WorldWideScience

Sample records for satellite-tracked drifting buoys

  1. Satellite-tracked drifting buoy observations in the south equatorial current in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Michael, G.S.

    Three satellite-tracked drifting buoys released in the south equatorial current in the Indian Ocean followed the path of the current moving westward approximately zonally in the vicinity of 10 degrees S latitude. On nearing the east coast of Africa...

  2. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  3. Third Field Test of Satellite-Tracked Surface Drifting Buoys for Simulating the Movement of Spilled Oil on the Sea Surface. Cruise Report

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.

    1995-12-18

    This report describes experiments with drifting buoys as potential simulators of drifting oil spills. Two drifter types were deployed to test how well they could follow oil slicks. One was a sphere of diameter 30 cm, the other was a flattened spheroid of 37 cm horizontal diameter and 20 cm vertical diameter. Both were equipped with ARGOS transmitters, and were ballasted to float at their equators. A third type, the CODE drifter, was deployed to track the motion of water in the top meter of the water column. The CODE drifters consisted of a central vertical cylinder one meter long, four inch diameter, with four vertical sails radiating at right angles to the central shaft. The spheres and the spheroids followed the surface oil movement very well. The movement of the thick portion of the drifting oil should therefore be very well represented by the mean ARGOS trajectories. The CODE drifters proved very useful as markers for the dispersed and dissolved hydrocarbon cloud, and should become a standard part of the sampling procedures. The drifters would be much more useful in real-time spill situations if they could use GPS-VHF for real-time mapping. The track evaluations were done by the U.S. Minerals Management Service. 13 refs., 2 figs., 1 table

  4. Development of drifting buoys

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.; Peshwe, V.B.; Tengali, S.

    . Considerable potential exists for the use of drifting buoys if the cost of data acquisition and processing systems is held at a reasonable level. As yet it is in infancy and further development is required before system reliability and longevity are considered...

  5. Experimental design for drifting buoy Lagrangian test

    Science.gov (United States)

    Saunders, P. M.

    1975-01-01

    A test of instrumentation fabricated to measure the performance of a free drifting buoy as a (Lagrangian) current meter is described. Specifically it is proposed to distinguish between the trajectory of a drogued buoy and the trajectory of the water at the level of the drogue by measuring the flow relative to the drogue.

  6. IABP Drifting Buoy Pressure, Temperature, Position, and Interpolated Ice Velocity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Arctic Buoy Programme (IABP) maintains a network of drifting buoys to provide meteorological and oceanographic data for real-time operational...

  7. The Velocity Field in the Northeast Atlantic from Satellite-Tracked Drifting Buoys

    Science.gov (United States)

    1993-09-01

    September 1993 Author: ’ý Paolo Giann Approved By: Jeffrey D. aduan , Thesis Advisor Curtis Collins, Second Reader Curtis Collins, Chairman...the drifter trajectories both to understand them as a source of noise to the observation of mean currents and in their own right as agents of

  8. A drifting GPS buoy for retrieving effective riverbed bathymetry

    Science.gov (United States)

    Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.

    2015-01-01

    Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.

  9. Drifting buoy data observed during 1985 through 1989 and assembled by the Responsible National Oceanographic Data Center (RNODC) for Drifting Buoy Data (NODC Accession 9100057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and meteorological data were collected from drifting buoys from a World-Wide distribution from 2 January 1985 to 31 December 1989. Data were processed by...

  10. Drifting buoy data observed during 1992 and assembled by the Responsible National Oceanographic Data Center (RNODC) for Drifting Buoy Data (NODC Accession 9300091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and meteorological data were collected from drifting buoys from a World-Wide distribution from 01 January 1992 to 31 December 1992. Data were processed by...

  11. THE EFFECT OF KUROSHIO ON THE CIRCULATION IN CHINA SEAS-FROM SATELLITE-TRACKED DRIFTER DATA

    Institute of Scientific and Technical Information of China (English)

    Hou Yi-jun; Su Jing-zhi; Fang Guo-hong; Yin Bao-shu; Cheng Ming-hua

    2003-01-01

    A dataset derived from satellite-tracked drifting buoy archived at the Marine Envimoment Data Service (MEDS) in Canada are analyzed to study the effect of the Kuroshio on the China Seas, and the results can exhibit the spacial difference and temporal difference of the effect of Kuroshio on the circulation in the China Seas.

  12. NODC Standard Format Drifting Buoy (F156) Data (1975-1994) (NODC Accession 0014200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type contains time series ocean circulation data determined by tracking the movement of drifting buoys, drogues or other instrumented devices. Movement is...

  13. Oceanographic profile temperature and salinity from JCAD-6 drifting buoy 2003-2004 (NODC Accession 0002236)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature and salinity measurements collected using a drifting buoy in the Arctic from 2003 to 2004 (NODC Accession 0002236).

  14. Drifting buoy data from buoy casts in a world wide distribution as part of the Tropical Ocean Global Atmosphere (TOGA) from 1989-07-01 to 1989-07-31 (NODC Accession 8900227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data were collected using buoy casts in a world wide distribution from July 1, 1989, to July 31, 1989. Data were submitted by National Data Buoy Center...

  15. Drifting buoy and other data as part of the Outer Continental Drifting buoy and other data as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 June 1976 to 01 October 1976 (NODC Accession 7700020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy and other data was collected by the University of Washington (UW) as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP)....

  16. WATER TEMPERATURE and Other Data from DRIFTING BUOY From World-Wide Distribution from 19781122 to 19810113 (NODC Accession 8600071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 359 Drifting Surface Buoys were deployed in the Southern Hemisphere oceans from November 22, 1978 to January 13, 1981 as part of the First Global Atmospheric...

  17. Surface circulation derived from drifting buoys in mid- and low-latitude Pacific

    Institute of Scientific and Technical Information of China (English)

    SU Jingzhi; LI Mingkui; HOU Yijun; YIN Baoshu; FANG Guohong

    2006-01-01

    A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was reported in this paper, showing clear and strong western boundary currents, equatorial currents, and subtropical gyres in the North and South Pacific regions in velocity field, with a more systematic structure in the North Pacific.

  18. Results from the DAMOCLES ice-buoy campaigns in the transpolar drift stream 2007–2009

    Directory of Open Access Journals (Sweden)

    M. Haller

    2013-07-01

    Full Text Available During the EU research project DAMOCLES 18 ice buoys were deployed in the region of the Arctic transpolar drift (TPD. Sixteen of them formed a square with 400 km side-length. The measurements lasted from 2007 to 2009. The properties of the TPD and the impact of synoptic weather systems on the ice drift are analysed. Compared to Nansen's drift with the vessel Fram the measured speed of the TPD is here almost twice as fast. Within the TPD, the speed increases by a factor of almost three from the North Pole to the Fram Strait region. The hourly buoy position fixes show that the speed is underestimated by 10–20% if positions were taken at only 1–3 days intervals as it is usually done for satellite drift estimates. The geostrophic wind factor Ui/Ug, i.e. the ratio of ice speed Ui and geostrophic wind speed Ug, in the TPD amounts to 0.012 on average, but with regional and seasonal differences. The constant Ui/Ug relation breaks down for Ug −1. The impact of synoptic weather systems is studied applying a composite method. Cyclones (anticyclones cause cyclonic (anticyclonic vorticity and divergence (convergence of the ice drift. The amplitudes are twice as large for cyclones as for anticyclones. The divergence caused by cyclones corresponds to a 0.1–0.5%/6 h open water area increase based on the composite averages, but reached almost 4% within one day during a strong August 2007 storm. This storm also caused a~long-lasting (over several weeks rise of Ui and Ui/Ug and changed the ice conditions in a way allowing ocean tidal motion to directly affect ice motion. The consequences of an increasing Arctic storm activity for the ice cover are discussed.

  19. Drifting buoy and other data from drifting platforms in the Bering Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 January 1981 to 20 June 1981 (NODC Accession 8200120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from drifting platforms in the Bering Sea by the Flow Research Company as part of the Outer Continental Shelf Environmental...

  20. Meteorological, oceanographic, and buoy data from JAMSTEC from five drifting buoys, named J-CAD (JAMSTEC Compact Arctic Drifter) in the Arctic Ocean from 2000 to 2003 (NODC Accession 0002201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1999, JAMSTEC and MetOcean Data System Ltd. developed a new drifting buoy, named J-CAD (JAMSTEC Compact Arctic Drifter), to conduct long-term observations in the...

  1. Current, temperature profile, and other data collected in TOGA Area - Pacific Ocean from drifting buoy from 01 March 1994 to 31 March 1994 (NODC Accession 9400055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current, temperature profile, and other data were collected using drifting buoy in the TOGA Area - Pacific Ocean. Data were collected from 01 March 1994 to 31 March...

  2. Drifting buoy and other data as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 May 1976 to 23 December 1976 (NODC Accession 7800105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected by the Atlantic Oceanographic and Meteorological Laboratory (AOML) as part of the Outer Continental Shelf Environmental Assessment...

  3. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Gästgifvars, Maria; Lauri, Hannu; Sarkanen, Annakaisa; Myrberg, Kai; Andrejev, Oleg; Ambjörn, Cecilia

    2006-12-01

    The Gulf of Finland is an elongated estuary located in the north-eastern extremity of the Baltic Sea. This semi-enclosed sea-area is subject to heavy sea traffic, and is one of the main risk areas for oil accidents in the Baltic. The continuous development and validation of operational particle drift and oil-spill forecasting systems is thus seen to be essential for this sea-area. Here, the results of a three-day drift experiment in May 2003 are discussed. The field studies were performed using GPS-positioned surface floating buoys. The aim of this paper is to evaluate how well models can reproduce the drift of these buoys. Model simulations, both in forecast and hindcast modes, were carried out by three different 3D hydrodynamic models, the results of which are evaluated by comparing the calculated drifts with observations. These models were forced by HIRLAM (High Resolution Limited Area Model) and ECMWF (European Centre for Medium-Range Weather Forecasts) meteorological forecast fields. The simulated drift of the buoys showed a good agreement with observations even when, during the study period, a rapidly-changing wind situation was observed to affect the investigation area; in this situation the winds turned about 100 degrees in half an hour. In such a case it is a very complicated task to forecast the drifters' routes: there is a need to regularly update the meteorological forcing fields and to use these regularly-updated fields throughout the simulations. It is furthermore recommended that forecasts should be made using several circulation models and several meteorological forecasts, in order to get an overview of the accuracy of the forecasted drifts and related differences in between the forecasts.

  4. Physical and optical data collected from drifting buoys between May 1993 - December 1996 (NODC Accession 0000586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling and downwelling irradiances were collected from surface optical drifter buoys off the California coast (NE Pacific limit-180) from 05 May 1993 to 06...

  5. Arctic Ocean Drift Tracks from Ships, Buoys and Manned Research Stations, 1872-1973

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Thirty-four drift tracks in the Arctic Ocean pack ice are collected in a unified tabular data format, one file per track. Data are from drifting ships, manned...

  6. Visualization of a drifting buoy deployment on Lake St. Clair within the Great Lakes Waterway from August 12-15, 2002

    Science.gov (United States)

    Holtschlag, David J.; Syed, Atiq U.; Kennedy, Gregory W.

    2002-01-01

    Lake St. Clair is a 430 square mile lake between the state of Michigan and the province of Ontario, which forms part of the international boundary between the United States and Canada in the Great Lakes Basin. Lake St. Clair receives most of its inflow from Lake Huron through St. Clair River, which has an average flow of 182,000 cubic feet per second. The lake discharges to Detroit River, where it flows 32 miles to Lake Erie. Twelve drifting buoys were deployed on Lake St. Clair for 74 hours between August 12-15, 2002 to help investigate flow circulation patterns as part of a source water assessment study of the susceptibility of public water intakes. The buoys contained global positioning system (GPS) receivers to track their movements. Buoys were released in a transect between tethered buoys marking an 800-foot wide navigational channel in the north-central part of the lake just downstream of St. Clair River, and about 15.5 miles northeast of Detroit River. In addition, an acoustic Doppler current profiler (ADCP) was used to measure velocity profiles in a grid of 41 points that spanned the area through which the buoys drifted. Computer animations, which can be viewed through the Internet, were developed to help visualize the results of the buoy deployments and ADCP measurements.

  7. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Francais Ocean Et Climat Dans L'Atlantique Equatorial (SEQUAL/FOCAL) project from 25 January 1980 to 18 December 1985 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  8. Oceanographic profile Temperature and Salinity measurements collected during the Arctic Buoy Program using drifting buoy in the Arctic from 1985-1994 (NCEI Accession 0001497)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between 1985 and 1994, the Polar Science Center at the University of Washington deployed 24 ARGOS data buoys in ice floes on the Arctic Ocean, from which six...

  9. Drifting buoy and other data from the Beaufort Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 05 November 1975 to 01 October 1976 (NODC Accession 7700019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy and other data was collected from the Beaufort Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental Assessment...

  10. Drifting buoy and other data from the Arctic Ocean and Beaufort Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 November 1975 to 01 October 1976 (NODC Accession 7700114)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Arctic Ocean and Beaufort Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental...

  11. Drifting buoy and other data from the Beaufort Sea and other locations as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 03 March 1977 to 05 April 1977 (NODC Accession 7700543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Beaufort Sea and other locations by the University of Washington (UW) as part of the Outer Continental Shelf Environmental...

  12. Drifting buoy and other data from the Arctic Ocean in support of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 June 1976 to 27 November 1976 (NODC Accession 7700205)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data were collected from the Arctic Ocean by the University of Washington in support of the Outer Continental Shelf Environmental Assessment Program...

  13. Drifting buoy and other data from the Beaufort Sea and other locations as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 April 1977 to 03 July 1977 (NODC Accession 7700780)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Beaufort Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental Assessment Program...

  14. Drifting buoy and other data from the Arctic Ocean and other locations as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 02 November 1975 to 03 June 1976 (NODC Accession 7601626)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected by the University of Washington - Seattle (UW) as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP)....

  15. Drifting buoy and other data from the Chukchi Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 27 June 1977 to 07 November 1977 (NODC Accession 7800005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Chukchi Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental Assessment Program...

  16. Drifting buoy and other data from the Gulf of Alaska as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 21 October 1976 to 11 November 1976 (NODC Accession 7700740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Gulf of Alaska by the Atlantic Oceanographic and Meteorological Laboratory (AOML) as part of the Outer Continental Shelf...

  17. Drifting buoy and other data from the Bering Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 27 May 1977 to 07 January 1978 (NODC Accession 7800692)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Bering Sea by the Atlantic Oceanographic and Meteorological Laboratory (AOML) as part of the Outer Continental Shelf...

  18. Drifting buoy and other data from the Gulf of Alaska as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 26 October 1980 to 27 March 1981 (NODC Accession 8200115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Gulf of Alaska by the Science Application INC (SAI) as part of the Outer Continental Shelf Environmental Assessment Program...

  19. Drifting and moored buoy data observed during 2015 and assembled by the Global Data Assembly Center for Drifting Buoy Data (formerly Responsible National Oceanographic Data Center (RNODC)), Canada (NCEI Accession 0156004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Buoy data is available in real time to platform operators via telecommunications providers and distributed on the Global Telecommunications System (GTS) of the World...

  20. Temperature and pressure data collected using drifting buoy and profiling floats from the North Atlantic Ocean in part of the IDOE/POLYMODE (International Decade of Ocean Exploration / combination of USSR POLYGON project and US MODE) from 10 January 1975 to 31 May 1981 (NODC Accession 8700121)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and pressure data were collected using drifting buoy and profiling floats from CHAIN, GILLISS, OCEANUS, and ENDEAVOR from the North Atlantic Ocean from...

  1. Temperature and upwelling / downwelling irradiance data from drifting buoy in the Southern Oceans as part of the Joint Global Ocean Flux Study/Southern Ocean (JGOFS/Southern Ocean) project, from 1994-12-25 to 1998-06-28 (NODC Accession 9900183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and upwelling / downwelling irradiance data were collected using drifting buoy in the Southern Oceans from December 25, 1994 to June 28, 1998. Data were...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Drifting Buoy in the Indian Ocean, South Atlantic Ocean and others from 2001-11-20 to 2007-05-08 (NODC Accession 0117495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117495 includes Surface underway, biological, chemical, meteorological and physical data collected from Drifting Buoy in the Indian Ocean, South...

  3. Environmental preferences of tuna and non-tuna species associated with drifting fish aggregating devices (DFADs) in the Atlantic Ocean, ascertained through fishers' echo-sounder buoys

    Science.gov (United States)

    Lopez, Jon; Moreno, Gala; Lennert-Cody, Cleridy; Maunder, Mark; Sancristobal, Igor; Caballero, Ainhoa; Dagorn, Laurent

    2017-06-01

    Understanding the relationship between environmental variables and pelagic species concentrations and dynamics is helpful to improve fishery management, especially in a changing environment. Drifting fish aggregating device (DFAD)-associated tuna and non-tuna biomass data from the fishers' echo-sounder buoys operating in the Atlantic Ocean have been modelled as functions of oceanographic (Sea Surface Temperature, Chlorophyll-a, Salinity, Sea Level Anomaly, Thermocline depth and gradient, Geostrophic current, Total Current, Depth) and DFAD variables (DFAD speed, bearing and soak time) using Generalized Additive Mixed Models (GAMMs). Biological interaction (presence of non-tuna species at DFADs) was also included in the tuna model, and found to be significant at this time scale. All variables were included in the analyses but only some of them were highly significant, and variable significance differed among fish groups. In general, most of the fish biomass distribution was explained by the ocean productivity and DFAD-variables. Indeed, this study revealed different environmental preferences for tunas and non-tuna species and suggested the existence of active habitat selection. This improved assessment of environmental and DFAD effects on tuna and non-tuna catchability in the purse seine tuna fishery will contribute to transfer of better scientific advice to regional tuna commissions for the management and conservation of exploited resources.

  4. Temperature and salinity profile data collected by drifting buoy and XBT in the Worldwide Oceans from 09 October 1997 to 31 March 2000 (NODC Accession 0000116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using moored buoy, profiling floats, and XBT casts in a world wide distribution from 09 October 1997 to 31 March 2000. Data...

  5. Temperature and salinity profile data collected by drifting buoy and XBT in the Worldwide Oceans from 18 October 1999 to 28 February 2000 (NODC Accession 0000115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using moored buoy, profiling floats, and XBT casts in a world wide distribution from 18 October 1999 to 28 February 2000....

  6. National Data Buoy Center Buoy Locations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Buoy table consists of location information, ownership, and general geographic descriptions of buoys and weather stations. In addition to buoys operated by the...

  7. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  8. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  9. NASA-GSFC ionospheric corrections to satellite tracking data

    Science.gov (United States)

    Schmid, P. E.; Bent, R. B.; Llewellyn, S. K.; Nesterczuk, G.; Rangaswamy, S.

    1971-01-01

    An overview is presented of the development, verification, and recent implementation of the NASA-GSFC ionospheric model for satellite tracking data corrections. This model was incorporated into the Goddard Trajectory Determination System which is providing continuous trajectory computation support for the lunar orbiting Radio Astronomy Explorer-B launched on 10 June 1973.

  10. Satellite Tracking of Post-nesting Migration of Green Turtles

    Institute of Scientific and Technical Information of China (English)

    Wang Wenzhi; Wang Dongxiao; Wang Huajie; Song Xiaojun

    2002-01-01

    @@ During the period August 17-28, 2001, in collaboration with the Provincial Bureau of Oceanography & Fisheries of Guangdong and the South China Institute for Endangered Species, the South China Sea Institute of Oceanology, a CAS affiliate in the city of Guangzhou, conducted a sea turtle satellite tracking project at Haigui Bay (Fig. 1) in the vicinity of Gangkou Town, Huidong County, Guangdong Province.

  11. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under......-actuated antenna and ensures that it remains locked on the satellite. In this paper, a nonlinear internal model controller (NIMC), which achieves asymptotic tracking for the nonlinear antenna system with nonlinear exogenous dynamics, is proposed. Computer simulations as well as practical tests verify...... the effectiveness of this method to cope with the external disturbances that are imposed to the satellite tracking antenna (STA)....

  12. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under......-actuated antenna and ensures that it remains locked on the satellite. In this paper, a nonlinear internal model controller (NIMC), which achieves asymptotic tracking for the nonlinear antenna system with nonlinear exogenous dynamics, is proposed. Computer simulations as well as practical tests verify...... the effectiveness of this method to cope with the external disturbances that are imposed to the satellite tracking antenna (STA)....

  13. Orbit Determination Using Satellite-to-Satellite Tracking Data

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Satellite-to-Satellite Tracking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The na ture of the problem is also investigated in order to find an effective solution. Several methods of solution are discussed. The feasibility of the methods is demonstrated by their apphcation to a simulation.

  14. 海上溢油跟踪定位浮标参数分析及技术优化研究%The Research of Parameter Analysis and Optimization of Coastal Surface drifting Oil-spill Tracking Buoy

    Institute of Scientific and Technical Information of China (English)

    杨瑞; 刘寅东; 顾群; 王云强

    2014-01-01

    To improve the accuracy of oil-spill tracking buoy by optimizing the design of buoy , the oil-spill buoy parameters including size , weight and location are studied based on the hydrodynamic principles governing buoy tracking oil -film.The results show that it is possible that the best design of buoy and tracking effect is calculated to reach the accuracy of oil -spill buoy tracking oil-film according to geographic position and the properties of the oil-film.%为提高溢油浮标跟踪海上溢油油膜的精度,基于溢油浮标跟踪油膜的水动力学机理,对溢油浮标的尺寸、重量、海域位置等参数进行分析及优化,研究表明,可以根据浮标应用地理位置、海况及溢油油膜本身的性质,有针对性地选择最优的浮标设计参数,以提高溢油跟踪预测的准确性。

  15. NDBC Standard Meteorological Buoy Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) distributes meteorological data from moored buoys maintained by NDBC and others. Moored buoys are the weather sentinels of the...

  16. Time-variable gravity fields from satellite tracking

    Science.gov (United States)

    Bettadpur, Srinivas; Cheng, Minkang; Ries, John

    2014-05-01

    At the University of Texas Center for Space Research (CSR), we routinely deliver time-series of Earth's gravity field variations, some of it spanning more than two decades. These time-series are derived - in a consistent manner - from satellite laser ranging (SLR) data, from low-Earth orbiters tracked using GPS, and from low-low satellite to satellite tracking data from GRACE. In this paper, we review the information content in the gravity field time-series derived from each of these methods. We provide a comparison of the time-series at the decadal and annual time-scales, and identify the spatial modes of variability that are well or poorly estimated by each of the observing systems. The results have important bearing on the prospects of extending GRACE time-variable gravity time-series in the event of gaps between dedicated gravity missions, and for extending the time-series into the past. Support for this research from joint NASA/DLR GRACE mission, the NASA MEASURs program, and the NASA ROSES/GRACE Science Team is gratefully acknowledged.

  17. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    Satellite tracking is a challenging task for marine applications due to the disturbance from ocean waves. An Attitude Heading and Reference System (AHRS) for measuring ship attitude, based on Microelectromechanical Systems (MEMS) sensors, is a key part for satellite tracking. In this paper......, an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  18. The universal buoy system

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, Neil [Subsea Technology Services Inc., Houston, TX (United States); Bone, David [Ocean Resources Ltd., Dartmouth, Nova Scotia (Canada)

    2000-07-01

    This paper presents the evolution of a high stability buoys from the initial concept of a Sea Sentinel data acquisition buoy, to Mobil's Zafiro Flare buoy and the East Spar Sea Commander control buoy deployed offshore Australia 1996 and the Moss gas E-M field control buoy recently installed. Given the current economic climate in the offshore oil and gas industry, there is a need to exploit cost effective technologies for marginal field developments, involving long distant tie - backs [30 to 100 km]. Sea Commander provides an alternative solution for the safe, economic management of a remote sub sea production facility. This technology is applicable for both shallow and deep water developments. Ocean Resource/Mentor Sub sea have extended the range of the buoy solutions from control and chemical injection to reservoir pressure maintenance, water injection and power distribution/control of ESP's for well production boosting. Design concepts have also been developed for a complete process and sub sea storage facility for remote fields. A comparison of buoy based solutions compared with existing technologies will identify significant Capex advantages together with Opex reductions for both NPV and life cycle cost profiles. System availability and board ability will also be addressed. The buoy can be readily decommissioned/transported, therefore is ideally suited for multi-field deployment/amortisation. (author)

  19. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency...

  20. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    , an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  1. China's First Satellite Tracking of Migration Route of Black-necked Cranes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Teaming up with colleagues at home and abroad, CAS scientists launched China's first ever satellite tracking project on Black-necked Cranes in late February at the National Dashanbao Black-necked Crane Natural Reserve in southwest China's Yunnan Province. Its objective is to understand the migration route of the crane's eastern population so as to better protect this rare species.

  2. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Nourbakhsh, S. M; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  3. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  4. First satellite tracks of neonate sea turtles redefine the 'lost years' oceanic niche.

    Science.gov (United States)

    Mansfield, Katherine L; Wyneken, Jeanette; Porter, Warren P; Luo, Jiangang

    2014-04-22

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle 'lost years'. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle 'lost years' paradigms.

  5. Autonomous Sub-Pixel Satellite Track Endpoint Determination for Space Based Images

    Energy Technology Data Exchange (ETDEWEB)

    Simms, L M

    2011-03-07

    An algorithm for determining satellite track endpoints with sub-pixel resolution in spaced-based images is presented. The algorithm allows for significant curvature in the imaged track due to rotation of the spacecraft capturing the image. The motivation behind the subpixel endpoint determination is first presented, followed by a description of the methodology used. Results from running the algorithm on real ground-based and simulated spaced-based images are shown to highlight its effectiveness.

  6. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM in the TOGA Area - Pacific from 1990-05-01 to 1990-05-31 (NCEI Accession 9000156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface current measurements were collected as part of Tropical Ocean Global Atmosphere (TOGA) project from drifting buoys. These buoys were deployed in TOGA Area,...

  7. Local gravity disturbance estimation from multiple-high-single-low satellite-to-satellite tracking

    Science.gov (United States)

    Jekeli, Christopher

    1989-01-01

    The idea of satellite-to-satellite tracking in the high-low mode has received renewed attention in light of the uncertain future of NASA's proposed low-low mission, Geopotential Research Mission (GRM). The principal disadvantage with a high-low system is the increased time interval required to obtain global coverage since the intersatellite visibility is often obscured by Earth. The U.S. Air Force has begun to investigate high-low satellite-to-satellite tracking between the Global Positioning System (GPS) of satellites (high component) and NASA's Space Transportation System (STS), the shuttle (low component). Because the GPS satellites form, or will form, a constellation enabling continuous three-dimensional tracking of a low-altitude orbiter, there will be no data gaps due to lack of intervisibility. Furthermore, all three components of the gravitation vector are estimable at altitude, a given grid of which gives a stronger estimate of gravity on Earth's surface than a similar grid of line-of-sight gravitation components. The proposed Air Force mission is STAGE (Shuttle-GPS Tracking for Anomalous Gravitation Estimation) and is designed for local gravity field determinations since the shuttle will likely not achieve polar orbits. The motivation for STAGE was the feasibility to obtain reasonable accuracies with absolutely minimal cost. Instead of simulating drag-free orbits, STAGE uses direct measurements of the nongravitational forces obtained by an inertial package onboard the shuttle. The sort of accuracies that would be achievable from STAGE vis-a-vis other satellite tracking missions such as GRM and European Space Agency's POPSAT-GRM are analyzed.

  8. A modeling and simulation of control system of satellite tracking platform an- tenna

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaojun; GONG Lihong

    2012-01-01

    Based on the platform of mobile carrier satellite tracking has a wide range of applications. The paper adopts the advanced method of to step response identify, using the data obtained by the experiment model of high-speed acquisition, using the method of the least squares, finally the antenna control system model function was identified. Make use of integral separation algorithm, simu- link simulation and experiment analysis to set the control parameters of it. Stimulate the signal antenna control system under inter- fering. The experiment of the simulation experiment showed that the antenna control system model is stable with little error.

  9. Antenna pointing system for satellite tracking based on Kalman filtering and model predictive control techniques

    Science.gov (United States)

    Souza, André L. G.; Ishihara, João Y.; Ferreira, Henrique C.; Borges, Renato A.; Borges, Geovany A.

    2016-12-01

    The present work proposes a new approach for an antenna pointing system for satellite tracking. Such a system uses the received signal to estimate the beam pointing deviation and then adjusts the antenna pointing. The present work has two contributions. First, the estimation is performed by a Kalman filter based conical scan technique. This technique uses the Kalman filter avoiding the batch estimator and applies a mathematical manipulation avoiding the linearization approximations. Secondly, a control technique based on the model predictive control together with an explicit state feedback solution are obtained in order to reduce the computational burden. Numerical examples illustrate the results.

  10. Geoid Recovery using Geophysical Inverse Theory Applied to Satellite to Satellite Tracking Data

    Science.gov (United States)

    Gaposchkin, E. M.; Frey, H. (Technical Monitor)

    2000-01-01

    This report describes a new method for determination of the geopotential. The analysis is aimed at the GRACE mission. This Satellite-to-Satellite Tracking (SST) mission is viewed as a mapping mission The result will be maps of the geoid. The elements of potential theory, celestial mechanics, and Geophysical Inverse Theory are integrated into a computation architecture, and the results of several simulations presented Centimeter accuracy geoids with 50 to 100 km resolution can be recovered with a 30 to 60 day mission.

  11. Bird migration and avian influenza: a comparison of hydrogen stable isotopes and satellite tracking methods

    Science.gov (United States)

    Bridge, Eli S.; Kelly, Jeffrey F.; Xiao, Xiangming; Takekawa, John Y.; Hill, Nichola J.; Yamage, Mat; Haque, Enam Ul; Islam, Mohammad Anwarul; Mundkur, Taej; Yavuz, Kiraz Erciyas; Leader, Paul; Leung, Connie Y.H.; Smith, Bena; Spragens, Kyle A.; Vandegrift, Kurt J.; Hosseini, Parviez R.; Saif, Samia; Mohsanin, Samiul; Mikolon, Andrea; Islam, Ausrafal; George, Acty; Sivananinthaperumal, Balachandran; Daszak, Peter; Newman, Scott H.

    2014-01-01

    Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a continental scale is prohibitively expensive. This study explores the utility of stable isotope ratios in feathers in examining both the distances traveled by migratory birds and variation in migration behavior. We compared the satellite-derived movement data of 22 ducks from 8 species captured at wintering areas in Bangladesh, Turkey, and Hong Kong with deuterium ratios (δD) in the feathers of these and other individuals captured at the same locations. We derived likely molting locations from the satellite tracking data and generated expected isotope ratios based on an interpolated map of δD in rainwater. Although δD was correlated with the distance between wintering and molting locations, surprisingly, measured δD values were not correlated with either expected values or latitudes of molting sites. However, population-level parameters derived from the satellite-tracking data, such as mean distance between wintering and molting locations and variation in migration distance, were reflected by means and variation of the stable isotope values. Our findings call into question the relevance of the rainfall isotope map for Asia for linking feather isotopes to molting locations, and underscore the need for extensive ground truthing in the form of feather-based isoscapes. Nevertheless, stable isotopes from feathers could inform disease models by characterizing the degree to which regional breeding populations interact at common wintering locations. Feather isotopes also could aid in surveying wintering locations to determine where high-resolution tracking techniques (e.g. satellite tracking) could most effectively be employed. Moreover, intrinsic markers such as stable isotopes offer the only means of inferring movement information from

  12. First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche

    Science.gov (United States)

    Mansfield, Katherine L.; Wyneken, Jeanette; Porter, Warren P.; Luo, Jiangang

    2014-01-01

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms. PMID:24598420

  13. The universal buoy system (TUBS)

    Energy Technology Data Exchange (ETDEWEB)

    Bone, D.; Cousins, T.

    2000-07-01

    This paper will present the evolution of a high stability buoyant structure from the initial concept of a Sea Sentinel data acquisition buoy, to Mobil's Zafiro Flare buoy and the Sea Commander East Spar control buoy deployed offshore Australia which has been in successful operation since 1996 and the Mossgas E-M field control buoy currently being commissioned. Given the current economic climate in the offshore oil and gas industry, there is a need to exploit cost effective technologies for marginal field developments, involving long distant tie-backs [30 to 100 km]. The TUBS initiative provides an alternative solution for the safe, economic and management of a remote subsea production facility. This technology is applicable for both shallow and deepwater developments. (author)

  14. Robust FDI for A Ship-mounted Satellite Tracking Antenna: A Nonlinear Approach

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2008-01-01

    Overseas telecommunication is preserved by means of satellite communication. Tracking system postures the on-board antenna toward a chosen satellite while the external disturbances affect the antenna. Certain faults (beam sensor malfunction or signal blocking) cause interruption in the communicat......Overseas telecommunication is preserved by means of satellite communication. Tracking system postures the on-board antenna toward a chosen satellite while the external disturbances affect the antenna. Certain faults (beam sensor malfunction or signal blocking) cause interruption...... in the communication connection resulting in the loss of the tracking functionality. In this paper, an optimization based fault diagnosis system is proposed for the nonlinear model of the satellite tracking antenna (STA). The suggested method is able to estimate the fault for a class of nonlinear systems acting under...

  15. Defining management units for cetaceans by combining genetics, morphology, acoustics and satellite tracking

    Directory of Open Access Journals (Sweden)

    Signe Sveegaard

    2015-01-01

    Full Text Available Managing animal units is essential in biological conservation and requires spatial and temporal identification of such units. Since even neighbouring populations often have different conservation status and face different levels of anthropogenic pressure, detailed knowledge of population structure, seasonal range and overlap with animals from neighbouring populations is required to manage each unit separately. Previous studies on genetic structure and morphologic separation suggests three distinct populations of harbour porpoises with limited geographic overlap in the North Sea (NS, the Belt Sea (BS and the Baltic Proper (BP region. In this study, we aim to identify a management unit for the BS population of harbour porpoises. We use Argos satellite data and genetics from biopsies of tagged harbour porpoises as well as acoustic data from 40 passive acoustic data loggers to determine management areas with the least overlap between populations and thus the least error when abundance and population status is estimated. Discriminant analysis of the satellite tracking data from the BS and NS populations showed that the best fit of the management unit border during the summer months was an east–west line from Denmark to Sweden at latitude 56.95°N. For the border between BS and BP, satellite tracking data indicate a sharp decline in population density at 13.5°E, with 90% of the locations being west of this line. This was supported by the acoustic data with the average daily detection rate being 27.5 times higher west of 13.5°E as compared to east of 13.5°E. By using this novel multidisciplinary approach, we defined a management unit for the BS harbour porpoise population. We recommend that these boundaries are used for future monitoring efforts of this population under the EU directives. The boundaries may also be used for conservation efforts during the summer months, while seasonal movements of harbour porpoises should be considered during

  16. Mooring Line for an Oceanographic Buoy System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A mooring line for an oceanographic buoy system includes four sections. The first section is a protected cable that is connectable to the buoy. The second section is...

  17. Instrumented Full Scale Tests of a Drifting Buoy and Drogue

    Science.gov (United States)

    1975-12-01

    of very high accuracy (better than 200 feet) owing to the phase-tracking system employed. Both an automatic Epsco and a Simrad/Internav Loran C system...from.the output of a Simrad/Internav LORAN C navi- gator. A similar Epsco system was also employed while coupled to a separate antenna. The Epsco unit gave

  18. A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3

    Science.gov (United States)

    Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Marshall, J. A.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.

    1994-01-01

    An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until

  19. How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors.

    Science.gov (United States)

    Strandberg, Roine; Klaassen, Raymond H G; Hake, Mikael; Alerstam, Thomas

    2010-06-23

    We investigated the risk associated with crossing the Sahara Desert for migrating birds by evaluating more than 90 journeys across this desert by four species of raptors (osprey Pandion haliaetus, honey buzzard Pernis apivorus, marsh harrier Circus aeruginosus and Eurasian hobby Falco subbuteo) recorded by satellite telemetry. Forty per cent of the crossings included events of aberrant behaviours, such as abrupt course changes, slow travel speeds, interruptions, aborted crossings followed by retreats from the desert and failed crossings due to death, indicating difficulties for the migrants. The mortality during the Sahara crossing was 31 per cent per crossing attempt for juveniles (first autumn migration), compared with only 2 per cent for adults (autumn and spring combined). Mortality associated with the Sahara passage made up a substantial fraction (up to about half for juveniles) of the total annual mortality, demonstrating that this passage has a profound influence on survival and fitness of migrants. Aberrant behaviours resulted in late arrival at the breeding grounds and an increased probability of breeding failure (carry-over effects). This study also demonstrates that satellite tracking can be a powerful method to reveal when and where birds are exposed to enhanced risk and mortality during their annual cycles.

  20. Surface flow structure of the Gulf Stream from composite imagery and satellite-tracked drifters

    Directory of Open Access Journals (Sweden)

    C. P. Mullen

    1994-01-01

    Full Text Available A unique set of coutemporaneous satellite-tracked drifters and five-day composite Advanced Very High Resolution Radionmeter (AVHRR satellite imagery of the North Atlantic has been analyzed to examine the surface flow structure of the Gulf Stream. The study region was divided into two sections, greater than 37° N and less than 37° N, in order to answer the question of geographic variability. Fractal and spectral analyses methods were applied to the data. Fractal analysis of the Lagrangian trajectories showed a fractal dimension of 1.21 + 0.02 with a scaling range of 83 - 343 km. The fractal dimension of the temperature fronts of the composite imagery is similar for the two regions with D = 1.11 + 0.01 over a scaling range of 4 - 44 km. Spectral analysis also reports a fairly consistent value for the spectral slope and its scaling range. Therefore, we conclude there is no geographic variability in the data set. A suitable scaling range for this contemporaneous data set is 80 - 200 km which is consistent with the expected physical conditions in the region. Finally, we address the idea of using five-day composite imagery to infer the surface flow of the Gulf Stream. Close analyses of the composite thermal fronts and the Lagrangian drifter trajectories show that the former is not a good indicator of the latter.

  1. Satellite tracking of the migration of Whooper Swans Cygnus cygnus wintering in Japan

    Science.gov (United States)

    Shimada, Tetsuo; Yamaguchi, Noriyuki M.; Hijikata, N.; Hiraoka, Emiko N.; Hupp, Jerry; Flint, Paul L.; Tokita, Ken-ichi; Fujita, Go; Uchida, Kiyoshi; Sato, F.; Kurechi, Masayuki; Pearce, John M.; Ramey, Andy M.; Higuchi, Hiroyoshi

    2014-01-01

    We satellite-tracked Whooper Swans Cygnus cygnus wintering in northern Japan to document their migration routes and timing, and to identify breeding areas. From 47 swans that we marked at Lake Izunuma-Uchinuma, Miyagi Prefecture, northeast Honshu, and at Lake Kussharo, east Hokkaido, we observed 57 spring and 33 autumn migrations from 2009-2012. In spring, swans migrated north along Sakhalin Island from eastern Hokkaido using stopovers in Sakhalin, at the mouth of the Amur River and in northern coastal areas of the Sea of Okhotsk. They ultimately reached molting/breedmg areas along the Indigirka River and the lower Kolyma River in northern Russia. In autumn, the swans basically reversed the spring migration routes. We identified northern Honshu, eastern Hokkaido, coastal areas in Sakhalin, the lower Amur River and northern coastal areas of the Sea of Okhotsk as the most frequent stopover sites, and the middle reaches of the Indigirka and the lower Kolyma River as presumed breeding sites. Our results are helpful in understanding the distribution of the breeding and stopover sites of Whooper Swans wintering in Japan and in identifying their major migration habitats. Our findings contribute to understanding the potential transmission process of avian influenza viruses potentially carried by swans, and provide information necessary to conserve Whooper Swans in East Asia.

  2. System Design and Implementation of the Virginia Tech Optical Satellite Tracking Telescope

    Science.gov (United States)

    Luciani, D.; Black, J.

    2016-09-01

    The Virginia Tech Optical Satellite Tracking Telescope (VTOST) aims to test the feasibility of a commercial off-the-shelf (COTS) designed tracking system for Space Situational Awareness (SSA) data contribution. A novel approach is considered, combining two COTS systems, a high-powered telescope, built for astronomy purposes, and a larger field of view (FOV) camera. Using only publicly available two-line element sets (TLEs), orbital propagation accuracy degrades quickly with time from epoch and is often not accurate enough to task a high-powered, small FOV telescope. Under this experimental approach, the larger FOV camera is used to acquire and track the resident space object (RSO) and provide a real-time pointing update to allow the high-powered telescope to track the RSO and provide possible resolved imagery. VTOST is designed as a remotely taskable sensor, based on current network architecture, capable of serving as a platform for further SSA studies, including unresolved and resolved imagery analysis, network tasking, and orbit determination. Initial design considerations are based on the latest Raven class and other COTS based telescope research, including research by the Air Force Research Lab (AFRL), ExoAnalytic Solutions, and other university level telescope projects. A holistic system design, including astronomy, image processing, and tracking methods, in a low-budget environment is considered. Method comparisons and results of the system design process are presented.

  3. Orbit Determination with Angle-only Data from the First Korean Optical Satellite Tracking System, OWL-Net

    Science.gov (United States)

    Choi, J.; Jo, J.

    2016-09-01

    The optical satellite tracking data obtained by the first Korean optical satellite tracking system, Optical Wide-field patrol - Network (OWL-Net), had been examined for precision orbit determination. During the test observation at Israel site, we have successfully observed a satellite with Laser Retro Reflector (LRR) to calibrate the angle-only metric data. The OWL observation system is using a chopper equipment to get dense observation data in one-shot over 100 points for the low Earth orbit objects. After several corrections, orbit determination process was done with validated metric data. The TLE with the same epoch of the end of the first arc was used for the initial orbital parameter. Orbit Determination Tool Kit (ODTK) was used for an analysis of a performance of orbit estimation using the angle-only measurements. We have been developing batch style orbit estimator.

  4. Preliminary study on migration pattern of the Tibetan antelope ( Pantholops hodgsonii) based on satellite tracking

    Science.gov (United States)

    Buho, Hoshino; Jiang, Z.; Liu, C.; Yoshida, T.; Mahamut, Halik; Kaneko, M.; Asakawa, M.; Motokawa, M.; Kaji, K.; Wu, X.; Otaishi, N.; Ganzorig, Sumiya; Masuda, R.

    2011-07-01

    The spatial and temporal patterns of the endangered Tibetan antelope or chiru ( Pantholops hodgsonii) have been studied using satellite-based ARGOS platform transmitter terminal (PTT) tracking data. The data was obtained from the satellite tracking of two female Tibetan antelopes that were collared with satellite transmitters and have been tracked from August 2007 to April 2009. Analysis of the locality data (LC) obtained, shows that both antelopes were migrant individuals, they shared the same calving ground surrounding lake Huiten (or Zhuonai lake), but different wintering pastures. Each antelope covered 250-300 km from the wintering to summer pastures. Annual range consisted of a core area that was used for at least 9 months; a calving ground used for a short time (from 8-20 days); and temporal pastures used during migration to and from the calving ground. Seasonal migration cycle was about 3 months, 27-30 days to reach the calving ground; 8-20 days staying there; and 36-40 days returning to the core area. Examination of the spatial distribution during migration showed that both chiru crossed the Qinghai-Tibetan railway (QTR) and the Golmud-Lhasa highway (GLH) at least two times, and reached calving ground (118-120 km from there) in 8 days, maintaining an average speed of 15 km per day. However, the return migration took twice as long (from 14 to 16 days). Each time, after reaching the QTR and GLH, the antelopes spent 20-40 days in that area, probably looking for passages and waiting. So far, we suppose that the QTR and the GLH have become a hindrance to the migration of the Tibetan antelopes and seriously delay their movement to and from the calving area. Extended aggregation of the herds of Tibetan antelopes along the QTR and the GLH may impact negatively with increased mortality among offspring, the spread of various diseases and overgrazing of pastures.

  5. Stable isotope analysis and satellite tracking reveal interspecific resource partitioning of nonbreeding albatrosses off Alaska

    Science.gov (United States)

    Suryan, R.M.; Fischer, K.N.

    2010-01-01

    Albatrosses (Diomedeidae) are the most threatened family of birds globally. The three North Pacific species (Phoebastria Reichenbach, 1853) are listed as either endangered or vulnerable, with the population of Short-tailed Albatross (Phoebastria albatrus (Pallas, 1769)) less than 1% of its historical size. All North Pacific albatross species do not currently breed sympatrically, yet they do co-occur at-sea during the nonbreeding season. We incorporated stable isotope analysis with the first simultaneous satellite-tracking study of all three North Pacific albatross species while sympatric on summer (nonbreeding season) foraging grounds off Alaska. Carbon isotope ratios and tracking data identify differences in primary foraging domains of continental shelf and slope waters for Short-tailed Albatrosses and Black-footed Albatrosses (Phoebastria nigripes (Audubon, 1839)) versus oceanic waters for Laysan Albatrosses (Phoebastria immutabilis (Roths-child, 1893)). Short-tailed and Black-footed albatrosses also fed at higher trophic levels than Laysan Albatrosses. The relative trophic position of Black-footed and Laysan albatrosses, however, appears to differ between nonbreeding and breeding seasons. Spatial segregation also occurred at a broader geographic scale, with Short-tailed Albatrosses ranging more north into the Bering Sea than Black-footed Albatrosses, which ranged more to the southeast, and Laysan Albatrosses more to the southwest. Differences in carbon isotope ratios among North Pacific albatross species during the nonbreeding season likely reflect the relative proportion of neritic (more carbon enriched) versus oceanic (carbon depleted) derived nutrients, and possible differential use of fishery discards, rather than latitudinal differences in distribution.

  6. 33 CFR 62.23 - Beacons and buoys.

    Science.gov (United States)

    2010-07-01

    ... electronic navigation. Buoys vary in reliability because: (i) Buoy positions represented on nautical charts... not coincide with the dots or circles representing them on charts. (iii) Buoy positions are...

  7. Advanced Approach of Multiagent Based Buoy Communication

    Directory of Open Access Journals (Sweden)

    Gediminas Gricius

    2015-01-01

    Full Text Available Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys, which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information.

  8. Advanced Approach of Multiagent Based Buoy Communication

    Science.gov (United States)

    Gricius, Gediminas; Drungilas, Darius; Andziulis, Arunas; Dzemydiene, Dale; Voznak, Miroslav; Kurmis, Mindaugas; Jakovlev, Sergej

    2015-01-01

    Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys), which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information. PMID:26345197

  9. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM from 1988-09-01 to 1988-09-30 (NCEI Accession 8800283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month data collected in September 1988 off of drifting buoys. Physical observations such as surface currents, surface measurements and...

  10. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM from 1989-12-01 to 1989-12-20 (NCEI Accession 9000035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from drifting buoys deployed as part of Tropical Ocean Global Atmosphere (TOGA) project in December 1989. The surface...

  11. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM from 1990-04-01 to 1990-04-18 (NCEI Accession 9000123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The surface current data in this accession was collected from drifting buoy from April 1-18, 1990 as part of Tropical Ocean Global Atmosphere (TOGA) project. The...

  12. CURRENT DIRECTION, ICE - MOVEMENT - DIRECTION and other data from DRIFTING PLATFORM from 1984-06-27 to 1988-03-01 (NCEI Accession 9000020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data were collected as part of Tropical Ocean Global Atmosphere (TOGA) program by Atlantic Oceanographic Meterological Laboratory (AOML), Miami FL. Drifting Buoy...

  13. Typhoon generated surface gravity waves measured by NOMAD-type buoys

    Science.gov (United States)

    Collins, Clarence O., III

    This study examines wind-generated ocean surface waves as measured by NOMAD-type buoys during the ONR-sponsored Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment in 2010. 1-D measurements from two new Extreme Air-Sea Interaction (EASI) NOMAD-type buoys were validated against measurements from established Air-Sea Interaction Spar (ASIS) buoys. Also, during ITOP, 3 drifting Miniature Wave Buoys, a wave measuring marine radar on the R/V Roger Revelle, and several overpasses of JASON-1 (C- and Ku-band) and -2 (Ku-band) satellite altimeters were within 100 km of either EASI buoy. These additional measurements were compared against both EASI buoys. Findings are in line with previous wave parameter inter-comparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information which has been successfully gathered from a buoy with a 6 m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. In addition, details for giving a consistent estimate of sea surface elevation from buoys using strapped down accelerometers are given. This was found to be particularly important for accurate measurement of extreme waves. These technical studies established a high level of confidence in the ITOP wave measurements. Detailed frequency-direction spectra were analyzed. Structures in the wave field were described during the close passages of 4 major tropical cyclones (TC) including: severe tropical storm Dianmu, Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. In addition, significant swell was measured from a distant 5th TC, Typhoon Malakas. Changes in storm direction and intensity are found to have a profound impact on the wave field. Measurements of extreme waves were explored. More extreme waves were measured during TCs which coincided with times of increased wave

  14. Measurement-based perturbation theory and differential equation parameter estimation for high-precision high-resolution reconstruction of the Earth's gravitational field from satellite tracking measurements

    CERN Document Server

    Xu, Peiliang

    2016-01-01

    The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in satellite gravimetry and statistics, is groundless. We use three different methods to derive new local solutions to the Newton's nonlinear governing differential equations of motion with a nominal reference orbit. Bearing in mind that satellite orbits ...

  15. Evaluating Effectiveness of DART Buoy Networks

    CERN Document Server

    Percival, Donald B; Gica, Edison; Huang, Paul Y; Mofjeld, Harold O; Spillane, Michael C; Titov, Vasily V

    2016-01-01

    A performance measure for a DART tsunami buoy network has been developed. The measure is based on a statistical analysis of simulated forecasts of wave heights outside an impact site and how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami height time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis (SIFT) database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 hrs. The ana...

  16. Gravimetric geodesy and sea surface topography studies by means of satellite-to-satellite tracking and satellite altimetry

    Science.gov (United States)

    Siry, J. W.

    1972-01-01

    A satellite-to-satellite tracking experiment is planned between ATS-F and GEOS-C with a range accuracy of 2-meters and a range rate accuracy of 0.035 centimeters per second for a 10-second integration time. This experiment is planned for 1974. It is anticipated that it will improve the spatial resolution of the satellite geoid by half an order of magnitude to about 6 degrees. Longer integration times should also permit a modest increase in the acceleration resolution. Satellite altimeter data will also be obtained by means of GEOS-C. An overall accuracy of 5-meters in altitude is the goal. The altimeter, per se, is expected to have an instrumental precision of about 2 meters, and an additional capability to observe with a precision of about 0.2 meters for limited periods.

  17. The International Arctic Buoy Programme (IABP) - An International Polar Year Every Year

    Science.gov (United States)

    Hanna, M.; Rigor, I.; Ortmeyer, M.; Haas, C.

    2004-12-01

    A network of automatic data buoys to monitor synoptic-scale fields of sea level pressure (SLP), surface air temperature (SAT), and ice motion throughout the Arctic Ocean was recommended by the U.S. National Academy of Sciences in 1974. Based on the Academy's recommendation, the Arctic Ocean Buoy Program was established by the Polar Science Center, Applied Physics Laboratory (APL), University of Washington, in 1978 to support the Global Weather Experiment. Operations began in early 1979, and the program continued through 1990 under funding from various agencies. In 1991, the International Arctic Buoy Programme (IABP) succeeded the Arctic Ocean Buoy Program, but the basic objective remains - to maintain a network of drifting buoys on the Arctic Ocean to provide meteorological and oceanographic data for real-time operational requirements and research purposes including support to the World Climate Research Programme and the World Weather Watch Programme. The IABP currently has 37 buoys deployed on the Arctic Ocean. Most of the buoys measure SLP and SAT, but many buoys are enhanced to measure other geophysical variables such as sea ice thickness, ocean temperature and salinity. This observational array is maintained by the 20 Participants from 10 different countries, who support the program through contributions of buoys, deployment logistics, and other services. The observations from the IABP are posted on the Global Telecommunications System for operational use, are archived at the World Data Center for Glaciology at the National Snow and Ice Data Center (http://nsidc.org), and can also be obtained from the IABP web server for research (http://iabp.apl.washington.edu). The observations from the IABP have been essential for: 1.) Monitoring Arctic and global climate change; 2.) Forecasting weather and sea ice conditions; 3.) Forcing, assimilation and validation of global weather and climate models; 4.) Validation of satellite data; etc. As of 2003, over 450 papers have

  18. Characterization of sea-ice kinematic in the Arctic outflow region using buoy data

    Directory of Open Access Journals (Sweden)

    Ruibo Lei

    2016-01-01

    Full Text Available Data from four ice-tethered buoys deployed in 2010 were used to investigate sea-ice motion and deformation from the Central Arctic to Fram Strait. Seasonal and long-term changes in ice kinematics of the Arctic outflow region were further quantified using 42 ice-tethered buoys deployed between 1979 and 2011. Our results confirmed that the dynamic setting of the transpolar drift stream (TDS and Fram Strait shaped the motion of the sea ice. Ice drift was closely aligned with surface winds, except during quiescent conditions, or during short-term reversal of the wind direction opposing the TDS. Meridional ice velocity south of 85°N showed a distinct seasonal cycle, peaking between late autumn and early spring in agreement with the seasonality of surface winds. Inertia-induced ice motion was strengthened as ice concentration decreased in summer. As ice drifted southward into the Fram Strait, the meridional ice speed increased dramatically, while associated zonal ice convergence dominated the ice-field deformation. The Arctic atmospheric Dipole Anomaly (DA influenced ice drift by accelerating the meridional ice velocity. Ice trajectories exhibited less meandering during the positive phase of DA and vice versa. From 2005 onwards, the buoy data exhibit high Arctic sea-ice outflow rates, closely related to persistent positive DA anomaly. However, the long-term data from 1979 to 2011 do not show any statistically significant trend for sea-ice outflow, but exhibit high year-to-year variability, associated with the change in the polarity of DA.

  19. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    Science.gov (United States)

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  20. Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Fujisaki, Ikuko

    2010-01-01

    We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.

  1. Oceanographic measurements from the Texas Automated Buoy System (TABS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Texas Automated Buoy System contains daily oceanographic measurements from seven buoys off the Texas coast from Brownsville to Sabine. The Texas General Land...

  2. 46 CFR 117.70 - Ring life buoys.

    Science.gov (United States)

    2010-10-01

    ... Ring Life Buoys and Life Jackets § 117.70 Ring life buoys. (a) A vessel must have one or more ring life... 46 Shipping 4 2010-10-01 2010-10-01 false Ring life buoys. 117.70 Section 117.70 Shipping COAST... one life buoy of not less than 510 millimeters (20 inches) in diameter; (2) A vessel of more than 7.9...

  3. Pacific Ocean buoy temperature date - TAO/TRITON database & National Buoy Data Center database

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pacific Ocean buoy temperature data. This dataset is associated with the following publication: Carbone, F., M. Landis, C.N. Gencarelli, A. Naccarato, F. Sprovieri,...

  4. The strength analysis of the wave piercing buoy

    Science.gov (United States)

    Jiang, Dong; Li, Wenhua; Chen, Xinyang; Chen, Haiquan

    2017-04-01

    The wave piercing buoy in this paper is different with the traditional cylindrical buoy, it is made by ultra-high molecular weight polyethylene (UHMWPE) and has six middle pontoons. In order to guarantee the stability of the buoy structure, it is necessary to carry out the strength analysis. This paper use the ANSYS software to carry on the simulation analysis to the buoy, and the result of it is compare with the actual operation, therefore ensure the strength of the wave piercing buoy meet the related requirements.

  5. Elephant (Loxodonta africana) home ranges in Sabi Sand Reserve and Kruger National Park: a five-year satellite tracking study.

    Science.gov (United States)

    Thomas, Bindi; Holland, John D; Minot, Edward O

    2008-01-01

    During a five-year GPS satellite tracking study in Sabi Sand Reserve (SSR) and Kruger National Park (KNP) we monitored the daily movements of an elephant cow (Loxodonta africana) from September 2003 to August 2008. The study animal was confirmed to be part of a group of seven elephants therefore her position is representative of the matriarchal group. We found that the study animal did not use habitat randomly and confirmed strong seasonal fidelity to its summer and winter five-year home ranges. The cow's summer home range was in KNP in an area more than four times that of her SSR winter home range. She exhibited clear park habitation with up to three visits per year travelling via a well-defined northern or southern corridor. There was a positive correlation between the daily distance the elephant walked and minimum daily temperature and the elephant was significantly closer to rivers and artificial waterholes than would be expected if it were moving randomly in KNP and SSR. Transect lines established through the home ranges were surveyed to further understand the fine scale of the landscape and vegetation representative of the home ranges.

  6. Elephant (Loxodonta africana home ranges in Sabi Sand Reserve and Kruger National Park: a five-year satellite tracking study.

    Directory of Open Access Journals (Sweden)

    Bindi Thomas

    Full Text Available During a five-year GPS satellite tracking study in Sabi Sand Reserve (SSR and Kruger National Park (KNP we monitored the daily movements of an elephant cow (Loxodonta africana from September 2003 to August 2008. The study animal was confirmed to be part of a group of seven elephants therefore her position is representative of the matriarchal group. We found that the study animal did not use habitat randomly and confirmed strong seasonal fidelity to its summer and winter five-year home ranges. The cow's summer home range was in KNP in an area more than four times that of her SSR winter home range. She exhibited clear park habitation with up to three visits per year travelling via a well-defined northern or southern corridor. There was a positive correlation between the daily distance the elephant walked and minimum daily temperature and the elephant was significantly closer to rivers and artificial waterholes than would be expected if it were moving randomly in KNP and SSR. Transect lines established through the home ranges were surveyed to further understand the fine scale of the landscape and vegetation representative of the home ranges.

  7. Elephant (Loxodonta africana) Home Ranges in Sabi Sand Reserve and Kruger National Park: A Five-Year Satellite Tracking Study

    Science.gov (United States)

    Thomas, Bindi; Holland, John D.; Minot, Edward O.

    2008-01-01

    During a five-year GPS satellite tracking study in Sabi Sand Reserve (SSR) and Kruger National Park (KNP) we monitored the daily movements of an elephant cow (Loxodonta africana) from September 2003 to August 2008. The study animal was confirmed to be part of a group of seven elephants therefore her position is representative of the matriarchal group. We found that the study animal did not use habitat randomly and confirmed strong seasonal fidelity to its summer and winter five-year home ranges. The cow's summer home range was in KNP in an area more than four times that of her SSR winter home range. She exhibited clear park habitation with up to three visits per year travelling via a well-defined northern or southern corridor. There was a positive correlation between the daily distance the elephant walked and minimum daily temperature and the elephant was significantly closer to rivers and artificial waterholes than would be expected if it were moving randomly in KNP and SSR. Transect lines established through the home ranges were surveyed to further understand the fine scale of the landscape and vegetation representative of the home ranges. PMID:19065264

  8. Local Recovery of Sub-crustal Stress Due to Mantle Convection from Satellite-to-satellite Tracking Data

    Directory of Open Access Journals (Sweden)

    Šprlák Michal

    2016-08-01

    Full Text Available Two integral transformations between the stress function, differentiation of which gives the meridian and prime vertical components of the sub-crustal stress due to mantle convection, and the satellite-to-satellite tracking (SST data are presented in this article. In the first one, the SST data are the disturbing potential differences between twin-satellites and in the second one the line-of-sight (LOS gravity disturbances. It is shown that the corresponding integral kernels are well-behaving and therefore suitable for inversion and recovery of the stress function from the SST data. Recovery of the stress function and the stress components is also tested in numerical experiments using simulated SST data. Numerical studies over the Himalayas show that inverting the disturbing potential differences leads to a smoother stress function than from inverting LOS gravity disturbances. Application of the presented integral formulae allows for recovery of the stress from the satellite mission GRACE and its planned successor.

  9. A spring stopover of a migratory osprey (Pandion haliaetus in northern Spain as revealed by satellite tracking: implications for conservation

    Directory of Open Access Journals (Sweden)

    Galarza, A.

    2009-12-01

    Full Text Available Improvements in the accuracy of satellite telemetry locations now allow detailed studies on territorial behaviour or use of habitat that can be used to enhance bird conservation. In this paper we describe the behaviour of a satellite-tracked adult female osprey (Pandion haliaetus in the Urdaibai Biosphere Reserve (N Spain to evaluate the suitability of this protected area for the species. The data set consisted of 10 complete days with a total of 145 exact fixes received. Night roosts were mainly surrounded by high or intermediate level protected land, separated from roads or buildings by more than 200 m and located less than one km away from the feeding area. During daylight hours, most fixes (76.5% were located in wooded areas. We found that the bird selected holm oak woods and we suggest that this is related to low disturbance from human activity. We also suggest that northern Spanish estuaries are important as stopovers by migrating ospreys for feeding during migration.

  10. CFD supported examination of buoy design for wave energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Nadir; Trapp, Geoffrey E.; Gagan, Scott M.; Emmerich, Timothy R. [Department of Mechanical Engineering, New Mexico Institute of Mining and Technology (United States)], e-mail: nadir@nmt.edu, email: gtrapp@nmt.edu, email: sgag01@nmt.edu, email: temmeric@nmt.edu

    2011-07-01

    The work presented in this paper investigates an oscillating buoy power device (OD) as a potential wave energy converter. The wave interacts with the buoy, which is connected to a mechanical device which oscillates and converts spring force into mechanical power. For validation purposes, ellipsoidal buoy shapes of the five aspect ratios are used in this report as OD devices which are excited under the same wave conditions to validate the computational fluid dynamics (CFD) model against experimental data available in the literature. The analysis was performed using a Flow-3d CFD software package. Comparisons are made and results are presented based on buoy displacements which can be related to energy produced by the buoys. The aspect ratio approaching 1:1:1 (sphere) is found to produce the maximum displacement and consequently the highest possible energy conversion. The paper also discusses whether a flat circular plate shape buoy would capture 50% of the possible energy by comparison with the spherical buoy.

  11. Improvement of the accuracy of continuous GPS/Acoustic measurement using a slackly moored buoy

    Science.gov (United States)

    Imano, M.; Kido, M.; Ohta, Y.; Takahashi, N.; Fukuda, T.; Ochi, H.; Honsho, C.; Hino, R.

    2016-12-01

    For the real-time detection of seafloor crustal movement and tsunami associated with large earthquakes, it is necessary to monitor them continuously in their source regions. For this purpose, Tohoku University, JAMSTEC, and JAXA have co-developed a continuous GPS/Acoustic (GPS/A) measurement system using a moored buoy, and the third sea-trial is ongoing for a year in Kumano-nada, Nankai Trough. In this presentation, we report of the positioning accuracy of the continuous GPS/Acoustic measurement in the buoy system. We have adopted the array positioning technique developed by researchers at the Scripps Institute of Oceanography with some improvements. The advantage of this method is that errors in assumed sound velocity and array geometry (relative positions of individual seafloor transponders) little affect positioning results when measurements are conducted in the vicinity of the array center. However, the GPS/A measurement using a moored buoy is generally conducted under much worse condition than the conventional one using a research vessel. In our system, the mooring cable length was determined to be 1.5 times the water depth for safety reasons against strong current. Therefore, the buoy is drifting within a relatively wide area by the wind and the current, and measurements are randomly performed at various points within the area. These features can lead to significant systematic errors in the array positioning, because the effect of errors in pre-defined array geometry increases as the observation point goes farther from the array center. At the moments, the positioning accuracy of GPS/A measurement using a moored buoy is estimated as 0.6/0.7 m, for the EW/NS components, respectively, from the data obtained during the third sea-trial. It is considered that errors in the assumed array geometry result in considerable errors in the array positioning. Therefore, it is necessary to determine the array geometry more precisely in order to improve the accuracy of GPS

  12. Dynamics of anchor last deployment of submersible buoy system

    Science.gov (United States)

    Zheng, Zhongqiang; Xu, Jianpeng; Huang, Peng; Wang, Lei; Yang, Xiaoguang; Chang, Zongyu

    2016-02-01

    Submersible buoy systems are widely used for oceanographic research, ocean engineering and coastal defense. Severe sea environment has obvious effects on the dynamics of submersible buoy systems. Huge tension can occur and may cause the snap of cables, especially during the deployment period. This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods. By applying the lumped mass approach, a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force, tension force and impact force between components of submersible buoy system and seabed. Numerical integration method is used to solve the differential equations. The simulation output includes tension force, trajectory, profile and dropping location and impact force of submersible buoys. In addition, the deployment experiment of a simplified submersible buoy model was carried out. The profile and different nodes' velocities of the submersible buoy are obtained. By comparing the results of the two methods, it is found that the numerical model well simulates the actual process and conditions of the experiment. The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy. The study results will help to understand the conditions of submersible buoy's deployment, operation and recovery, and can be used to guide the design and optimization of the system.

  13. Evaluation of Empirical Tropospheric Models Using Satellite-Tracking Tropospheric Wet Delays with Water Vapor Radiometer at Tongji, China.

    Science.gov (United States)

    Wang, Miaomiao; Li, Bofeng

    2016-02-02

    An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS) processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, together with five mapping functions in wet delays calculation. The evaluations are conducted by comparing their slant wet delays with those measured by water vapor radiometer based on its satellite-tracking function (collected data with large liquid water path is removed). For all 15 combinations of three tropospheric models and five mapping functions, their accuracies as a function of elevation are statistically analyzed by using nine-day data in two scenarios, with and without meteorological data. The results show that (1) no matter with or without meteorological data, there is no practical difference between mapping functions, i.e., Chao, Ifadis, Vienna Mapping Function 1 (VMF1), Niell Mapping Function (NMF), and MTT Mapping Function (MTT); (2) without meteorological data, the UNB3 is much better than Saastamoinen and Hopfield models, while the Saastamoinen model performed slightly better than the Hopfield model; (3) with meteorological data, the accuracies of all three tropospheric delay models are improved to be comparable, especially for lower elevations. In addition, the kinematic precise point positioning where no parameter is set up for tropospheric delay modification is conducted to further evaluate the performance of tropospheric delay models in positioning accuracy. It is shown that the UNB3 model is best and can achieve about 10 cm accuracy for the N and E coordinate component while 20 cm accuracy for the U coordinate component no matter the meteorological data is available or not. This accuracy can be obtained by the Saastamoinen model only when meteorological data is

  14. Evaluation of Empirical Tropospheric Models Using Satellite-Tracking Tropospheric Wet Delays with Water Vapor Radiometer at Tongji, China

    Directory of Open Access Journals (Sweden)

    Miaomiao Wang

    2016-02-01

    Full Text Available An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, together with five mapping functions in wet delays calculation. The evaluations are conducted by comparing their slant wet delays with those measured by water vapor radiometer based on its satellite-tracking function (collected data with large liquid water path is removed. For all 15 combinations of three tropospheric models and five mapping functions, their accuracies as a function of elevation are statistically analyzed by using nine-day data in two scenarios, with and without meteorological data. The results show that (1 no matter with or without meteorological data, there is no practical difference between mapping functions, i.e., Chao, Ifadis, Vienna Mapping Function 1 (VMF1, Niell Mapping Function (NMF, and MTT Mapping Function (MTT; (2 without meteorological data, the UNB3 is much better than Saastamoinen and Hopfield models, while the Saastamoinen model performed slightly better than the Hopfield model; (3 with meteorological data, the accuracies of all three tropospheric delay models are improved to be comparable, especially for lower elevations. In addition, the kinematic precise point positioning where no parameter is set up for tropospheric delay modification is conducted to further evaluate the performance of tropospheric delay models in positioning accuracy. It is shown that the UNB3 model is best and can achieve about 10 cm accuracy for the N and E coordinate component while 20 cm accuracy for the U coordinate component no matter the meteorological data is available or not. This accuracy can be obtained by the Saastamoinen model only when

  15. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations

    Science.gov (United States)

    Lie, Heung-Jae; Cho, Cheol-Ho

    2016-08-01

    We investigated seasonal circulation patterns of the Yellow and East China Seas (YECS), by reviewing previous works on the circulation and its dominant currents, and taking into account newly-compiled trajectories of satellite-tracked drifters collected between the 1980s and 2000s. The circulation patterns suggested before the 1990s can be categorized into two groups, depending on the identified origin of the Tsushima Warm Current in the Korea-Tsushima Straits: (i) branching from the Kuroshio southwest of Kyushu, or (ii) northeastward continuation of the Taiwan Strait throughflow. The branching of the Kuroshio southwest of Kyushu and northeast of Taiwan was clearly evidenced by current measurements and concurrent hydrographic surveys. However, there is still no clear evidence for the northeastward pathway of Taiwan Strait throughflow across the mid-shelf area of the East China Sea. Target-oriented surveys in the 1990s and 2000s employing advanced instruments, such as drifter tracking and acoustic Doppler current profiler measurements, now provide decisive proof of the clockwise rounding of the Cheju Warm Current around Jeju-do throughout the year, of the northeastward extension of Changjiang discharge in summer, and of the presence of the Yellow Sea Warm Current only in winter. Thus, both coastal currents in shallow water and secondary branch currents of the Kuroshio (such as the Yellow Sea Warm Current) are found to significantly change from winter to summer. To better present the basic pattern of YECS circulation and its seasonality, we have constructed seasonal circulations patterns, based on review results, on the newly-compiled drifter trajectories, and on hydrographic observations. Further investigations should be carried out in future, with support of comprehensive current measurements on shelf areas and through elaborate numerical modeling.

  16. Implementing telemetry on new species in remote areas: Recommendations from a large-scale satellite tracking study of African waterfowl

    Science.gov (United States)

    Cappelle, J.; Iverson, S.A.; Takekawa, J.Y.; Newman, S.H.; Dodman, T.; Gaidet, N.

    2011-01-01

    We provide recommendations for implementing telemetry studies on waterfowl on the basis of our experience in a tracking study conducted in three countries of sub-Saharan Africa. The aim of the study was to document movements by duck species identified as priority candidates for the potential spread of avian influenza. Our study design included both captive and field test components on four wild duck species (Garganey, Comb Duck, White-faced Duck and Fulvous Duck). We used our location data to evaluate marking success and determine when signal loss occurred. The captive study of eight ducks marked with non-working transmitters in a zoo in Montpellier, France, prior to fieldwork showed no evidence of adverse effects, and the harness design appeared to work well. The field study in Malawi, Nigeria and Mali started in 2007 on 2 February, 6 February and 14 February, and ended on 22 November 2007 (288 d), 20 January 2010 (1 079 d), and 3 November 2008 (628 d), respectively. The field study indicated that 38 of 47 (81%) of the platform transmitter terminals (PTTs) kept transmitting after initial deployment, and the transmitters provided 15 576 locations. Signal loss during the field study was attributed to three main causes: PTT loss, PTT failure and mortality (natural, human-caused and PTT-related). The PTT signal quality varied by geographic region, and interference caused signal loss in the Mediterranean Sea region. We recommend careful attention at the beginning of the study to determine the optimum timing of transmitter deployment and the number of transmitters to be deployed per species. These sample sizes should be calculated by taking into account region-specific causes of signal loss to ensure research objectives are met. These recommendations should be useful for researchers undertaking a satellite tracking program, especially when working in remote areas of Africa where logistics are difficult or with poorly-known species. ?? NISC (Pty) Ltd.

  17. Sentinel-1 provides ice drift observations for Copernicus Marine Environment Monitoring Service (CMEMS)

    DEFF Research Database (Denmark)

    Toudal Pedersen, Leif; Saldo, Roberto

    Sea ice drift information with an accuracy that allows also ice deformation (divergence, shear, vorticity) to be derived is being operationally generated in the Copernicus Marine Environment Monitoring Service (CMEMS).The method is based on 2-dimensional digital cross correlation where subsections...... are matched every month in the processing system.The quality of the ice drift vectors are routinely verified against GPS locations of drift buoys and the RMS difference between the baseline product available through the Copernicus Marine Environment Monitoring Service data portal and GPS drifters is ~500...

  18. Air-Sea Interaction Spar Buoy Systems

    Science.gov (United States)

    2009-01-01

    properties and local slope and pressure above the waves are key to understanding the wave generation problem on the ocean. Ocean Turbulence: Hot wire ...staff wires in storm-forced sea states. APPROACH We are building on the previous success of the ASIS buoy and better state-of-the-art...film anemometry has a special place in fluid dynamics research, but they cannot be easily deployed in open ocean conditions. On the other hand

  19. De-correlated combination of two low-low Satellite-to-Satellite tracking pairs according to temporal aliasing

    Science.gov (United States)

    Murböck, Michael; Pail, Roland

    2014-05-01

    The monitoring of the temporal changes in the Earth's gravity field is of great scientific and societal importance. Within several days a homogeneous global coverage of gravity observations can be obtained with satellite missions. Temporal aliasing of background model errors into global gravity field models will be one of the largest restrictions in future satellite temporal gravity recovery. The largest errors are due to high-frequent tidal and non-tidal atmospheric and oceanic mass variations. Having a double pair low-low Satellite-to-Satellite tracking (SST) scenario on different inclined orbits reduces temporal aliasing errors significantly. In general temporal aliasing effects for a single (-pair) mission strongly depend on the basic orbital rates (Murböck et al. 2013). These are the rates of the argument of the latitude and of the longitude of the ascending node. This means that the revolution time and the length of one nodal day determine how large the temporal aliasing error effects are for each SH order. The combination of two low-low SST missions based on normal equations requires an adequate weighting of the two components. This weighting shall ensure the full de-correlation of each of the two parts. Therefore it is necessary to take the temporal aliasing errors into account. In this study it is analyzed how this can be done based on the resonance orders of the two orbits. Different levels of approximation are applied to the de-correlation approach. The results of several numerical closed-loop simulations are shown including stochastic modeling of realistic future instrument noise. It is shown that this de-correlation approach is important for maximizing the benefit of a double-pair low-low SST mission for temporal gravity recovery. Murböck M, Pail R, Daras I and Gruber T (2013) Optimal orbits for temporal gravity recovery regarding temporal aliasing. Journal of Geodesy, Springer Berlin Heidelberg, ISSN 0949-7714, DOI 10.1007/s00190-013-0671-y

  20. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  1. 47 CFR 90.248 - Wildlife and ocean buoy tracking.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Wildlife and ocean buoy tracking. 90.248... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.248 Wildlife... tracking of, and the telemetry of scientific data from, ocean buoys and animal wildlife. (b)...

  2. Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl

    Science.gov (United States)

    Gilbert, Marius; Newman, Scott H.; Takekawa, John Y.; Loth, Leo; Biradar, Chandrashekhar; Prosser, Diann J.; Balachandran, Sivananinthaperumal; Rao, Mandava Venkata Subba; Mundkur, Taej; Yan, Baoping; Xing, Zhi; Hou, Yuansheng; Batbayar, Nyambayar; Tseveenmayadag, Natsagdorj; Hogerwerf, Lenny; Slingenbergh, Jan; Xiao, Xiangming

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May,June,July 2009 in China(Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.

  3. Dike/Drift Interactions

    Energy Technology Data Exchange (ETDEWEB)

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  4. A Stokes drift approximation based on the Phillips spectrum

    CERN Document Server

    Breivik, Øyvind; Janssen, Peter A E M

    2016-01-01

    A new approximation to the Stokes drift velocity pro?le based on the exact solution for the Phillips spectrum is explored. The pro?file is compared with the monochromatic pro?file and the recently proposed exponential integral profi?le. ERA-Interim spectra and spectra from a wave buoy in the central North Sea are used to investigate the behaviour of the profi?le. It is found that the new profi?le has a much stronger gradient near the surface and lower normalized deviation from the pro?le computed from the spectra. Based on estimates from two open-ocean locations, an average value has been estimated for a key parameter of the profi?le. Given this parameter, the profi?le can be computed from the same two parameters as the monochromatic profi?le, namely the transport and the surface Stokes drift velocity.

  5. Time Lapse Photography From Arctic Buoys

    Science.gov (United States)

    Valentic, T. A.; Matrai, P.; Woods, J. E.

    2013-12-01

    We have equipped a number of buoys with cameras that have been deployed throughout the Arctic. These systems need to be simple, reliable and low power. The images are transmitted over an Iridium satellite link and assembled into long running movies. We have captured a number of interesting events, observed the ice dynamics through the year and visits by local wildlife. Each of the systems have been deployed for periods of up to a year, with images every hour. The cameras have proved to be a great outreach tool and are routinely watched by number of people on our websites. This talk will present the techniques used in developing these camera systems, the methods used for reliably transmitting the images and the process for generating the movies.

  6. Northern Shrimp (Pandalus borealis) Recruitment in West Greenland Waters. Part I. Distribution of Pandalus Shrimp Larvae in Relation to Hydrography and Plankton

    DEFF Research Database (Denmark)

    Pedersen, S. A.; Storm, L. M.; Simonsen, C. S.

    2002-01-01

    a concentrations or zooplankton abundance (species, groups or sizes classes). Data from two satellite tracked SVP buoys was used to calculate a net northward drift of about 3.1 km d-1 or 200–400 km during the pelagic life of a larval cohort. Difference in year-class strength was attributed to differences...

  7. Modeling concept drift

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andrés R.

    2015-01-01

    An often used approach for detecting and adapting to concept drift when doing classification is to treat the data as i.i.d. and use changes in classification accuracy as an indication of concept drift. In this paper, we take a different perspective and propose a framework, based on probabilistic ...

  8. Abstraction of Drift Seepage

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package

  9. An overview of a moored ocean data buoy programme

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    and administrative tools developed to support the long range research and engineering plans, programme management current studies and plans to facilitate the daY-to-day operations of the buoy are dealt with to reach the final engineering phases....

  10. Determination of wave direction using an orbital following buoy

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Almeida, A; Vaithiyanathan, R.; Vethamony, P.

    Software has been developed in FORTRAN language using a personal computer for the determination of wave direction from time series measurements of heave, pitch and roll of an orbital following buoy. The method of digital band pass filtering describ...

  11. LEO卫星星下点轨迹保持策略优化研究%Optimal research on satellite track keeping strategy for low earth orbit satellite

    Institute of Scientific and Technical Information of China (English)

    崔鹏; 傅忠谦

    2013-01-01

    The most LEO(low earth orbit) satellites run in the sun-synchronous orbit.In order to keep their orbit character and achieve the work condition of satellite equipment,satellite track must be kept by orbit control.This paper analyses the local time of descending node is kept by inclination biased and effect for satellite track of inclination biased and decrease of major semi-axis and chronic change of inclination.It gives the keeping method and compute model of adding major semi-axis biased.The simulation results show that the method achieves the demand of track keeping,and the frequency of orbit control is decreased.There is important meaning in practice application.%在轨运行的LEO(low earth orbit)卫星绝大多数是太阳同步回归轨道,为了保持其轨道特性并满足星上载荷工作条件,必须进行星下点轨迹保持.分析了倾角偏置实现降交点地方时保持的同时对星下点轨迹漂移的影响,以及半长轴衰减和倾角长期变化引起的星下点轨迹漂移,给出了增大半长轴偏置量的星下点轨迹保持方法和计算模型.仿真结果显示,此方法不但满足轨迹保持要求,而且减小了轨道维持频度,在工程应用中有重要的意义.

  12. WATER TEMPERATURE and Other Data from DRIFTING PLATFORM From Chukchi Sea - NW Coast of Alaska from 19811219 to 19820101 (NODC Accession 8500079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data were collected by Flow Industries, Inc. under contract number 03-78-B01-61 to NOAA . The data are primarily from drifting ice buoys and were collected in...

  13. Directional Bias of TAO Daily Buoy Wind Vectors in the Central Equatorial Pacific Ocean from November 2008 to January 2010

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2014-07-01

    Full Text Available This article documents a systematic bias in surface wind directions between the TAO buoy measurements at 0°, 170°W and the ECMWF analysis and forecasts. This bias was of the order 10° and persisted from November 2008 to January 2010, which was consistent with a post-recovery calibration drift in the anemometer vane. Unfortunately, the calibration drift was too time-variant to be used to correct the data so the quality flag for this deployment was adjusted to reflect low data quality. The primary purpose of this paper is to inform users in the modelling and remote-sensing community about this systematic, persistent wind directional bias, which will allow users to make an educated decision on using the data and be aware of its potential impact to their downstream product quality. The uncovering of this bias and its source demonstrates the importance of continuous scientific oversight and effective user-data provider communication in stewarding scientific data. It also suggests the need for improvement in the ability of buoy data quality control procedures of the TAO and ECMWF systems to detect future wind directional systematic biases such as the one described here.

  14. Long-Term Observations of Atmospheric CO2, O3 and BrO over the Transitioning Arctic Ocean Pack-ice: The O-Buoy Chemical Network

    Science.gov (United States)

    Matrai, P.

    2016-02-01

    Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).

  15. NOAA marine environmental buoy data from the National Data Buoy Center for March 2004 (NCEI Accession 0001418)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological data were collected using buoy and other instruments from fixed platforms in the North Pacific Ocean and other locations. Data were collected and...

  16. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  17. Drift in Diffusion Gradients

    Directory of Open Access Journals (Sweden)

    Fabio Marchesoni

    2013-08-01

    Full Text Available The longstanding problem of Brownian transport in a heterogeneous quasi one-dimensional medium with space-dependent self-diffusion coefficient is addressed in the overdamped (zero mass limit. A satisfactory mesoscopic description is obtained in the Langevin equation formalism by introducing an appropriate drift term, which depends on the system macroscopic observables, namely the diffuser concentration and current. The drift term is related to the microscopic properties of the medium. The paradoxical existence of a finite drift at zero current suggests the possibility of designing a Maxwell demon operating between two equilibrium reservoirs at the same temperature.

  18. Sea-Change in Ocean Observations on Moored Buoys from the National Data Buoy Center (NDBC)

    Science.gov (United States)

    Bouchard, R. H.; Elliott, J.; Pounder, D.; Kern, K.

    2014-12-01

    The presentation will provide the technical specifications, the systems engineering processes, and preliminary results from laboratory and field tests, as the National Data Buoy Center (NDBC) undertakes a fundamental and broad transformation (sea-change) of its ocean observing systems on moored buoys. This transformation is necessary to gain efficiencies in maintaining operational ocean observation networks and to increase their reliability, which will reduce maintenance costs. The presentation will also compare and contrast existing and planned systems. The Self-Contained Ocean Observations Payload (SCOOP) takes advantage of the advances in communications and small, efficient, multi-purpose sensors to reduce the size and costs of systems and expand the suite of available real-time ocean observations. The communications will allow NDBC to increase the precision and decrease the latency of the observations. The hallmark of SCOOP is the modularity of the payloads that allow NDBC to host specialized systems, for the oceanographic research community, which may include observing ocean acidification and algal blooms, and tracking marine life, alongside its standard suite of meteorological, oceanographic, and wave systems. SCOOP will include cameras, primarily to document vandalism incidents, but they can also serve to corroborate many of the automatic observations. The two-year integration project - focused on recapitalization of NDBC's network of Hurricane Weather buoys - is aided by NDBC's 40 years of experience with marine observations and its continually improving approach to testing. Testimony to the rigor of NDBC's development and test procedures is that the World Meteorological Organization and the Intergovernmental Ocean Commission have designated NDBC as the first Regional Marine Instrumentation Center (RMIC). Integral to the fielding of these new systems is a Mission Control Center (MCC) performing the real-time, specialized monitoring and analyses and

  19. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    Science.gov (United States)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  20. GNSS Buoy Array in the Ocean for Natural Hazard Mitigation

    Science.gov (United States)

    Kato, T.; Terada, Y.; Yamamoto, S. I.; Iwakiri, N.; Toyoshima, M.; Koshikawa, N.; Motohashi, O.; Hashimoto, G.; Wada, A.

    2015-12-01

    The GNSS buoy system for tsunami early warning has been developed in Japan. The system has been implemented as a national wave monitoring system and its record was used to update the tsunami warning at the 3.11 Tohoku-oki earthquake. The lessons learned in this experience was that the buoys are placed only less than 20km from the coast, which was not far enough for effective evacuation of people. We thus tried to improve the system for putting the buoy much farther from the coast. First, we tried to implement, different from current baseline mode RTK-GPS, a real-time PPP analysis strategy for positioning. In addition, we tried to use a two-way satellite data transmission in contrast with current surface radio system. We have made a series of experiments for this purpose in 2013 and 2014. A buoy of about 40km south of Shikoku, southwest Japan, was used for this purpose. GEONET data were used to obtain precise orbits and clocks of satellites. Then, the information was transferred to the GNSS buoy using LEX signal of QZSS satellite system. The received information on the buoy were used for real-time PPP analysis for every second. The obtained buoy position was then transmitted to the ground base, through an engineering test satellite, ETS-VIII. The received data was then disseminated to public through the internet. Both filtered short-term and long-term waves, were separately shown on the webpage. The success of these experiments indicates that the GNSS buoy can be placed at least more than 1,500 km from the ground based tracking network. Given this success, we would now be able to deploy a new GNSS buoy array system in the wide ocean. An array in the ocean can be used for ionospheric and atmospheric research in the same region as well as tsunami or ocean bottom crustal deformation monitoring through an application to the GNSS-acoustic system. We are now designing a regional GNSS buoy array in the western Pacific as a synthetic natural hazard mitigation system.

  1. Oceansat–2 and RAMA buoy winds: A comparison

    Indian Academy of Sciences (India)

    S Indira Rani; M Das Gupta

    2013-12-01

    Sea surface vector winds from scatterometers onboard satellites play an important role to make accurate Numerical Weather Prediction (NWP) model analysis over the data sparse oceanic region. Sea surface winds from Oceansat-2 scatterometer (OSCAT) over the Indian Ocean were validated against the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) buoy winds to establish the accuracy of OSCAT winds. The comparison of OSCAT winds against RAMA buoy winds for a period of one year (2011) shows that the wind speeds and directions derived from OSCAT agree with RAMA buoy winds. The monthly mean wind speeds from both OSCAT and RAMA buoy show maximum value during the monsoon period as expected. In the complete annual cycle (2011), the monthly mean root mean square differences in the wind speed and wind direction were less than ∼2.5 ms−1 and ∼20°, respectively. The better match between the OSCAT and RAMA buoy wind is observed during Indian summer monsoon (June–September). During monsoon 2011, the root mean square differences in wind speed and wind direction were less than 1.9 ms−1 and 11°, respectively. Collocation of scatterometer winds against equatorial and off-equatorial buoys clearly brought out the monsoon circulation features. Collocation of Advanced Scatterometer (ASCAT) winds on-board European Space Agency (ESA) MeTop satellite with respect to RAMA buoy winds during monsoon 2011 also showed that the OSCAT wind statistics are comparable with that of ASCAT over the Indian Ocean, and indicates that the accuracy of both the scatterometers over the Indian Ocean are essentially the same.

  2. Applications to marine disaster prevention spilled oil and gas tracking buoy system

    CERN Document Server

    2017-01-01

    This book focuses on the recent results of the research project funded by a Grant-in-Aid for Scientific Research (S) of the Japan Society for the Promotion of Science (No. 23226017) from FY 2011 to FY 2015 on an autonomous spilled oil and gas tracking buoy system and its applications to marine disaster prevention systems from a scientific point of view. This book spotlights research on marine disaster prevention systems related to incidents involving oil tankers and offshore platforms, approaching these problems from new scientific and technological perspectives. The most essential aspect of this book is the development of a deep-sea underwater robot for real-time monitoring of blowout behavior of oil and gas from the seabed and of a new type of autonomous surface vehicle for real-time tracking and monitoring of oil spill spread and drift on the sea surface using an oil sensor. The mission of these robots is to provide the simulation models for gas and oil blowouts or spilled oil drifting on the sea surface w...

  3. Drift Scale THM Model

    Energy Technology Data Exchange (ETDEWEB)

    J. Rutqvist

    2004-10-07

    This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because

  4. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  5. SAA drift: Experimental results

    Science.gov (United States)

    Grigoryan, O. R.; Romashova, V. V.; Petrov, A. N.

    According to the paleomagnetic analysis there are variations of Earth’s magnetic field connected with magnetic moment changing. These variations affect on the South Atlantic Anomaly (SAA) location. Indeed different observations approved the existence of the SAA westward drift rate (0.1 1.0 deg/year) and northward drift rate (approximately 0.1 deg/year). In this work, we present the analysis of experimental results obtained in Scobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) onboard different Earth’s artificial satellites (1972 2003). The fluxes of protons with energy >50 MeV, gamma quanta with energy >500 keV and neutrons with energy 0.1 1.0 MeV in the SAA region have been analyzed. The mentioned above experimental data were obtained onboard the orbital stations Salut-6 (1979), MIR (1991, 1998) and ISS (2003) by the similar experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact that the SAA drifts westward. Moreover the analysis of fluxes of electrons with energy about hundreds keV (Cosmos-484 (1972) and Active (Interkosmos-24, 1991) satellites) verified not only the SAA westward drift but northward drift also.

  6. Buoy Relay Method for Instantaneous Fluid Flow with Free Surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Several methods have been used to approximate free surface boundaries in finite-difference numerical simulations. Each of these methods has its advantages and disadvantages. This paper presents a new technique for the numerical solution of transient incompressible free surface fluid flows. This powerful method, which is based on the concepts of "Buoy positioning" and "Buoy relaying", successfully represents the free surface using a Lagrangian method on a Eulerian grid by directly solving the free surface evolution equation. The Eulerian finite-difference forms of the full Navier-Stokes equations are solved by the Successive over Relaxation (SOR) method with a set of buoys to keep track of the free surface. The capabilities of the analysis procedure are demonstrated through viscous free surface fluid flow examples. The method is simpler and more efficient than other methods especially in treating complicated free boundary configurations.

  7. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  8. Investigation on the Oscillating Buoy Wave Power Device

    Institute of Scientific and Technical Information of China (English)

    苏永玲; 游亚戈; 郑永红

    2002-01-01

    An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excitedby waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic de-vice. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture width ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the mostexpensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a nu-merical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model testis carded out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC andthat the OD is a promising wave power device.

  9. 溢油跟踪浮标水动力特性研究%Improving effectiveness of oil-spill tracking buoys

    Institute of Scientific and Technical Information of China (English)

    王天霖; 刘寅东

    2009-01-01

    This paper aims to optimize the design of oil-spill tracking buoys in order to improve their precision. The hydrodynamic principles governing a buoy tracking an oil film were studied and tracking errors analyzed. The balance equation for a buoy tracking an oil spill floating on the sea was estanblished, and a relational expression was obtained for wind drift, as well as those for surface current, temperature, sea conditions, and buoy geometry, such as its height above the sea surface, and so on. Given sea conditions and the properties of the oil film, the best design of buoy and tracking effect was then calculated. Effective tracking range for a given tracking accuracy, and tracking accuracy given different sea conditions were calculated for a MetOcean product, the Argosphere. The relationship between the buoy's tracking precision and the sea conditions it experiences was also discussed. This should provide guidance for the design of oil-spill tracking buoys.%为提高溢油浮标跟踪海上溢油油膜的精度,优化溢油浮标设计方案,针对溢油浮标跟踪油膜的水动力学机理问题进行研究,并在此基础上对跟踪误差进行了分析.建立了溢油跟踪浮标的水动力平衡方程并求解,得到的结果包含油膜风系数、表面海水漂流风生流系数以及海洋环境温度、风速、浮标几何形状、出水高度等影响溢油浮标跟踪效果的关键因素.根据溢油事故发生地的海况及溢油油膜本身的性质,有针对性地选择最优的浮标设计方案,以达到最佳的跟踪效果.以METOCEAN公司的Argosphere型溢油浮标为例进行了分析和计算,并讨论了浮标跟踪精度与工作海况之间的关系,对溢油跟踪浮标的设计具有指导意义.

  10. A Buoy for Continuous Monitoring of Suspended Sediment Dynamics

    Directory of Open Access Journals (Sweden)

    Andreas Güntner

    2013-10-01

    Full Text Available Knowledge of Suspended Sediments Dynamics (SSD across spatial scales is relevant for several fields of hydrology, such as eco-hydrological processes, the operation of hydrotechnical facilities and research on varved lake sediments as geoarchives. Understanding the connectivity of sediment flux between source areas in a catchment and sink areas in lakes or reservoirs is of primary importance to these fields. Lacustrine sediments may serve as a valuable expansion of instrumental hydrological records for flood frequencies and magnitudes, but depositional processes and detrital layer formation in lakes are not yet fully understood. This study presents a novel buoy system designed to continuously measure suspended sediment concentration and relevant boundary conditions at a high spatial and temporal resolution in surface water bodies. The buoy sensors continuously record turbidity as an indirect measure of suspended sediment concentrations, water temperature and electrical conductivity at up to nine different water depths. Acoustic Doppler current meters and profilers measure current velocities along a vertical profile from the water surface to the lake bottom. Meteorological sensors capture the atmospheric boundary conditions as main drivers of lake dynamics. It is the high spatial resolution of multi-point turbidity measurements, the dual-sensor velocity measurements and the temporally synchronous recording of all sensors along the water column that sets the system apart from existing buoy systems. Buoy data collected during a 4-month field campaign in Lake Mondsee demonstrate the potential and effectiveness of the system in monitoring suspended sediment dynamics. Observations were related to stratification and mixing processes in the lake and increased turbidity close to a catchment outlet during flood events. The rugged buoy design assures continuous operation in terms of stability, energy management and sensor logging throughout the study period

  11. Multi buoy system observation for GPS/A seafloor positioning

    Science.gov (United States)

    Mukaiyama, H.; Ikuta, R.; Tadokoro, K.; Yasuda, K.; Watanabe, T.; Chiba, H.; Sayanagi, K.

    2014-12-01

    We are developing a method for observation of seafloor crustal deformation using kinematic GPS and acoustic ranging system. The system measures seafloor crustal deformation by determining position of benchmarks on the seafloor using a vessel which link-up GPS and acoustic signals. Acoustic ranging is used to measure distance between the vessel and the seafloor benchmarks. And kinematic GPS is used to locate the moving vessel every 0.2 seconds. Now we have deployed 4 seafloor benchmark units at Suruga Bay and 4 units at Kumano Basin both off-pacific coast Japan. At each survey site, three seafloor transponders are settled to define a benchmark unit. In this system, each measurement takes about ten hours and both sound speed structure and the benchmark unit positions were determined simultaneously for the each measurement using a tomographic technique. This tomographic technique was adopted based on assumption that the sound speed structure is horizontally layered and changes only in time, not in space. However, when sound speed structure has a heterogeneity, the assumption of a horizontal layering causes systematic error in the determination of seafloor benchmarks(Ikuta et al 2009AGU). So we are developing a new system using multi-buoy. Multi-buoy plays the role of vessel. Conducting observation using the buoys, we can estimate spatial variation of sound speed structures as a sloped structure every moment. With the single vessel system, we solve a kind of average sound speed over the different paths to the three seafloor transponders. Using the multi-buoy system, they can detect the lateral variation as difference of the average sound speeds obtained by different buoys, which improve the accuracy of the benchmark locations. In November 2013, Observation of seafloor crustal deformation using the buoys was held in Suruga Bay. In this study, we report the result of estimations of heterogeneous sound speed structures.

  12. Satellite tracking of red-listed nominate lesser black-backed gulls (Larus f. fuscus: Habitat specialisation in foraging movements raises novel conservation needs

    Directory of Open Access Journals (Sweden)

    Risto Juvaste

    2017-04-01

    Full Text Available In contrast to many other gull species, nominate lesser black-backed gulls (Larus fuscus fuscus, nLBBG have shown generally decreasing population trends throughout their breeding area in northern and eastern Fennoscandia over the past decades and are now red-listed. Interspecific competition, predation, increased disturbance, organochlorine poisoning and food shortages were suggested as main reasons for the overall decrease. Here we contribute to a better understanding of population declines by comparing foraging movements of satellite tracked adult gulls in three geographical areas of Finland (West, South, and East that differ in their population trends. Our analysis examines potential differences and preferences in the feeding site behaviour of adult gulls. Our comparison of the three geographical areas showed that nLBBGs preferred feeding at fur farms in West Finland, waste dumps in South Finland, and lakes and fields in East Finland. We found individual gulls of this purportedly generalist species to be highly specialised in their foraging behaviour, particularly those that might be associated with their survival probabilities. We hypothesise that differences in foraging behaviour and food availability during the breeding season are partially responsible for differences in demographic trends between populations. Specifically, we identify potential local conservation problems such as shooting in birds visiting fur farms. Our data suggest that the effective conservation and management of endangered nLBBGs could be aided by simple actions in the breeding areas in addition to better protection throughout the annual movement cycle.

  13. Foraging movements of Audouin’s gull (Larus audouinii) in the Ebro Delta, NW Mediterranean: A preliminary satellite-tracking study

    Science.gov (United States)

    Christel, Isadora; Navarro, Joan; del Castillo, Marcos; Cama, Albert; Ferrer, Xavier

    2012-01-01

    A knowledge of the foraging strategies of marine predators is essential to understand the intrinsic factors controlling their distribution, abundance and their ecological function within the marine ecosystem. Here, we investigated for the first time the foraging movements and activity patterns of Audouin's gull Larus audouinii by using satellite-tracking data from eight breeding adults in the main colony of the species worldwide (Ebro Delta, NW Mediterranean). Tagged gulls foraged in the marine area close to the breeding colony (62% of foraging locations) and in the terrestrial area of the Ebro Delta (mainly rice fields; 38% of foraging locations). The foraging activity patterns changed significantly throughout the day; lower from dusk through the first half of the night (19-1 h; 32% of active locations) and higher during the rest of the day (1-19 h; 75.5 ± 4.3% of active locations). These results confirm the foraging plasticity of this seabird and, based on previous information about the dietary habits of this species, we hypothesize how its time-dependent activity patterns and habitat use could be associated with variations in the availability of marine food resources (e.g. diel vertical migrations of pelagic fish) and the exploitation of terrestrial resources (e.g. American crayfish Procambarus clarkii).

  14. Signature of range observable in non-dynamical Chern-Simons modified gravity and the measurements with satellite-satellite tracking missions. Theoretical Studies

    CERN Document Server

    Qiang, Li-E

    2014-01-01

    Having great accuracy in the range and range rate measurements, the operating GRACE mission and the planed GRACE Follow On mission can in principle be employed to place strong constraints on certain relativistic gravity theories. In this paper, we work out in details the range observable in the non-dynamical Chern-Simons modified gravity for these Satellite-Satellite Tracking measurements. We find out that an characteristic time accumulating signal appears in the range observable in the non-dynamical Chern-Simons gravity, which has no analogy found in the standard metric theories of gravity. The magnitude of this Chern-Simons range signal will reach to a few times of $(\\frac{\\dot{\\theta}}{100r})meters$ for each free flight of these SST missions, here $\\dot{\\theta}$ measures the length scale of the theory and $r$ denotes the orbital radius of the SST mission. Therefore, with the 12 years data from the GRACE mission and the proper data analysis methods, one expects that the mass scale of the non-dynamical CS gr...

  15. On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific. [Satellite-to-Satellite Tracking

    Science.gov (United States)

    Marsh, B. D.; Marsh, J. G.; Williamson, R. G.

    1984-01-01

    Data from an additional 50 satellite-to-satellite tracking (SST) passes were combined with earlier measurements of the high degree and order (n, m, 12) gravity in the central Pacific. A composite map was produced which shows good agreement with conventional GEM models. Data from the Seasat altimeter was reduced and found to agree well with both the SST and the GEM fields. The maps are dominated especially in the east, by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Further comparison with regional bathymetric data shows a remarkably close correlation with plate age. Each anomaly band is framed by those major fracture zones having large offsets. The regular spacing of these fractures seems to account for the fabric in the gravity fields. Other anomalies are accounted for by hot spots. The source of part of these anomalies is in the lithosphere itself. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration is considered. Previously announced in STAR as N84-11559

  16. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Science.gov (United States)

    2010-10-01

    ... SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.741 Personal flotation devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with the... 46 Shipping 7 2010-10-01 2010-10-01 false Personal flotation devices and ring life buoys....

  17. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... processes are carried out in the present paper; however with one of the responses being the relative motion which is a type of response that is sensitive to high-frequency excitations. Based on the present study it is shown that by including the relative motion, the frequency-wise energy distribution can...

  18. IAOOS Microlidar Development and First Results Obtained During 2014 and 2015 Arctic Drifts

    Directory of Open Access Journals (Sweden)

    Mariage Vincent

    2016-01-01

    Full Text Available The development of a first ever autonomous aerosol and cloud backscatter lidar system for on-buoy arctic observations has been achieved in 2014, within the French EQUIPEX IAOOS project developed in collaboration with LOCEAN at UPMC. This development is part of a larger set-up designed for integrated ocean-ice-atmosphere observations. First results have been obtained from spring to autumn 2014 after the system was installed at the North Pole at the Barneo Russian camp, and in winter-spring 2015 during the Norwegian campaign N-ICE 2015. The buoys were taking observations as drifting in the high arctic region where very few measurements have been made so far. This project required the design and the conception of an all-new lidar system to fit with the numerous constraints of such a deployment. We describe here the prototype and its performance. First analyzes are presented.

  19. Negative Drift in Populations

    DEFF Research Database (Denmark)

    Lehre, Per Kristian

    2011-01-01

    An important step in gaining a better understanding of the stochastic dynamics of evolving populations, is the development of appropriate analytical tools. We present a new drift theorem for populations that allows properties of their long-term behaviour, e.g. the runtime of evolutionary algorithms...

  20. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  1. Dike Propagation Near Drifts

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-04

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.

  2. Precise-Orientation-Beamforming Scheme for Wireless Communications between Buoys

    Directory of Open Access Journals (Sweden)

    Zhihui Wu

    2016-01-01

    Full Text Available Utilizing wireless sensor network (WSN to monitor the marine environment is one of the major techniques in oceanographic monitoring, and how to increase the limited communication distance between the buoys in WSN has become a hot research issue. In this paper, a new technique called precise-orientation-beamforming (POB which uses the beamforming algorithm to increase the communication distance between buoys is presented. As was widely applied in the radar and sonar, the beamforming method was not used to extend the communication distance between buoys so far. The POB method overcomes the unstable position of buoys caused by waves by implementing the orientation filter. The whole process includes two steps: First, the real-time attitude of the antenna array is calculated by the orientation filter. With the known relative direction of the destination node to the antenna array, the second step is to control phased array antenna beamforming parameters, directing the beam at the destination node. The POB scheme has been simulated under the condition of regular waves. The results reveal that POB provides significant power gains and improves the distance between two communicating nodes effectively.

  3. Field Evaluation of Ocean Wave Measurement With GPS Buoys

    Science.gov (United States)

    2010-09-01

    surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and prototype GPS buoys were...receivers to measure ocean surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and...the coast near Bodega Bay, CA. .............................................................................................17 Figure 4. R/P FLIP

  4. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood

    2014-01-01

    The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator is an a....... This approach is then taken into account and an MPC controller is designed for a model WEC and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller.......The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible...

  5. Style drift in private equity

    NARCIS (Netherlands)

    D. Cumming; G. Fleming; A. Schwienbacher

    2009-01-01

    We introduce the concept of style drift to private equity investment. We present theory and evidence pertaining to style drifts in terms of a fund manager's stated focus on particular stages of entrepreneurial development. We develop a model that derives conditions under which style drifts are less

  6. Global Fiducials Program - Arctic Buoy Sea Ice Studies

    Science.gov (United States)

    Wilson, E. M.; Wilds, S. R.; Friesen, B. A.; Sloan, J. L.

    2012-12-01

    The U.S. Geological Survey has utilized remotely sensed imagery to analyze Arctic Sea Ice since 1997, and has collected and created thousands of Literal Image Derived Products (LIDPS) at one meter resolution for public distribution. From 1997-2012, six static sea ice sites located in the Arctic Basin were selected and added to the Global Fiducial Library (GFL), to create an annual series of geographically referenced images to allow scientists to study seasonal changes in Arctic ice. In early 2009, a scientific group known as MEDEA (Measurements of Earth Data for Environmental Analysis) requested additional collections to track ice floe movements during the course of an entire summer (April through September), to better understand seasonal changes in the Arctic Sea Ice. In order to track and capture the same ice cover over time, USGS adopted a methodology to utilize buoys deployed at various locations across the Arctic by the International Arctic Buoy Program. The data buoys record and transmit hourly GPS positions, along with meteorologic and climatologic data associated with the sea ice in which they are anchored. Repeated imaging of the ice cover is guided by the data buoy GPS to help estimate travel direction and speed of the ice cover. Imagery is referenced by the MEDEA scientists to study ice fracture patterns, sea ice ridge heights, ice cover percentages, seasonal development and coverage of melt ponds, evolution of ice concentrations, floe size distribution, lateral melting, and other variables that are used for input to refine and develop climate models. These same ice floe images have been added to the GFL for various buoy locations from 2009 through 2011, and are being acquired for the 2012 summer season.

  7. Data circulation and services of the RON data buoy network

    Science.gov (United States)

    Picone, Marco; Morucci, Sara; Nardone, Gabriele

    2014-05-01

    This paper reviews the services of the Italian data buoy network (RON, Rete Ondametrica Nazionale). The RON run 15 directional moored buoys, real-time transmitting, uniformly distributed along the Italian coasts. Data have been collected since 1989 at 8 measurement stations; in 1999 two other stations were added and the remaining five buoys were moored in 2001. From 2010 all stations are equipped with meteorological instruments. Buoys collect the main physical parameters useful in defining the sea state such as significant and maximum wave height, peak and mean period, wave direction, sea surface temperature, air temperature, wind speed and direction, atmospheric pressure, relative humidity. The RON provides real-time of wave and meteorological parameters every 30 minutes. Buoys transmit data to shore stations within 15 NM and a small dataset via Inmarsat-D+. All shore stations are connected to the control centre based in Rome, using 2 Mbps xDSL channels, implementing a virtual private network. Very deeply procedures have been implemented in order to validate date: L1 and L2 algorithms have been applied in order to make data compliant with international standards. Data are monthly analysed and published in the Wave National Bulletin. Further investigations have been implemented, including statistical analysis, in order to define wave climate, extreme events, sea storms, storm surges, and related meteorological information. This kind of data is very useful for all tasks and scientific activities of national interest for the protection, enhancement and improvement for the marine environment. The technical and scientific support contributes to the better environmental governance, providing a wide range of information in several key areas such as: collection, processing, management and diffusion of marine data; protection of water resources and of marine and coastal areas; monitoring of marine environmental quality; prevention and mitigation of impacts of polluted

  8. Estimation of the optimal wind factor of drifting objects from field experiments

    Science.gov (United States)

    Choi, Jung-Woon; Choi, Jin-Yong; Kwon, Jae-Il

    2017-04-01

    Particle tracking models (PTM) are used to calculate the trajectory of drifting objects for search and rescue in case of marine accidents. During marine accidents, the rescue team needs to predict a possible path of the objects in the ocean to implement an effective plan of dealing with the rescue. In this study, we try to improve the accuracy of PTM throughout a series of field experiments. Field experiments were conducted using drift buoys and mannequin with/without life jacket. The drift buoys and mannequin were designed to be easily influenced by wind and current in the sea. For PTM we used the module embedded on MOHID (Modelo Hidrodinâmico) and the results of WRF (Weather Research Forecasting) and MOHID are used as wind and current input data, respectively. This study aims to find the optimal wind factor according to the objects by using new method to improve the PTM accuracy. In order to estimate an optimal wind factor, we simulated iteratively on the different wind factor from 2 to 5% by increasing 0.2%. However we found the optimal wind factor varies with the wind speed. So, we divided into 16 sections from 2.5 to 10 m/s of wind speed and extracted the best accuracy at each section. Finally we made a formula with wind speed and wind factor. Using this formula, the accuracy of search and rescue was improved by about 10% compared to that in the usual method.

  9. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  10. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    Science.gov (United States)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  11. Satellite Tracking Astrometric Network (STAN)

    Science.gov (United States)

    Vecchiato, Alberto; Gai, Mario

    2015-08-01

    The possibility of precise orbit tracking and determination of different types of satellites has been explored for at least some 25 years (Arimoto et al., 1990). Proposals in this sense made use mainly of astrometric observations, but multiple tracking techniques combining transfer and laser ranging was also suggested (Guo et al., 2009; Montojo et al., 2011), with different requirements and performances ranging from $\\sim100$~m to tenths of meters.In this work we explore the possible improvements and a novel implementation of a technique relying on large angle, high precision astrometry from ground for the determination of satellite orbits. The concept is based on combined observation of geostationary satellites and other near-Earth space objects from two or more telescopes, applying the triangulation principle over widely separated regions of the sky. An accuracy of a few $10^{-2}$~m can be attained with 1-meter-class telescopes and a field of vied of some arcminutes.We discuss the feasibility of the technique, some of the implementation aspects, and the limitations imposed by atmospheric turbulence. The potential benefits for satellite orbit control and navigation systems are presented, depending on the number and position of the contributing telescopes.We also discuss the possibility that, by reversing the roles of stars and satellites, the same kind of observations can be used for verification and maintenance of astrometric catalogs.

  12. Radio interferometry and satellite tracking

    CERN Document Server

    Kawase, Seiichiro

    2012-01-01

    Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describ

  13. Texas Automated Buoy System 1995-2005 and Beyond

    Science.gov (United States)

    Guinasso, N. L.; Bender, L. C.; Walpert, J. N.; Lee, L. L.; Campbell, L.; Hetland, R. D.; Howard, M. K.; Martin, R. D.

    2005-05-01

    TABS was established in l995 to provide data to assess oil spill movement along Texas coast for the Texas General Land Office Oil Spill Prevention and Response Program. A system of nine automated buoys provide wind and current data in near real time. Two of these buoys are supported by the Flower Garden Banks Joint Industry Program. A TABS web site provides a public interface to view and download the data. A real time data analysis web page presents a wide variety of useful data products derived from the field measurements. Integration efforts now underway include transfer of buoy data to the National Data Buoy Center for quality control and incorporation into the Global Telecommunications Stream. The TGLO ocean circulation nowcast/forecast modeling system has been in continuous operation since 1998. Two models, POM and ROMS, are used to produce forecasts of near-surface wind driven currents up to 48 hours into the future. Both models are driven using wind fields obtained from the NAM (formerly Eta) forecast models operated by NOAA NCEP. Wind and current fields are displayed on websites in both static and animated forms and are updated four times per day. Under funding from the SURA/SCOOP program we are; 1) revamping the system to conform with the evolving Data Management and Communications (DMAC) framework adopted by the NSF Orion and OCEAN.US IOOS programs, 2) producing model-data comparisons, and 3) integrating the wind and current fields into the GNOME oil trajectory model used by NOAA/Hazmat. Academic research is planned to assimilate near real-time observations from TABS buoys and some 30-40 ADCP instruments scheduled to be mounted on offshore oil platforms in early 2005. Texas Automated Buoy System (TABS) and its associated modeling efforts provide a reliable source of accurate, up-to-date information on currents along the Texas coast. As the nation embarks on the development of an Integrated Ocean Observing System (IOOS), TABS will be an active participant

  14. Fingermark ridge drift.

    Science.gov (United States)

    De Alcaraz-Fossoul, Josep; Roberts, Katherine A; Feixat, Carme Barrot; Hogrebe, Gregory G; Badia, Manel Gené

    2016-01-01

    Distortions of the fingermark topography are usually considered when comparing latent and exemplar fingerprints. These alterations are characterized as caused by an extrinsic action, which affects entire areas of the deposition and alters the overall flow of a series of contiguous ridges. Here we introduce a novel visual phenomenon that does not follow these principles, named fingermark ridge drift. An experiment was designed that included variables such as type of secretion (eccrine and sebaceous), substrate (glass and polystyrene), and degrees of exposure to natural light (darkness, shade, and direct light) indoors. Fingermarks were sequentially visualized with titanium dioxide powder, photographed and analyzed. The comparison between fresh and aged depositions revealed that under certain environmental conditions an individual ridge could randomly change its original position regardless of its unaltered adjacent ridges. The causes of the drift phenomenon are not well understood. We believe it is exclusively associated with intrinsic natural aging processes of latent fingermarks. This discovery will help explain the detection of certain dissimilarities at the minutiae/ridge level; determine more accurate "hits"; identify potentially erroneous corresponding points; and rethink identification protocols, especially the criteria of "no single minutiae discrepancy" for a positive identification.

  15. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  16. The DRIFT Dark Matter Experiments

    CERN Document Server

    Daw, E; Fox, J R; Gauvreau, J -L; Ghag, C; Harmon, L J; Harton, J L; Gold, M; Lee, E R; Loomba, D; Miller, E H; Murphy, A St J; Paling, S M; Landers, J M; Phan, N; Pipe, M; Pushkin, K; Robinson, M; Sadler, S W; Snowden-Ifft, D P; Spooner, N J C; Walker, D; Warner, D

    2011-01-01

    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.

  17. A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2014-12-01

    Full Text Available To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

  18. The KLOE drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; Lucia, E. De; Robertis, G. De; Sangro, R. De; Simone, P. De; Zorzi, G. De; Dell' Agnello, S.; Denig, A.; Domenico, A. Di; Donato, C. Di; Falco, S. Di; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U.V.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P. E-mail: paolo.valente@lnf.infn.it; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y

    2001-04-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K{sub L} produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm{sup 2} in size in the 12 innermost layers and 3x3 cm{sup 2} in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  19. High rate drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C. (Fermilab, Batavia, IL 60510 (United States)); Berisso, M.C. (Fermilab, Batavia, IL 60510 (United States)); Gutierrez, G. (Fermilab, Batavia, IL 60510 (United States)); Holmes, S.D. (Fermilab, Batavia, IL 60510 (United States)); Wehmann, A. (Fermilab, Batavia, IL 60510 (United States)); Avilez, C. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Felix, J. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Moreno, G. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Romero, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Sosa, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Forbush, M. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Huson, F.R. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Wightman, J.A. (Department of Physi

    1994-06-01

    Fermilab experiment 690, a study of target dissociation reactions pp[yields]pX using an 800 GeV/c proton beam and a liquid hydrogen target, collected data in late 1991. The incident beam and 600-800 GeV/c scattered protons were measured using a system of six 6 in.x4 in. and two 15 in.x8 in. pressurized drift chambers spaced over 260 m. These chambers provided precise measurements at rates above 10 MHz (2 MHz per cm of sense wire). The measurement resolution of the smaller chambers was 90 [mu]m, and the resolution of the larger chambers was 125 [mu]m. Construction details and performance results, including radiation damage, are presented. ((orig.))

  20. The KLOE drift chamber

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; Lucia, E D; Robertis, G D; Sangro, R D; Simone, P D; Zorzi, G D; Dell'Agnello, S; Denig, A; Domenico, A D; Donato, C D; Falco, S D; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Von Hagel, U; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nedosekin, A; Panareo, M; Pacciani, L; Pagès, P; Palutan, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K sub L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm sup 2 in size in the 12 innermost layers and 3x3 cm sup 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  1. DRIFT EFFECTS IN HGCDTE DETECTORS

    Directory of Open Access Journals (Sweden)

    B. PAVAN KUMAR

    2013-08-01

    Full Text Available The characteristics of temporal drift in spectral responsivity of HgCdTe photodetectors is investigated and found to have an origin different from what has been reported in literature. Traditionally, the literature attributes the cause of drift due to the deposition of thin film of ice water on the active area of the cold detector. The source of drift as proposed in this paper is more critical owing to the difficulties in acquisition of infrared temperature measurements. A model explaining the drift phenomenon in HgCdTe detectors is described by considering the deep trapping of charge carriers and generation of radiation induced deep trap centers which are meta-stable in nature. A theoretical model is fitted to the experimental data. A comparison of the model with the experimental data shows that the radiation induced deep trap centers and charge trapping effects are mainly responsible for the drift phenomenon observed in HgCdTe detectors.

  2. Bouchaud walks with variable drift

    CERN Document Server

    Parra, Manuel Cabezas

    2010-01-01

    In this paper we study a sequence of Bouchaud trap models on $\\mathbb{Z}$ with drift. We analyze the possible scaling limits for a sequence of walks, where we make the drift decay to 0 as we rescale the walks. Depending on the speed of the decay of the drift we obtain three different scaling limits. If the drift decays slowly as we rescale the walks we obtain the inverse of an \\alpha$-stable subordinator as scaling limit. If the drift decays quickly as we rescale the walks, we obtain the F.I.N. diffusion as scaling limit. There is a critical speed of decay separating these two main regimes, where a new process appears as scaling limit. This critical speed is related to the index $\\alpha$ of the inhomogeneity of the environment.

  3. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  4. A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance

    Directory of Open Access Journals (Sweden)

    Ruiyin Song

    2016-05-01

    Full Text Available Wave and current energy can be harnessed in the East China Sea and South China Sea; however, both areas are subject to high frequencies of typhoon events. To improve the safety of the ocean energy conversion device, a Floating Ocean Energy Conversion Device (FOECD with a single mooring system is proposed, which can be towed to avoid severe ocean conditions or for regular maintenance. In this paper, the structure of the FOECD is introduced, and it includes a catamaran platform, an oscillating buoy part, a current turbine blade, hydraulic energy storage and an electrical generation part. The numerical study models the large catamaran platform as a single, large buoy, while the four floating buoys were modeled simply as small buoys. Theoretical models on wave energy power capture and efficiency were established. To improve the suitability of the buoy for use in the FOECD and its power harvesting capability, a numerical simulation of the four buoy geometries was undertaken. The shape profiles examined in this paper are cylindrical, turbinate (V-shaped and U-shaped cone with cylinder, and combined cylinder-hemisphere buoys. Simulation results reveal that the suitability of a turbinate buoy is the best of the four types. Further simulation models were carried out by adjusting the tip radius of the turbinate buoy. Three performance criteria including suitability, power harvesting capability and energy capture efficiency were analyzed. It reveals that the turbinate buoy has almost the same power harvesting capabilities and energy capture efficiency, while its suitability is far better than that of a cylindrical buoy.

  5. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  6. An Autonomous Ozone Instrument for Atmospheric Measurements from Ocean Buoys

    Science.gov (United States)

    Hintsa, E. J.; Rawlins, W. T.; Sholkovitz, E. R.; Hosom, D. S.; Allsup, G. P.; Purcell, M. J.; Scott, D. R.; Mulhall, P.

    2002-05-01

    Tropospheric ozone is an oxidant, a greenhouse gas, and a pollutant. Because of its adverse health effects, there are numerous monitoring stations on land but none over the oceans. We have built an ozone instrument for deployment anywhere at sea from ocean buoys, to study ozone chemistry over the oceans, intercontinental transport of pollution, diurnal and seasonal cycles of ozone, and to make baseline and long-term time series measurements of ozone in remote locations. The instrument uses direct (Beer's Law) absorption of UV radiation in a dual-path cell, with ambient and ozone-free air alternately switched between the two paths, to measure ozone. Ozone can be measured at a rate of 1 Hz, with a precision of about 1 ppb at sea level. The air inlet and outlet have valves which close automatically under high wind conditions or rain to protect the ozone sensor. The instrument has been packaged for deployment at sea, and tested on a 3-meter discus buoy with other instruments in coastal waters in fall 2001. It can operate autonomously or be controlled via line-of-sight modem or a satellite link. We will present the details of the instrument, and laboratory and buoy test data from its first deployment, including a comparison with a nearby ozone monitoring station on land. We will also present an evaluation of the instrument's performance and describe plans for improvements. In summer 2002, the ozone measurement system will be operated at the Martha's Vineyard Coastal Observatory; in the future we anticipate deploying on the Bermuda Testbed Mooring, followed by use on the open ocean to measure long-range transport of ozone.

  7. Preliminary Design Options for Meteor Burst Communications Systems Buoy Relays

    Science.gov (United States)

    1986-12-01

    the lithium - thionyl chloride cell exhibit specific energies of the order of 500 watt hours per kilogram, more than 50 percent higher than previous...Supply Buoy Design Type 90 Day Storage Weight Type Energy Type Size (lb) Remote Lithium 2.2 kWh Deployable 8" x 8" x 4’ 200 Battery Pendulous Master...however, that there are various typcs of lithium batteries presently being developed that have energy densities equal to’fuel cell power systems. It is

  8. National Data Buoy Center (NDBC) National Backbone Contributions to the Integrated Ocean Observation System (IOOS)

    Science.gov (United States)

    2006-09-01

    II . METHODS In a letter to the governing body of each regional association, NDBC requested that a prioritized list of buoys be provided for the...The Bodega Bay (46013), Santa Maria (46011), Cape Saint Martin (46028), and Point Arena buoys were suggested as sites for salinity and ADCP

  9. Hemoglobin Drift after Cardiac Surgery

    Science.gov (United States)

    George, Timothy J.; Beaty, Claude A.; Kilic, Arman; Haggerty, Kara A.; Frank, Steven M.; Savage, William J.; Whitman, Glenn J.

    2013-01-01

    Introduction Recent literature suggests that a restrictive approach to red blood cell transfusions is associated with improved outcomes in cardiac surgery (CS) patients. Even in the absence of bleeding, intravascular fluid shifts cause hemoglobin levels to drift postoperatively, possibly confounding the decision to transfuse. We undertook this study to define the natural progression of hemoglobin levels in postoperative CS patients. Methods We included all CS patients from 10/10-03/11 who did not receive a postoperative transfusion. Primary stratification was by intraoperative transfusion status. Change in hemoglobin was evaluated relative to the initial postoperative hemoglobin. Maximal drift was defined as the maximum minus the minimum hemoglobin for a given hospitalization. Final drift was defined as the difference between initial and discharge hemoglobin. Results Our final cohort included 199 patients, 71(36%) received an intraoperative transfusion while 128(64%) did not. The average initial and final hemoglobin for all patients were 11.0±1.4g/dL and 9.9±1.3g/dL, respectively, an final drift of 1.1±1.4g/dL. The maximal drift was 1.8±1.1g/dL and was similar regardless of intraoperative transfusion status(p=0.9). Although all patients’ hemoglobin initially dropped, 79% of patients reached a nadir and experienced a mean recovery of 0.7±0.7g/dL by discharge. On multivariable analysis, increasing CPB time was significantly associated with total hemoglobin drift(Coefficient/hour: 0.3[0.1–0.5]g/dL, p=0.02). Conclusions In this first report of hemoglobin drift following CS, although all postoperative patients experienced downward hemoglobin drift, 79% of patients exhibited hemoglobin recovery prior to discharge. Physicians should consider the eventual upward hemoglobin drift prior to administering red cell transfusions. PMID:22609121

  10. 3-dimensional Oil Drift Simulations

    Science.gov (United States)

    Wettre, C.; Reistad, M.; Hjøllo, B.Å.

    Simulation of oil drift has been an ongoing activity at the Norwegian Meteorological Institute since the 1970's. The Marine Forecasting Centre provides a 24-hour service for the Norwegian Pollution Control Authority and the oil companies operating in the Norwegian sector. The response time is 30 minutes. From 2002 the service is extended to simulation of oil drift from oil spills in deep water, using the DeepBlow model developed by SINTEF Applied Chemistry. The oil drift model can be applied both for instantaneous and continuous releases. The changes in the mass of oil and emulsion as a result of evaporation and emulsion are computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into account. The properties of the oil depend on the oil type, and in the present version 64 different types of oil can be simulated. For accurate oil drift simulations it is important to have the best possible data on the atmospheric and oceanic conditions. The oil drift simulations at the Norwegian Meteorological Institute are always based on the most updated data from numerical models of the atmosphere and the ocean. The drift of the surface oil is computed from the vectorial sum of the surface current from the ocean model and the wave induced Stokes drift computed from wave energy spectra from the wave prediction model. In the new model the current distribution with depth is taken into account when calculating the drift of the dispersed oil droplets. Salinity and temperature profiles from the ocean model are needed in the DeepBlow model. The result of the oil drift simulations can be plotted on sea charts used for navigation, either as trajectory plots or particle plots showing the situation at a given time. The results can also be sent as data files to be included in the user's own GIS system.

  11. Silicon Drift Detectors for ALICE

    CERN Document Server

    Navach, F; CERN. Geneva

    1992-01-01

    The Silicon Drift Detector (SDD) is a semiconductor, not yet extensively used in HEP experiment, which has an excellent spatial resolution and granularity about comparable to a pixel device requiring a number of readout channels two order of magnitude less.

  12. Drifting buoy data from SVP Drifting Argos Buoys, deployed by the NOAA Coral Reef Ecosystems Division (CRED) near Guam and the Commonwealth of the Northern Marianas Islands, 2003-2006 (NODC Accession 0067473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection includes data from multiple SVP drifters deployed in the region of the Marianas Archipelago to assess ocean currents and sea surface...

  13. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  14. Mooring Mechanics. A Comprehensive Computer Study. Volume II. Three Dimensional Dynamic Analysis of Moored and Drifting Buoy Systems

    Science.gov (United States)

    1976-12-01

    If point p and w are overlapping then: [Rpw]E R pw]B VBw VEw Ec - EB x Rcp -2.2- Here; VEw i (V +t + i (0 + ) + *w x ox x y 1, y 1i ( Voz + Cz) and...VBw =ix[Vox + 4x -x - Z’cose] + +i z[ Voz + (D - Zc + z’Osinf] = x [ (Vox + Ox - C)cose A - ( Voz + 0z - zo )Sin6 - z’g] + iz’[(Vox + ox " )sinO + ( Voz

  15. CRED SVP Drifting Buoy Argos_ID 35650 Swain's Atoll, American Samoa, 200202-200211 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 35650 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  16. CRED SVP Drifting Buoy Argos_ID 35647 Data Tutuila, American Samoa, 200202-200307 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 35647 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  17. CRED APEX Drifting Buoy Argos_ID 25333 Data in the NW Hawaiian Islands, 200110-200204 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED APEX drifter Argos_ID 25333 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. APEX drifter data files...

  18. CRED SVP Drifting Buoy Argos_ID 30147 Data Nihoa, Northwestern Hawaiian Islands, 200209-200501 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30147 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  19. CRED SVP Drifting Buoy Argos_ID 35648 Data Pago Pago, American Samoa, 200203-200204 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 35648 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  20. Validation of High Frequency Radar Used in Ocean Surface Current Mapping via in-situ Drifting Buoys

    Science.gov (United States)

    2008-09-01

    research vessels, the R/V John Martin from Moss Landing Marine Laboratories and the R/V Mussel Point (Figure 6) from the Bodega Bay Marine Laboratory. The...radar observations of surface circulation off Bodega Bay (northern California, USA). J. Geophys. Res., 110, C10020, doi:10.1029/2005JC002959. Kim

  1. Verification of Geosat sea surface topography in the Gulf Stream extension with surface drifting buoys and hydrographic measurements

    Science.gov (United States)

    Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.

    1990-03-01

    Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.

  2. CRED SVP Drifting Buoy Argos_ID 30340 Data Kauai Channel, Main Hawaiian Islands, 200210-200409 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30340 was deployed in the region of Main Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  3. CRED APEX Drifting Buoy Argos_ID 25330 Data Maro Reef, Northwestern Hawaiian Islands, 200109-200201 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED APEX drifter Argos_ID 25330 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. APEX drifter data files...

  4. CRED SVP Drifting Buoy Argos_ID 29099 Data, Rota in the Marianas Archipelago, 200309-200402 (NODC Accession 0067473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29099 was deployed in the region of Marianas Archipelago to assess ocean currents and sea surface temperature. SVP drifter data files...

  5. CRED SVP Drifting Buoy Argos_ID 52299 Data, Arakane in the Marianas Archipelago, 200509-200607 (NODC Accession 0067473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 52299 was deployed in the region of the Marianas Archipelago to assess ocean currents and sea surface temperature. drifter data files...

  6. CRED SVP Drifting Buoy Argos_ID 30225 Data in the Northwestern Hawaiian Islands, 200209-200401 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30225 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  7. CRED SVP Drifting Buoy Argos_ID 29938 Data in the Northwestern Hawaiian Islands, 200209-200312 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29938 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  8. CRED SVP Drifting Buoy Argos_ID 24753 Data in American Samoa, 200307-200407 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24753 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  9. CRED SVP Drifting Buoy Argos_ID 44765 Data, Manua in the American Samoa, 200402-200406 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 44765 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  10. CRED SVP Drifting Buoy Argos_ID 24666 Data in the American Samoa, 200309-200503 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24666 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  11. CRED SVP Drifting Buoy Argos_ID 35646 Data in the American Samoa, 200202-200302 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 35646 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  12. Evidence that grey seals (Halichoerus grypus use above-water vision to locate baited buoys

    Directory of Open Access Journals (Sweden)

    Arne Fjälling

    2007-01-01

    Full Text Available Fishing gear in the Baltic is often raided by grey seals (Halichoerus grypus. The seals remove the fish and damage the nets, or entangle themselves and drown. In order to develop ways of mitigating the seals-fisheries conflict, it is important to know exactly how the seals locate the fishing gear. A field experiment was conducted in order to clarify whether seals use their vision above water to do this. Bait (herring; Clupea harengus was attached to the anchor lines of buoys of the type that is commonly used to mark the position of fishing gear. In all, 643 buoys were set. Some of the buoys (210 were also fitted with camera traps. Weather data were collected from official weather stations nearby. Bait loss (mean 18% was significantly correlated with buoy size (P = 0.002 and wind speed (P = 0.04. There was a significant association between bait loss and seal observations near the buoys (P = 0.05. Five photos of grey seals were obtained from the camera traps. No fish-eating birds, such as cormorants or mergansers, were ever observed near the buoys or caught on camera. It was concluded that a main cause of missing bait was scavenging by grey seals, and that they did use above-water vision to locate the buoys. It was also concluded that wind strength (i.e. wave action contributed tothe bait loss. The camera trap buoys had a somewhat lower bait loss than the other buoys (P = 0.054, which was attributed to a scaring effect. Neither the number of seal observations nor the bait loss differed significantly between the 2 study areas in the experiment (P = 0.43 and P = 0.83, respectively. Bait loss was not affected by the buoy colour (red, white, or grey; P = 0.87. We suggest that the findings of this experiment could be put into practice in a seal-disturbed area by deploying a number of decoy buoys, or by hiding live buoys below the surface of the water. This would increase the cost of foraging for the seals, and hence discourage them from exploiting

  13. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  14. Levelized Cost of Energy for a Backward Bent Duct Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  15. Drift tubes of Linac 2

    CERN Multimedia

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  16. The CLAS drift chamber system

    CERN Document Server

    Mestayer, M D; Asavapibhop, B; Barbosa, F J; Bonneau, P; Christo, S B; Dodge, G E; Dooling, T; Duncan, W S; Dytman, S A; Feuerbach, R; Gilfoyle, G P; Gyurjyan, V; Hicks, K H; Hicks, R S; Hyde-Wright, C E; Jacobs, G; Klein, A; Klein, F J; Kossov, M; Kuhn, S E; Magahiz, R A; Major, R W; Martin, C; McGuckin, T; McNabb, J; Miskimen, R A; Müller, J A; Niczyporuk, B B; O'Meara, J E; Qin, L M; Raue, B A; Robb, J; Roudot, F; Schumacher, R A; Tedeschi, D J; Thompson, R A; Tilles, D; Tuzel, W; Vansyoc, K; Vineyard, M F; Weinstein, L B; Wilkin, G R; Yegneswaran, A; Yun, J

    2000-01-01

    Experimental Hall B at Jefferson Laboratory houses the CEBAF Large Acceptance Spectrometer, the magnetic field of which is produced by a superconducting toroid. The six coils of this toroid divide the detector azimuthally into six sectors, each of which contains three large multi-layer drift chambers for tracking charged particles produced from a fixed target on the toroidal axis. Within the 18 drift chambers are a total of 35,148 individually instrumented hexagonal drift cells. The novel geometry of these chambers provides for good tracking resolution and efficiency, along with large acceptance. The design and construction challenges posed by these large-scale detectors are described, and detailed results are presented from in-beam measurements.

  17. PacIOOS Water Quality Buoy AW (WQB-AW): Ala Wai, Oahu, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  18. NODC Standard Product: NOAA Marine environmental buoy database Webdisc (7 disc set) (NODC Accession 0090141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This CD-ROM set contains the historic archive of meteorological and oceanographic data collected by moored buoys and C-MAN stations operated by the NOAA National...

  19. PacIOOS Water Quality Buoy KN (WQB-KN): Kilo Nalu, Oahu, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  20. PacIOOS Water Quality Buoy 04 (WQB-04): Hilo, Big Island, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  1. PacIOOS Water Quality Buoy 03 (WQB-03): Kiholo Bay, Big Island, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water quality buoys are part of the Pacific Islands Ocean Observing System (PacIOOS) and are designed to measure a variety of ocean parameters at fixed points....

  2. Does the geoid drift west?

    Science.gov (United States)

    Backus, G. E.; Parker, R. L.; Zumberge, M. A.

    1985-01-01

    In 1970 Hide and Malin noted a correlation of about 0.8 between the geoid and the geomagnetic potential at the Earth's surface when the latter is rotated eastward in longitude by about 160 degrees and the spherical harmonic expansions of both functions are truncated at degree 4. From a century of magnetic observatory data, Hide and Malin inferred an average magnetic westward drift rate of about 0.27 degrees/year. They attributed the magnetic-gravitational correlation to a core event at about 1350 A.D. which impressed the mantle's gravity pattern at long wavelengths onto the core motion and the resulting magnetic field. The impressed pattern was then carried westward 160 degrees by the nsuing magnetic westward drift. An alternative possibility is some sort of steady physical coupling between the magnetic and gravitational fields (perhaps migration of Hide's bumps on the core-mantle interface). This model predicts that the geoid will drift west at the magnetic rate. On a rigid earth, the resulting changes in sea level would be easily observed, but they could be masked by adjustment of the mantle if it has a shell with viscosity considerably less than 10 to the 21 poise. However, steady westward drift of the geoid also predicts secular changes in g, the local acceleration of gravity, at land stations. These changes are now ruled out by recent independent high-accuracy absolute measurements of g made by several workers at various locations in the Northern Hemisphere.

  3. Effect of High-Frequency Sea Waves on Wave Period Retrieval from Radar Altimeter and Buoy Data

    Directory of Open Access Journals (Sweden)

    Xifeng Wang

    2016-09-01

    Full Text Available Wave periods estimated from satellite altimetry data behave differently from those calculated from buoy data, especially in low-wind conditions. In this paper, the geometric mean wave period T a is calculated from buoy data, rather than the commonly used zero-crossing wave period T z . The geometric mean wave period uses the fourth moment of the wave frequency spectrum and is related to the mean-square slope of the sea surface measured using altimeters. The values of T a obtained from buoys and altimeters agree well (root mean square difference: 0.2 s only when the contribution of high-frequency sea waves is estimated by a wavenumber spectral model to complement the buoy data, because a buoy cannot obtain data from waves having wavelengths that are shorter than the characteristic dimension of the buoy.

  4. Accuracy Assessment of GPS Buoy Sea Level Measurements for Coastal Applications

    Science.gov (United States)

    Chiu, S.; Cheng, K.

    2008-12-01

    The GPS buoy in this study contains a geodetic antenna and a compact floater with the GPS receiver and power supply tethered to a boat. The coastal applications using GPS include monitoring of sea level and its change, calibration of satellite altimeters, hydrological or geophysical parameters modeling, seafloor geodesy, and others. Among these applications, in order to understand the overall data or model quality, it is required to gain the knowledge of position accuracy of GPS buoys or GPS-equipped vessels. Despite different new GPS data processing techniques, e.g., Precise Point Positioning (PPP) and virtual reference station (VRS), that require a prioir information obtained from the a regional GPS network. While the required a prioir information can be implemented on land, it may not be available on the sea. Hence, in this study, the GPS buoy was positioned with respect to a onshore GPS reference station using the traditional double- difference technique. Since the atmosphere starts to decorrelate as the baseline, the distance between the buoy and the reference station, increases, the positioning accuracy consequently decreases. Therefore, this study aims to assess the buoy position accuracy as the baseline increases and in order to quantify the upper limit of sea level measured by the GPS buoy. A GPS buoy campaign was conducted by National Chung Cheng University in An Ping, Taiwan with a 8- hour GPS buoy data collection. In addition, a GPS network contains 4 Continuous GPS (CGPS) stations in Taiwan was established with the goal to enable baselines in different range for buoy data processing. A vector relation from the network was utilized in order to find the correct ambiguities, which were applied to the long-baseline solution to eliminate the position error caused by incorrect ambiguities. After this procedure, a 3.6-cm discrepancy was found in the mean sea level solution between the long (~80 km) and the short (~1.5 km) baselines. The discrepancy between a

  5. Dispersal of invasive species by drifting

    NARCIS (Netherlands)

    Riel, van M.C.; Velde, van der G.; Vaate, bij de A.

    2011-01-01

    Drifting can be an effective way for aquatic organisms to disperse and colonise new areas. Increasing connectivity between European large rivers facilitates invasion by drifting aquatic macroinvertebrates. The present study shows that high abundances of invasive species drift in the headstream of

  6. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  7. Mooring System of Ocean Turbulence Observation Based on Submerged Buoy

    Institute of Scientific and Technical Information of China (English)

    SONG Da-lei; SUN Jing-jing; XUE Bing; JIANG Qian-li; WU Bing-wei

    2013-01-01

    A comparison experiment has been taken in the Kiaochow Bay between a newly designed mooring turbulence observation instrument (MTOI) and microstructure profiler MSS60 made by Sea & Sun.The whole observing system is based on a submerged buoy,in which the turbulence observation instrument is embedded,with a streamline-shape floating body,which is made of buoyancy material of glass microsphere.For the movement of seawater and the cable shaking strongly anytime influence the behaviors of the floating body,the accelerate sensors are used for the vibration measurement in the instrument together with the shear probe sensor.Both the vibration data and the shear data are acquired by the instrument at the same time.During data processing,the vibration signals can be removed and leave the shear data which we really need.In order to prove the reliability of the new turbulence instrument MTOI,a comparison experiment was designed.The measuring conditions are the same both in time and space.By this way,the two groups of data are comparable.In this paper,the conclusion gives a good similarity of 0.93 for the two groups of shear data in dissipation rate.The processing of the data acquired by MTOI is based on the cross-spectrum analysis,and the dissipation rate of it matches the Nasmyth spectrum well.

  8. Mooring system of ocean turbulence observation based on submerged buoy

    Science.gov (United States)

    Song, Da-lei; Sun, Jing-jing; Xue, Bing; Jiang, Qian-li; Wu, Bing-wei

    2013-06-01

    A comparison experiment has been taken in the Kiaochow Bay between a newly designed mooring turbulence observation instrument (MTOI) and microstructure profiler MSS60 made by Sea & Sun. The whole observing system is based on a submerged buoy, in which the turbulence observation instrument is embedded, with a streamline-shape floating body, which is made of buoyancy material of glass microsphere. For the movement of seawater and the cable shaking strongly anytime influence the behaviors of the floating body, the accelerate sensors are used for the vibration measurement in the instrument together with the shear probe sensor. Both the vibration data and the shear data are acquired by the instrument at the same time. During data processing, the vibration signals can be removed and leave the shear data which we really need. In order to prove the reliability of the new turbulence instrument MTOI, a comparison experiment was designed. The measuring conditions are the same both in time and space. By this way, the two groups of data are comparable. In this paper, the conclusion gives a good similarity of 0.93 for the two groups of shear data in dissipation rate. The processing of the data acquired by MTOI is based on the cross-spectrum analysis, and the dissipation rate of it matches the Nasmyth spectrum well.

  9. Nonlinear evolution of drift instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.

    1984-01-01

    The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.

  10. A Pascalian lateral drift sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H., E-mail: hendrik.jansen@desy.de

    2016-09-21

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  11. A Pascalian lateral drift sensor

    Science.gov (United States)

    Jansen, H.

    2016-09-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  12. Gulf of Mexico Monitoring Via The Remotely Controlled CMR SailBuoy

    Science.gov (United States)

    Wienders, N.; Hole, L. R.; Peddie, D.

    2013-12-01

    The CMR SailBuoy is an unmanned ocean vessel capable of traveling the oceans for extended periods of time. It navigates the oceans autonomously - transmitting data at regular intervals using the Iridium network for two way communication. The SailBuoy can be used for a wide variety of ocean applications from measuring ocean and atmospheric parameters to tracking oil spills or acting as a communication relay station for subsea instrumentation. As part of the Deep-C project(Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico), a two month campaign was carried out from March to May 2013 with the purpose of collecting sea surface data (temperature, salinity and oxygen) during the spring bloom. The campaign was unique in that the SailBouy was remotely controlled from Norway after being deployed from the RV Apalachee. The SailBuoy was deployed approximately 11 nautical miles (nm) south of Cape San Blas. During its mission she sailed approximately 840nm on a cruise track across the Gulf coast, from the Florida Panhandle to Louisiana. The SailBuoy project is part of Deep-C's physical oceanography research which seeks to, among other things, understand how particles and dissolved substances (such as oil) travel from the deep sea to the Louisiana, Mississippi, Alabama and Florida shorelines. This involves cross-shelf transport and upwelling mechanisms, which the SailBuoy is capable of measuring. An other focus was the sampling of the Mississippi river plume, which has been shown to influence the distribution of particles, oil, dissolved substances in the water, at least at the surface level. Sea surface salinity measurement via satellite do not provide, at the moment, sufficient resolution and accuracy and instead, the SailBuoy seems to be a very convenient instrument to track river plumes. In this presentation we describe the collected data and include comparisons with high resolution ocean model outputs. We also present further plans for SailBuoy campaigns.

  13. MPS II drift chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed.

  14. Shear wall ultimate drift limits

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, T.A. [Duffy, (T.A.) Tijeras, NM (United States); Goldman, A. [Goldman, (A.), Sandia, Los Alamos, NM (United States); Farrar, C.R. [Los Alamos National Lab., NM (United States)

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.

  15. Dispersal of invasive species by drifting

    Directory of Open Access Journals (Sweden)

    M.C. VAN RIEL, G. VAN DER VELDE, A. BIJ DE VAATE

    2011-12-01

    Full Text Available Drifting can be an effective way for aquatic organisms to disperse and colonise new areas. Increasing connectivity between European large rivers facilitates invasion by drifting aquatic macroinvertebrates. The present study shows that high abundances of invasive species drift in the headstream of the river Rhine. Dikerogammarus villosus and Chelicorophium curvispinum represented up to 90% of the total of drifting macroinvertebrates. Drift activity shows seasonal and diel patterns. Most species started drifting in spring and were most abundant in the water column during the summer period. Drift activity was very low during the winter period. Diel patterns were apparent; most species, including D. villosus, drifted during the night. Drifting macroinvertebrates colonised stony substrate directly from the water column. D. villosus generally colonised the substrate at night, while higher numbers of C. curvispinum colonised the substrate during the day. It is very likely that drifting functions as a dispersal mechanism for crustacean invaders. Once waterways are connected, these species are no longer necessarily dependent on dispersal vectors other than drift for extending their distribution range [Current Zoology 57 (6: 818–827, 2011].

  16. Implementation of PLUTO Buoy for Monitoring Water Quality in Indonesia, Reflection and Future Plans

    Science.gov (United States)

    Chandra, H.; Krismono, K.; Kusumaningrum, P. D.; Sianturi, D.; Firdaus, Y.; Taukhid, I.; Borneo, B. B.

    2016-02-01

    Research and development of PLUTO (Perairan Selalu Termonitor/Waters Always Monitored) buoy has reached its fourth year in 2015. Try out has been done in coastal waters, fishponds, fishing port ponds, and reservoirs. In the first year (2010) try out has been performed on coastal waters with off line measurement system. The buoy used temperature, salinity, DO and pH sensors. In the second year (2013) try out was carried out on fishponds and fishing port ponds using telemetry measurement system. In the third year (2014) try out was carried out on water reservoir with telemetry measurement system. In the fourth year (2015) android application is developed to monitor 4 water reservoirs and 1 lake. Beside that, observation point is added to 3 point depth for one buoy. Parameters used are temperature, DO, and turbidity. Three PLUTO buoys are placed in each reservoir, at inlet, outlet, and at center of fish cultivation. Through Ocean Science Meeting in New Orleans it is hoped that there will be input and suggestion from the experts for future development of the monitoring system for public inland waters (especially reservoir and lake) in Indonesia. Keywords: buoy PLUTO, salinity, temperature, Dissolved Oxygen (DO), pH, turbidity, telemetry

  17. Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2013-12-01

    Full Text Available The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

  18. The validation of HY-2 altimeter measurements of a significant wave height based on buoy data

    Institute of Scientific and Technical Information of China (English)

    WANG Jichao; ZHANG Jie; YANG Jungang

    2013-01-01

    HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation-al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo-ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari-able. The regression equation of hs is hs(HY-2)=0.891×hs(NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 min at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.

  19. Dynamic Validation of Envisat ASAR Derived Ocean Swell Against Directional Buoy Measurements in Pacific Ocean

    Science.gov (United States)

    Wang, He; Mouche, Alexis; Husson, Romain; Chapron, Bertrand

    2016-08-01

    Advanced Synthetic Aperture Radar (ASAR) in wave mode aboard Envisat satellite from ESA provides the unique 10-years swell spectra dataset on a continuous and global basis for scientific community. In this paper, a method of a dynamical validation approach for SAR swell spectra is developed, in which the in situ buoy spectra are reconstructed, partitioned, and retro- propagated to the vicinity of satellite observation along the great circle based upon the linear wave theory. More than 40,000 ASAR-buoy swell partitions are dynamically collocated for the full mission of Envisat, making this study the first to provide detailed quality assessment for ASAR derived ocean swell spectra. Comparison results show a general statistics of 0.40 m, 44.99 m and 16.89 ̊ for swell height, peak wavelength and direction RMSE, indicating a good agreement with buoy in-situ in Pacific Ocean.

  20. WindSat satellite comparisons with nearshore buoy wind data near the U.S. west and east coasts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; SHI Hanqing; YU Hong; YI Xin

    2016-01-01

    Nearshore wind speeds retrieved by WindSat are validated by a comparison with the moored buoy observations near the U.S. west and east coasts. A 30 min and 25 km collection window is used for the WindSat wind data and buoy measurements from January 2004 to December 2014. Comparisons show that the overall root-mean-square error is better than 1.44 m/s near the U.S. coasts, and the result for the east coast is better than that for the west coast. The retrieval accuracy of the descending portions is slightly better than that of the ascending portions. Most buoy-to-buoy variations are not significantly correlated with the coastal topography, the longitude and the distance from the shore or satellite-buoy separation distance. In addition, comparisons between a polarimetric microwave radiometer and a microwave scatterometer are accomplished with the nearshore buoy observations from 2007 to 2008. The WindSat-derived winds tend to be lower than the buoy observations near the U.S. coasts. In contrast, the QuikSCAT-derived winds tend to be higher than the buoy observations. Overall, the retrieval accuracy of WindSat is slightly better than that of QuikSCAT, and these satellite-derived winds are sufficiently accurate for scientific studies.

  1. On theory and simulation of heaving-buoy wave-energy converters with control

    Energy Technology Data Exchange (ETDEWEB)

    Eidsmoen, H.

    1995-12-01

    Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.

  2. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  3. The S1 buoy station, Po River delta: data handling and presentation

    Directory of Open Access Journals (Sweden)

    Alessandro COLUCCELLI

    2006-12-01

    Full Text Available The technical setting of the mete-oceanographic buoy at site S1 south of the Po River delta is presented. The station was deployed by Istituto di Scienze Marine (ISMAR of CNR of Bologna, in cooperation with the local Regional Government and Environmental Agencies (ARPA of E. Romagna, and ADRICOSM. The buoy mooring and data flow architecture is discussed, with some emphasis on the WWW data presentation. The possible integration with other remote stations, data and mete-oceanographic operational activities is also proposed.

  4. Wireless Sensor Buoys for Perimeter Security of Military Vessels and Seabases

    Science.gov (United States)

    2015-12-01

    Fences of prisons not only include wire or concrete, but also razor/barbed wire , electric fences, and video camera surveillance. In addition to prisons...easily enter the buoy as it was emplaced and easily exit as the buoy was retrieved. The nylon rope anchor lines and retrieval handles were added to...to thread a high strength nylon cable tie through them and fasten the plate to 52 the end cap. Figure 22 depicts the four holes on the base of the

  5. Limits to Drift Chamber Resolution

    CERN Document Server

    Riegler, Werner

    1998-01-01

    ATLAS (A Large Toroidal LHC Apparatus) will be a general-purpose experiment at the Large Hadron Collider that will be operational at CERN in the year 2004. The ATLAS muon spectrometer aims for a momentum resolution of 10% for a transverse momentum of pT=1TeV. The precision tracking devices in the muon system will be high pressure drift tubes (MDTs) with a single wire resolution of 1100 chambers covering an area of ≈ 2500m2. The high counting rates in the spectrometer as well as the aim for excellent spatial resolution and high efficiency put severe constraints on the MDT operating parameters. This work describes a detailed study of all the resolution limiting factors in the ATLAS environment. A ’full chain’ simulation of the MDT response to photons and charged particles as well as quantitative comparisons with measurements was performed. The good agreement between simulation and measurements resulted in a profound understanding of the drift chamber processes and the individual contributions to the spat...

  6. Open-source sea ice drift algorithm for Sentinel-1 SAR imagery using a combination of feature tracking and pattern matching

    Science.gov (United States)

    Muckenhuber, Stefan; Sandven, Stein

    2017-08-01

    An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on the combination of feature tracking and pattern matching. Feature tracking produces an initial drift estimate and limits the search area for the consecutive pattern matching, which provides small- to medium-scale drift adjustments and normalised cross-correlation values. The algorithm is designed to combine the two approaches in order to benefit from the respective advantages. The considered feature-tracking method allows for an efficient computation of the drift field and the resulting vectors show a high degree of independence in terms of position, length, direction and rotation. The considered pattern-matching method, on the other hand, allows better control over vector positioning and resolution. The preprocessing of the Sentinel-1 data has been adjusted to retrieve a feature distribution that depends less on SAR backscatter peak values. Applying the algorithm with the recommended parameter setting, sea ice drift retrieval with a vector spacing of 4 km on Sentinel-1 images covering 400 km × 400 km, takes about 4 min on a standard 2.7 GHz processor with 8 GB memory. The corresponding recommended patch size for the pattern-matching step that defines the final resolution of each drift vector is 34 × 34 pixels (2.7 × 2.7 km). To assess the potential performance after finding suitable search restrictions, calculated drift results from 246 Sentinel-1 image pairs have been compared to buoy GPS data, collected in 2015 between 15 January and 22 April and covering an area from 80.5 to 83.5° N and 12 to 27° E. We found a logarithmic normal distribution of the displacement difference with a median at 352.9 m using HV polarisation and 535.7 m using HH polarisation. All software requirements necessary for applying the presented sea ice drift algorithm are open-source to ensure free implementation and easy distribution.

  7. Drift chamber tracking with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  8. Snow Drift Management: Summit Station Greenland

    Science.gov (United States)

    2016-05-01

    ER D C/ CR RE L TR -1 6- 6 Engineering for Polar Operations, Logistics, and Research (EPOLAR) Snow Drift Management Summit Station...Drift Management Summit Station Greenland Robert B. Haehnel and Matthew F. Bigl U.S. Army Engineer Research and Development Center (ERDC) Cold...Engineering for Polar Operations, Logistics, and Research (EPOLAR) EP-ARC-15-33, “Monitoring and Managing Snow Drifting at Summit Station, Greenland” ERDC

  9. Redshift drift in a pressure gradient cosmology

    CERN Document Server

    Balcerzak, Adam

    2012-01-01

    We derive the redshift drift formula for the inhomogeneous pressure spherically symmetric Stephani universes which are complementary to inhomogeneous density Lema\\^itre-Tolman-Bondi (LTB) models. We show that there is a clear difference between the redshift drift predictions for these two models. The Stephani models have positive drift values at small redshift and behave qualitatively as the $\\Lambda$CDM models while the drift for LTB models is always negative. This prediction can be tested in future space experiments such as E-ELT, TMT, GMT or CODEX.

  10. THERMAL EVALUATION OF DIFFERENT DRIFT DIAMETER SIZES

    Energy Technology Data Exchange (ETDEWEB)

    H.M. Wade

    1999-01-04

    The purpose of this calculation is to estimate the thermal response of a repository-emplaced waste package and its corresponding drift wall surface temperature with different drift diameters. The case examined is that of a 21 pressurized water reactor (PWR) uncanistered fuel (UCF) waste package loaded with design basis spent nuclear fuel assemblies. This calculation evaluates a 3.5 meter to 6.5 meter drift diameter range in increments of 1.0 meters. The time-dependent temperatures of interest, as determined by this calculation, are the spent nuclear fuel cladding temperature, the waste package surface temperature, and the drift wall surface temperature.

  11. RF Breakdown in Drift Tube Linacs

    CERN Document Server

    Stovall, J; Lown, R

    2009-01-01

    The highest RF electric field in drift-tube linacs (DTLs) often occurs on the face of the first drift tube. Typically this drift tube contains a quadrupole focusing magnet whose fringing fields penetrate the face of the drift tube parallel to the RF electric fields in the accelerating gap. It has been shown that the threshold for RF breakdown in RF cavities may be reduced in the presence of a static magnetic field. This note offers a “rule of thumb” for picking the maximum “safe” surface electric field in DTLs based on these measurements.

  12. Fermilab drift tube Linac revisited

    Energy Technology Data Exchange (ETDEWEB)

    Milorad Popovic

    2004-05-12

    Using the PARMILA code running under PC-WINDOWS, the present performance of the Fermilab Drift Tube Linac has been analyzed in the light of new demands on the Linac/Booster complex (the Proton Source). The Fermilab Drift Tube Linac (DTL) was designed in the sixties as a proton linac with a final energy of 200 MeV and a peak current of 100mA. In the seventies, in order to enable multi-turn charge exchange injection into the Booster, the ion source was replaced by an H- source with a peak beam current of 25mA. Since then the peak beam current was steadily increased up to 55mA. In the early nineties, part of the drift tube structure was replaced with a side-coupled cavity structure in order to increase the final energy to 400 MeV. The original and still primary purpose of the linac is to serve as the injector for the Booster. As an added benefit, the Neutron Therapy Facility (NTF) was built in the middle seventies. It uses 66MeV protons from the Linac to produce neutrons for medical purposes. The Linac/Booster complex was designed to run at a fundamental cycling rate of 15Hz, but beam is accelerated on every cycle only when NTF is running. Until recently the demand from the High Energy Physics program resulted in an average linac beam repetition rate of order 1 Hz. With the MiniBoone experiment and the NuMI program, the demands on the Proton Source have changed, with emphasis on higher beam repetition rates up to 7.5Hz. Historically the beam losses in the linac were small, localized at one spot, so activation was not an important issue. With higher beam rate, this has the potential to become the dominant issue. Until today all tuning in the linac and Proton Source was governed by two goals: to maximize the peak beam current out of the linac and to minimize the beam losses in the linac. If maximal peak current from the linac is no longer a primary goal, then the linac quadrupoles can be adjusted differently to achieve different goals.

  13. Silicon drift detectors with the drift field induced by pureB-coated trenches

    NARCIS (Netherlands)

    Nanver, Lis Karen; Kneževi´c, Tihomir; Suligoj, Tomislav

    2016-01-01

    Junction formation in deep trenches is proposed as a new means of creating a built-in drift field in silicon drift detectors (SDDs). The potential performance of this trenched drift detector (TDD) was investigated analytically and through simulations, and compared to simulations of conventional

  14. The Genetic Drift Inventory: A Tool for Measuring What Advanced Undergraduates Have Mastered about Genetic Drift

    Science.gov (United States)

    Price, Rebecca M.; Andrews, Tessa C.; McElhinny, Teresa L.; Mead, Louise S.; Abraham, Joel K.; Thanukos, Anna; Perez, Kathryn E.

    2014-01-01

    Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures…

  15. Autoresonant control of drift waves

    Science.gov (United States)

    Shagalov, A. G.; Rasmussen, J. Juul; Naulin, V.

    2017-03-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes.

  16. Autoresonant control of drift waves

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Rasmussen, Jens Juul; Naulin, Volker

    2017-01-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined...... on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear...... waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes....

  17. The ARGUS microvertex drift chamber

    Science.gov (United States)

    Michel, E.; Schmidt-Parzefall, W.; Appuhn, R. D.; Buchmüller, J.; Kolanoski, H.; Kreimeier, B.; Lange, A.; Siegmund, T.; Walther, A.; Edwards, K. W.; Fernholz, R. C.; Kapitza, H.; MacFarlane, D. B.; O'Neill, M.; Parsons, J. A.; Prentice, J. D.; Seidel, S. C.; Tsipolitis, G.; Ball, S.; Babaev, A.; Danilov, M.; Tichomirov, I.

    1989-11-01

    The ARGUS collaboration is currently building a new microvertex drift chamber (μVDC) as an upgrade of their detector. The μVDC is optimized for B-meson physics at DORIS energies. Important design features are minimal multiple scattering for low-momentum particles and three-dimensional reconstruction of decay vertices with equal resolutions in r- φ and r- z. Vertex resolutions of 15-25 μm are expected. Prototypes of the μVDC have been tested with different gas mixtures at various pressures. Spatial resolutions as small as 20 μm were obtained using CO 2/propane at 4 bar and DME at 1 bar. New readout electronics have been developed for the μVDC aiming at low thresholds for the TDC measurements. Employing a novel idea for noise and cross-talk suppression, which is based on a discrimination against short pulses, very low threshold settings are possible.

  18. Wave and Current Observations in a Tidal Inlet Using GPS Drifter Buoys

    Science.gov (United States)

    2013-03-01

    Micro-Electro-Mechanical System MRU Motion Reference Unit NDBC National Data Buoy Center NOAA National Oceanic and Atmospheric Administration...made by accelerometers integrated into a motion reference unit ( MRU ). The vertical accelerations (heave measurements) were used to calculate the wave

  19. Power Production Analysis of the OE Buoy WEC for the CORES Project

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report describes the analysis performed on the OE Buoy for the CORES project by the wave energy group at Aalborg University, Denmark. OE Buoy is a type of Oscillating Water Column (OWC) wave energy converter as part of the CORES project. This type of device is one of the most developed to ex...... meant that it was not possible to fully implement the method, as the efficiency data was too sparsely distributed as a function of Tz and Hs, but the method used here is based on the Equimar protocol to give an approximate estimate of the yearly power production....... which a total of 39 hours of power production data was collected. A data acquisition system was used to sample the sensors on board and the generator shaft power time-series data was used in the analysis here. A wave-rider buoy, located at the site of OE Buoy and operated by the Marine Institute Ireland....... This may then be used to estimate the yearly power production of the device at the test site location or another location, by using the long-term wave statistics for the given site. Additionally, the power production for a given scale of device may be estimated by applying the appropriate scaling...

  20. Study of the directional spectrum of ocean waves using array, buoy and radar measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.

    to install capacitance gauges unless they are pile driven or mounted on spar buoys. Also at larger depths, the wave signal at the bottom mounted pressure gauges is attenuated as a function of wave period (frequency), the attenuation being greater for smaller...

  1. 33 CFR 74.20-1 - Buoy and vessel use costs.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buoy and vessel use costs. 74.20-1 Section 74.20-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION CHARGES FOR COAST GUARD AIDS TO NAVIGATION WORK Aids to Navigation Costs § 74.20-1...

  2. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta

    2013-02-01

    The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  3. Resistive Drift Waves in a Bumpy Torus

    Energy Technology Data Exchange (ETDEWEB)

    J.L.V. Lewandowski

    2004-01-12

    A computational study of resistive drift waves in the edge plasma of a bumpy torus is presented. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  4. Biology Undergraduates' Misconceptions about Genetic Drift

    Science.gov (United States)

    Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.

    2012-01-01

    This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct…

  5. Do Arctic waders use adaptive wind drift?

    NARCIS (Netherlands)

    Green, M; Alerstam, T; Gudmundsson, GA; Hedenstrom, A; Piersma, T; Gudmundsson, Gudmundur A.; Hedenström, Anders

    2004-01-01

    We analysed five data sets of night directions of migrating arctic waders ill relation to,winds, recorded by tracking radar and optical range finder, in order to find out if these birds compensate for wind drift, or allow themselves to be drifted by winds. Our purpose was to investigate whether arct

  6. Learning under Concept Drift: an Overview

    CERN Document Server

    e, Indr\\ e Žliobait\\

    2010-01-01

    Concept drift refers to a non stationary learning problem over time. The training and the application data often mismatch in real life problems. In this report we present a context of concept drift problem 1. We focus on the issues relevant to adaptive training set formation. We present the framework and terminology, and formulate a global picture of concept drift learners design. We start with formalizing the framework for the concept drifting data in Section 1. In Section 2 we discuss the adaptivity mechanisms of the concept drift learners. In Section 3 we overview the principle mechanisms of concept drift learners. In this chapter we give a general picture of the available algorithms and categorize them based on their properties. Section 5 discusses the related research fields and Section 5 groups and presents major concept drift applications. This report is intended to give a bird's view of concept drift research field, provide a context of the research and position it within broad spectrum of research fi...

  7. Establishment of Motion Model for Wave Capture Buoy and Research on Hydrodynamic Performance of Floating-Type Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Gao Hongtao

    2015-09-01

    Full Text Available Floating-type wave energy converter has the advantages of high wave energy conversion efficiency, strong shock resistance ability in rough sea and stable output power. So it is regarded as a promising energy utilization facility. The research on hydrodynamic performance of wave capture buoys is the precondition and key to the wave energy device design and optimization. A simplified motion model of the buoys in the waves is established. Based on linear wave theory, the equations of motion of buoys are derived according to Newton’s second law. The factors of wave and buoys structural parameters on wave energy absorption efficiency are discussed in the China’s Bohai Sea with short wave period and small wave height. The results show that the main factor which affects the dynamic responses of wave capture buoys is the proximity of the natural frequency of buoys to the wave period. And the incoming wave power takes a backseat role to it at constant wave height. The buoys structural parameters such as length, radius and immersed depth, influence the wave energy absorption efficiency, which play significant factors in device design. The effectiveness of this model is validated by the sea tests with small-sized wave energy devices. The establishment methods of motion model and analysis results are expected to be helpful for designing and manufacturing of floating-type wave energy converter.

  8. Method for transferring data between at least one lagrangian buoy for measuring currents for ocean and costal environments and a base station, and lagrangian buoy for measuring currents for ocean and costal environments

    OpenAIRE

    Martínez-Ledesma, Miquel; Álvarez, Alberto; Vizoso, Guillermo; Tintoré, Joaquín

    2011-01-01

    [EN] Method for transferring data between at least one lagrangian buoy for measuring currents for ocean and coastal environments and a base station, which comprises capturing data by the buoy by means of the parameter-measuring sensors and the GPS receiver and storing said data in a first file which is segmented into packets of a maximum length defined by the SBD Iridium protocol for the subsequent sending thereof to the base station. The invention also relates to the lagrangian buoy for meas...

  9. An improvement of the GPS buoy system for detecting tsunami at far offshore

    Science.gov (United States)

    Kato, T.; Terada, Y.; Nagai, T.; Kawaguchi, K.; Koshimura, S.; Matsushita, Y.

    2012-12-01

    We have developed a GPS buoy system for detecting a tsunami before its arrival at coasts and thereby mitigating tsunami disaster. The system was first deployed in 1997 for a short period in the Sagami bay, south of Tokyo, for basic experiments, and then deployed off Ofunato city, northeastern part of Japan, for the period 2001-2004. The system was then established at about 13km south of Cape Muroto, southwestern part of Japan, since 2004. Five tsunamis of about 10cm have been observed in these systems, including 2001 Peru earthquake (Mw8.3), 2003 Tokachi-oki earthquake (Mw8.3), 2004 Off Kii Peninsula earthquake (Mw7.4), 2010 Chile earthquake (Mw8.8), and 2011 Tohoku-Oki earthquake (Mw9.0). These experiments clearly showed that GPS buoy is capable of detecting tsunami with a few centimeter accuracy and can be monitored in near real time by applying an appropriate filter, real-time data transmission using radio and dissemination of obtained records of sea surface height changes through internet. Considering that the system is a powerful tool to monitor sea surface variations due to wind as well as tsunami, the Ministry of Land, Infrastructure, Transport and Tourism implemented the system in a part of the Nationwide Ocean Wave information network for Ports and HArbourS (NOWPHAS) system and deployed the system at 15 sites along the coasts around the Japanese Islands. The system detected the tsunami due to the 11th March 2011 Tohoku-Oki earthquake with higher than 6m of tsunami height at the site Off South Iwate (Kamaishi). The Japan Meteorological Agency that was monitoring the record updated the level of the tsunami warning to the greatest value due to the result. Currently, the GPS buoy system uses a RTK-GPS which requires a land base for obtaining precise location of the buoy by a baseline analysis. This algorithm limits the distance of the buoy to, at most, 20km from the coast as the accuracy of positioning gets much worse as the baseline distance becomes longer

  10. Blossom Point Satellite Tracking and Command Station

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Blossom Point Satellite Command and Tracking Facility (BP) provides engineering and operational support to several complex space systems for the Navy...

  11. OBIS - ARGOS Satellite Tracking of Animals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various species have been tracked using ARGOS PTT trackers since the early 1990's. These include Emperor, King and Adelie pengiuns, Light-mantled Sooty, Grey-headed...

  12. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  13. Ground Control for Emplacement Drifts for LA

    Energy Technology Data Exchange (ETDEWEB)

    Y. Sun

    2004-07-09

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c).

  14. Wave Observations from Central California: SeaSonde Systems and In Situ Wave Buoys

    Directory of Open Access Journals (Sweden)

    Regan M. Long

    2011-01-01

    Full Text Available Wave data from five 12-13 MHz SeaSondes radars along the central California coast were analyzed to evaluate the utility of operational wave parameters, including significant wave height, period, and direction. Data from four in situ wave buoys served to verify SeaSonde data and independently corroborate wave variability. Hourly averaged measurements spanned distance is 150 km alongshore × 45 km offshore. Individual SeaSondes showed statistically insignificant variation over 27 km in range. Wave height inter-comparisons between regional buoys exhibit strong correlations, approximately 0.93, and RMS differences less than 50 cm over the region. SeaSonde-derived wave data were compared to nearby buoys over timescales from 15 to 26 months, and revealed wave height correlations =0.85−0.91 and mean RMS difference of 53 cm. Results showed that height RMS differences are a percentage of significant wave height, rather than being constant independent of sea state. Period and directions compared favorably among radars, buoys, and the CDIP model. Results presented here suggest that SeaSondes are a reliable source of wave information. Supported by buoy data, they also reveal minimal spatial variation in significant wave height, period, and direction in coastal waters from ~45 km × ~150 km in this region of the central California coast. Small differences are explained by sheltering from coastal promontories, and cutoff boundaries in the case of the radars.

  15. Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy

    Science.gov (United States)

    Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu

    2016-07-01

    Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.

  16. Field investigation of the drift shadow

    Energy Technology Data Exchange (ETDEWEB)

    Su, Grace W.; Kneafsey, Timothy J.; Ghezzehei, Teamrat A.; Marshall, Brian D.; Cook, Paul J.

    2005-09-08

    A drift shadow is an area immediately beneath an undergroundvoidthat, in theory, will be relatively drier than the surrounding rockmass. Numerical and analytical models of water flow through unsaturatedrock predict the existence of a drift shadow, but field tests confirmingits existence have yet to be performed. Proving the existence of driftshadows and understanding their hydrologic and transport characteristicscould provide a better understanding of how contaminants move in thesubsurface if released from waste emplacement drifts such as the proposednuclear waste repository at Yucca Mountain, Nevada. We describe the fieldprogram that will be used to investigate the existence of a drift shadowand the corresponding hydrological process at the Hazel-Atlas silica-sandmine located at the Black Diamond Mines Regional Preserve in Antioch,California. The location and configuration of this mine makes it anexcellent site to observe and measure drift shadow characteristics. Themine is located in a porous sandstone unit of the Domengine Formation, anapproximately 230 meter thick series of interbedded Eocene-age shales,coals, and massive-bedded sandstones. The mining method used at the minerequired the development of two parallel drifts, one above the other,driven along the strike of the mined sandstone stratum. Thisconfiguration provides the opportunity to introduce water into the rockmass in the upper drift and to observe and measure its flow around theunderlying drift. The passive and active hydrologic tests to be performedare described. In the passive method, cores will be obtained in a radialpattern around a drift and will be sectioned and analyzed for in-situwater content and chemical constituents. With the active hydrologic test,water will be introduced into the upper drift of the two parallel driftsand the flow of the water will be tracked as it passes near the bottomdrift. Tensiometers, electrical resistance probes, neutron probes, andground penetrating radar may be

  17. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2011-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers. The differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest drift velocity monitoring results are discussed.

  18. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers because the drift velocity depends on it. Furthermore the differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest pressure monitoring results are discussed.

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-03 (NCEI Accession 0072077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-04 (NODC Accession 0118539)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during September 2014 (NCEI Accession 0122592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-10 (NODC Accession 0002436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-08 (NODC Accession 0002380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-09 (NODC Accession 0078579)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  5. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during November 2014 (NODC Accession 0122594)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during September 2014 (NODC Accession 0122593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-03 (NODC Accession 0117682)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-04 (NODC Accession 0090312)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-10 (NODC Accession 0114407)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during March 2015 (NODC Accession 0127371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during January 2016 (NCEI Accession 0142963)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during June 2015 (NCEI Accession 0129884)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-06 (NCEI Accession 0074384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-05 (NCEI Accession 0073426)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-12 (NODC Accession 0115760)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  16. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-01 (NODC Accession 0116427)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  17. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-06 (NODC Accession 0092557)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  18. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-12 (NODC Accession 0083918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during December 2015 (NCEI Accession 0140790)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-07 (NODC Accession 0111971)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during August 2016 (NCEI Accession 0156603)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during January 2015 (NODC Accession 0125752)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-01 (NODC Accession 0085139)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-03 (NODC Accession 0088199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  5. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during May 2015 (NCEI Accession 0129415)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-09 (NODC Accession 0098547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during April 2016 (NCEI Accession 0150816)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during March 2016 (NCEI Accession 0146738)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-05 (NODC Accession 0090313)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during December 2014 (NODC Accession 0125264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during April 2015 (NCEI Accession 0128073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-07 (NODC Accession 0095565)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-08 (NODC Accession 0095593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during July 2015 (NCEI Accession 0130916)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-02 (NODC Accession 0117491)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  16. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-08 (NCEI Accession 0077456)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  17. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-11 (NODC Accession 0115123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  18. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-07 (NODC Accession 0121505)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-08 (NODC Accession 0112958)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-10 (NODC Accession 0079513)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-05 (NODC Accession 0119474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-04 (NODC Accession 0106521)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-02 (NODC Accession 0086627)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-10 (NODC Accession 0099428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  5. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-12 (NODC Accession 0101426)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-09 (NODC Accession 0113792)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-11 (NODC Accession 0082371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-06 (NODC Accession 0110477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during June 2016 (NCEI Accession 0155886)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-04 (NCEI Accession 0072886)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during February 2015 (NODC Accession 0126669)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-07 (NCEI Accession 0074922)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-02 (NODC Accession 0104259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-02 (NCEI Accession 0071368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during February 2016 (NCEI Accession 0145373)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  16. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-01 (NODC Accession 0103632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  17. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2012-11 (NODC Accession 0099948)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  18. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during July 2016 (NCEI Accession 0156326)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  19. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during October 2015 (NCEI Accession 0137949)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  20. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-06 (NODC Accession 0002309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-04 (NODC Accession 0002176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during May 2016 (NCEI Accession 0153542)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  3. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-05 (NODC Accession 0108385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  4. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during October 2014 (NODC Accession 0122591)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  5. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during November 2015 (NCEI Accession 0139254)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  6. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during September 2015 (NCEI Accession 0136935)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  7. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2013-03 (NODC Accession 0104424)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  8. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-08 (NODC Accession 0122005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  9. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during August 2015 (NCEI Accession 0131704)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  10. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-01 (NCEI Accession 0070959)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  11. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2014-06 (NODC Accession 0120329)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  12. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-11 (NODC Accession 0002469)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-05 (NODC Accession 0002226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2005-07 (NODC Accession 0002372)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  15. Solving the drift control problem

    Directory of Open Access Journals (Sweden)

    Melda Ormeci Matoglu

    2015-12-01

    Full Text Available We model the problem of managing capacity in a build-to-order environment as a Brownian drift control problem. We formulate a structured linear program that models a practical discretization of the problem and exploit a strong relationship between relative value functions and dual solutions to develop a functional lower bound for the continuous problem from a dual solution to the discrete problem. Refining the discretization proves a functional strong duality for the continuous problem. The linear programming formulation is so badly scaled, however, that solving it is beyond the capabilities of standard solvers. By demonstrating the equivalence between strongly feasible bases and deterministic unichain policies, we combinatorialize the pivoting process and by exploiting the relationship between dual solutions and relative value functions, develop a mechanism for solving the LP without ever computing its coefficients. Finally, we exploit the relationship between relative value functions and dual solutions to develop a scheme analogous to column generation for refining the discretization so as to drive the gap between the discrete approximation and the continuous problem to zero quickly while keeping the LP small. Computational studies show our scheme is much faster than simply solving a regular discretization of the problem both in terms of finding a policy with a low average cost and in terms of providing a lower bound on the optimal average cost.

  16. Genetic drift of HIV populations in culture.

    Directory of Open Access Journals (Sweden)

    Yegor Voronin

    2009-03-01

    Full Text Available Populations of Human Immunodeficiency Virus type 1 (HIV-1 undergo a surprisingly large amount of genetic drift in infected patients despite very large population sizes, which are predicted to be mostly deterministic. Several models have been proposed to explain this phenomenon, but all of them implicitly assume that the process of virus replication itself does not contribute to genetic drift. We developed an assay to measure the amount of genetic drift for HIV populations replicating in cell culture. The assay relies on creation of HIV populations of known size and measurements of variation in frequency of a neutral allele. Using this assay, we show that HIV undergoes approximately ten times more genetic drift than would be expected from its population size, which we defined as the number of infected cells in the culture. We showed that a large portion of the increase in genetic drift is due to non-synchronous infection of target cells. When infections are synchronized, genetic drift for the virus is only 3-fold higher than expected from its population size. Thus, the stochastic nature of biological processes involved in viral replication contributes to increased genetic drift in HIV populations. We propose that appreciation of these effects will allow better understanding of the evolutionary forces acting on HIV in infected patients.

  17. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  18. Collisional Drift Waves in Stellarator Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    J.L.V. Lewandowski

    2003-10-07

    A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  19. Current-driven electron drift solitons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali, E-mail: aliahmad79@hotmail.com [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT) Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT) Islamabad (Pakistan)

    2013-12-09

    The soliton formation by the current-driven drift-like wave is investigated for heavier ion (such as barium) plasma experiments planned to be performed in future. It is pointed out that the sheared flow of electrons can give rise to short scale solitary structures in the presence of stationary heavier ions. The nonlinearity appears due to convective term in the parallel equation of motion and not because of temperature gradient unlike the case of low frequency usual drift wave soliton. This higher frequency drift-like wave requires sheared flow of electrons and not the density gradient to exist.

  20. Nonlinear Gyrokinetic Theory With Polarization Drift

    Energy Technology Data Exchange (ETDEWEB)

    L. Wang and T.S. Hahm

    2010-03-25

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .

  1. Data from a Directional Waverider Buoy off Kailua Bay, Windward Oahu, Hawaii during August 2000 - July 2004 (NODC Accession 0001660)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through various funding channels, the Department of Oceanography at the University of Hawaii (UH) has maintained a Datawell Mark 2 Directional Waverider Buoy roughly...

  2. NODC Standard Product: NOAA Marine environmental buoy database 1993 with Updates (19 disc set) (NODC Accession 0095199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs holds marine meteorological, oceanographic, and wave spectra data collected by moored buoys and C-MAN (Coastal-Marine Automated Network) stations...

  3. Data from a Directional Waverider Buoy off Waimea Bay, North Shore, Oahu during December 2001 - July 2004 (NODC Accession 0001626)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through various funding channels, the Department of Oceanography at the University of Hawaii (UH) has maintained a Datawell Directional Waverider Buoy roughly 5 km...

  4. Directional wave and temperature data from seven buoys at Point Reyes, CA, 1996-2002 (NODC Accession 0000760)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave data were collected from 7 buoys in Point Reyes, California, from 06 December 1996 to 25 July 2002. Data were collected as part of the Coastal Data Information...

  5. Directional wave and temperature data from nine buoys in Gray's Harbor, Washington, 1994-2002 (NODC Accession 0000756)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave data were collected from 9 buoys in Grays Harbor, Washington, from 01 January 1994 to 24 July 2002. Data were collected as part of the Coastal Data Information...

  6. The “von Karman vortex street” to the west of Big Island

    Institute of Scientific and Technical Information of China (English)

    LIUWei; LIUQinyu

    2004-01-01

    Satellite-tracked drifting buoy data and altimetry data are used to study the active vortex field to the west of Big Island. A pair of vortexes were observed at the trajectory of buoy in 1995. The westward propagation of the vortex pair is studied in detail by reproducing the loops of each vortex. The orbital period and radius of the pair of vortex are determined to be 10-11 d and 58-68 km. Two arrays of contra-rotating vortices are displayed in the average sea surface height anomaly (SSHA) field to the west of Big Island. Based on the calculation of the fluid dynamical parameter, the “von Karman vortex street” is proved to be generated to the west of Big Island as the North Equatorial Current impinges upon Big Island from the east. Finally, the analysis of the buoy trajectories in a decade contributes to the conclusion of the pattern of VKVS in a statistical view.

  7. Vacuum condensates and `ether-drift' experiments

    OpenAIRE

    Consoli, M.; Pagano, A.; Pappalardo, L.

    2003-01-01

    The idea of a `condensed' vacuum state is generally accepted in modern elementary particle physics. We argue that this should motivate a new generation of precise `ether-drift' experiments with present-day technology.

  8. An analytical model of iceberg drift

    CERN Document Server

    Wagner, Till J W; Eisenman, Ian

    2016-01-01

    Iceberg drift and decay and the associated freshwater release are increasingly seen as important processes in Earth's climate system, yet a detailed understanding of their dynamics has remained elusive. Here, an idealized model of iceberg drift is presented. The model is designed to include the most salient physical processes that determine iceberg motion while remaining sufficiently simple to facilitate physical insight into iceberg drift dynamics. We derive an analytical solution of the model, which helps build understanding and also enables the rapid computation of large numbers of iceberg trajectories. The long-standing empirical rule of thumb that icebergs drift at 2% of the wind velocity, relative to the ocean current, is derived here from physical first principles, and it is shown that this relation only holds in the limit of strong winds or small icebergs, which approximately applies for typical icebergs in the Arctic. It is demonstrated that the opposite limit of weak winds or large icebergs approxim...

  9. Stabilization Strategies for Drift Tube Linacs

    CERN Document Server

    AUTHOR|(CDS)2085420; Lamehi Rashti, Mohammad

    The average axial electric fields in drift tube linac cavities are known to be sensitive with respect to the perturbation errors. Postcoupler is a powerful stabilizer devices that is used to reduce this sensitivity of average axial field. Postcouplers are the cylindrical rod which is extended from cavity wall toward the drift tube without touching the drift tube surface. Postcouplers need to be adjusted to the right length to stabilize the average axial field. Although postcouplers are used successfully in many projects, there is no straightforward procedure for postcouplers adjustment and it has been done almost based on trial and errors. In this thesis, the physics and characteristics of postcouplers has been studied by using an equivalent circuit model and 3D finite element method calculations. Finally, a straightforward and accurate method to adjust postcouplers has been concluded. The method has been verified by using experimental measurements on CERN Linac4 drift tube linac cavities.

  10. CROSS DRIFT ALCOVE/NICHE UTILITIES ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    S. Goodin

    1999-07-08

    The purpose of this analysis is to provide the design basis and general arrangement requirements of the non-potable water, waste water, compressed air and ventilation (post excavation) utilities required in support of the Cross Drift alcoves and niches.

  11. The Electron Drift Instrument for MMS

    Science.gov (United States)

    Torbert, R. B.; Vaith, H.; Granoff, M.; Widholm, M.; Gaidos, J. A.; Briggs, B. H.; Dors, I. G.; Chutter, M. W.; Macri, J.; Argall, M.; Bodet, D.; Needell, J.; Steller, M. B.; Baumjohann, W.; Nakamura, R.; Plaschke, F.; Ottacher, H.; Hasiba, J.; Hofmann, K.; Kletzing, C. A.; Bounds, S. R.; Dvorsky, R. T.; Sigsbee, K.; Kooi, V.

    2016-03-01

    The Electron Drift Instrument (EDI) on the Magnetospheric Multiscale (MMS) mission measures the in-situ electric and magnetic fields using the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and, to a lesser extent, the gradient in the magnetic field. Although these two quantities can be determined separately by use of different electron energies, for MMS regions of interest the magnetic field gradient contribution is negligible. As a by-product of the drift determination, the magnetic field strength and constraints on its direction are also determined. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument on MMS.

  12. Nonlinear electrostatic drift Kelvin-Helmholtz instability

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1993-01-01

    Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.

  13. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  14. Analysis for the Deployment of Single-Point Mooring Buoy System Based on Multi-Body Dynamics Method

    Institute of Scientific and Technical Information of China (English)

    CHANG Zong-yu; TANG Yuan-guang; LI Hua-jun; YANG Jian-ming; WANG Lei

    2012-01-01

    Deployment of buoy systems is one of the most important procedures for the operation of buoy system.In the present study,a single-point mooring buoy system which contains surface buoy,cable segments with components,anchor and so on is modeled by applying multi-body dynamics method.The motion equations are developed in discrete node description and fully Cartesian coordinates.Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board.The trajectories and velocities of different nodes without current and with current in buoy system are obtained.The transient tension force of each part of the cable is analyzed in the process of deployment.Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration.This work is helpful for design and deployment planning of buoy system.

  15. The Bipolar Quantum Drift-diffusion Model

    Institute of Scientific and Technical Information of China (English)

    Xiu Qing CHEN; Li CHEN

    2009-01-01

    A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassical limit describes the relation between quantum and classical drift-diffusion models. Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity.

  16. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  17. Strange Attractors in Drift Wave Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    J.L.V. Lewandowski

    2003-04-25

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects.

  18. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica

    2004-04-01

    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  19. Thermodynamics Insights for the Redshift Drift

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2015-01-01

    The secular redshift drift is a potential measurement to directly probe the cosmic expansion. Previous study on the redshift drift mainly focused on the model-dependent simulation. Apparently, the physical insights on the redshift drift are very necessary. So in this paper, it is investigated using thermodynamics on the apparent, Hubble and event horizons. Thermodynamics could analytically present the model-independent upper bounds of redshift drift. For specific assumption on the cosmological parameters, we find that the thermodynamics bounds are nearly one order of magnitude larger than the expectation in standard ΛCDM model. We then examine ten observed redshift drift from Green Bank Telescope at redshift 0.09 < z < 0.69, and find that these observational results are inconsistent with the thermodynamics. The size of the errorbars on these measurements is about three orders of magnitude larger than the effect of thermodynamical bounds for the redshift drift. Obviously, we have not yet hit any instrumental systematics at the shift level of 1m s-1 yr-1.

  20. Suppressing drift chamber diffusion without magnetic field

    CERN Document Server

    Martoff, C J; Ohnuki, T; Spooner, N J C; Lehner, M

    2000-01-01

    The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 mu m has been achieved over a 15 cm drift path at 40 torr with ze...

  1. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    INSPIRE-00165402; Khachatryan, V; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  2. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  3. Monitoring High-Frequency Ocean Signals Using Low-Cost Gnss/imu Buoys

    Science.gov (United States)

    Huang, Yu-Lun; Kuo, Chung-Yen; Shih, Chiao-Hui; Lin, Li-Ching; Chiang, Kai-wei; Cheng, Kai-Chien

    2016-06-01

    In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU) that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS) or Precise Point Positioning (PPP) solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  4. Design and Feasibility Demonstration of a Deployment System for a Rocket Launched Buoy

    Science.gov (United States)

    1979-09-06

    as described in Section 3.3. 3.2 Deployment Piston After early experiments with the standard Sonobuoy deployment piston it was decided to utilize a...syzt-em- desee 4 s not limited to the electronic buoy for which it was developed but is applicable to any quasi cylindrical payload to be deployed following a rocket launch from the MK 36 launching system. -12-

  5. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  6. GPS inland water buoys for precise and high temporal resolution water level and movement monitoring

    Science.gov (United States)

    Apel, Heiko; Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas

    2010-05-01

    Monitoring of river and lake stages is one of the basic issues in understanding catchment hydrology and hydraulic systems. There are numerous techniques available for this, but in case of large water bodies technical as well as financial problems may restrict the use of traditional techniques. Therefore we explored the potential of GPS based altimetry for stage monitoring by developing small and easy to handle buoys with mounted high precision GPS devices. The advantages of the buoys are the freedom of positioning over the whole water body and their quick and easy deployment. The developed devices were tested in the Mekong Delta, Vietnam in two different locations: On the Mekong river where high currents over the flood season occur and in a small lake with hydraulic connections to a major channel with hardly any currents present. The collected GPS data were processed differentially and tested against standard pressure gauge data. The recorded stages proved to be of high quality and a valuable resource for flood monitoring and modeling. In addition to the stage data, the high-precision GPS positioning data could also be used for monitoring the movement of the buoys, from which alternating currents caused by ocean tides and flood waves could be detected, thus providing an additional information on the hydraulic system. We conclude that the developed buoys add well to the existing hydrological monitoring pool and are a goof option for the monitoring in large water bodies where a) traditional methods are technically difficult to deploy or are too costly, and b) where additional information about flow direction is needed.

  7. Detiding DART buoy data for real-time extraction of source coefficients for operational tsunami forecasting

    CERN Document Server

    Percival, Donald B; Eble, Marie C; Gica, Edison; Huang, Paul Y; Mofjeld, Harold O; Spillane, Michael C; Titov, Vasily V; Tolkova, Elena I

    2014-01-01

    U.S. Tsunami Warning Centers use real-time bottom pressure (BP) data transmitted from a network of buoys deployed in the Pacific and Atlantic Oceans to tune source coefficients of tsunami forecast models. For accurate coefficients and therefore forecasts, tides at the buoys must be accounted for. In this study, five methods for coefficient estimation are compared, each of which accounts for tides differently. The first three subtract off a tidal prediction based on (1) a localized harmonic analysis involving 29 days of data immediately preceding the tsunami event, (2) 68 pre-existing harmonic constituents specific to each buoy, and (3) an empirical orthogonal function fit to the previous 25 hrs of data. Method (4) is a Kalman smoother that uses method (1) as its input. These four methods estimate source coefficients after detiding. Method (5) estimates the coefficients simultaneously with a two-component harmonic model that accounts for the tides. The five methods are evaluated using archived data from eleven...

  8. The ODAS Italia 1 buoy: More than forty years of activity in the Ligurian Sea

    Science.gov (United States)

    Canepa, Elisa; Pensieri, Sara; Bozzano, Roberto; Faimali, Marco; Traverso, Pierluigi; Cavaleri, Luigi

    2015-06-01

    The Ligurian Sea plays a relevant role in driving both the circulation of the Western Mediterranean Sea and the weather and climate of the area. In order to better understand the peculiarities of this basin, the Oceanographic Data Acquisition System (ODAS) Italia 1 buoy was developed and deployed in the early '70s. Throughout the years, the buoy has been fitted with updated measuring and data acquiring systems. Since 2003 the buoy has been part of the Mediterranean Moored Multi-sensor Array network of fixed open ocean observatories with the W1-M3A identifier and presently constitutes one of the Mediterranean sites of the European FixO3 network. Recently, a deep-ocean sub-surface mooring line was, and is, deployed close to it in relation to specific projects. This multidisciplinary observing system is able to perform both long-term operational and ad-hoc monitoring from the lower atmosphere to the deep ocean. It is used for analysis of air-sea interaction processes, study of the physical proprieties of the water column, bio-geo-chemical monitoring of the sea, meteorological and oceanographic model evaluation, calibration of remotely sensed measurements, and development of innovative marine monitoring technologies. After reporting some historical notes and the description of the observing system, this paper summarises and reviews the main oceanographic and atmospheric studies performed during the last 15 years using the data acquired on board.

  9. Using Buoy and Radar Data to Study Sudden Wind Gusts Over Coastal Regions

    Science.gov (United States)

    Priftis, Georgios; Chronis, Themis; Lang, Timothy J.

    2017-01-01

    Significant sudden wind gusts can pose a threat to aviation near the coastline, as well as small (sailing) boats and commercial ships approaching the ports. Such cases can result in wind speed changes of more than an order of magnitude within 5 minutes, which can then last up to 20 minutes or more. Although the constellation of scatterometers is a good means of studying maritime convection, those sudden gusts are not easily captured because of the low time resolution. The National Data Buoy Center (NDBC) provides continuous measurements of wind speed and direction along the US coastal regions every 6 minutes. Buoys are platforms placed at specific places on the seas, especially along coastlines, providing data for atmospheric and oceanic studies. Next Generation Radars (NEXRADs), after the recent upgrade of the network to dual-pol systems, offer enhanced capabilities to study atmospheric phenomena. NEXRADs provide continuous full-volume scans approximately every 5 minutes and therefore are close to the time resolution of the buoy measurements. Use of single- Doppler retrievals might also provide a means of further validation.

  10. Large-Scale Examination of Spatio-Temporal Patterns of Drifting Fish Aggregating Devices (dFADs from Tropical Tuna Fisheries of the Indian and Atlantic Oceans.

    Directory of Open Access Journals (Sweden)

    Alexandra Maufroy

    Full Text Available Since the 1990s, massive use of drifting Fish Aggregating Devices (dFADs to aggregate tropical tunas has strongly modified global purse-seine fisheries. For the first time, a large data set of GPS positions from buoys deployed by French purse-seiners to monitor dFADs is analysed to provide information on spatio-temporal patterns of dFAD use in the Atlantic and Indian Oceans during 2007-2011. First, we select among four classification methods the model that best separates "at sea" from "on board" buoy positions. A random forest model had the best performance, both in terms of the rate of false "at sea" predictions and the amount of over-segmentation of "at sea" trajectories (i.e., artificial division of trajectories into multiple, shorter pieces due to misclassification. Performance is improved via post-processing removing unrealistically short "at sea" trajectories. Results derived from the selected model enable us to identify the main areas and seasons of dFAD deployment and the spatial extent of their drift. We find that dFADs drift at sea on average for 39.5 days, with time at sea being shorter and distance travelled longer in the Indian than in the Atlantic Ocean. 9.9% of all trajectories end with a beaching event, suggesting that 1,500-2,000 may be lost onshore each year, potentially impacting sensitive habitat areas, such as the coral reefs of the Maldives, the Chagos Archipelago, and the Seychelles.

  11. Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift

    DEFF Research Database (Denmark)

    Lehre, Per Kristian; Witt, Carsten

    2014-01-01

    these results handle a position-dependent (variable) drift that was not covered by previous drift theorems with tail bounds. Moreover, our theorem can be specialized into virtually all existing drift theorems with drift towards the target from the literature. Finally, user-friendly specializations...

  12. Electron drift velocities in fast Argon and CF4 based drift gases

    CERN Document Server

    van Apeldoorn, G

    1998-01-01

    98-063 Electron drift velocities in gas mixtures were measured in a tabletop experiment using a nitrogen laser to create the primary electrons. The maximum drift times for electrons in a 5 mm (10 mm) honeycomb drift cell at 2200 V anode voltage were 28 ns (53 ns) and 21 ns (61 ns) for Ar-Cf4-CH4 (75/18/6) and Ar-CF4-CO2 (68/27/5), respectively. Changing the ratio of the latter mix did not change the drift velocity very much. The gains of the gases are ~10^4 for a single primary electron. CF4 causes electron attachment. The measured drift times agree well with GARFIELD simulations.

  13. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    Science.gov (United States)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    propose an improved algorithm for sea ice age computation based on combination of sea ice drift and concentration, both derived from satellite measurements. The base sea ice drift product is from the Ocean and Sea Ice Satellite Application Facility (EUMETSAT OSI-SAF, Lavergne et al., 2011). This operational product was recently upgraded to also process ice drift during the summer season [http://osisaf.met.no/]. . The Sea Ice Concentration product from the ESA Sea Ice Climate Change Initiative (ESA SI CCI) project is used to adjust the partial concentrations at every advection step [http://esa-cci.nersc.no/]. Each grid cell is characterised by its partial concentration of water and ice of different ages. Also, sea ice convergence and divergence are used to realistically adjust the ratio of young ice / multi year ice. Comparison of results from this new algorithm with results derived from drifting ice buoys deployed in 2013 - 2016 demonstrates clear improvement in the ice age estimation. The spatial distribution of sea ice age in the new product compares better to the Sea Ice Type derived from satellite passive microwave and scatterometer measurements, both with regard to the decreased patchiness and the shape. The new ice age algorithm is developed in the context of the ESA CCI, and is designed for production of more accurate sea ice age climate data records in the future.

  14. The KLOE drift chamber VCI 2001

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervell, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; De Lucia, E. E-mail: erika.delucia@roma1.infn.it; De Robertis, G.; De Sangro, R.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U. von.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y

    2002-02-01

    The main goal of the KLOE experiment at the Frascati DAPHINE phi-factory is the study CP violation in kaon decays. The tracking device of the experiment is a drift chamber whose dimensions, 4 m of diameter and 3.3 m length, provide a large acceptance volume for the decay products of low momentum K{sub L} ({lambda}{sub L}=3.4 m). A complete stereo geometry with 12.582 cells arranged in 58 layers guarantees a high and uniform efficiency in the reconstruction of the charged K{sub L} decays. Very light materials have been chosen both for the drift medium, a helium-based gas mixture, and for the mechanical structure, made of carbon fiber, to minimize multiple scattering and conversion of low-energy photons. The design requirements, the adopted solutions together with the calibration procedure and the tracking performances of the drift chamber are discussed.

  15. Epigenetic drift, epigenetic clocks and cancer risk.

    Science.gov (United States)

    Zheng, Shijie C; Widschwendter, Martin; Teschendorff, Andrew E

    2016-05-01

    It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.

  16. The KLOE drift chamber VCI 2001

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervell, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; De Lucia, E; De Robertis, G; De Simone, P; De Zorzi, G; De Sangro, R; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Murtas, F; Müller, S; Napolitano, M; Nedosekin, A; Pacciani, L; Pagès, P; Palutan, M; Panareo, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Von Hagel, U; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2002-01-01

    The main goal of the KLOE experiment at the Frascati DAPHINE phi-factory is the study CP violation in kaon decays. The tracking device of the experiment is a drift chamber whose dimensions, 4 m of diameter and 3.3 m length, provide a large acceptance volume for the decay products of low momentum K sub L (lambda sub L =3.4 m). A complete stereo geometry with 12.582 cells arranged in 58 layers guarantees a high and uniform efficiency in the reconstruction of the charged K sub L decays. Very light materials have been chosen both for the drift medium, a helium-based gas mixture, and for the mechanical structure, made of carbon fiber, to minimize multiple scattering and conversion of low-energy photons. The design requirements, the adopted solutions together with the calibration procedure and the tracking performances of the drift chamber are discussed.

  17. Learning in the context of distribution drift

    Science.gov (United States)

    2017-05-09

    AFRL-AFOSR-JP-TR-2017-0039 Learning in the context of distribution drift Geoff Webb MONASH UNIVERSITY Final Report 05/09/2017 DISTRIBUTION A...Department of Defense, Executive Services, Directorate (0704-0188).   Respondents should be aware that notwithstanding any other provision of law, no person ...23 Apr 2015 to 22 Apr 2017 4.  TITLE AND SUBTITLE Learning in the context of distribution drift 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1

  18. Shock drift mechanism for Forbush decreases

    Science.gov (United States)

    Cheng, Andrew F.; Sarris, E. T.; Dodopoulos, C.

    1990-01-01

    Consideration is given to the way in which Forbush decreases can arise from variable drifts in nonuniform shocks, where the variation in shock strength along the shock front causes both the shock drift distance and the energy gain to become variable. More particles can then be transported out of a given region of space and energy interval than were transported in, so a spacecraft passing through this region can observe a Forbush decrease in this energy interval despite shock energization and compression. A simple example of how this can occur is presented.

  19. Ultra-low mass drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Assiro, R. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Cappelli, L. [Università di Cassino e del Lazio Meridionale (Italy); Cascella, M. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento Matematica e Fisica, Università del Salento (Italy); De Lorenzis, L. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento di Ingegneria dell' Innovazione, Università del Salento (Italy); Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Ignatov, F. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); L' Erario, A.; Maffezzoli, A. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento di Ingegneria dell' Innovazione, Università del Salento (Italy); Miccoli, A. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Onorato, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Università G. Marconi, Roma (Italy); Perillo, M. [EnginSoft S.p.a., Trento (Italy); Piacentino, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Fermilab, Batavia, IL (United States); Università G. Marconi, Roma (Italy); Rella, S. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento di Ingegneria dell' Innovazione, Università del Salento (Italy); Rossetti, F. [EnginSoft S.p.a., Trento (Italy); Spedicato, M. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Tassielli, G., E-mail: giovanni.tassielli@le.infn.it [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Università G. Marconi, Roma (Italy); and others

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100–200 keV/c) for particle momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce.

  20. Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys

    Science.gov (United States)

    Murray, R.; Rastegar, J.

    2009-03-01

    Harvesting mechanical energy from ocean wave oscillations for conversion to electrical energy has long been pursued as an alternative or self-contained power source. The attraction to harvesting energy from ocean waves stems from the sheer power of the wave motion, which can easily exceed 50 kW per meter of wave front. The principal barrier to harvesting this power is the very low and varying frequency of ocean waves, which generally vary from 0.1Hz to 0.5Hz. In this paper the application of a novel class of two-stage electrical energy generators to buoyant structures is presented. The generators use the buoy's interaction with the ocean waves as a low-speed input to a primary system, which, in turn, successively excites an array of vibratory elements (secondary system) into resonance - like a musician strumming a guitar. The key advantage of the present system is that by having two decoupled systems, the low frequency and highly varying buoy motion is converted into constant and much higher frequency mechanical vibrations. Electrical energy may then be harvested from the vibrating elements of the secondary system with high efficiency using piezoelectric elements. The operating principles of the novel two-stage technique are presented, including analytical formulations describing the transfer of energy between the two systems. Also, prototypical design examples are offered, as well as an in-depth computer simulation of a prototypical heaving-based wave energy harvester which generates electrical energy from the up-and-down motion of a buoy riding on the ocean's surface.

  1. CRED SVP Drifting Buoy Argos_ID 24961 Data, South of Necker, in the Northwestern Hawaiian Islands, 200109-200406 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24961 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  2. CRED SVP Drifting Buoy Argos_ID 24756 Data, 10mn East of Upolu, in the American Samoa, 200307-200310 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24756 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  3. CRED SVP Drifting Buoy Argos_ID 30350 Data near Laysan Island in the NW Hawaiian Islands, 200209-200412 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30350 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  4. CRED SVP Drifting Buoy Argos_ID 44770 Data, NW Tutuila in the American Samoa, 200402-200503 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 44770 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  5. CRED SVP Drifting Buoy Argos_ID 28078 Data, Stingray Shoals in the Marianas Archipelago, 200308-200412 (NODC Accession 0067473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 28078 was deployed in the region of Marianas Archipelago to assess ocean currents and sea surface temperature. SVP drifter data files...

  6. CRED SVP Drifting Buoy Argos_ID 29098 Data, Necker Island in the Northwestern Hawaiian Islands, 200307-200410 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29098 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  7. CRED SVP Drifting Buoy Argos_ID 24946 Data, north of Niihau, in the NW Hawaiian Islands, 200110-200209 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24946 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  8. CRED SVP Drifting Buoy Argos_ID 29102 Data, Lisianski Island in the Northwestern Hawaiian Islands, 200307-200310 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29102 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  9. CRED SVP Drifting Buoy Argos_ID 30288 Data near Necker in the NW Hawaiian Islands, 200209-200404 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30288 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  10. CRED SVP Drifting Buoy Argos_ID 29106 Data, Laysan Island in the Northwestern Hawaiian Islands, 200307-200411 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29106 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  11. CRED SVP Drifting Buoy Argos_ID 24754 Data, between Ofu and Tutuila, in the American Samoa, 200307-200308 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24754 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  12. CRED SVP Drifting Buoy Argos_ID 44769 Data, Enroute to Manua from Tutuila, in the American Samoa, 200402-200406 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 44769 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  13. CRED SVP Drifting Buoy Argos_ID 30311 Data between Nihoa and Niihau in the NW Hawaiian Islands, 200210-200402 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30311 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  14. CRED SVP Drifting Buoy Argos_ID 29097 Data near Nihoa Island, in the Northwestern Hawaiian Islands, 200307-200412 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29097 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  15. CRED SVP Drifting Buoy Argos_ID 30111 Data, French Frigate Shoals in the Northwestern Hawaiian Islands, 200210-200309 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 30111 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  16. CRED SVP Drifting Buoy Argos_ID 24955 Data at Bank 8, in the NW Hawaiian Islands, 200110-200504 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24955 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  17. CRED SVP Drifting Buoy Argos_ID 24953 Data at Laysan/Pioneer Bank in the NW Hawaiian Islands, 200110-200504 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24953 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  18. CRED SVP Drifting Buoy Argos_ID 24949 Data, between Maro Reef and Raita Bank in the Northwestern Hawaiian Islands , 200109-200309 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24949 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  19. CRED SVP Drifting Buoy Argos_ID 24958 Data at Southeast Brooks Bank in the NW Hawaiian Islands, 200110-200409 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 24958 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  20. CRED SVP Drifting Buoy Argos_ID 29109 Data on the south side of Swains Island, American Samoa , 200402-200606 (NODC Accession 0067474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29109 was deployed in the region of American Samoa to assess ocean currents and sea surface temperature. SVP drifter data files contain...

  1. CRED SVP Drifting Buoy Argos_ID 29101 Data, Kure Atoll in the Northwestern Hawaiian Islands, 200308-200509 (NODC Accession 0049436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CRED SVP drifter Argos_ID 29101 was deployed in the region of NW Hawaiian Islands to assess ocean currents and sea surface temperature. SVP drifter data files...

  2. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    Science.gov (United States)

    Lukovich, Jennifer V.; Geiger, Cathleen A.; Barber, David G.

    2017-07-01

    A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ˜ 3) to ballistic (α ˜ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  3. Psychometric Consequences of Subpopulation Item Parameter Drift

    Science.gov (United States)

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  4. Low-drift micro flow sensors

    NARCIS (Netherlands)

    Dijkstra, Marcel

    2009-01-01

    The emerging fields of micro total-analysis systems (micro-TAS), micro-reactors and bio-MEMS drives the need for further miniaturisation of sensors measuring quantities such as pressure, temperature and flow. The research described in this thesis concerns the development of low-drift micro flow sens

  5. Psychometric Consequences of Subpopulation Item Parameter Drift

    Science.gov (United States)

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  6. Ion Landau Damping on Drift Tearing Modes

    CERN Document Server

    Connor, J W; Zocco, A

    2012-01-01

    The equations governing the ion Landau damping (ILD) layers for a drift tearing mode are derived and solved to provide a matching to ideal MHD solutions at large $x$ and to the drift tearing solution emerging from the ion kinetic region, $k\\rho_{i}\\sim1$, at small $x,$ the distance from the rational surface. The ILD layers lie on either side of the mode rational surface at locations defined by $k_{y}xV_{Ti}/L_{s}=\\omega_{*e}(1+0.73\\eta_{e})$ and have been ignored in many previous analyses of linear drift tearing stability. The effect of the ILD layer on the drift tearing mode is to introduce an additional stabilizing contribution, requiring even larger values of the stability index, $\\Delta^{\\prime}$ for instability, than predicted by Connor Hastie and Zocco [PPCF,54, 035003, (2012)] and Cowley, Kulsrud and Hahm [Phys. Fluids,29, 3230, (1986)]. The magnitude and scaling of the new stabilizing effect in slab geometry is discussed.

  7. Stable discrete representation of relativistically drifting plasmas

    CERN Document Server

    Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R

    2016-01-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  8. Plate Tectonics and Continental Drift: Classroom Ideas.

    Science.gov (United States)

    Stout, Prentice K.

    1983-01-01

    Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)

  9. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using differ

  10. Mode selective control of drift wave turbulence

    DEFF Research Database (Denmark)

    Schröder, C.; Klinger, T.; Block, D.;

    2001-01-01

    Experiments on spatiotemporal open-loop synchronization of drift wave turbulence in a magnetized cylindrical plasma are reported. The synchronization effect is modeled by a rotating current profile with prescribed mode structure. Numerical simulations of an extended Hasegawa-Wakatani model show g...

  11. Visualizing CMS muon drift tubes’ currents

    CERN Document Server

    Hamarik, Lauri

    2015-01-01

    This report documents my work as a summer student in the CMS DT group at CERN in July and August of 2015. During that time, I have participated in relocating DT monitoring experiment to GIF++ site and creating software to analyze drift tubes’ wires current dependence on luminosity and radioactivity.

  12. Drift wave launching in a linear quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.Y.; Elliott, J.A.; Rusbridge, M.G. (Manchester Univ. (UK). Inst. of Science and Technology)

    1989-12-01

    Drift waves have been successfully launched from flag probes in a steady-state magnetized plasma, and the launching mechanism has been identified. Non-linear interactions are observed between launched and intrinsic waves. A wide range of further experimental studies is thus made possible, of fundamental relevance to plasma confinement. (author).

  13. A large acceptance cylindrical drift chamber detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, D.A. [Texas Univ., Austin, TX (United States); Bachman, M.G. [Texas Univ., Austin, TX (United States); Coffey, W.P. [Texas Univ., Austin, TX (United States); Glass, G. [Texas Univ., Austin, TX (United States); McNaughton, K.H. [Texas Univ., Austin, TX (United States); Riley, P.J. [Texas Univ., Austin, TX (United States); Adams, D.L. [Rice University, Houston, TX 77251 (United States); Gaussiran, T.L. [Rice University, Houston, TX 77251 (United States); Hungerford, E.V. [University of Houston, Houston, TX 77204 (United States); Lan, K.A. [University of Houston, Houston, TX 77204 (United States); Johnston, K. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); McNaughton, M.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Penttila, S.I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Supek, I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    1995-10-01

    This paper describes a large acceptance cylindrical drift chamber detector designed and built for the study of the np{yields}pp{pi}{sup -} reaction at neutron beam energies in the range 500-800 MeV. Details of construction, electronics, testing, and detection efficiencies and resolutions are presented. (orig.).

  14. Stochastic Evolution Equations with Adapted Drift

    NARCIS (Netherlands)

    Pronk, M.

    2013-01-01

    In this thesis we study stochastic evolution equations in Banach spaces. We restrict ourselves to the two following cases. First, we consider equations in which the drift is a closed linear operator that depends on time and is random. Such equations occur as mathematical models in for instance

  15. Effects of Drifting Macroalgae in Eelgrass Ecosystems

    DEFF Research Database (Denmark)

    Canal Vergés, Paula; Valdemarsen, Thomas Bruun; Kristensen, Erik

    2010-01-01

    and physical damage on eelgrass can occur when macroalgae are drifting as bedload. The ballistic effect of moving macroalgae on surface sediment was tested in the field as well as in a series of annular flume experiments, where simultaneous measurements of macroalgae transport and turbidity were measured...

  16. Effects of Drifting Macroalgae in Eelgrass Ecosystems

    DEFF Research Database (Denmark)

    Canal Vergés, Paula; Valdemarsen, Thomas Bruun; Kristensen, Erik

    2010-01-01

    It has been suggested that current-driven macroalge transport in shallow lagoons and estuaries may negatively impact eelgrass through increased turbidity and physical stress. Increased turbidity and lower light availability for eelgrass may result when drifting macroalgae erode surface sediment a...

  17. Steps towards commercialization of new power buoy with pivoting arm LOPF

    DEFF Research Database (Denmark)

    2013-01-01

    direct measurements from the model device are: voltage output, the torque on the generator, the arm bending moment produced by the mooring line and the absolute angle of the pivoting float. These allowed to follow the conversion of power in the power train from mechanic to electric power......The fully instrumented Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg University. Some...

  18. General Analysis of Directional Ocean Wave Data from Heave Pitch Roll Buoys

    Directory of Open Access Journals (Sweden)

    Stephen F. Barstow

    1984-01-01

    Full Text Available Directional ocean wave data is usually analysed using the so-called linear model of the sea surface, but experience has shown that the results may deviate substantially from the predictions of the theory, in particular in the high frequency range. A general theory is presented here which includes the linear model as a special case. Properties of commonly used parameters under the influence of currents and non-linearities are easily explained within the general theory. Some results from the NORWAVE heave/pitch/roll data buoy operated offshore Norway are also presented.

  19. A concept study for extraterrestrial sea exploration of Titan via Deployable And Versatile Instrument Device (DAVID) Buoys

    Science.gov (United States)

    Smith, Mary Katelyn

    Saturn's moon, Titan, has been a scientific marvel since Cassini's flyby discovered methane-ethane lakes in the northern hemisphere. Several science missions to explore these lakes have been proposed, but none have been launched. Using these previous mission designs, as well as the success of the Huygens probe, this paper will discuss the development of a deployable multi-buoy system with the intent of studying the methane-ethane lakes. The buoys will study the chemical makeup of the lakes, determine meteorology of Titan atmosphere, and map the depth and floor of the targeted lakes. This thesis is a concept study on the multi-buoy system that reviews briefly the concept and design.

  20. 轴角传感器对 GEO 卫星跟踪的影响分析%Analysis of Shaft Angle Sensor to the Influence for the GEO Satellite Tracking

    Institute of Scientific and Technical Information of China (English)

    吕鑫; 刘京

    2016-01-01

    sensor for because of the internal elastic structure and working environment is easy to produce deformation of hard-ware,causing abnormal tracking of the antenna to the satellite,and satellite navigation systems provide navigation and positio-ning services have an impact.According to the satellite motion law to judge the satellite abnormal and the movement position re-lationship,analyze the satellite payload anomaly even loss of lock of fault principle,the emergency disposal methods of adjus-ting the angle of offset antenna is put forward.In this paper,the principle and working process of the antenna program track-ing,the working structure of the axis angle sensor,the impact analysis and the effect of the fault treatment are described in the paper.The conclusion shows that the fault principle is correct and the emergency disposal measures can ensure the satellite tracking of the antenna is not lost,and the navigation information is not interrupted.

  1. Generalization of the one dimensional modeling and design considerations of spiral Si drift detectors: Flat (straight) drift channels and constant drift fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Manwen, E-mail: mwliu1993@163.com; Li, Zheng, E-mail: zhengli58@gmail.com

    2016-07-11

    The one-dimensional design consideration for the spiral (cylindrical geometry) Si drift detector (SDD) has been modified and generalized for small drift distance (R) compatible to the detector thickness (d), i.e. for R–d, and for non uniform backside biasing situations. By applying a non uniform biasing voltage with a gradient similar (proportional) to the front side, one can increase the reach-through voltage, resulting in a large drift field for carriers. This can be important for large R (>3 mm). With a careful design of electric field profiles on both sides, one can obtain the optimum case of a spiral SDD with a straight (flat) drift channel and constant drift field throughout the carrier drift channel. The previous solution in the literature is an approximation of this work for R»d and with a curved drift channel.

  2. Generalization of the one dimensional modeling and design considerations of spiral Si drift detectors: Flat (straight) drift channels and constant drift fields

    Science.gov (United States)

    Liu, Manwen; Li, Zheng

    2016-07-01

    The one-dimensional design consideration for the spiral (cylindrical geometry) Si drift detector (SDD) has been modified and generalized for small drift distance (R) compatible to the detector thickness (d), i.e. for R-d, and for non uniform backside biasing situations. By applying a non uniform biasing voltage with a gradient similar (proportional) to the front side, one can increase the reach-through voltage, resulting in a large drift field for carriers. This can be important for large R (>3 mm). With a careful design of electric field profiles on both sides, one can obtain the optimum case of a spiral SDD with a straight (flat) drift channel and constant drift field throughout the carrier drift channel. The previous solution in the literature is an approximation of this work for R»d and with a curved drift channel.

  3. Barber's Point, Oahu, Hawaii Drift Card Study 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drift cards were be released from Barber's Point, Oahu, approximately once a month during the two year span to get an idea of the distribution of card drift under...

  4. Exploring Genetic Drift and Natural Selection through a Simulation Activity.

    Science.gov (United States)

    Maret, Timothy J.; Rissing, Steven W.

    1998-01-01

    Reports on the development of a laboratory exercise that would allow students to explore the concept of genetic drift. Discusses the concept of genetic drift that is coincident with natural selection and that closely models the real world. (DDR)

  5. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  6. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices......A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  7. Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate

    KAUST Repository

    Giraldi, Loic

    2017-04-07

    This work addresses the estimation of the parameters of an earthquake model by the consequent tsunami, with an application to the Chile 2010 event. We are particularly interested in the Bayesian inference of the location, the orientation, and the slip of an Okada-based model of the earthquake ocean floor displacement. The tsunami numerical model is based on the GeoClaw software while the observational data is provided by a single DARTⓇ buoy. We propose in this paper a methodology based on polynomial chaos expansion to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first proposed in order to represent the discrepancy between the computational model and the data. This step is necessary, as a classical independent Gaussian noise is shown to be unsuitable for modeling the error, and to prevent convergence of the Markov Chain Monte Carlo sampler. Second, the polynomial chaos model is subsequently improved to handle the variability of the arrival time of the wave, using a preconditioned non-intrusive spectral method. Finally, the construction of a reduced model dedicated to Bayesian inference is proposed. Numerical results are presented and discussed.

  8. Longevity of Emplacement Drift Ground Support Materials

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David H.

    2001-05-30

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. REV 01 ICN 01 of this analysis is developed in accordance with AP-3.10Q, Analyses and Models, Revision 2, ICN 4, and prepared in accordance with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001a). The objective of this analysis is to update the previous analysis (CRWMS M&O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M&O 2000b), the Monitored Geologic Repository Project Description Document, which is included in the Requirements and Criteria for Implementing a Repository Design that can be Operated Over a Range of Thermal Modes (BSC 2001), input information, and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and granular natural material. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts. (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period. (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment. (4) Evaluate factors

  9. Drifting snow climate of the Antarctic and Greenland ice sheets

    NARCIS (Netherlands)

    Lenaerts, J.T.M.

    2013-01-01

    This study presents the drifting snow climate of the Earth's ice sheets, Antarctica and Greenland. For that purpose we use a regional atmospheric climate model, RACMO2. We included a routine that is able to calculate the drifting snow fluxes and accounts for the interaction between drifting snow on

  10. Drifting snow climate of the Antarctic and Greenland ice sheets

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163

    2013-01-01

    This study presents the drifting snow climate of the Earth's ice sheets, Antarctica and Greenland. For that purpose we use a regional atmospheric climate model, RACMO2. We included a routine that is able to calculate the drifting snow fluxes and accounts for the interaction between drifting snow on

  11. Rough differential equations with unbounded drift term

    Science.gov (United States)

    Riedel, S.; Scheutzow, M.

    2017-01-01

    We study controlled differential equations driven by a rough path (in the sense of T. Lyons) with an additional, possibly unbounded drift term. We show that the equation induces a solution flow if the drift grows at most linearly. Furthermore, we show that the semiflow exists assuming only appropriate one-sided growth conditions. We provide bounds for both the flow and the semiflow. Applied to stochastic analysis, our results imply strong completeness and the existence of a stochastic (semi)flow for a large class of stochastic differential equations. If the driving process is Gaussian, we can further deduce (essentially) sharp tail estimates for the (semi)flow and a Freidlin-Wentzell-type large deviation result.

  12. Clean Industrial Room for Drift Tube Assembling

    CERN Document Server

    Glonti, GL; Evtoukhovitch, P G; Kroa, G; Manz, A; Potrap, I N; Rihter, P; Stoletov, G D; Tskhadadze, E G; Chepurnov, V F; Chirkov, A V; Shelkov, G A

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has been confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volum (\\sim 190 m^3), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2 %). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer.

  13. Gas sensor with attenuated drift characteristic

    Science.gov (United States)

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  14. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  15. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...

  16. Some remarks on electronics for drift chambers

    CERN Document Server

    Verweij, H

    1973-01-01

    A brief outline of the required functions is given. Analogue and digital time measuring methods are compared. Amplifiers and current division circuits are discussed. A method for storage of analogue information, and the analogue shift register, is proposed. Functional block diagrams and more detailed information is given on complete systems, which are at present being developed at CERN. They allow the measurement of two orthogonal coordinates, one by the drift time, the other by the current division. (6 refs).

  17. Silicon drift detectors in the ALICE experiment

    CERN Document Server

    Bonvicini, V; Crescio, E; Giubellino, P; Hernández-Montoya, R; Kolojvari, A A; Mazza, G; Montaño-Zetina, L M; Nissinen, J; Nouais, D; Rashevsky, A; Rivetti, A; Tosello, F; Vacchi, A

    2000-01-01

    Silicon drift detectors (SDDs) are well suited to high-energy physics experiments with relatively low event rates. In particular SDDs will be used for the two intermediate layers of the Inner Tracking System of the ALICE experiment. Beam test results of linear SDD prototypes have shown a resolution of 40*30 mu m/sup 2/ and a cluster finding efficiency of essentially 100% with E=600 V/cm. (6 refs).

  18. The drift chambers of the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anfreville, M.; Astier, P.; Authier, M.; Baldisseri, A.; Banner, M.; Besson, N.; Bouchez, J.; Castera, A.; Cloue, O.; Dumarchez, J. E-mail: jacques.dumarchez@cern.ch; Dumps, L.; Gangler, E.; Gosset, J.; Hagner, C.; Jollec, C.; Lachaud, C.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Meyer, J.-P.; Ouriet, J.-P.; Passerieux, J.-P.; Margaley, T.P.T. Pedrol; Placci, A.; Pluquet, A.; Poinsignon, J.; Popov, B.A.; Rathouit, P.; Schahmaneche, K.; Stolarczyk, T.; Uros, V.; Vannucci, F.; Vo, M.K.; Zaccone, H

    2002-04-01

    We present a detailed description of the drift chambers used as an active target and a tracking device in the NOMAD experiment at CERN. The main characteristics of these chambers are a large area (3{center_dot}3 m{sup 2}), a self-supporting structure made of light composite materials and a low cost. A spatial resolution of 150 {mu}m has been achieved with a single hit efficiency of 97%.

  19. Unintended Positional Drift and Its Potential Solutions

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2013-01-01

    Walking-In-Place interaction techniques seem particularly useful in relation to immersive virtual environments where the user's movement is greatly constrained by a limited physical space. However, current techniques may not be particularly useful in combination with head-mounted displays since...... many users unintentionally move forward while walking in place. We refer to this phenomenon accidental movement as Unintended Positional Drift. The poster presents evidence of the phenomenon's existence and subsequently discusses different design solutions which potentially could circumvent the problem....

  20. The drift table: designing for ludic engagement

    OpenAIRE

    2004-01-01

    The Drift Table is an electronic coffee table that displays slowly moving aerial photography controlled by the distribution of weight on its surface. It was designed to investigate our ideas about how technologies for the home could support ludic activities-that is, activities motivated by curiosity, exploration, and reflection rather than externally-defined tasks. The many design choices we made, for example to block or disguise utilitarian functionality, helped to articulate our emerging un...

  1. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    OpenAIRE

    2016-01-01

    The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FE...

  2. Correlated Energy Exchange in Drifting Sea Ice

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2011-01-01

    Full Text Available The ice floe speed variations were monitored at the research camp North Pole 35 established on the Arctic ice pack in 2008. A three-month time series of measured speed values was used for determining changes in the kinetic energy of the drifting ice floe. The constructed energy distributions were analyzed by methods of nonextensive statistical mechanics based on the Tsallis statistics for open nonequilibrium systems, such as tectonic formations and drifting sea ice. The nonextensivity means the nonadditivity of externally induced energy changes in multicomponent systems due to dynamic interrelation of components having no structural links. The Tsallis formalism gives one an opportunity to assess the correlation between ice floe motions through a specific parameter, the so-called parameter of nonextensivity. This formalistic assessment of the actual state of drifting pack allows one to forecast some important trends in sea ice behavior, because the level of correlated dynamics determines conditions for extended mechanical perturbations in ice pack. In this work, we revealed temporal fluctuations of the parameter of nonextensivity and observed its maximum value before a large-scale sea ice fragmentation (faulting of consolidated sea ice. The correlation was not detected in fragmented sea ice where long-range interactions are weakened.

  3. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  4. Ambipolar Drift Heating in Turbulent Molecular Clouds

    CERN Document Server

    Padoan, P; Nordlund, A A; Padoan, Paolo

    1999-01-01

    Although thermal pressure is unimportant dynamically in most molecular gas, the temperature is an important diagnostic of dynamical processes and physical conditions. This is the first of two papers on thermal equilibrium in molecular clouds. We present calculations of frictional heating by ion-neutral (or ambipolar) drift in three-dimensional simulations of turbulent, magnetized molecular clouds. We show that ambipolar drift heating is a strong function of position in a turbulent cloud, and its average value can be significantly larger than the average cosmic ray heating rate. The volume averaged heating rate per unit volume due to ambipolar drift, H_AD ~ |JxB|^2 ~ B^4/L_B^2, is found to depend on the rms Alfvenic Mach number, M_A, and on the average field strength, as H_AD ~ M_A^2^4. This implies that the typical scale of variation of the magnetic field, L_B, is inversely proportional to M_A, which we also demonstrate.

  5. Longevity of Emplacement Drift Ground Support Materials

    Energy Technology Data Exchange (ETDEWEB)

    D. Tang

    2000-01-07

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for selection of materials for ground support that will function throughout the preclosure period. The Development Plan (DP) for this analysis is given in CRWMS M&O (Civilian Radioactive Waste Management System Management and Operating Contractor) (1999a). The candidate materials for ground support are steel (carbon steel, ductile cast iron, galvanized steel, and stainless steel, etc.) and cement. Steel will mainly be used for steel sets, lagging, channels, rock bolts, and wire mesh. Cement usage is only considered in the case of grouted rock bolts. The candidate materials for the invert structure are steel and crushed rock ballast. The materials shall be evaluated for the repository emplacement drift environment under a specific thermal loading condition based on the proposed License Application Design Selection (LADS) design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground control materials for use in emplacement drifts. (2) Review existing documents concerning behavior of candidate ground control materials during the preclosure period. The major criteria to be considered for steel are mechanical and thermal properties, and durability, of which corrosion is the most important concern. (3) Evaluate the available results and develop recommendations for material(s) to be used.

  6. Social diffusion and global drift on networks

    Science.gov (United States)

    Sayama, Hiroki; Sinatra, Roberta

    2015-03-01

    We study a mathematical model of social diffusion on a symmetric weighted network where individual nodes' states gradually assimilate to local social norms made by their neighbors' average states. Unlike physical diffusion, this process is not state conservational and thus the global state of the network (i.e., sum of node states) will drift. The asymptotic average node state will be the average of initial node states weighted by their strengths. Here we show that, while the global state is not conserved in this process, the inner product of strength and state vectors is conserved instead, and perfect positive correlation between node states and local averages of their self-neighbor strength ratios always results in upward (or at least neutral) global drift. We also show that the strength assortativity negatively affects the speed of homogenization. Based on these findings, we propose an adaptive link weight adjustment method to achieve the highest upward global drift by increasing the strength-state correlation. The effectiveness of the method was confirmed through numerical simulations and implications for real-world social applications are discussed.

  7. Wind tunnel observations of drifting snow

    Science.gov (United States)

    Paterna, Enrico; Crivelli, Philip; Lehning, Michael

    2016-04-01

    Drifting snow has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by drifting snow. Understanding the dynamic of snow saltation is crucial to the accurate description of the process. We applied digital shadowgraphy in a cold wind tunnel to measure drifting snow over natural snow covers. The acquisition and evaluation of time-resolved shadowgraphy images allowed us to resolve a large part of the saltation layer. The technique has been successfully compared to the measurements obtained from a Snow Particle Counter, considered the most robust technique for snow mass-flux measurements so far. The streamwise snow transport is dominated by large-scale events. The vertical snow transport has a more equal distribution of energy across the scales, similarly to what is observed for the flow turbulence velocities. It is hypothesized that the vertical snow transport is a quantity that reflects the local entrainment of the snow crystals into the saltation layer while the streamwise snow transport results from the streamwise development of the trajectories of the snow particles once entrained, and therefore is rather a non-local quantity.

  8. Chemotaxis when bacteria remember: drift versus diffusion.

    Directory of Open Access Journals (Sweden)

    Sakuntala Chatterjee

    2011-12-01

    Full Text Available Escherichia coli (E. coli bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise between drift toward favorable regions and accumulation in favorable regions. A number of earlier studies assume that a bacterium resets its memory at tumbles - a fact not borne out by experiment - and make use of approximate coarse-grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In the adaptive case, favorable drift occurs together with favorable accumulation. We derive our results from detailed simulations and a variety of analytical arguments. In particular, we introduce a new coarse-grained description of chemotaxis as biased diffusion, and we discuss the way it departs from older coarse-grained descriptions.

  9. Internal Clock Drift Estimation in Computer Clusters

    Directory of Open Access Journals (Sweden)

    Hicham Marouani

    2008-01-01

    Full Text Available Most computers have several high-resolution timing sources, from the programmable interrupt timer to the cycle counter. Yet, even at a precision of one cycle in ten millions, clocks may drift significantly in a single second at a clock frequency of several GHz. When tracing the low-level system events in computer clusters, such as packet sending or reception, each computer system records its own events using an internal clock. In order to properly understand the global system behavior and performance, as reported by the events recorded on each computer, it is important to estimate precisely the clock differences and drift between the different computers in the system. This article studies the clock precision and stability of several computer systems, with different architectures. It also studies the typical network delay characteristics, since time synchronization algorithms rely on the exchange of network packets and are dependent on the symmetry of the delays. A very precise clock, based on the atomic time provided by the GPS satellite network, was used as a reference to measure clock drifts and network delays. The results obtained are of immediate use to all applications which depend on computer clocks or network time synchronization accuracy.

  10. Giving cosmic redshift drift a whirl

    Science.gov (United States)

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  11. Transient chaotic transport in dissipative drift motion

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)

    2016-04-22

    Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.

  12. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    Directory of Open Access Journals (Sweden)

    ABDELAZIZ BEDDIAF

    2016-03-01

    Full Text Available The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FEA made in COMSOL. The model solved by COMSOL environment takes into account the entire sensor and thermal effects due to the temperature considering the materials’ properties, the geometric shape and also the heat transfer mechanisms. By COMSOL we determine how the temperature affects the sensor during the manufacturing process. For that end, we calculated the thermal drift of capacitance at rest, the thermal coefficients and we compared them with experimental results to validate our model. Further, we studied the thermal drift of sensor characteristics both at rest and under constant and uniform pressure. Further, our study put emphasis on the geometric influence parameters on these characteristics to optimize the sensor performance. Finally, this study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the geometrical parameters.

  13. Wave hindcast studies using SWAN nested in WAVEWATCH III - comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Sandhya, K.G.; Nair, T.M.B.; Rathod, J.L.

    was tested. The performance of WW3 was evaluated with the measured deep water buoy data at 15.0000° N, 69.0000° E. Overall, the WW3 wave hindcast results using ST4 physics in deep water show a reasonable match (r=0.97 and SI=0.16) with the measured...

  14. Comparison of ERA-Interim waves with buoy data in the eastern Arabian Sea during high waves

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    at two locations in eastern Arabian Sea One location is a deep water location and another one is a shallow water location The comparison of significant wave height (SWH) between ERA dataset and buoy data at both the locations shows good correlation...

  15. In-Drift Precipitates/Salts Analysis

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2001-01-10

    As directed by a written development plan (CRWMS M&O 1999a), an analysis of the effects of salts and precipitates on the repository chemical environment is to be developed and documented in an Analyses/Model Report (AMR). The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The purpose of this ICN is to qualify and document qualification of the AMR's technical products. The scope of this document is to develop a model of the processes that govern salt precipitation and dissolution and resulting water composition in the Engineered Barrier System (EBS). This model is developed to serve as a basis for the in-drift geochemical modeling work performed by PAO and is to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. However, the concepts may also apply to some near and far field geochemical processes and can have conceptual application within the unsaturated zone and saturated zone transport modeling efforts. The intended use of the model developed in this report is to estimate, within an appropriate level of confidence, the pH, chloride concentration, and ionic strength of water on the drip shield or other location within the drift during the post-closure period. These estimates are based on evaporative processes that are subject to a broad range of potential environmental conditions and are independent of the presence or absence of backfill. An additional intended use is to estimate the environmental conditions required for complete vaporization of water. The presence and composition of liquid water

  16. Ground Control for Emplacement Drifts for SR

    Energy Technology Data Exchange (ETDEWEB)

    Y. Sun

    2000-04-07

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k_0=0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the

  17. Reconnection and Spire Drift in Coronal Jets

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Falconer, David

    2015-04-01

    It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as

  18. An Oceanographic Buoy for Multidisciplinary Education and Research in a Coastal Embayment Prone to Harmful Algal Blooms

    Science.gov (United States)

    Laine, E. P.; Roesler, C.; Teegarden, G.

    2005-12-01

    In the spring of 2006 a consortium of Bowdoin College, Bigelow Laboratory for Ocean Sciences, and Saint Joseph's College of Maine will begin the operation of an oceanographic buoy in Harpswell Sound, part of the Casco Bay region of coastal Maine. Funding for acquisition of the buoy has been provided by NSF's MRI program. The sensing buoy will measure physical climatic and oceanographic variables, as well as a suite of biogeochemical indicators (nutrients, chlorophyll, light absorption, etc.). The data collected will be publicly available in real time and will contribute to the overall Gulf of Maine Ocean Observing System (GoMOOS) monitoring program, a premier and ground-breaking effort in assessing the physical and biogeochemical characteristics of the Gulf of Maine. Harpswell Sound is known as an indicator region for harmful algal blooms (HABs) of toxic Alexandrium spp. microalgae, and is an ideal location to employ long-term, comprehensive, remote and real-time monitoring to characterize model systems that promote HABs, as well as system response to changing watershed use patterns and evolving cultural eutrophication. Data acquired with the buoy's sensors, both streaming in real-time and archived in larger sets, will be used in course work at Bowdoin College and Saint Joseph's College, and will be available for use by other post-secondary institutions. Immediate applications include use of data in course work to understand the influence of physical oceanographic processes on biological processes in three dimensions and through time from an Eulerian perspective. The influence of climatic events and the geological characteristics of the surrounding watershed will also be recorded and analyzed through earth science course work. Bowdoin College has a marine research station immediately adjacent on the shore of Harpswell Sound, facilitating complementary traditional monitoring opportunities, e.g. targeted and detailed sampling of interesting features indicated by the

  19. Airborne organophosphate pesticides drift in Mediterranean climate: The importance of secondary drift

    Science.gov (United States)

    Zivan, Ohad; Segal-Rosenheimer, Michal; Dubowski, Yael

    2016-02-01

    Pesticide application is a short-term air-pollution episode with near and far field effects due to atmospheric drift. In order to better evaluate resulting air concentrations in nearby communities following pesticide application, measurements of airborne pesticides were conducted at ∼70 m from field edge. This was done following three different application events of the organophosphate pesticide Chlorpyrifos in a persimmon orchard. Complementary information on larger spatial scale was obtained using CALPUFF modeling in which application and meteorological data was used to better evaluate dispersion patterns. Measurements indicated high airborne concentrations during application hours (few μg m-3 for 8 h average), which dropped to tens of ng m-3 in the following days. Measured atmospheric concentrations show that secondary drift (i.e., post-application drift) involves significant loads of pesticides and hence should not be ignored in exposure considerations. Furthermore, CALPUFF modeling revealed the complex dispersion pattern when weak winds prevailed, and showed that during the 24 h after application air concentrations reached levels above the hourly Texas effect screening level (0.1 μg m-3). Interestingly, weak winds on the night after application resulted in a secondary peak in measured and modeled air concentrations. Long exposure time (when secondary drift is considered) and concentrations measured following such common air-assisted orchard application, suggest pesticide drift may have health repercussions that are currently unknown, and emphasize the need for further epidemiological studies.

  20. Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2011-01-01

    Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read...... and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A recent work identifies a specialization of this drift theorem that is much easier to apply. Nevertheless, it is not as simple and not as general as possible. The present paper picks up Hajek’s line...... of thought to prove a drift theorem that is very easy to use in evolutionary computation. Only two conditions have to be verified, one of which holds for virtually all EAs with standard mutation. The other condition is a bound on what is really relevant, the drift. Applications show how previous analyses...

  1. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  2. A User's Guide to the Tsunami Datasets at NOAA's National Data Buoy Center

    Science.gov (United States)

    Bouchard, R. H.; O'Neil, K.; Grissom, K.; Garcia, M.; Bernard, L. J.; Kern, K. J.

    2013-12-01

    The National Data Buoy Center (NDBC) has maintained and operated the National Oceanic and Atmospheric Administration's (NOAA) tsunameter network since 2003. The tsunameters employ the NOAA-developed Deep-ocean Assessment and Reporting of Tsunamis (DART) technology. The technology measures the pressure and temperature every 15 seconds on the ocean floor and transforms them into equivalent water-column height observations. A complex series of subsampled observations are transmitted acoustically in real-time to a moored buoy or marine autonomous vehicle (MAV) at the ocean surface. The surface platform uses its satellite communications to relay the observations to NDBC. NDBC places the observations onto the Global Telecommunication System (GTS) for relay to NOAA's Tsunami Warning Centers (TWC) in Hawai'i and Alaska and to the international community. It takes less than three minutes to speed the observations from the ocean floor to the TWCs. NDBC can retrieve limited amounts of the 15-s measurements from the instrumentation on the ocean floor using the technology's two-way communications. NDBC recovers the full resolution 15-s measurements about every 2 years and forwards the datasets and metadata to the National Geophysical Data Center for permanent archive. Meanwhile, NDBC retains the real-time observations on its website. The type of real-time observation depends on the operating mode of the tsunameter. NDBC provides the observations in a variety of traditional and innovative methods and formats that include descriptors of the operating mode. Datasets, organized by station, are available from the NDBC website as text files and from the NDBC THREDDS server in netCDF format. The website provides alerts and lists of events that allow users to focus on the information relevant for tsunami hazard analysis. In addition, NDBC developed a basic web service to query station information and observations to support the Short-term Inundation Forecasting for Tsunamis (SIFT

  3. Accurate Linking of Lake Erie Water Level with Shoreline Datum Using GPS Buoy and Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Kai-Chien Cheng

    2008-01-01

    Full Text Available There is a need to accurately link the water level to the shoreline vertical datum for various applications including coastal management, lake/river/estuary/wetland hydrological or storm surge modeling/forecasting. Coastal topography is historically surveyed and referenced to the predetermined vertical datum in terms of orthometric heights, or the heights above the geoid, which is poorly known in terms of accuracy and lack of adequate spatial resolution for coastal applications such as estuary or storm surge modeling. We demonstrate an accurate linking of the lake surface to a shoreline datum using satellite techniques, including GPS buoy and satellite altimetry, water level gauges, and local geoid and lake circulation models. The possible error sources are analyzed and an error budget is reported in this study. An innovated method to estimate geoid height near the water level gauge using a GPS buoy is proposed. It is found that at a 95% confidence interval, the method is consistent with the National Geodetic Survey GEOID03 geoid model. The lake surface represented using a lake circulation model provided by the Great Lakes Forecasting Systems is also verified with kriging based on the data (1999 - 2001 from the water level gauge, and TOPEX/POSEIDON altimeter. Mean discrepancies of 2.7 and 7.2 cm are found with the data from the gauges around Lake Erie, and from the combination of the gauges and the altimeter, respectively. It reveals that the current dominant limitation of more accurate linking of water surface to shoreline is the insufficient knowledge of geoid in the current models. Further improvement is feasible through more accurate and higher resolution modeling of the lake geoid.

  4. New interpretation of laser gyro drifts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Discuss and develop some contents which are relevant to the IEEE Std 647TM-2006 in this paper. The IEEE Std only involves Allan variance, and decomposes it into five primary noise terms, in which, however, the noise nature of the so called "rate random walk noise" and the "rate ramp" is doubted by the IEEE Std editors. Here we use a mathematical identity to entirely affirm the first query and partially the second query as mentioned above. Besides, we argue that only the classical variance can be used in navigation, not the Allan variance. In order to seek the true nature of all drift terms in the variance, we adopt our original work that represents the noises as damped oscillations, to obtain the power spectral density (PSD) of the noises which is then transformed back into time domain. When the damped time constant is much longer than the sampling interval, the re-sulting slow variation term may be expanded into three terms: ordinary bias instability, rate random walk, and rate ramp. Therefore, these "noise terms" are not independent, and they are more of deterministic errors than random noises, and can be explained quantitatively. The resulting fast variation drift may be expanded into two terms. The first term is the same as angle random noise, while the second term adds to the true quantization noise term to form a new combined term called "quantiza-tion noise term". As the result of our research, not only the IEEE Std editors’ suspicions above are answered completely, but a new theory to analyze the laser gyro drifts is also presented, with several supporting examples to explain and verify the theory.

  5. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  6. Drift Chamber Alignment using Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [Duke U.; Hays, Christopher P. [Oxford U.

    2014-05-07

    The Collider Detector at Fermilab (CDF) is a general-purpose experimental apparatus with an inner tracking detector for measuring charged particles, surrounded by a calorimeter for measurements of electromagnetic and hadronic showers, and a muon detector system. We present a technique for, and results of, a precise relative alignment of the drift chamber wires of the CDF tracker. This alignment has been an important component of the track momentum calibration, which is the basis for the charged-lepton calibration for the measurement of the W boson mass at CDF.

  7. The Mark II Vertex Drift Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

  8. Crowdsourcing and annotating NER for Twitter #drift

    DEFF Research Database (Denmark)

    Fromreide, Hege; Hovy, Dirk; Søgaard, Anders

    2014-01-01

    We present two new NER datasets for Twitter; a manually annotated set of 1,467 tweets (kappa=0.942) and a set of 2,975 expert-corrected, crowdsourced NER annotated tweets from the dataset described in Finin et al. (2010). In our experiments with these datasets, we observe two important points: (a......) language drift on Twitter is significant, and while off-the-shelf systems have been reported to perform well on in-sample data, they often perform poorly on new samples of tweets, (b) state-of-the-art performance across various datasets can beobtained from crowdsourced annotations, making it more feasible...

  9. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  10. Drift Chamber Alignment using Cosmic Rays

    CERN Document Server

    Kotwal, Ashutosh V

    2014-01-01

    The Collider Detector at Fermilab (CDF) is a general-purpose experimental apparatus with an inner tracking detector for measuring charged particles, surrounded by a calorimeter for measurements of electromagnetic and hadronic showers, and a muon detector system. We present a technique for, and results of, a precise relative alignment of the drift chamber wires of the CDF tracker. This alignment has been an important component of the track momentum calibration, which is the basis for the charged-lepton calibration for the measurement of the W boson mass at CDF.

  11. Royston Drift: new mine - new techniques

    Energy Technology Data Exchange (ETDEWEB)

    Round, C.; Lewis, S.

    1981-07-01

    Royston Drift Mine is described and the techniques and philosophy that have contributed to Royston proving to be one of Britain's most productive mines are reviewed. The whole mining concept, including the cognizance taken of the geological restriction is discussed. Transport systems and the design and organization of the record-breaking retreat faces are dealt with in detail. The introduction and testing of the Caledonian Arch support system and its potential is then described. Finally the future of the mine, in relation to monitoring and content of both underground and surface operations, is outlined.

  12. Characteristics of the ALICE Silicon Drift Detector

    CERN Document Server

    Bonvicini, V; Crescio, E; Giubellino, P; Hernández-Montoya, R; Kolojvari, A A; Montaño, L M; Nouais, D; Piemonte, C; Rashevsky, A; Tosello, F; Vacchi, A; Wheadon, R

    2001-01-01

    A Silicon Drift Detector (SDD) with an active area of 7.0 x 7.5 cm2 has been designed, produced and tested for the ALICE Inner Tracking System. The development of the SDD has been focussed on the capability of the detector to work without an external support to the integrated high voltage divider. Severalfeatures have been implemented in the design in order to increase the robustness and the long-term electrical stability of the detector. One of the prototypes has been tested in a pion beam at the CERN SPS. Preliminary results on the position resolution are given.

  13. PROSPECTS FIXATION DRIFT SANDS PHYSICOCHEMICAL METHOD

    Directory of Open Access Journals (Sweden)

    Maujuda MUZAFFAROVA

    2016-09-01

    Full Text Available This article is based on the theoretical foundations of secure mobile sand being considered for reducing the negative impact of one of the manifestations of exogenous plains on such an important natural-technical system as a railroad. It suggests practical measures to build a system of design protection against sand drifts. The article also suggests ways to conserve resources and rational use of machinery and performers as well as the consolidation of mobile sand wet with water soluble waste of local production of waste dextrin. Consolidation is exposed on dry and wet sand.

  14. Field experiment on spray drift: Deposition and airborne drift during application to a winter wheat crop

    NARCIS (Netherlands)

    Wolters, A.; Linnemann, V.; Zande, van de J.C.; Vereecken, H.

    2008-01-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done

  15. Congenital Ulnar Drift in a Surgeon

    Directory of Open Access Journals (Sweden)

    Desirae McKee

    2015-01-01

    Full Text Available Windblown hand is a term used in many instances to describe ulnar deviations of the fingers with or without other malformations. In 1994 Wood reviewed all of the descriptions of cases of windblown hand and pointed out how many variants of congenital ulnar drift there are, suggesting that the many variations seen may all belong to a larger type of arthrogryposis. While the most common cause of ulnar deviation of the fingers is rheumatoid arthritis, it can also be caused by other conditions such as windblown hand or Jaccoud’s arthropathy. While most hand surgeons are familiar with presentations of congenital ulnar drift, few of them are knowledgeable about Jaccoud’s arthropathy as this is usually discussed within medical communities such as Rheumatology. We present a case of a surgeon who has had noticeable ulnar deviation of the digits at the level of the metacarpophalangeal joint since his early 20s. We propose that the current case is a demonstration of a type of windblown hand that has some hereditary component but is not immediately obvious at birth and presents physically more like Jaccoud’s arthropathy than traditional windblown hand.

  16. Coherent Vortex Evolution in Drift Wave Turbulence

    Science.gov (United States)

    Gatto, R.; Terry, P. W.

    1998-11-01

    Localized structures in turbulence are subject to loss of coherence by mixing. Phase space structures, such as drift-hole, (P. W. Terry, P. H. Diamond, T. S. Hahm, Phys. Fluids B) 2 9 2048 (1990) possess a self-electric field, which if sufficiently large maintains particle trapping against the tidal deformations of ambient turbulence. We show here that intense vortices in fluid drift wave turbulence avoid mixing by suppressing ambient turbulence with the strong flow shear of the vortex edge. Analysis of turbulence evolution in the vortex edge recovers Rapid Distortion Theory (G. K. Batchelor and I. Proudman, Q. J. Mech. Appl. Math.) 7 83 (1954) as the short time limit and the shear suppression scaling theory (H. Biglari, P. H. Diamond and P. W. Terry, Phys. Fluids B) 2 1 (1990) as the long time limit. Shear suppression leads to an amplitude condition for coherence and delineates the Gaussian core from the non Gaussian tail of the probability distribution function. The amplitude condition of shear suppression is compared with the trapping condition for phase space holes. The possibility of nonlinear vortex growth will be examined by considering electron dynamics in the vortex evolution.

  17. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  18. Ground Control for Non-Emplacement Drifts for LA

    Energy Technology Data Exchange (ETDEWEB)

    D. Tang

    2004-02-26

    The purpose of this calculation is to analyze the stability of repository non-emplacement drifts during the preclosure period, and to provide a final ground support method for non-emplacement drifts for the License Application (LA). This calculation will provide input for the development of LA documents. The scope of this calculation is limited to the non-emplacement drifts including access mains, ramps, exhaust mains, turnouts, intersections between access mains and turnouts, and intersections between exhaust mains and emplacement drifts, portals, TBM launch chambers, observation drift and test alcove in the performance confirmation (PC) facilities, etc. The calculation is limited to the non-emplacement drifts subjected to a combined loading of in-situ stress, seismic stress, and/or thermal stress. Other effects such as hydrological and chemical effects are not considered in this analysis.

  19. Effect of Stokes drift on upper ocean mixing

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; SONG Jinbao; SUN Qun

    2008-01-01

    Stokes drift is the main source of vertical vorticity in the ocean mixed layer.In the ways of Coriolis - Stokes forcing and Langmuir circulations,Stokes drift can substantially affect the whole mixed layer.A modified Mellor-Yamada 2.5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally.Results show that comparing surface heating with wave breaking,Stokes drift plays the most important role in the entire ocean mixed layer,especially in the subsurface layer.As expected,Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing.Also,influence of the surface heating,wave breaking and wind speed on Stokes drift is investigated respectively.Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying.The laboratory observations are supporting numerical experiments quantitatively.

  20. Temperature data from buoy casts in the North Atlantic Ocean from the COLUMBUS and HMAS SWAN from 01 August 1928 to 04 September 1932 (NODC Accession 0000242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using buoy casts from the COLUMBUS and HMAS SWAN from August 1, 1928 to September 4, 1932 in the North Atlantic Ocean. Data were...