes a esta tercera fase manifiestan la aparición en Europa de nuevas tecnologías y pautas de comportamiento, así como un mejor

  4. Ciudadanos del este de Europa consumidores de drogas en Barcelona

    Directory of Open Access Journals (Sweden)

    González M.

    2003-01-01

    Full Text Available Desde mayo de 1999 hasta mayo de 2001, hemos contactado en el SAPS (Servicio de Atención Social y Sanitaria de Barcelona con usuarios de drogas de países del este de Europa. Acuden a centros terapéuticos gratuitos, aunque pagan por la organización del viaje unos 500 euros. Son jóvenes entre 18 y 30 años y mantienen el contacto con sus familiares. Conocen los riesgos de transmisión de enfermedades, pero suelen reutilizar las jeringas. Es alta la prevalencia de hepatitis C (92% y B (62% y menor la de infección por el VIH (19%. Si no abandonan las drogas, el retorno es un fracaso y tienen dificultades para proseguir los tratamientos con metadona o antirretrovirales. La respuesta asistencial ha de adecuarse a sus necesidades. Se debe procurar la mediación cultural y la información en los lugares de origen, supervisar los centros terapéuticos y diseñar alternativas a los abandonos. Hay que desarrollar la colaboración internacional, estimular programas de disminución de riesgos derivados del consumo y evitar que del tratamiento se haga un comercio.

  5. Exploring the ocean of Europa: Reactor or RHU?

    Science.gov (United States)

    Poston, David; Belooussov, Andrei

    2000-01-01

    This paper examines the heat transfer characteristics of a probe (cryobot) penetrating through the ice layer of Europa. Initially, simple 1D calculations are used to predict the ideal (no heat losses or temperature limitations) penetration rates for various size cryobots. Next, a detailed 2D model is used to more realistically model penetration rates. It is found that for small, low power density systems, conductive losses can cause the penetration rate to be significantly lower than the ideal rate. The results of these calculations are meant to establish rough limits on the size of cryobot that can be powered by an RHU (Radioisotope Heater Unit), and at what sizes a reactor becomes enabling. It is concluded that if an RHU system (that delivers almost all power to the bit) can be developed with an overall, fully-engineered power density of ~1 W/cm3, then an RHU system may be suitable for some mission scenarios, although slow penetration times (which increase mission risk) and/or high Pu-238 requirements (cost and availability) may still make a reactor a more optimal choice. If there is a requirement for a large payload and/or a rapid penetration time (~months), then a reactor will probably be required. The final portion of the paper examines potential reactor designs that could be used to power a cryobot. Two potential reactor designs are discussed-a near-term, low-cost heatpipe cooled system and a conductively-cooled metal-fueled reactor. .

  6. Qu'est que Lila dit? Construyendo Europa

    Directory of Open Access Journals (Sweden)

    Susana Torrado Morales

    2008-01-01

    Full Text Available En este momento, Europa se encuentra inmersa en el proceso de construcción de lo que algunos llaman “alma europea”, otros “sueño europeo”, y que podemos identificar, de forma más directa, con una “identidad europea”. Una “identidad europea” definida como “…aquellos valores que los europeos comparten y que otras partes del mundo admiran”. Pero, ¿realmente existen esos valores comunes?, ¿se muestran en el cine europeo?, ¿se aprecian en películas como Lila dit ça, Monsieur Ibrahim et les fleurs du Coran o Solino? In this moment, Europe is involved in the process of making up a “European soul”, also called “European identity”. The definition of European identity is: “... those Values than European People share and other countries admire”. But, really this values exist? And, if it was the case, we can find it in the European Cinema? In films as Lila dit ça, Monsieur Ibrahim et les fleurs du Coran or Solino?

  7. Valores culturales y actitudes hacia los inmigrantes en Europa

    Directory of Open Access Journals (Sweden)

    José Luis Álvaro Estramiana

    2010-05-01

    Full Text Available La inmigración es uno de los fenómenos que más controversia social, política y económica genera. No podemos negar que dicho fenómeno se vive en Europa con recelo y preocupación debido a sus consecuencias. El continente europeo presenta una amplia variedad cultural y social; estas diferencias culturales y sociales afectan, en gran medida, a la propia diversidad de los valores occidentales, que se ven influenciados por los procesos migratorios que acontecen en todo el continente. El trabajo que presentamos quiere destacar la importancia que los valores culturales tienen en la explicación de la aceptación o el rechazo de inmigrantes. Los datos que presentamos en esta investigación están basados en el cuestionario realizado en la Encuesta Social Europea (2002, y en el Cuestionario de Valores Personales de Schwartz (2001. Destacaremos la importancia de algunos valores culturales como objetivos a desarrollar en cualquiera de las iniciativas y políticas migratorias.

  8. Jupiter small satellite montage

    Science.gov (United States)

    2000-01-01

    A montage of images of the small inner moons of Jupiter from the camera onboard NASA's Galileo spacecraft shows the best views obtained of these moons during Galileo's 11th orbit around the giant planet in November 1997. At that point, Galileo was completing its first two years in Jupiter orbit--known as the Galileo 'prime mission'--and was about to embark on a successful two-year extension, called the Galileo Europa Mission. The top two images show the moon Thebe. Thebe rotates by approximately 50 degrees between the time these two images were taken, so that the same prominent impact crater is seen in both views; this crater, which has been given the provisional name Zethus, is near the point on Thebe that faces permanently away from Jupiter. The next two images show the moon Amalthea; they were taken with the Sun directly behind the observer, an alignment that emphasizes patterns of intrinsically bright or dark surface material. The third image from the top is a view of Amalthea's leading side, the side of the moon that 'leads' as Amalthea moves in its orbit around Jupiter. This image looks 'noisy' because it was obtained serendipitously during an observation of the Jovian satellite Io (Amalthea and Io shared the same camera frame but the image was exposed for bright Io rather than for the much darker Amalthea). The fourth image from the top emphasizes prominent 'spots' of relatively bright material that are located near the point on Amalthea that faces permanently away from Jupiter. The bottom image is a view of the tiny moon Metis. In all the images, north is approximately up, and the moons are shown in their correct relative sizes. The images are, from top to bottom: Thebe taken on November 7, 1997 at a range of 504,000 kilometers (about 313,000 miles); Thebe on November 7, 1997 at a range of 548,000 kilometers (about 340,000 miles); Amalthea on November 6, 1997 at a range of about 650,000 kilometers (about 404,000 miles); Amalthea on November 7, 1997 at a

  9. Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession; Minder stikstofoxide boven Europa door milieubeleid en economische recessie

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, K.F.; Vinken, G.C.M.; Castellanos, P.; De Ruyter, M.; Eskes, H.J. [Koninklijk Nederlands Meteorologisch Instituut KNMI, De Bilt (Netherlands)

    2012-06-15

    Early 2012, two articles reported on reductions in nitrogen oxides over Europe as measured by satellite instruments in space. Both articles link the measured rapid decrease of NO2 in 2009 to the worldwide economic recession of that same year. But what do these results actually say about the changes in the air quality near the ground?. [Dutch] Begin 2012 verschenen kort na elkaar twee artikelen die afnemende stikstofdioxide (NO2)-concentraties boven Europa rapporteerden zoals gemeten vanuit de ruimte met satellietinstrumenten. Beide artikelen leggen een verband tussen de gemeten snelle afname van NO2 in 2009 en de wereldwijde economische recessie van dat jaar. Maar wat zeggen deze resultaten nu eigenlijk over veranderingen in de luchtkwaliteit nabij de grond?.

  10. Hydrated salt minerals on Europa's Surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation

    Science.gov (United States)

    McCord, T.B.; Hansen, G.B.; Matson, D.L.; Johnson, T.V.; Crowley, J.K.; Fanale, F.P.; Carlson, R.W.; Smythe, W.D.; Martin, P.D.; Hibbitts, C.A.; Granahan, J.C.; Ocampo, A.

    1999-01-01

    We reported evidence of heavily hydrated salt minerals present over large areas of Europa's surface from analysis of reflectance spectra returned by the Galileo mission near infrared mapping spectrometer (NIMS) [McCord et al., 1997a, b, 1998a, b]. Here we elaborate on this earlier evidence, present spatial distributions of these minerals, examine alternate water-ice interpretations, expand on our hydrated-salts interpretation, consider salt mineral stability on Europa, and discuss the implications. Extensive well-defined areas on Europa show distinct, asymmetric water-related absorption bands in the 1 to 2.5-??m region. Radiative transfer modeling of water ice involving different particle sizes and layers at Europa temperatures does not reproduce the distinctive Europa water bands. However, ice near its melting temperature, such as in terrestrial environments, does have some characteristics of the Europa spectrum. Alternatively, some classes of heavily hydrated minerals do exhibit such water bands. Among plausible materials, heavily hydrated salt minerals, such as magnesium and sodium sulfates, sodium carbonate and their mixtures, are preferred. All Europa spectral features are present in some salt minerals and a very good match to the Europa spectrum can be achieved by mixing several salt spectra. However, no single or mix of salt mineral spectra from the limited library available has so far been found to perfectly match the Europa spectrum in every detail. The material is concentrated at the lineaments and in chaotic terrain, which are technically disrupted areas on the trailing side. Since the spectrum of the material on Europa is nearly the same everywhere so-far studied, the salt or salt-mixture composition may be nearly uniform. This suggests similar sources and processes over at least a near-hemispheric scale. This would suggest that an extensive subsurface ocean containing dissolved salts is the source, and several possible mechanisms for deposit

  11. Spectral Properties of Chlorides and Other Oxidized Chlorine Compounds in Relation to Europa

    Science.gov (United States)

    Hanley, Jennifer; Dalton, J. B., III

    2010-10-01

    Galileo's Near-Infrared Mapping Spectrometer (NIMS) has revealed the surface of Europa to be mostly water ice. The non-icy spectra have been compared to those of various hydrated minerals, suggesting that the non-ice material has a heavily hydrated salt component. However, many relevant laboratory spectra are still not available, especially at the low temperatures and pressures of Europa. In particular, chlorides are predicted to exist in the interior, and if the non-ice material is of an endogenic source, hydrated chlorides might be present on the surface. Oxidation of chlorides would result in chlorates (ClO3-) and/or perchlorates (ClO4-) as well. Both chlorates and perchlorates would lower the freezing point of water significantly (down to 205 K in the case of Mg(ClO4)2), adding new constraints to the arguments for a liquid layer below the surface. Using an environmental chamber to create the relevant pressures and temperatures of Europa, we have acquired new spectra of some of these hydrated salts, specifically MgCl2, Mg(ClO3)2, NaClO4 and Mg(ClO4)2. These materials exhibit spectral features similar to those seen on NIMS observations of Europa's non-icy terrains. We will compare these spectra to those of water ice, hydrated sulfates, and the data. Preliminary analysis suggests that chlorate hydrates may contribute to the spectral signature of Europa's surface deposits.

  12. Trade space evaluation of multi-mission architectures for the exploration of Europa

    Science.gov (United States)

    Alibay, F.; Strange, N. J.

    Recent cuts to NASA's planetary exploration budget have precipitated a debate in the community on whether large flagship missions to planetary bodies in the outer solar system or sequences of smaller missions as part of a long-term exploration program would be more beneficial. The work presented explores the trade between these two approaches as applied to the exploration of Europa and concentrates on identifying combinations of flyby, orbiter and/or lander missions that achieve high value at a lower cost than the Jupiter Europa Orbiter (JEO) flagship mission concept. The effects of the value attributed to the four main science objectives for Europa, which can be broadly classified as investigating the ocean, ice-shell, composition and geology, are demonstrated. The current approach proposed to complete the ocean exploration objective is shown to have conflicting requirements with the other three objectives. For missions that fully address all the science objectives, such as JEO, the ocean goal is therefore found to be the main cost driver. Instrument combinations for low-cost flyby missions are also presented, and simple lander designs able to achieve a wide range of objectives at a low additional cost are identified. Finally, the current designs for the Europa Habitability Mission (EHM) are compared to others in the trade space, based on the prioritization given to the science goals for the exploration of Europa. The current EHM flyby mission (Clipper) is found to be highly promising in terms of providing very high potential science value at a low cost.

  13. Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites

    Science.gov (United States)

    Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

    2005-01-01

    The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

  14. Model Based Systems Engineering on the Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd J.; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    At the start of 2011, the proposed Jupiter Europa Orbiter (JEO) mission was staffing up in expectation of becoming an official project later in the year for a launch in 2020. A unique aspect of the pre-project work was a strong emphasis and investment on the foundations of Model-Based Systems Engineering (MBSE). As so often happens in this business, plans changed: NASA's budget and science priorities were released and together fundamentally changed the course of JEO. As a result, it returned to being a study task whose objective is to propose more affordable ways to accomplish the science. As part of this transition, the question arose as to whether it could continue to afford the investment in MBSE. In short, the MBSE infusion has survived and is providing clear value to the study effort. By leveraging the existing infrastructure and a modest additional investment, striking advances in the capture and analysis of designs using MBSE were achieved. In the process, the need to remain relevant in the new environment has brought about a wave of innovation and progress. The effort has reaffirmed the importance of architecting. It has successfully harnessed the synergistic relationship of architecting to system modeling. We have found that MBSE can provide greater agility than traditional methods. We have also found that a diverse 'ecosystem' of modeling tools and languages (SysML, Mathematica, even Excel) is not only viable, but an important enabler of agility and adaptability. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  15. Model Based Systems Engineering on the Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd J.; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; Wagner, Dave

    2012-01-01

    At the start of 2011, the proposed Jupiter Europa Orbiter (JEO) mission was staffing up in expectation of becoming an official project later in the year for a launch in 2020. A unique aspect of the pre-project work was a strong emphasis and investment on the foundations of Model-Based Systems Engineering (MBSE). As so often happens in this business, plans changed: NASA's budget and science priorities were released and together fundamentally changed the course of JEO. As a result, it returned to being a study task whose objective is to propose more affordable ways to accomplish the science. As part of this transition, the question arose as to whether it could continue to afford the investment in MBSE. In short, the MBSE infusion has survived and is providing clear value to the study effort. By leveraging the existing infrastructure and a modest additional investment, striking advances in the capture and analysis of designs using MBSE were achieved. In the process, the need to remain relevant in the new environment has brought about a wave of innovation and progress. The effort has reaffirmed the importance of architecting. It has successfully harnessed the synergistic relationship of architecting to system modeling. We have found that MBSE can provide greater agility than traditional methods. We have also found that a diverse 'ecosystem' of modeling tools and languages (SysML, Mathematica, even Excel) is not only viable, but an important enabler of agility and adaptability. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  16. Chaotic Terrain on Europa in Very High Resolution

    Science.gov (United States)

    1998-01-01

    This view of the Conamara Chaos region on Jupiter's moon Europa taken by NASA's Galileo spacecraft shows an area where the icy surface has been broken into many separate plates that have moved laterally and rotated. These plates are surrounded by a topographically lower matrix. This matrix material may have been emplaced as water, slush, or warm flowing ice, which rose up from below the surface. One of the plates is seen as a flat, lineated area in the upper portion of the image. Below this plate, a tall twin-peaked mountain of ice rises from the matrix to a height of more than 250 meters (800 feet). The matrix in this area appears to consist of a jumble of many different sized chunks of ice. Though the matrix may have consisted of a loose jumble of ice blocks while it was forming, the large fracture running vertically along the left side of the image shows that the matrix later became a hardened crust, and is frozen today. The Brooklyn Bridge in New York City would be just large enough to span this fracture.North is to the top right of the picture, and the sun illuminates the surface from the east. This image, centered at approximately 8 degrees north latitude and 274 degrees west longitude, covers an area approximately 4 kilometers by 7 kilometers (2.5 miles by 4 miles). The resolution is 9 meters (30 feet) per picture element. This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by Galileo's solid state imaging system.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  17. Robert Musil y los Estados desunificados de Europa

    Directory of Open Access Journals (Sweden)

    Bayón, Fernando

    2006-12-01

    Full Text Available This article is a study of Robert Musil´s work “The Man Without Qualities” from philosophical sources. It is a novel that has produced so many overriding metaphors through which we can better understand the crises of the social identity on the horizont of the last modernity in Europe. Much of the key-concepts that helped in creating the so called “Leyend of Modernity” start to vanish in an irremediable way: not only did Musil trace the disappearance of the support for national aspirations and social cohesion, he also showed us how culture is a mad carrousel of collapsed expectations, and how the prevailing idea of “subjectivity” lacks today any solid or essential nucleus. In the middle of this disenchanted landscape of Europe, where all the modern and clasical illusions became nothing, appears however “a new human being”, since the man “without qualities” is the man with endless possibilities too.El presente ensayo es una interpretación de la novela de Robert Musil “El hombre sin atributos” a partir de fuentes filosóficas. Se trata de una obra que ha producido algunas metáforas decisivas para comprender las crisis de la identidad social en el horizonte de la última modernidad europea. Muchos de los conceptos clave que ayudaron a crear la leyenda de la modernidad empiezan a erosionarse de modo irreversible: se descomponen las aspiraciones nacionales, el sujeto pierde su núcleo sustancial y la cultura es un carrusel de esperanzas abortadas incapaces de responder a ninguna idea rectora. Y, sin embargo, en el paisaje de esta Europa tardomoderna en que se han agotado las pasadas ilusiones surge la idea de que el “hombre sin atributos” es también el “hombre de las posibilidades”.

  18. Controlled photomosaic map of Europa Je 15 M CMN

    Science.gov (United States)

    ,

    2002-01-01

    This sheet is one in a series of maps of the Galilean satellites of Jupiter at a nominal scale of 1:15,000,000. This series is based on data from the Galileo Orbiter Solid-State Imaging (SSI) camera and the Voyager 1 and 2 spacecraft.

  19. Multi-Body Capture to Low-altitude Circular Orbits at Europa

    Science.gov (United States)

    Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.

    2011-01-01

    For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.

  20. Modernidad Latinoamericana pese a Europa. El Universalismo Mexicano en el Contexto Internacional

    Directory of Open Access Journals (Sweden)

    Stefan Gandler

    2011-01-01

    Full Text Available El imaginario hoy dominante declara Europa como cuna de la modernidad, los países del tercer mundo como simples receptores de la tradición ilustrada. Registramos, en cambio, que la mayor parte de Europa no ha aplicado los ideales de la Revolución Francesa, sino mantienen elementos feudales y premodernos. México, a partir del liberalismo, la reforma y Juárez, es uno de los pocos países en el cuál los ideales de la Grande Révolution han sido retomados en la Constitución claramente moderna. La división Estado/iglesia, la anulación de los privilegios feudales, las correspondientes expropiaciones se han realizado en México con más mucho seriedad que en Europa

  1. Los mercados del "centro" y las economías atrasadas de Europa, 1900-1930

    OpenAIRE

    Fraile Balbín, Pedro

    1992-01-01

    Este capítulo del libro explora la conexión causal entre los mercados centrales de Europa y las economías exportadoras periféricas. En su primera parte, se analizan las pautas de comercio intraeuropeo y se subraya el papel de Alemania y Gran Bretaña como mercados centrales del continente, y en segundo lugar, tomando como ejemplo el caso de la Europa periférica, se contrasta la hipótesis de la excesiva concentración de las exportaciones como causa de la falta de crecimiento e...

  2. Europa y América en la revolución geodemográfica

    OpenAIRE

    Massimo Livi Bacci

    2005-01-01

    El trabajo establece un parangón entre Europa y América tanto de sus vivencias demográficas en el pasado con el Nuevo Mundo, como de las repercusiones futuras de las demografías de ambas regiones en un mundo globalizado. Con diversos indicadores el autor ilustra las transiciones en Europa, donde sepasó de una sociedad con abundancia de recursos humanos a otra con escasez de ellos. En este marco cuantitativo cualitativo expone las particularidades y soluciones de la crisis del Estado social en...

  3. Trepartsforhandlinger i Danmark og Europa følges ikke ad

    DEFF Research Database (Denmark)

    Mailand, Mikkel

    2016-01-01

    Trepartsforhandlinger med flere emner på dagsordenen flore-rede særligt i 1990’erne og tidligt i 00’erne rundt omkring i Europa, hvor de var fraværende i Danmark. Efter den øko-nomiske krise synes billedet at være vendt.......Trepartsforhandlinger med flere emner på dagsordenen flore-rede særligt i 1990’erne og tidligt i 00’erne rundt omkring i Europa, hvor de var fraværende i Danmark. Efter den øko-nomiske krise synes billedet at være vendt....

  4. En busca de un lugar en el mundo: viajeros latinoamericanos en la Europa del siglo XIX

    Directory of Open Access Journals (Sweden)

    Sanhueza, Carlos

    2007-01-01

    Full Text Available O presente trabalho examina experiências de viajantes latino-americanos pela Europa durante o século XIX. O objetivo é analisar a posição que adotaram discutindo e colocando em dúvida o pertencimento da América ao mundo ocidental. Aqui se postula que a viagem de intelectuais à Europa mostra as complexidades do processo de reorganização pós-colonial daquele século

  5. An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

    Science.gov (United States)

    Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.

    2017-08-01

    We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

  6. Pré-história de um conceito: o mito de Europa

    Directory of Open Access Journals (Sweden)

    Leonardo Francisco Soares

    2009-12-01

    Tal percurso salienta o caráter inventado, poroso e adaptável dessa noção “cartográfica”: o que se chama de Europa é menos um dado da natureza do que uma produção intelectual do homem, uma geografia imaginativa. Uma imagem acompanha este estudo, a de um touro branco que carrega em seu dorso, cercado pelas águas do oceano, agarrada aos seus cornos em forma de crescente, uma princesa chamada Europa.

  7. El caso Breivik como paradigma de la nueva violencia política en Europa

    OpenAIRE

    Jesús Pérez

    2014-01-01

    Tras el doble atentado en Noruega del 22 de julio de 2011 cometido por Anders Behring Breivik, el terrorismo en Europa se enfrenta a una nueva amenaza. La novedad ideológica de Breivik es escasa, salvo por actualizar peligros que parecían del pasado. Por el contrario, su novedad operativa sí es relevante, ya que demuestra la posibilidad de la actuación de "lobos solitarios" en Europa y ejemplifica de qué manera el occidental medio puede actuar con un potencial muy alto de causar daños. Se con...

  8. Tendencias tecnológicas en Europa. Análisis de los procesos de prospectiva

    OpenAIRE

    Martín Pereda, José Antonio

    2003-01-01

    El Informe «Tendencias tecnológicas en Europa. Análisis de los procesos de prospectiva», que Cotec publica en su Colección Observaciones de Buenas Prácticas en los sistemas de innovación, es el resultado de un trabajo original e innovador que compara los resultados obtenidos en los estudios de prospectiva tecnológica realizados por cinco de los países más avanzados de Europa.

  9. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  10. Relaxation, contraction, and polar wander: A study of the evolution of crustal and lithospheric thickness variations on the Moon, Mars, Mercury, and Ganymede

    Science.gov (United States)

    Mohit, Pundit Surdasji

    The majority of the surfaces of the Moon, Mars, Mercury, and Ganymede were shaped during the first 500-1000 Myr of the Solar System. As a result, they provide great insight into the processes that must have occurred on most, if not all, terrestrial planets and moons during that time period. In this study, a semi-analytic, self-gravitating, viscoelastic model of planetary deformation is developed and applied to the evolution of variations in their mechanical properties. First, the plausibility of viscous relaxation of large multi-ring lunar basins is investigated. This is found to be likely to have occurred during the first few hundred million years of lunar history, which places constraints on the timing and mechanism of crystallization of the lunar magma ocean. Second, the physical parameters of the largest martian basins are analyzed and found to be consistent with the occurrence of viscous relaxation throughout the period of heavy bombardment. The viscoelastic model is then employed to place constraints on the thermal state of early Mars. Third, the model is expanded to include lateral variations in viscosity and applied to the early contraction of Mercury. The results confirm the hypothesis that the amount of radial contraction has previously been underestimated. In addition to its expression through thrust faults, some fraction of the compressive stress was possibly taken up by long-wavelength folding of the mercurian lithosphere. Finally, an explanation of the anomalous cratering asymmetry between the leading and trailing hemispheres of Ganymede is proposed. Rotational dynamics calculations show that the thickness variations induced by the pole-to-equator temperature contrast was likely sufficient to make the axis of rotation unstable and cause the poles to exchange positions with the leading and trailing points.

  11. Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect

    Energy Technology Data Exchange (ETDEWEB)

    Heller, René, E-mail: rheller@physics.mcmaster.ca [Department of Physics and Astronomy, McMaster University (Canada)

    2014-05-20

    Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the solar system. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the solar system. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in the phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE descriptions to simulated transit observations of the Kepler space telescope assuming white noise only. Moons as small as Ganymede may be detectable in the available data, with M stars being their most promising hosts. Exomoons with the ten-fold mass of Ganymede and a similar composition (about 0.86 Earth radii in radius) can most likely be found in the available Kepler data of K stars, including moons in the stellar habitable zone. A future survey with Kepler-class photometry, such as Plato 2.0, and a permanent monitoring of a single field of view over five years or more will very likely discover extrasolar moons via their OSEs.

  12. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  13. Políticas culturales: Francia y Europa del Sur Políticas culturales: Francia y Europa del Sur

    Directory of Open Access Journals (Sweden)

    Emmanuel Négrier

    2008-04-01

    Full Text Available In this paper, we propose a comparative analysis of five national models of cultural policy. The four first ones constitute Southern Europe: Greece, Italy, Portugal and Spain. The fifth one is France. These countries share a tradition of direct intervention in the cultural field, contrary to anglo-saxon or Scandinavian countries. The aim of such a comparison is to assess convergences but also disparities between these countries, in spite of their common traditions. We focus on the historical paths, the ways of institutionalization of the cultural public domain, and the different kinds of territorial management of cultural policies. France, which is often considered as a singular model the other countries would have try to imitate, is also analyzed in a comparative perspective. The assessment of convergences and divergences allows, in conclusion, to establish the common goals that share these five countries, as well as the major part of occidental countries in order to define the cultural policy for the 21st century.En este artículo ofrecemos un análisis comparado de cinco modelos nacionales de política cultural. Los cuatro primeros pertenecen a la Europa del sur: España, Grecia, Italia, Portugal; Francia es el quinto. A diferencia de los países anglosajones o escandinavos, los países mencionados tienen en común una tradición de intervención directa en materia de cultura. Nuestra comparación se propone demostrar las convergencias y las diferencias en las trayectorias históricas de dichas políticas culturales, su forma de institucionalización y su modo de gestión territorial. Abordamos el caso francés aparte y desde una perspectiva comparada, pues suele constituir un modelo que los otros cuatro países han intentado imitar. A modo de conclusión, el balance de las convergencias y divergencias permite establecer retos comunes para el conjunto de dichos países, y quizá también para todos los países occidentales, de cara a definir

  14. Project BELIEVE. Final Report. (A National Workplace Literacy Project with Bakery Europa and Straub Clinic & Hospital).

    Science.gov (United States)

    Zane, Lawrence F. H.

    Bakery Europa and the Straub Clinic in Hawaii participated in Project BELIEVE, a 3-year (1995-98) workplace literacy project conducted in partnership with the University of Hawaii's College of Education. Instruction focused on the literacy, communication, interpersonal, and problem-solving skills needed to succeed in the baking and health care…

  15. Hubble Space Telescope observations of Europa in and out of eclipse

    Science.gov (United States)

    Sparks, W.B.; McGrath, M.; Hand, K.; Ford, H.C.; Geissler, P.; Hough, J.H.; Turner, E.L.; Chyba, C.F.; Carlson, R.; Turnbull, M.

    2010-01-01

    Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. ?? 2010 Cambridge University Press.

  16. Behandeling van diabetes mellitus door de huisarts in vijf Europese landen: eenheid binnen Europa?

    NARCIS (Netherlands)

    Donker, G.; Fleming, D.; Schellevis, F.; Spreeuwenberg, P.

    2005-01-01

    Achtergrond: Er is weinig bekend over verschillen binnen Europa in de behandeling van patiënten met diabetes mellitus (DM) in de huisartsenpraktijk. Doel: Het vergelijken van de behandeling bij DM in de huisartsenpraktijk in vijf Europese landen als eerste stap in de ontwikkeling van internationale

  17. Necesidad de una política coherente para minerales en Europa. Discusiones y acercamientos actuales

    Directory of Open Access Journals (Sweden)

    Günter Tiess

    2008-03-01

    Full Text Available El artículo resume algunos aspectos relevantes de la política mineral en Europa. Hace un llamado a la Unión Europea para concertar políticas e instrmentos de trabajo que aseguren la disponibilidad de las materias primas esenciales y la sustentabilidad de su extración y su uso.

  18. Development of a European resource on the origins of pathogens of aquaculture: The Europa Project

    DEFF Research Database (Denmark)

    Snow, M.; Barja, J.; Colquhoun, D.;

    2004-01-01

    This workshop described the EUROPA project, an EU-funded program aimed at creating a web-based database of molecular sequence data-sets related to significant pathogens of aquaculture. The project aims to focus the efforts of fish health researchers into generating large, evolving and readily ava...

  19. Modeling the Neutral Gas and Plasma Environment of Jupiter's Moon Europa

    Science.gov (United States)

    Rubin, Martin; Tenishev, Valeriy; Hansen, Kenneth; Jia, Xianzhe; Combi, Michael; Gombosi, Tamas

    Jupiter's moon Europa has a thin gravitationally bound neutral atmosphere, which is mostly created through sputtering of high-energy ions impacting on its icy surface. The interaction of Europa with the Jovian magnetosphere is simulated using the magnetohydrodynamics (MHD) model BATSRUS. We start from the model by Kabin et al. [JGR, Vol. 104, No. A9, (1999)], which accounts for the exospheric mass loading, ion-neutral charge exchange, and ion-electron recombination. The derived magnetic field topology and plasma speeds are used to calculate the Lorentz force for our test particle Monte Carlo model. We use this model to simulate Europa's plasma and neutral environment by tracking particles created on the moon's surface by sputtering or sublimation, through dissociation and/or ionization in the atmosphere, or entering the system from Jupiter's magnetosphere as high energy ions. Neutral particle trajectories are followed by solving the equation of motion in Europa's gravity field whereas the ion population is additionally subject to the Lorentz force. We will show preliminary results of this work with application to the missions to the Jupiter system currently under consideration by NASA (JEO) and ESA (JGO).

  20. Space Radiation Effects and Reliability Consideration for the Proposed Jupiter Europa Orbiter

    Science.gov (United States)

    Johnston, Allan

    2011-01-01

    The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.

  1. Notte balcanica: Guerre, crimine, stati falliti alle soglie d'Europa

    NARCIS (Netherlands)

    Strazzari, F.

    2008-01-01

    La scia sanguinosa di pulizie etniche, eccidi e ritorsioni lasciata da un decennio di guerre ha riproposto l'immagine dei Balcani come "polveriera d'Europa". Anche oggi - mentre l'Unione Europea si allarga e si assume responsabilità di politica estera - la stabilità delle sue parti orientali è tenut

  2. MALDI TOF MS: An Exobiology Surface-Science Approach for Europa

    Science.gov (United States)

    Gerakines, Perry A.; Wdowiak, Thomas J.

    2002-01-01

    If Europa is to be of primary exobiological interest, namely as a habitat for extant life, it is obvious that: (i) a hydrosphere must prevail beneath the cryosphere for a long time, (ii) internal energy sources must be present in a sufficient state of activity, and (iii) a reasonable technical means must be available for assessing if indeed life does exist in the hypothesized hydrosphere. This discussion focuses on technological issues, because the compounding evidence about Europa indicates that the first two are highly likely to be true. We present a consideration of time-of-flight mass spectroscopy (TOF MS) conducted in-situ on the cryosphere surface of Europa during a landed robotic mission. We assert that this is a reasonable technical means not only for exploring the composition of the cryosphere itself, but also for locating any biomolecular indicators of extant life brought to the surface through cryosphere activity. We also describe a MALDI (MAtrix Laser Desorption and Ionization) TOF MS system that we are constructing as a proof-of-concept prototype for conducting TOF MS measurements on Europa.

  3. Neptune's small satellites

    Science.gov (United States)

    Thomas, P.

    1992-04-01

    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  4. The Manannan Impact Crater on Europa: Determination of Surface Compositions of Key Stratigraphic Units

    Science.gov (United States)

    Dalton, J. B.; Prockter, L. M.; Shirley, J. H.; Phillips, C. B.; Kamp, L.

    2011-12-01

    Mannanan is a 22-km-diameter impact crater located at 3 N, 240 W on Europa's orbital trailing side. Detailed high resolution geologic mapping by Moore et al. (2001) revealed the likely presence of extensive deposits of impact melt materials largely filling the crater floor, together with surrounding continuous ejecta deposits that may have been excavated from Europa's interior. Terrains surrounding Mannanàn include some of Europa's visibly darkest surfaces, with extensive areas of chaos, traversed by the prominent structure of Belus Linea. The Mannannàn impact crater and its surrounding areas were imaged during the C3 orbital encounter of the Galileo Mission by the orbiter's Near-Infrared Mapping Spectrometer (NIMS). This NIMS observation (C3ENLINEA01A) has not been subjected to a detailed investigation until now, possibly due to the presence of moderate levels of radiation noise. A "despiked" version of this observation has been produced using methods described in Shirley et al. (2010). In addition, new geologic mapping precisely registered to the NIMS coverage of Manannàn and its surroundings allows the extraction of high-quality near-infrared spectra that are specific to individual geologic units and morphological features. We will present linear mixture modeling solutions for the compositions of several of Manannàn's key stratigraphic units, including the crater floor deposits and the adjacent chaos and linea materials. We will interpret these results in the context of ongoing investigations of the interplay of exogenic and endogenic influences on the surface composition of Europa. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, Johns Hopkins University-Applied Physics Laboratory, and the SETI Institute under a contract with NASA. Support by NASA's Outer Planets Research program is gratefully acknowledged. Moore, J. M. and 25 others 2001. Impact Features on Europa: Results of the Galileo Europa Mission (GEM

  5. La idea de una Europa cosmopolita: de la importancia cultural de la europeización

    Directory of Open Access Journals (Sweden)

    Gerard Delanty

    2012-02-01

    Full Text Available La idea de una Europa cosmopolita se define en contraposición a, por un lado, una 'Europa nacional' y, por otro, a una 'Europa global' en la que una Europa internacionalista dirigida por la UE juega un papel fundamental en el mundo. El concepto de Europa cosmopolita constituye una denominación más precisa de la forma de europeización que está surgiendo como una realidad intermedia y emergente entre la Europa nacional y la Europa global. Así pues, se puede imaginar la identidad europea como una identidad cosmopolita basada en una lógica cultural de autotransformación en lugar de una identidad supranacional o una identidad oficial de la UE que se encuentra inmersa en una relación de tensión con las identidades nacionales. Como identidad cosmopolita, la identidad europea es una forma de autoentendimiento postnacional que se expresa a sí misma dentro del marco de las identidades nacionales e incluso más allá de ellas.The idea of a cosmopolitan Europe is defined against a 'national Europe', on the one side and on the other, 'global Europe' where an internationalist EU led Europe plays a major role in the world. A cosmopolitan Europe is a more accurate designation of the emerging form of Europeanization as a mediated and emergent reality of the national and the global. It is possible to conceive of European identity as a cosmopolitan identity based on a cultural logic of self-transformation rather than as a supranational identity or an official EU identity that is in a relation of tension with national identities. As a cosmopolitan identity, European identity is a form of post-natlonal self-understanding that expresses itself within, as much as beyond, national identities.

  6. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    Science.gov (United States)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  7. What does Cassini ENA observations tell us about gas around Europa?

    Science.gov (United States)

    Brandt, Pontus; Mauk, Barry; Westlake, Joseph; Smith, Todd; Mitchell, Donald

    2015-04-01

    From about December 2000 to January 2001 the Ion and Neutral Camera (INCA) imaged Jupiter in Energetic Neutral Atoms (ENA) from a distance of about 137-250 Jovian planetary radii (RJ) over an energy range from about 10 to 300 keV. A forward model is employed to derive column densities and assumes a neutral gas-plasma model and an energetic ion distribution based on Galileo in-situ measurements. We demonstrate that Jupiter observations by INCA are consistent with a column density peaking around Europa's orbit in the range from 2x1012 cm-2 to 7x1012 cm-2, assuming H2, and are consistent with the upper limits reported from the Cassini/UVIS observations. Most of the INCA observations are consistent with a roughly azimuthally symmetric gas distribution, but some appear consistent with an asymmetric gas distribution centred on Europa, which would directly imply that Europa is the source of the gas. Although our neutral gas model assumes a Europa source, we explore other explanations of the INCA observations including: (1) ENAs are produced by charge exchange between energetic ions and neutral hydrogen originating from charge-exchanged protons in the Io plasma torus. However, estimated densities by Cheng (1986) are about one order of magnitude too low to explain the INCA observations; (2) ENAs are produced by charge exchange between energetic ions and plasma ions such as O+ and S+ originating from Io. However, that would require O+ plasma densities higher than expected to compensate for the low charge-exchange cross section between protons and O+; (3) We re-examine the INCA Point-Spread Function (PSF) to determine if the ENA emissions in the vicinity of Europa's orbit could be explained by internal scattering of ENAs originating from Jupiter's high-latitude upper atmosphere. However, the PSF was well constrained by using Jupiter from distances where it could be considered a point source.

  8. Shape of lenticulae on Europa and their interaction with lineaments.

    Science.gov (United States)

    Culha, Cansu; Manga, Michael

    2015-04-01

    The surface of Europa contains many elliptical features that have been grouped into three classes: (a) positive relief (domes), (b) negative relief (pits), or (c) complex terrain (small chaos). Collectively, these three classes of features are often called "lenticulae". The internal processes that form lenticulae are unknown. However, given that the diameters of all these features are similar, it is parsimonious to ascribe each class of feature to a different stage in the evolution of some process occurring within the ice shell. Proposed models for these features including diapirs (Sotin et al., 2002; Rathbun et al., 1998); melting above diapirs (Schmidt et al., 2011); and sills of water (Michaut and Manga, 2014). The objective of the present study is to first characterize the shape of lecticulae, and then look at the interaction of lenticulae with lineaments, in order to test lenticulae formation mechanisms. Lenticulae and lineaments are mapped and annotated on ArcGIS. We mapped a total of 57 pits and 86 domes. Both pits and domes have similar aspect ratios and orientations. The elliptical similarities of domes and pits suggest that domes and pits are surface expressions of different stages of a common process within the ice shell. The cross cutting relationships between lineaments reveal relative age. Lineaments either lie over or under the lenticulae. All of the lineament segments that appear within pits also appear topographically lower than the rest of the surface. Domes lie over and under lineaments, but unlike pits there are lineaments that lie over domes that do not vary in topography. This suggests that the lineaments that lie above lenticulae and match the lenticulae's topography are older than the lenticulae. Domes have more crossing lineaments. Therefore, on average, they appear to be older than pits. Lineaments also appear on the sides of lenticulae. There are two different ways in which adjacent lineaments appear: 1. they disrupt the shape of the

  9. Claves para el estudio histórico de la gestación de una Europa intercultural

    OpenAIRE

    Vergara-Ciordia, J. (Javier)

    2003-01-01

    Este artículo analiza la multiculturalidad e interculturalidad en el proceso de gestación de Europa. Se divide en tres partes diferenciadas: en primer lugar se aborda la idea de la europeidad y su dimensión humanista, civilizadora y cristiana como símbolos que cimentan la primigenia idea de Europa; a continuación, se abordan los distintos intentos de crear una Europa unida a partir de los intentos de superación de los modelos nacionalistas; por último se aborda la idea ...

  10. Good bye, Europa del Este. La desaparición de la Europa de los dos bloques y el difícil camino hacia una nueva identidad en la Europa del Este a través del cine

    Directory of Open Access Journals (Sweden)

    Labrador Ben, Julia María

    2007-08-01

    Full Text Available The Generation of distinguishing marks is described in Europe after the Revolution Of October, the use of the movies in the United States as an element in the Cold War and the European Identity after the fall of the USSR and the Warsaw Pact.Se describe la generación de señas de identidad en Europa tras la revolución de Octubre, la utilización del cine en EEUU como elemento de combate en la guerra fría, y la nueva identidad europea tras la desaparición de la URSS y el Pacto de Varsovia.

  11. An Examination of Issues Related to a Europa Subsurface Component for the JIMO Mission

    Science.gov (United States)

    Carsey, F. D.; Hecht, M. H.; Wilcox, B. H.; Behar, A. E.; Holland, P. M.

    2003-01-01

    The Galileo Europa data set served to revolutionize our view of Europa. In particular the strong evidence of a large, cold, salty Ocean beneath 5-30 km of ice has profoundly altered the significance of Europa in our thinking, especially of context of habitability in the solar system. While much remains to be learned from spacecraft observations of several sorts, there are significant questions answerable only by in-situ techniques; these relate to the formation of Europa, the nature of its ocean, and the prospects for life in its ocean, sediments, and ice. We feel that wide-ranging discussion of an in-situ subsurface mission to Europa, as part of JIMO, should proceed. The science objective of the mission is to characterize the icy shell of Europa to resolve its provenance, estimate the composition of brine of the Europa ocean, and search for evidence of Earth-like life. Probably anyone would agree that an in-situ mission to Europa would be of great value, but he or she would also immediately take the position that such a mission is utterly impractical. We take the position here of defining the least complex mission that can nonetheless justify its cost and to argue that such a mission is realistic enough that it should be seriously considered. Our mission thinking has been: 1) Soft landing. A soft lander is required on a site sufficiently flat to offer a stable platform; no further site selectivity is required. 2) Subsurface exploration. The Europa subsurface must be examined. Surficial processes on Europa arguably have exposed the upper 200 m of shell to chemical effects from the Jovian radiation belts as well as cometary infall, etc; to examine native ice we must descend below that point to, for discussion, 300 m. At that depth we argue that the ice is characteristic of ice at depth and possibly is effectively sea ice. 3) Science data. A few simple measurements at various depths and at 300 m constitute a scientifically successful mission. Measurements would

  12. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    Science.gov (United States)

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    In 1995, the Galileo spacecraft arrived at Jupiter to conduct follow-up experiments on pathfinder Pioneer and key Voyager discoveries especially at Io, Europa, Ganymede and Callisto. These new observations helped expand our scientific knowledge of the prominent Galilean satellites; studies revealed diversity with respect to their geology, internal structure, evolution and degree of past and present activity. Jupiter's diverse Galilean satellites, of which three are believed to harbor internal oceans, are central to understanding the habitability of icy worlds. Galileo provided for the first time compelling evidence of a near-surface global ocean on Europa. Furthermore, by understanding the Jupiter system and unraveling the history of its evolution from initial formation to the emergence of possible habitats and life, gives insight into how giant planets and their satellite systems form and evolve. Most important, new light is shed on the potential for the emergence and existence of life in icy satellite oceans. In 2009, NASA released a detailed Jupiter Europa Mission Study (EJSM) that proposed an ambitious Flagship Mission to understand more fully the satellites Europa and Ganymede within the context of the Jovian system. Key to EJSM is the NASA led Jupiter Europa Orbiter (JEO) and the ESA led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute a choreographed exploration of the Jovian system before settling into orbit around Europa and Ganymede, respectively. The National Academies Planetary Decadal Survey, 2011 has listed the NASA-led JEO as the second highest priority mission for the decade 2013-2022, and if chosen it would be launched in 2020 with arrival at Jupiter in 2025. If the JEO mission is not chosen it is anticipated that there will be opportunities in future decadal cycles. Jupiter Orbit Insertion (JOI) begins a 30-month Jovian system tour followed by nine months of science mapping after Europa Orbit Insertion (EOI) in July 2028. The orbiter will

  13. Evolución en el ámbito del pensamiento de las relaciones España-Europa

    OpenAIRE

    2004-01-01

    Se abordan en este documento de trabajo las relaciones España-Europa desde el punto de vista histórico, político, cultural etc. En primer lugar nos preguntaremos ¿Qué es Europa?. Después intentaremos ver qué ha sido Europa para los españoles y por último cómo Europa ha podido condicionar la vida española en su totalidad, cómo ha influido en la evolución de nuestra historia, nuestra filosofía política, nuestro arte, nuestro pensamiento, nuestra “vividura” como pueblo, utilizando esta expres...

  14. Benefits to the Europa Clipper Mission Provided by the Space Launch System

    Science.gov (United States)

    Creech, Stephen D.; Patel, Keyur

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) proposed Europa Clipper mission would provide an unprecedented look at the icy Jovian moon, and investigate its environment to determine the possibility that it hosts life. Focused on exploring the water, chemistry, and energy conditions on the moon, the spacecraft would examine Europa's ocean, ice shell, composition and geology by performing 32 low-altitude flybys of Europa from Jupiter orbit over 2.3 years, allowing detailed investigations of globally distributed regions of Europa. In hopes of expediting the scientific program, mission planners at NASA's Jet Propulsion Laboratory are working with the Space Launch System (SLS) program, managed at Marshall Space Flight Center. Designed to be the most powerful launch vehicle ever flown, SLS is making progress toward delivering a new capability for exploration beyond Earth orbit. The SLS rocket will offer an initial low-Earth-orbit lift capability of 70 metric tons (t) beginning with a first launch in 2017 and will then evolve into a 130 t Block 2 version. While the primary focus of the development of the initial version of SLS is on enabling human exploration missions beyond low Earth orbit using the Orion Multi-Purpose Crew Vehicle, the rocket offers unique benefits to robotic planetary exploration missions, thanks to the high characteristic energy it provides. This paper will provide an overview of both the proposed Europa Clipper mission and the Space Launch System vehicle, and explore options provided to the Europa Clipper mission for a launch within a decade by a 70 t version of SLS with a commercially available 5-meter payload fairing, through comparison with a baseline of current Evolved Expendable Launch Vehicle (EELV) capabilities. Compared to that baseline, a mission to the Jovian system could reduce transit times to less than half, or increase mass to more than double, among other benefits. In addition to these primary benefits, the paper will

  15. The Resolved Asteroid Program - Size, shape, and pole of (52) Europa

    Science.gov (United States)

    Merline, W. J.; Drummond, J. D.; Carry, B.; Conrad, A.; Tamblyn, P. M.; Dumas, C.; Kaasalainen, M.; Erikson, A.; Mottola, S.; Ďurech, J.; Rousseau, G.; Behrend, R.; Casalnuovo, G. B.; Chinaglia, B.; Christou, J. C.; Chapman, C. R.; Neyman, C.

    2013-07-01

    With the adaptive optics (AO) system on the 10 m Keck-II telescope, we acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa on 2005 January 20, when it was near opposition. The epochs covered its 5.63 h rotation period and, by following its changing shape and orientation on the plane of sky, we obtained its triaxial ellipsoid dimensions and spin pole location. An independent determination from images at three epochs obtained in 2007 is in good agreement with these results. By combining these two data sets, along with a single epoch data set obtained in 2003, we have derived a global fit for (52) Europa of diameters a × b × c = (379 × 330 × 249) ± (16 × 8 × 10) km, yielding a volume-equivalent spherical-diameter of √abc3 =315±7km, and a prograde rotational pole within 7° of [RA; Dec] = [257°; +12°] in an Equatorial J2000 reference frame (Ecliptic: 255°; +35°). Using the average of all mass determinations available for (52) Europa, we derive a density of 1.5 ± 0.4 g cm-3, typical of C-type asteroids. Comparing our images with the shape model of Michalowski et al. (2004, Astron. Astrophys. 416, 353), derived from optical lightcurves, illustrates excellent agreement, although several edge features visible in the images are not rendered by the model. We therefore derived a complete 3-D description of (52) Europa's shape using the KOALA algorithm by combining our 18 AO imaging epochs with 4 stellar occultations and 49 lightcurves. We use this 3-D shape model to assess these departures from ellipsoidal shape. Flat facets (possible giant craters) appear to be less distinct on (52) Europa than on other C-types that have been imaged in detail, (253) Mathilde and (511) Davida. We show that fewer giant craters, or smaller largest-sized craters, is consistent with its expected impact history. Overall, asteroid (52) Europa is still well modeled as a smooth triaxial ellipsoid with dimensions constrained by observations obtained over

  16. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  17. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  18. 基于Europa2的智能规划动态仿真与建模%Dynamic simulation and modeling for AI planning based on Europa

    Institute of Scientific and Technical Information of China (English)

    刘越畅; 钟秀玉; 房宜汕; 陈剑彪

    2012-01-01

    Simulation and modeling are key and difficult problems for the application of AI planning (especially, temporal planning). The start-of-the-art planning visualization tools can only support domain-independent visualization and are disabled to simulate practical scenario. There are some natural relations between chronicle planning and WPF( Windows Presentation Foundation) concepts. Based on such observation, this paper investigates the design of dynamic simulation for Europa2-the open source temporal planning platform of NASA based on the technique of WPF. The paper reveals the fact that, the chronicle planner based on timelines (e. G. Europa2) can be convieniently visually modeled and dynamically simulated using WPF technique. That provides a solution for the problem of designing a practical scenario simulation and modeling for AI planning systems.%仿真与建模是智能规划(特别是时态规划)走向应用的重要而困难的研究主题.目前已有的规划可视化建模工具只能支持领域无关的仿真和建模,无法模拟现实场景.基于时间线的Chronicle规划与Microsoft最新的图形显示技术WPF在某些概念上存在自然的对应关系.基于这样的思想,针对NASA开发的开源时态规划平台——Europa2,使用WPF基础类库和相关工具,研究智能规划能够模拟现实场景的动态仿真和建模的设计方法并给出了实例演示.研究表明,对诸如Europa2一类基于时间线的Chronicle规划系统,可以应用WPF一类通用图形技术进行方便的建模和动态仿真,从而初步解决了规划系统模拟现实场景的仿真和建模难以实现的问题.

  19. Encontrarse unos a otros en la escena europea. Tensiones, enfrentamientos y resonancias en "Bosquejo de Europa" de Salvador de Madariaga

    OpenAIRE

    Delbarge, Marc

    2014-01-01

    En su ensayo "Bosquejo de Europa", Salvador de Madariaga trata de revelar la quintaesencia del alma europea analizando mediante un estudio de 'tensiones', 'enfrentamientos' y 'resonancias' la especificidad de algunos héroes emblematicos de la literatura europea, a saber Hamlet, Don Quijote, Don Juan y Fausto. El discurso ensayistico de Madariaga se convierte en un instrumento poderoso de construccion para una Europa nueva y unida.

  20. Poderes probatorios de las partes y del juez en Europa

    Directory of Open Access Journals (Sweden)

    Michele Taruffo

    2006-01-01

    Full Text Available El artículo desmenuza con fuerza argumental, de fuentes, histórica y con pleno conocimiento del derecho procesal civil comparado los distintos postulados políticos, ideológicos y meta jurídicos contra el poder probatorio del juez en el proceso. Para el autor tres son los sistemas existentes en materia de actividad probatoria del juez en Europa: todos - en más o en menos - admiten la actividad probatoria de oficio por el juez. La conclusión es lapidaria: el asiento liberal de los críticos a esta realidad no es ni coherente ni preciso y que refieren al liberalismo del siglo XIX en los que estuvo vigente las concepciones del proceso civil típico del individualismo propietario. Consideraciones generales de este género serían probablemente suficientes para demostrar que las ecuaciones del tipo «poderes de instrucción del juez = régimen autoritario» y «juez pasivo = régimen liberal» son vagas y genéricas, y se reducen a slogans polémicos faltos de valor científico. Ello es, resulta un sofisma el "juez activo autoritario versus juez pasivo liberal". Existen así numerosos sistemas demócratas en los que el juez cuenta con amplios poderes de instrucción, como ocurre p.e. en Francia, en Suiza y en Alemania. En sustancia, cada decisión no es «buena» sólo porque pone punto final al conflicto; la decisión es «buena» si pone punto final al conflicto siendo fundada en criterios legales y racionales, entre los que asume importancia particular la veracidad de la comprobación de los hechos. Si se piensa en un «buen» juez, capaz de ejercer correctamente y racionalmente sus poderes, no hay razón de temer que él se vuelva parcial, e incapaz de valorar las pruebas, por el sólo hecho de haber dispuesto o sugerido su adquisición. Sólo si se piensa en un juez incapaz y psíquicamente débil se puede temer que él pierda su propia imparcialidadThe article treats different political and ideological and the meta judicial postulates

  1. BOOK REVIEW: Geheimnisvolles Universum - Europas Astronomen entschleiern das Weltall

    Science.gov (United States)

    Duerbeck, H. W.; Lorenzen, D. H.

    2002-12-01

    The 25th birthday of ESO, in 1987, was celebrated by the publication of an illustrated popular book, "Exploring the Southern Sky" (Springer-Verlag 1987), which also saw editions in Danish, English, French, German, and Spanish. Written and illustrated by the ESO staff members Svend Laustsen, Claus Madsen and Richard M. West, its many pictures were mainly taken with the ESO 3.6m and Schmidt telescopes. The structure of the book - perhaps at that time somewhat unusual - started with things far away (Universe and galaxies), zoomed in to the Milky Way, and finally reached the Solar System (with a concluding chapter dealing with the La Silla observatory). Now, with the 4 units of the Very Large Telescope in full operation, and on the occasion of ESO's 40th birthday, another jubilee book has appeared: "Geheimnisvolles Universum: Europas Astronomen entschleiern das Weltall", written by the science journalist Dirk H. Lorenzen, of Hamburg, Germany, and prefaced by Catherine Cesarsky, Director General of ESO. Presumably, this book will also soon become available in more languages spoken in ESO member countries. Thus it may be worthwhile to review the first edition, although some readers may like to wait for more easily accessible editions. Before going into details, let me first mention that I find this a very impressing book, great to look at and refreshing to read. With ESO seen through the eyes of a visitor, things gain a perspective that is quite different from that of the previous book, and at least as attractive. It comes as no surprise that the book starts with a visit of ESO's showcase, the Paranal Observatory, and the writer not only notes down his own impressions, but also cites statements of some of the many people that keep Paranal going - technicians and staff astronomers. This mixture of texts provides a good impression of the operations at a large observatory for the general reader. The two more 'astronomical' parts that follow deal with star and planet

  2. What is Eating Ozone? Thermal Reactions between SO2 and O3 and Implications for the Icy Satellites

    Science.gov (United States)

    Loeffler, Mark; Hudson, Reggie L.; Gerakines, Perry A.

    2016-10-01

    Here we present first results on a non-radiolytic, thermally-driven reaction sequence in solid H2O + SO2 + O3 mixtures at 50 – 130 K, which produces bisulfate (HSO4-). The results show that at the temperatures of the Jovian satellites, SO2 and O3 will efficiently react making co-detection of these species unlikely. Our results also give a viable explanation for why O3 has not been detected on Callisto and why the concentration of SO2 appears to be highest in its leading hemisphere. Furthermore our results also predict that the SO2 concentration on Ganymede will be lowest in the trailing hemisphere, where the concentration of O3 is the highest. This work is supported by NASA's Outer Planets Research program.

  3. Prospects of Passive Radio Detection of a Subsurface Ocean on Europa with a Lander

    CERN Document Server

    Romero-Wolf, Andrew; Ries, Paul; Bills, Bruce G; Naudet, Charles; Scott, Bryan R; Treuhaft, Robert; Vance, Steve

    2016-01-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km - 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  4. Prospects of passive radio detection of a subsurface ocean on Europa with a lander

    Science.gov (United States)

    Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve

    2016-09-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  5. Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa

    Science.gov (United States)

    Marion, G. M.; Kargel, J. S.; Catling, D. C.

    2004-01-01

    Gas hydrates are implicated in the geochemical evolution of both Mars and Europa [1- 3]. Most models developed for gas hydrate chemistry are based on the statistical thermodynamic model of van der Waals and Platteeuw [4] with subsequent modifications [5-8]. None of these models are, however, state-of-the-art with respect to gas hydrate/electrolyte interactions, which is particularly important for planetary applications where solution chemistry may be very different from terrestrial seawater. The objectives of this work were to add gas (carbon dioxide and methane) hydrate chemistries into an electrolyte model parameterized for low temperatures and high pressures (the FREZCHEM model) and use the model to examine controls on gas hydrate chemistries for Mars and Europa.

  6. Biomass gasification in Europe - status and perspectives; Vergasung von Biomasse in Europa - Stand und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, L.; Kaltschmitt, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1996-12-31

    Gasification of biomass is a promising option, especially in the fields of waste management and power generation, but there are considerable economic and technical problems that must be solved first. A critical analysis of biomass gasification in Europe today shows that this technology is not marketable today and cannot contribute to environmentally acceptable power supply on a short-term basis. (orig) [Deutsch] Von allen Moeglichkeiten einer energetischen Nutzung von Biomasse stellt die Technik der Vergasung insbesondere in den Bereichen Abfallentsorgung und Stromerzeugung eine vielversprechende Option dar. Einer weiteren Verbreitung dieser Technik stehen allerdings erhebliche wirtschaftliche und technische Probleme entgegen. Die kritische Analyse der derzeitigen Gegebenheiten der Biomassevergasung in Europa fuehrt zu dem Schluss, dass diese Technik noch nicht unmittelbar vor der Mrkteinfuehrung steht und somit kurzfristig keinen merklichen Beitrag zu einer umwelt- und klimavertraeglicheren Energieversorgung in Europa leisten kann. (orig)

  7. Europa y América en la revolución geodemográfica

    Directory of Open Access Journals (Sweden)

    Massimo Livi Bacci

    2005-01-01

    Full Text Available El trabajo establece un parangón entre Europa y América tanto de sus vivencias demográficas en el pasado con el Nuevo Mundo, como de las repercusiones futuras de las demografías de ambas regiones en un mundo globalizado. Con diversos indicadores el autor ilustra las transiciones en Europa, donde sepasó de una sociedad con abundancia de recursos humanos a otra con escasez de ellos. En este marco cuantitativo cualitativo expone las particularidades y “soluciones” de la crisis del Estado social en el caso europeo y la viabilidad de la aplicación de las políticas para revertir las tendencias de la baja natalidad y las concernientes a la migración, mayoritariamente de ultramar.

  8. The vertical thickness of Jupiter's Europa gas torus from charged particle measurements

    Science.gov (United States)

    Kollmann, P.; Paranicas, C.; Clark, G.; Roussos, E.; Lagg, A.; Krupp, N.

    2016-09-01

    Measurements and modeling suggest the presence of a neutral gas torus collocated with the orbit of Jupiter's moon Europa. Here we use data from the CMS instrument that is part of the Energetic Particles Detector (EPD) on board the Galileo spacecraft to characterize the distribution of 130 keV protons. Near the orbit of Europa this distribution has a minimum around 70° in equatorial pitch angle. We reproduce this with a model assuming that the protons are lost via charge exchange with a gas torus. Since the pitch angle characterizes whether the protons remain mostly in the dense center of the torus or continuously bounce through it, we can determine the latitudinal extent of the torus. We find that the full thickness where its density falls to 1/e of its maximum has to be ≲2RJ and is closer to ≈1RJ.

  9. El problema de la deuda soberana en el Sur de Europa

    Directory of Open Access Journals (Sweden)

    Alonso Rodríguez, Agustín

    2013-01-01

    Full Text Available El presente trabajo tiene dos partes claramente diferenciadas. En la primera, se da un resumen de la opinión de Martín y Waller sobre la crisis financiera que afecta a Europa, motivadora del presente artículo. En la segunda parte se estudian los datos de la deuda pública de España, Grecia, Irlanda, Italia y Portugal, como panel de datos, y se aplican los modelos desarrollados para su estudio.

  10. Sistemas electorales y apoyo electoral de los partidos regionalistas en Europa Occidental

    OpenAIRE

    Montabes Pereira, Juan; Ortega Villodres, Carmen; P??rez Nieto, Enrique G.

    2006-01-01

    El principal objetivo de este art??culo consiste en analizar los efectos de los sistemas electorales sobreel apoyo electoral de los partidos regionalistas en Europa Occidental, durante el periodo 1980-2004.Con esta finalidad, hemos estudiado la fuerza electoral de 30 partidos regionalistas en eleccioneslegislativas. Solamente aquellos partidos que ???en t??rminos medios??? consiguen m??s del 1% delvoto regional en el periodo estudiado son incluidos en el an??lisis. Los sistemas electorales ha...

  11. Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface

    Science.gov (United States)

    Cutler, B. B.; Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.

  12. An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

    Science.gov (United States)

    Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.

    2017-08-01

    We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (fast ( km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

  13. Jovian Plasma Torus Interaction with Europa: 3D Hybrid Kinetic Simulation. First results

    Science.gov (United States)

    Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.; Sittler, E. C.; Hartle, R. E.; Simpson, D. G.

    2010-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa-moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission, and for planning flyby and orbital measurements, (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy etal.,2007;Shematovichetal.,2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyro radius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions).Non-thermal distributions of upstream plasma will be addressed in future work. Photoionization,electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider two models for background plasma:(a) with O(++) ions; (b) with O(++) and S(++) ions. The majority of O2 atmosphere is thermal with an extended cold population (Cassidyetal.,2007). A few first simulations already include an induced magnetic dipole; however, several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work.

  14. A review of thermophysical surface models in preparation for E-THEMIS observations of Europa

    Science.gov (United States)

    Rathbun, Julie A.; Hayne, Paul O.; Howett, Carly; Mellon, Michael; Piqueux, Sylvain; Spencer, John R.

    2016-10-01

    One of the primary science objectives of the Europa Thermal Emission Imaging System (E-THEMIS) is to determine the regolith particle size, block abundance, and sub-surface layering for landing site assessment and surface process studies. To accomplish this, E-THEMIS will obtain thermal infrared images in three spectral bands from 7 to 70 microns at multiple times of day. The Galileo Photo-Polarimeter Radiometer (PPR) also obtained thermal infrared images of Europa, but at a very low spatial resolution. Rathbun et al. (2010) used a simple thermal model to determine the thermal inertia and albedo of ~20% of Europa's surface at a scale of hundreds of km. E-THEMIS will acquire images at several orders of magnitude better spatial resolution, enabling the use of more sophisticated thermal models. Here, we will conduct an initial survey of the thermal models and techniques that have been employed to determine surface properties of other planetary bodies from thermal infrared images. We will identify what physical processes are included in each model and which independent variables they account for. Since those models have been used on primarily rocky planetary surfaces, we will determine which aspects apply to icy surfaces and what changes might need to be made when considering icy surfaces.

  15. Slush Fund: Ice's Multiphase Evolution and Its Role in Shaping Europa

    Science.gov (United States)

    Buffo, Jacob; Schmidt, Britney E.

    2016-10-01

    The role of Europa's ice shell in mediating ocean-surface interaction, constraining potential habitability of the underlying hydrosphere, and dictating the surface morphology of the moon has been discussed in the literature for years, yet the dynamics and characteristics of the shell itself remain largely unconstrained. These discrepancies likely arise from underrepresented physics and varying a priori assumptions built into the current ice shell models. Presented here is a two-phase reactive porous media model of Europa's ice shell evolution, inspired by successful contemporary sea ice models, designed to capture the multiphase nature of forming ice as well as eliminate the need for a priori assumptions about ice shell structure and properties. The design of the model is such that it temporally and spatially constructs the ice shell from a first principles approach, allowing for accurate simulation of the shell's thermodynamic and compositional properties from the beginning of its formation up to its current state. This methodology provides explicit predictions of the ice's two-phase behavior, including heat and mass transfer, which ultimately dictate the shell's composition, density, and eutectic properties. All of which have been suggested as key factors in facilitating ocean-surface interaction, understanding the ocean's potential habitability, and shaping the moons surface. Preliminary results and their potential impact on how we understand Europa's evolution and dynamics will be discussed.

  16. An experimental estimate of Europa's ``ocean'' composition-independent of Galileo orbital remote sensing

    Science.gov (United States)

    Fanale, F. P.; Li, Y.-H.; De Carlo, E.; Farley, C.; Sharma, S. K.; Horton, K.; Granahan, J. C.

    2001-07-01

    We have conducted a series of experiments designed to simulate, in the laboratory, the development of any subsurface aqueous phase on Europa. In our theoretical-experimental approach we select a single natural sample (a CM meteorite) that based on cosmochemical considerations, we consider to approximately represent the bulk material that accreted to form Europa. We then subject the sample to a hot water leaching procedure designed to simulate low- to moderate-temperature aqueous alteration. The resulting leach solution was then subjected to a series of sequential fractional crystallization steps producing a series of ices and residual brines. Then all this brines and ices are multiply analyzed for Na, Ca, Mg, Sr, Ba, Fe, Mn, K, Cl, and SO4. Results were found to be remarkably consistent between brines and ices in the same stages of crystallization and also between stages. We found that any putative aqueous phase below Europa's ice crust is probably a brine with cations: Na~Mg>Ca, K>Fe and anions: SO4>>Cl. Our results are in harmony with inferences drawn from one of the two main current interpretations of the orbital spectral data but cannot definitively rule out inferences drawn from the alternative interpretation. This is so because the mineralogy of the top 200 μm may not reflect the chemical composition of bodies of brine below the solid surface owing to extensive alteration caused by magnetospheric bombardment.

  17. Probing for Evidence of Plumes on Europa with HST/STIS

    Science.gov (United States)

    Sparks, W. B.; Hand, K. P.; McGrath, M. A.; Bergeron, E.; Cracraft, M.; Deustua, S. E.

    2016-10-01

    Roth et al. (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa: spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope direct images of Europa in the far-ultraviolet (FUV) as it transited the smooth face of Jupiter to measure absorption from gas or aerosols beyond the Europa limb. Out of 10 observations, we found 3 in which plume activity could be implicated. Two observations showed statistically significant features at latitudes similar to Roth et al., and the third at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al. feature; however, the apparent activity appears more frequently in our data.

  18. Probing for Evidence of Plumes on Europa with HST/STIS

    CERN Document Server

    Sparks, W B; McGrath, M A; Bergeron, E; Cracraft, M; Deustua, S E

    2016-01-01

    Roth et al (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa - spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope (HST) direct images of Europa in the far ultraviolet (FUV) as it transited the smooth face of Jupiter, in order to measure absorption from gas or aerosols beyond the Europa limb. Out of ten observations we found three in which plume activity could be implicated. Two show statistically significant features at latitudes similar to Roth et al, and the third, at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al feature, however the apparent activity appears m...

  19. Proton radiation testing of laser optical components for NASA Jupiter Europa Orbiter Mission

    Science.gov (United States)

    Thomes, W. Joe, Jr.; Cavanaugh, John F.; Ott, Melanie N.

    2011-09-01

    The Jupiter Europa Orbiter (JEO) is NASA's element of the joint Europa Jupiter System Mission (EJSM). Based on current trajectories, the spacecraft will spend a significant amount of time in the Jovian radiation belts. Therefore, research endeavors are underway to study the radiation effects on the various parts and components needed to implement the instruments. Data from these studies will be used for component selection and system design to ensure reliable operation throughout the mission duration. The radiation environment en route to Jupiter is nothing new for NASA designed systems, however, the long durations orbiting Jupiter and Europa present new challenges for radiation exposure. High-energy trapped electrons and protons at Jupiter dominate the expected radiation environment. Therefore, most of the initial component level radiation testing is being conducted with proton exposure. In this paper we will present in-situ monitoring of the optical transmission of various laser optical components during proton irradiation. Radiation induced optical attenuation of some components is less than would be expected, based on the authors experiences, and is attributed to the interaction of the protons with the materials. The results are an encouraging first step in screening these optical materials for spaceflight in a high radiation environment.

  20. Keck II Observations of Hemispherical Differences in H2O2 on Europa

    CERN Document Server

    Hand, Kevin P; 10.1088/2041-8205/766/2/L21

    2013-01-01

    We present results from Keck II observations of Europa over four consecutive nights using the near-infrared spectrograph (NIRSPEC). Spectra were collected in the 3.14--4.0 micron range, allowing detection and monitoring of the 3.5 micron feature due to hydrogen peroxide. Galileo Near-Infrared Spectrometer (NIMS) results first revealed hydrogen peroxide on Europa in the anti-jovian region of the leading hemisphere at an abundance of 0.13+/-0.07% by number abundance relative to water. We find comparable results for the two nights over which we observed the leading hemisphere. Significantly, we observed a small amount of hydrogen peroxide (~0.04%) during observations of Europa's anti- and sub-Jovian hemispheres. Almost no hydrogen peroxide was detected during observations of just the trailing hemisphere. We conclude that the Galileo observations likely represent the maximum hydrogen peroxide concentration, the exception potentially being the cold water ice regions of the poles, which are not readily observable f...

  1. Considerations for a Radar System to Detect an Ocean Underneath the Icy Shell of Europa

    Science.gov (United States)

    Markus, Thorsten; Gogineni, Prasad; Green, James; Cooper, John; Fung, Shing; Taylor, William; Benson, Robert; Reinisch, Bodo; Song, Paul

    2004-01-01

    The detection of an ocean underneath Europa is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. An orbiting surface penetrating radar has the potential of providing that measurement thus yielding information regarding the possibility of life support on Europa. Radars in the MHz range have successfully monitored the kilometer-deep ice shelves of Greenland and Antarctica, including the detection of Lake Vostok (and others) below an ice sheet thickness of about 4 km. The performance of a radar system orbiting Europa will be subject to several potential complications and unknowns. Besides ionospheric dispersion and the actual depth of the ocean, which is estimated between 2 and 30 km, major unknowns affecting radar performance are the temperature profile, the amount of salt and other impurities within the ice crust as well as the surface roughness. These impurities can in part be produced at the highly irradiated surface by magnetospheric interactions and transported downward into the ice crust by geologic processes. The ionospheric interference must also be modeled from effects of these interactions on production of the thin neutral atmosphere and subsequent ionization of the neutrals. We investigated these uncertainties through radar simulations using different surface and ice characteristics over a frequency range from 10 to 50 MHz. The talk will present results from these simulations discussing potential limitations.

  2. The Resolved Asteroid Program - Size, shape, and pole of (52) Europa

    CERN Document Server

    Merline, W J; Carry, B; Conrad, A; Tamblyn, P M; Dumas, C; Kaasalainen, M; Erikson, A; Mottola, S; Durech, J; Rousseau, G; Behrend, R; Casalnuovo, G B; Chinaglia, B; Christou, J C; Chapman, C R; Neyman, C

    2013-01-01

    With the adaptive optics (AO) system on the 10 m Keck-II telescope, we acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa on 2005 January 20. The epochs covered its rotation period and, by following its changing shape and orientation on the plane of sky, we obtained its triaxial ellipsoid dimensions and spin pole location. An independent determination from images at three epochs obtained in 2007 is in good agreement with these results. By combining these two data sets, along with a single epoch data set obtained in 2003, we have derived a global fit for (52) Europa of diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA; Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35). Using the average of all mass determinations available forEuropa, we derive a density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with the shape model of Michalowski et al. (...

  3. NEMO: A Mission to Explore and Return Samples from Europa's Oceans

    Science.gov (United States)

    Powell, James R.; Paniagua, John C.; Maise, George

    2004-02-01

    The NEMO [Nuclear Europa Mobile Ocean] mission would explore and return samples and possible life forms from Europa's sub-surface oceans to Earth. The NEMO spacecraft would land on Europa two years after leaving Earth, using a compact bi-modal NTP engine. NEMO'S small nuclear reactor melt probe would then melt a channel through the multi-km ice sheet to the ocean, which a small robotic submarine would explore, transmitting data by sonic link and optical fiber to the spacecraft for relay to Earth. After its exploration, the submarine would rejoin the melt probe for return to the NEMO spacecraft. Using electricity from the bi-modal MITEE engine, fresh H2 propellant would be manufactured by electrolysis of melt water from surface ice. NEMO would then hop to a new site, exploring ten sites in a year before returning with samples and life forms to Earth, six years after it left. The design and performance of the NEMO spacecraft, MITEE engine, melt probe, and submarine are described. The probe and submarine use existing reactor technology. A NEMO mission could launch shortly after 2013 AD.

  4. NEMO: A mission to search for and return to Earth possible life forms on Europa

    Science.gov (United States)

    Powell, Jesse; Powell, James; Maise, George; Paniagua, John

    2005-07-01

    The Nuclear Europa Mobile Ocean (NEMO) mission would land on the surface of Europa, and deploy a small, lightweight melt probe powered by a compact nuclear reactor to melt down through the multi-kilometer ice sheet. After reaching the sub-surface ocean, a small nuclear Autonomous Underwater Vehicle (AUV) would deploy to explore the sub-ice ocean. After exploration and sample collection, the AUV would return to the probe and melt back to the lander. The lander would have replenished its H2 propellant by electrolysis of H2O ice, and then hop to a new site on Europa to repeat the probe/AUV process. After completing the mission, the NEMO spacecraft would return to Earth with its collected samples. The NEMO melt probe and AUV utilize enriched U-235 fuel and conventional water reactor technology. The lander utilizes a compact nuclear thermal propulsion (NTP) engine based on the 710tungsten/UO2 cermet fuel and high-temperature H2 propellant. The compact nuclear reactors in both the NEMO melt probe and AUV drive a steam power cycle, generating over 10 kW(e) for use in each. Each nuclear reactor's operating lifetime is several years. With its high-mobility and long-duration mission, NEMO provides an ideal platform for life detection experiments.

  5. Transición y migraciones en Europa central y oriental

    Directory of Open Access Journals (Sweden)

    Rafael Viruela Martínez

    2014-11-01

    Full Text Available La caída del muro de Berlín en 1989 y los cambios políticos y económicos que desde entonces se han sucedido en Europa central y oriental han tenido una gran incidencia en las migraciones europeas. La apertura de fronteras, la crisis económica, la inestabilidad política y los conflictos étnicos han acelerado las corrientes migratorias. El gran número de inmigrantes registrado en los primeros años hizo temer a Occidente una avalancha de personas huyendo de la miseria y el hambre. Sin embargo, se ha comprobado que el flujo ha sido modesto y que ha experimentado cambios notables en fecha reciente. Así, disminuye la emigración permanente y aumentan los desplazamientos temporales y de corta duración, al tiempo que Europa central y oriental recibe emigrantes de muy diversa procedencia, muchos de ellos en tránsito hacia Europa Occidental y América del Norte. La Unión Europea ha exigido a los futuros socios la adopción de normas acordes con las políticas migratorias vigentes en Occidente.

  6. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  7. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  8. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  9. Sublimation as a Continuous and Transient Source of Water in Europa's Exosphere

    Science.gov (United States)

    Hayne, Paul O.

    2016-10-01

    Europa's crust is composed primarily of water ice, which may be vaporized by sputtering and sublimation when exposed to the jovian radiation environment. Models of H2O in Europa's exosphere have focused primarily on the contribution of sputtering by energetic particles, with globally averaged production rates estimated to be ~1015 H2O m-2 s-1. Although sublimation rates at Europa's average dayside temperature of ~106 K are much lower at ~1010 H2O m-2 s-1, surfaces at low- to mid-latitude experiences temperatures in excess of 130 K, with expected sublimation rates of >1015 H2O m-2 s-1 possible. These production rates would be reduced where the surface ice is mixed with impurities, or through development of a non-ice lag deposit. In addition to the continuous flux due to sublimation, transient outgassing may be caused by exposure of fresh ice to direct sunlight, for example by mass wasting on steep slopes. Here, we revisit the process of sublimation on Europa's surface to quantify possible H2O vapor production on a range of spatial and temporal scales.The model includes solar heating, conduction, and vapor diffusion. Temperatures and sublimation rates are calculated by the instantaneous energy budget within each model layer, and outgassing to the exosphere depends on the surface vapor pressure and molecular thermal velocities. Vapor densities and line-of-sight column abundances can be directly compared to observations. Our results show that for surfaces composed of pure ice, sublimation contributes significant quantities to the dayside exosphere. The production rate declines as a sublimation lag develops, with a characteristic timescale of ~1 - 10 kyr at the equator. Freshly exposed ice may produce localized sources. For example, a fresh exposure of ice at 60° latitude with dimension ~2 km would be expected to produce a line-of-sight column abundance of ~1020 H2O m-2 near the limb. However, expansion of the plume would lead to lower column abundance at higher

  10. What will Europa sound like? Modeling seismic background noise due to tidal cracking events

    Science.gov (United States)

    Panning, M. P.; Stähler, S. C.; Huang, H. H.; Vance, S.; Kedar, S.; Lorenz, R. D.; Pike, W. T.

    2016-12-01

    Seismology is a powerful tool for illuminating internal structure and dynamics in planetary bodies. With the plan for a Europa lander next decade, we have the opportunity to place a seismometer on the surface and greatly increase our knowledge of internal structure of the ocean world. In order to maximize return from such an instrument, we need to understand both predicted signals and noise. Instrument noise can be quantified well on Earth, but estimating the ambient noise of a planetary body is significantly more challenging. For Europa, we make an initial range of estimates of ambient noise due to ongoing tidally induced events within the ice shell. We estimate a range of cumulative moment releases based on tidal dissipation energy, and then create an assumed Gutenberg-Richter relationship (e.g. Golombek et al., 1992). We then use this relationship to generate random realizations of event catalogs with a length of 1 day, including all events down to a moment magnitude of -1, and generate continuous 3 component seismic records from these catalogs using a spectral element method (Instaseis/AxiSEM, van Driel et al., 2015). The seismic data are calculated using a range of thermodynamically self-consistent layered models of Europa structure, varying ice shell thickness and attenuation (e.g. Cammarano et al., 2006). The noise records are then used to define overall spectral characteristics of the noise and to test methods to take advantage of the ambient noise, such as autocorrelation techniques. Ambient noise characteristics are also compared with candidate instrument noise models which may be included in future Europa missions. F. Cammarano, V. Lekic, M. Manga, M.P. Panning, and B.A. Romanowicz (2006), "Long-period seismology on Europa: 1. Physically consistent interior models," J. Geophys. Res., 111, E12009, doi: 10.1029/2006JE002710. M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, and T. Nissen-Meyer (2015), "Instaseis: instant global seismograms based on a

  11. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  12. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  13. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  14. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  15. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  16. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  17. Geodetic Secor Satellite

    Science.gov (United States)

    1974-06-01

    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  18. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  19. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  20. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  1. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    Science.gov (United States)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO2 atmosphere by recording the H Ly-α reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO2 absorbs at H Ly-α, thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO2 atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly-α wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes ~200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly-α, analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (~75 km/pixel), ~3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO2 column abundances ranging from 1E15 to 1E17 per cm2 in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly-α brightness of ~3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from

  2. Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life

    Science.gov (United States)

    Kargel, J.S.; Kaye, J.Z.; Head, J. W.; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L.

    2000-01-01

    We have considered a wide array of scenarios for Europa's chemical evolution in an attempt to explain the presence of ice and hydrated materials on its surface and to understand the physical and chemical nature of any ocean that may lie below. We postulate that, following formation of the jovian system, the europan evolutionary sequence has as its major links: (a) initial carbonaceous chondrite rock, (b) global primordial aqueous differentiation and formation of an impure primordial hydrous crust, (c) brine evolution and intracrustal differentiation, (d) degassing of Europa's mantle and gas venting, (e) hydrothermal processes, and (f) chemical surface alteration. Our models were developed in the context of constraints provided by Galileo imaging, near infrared reflectance spectroscopy, and gravity and magnetometer data. Low-temperature aqueous differentiation from a carbonaceous CI or CM chondrite precursor, without further chemical processing, would result in a crust/ocean enriched in magnesium sulfate and sodium sulfate, consistent with Galileo spectroscopy. Within the bounds of this simple model, a wide range of possible layered structures may result; the final state depends on the details of intracrustal differentiation. Devolatilization of the rocky mantle and hydrothermal brine reactions could have produced very different ocean/crust compositions, e.g., an ocean/crust of sodium carbonate or sulfuric acid, or a crust containing abundant clathrate hydrates. Realistic chemical-physical evolution scenarios differ greatly in detailed predictions, but they generally call for a highly impure and chemically layered crust. Some of these models could lead also to lateral chemical heterogeneities by diapiric upwellings and/or cryovolcanism. We describe some plausible geological consequences of the physical-chemical structures predicted from these scenarios. These predicted consequences and observed aspects of Europa's geology may serve as a basis for further analys is

  3. A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport

    Science.gov (United States)

    Travis, B. J.; Palguta, J.; Schubert, G.

    2012-04-01

    A whole-moon numerical model of Europa is developed to simulate its thermal history. The thermal evolution covers three phases: (i) an initial, roughly 0.5 Gyr-long period of radiogenic heating and differentiation, (ii) a long period from 0.5 Gyr to 4 Gyr with continuing radiogenic heating but no tidal dissipative heating (TDH), and (iii) a final period covering the last 0.5 Gyr until the present, during which TDH is active. Hydrothermal plumes develop after the initial period of heating and differentiation and transport heat and salt from Europa's silicate mantle to its ice shell. We find that, even without TDH, vigorous hydrothermal convection in the rocky mantle can sustain flow in an ocean layer throughout Europa's history. When TDH becomes active, the ice shell melts quickly to a thickness of about 20 km, leaving an ocean 80 km or more deep. Parameterized convection in the ice shell is non-uniform spatially, changes over time, and is tied to the deeper ocean-mantle dynamics. We also find that the dynamics are affected by salt concentrations. An initially non-uniform salt distribution retards plume penetration, but is homogenized over time by turbulent diffusion and time-dependent flow driven by initial thermal gradients. After homogenization, the uniformly distributed salt concentrations are no longer a major factor in controlling plume transport. Salt transport leads to the formation of a heterogeneous brine layer and salt inclusions at the bottom of the ice shell; the presence of salt in the ice shell could strongly influence convection in that layer.

  4. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    Science.gov (United States)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  5. Ice melting and downward transport of meltwater by two-phase flow in Europa's ice shell

    Science.gov (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2014-03-01

    With its young surface, very few impact craters, and the abundance of tectonic and cryovolcanic features, Europa has likely been subjected to relatively recent endogenic activity. Morphological analyses of chaos terrains and double ridges suggest the presence of liquid water within the ice shell a few kilometers below the surface, which may result from enhanced tidal heating. A major issue concerns the thermal/gravitational stability of these water reservoirs. Here we investigate the conditions under which water can be generated and transported through Europa's ice shell. We address particularly the downward two-phase flow by solving the equations for a two-phase mixture of water ice and liquid water in one-dimensional geometry. In the case of purely temperate ice, we show that water is transported downward very efficiently in the form of successive porosity waves. The time needed to transport the water from the subsurface region to the underlying ocean varies between ˜1 and 100 kyr, depending mostly on the ice permeability. We further show that water produced in the head of tidally heated hot plumes never accumulates at shallow depths and is rapidly extracted from the ice shell (within less than a few hundred kiloyears). Our calculations indicate that liquid water will be largely absent in the near subsurface, with the possible exception of cold conductive regions subjected to strong tidal friction. Recently active double ridges subjected to large tidally driven strike-slip motions are perhaps the most likely candidates for the detection of transient water lenses at shallow depths on Europa.

  6. Fracturing and flow: Investigations on the formation of shallow water sills on Europa

    Science.gov (United States)

    Craft, Kathleen L.; Patterson, G. Wes; Lowell, Robert P.; Germanovich, Leonid

    2016-08-01

    Double ridge tectonic features appear prominently and ubiquitously across the surface of Jupiter's icy moon Europa. Previous studies have interpreted flanking fractures observed along some of the ridges as indicators of stress resulting from the ridge loading and flexing of the ice shell above a shallow water body. Here, we investigate a shallow water sill emplacement process at a time when the shell is cooling and thickening and explore the conditions that would make such a system feasible on timescales of ridge formation. Results show that fracture initiation and transport of ocean water to shallow depths can realistically occur, although horizontal fracturing and sill lifetimes prove challenging. Finite element models demonstrate that mechanical layering or a fractured shell do not provide enough stress change to promote horizontal fracturing, but tidal forcing does result in a small amount of turn. Assuming it is possible for a shallow sill to form, a sill would convect internally and conduct heat out quickly, resulting in a short lifetime in comparison to an estimated flexure timeframe of 100 kyr suggested required for double ridge formation. Consideration of heat transfer and residence in the overlying ice, however, extends the flexure timeframe and multiple sill intrusions or replenishment with warm ocean water could prolong the effective sill lifetime. Though challenges still remain for sill formation at Europa, these analyses constrain the potential mechanisms for emplacement and indicate sills can act as viable options for supplying the heat needed for surface flexure. Further analyses and future missions to Europa will help to increase our understanding of these enigmatic processes.

  7. Jovian plasma torus interaction with Europa. Plasma wake structure and effect of inductive magnetic field: 3D Hybrid kinetic simulation

    CERN Document Server

    Lipatov, A S; Paterson, W R; Sittler, E C; Hartle, R E; Simpson, D G

    2012-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect a to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream backgr...

  8. UN ESCRITOR GRIEGO FUERA DE EUROPA A GREEK WRITER OUTSIDE EUROPE

    Directory of Open Access Journals (Sweden)

    Roberto Quiroz Pizarro

    2009-01-01

    Full Text Available Este trabajo contribuye a establecer una perspectiva histórica de la singular línea de aparición que fue teniendo la obra del escritor griego fuera de Europa. Se destacan algunos episodios que tienen que ver con sus obras traducidas y Sudamérica.This article is a contribution to the establishing of a historical perspective of the singular line of appearance which the work of the Greek Writer had outside Europe. Several episodes which are related to the translations of his works and South America are highlighted.

  9. Las políticas de Economía Social en Europa

    OpenAIRE

    Chaves Ávila, Rafael; Monzón Campos, José Luis

    2009-01-01

    Las políticas de economía social en Europa. La Economía Social europea constituye una realidad humana y económica muy signifi cativa: emplea a más de 11 millones de personas, equivalentes al 6¿7% de la población asalariada de la Unión. La familia de las asociaciones, fundaciones y entidades afi nes constituye globalmente el componente mayoritario. En cambio, para los nuevos países miembros y para Italia, España, Finlandia y Suecia, es la `familia¿ de cooperativas y afi nes la mayoritaria. ¿Qu...

  10. POTENTIAL AND CHALLENGES OF ROMANIA’S RENEWABLE ENERGY MARKET TOWARDS EUROPA 2020 HORIZON

    Directory of Open Access Journals (Sweden)

    PÎRVU MARCEL

    2015-04-01

    Full Text Available This paper intends to offer a short analysis on the progress of Romania regarding renewable energy, by correlating the on-field situation with the National Renewable Energy Action Plan, in order to create an overview on how the objectives for Europa 2020 horizon are being followed. All the advantages, as well as natural potential, political environment, legal framework and other influential factors are being taken into consideration to launch a hypothesis on whether Romania will be able to meet the renewable energy targets set by 2009/28/CE Directive.

  11. Deglaciation and post-glacial environmental evolution in the Western Massif of Picos de Europa

    Science.gov (United States)

    Ruiz-Fernández, Jesús; Oliva, Marc; García, Cristina; López-Sáez, José Antonio; Gallinar, David; Geraldes, Miguel

    2014-05-01

    This study examines the process of deglaciation of the Western Massif of Picos de Europa through field work, geomorphological mapping, sedimentary records and absolute datings of 14C. This massif has several peaks over 2,400 m a.s.l. (Peña Santa de Castilla, 2,596 m; Torre Santa María, 2,486 m; Torre del Mediu, 2,467 m). It is composed mainly by Carboniferous limestones. This area has been intensively affected by karstic dissolution, Quaternary glaciers and fluvio-torrential processes (Miotke, 1968; Moreno et al, 2010; Ruiz-Fernández et al, 2009; Ruiz-Fernández, 2013). At present day, periglacial processes are active at the highest elevations (Ruiz-Fernández, 2013). We have identified four main glacial stages regarding the deglaciation of the massif: (i) maximum advance corresponding to the Last Glaciation, (ii) retreat and stabilization after the maximum advance, (iii) Late Glacial, and (iv) Little Ice Age. Sedimentological studies also contribute data to the understanding of the chronological framework of these environmental changes. The datings of the bottom sediments in two long sequences (8 and 5.4 m) provided a minimum age of 18,075 ± 425 cal BP for the maximum advance stage and 11,150 ± 900 cal BP for retreat and stabilization in the phase following the maximum advance. The ongoing analyses of these sequences at very high resolution will provide new knowledge about the environmental conditions prevailing since the deglaciation of the massif. References Miotke, F.D. (1968). Karstmorphologische studien in der glazial-überformten Höhenstufe der Picos de Europa, Nordspanien. Hannover, Selbtverlag der Geografischen Gessellschaft, 161 pp. Moreno, A., Valero, B.L., Jiménez, M., Domínguez, M.J., Mata, M.P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P. & Rico, M. (2010). The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Ruiz

  12. L'abisme en els confins d’europa: la Rússia de Dostoievski

    OpenAIRE

    Carlota Surós

    2014-01-01

    De la mà de la modernitat industrial europea i l’herència medieval, Rússia es despertava al segle XIX com el confí d’Europa, l’extrem on les idees occidentals no encaixaven amb la tradició. Els intel·lectuals de la segona meitat de segle, entre els quals hi havia Fiodor Dostoievski, van dedicar pràcticament tota la seva obra a traçar aquesta integració d’una manera essencialment pròpia i sense caure en els defectes individualistes que el capitalisme havia instal·lat a Occident. L’home del sub...

  13. Europa, entre el Brexit y los nuevos escenarios de la integración

    OpenAIRE

    Dupuy, Héctor Adolfo; Morgante, Martín Adolfo

    2016-01-01

    La Unión Europea viene siendo sacudida por una serie de acontecimientos propios de la integración. Comenzando por los problemas financieros por los que atraviesan varios países, en especial los del grupo de los PIGS (Portugal, Irlanda, Grecia y España), Europa asistió a mecanismos de la democracia directa recurriendo al sistema de plebiscitos para definir cuestiones de fondo de su política de integración. En este marco crítico y deliberativo, varios países están atravesando altos niveles d...

  14. Fortaleza Europa. Comentarios a las pol??ticas sobre refugiados en la Uni??n Europea

    OpenAIRE

    Cerigioni, Elisabetta

    2004-01-01

    Desde hace quince a??os, la cooperaci??n intergubernamental sobre asilo e inmigraci??n se ha vuelto de forma legal prioritaria en Europa; tal fue el caso de la b??squeda de un sistema com??n a todos los asilos, a nivel europeo. El articulo trata de las ???pol??ticas para asilados y refugiados???, que ponen en nueva luz el mecanismo de integraci??n europea. El refugiado que busca asilo a trav??s de la Uni??n Europea, tendr?? que confrontarse con la realidad europea es decir con lo que los est...

  15. Los museos y las minas museo de la sal en Europa

    OpenAIRE

    2002-01-01

    En esta comunicación pasamos revista a las minas de sal, salinas y otros elementos patrimoniales mineros relacionados con ellos, en Europa, pensando en la conservación del Patrimonio Minero Salinero español, en general, y en particular del madrileño. La mina de sal musealizada más conocida es Wielizsca, en Polonia, declarada en 1978 Patrimonio de la Humanidad y con más de 300.000 visitantes año. Sin embargo hay otras explotaciones minero-industriales dedicadas al turismo, con mayor o menor in...

  16. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Ion Beam Lab.; Olszewska-Wasiolek, Maryla Aleksandra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Gamma Irradiation Facility

    2017-01-01

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibili