WorldWideScience

Sample records for satellite-retrieved aerosol optical

  1. Deriving atmospheric visibility from satellite retrieved aerosol optical depth

    Science.gov (United States)

    Riffler, M.; Schneider, Ch.; Popp, Ch.; Wunderle, S.

    2009-04-01

    Atmospheric visibility is a measure that reflects different physical and chemical properties of the atmosphere. In general, poor visibility conditions come along with risks for transportation (e.g. road traffic, aviation) and can negatively impact human health since visibility impairment often implies the presence of atmospheric pollution. Ambient pollutants, particulate matter, and few gaseous species decrease the perceptibility of distant objects. Common estimations of this parameter are usually based on human observations or devices that measure the transmittance of light from an artificial light source over a short distance. Such measurements are mainly performed at airports and some meteorological stations. A major disadvantage of these observations is the gap between the measurements, leaving large areas without any information. As aerosols are one of the most important factors influencing atmospheric visibility in the visible range, the knowledge of their spatial distribution can be used to infer visibility with the so called Koschmieder equation, which relates visibility and atmospheric extinction. In this study, we evaluate the applicability of satellite aerosol optical depth (AOD) products from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) to infer atmospheric visibility on large spatial scale. First results applying AOD values scaled with the planetary boundary layer height are promising. For the comparison we use a full automated and objective procedure for the estimation of atmospheric visibility with the help of a digital panorama camera serving as ground truth. To further investigate the relation between the vertical measure of AOD and the horizontal visibility data from the Aerosol Robotic Network (AERONET) site Laegeren (Switzerland), where the digital camera is mounted, are included as well. Finally, the derived visibility maps are compared with synoptical observations in central

  2. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China

    Science.gov (United States)

    Li, Shenshen; Yu, Chao; Chen, Liangfu; Tao, Jinhua; Letu, Husi; Ge, Wei; Si, Yidan; Liu, Yang

    2016-09-01

    China's large aerosol emissions have major impacts on global climate change as well as regional air pollution and its associated disease burdens. A detailed understanding of the spatiotemporal patterns of aerosol components is necessary for the calculation of aerosol radiative forcing and the development of effective emission control policy. Model-simulated and satellite-retrieved aerosol components can support climate change research, PM2.5 source appointment and epidemiological studies. This study evaluated the total and componential aerosol optical depth (AOD) from the GEOS-Chem model (GC) and the Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART), and the Multiangle Imaging Spectroradiometer (MISR) from 2006 to 2009 in China. Linear regression analysis between the GC and AErosol RObotic NETwork (AERONET) in China yielded similar correlation coefficients (0.6 daily, 0.71 monthly) but lower slopes (0.41 daily, 0.58 monthly) compared with those in the U.S. This difference was attributed to GC's underestimation of water-soluble AOD (WAOD) west of the Heihe-Tengchong Line, the dust AOD (DAOD) in the fall and winter, and the soot AOD (SAOD) throughout the year and throughout the country. GOCART exhibits the strongest dust estimation capability among all datasets. However, the GOCART soot distribution in the Northeast and Southeast has significant errors, and its WAOD in the polluted North China Plain (NCP) and the South is underestimated. MISR significantly overestimates the water-soluble aerosol levels in the West, and does not capture the high dust loadings in all seasons and regions, and the SAOD in the NCP. These discrepancies can mainly be attributed to the uncertainties in the emission inventories of both models, the poor performance of GC under China's high aerosol loading conditions, the omission of certain aerosol tracers in GOCART, and the tendency of MISR to misidentify dust and non-dust mixtures.

  3. Four dimensional variational data assimilation of species-resolved satellite-retrieved aerosol optical thickness

    Science.gov (United States)

    Nieradzik, Lars Peter; Elbern, Hendrik

    2010-05-01

    Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe only account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents like mineral dust derived from desert storms and sea salt contribute to PMx it is necessary to make aerosol forcasts not only of load, but also type resolved. The source of information chosen for this study is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves BLAOT (Boundary Layer Aerosol Optical Thickness) making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot, sea salt, and mineral dust which are furthermore size resolved in terms of modes. A widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements is the method of four dimensional variational data assimilation (4Dvar). The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability, and a time saving online NMC-module for the generation of the background

  4. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  5. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  6. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    Science.gov (United States)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  7. Testing the MODIS Satellite Retrieval of Aerosol Fine-Mode Fraction

    Science.gov (United States)

    Anderson, Theodore L.; Wu, Yonghua; Chu, D. Allen; Schmid, Beat; Redemann, Jens; Dubovik, Oleg

    2005-01-01

    Satellite retrievals of the fine-mode fraction (FMF) of midvisible aerosol optical depth, tau, are potentially valuable for constraining chemical transport models and for assessing the global distribution of anthropogenic aerosols. Here we compare satellite retrievals of FMF from the Moderate Resolution Imaging Spectroradiometer (MODIS) to suborbital data on the submicrometer fraction (SMF) of tau. SMF is a closely related parameter that is directly measurable by in situ techniques. The primary suborbital method uses in situ profiling of SMF combined with airborne Sun photometry both to validate the in situ estimate of ambient extinction and to take into account the aerosol above the highest flight level. This method is independent of the satellite retrieval and has well-known accuracy but entails considerable logistical and technical difficulties. An alternate method uses Sun photometer measurements near the surface and an empirical relation between SMF and the Angstrom exponent, A, a measure of the wavelength dependence of optical depth or extinction. Eleven primary and fifteen alternate comparisons are examined involving varying mixtures of dust, sea salt, and pollution in the vicinity of Korea and Japan. MODIS ocean retrievals of FMF are shown to be systematically higher than suborbital estimates of SMF by about 0.2. The most significant cause of this discrepancy involves the relationship between 5 and fine-mode partitioning; in situ measurements indicate a systematically different relationship from what is assumed in the satellite retrievals. Based on these findings, we recommend: (1) satellite programs should concentrate on retrieving and validating since an excellent validation program is in place for doing this, and (2) suborbital measurements should be used to derive relationships between A and fine-mode partitioning to allow interpretation of the satellite data in terms of fine-mode aerosol optical depth.

  8. Two-Channel Satellite Retrievals of Aerosol Properties: An Overview

    Science.gov (United States)

    Mishchenko, Michael I.

    1999-01-01

    In order to reduce current uncertainties in the evaluation of the direct and indirect effects of tropospheric aerosols on climate on the global scale, it has been suggested to apply multi-channel retrieval algorithms to the full period of existing satellite data. This talk will outline the methodology of interpreting two-channel satellite radiance data over the ocean and describe a detailed analysis of the sensitivity of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. We will specifically address the calibration and cloud screening issues, consider the suitability of existing satellite data sets to detecting short- and long-term regional and global changes, compare preliminary results obtained by several research groups, and discuss the prospects of creating an advanced retroactive climatology of aerosol optical thickness and size over the oceans.

  9. Spatial heterogeneity of aerosol optical and radiative properties obtained from multiple satellite retrievals over the Sub-Himalayan region of North-East India

    Science.gov (United States)

    Pathak, Binita; Bhuyan, Pradip; Biswas, Jhuma; Dahutia, Papori

    North East India, nestled between the southeastern Tibetan Plateau on the north, the Indo Myanmar range of hills to the east, plains of Bangladesh to the south and the Indo-Gangetic plains (IGP) to the west has a unique topography and population inhabitation pattern. In recent decades, along with other parts of south Asia NE India has undergone rapid industrial and economic development. Lifestyle changes have increasingly added to the anthropogenic burden on the atmosphere in the plains while biomass burning due to shifting cultivation in the hills is a major source of particulate and gaseous pollution. Studies have suggested that during the Asian summer monsoon, boundary layer pollution from India, Southeast Asia and south China are lifted to the upper tropospheric region by convection followed by westward transport over the Middle East and the Mediterranean. The spatio-temporal variation of aerosol optical (viz. AOD, AAI, AAOD, AE, FMF, columnar mass concentration (CMC)) and radiative properties are studied using data from multiple satellite sensors: MODIS, OMI, TOMS, CERES at various locations within the NE India (22-30°N, 86-98°E) for the period 2000-2012. Significant spatio-temporal variation of aerosol optical and radiative properties is observed within the region. For example, Guwahati, the metropolitan city, shows maximum value of AOD, followed by Dhubri the location situated at the western corridor of north-east India. Minimum AOD is observed at the high altitude locations Thimphu and Tawang. Temporally AOD is overriding in March, April, May (MAM) at almost all the observation locations. The minimum AOD over the region in October-November (ON) is associated with the topography and local meteorology. AAI >0.5 at all the locations indicates presence of significant amount of absorbing aerosols. The peak AAI and AAOD in MAM at all the location is associated with the peak biomass burning activity and long range transportation from other locations of India and

  10. The influence of aerosols and land-use type on NO2 satellite retrieval over China

    Science.gov (United States)

    Liu, Mengyao; Lin, Jintai; Boersma, Folkert; Eskes, Henk; Chimot, Julien

    2017-04-01

    Both aerosols and surface reflectance have a strong influence on the retrieval of NO2 tropospheric vertical column densities (VCDs), especially over China with its heavy aerosol loading and rapid changes in land-use type. However, satellite retrievals of NO2 VCDs usually do not explicitly account for aerosol optical effects and surface reflectance anisotropy (BRDF) that varies in space and time. We develop an improved algorithm to derive tropospheric AMFs and VCDs over China from the OMI instrument - POMINO and DOMINO. This method can also be applied to TropOMI NO2 retrievals in the future. With small pixels of TropOMI and higher probability of encountering clear-sky scenes, the influence of BRDF and aerosol interference becomes more important than for OMI. Daily aerosol information is taken from the GEOS-Chem chemistry transport model and the aerosol optical depth (AOD) is adjusted via MODIS AOD climatology. We take the MODIS MCD43C2 C5 product to account for BRDF effects. The relative altitude of NO2 and aerosols is critical factor influencing the NO2 retrieval. In order to evaluate the aerosol extinction profiles (AEP) of GEOS-Chem improve our algorithm, we compare the GEOS-Chem simulation with CALIOP and develop a CALIOP AEP climatology to regulate the model's AEP. This provides a new way to include aerosol information into the tracer gas retrieval for OMI and TropOMI. Preliminary results indicate that the model performs reasonably well in reproducing the AEP shape. However, it seems to overestimate aerosols under 2km and underestimate above. We find that relative humidity (RH) is an important factor influencing the AEP shape when comparing the model with observations. If we adjust the GEOS-Chem RH to CALIOP's RH, the correlations of their AEPs also improve. Besides, take advantage of our retrieval method, we executed sensitivity tests to analyze their influences on NO2 trend and spatiotemporal variations in retrieval. It' the first time to investigate

  11. Development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    Directory of Open Access Journals (Sweden)

    S. Lee

    2015-07-01

    Full Text Available To improve short-term particulate matter (PM forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD data retrieved from a geostationary equatorial orbit (GEO satellite sensor, GOCI (Geostationary Ocean Color Imager which covers Northeast Asia (113–146° E; 25–47° N, were used. Although GOCI can provide a higher number of AOD data in a semi-continuous manner than low Earth orbit (LEO satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatio-temporal (ST kriging method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages to using the ST-kriging method in this study is that more observed AOD data can be used to prepare the best initial AOD fields. It is demonstrated in this study that the short-term PM forecast system developed with the application of the ST-kriging method can greatly improve PM10 predictions in Seoul Metropolitan Area (SMA, when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ~ 60 and ~ 70 %, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors (such as choices of observation operators and control variables on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC and low air-volume sample instruments at a site near Seoul. To improve the overall performances of the short-term PM

  12. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    Science.gov (United States)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  13. Evaluation of Aerosol Pollution Determination From MODIS Satellite Retrievals for Semi-Arid Reno, NV, USA with In-Situ Measurements

    Science.gov (United States)

    Loria-Salazar, S. Marcela

    The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the

  14. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015)

    KAUST Repository

    Banks, Jamie R.

    2017-07-13

    The inter-annual variability of the dust aerosol presence over the Red Sea and the Persian Gulf is analysed over the period 2005-2015. Particular attention is paid to the variation in loading across the Red Sea, which has previously been shown to have a strong, seasonally dependent latitudinal gradient. Over the 11 years considered, the July mean 630 nm aerosol optical depth (AOD) derived from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) varies between 0.48 and 1.45 in the southern half of the Red Sea. In the north, the equivalent variation is between 0.22 and 0.66. The temporal and spatial pattern of variability captured by SEVIRI is also seen in AOD retrievals from the MODerate Imaging Spectroradiometer (MODIS), but there is a systematic offset between the two records. Comparisons of both sets of retrievals with ship-and land-based AERONET measurements show a high degree of correlation with biases of < 0.08. However, these comparisons typically only sample relatively low aerosol loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs (> 1), with offsets of C 0.19 for MODIS and 0.06 for SEVIRI. Similar behaviour is also seen over the Persian Gulf. Analysis of the scattering angles at which retrievals from the SEVIRI and MODIS measurements are typically performed in these regions suggests that assumptions concerning particle sphericity may be responsible for the differences seen.

  15. Urban aerosol properties, their radiative effects and the verification of different satellite retrievals of urban aerosol pollution

    Science.gov (United States)

    Chubarova, Nataly; Sviridenkov, Mikhail; Kopeikin, Vladimir; Emilenko, Alexander; Verichev, Konstantin; Skorokhod, Andrei; Semutnikova, Evgenia

    2013-04-01

    The effects of urban pollution on different aerosol properties and their year-to-year-changes in various atmospheric conditions were studied according to long-term simultaneous measurements by the collocated AERONET CIMEL sun/sky photometers in Moscow (large megacity) and at Zvenigorod (nearby clean area) for 2006-2012 year period. Additional measurements of PM10 and PM2.5, as well as soot content observations were used for evaluating the effects of local urban sources and their influence on columnar aerosol properties (single scattering albedo, aerosol optical thickness, etc.) and, hence, on radiative properties of aerosol. We discuss the results of the comparisons between RT modeling and high quality ground-based radiative measurements, which provide validation of the obtained urban radiative effects for different aerosols in clear-sky conditions. Special attention was paid to testing the retrievals of several aerosol parameters (AOT, single scattering albedo, Angstrom exponent, etc) over the urban area and the detection of the urban aerosol pollution by different satellite instruments (MISR, MODIS, SEAWIFS, OMI) against the data of collocated AERONET CIMEL sun/sky photometers in different atmospheric conditions over snow and snow-free surfaces.

  16. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    Science.gov (United States)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Remer, L. A.; Kahn, R. A.; Kleidman, R. G.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  17. Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data

    Directory of Open Access Journals (Sweden)

    B. S. Grandey

    2013-03-01

    Full Text Available Strong positive relationships between cloud fraction (fc and aerosol optical depth (τ have been reported. Data retrieved from the MODerate resolution Imaging Spectroradiometer (MODIS instrument show positive fc–τ relationships across most of the globe. A global mean fc increase of approximately 0.2 between low and high τ conditions is found for both ocean and land. However, these relationships are not necessarily due to cloud–aerosol interactions. Using state-of-the-art Monitoring Atmospheric Composition and Climate (MACC reanalysis-forecast τ data, which should be less affected by retrieval artefacts, it is demonstrated that a large part of the observed fc–τ signal may be due to cloud contamination of satellite-retrieved τ. For longer MACC forecast time steps of 24 h, which likely contain less cloud contamination, some negative fc–τ relationships are found. The global mean fc increase between low and high τ conditions is reduced to 0.1, suggesting that cloud contamination may account for approximately one half of the satellite-retrieved increase in fc. ECHAM5-HAM general circulation model (GCM simulations further demonstrate that positive fc–τ relationships may arise due to covariation with relative humidity. Widespread negative simulated fc–τ relationships in the tropics are shown to arise due to scavenging of aerosol by convective precipitation. Wet scavenging events are likely poorly sampled in satellite-retrieved data, because the properties of aerosol below clouds cannot be retrieved. Quantifying the role of wet scavenging, and assessing GCM representations of this important process, remains a challenge for future observational studies of aerosol–cloud–precipitation interactions.

  18. The effects of aerosols on water cloud microphysics and macrophysics based on satellite-retrieved data over East Asia and the North Pacific

    Directory of Open Access Journals (Sweden)

    T. Michibata

    2014-11-01

    Full Text Available This study examines the characteristics of the microphysics and macrophysics of water clouds from East Asia to the North Pacific, using data from active CloudSat radar measurements and passive MODerate-resolution Imaging Spectroradiometer (MODIS retrievals. Our goals are to clarify differences in microphysics and macrophysics between land and oceanic clouds, seasonal differences unique to the midlatitudes, characteristics of the drizzling process, and cloud vertical structure. In pristine oceanic areas, fractional occurrences of cloud optical thickness (COT and cloud droplet effective radius (CDR increase systematically with an increase in drizzle intensity, but these characteristics of the COT and CDR transition are less evident in polluted land areas. In addition, regional and seasonal differences are identified in terms of drizzle intensity as a function of the liquid water path (LWP and cloud droplet number concentration (Nc. The correlations between drizzle intensity and LWP, and between drizzle intensity and Nc, are both more robust over oceanic areas than over land areas. We also demonstrate regional and seasonal characteristics of the cloud vertical structure. Our results suggest that aerosol–cloud interaction mainly occurs around the cloud base in polluted land areas during the winter season. In addition, a difference between polluted and pristine areas in the efficiency of cloud droplet growth is confirmed. These results suggest that water clouds over the midlatitudes exhibit a different drizzle system to those over the tropics.

  19. Application of spectral analysis techniques to the intercomparison of aerosol data - Part 4: Combined maximum covariance analysis to bridge the gap between multi-sensor satellite retrievals and ground-based measurements

    Science.gov (United States)

    Li, J.; Carlson, B. E.; Lacis, A. A.

    2014-04-01

    The development of remote sensing techniques has greatly advanced our knowledge of atmospheric aerosols. Various satellite sensors and the associated retrieval algorithms all add to the information of global aerosol variability, while well-designed surface networks provide time series of highly accurate measurements at specific locations. In studying the variability of aerosol properties, aerosol climate effects, and constraining aerosol fields in climate models, it is essential to make the best use of all of the available information. In the previous three parts of this series, we demonstrated the usefulness of several spectral decomposition techniques in the analysis and comparison of temporal and spatial variability of aerosol optical depth using satellite and ground-based measurements. Specifically, Principal Component Analysis (PCA) successfully captures and isolates seasonal and interannual variability from different aerosol source regions, Maximum Covariance Analysis (MCA) provides a means to verify the variability in one satellite dataset against Aerosol Robotic Network (AERONET) data, and Combined Principal Component Analysis (CPCA) realized parallel comparison among multi-satellite, multi-sensor datasets. As the final part of the study, this paper introduces a novel technique that integrates both multi-sensor datasets and ground observations, and thus effectively bridges the gap between these two types of measurements. The Combined Maximum Covariance Analysis (CMCA) decomposes the cross covariance matrix between the combined multi-sensor satellite data field and AERONET station data. We show that this new method not only confirms the seasonal and interannual variability of aerosol optical depth, aerosol source regions and events represented by different satellite datasets, but also identifies the strengths and weaknesses of each dataset in capturing the variability associated with sources, events or aerosol types. Furthermore, by examining the spread of

  20. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    Science.gov (United States)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  1. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    Science.gov (United States)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  2. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    Science.gov (United States)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  3. Evaluating cloud precipitation efficiency with satellite retrievals of water isotopologues

    Science.gov (United States)

    Bailey, A.; Noone, D. C.; Wood, R.

    2015-12-01

    The efficiency with which clouds precipitate is believed to influence climate by modifying cloud lifetime and, ultimately, cloud amount. Aerosols can influence this linkage by reducing the effective radii of cloud droplets and suppressing precipitation. This relationship, however, is not unidirectional. Cloud precipitation efficiency can also regulate particle concentrations, since precipitation effectively scavenges aerosols from the atmosphere. One challenge in studying how aerosols, clouds, and precipitation processes interrelate is that observational constraints are difficult to attain. This work evaluates the ability of isotope ratios in water vapor to quantify cloud precipitation efficiency across the tropical and subtropical oceans. Theory suggests isotope ratios will record the precipitation efficiency of a convective plume, since heavier isotopologues precipitate preferentially; and a recent analysis of in situ measurements from the Mauna Loa Observatory (MLO, Hawaii, USA) verifies this to be the case. The challenge now lies in understanding whether satellite retrievals of isotope ratios in water vapor are sensitive enough to track precipitation efficiency globally. To answer this question, vertical profiles of the D/H ratio derived from NASA's Tropospheric Emission Spectrometer (TES) are first compared with the MLO in situ measurements. A qualitative match indicates the satellite retrievals can distinguish high from low precipitation efficiency convection. To expand the analysis geographically, TES profiles between 40°S and 40°N are compared with estimates of precipitation efficiency derived from the Tropical Rainfall Measuring Mission (TRMM) and ECMWF's ERA-Interim. Retrievals are binned by lower-tropospheric humidity and by vertical velocity in order to minimize large-scale thermodynamical influences. Co-located cloud retrievals provide the context necessary to evaluate the utility of these new estimates in elucidating cloud feedbacks on climate.

  4. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    OpenAIRE

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting wea...

  5. Spatial Surface PM2.5 Concentration Estimates for Wildfire Smoke Plumes in the Western U.S. Using Satellite Retrievals and Data Assimilation Techniques

    Science.gov (United States)

    Loria Salazar, S. M.; Holmes, H.

    2015-12-01

    Health effects studies of aerosol pollution have been extended spatially using data assimilation techniques that combine surface PM2.5 concentrations and Aerosol Optical Depth (AOD) from satellite retrievals. While most of these models were developed for the dark-vegetated eastern U.S. they are being used in the semi-arid western U.S. to remotely sense atmospheric aerosol concentrations. These models are helpful to understand the spatial variability of surface PM2.5concentrations in the western U.S. because of the sparse network of surface monitoring stations. However, the models developed for the eastern U.S. are not robust in the western U.S. due to different aerosol formation mechanisms, transport phenomena, and optical properties. This region is a challenge because of complex terrain, anthropogenic and biogenic emissions, secondary organic aerosol formation, smoke from wildfires, and low background aerosol concentrations. This research concentrates on the use and evaluation of satellite remote sensing to estimate surface PM2.5 concentrations from AOD satellite retrievals over California and Nevada during the summer months of 2012 and 2013. The aim of this investigation is to incorporate a spatial statistical model that uses AOD from AERONET as well as MODIS, surface PM2.5 concentrations, and land-use regression to characterize spatial surface PM2.5 concentrations. The land use regression model uses traditional inputs (e.g. meteorology, population density, terrain) and non-traditional variables (e.g. FIre Inventory from NCAR (FINN) emissions and MODIS albedo product) to account for variability related to smoke plume trajectories and land use. The results will be used in a spatially resolved health study to determine the association between wildfire smoke exposure and cardiorespiratory health endpoints. This relationship can be used with future projections of wildfire emissions related to climate change and droughts to quantify the expected health impact.

  6. Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations

    Science.gov (United States)

    Yu, Hongbin; Dickinson, R. E.; Chin, M.; Kaufman, Y. J.; Holben, B. N.; Geogdzhayev, I. V.; Mishchenko, M. I.

    2003-02-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Earth Observing System (EOS) satellites provides an unprecedented opportunity to study aerosols from space with high accuracy and on a nearly global scale. However, difficulty with highly reflective arid and snow-covered lands introduces significant gaps in global or regional coverage that must be filled by some other means. This study provides a complete global coverage of an annual cycle of aerosol optical depth by combining the MODIS retrievals and Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) simulations weighted with the uncertainties in each product. The assimilated aerosol optical depths over land are better correlated with the ground-based Aerosol Robotic Network (AERONET) measurements than are either the MODIS retrievals or the GOCART simulations alone. The gaps in the MODIS retrievals are filled with values that are generally consistent with the AERONET aerosol climatology. The assimilated aerosol optical depths are in good agreement with the Advanced Very High Resolution Radiometer (AVHRR) aerosol climatology over the Atlantic and North Indian Oceans. In spring, large discrepancies between the MODIS retrievals in 2001 and the AVHRR climatology over the North Pacific are likely a result of extremely active transcontinental transport of Asian dust/pollutants to North America in the year 2001. Large model-satellite differences in the South Pacific and South Indian Oceans may be attributable to missing or underestimated sources in the model and/or cloud, whitecap, and glint contamination in satellite retrievals.

  7. Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2010-11-01

    Full Text Available The comparison of satellite and model aerosol optical depth (AOD fields provides useful information on the strengths and weaknesses of both. However, the sampling of satellite and models is very different and some subjective decisions about data selection and aggregation must be made in order to perform such comparisons. This work examines some implications of these decisions, using GlobAerosol AOD retrievals at 550 nm from Advanced Along-Track Scanning Radiometer (AATSR measurements, and aerosol fields from the GEOS-Chem chemistry transport model. It is recommended to sample the model only where the satellite flies over on a particular day; neglecting this can cause regional differences in model AOD of up to 0.1 on monthly and annual timescales. The comparison is observed to depend strongly upon thresholds for sparsity of satellite retrievals in the model grid cells. Requiring at least 25% coverage of the model grid cell by satellite data decreases the observed difference between the two by approximately half over land. The impact over ocean is smaller. In both model and satellite datasets, there is an anticorrelation between the proportion p of a model grid cell covered by satellite retrievals and the AOD. This is attributed to small p typically occuring due to high cloud cover and lower AODs being found in large clear-sky regions. Daily median AATSR AODs were found to be closer to GEOS-Chem AODs than daily means (with the root mean squared difference being approximately 0.05 smaller. This is due to the decreased sensitivity of medians to outliers such as cloud-contaminated retrievals, or aerosol point sources not included in the model.

  8. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  9. Comparison of PMCAMx aerosol optical depth predictions over Europe with AERONET and MODIS measurements

    Science.gov (United States)

    Panagiotopoulou, Antigoni; Charalampidis, Panagiotis; Fountoukis, Christos; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-11-01

    The ability of chemical transport model (CTM) PMCAMx to reproduce aerosol optical depth (AOD) measurements by the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) over Europe during the photochemically active period of May 2008 (EUCAARI campaign) is evaluated. Periods with high dust or sea-salt levels are excluded, so the analysis focuses on the ability of the model to simulate the mostly secondary aerosol and its interactions with water. PMCAMx reproduces the monthly mean MODIS and AERONET AOD values over the Iberian Peninsula, the British Isles, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. However, the model overestimates the AOD over northern Europe, most probably due to an overestimation of organic aerosol and sulfates. At the other end, PMCAMx underestimates the monthly mean MODIS AOD over the Balkans, the Mediterranean, and the South Atlantic. These errors appear to be related to an underestimation of sulfates. Sensitivity tests indicate that the evaluation results of the monthly mean AODs are quite sensitive to the relative humidity (RH) fields used by PMCAMx, but are not sensitive to the simulated size distribution and the black carbon mixing state. The screening of the satellite retrievals for periods with high dust (or coarse particles in general) concentrations as well as the combination of the MODIS and AERONET datasets lead to more robust conclusions about the ability of the model to simulate the secondary aerosol components that dominate the AOD during this period.

  10. SMEX02 Atmospheric Aerosol Optical Properties Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  11. Interpreting the cloud cover – aerosol optical depth relationship found in satellite data using a general circulation model

    Directory of Open Access Journals (Sweden)

    J. Quaas

    2010-07-01

    Full Text Available Statistical analysis of satellite data shows a positive correlation between aerosol optical depth (AOD and total cloud cover (TCC. Reasons for this relationship have been disputed in recent literature. The aim of this study is to explore how different processes contribute to one model's analog of the positive correlation between aerosol optical depth and total cloud cover seen in the satellite retrievals. We compare the slope of the linear regression between the logarithm of TCC and the logarithm of AOD, or the strength of the relationship, as derived from three satellite data sets to the ones simulated by a global aerosol-climate model. We analyse model results from two different simulations with and without a parameterisation of aerosol indirect effects, and using dry compared to humidified AOD. Perhaps not surprisingly we find that no single one of the hypotheses discussed in the literature is able to uniquely explain the positive relationship. However the dominant contribution to the model's AOD-TCC relationship can be attributed to aerosol swelling in regions where humidity is high and clouds are coincidentally found. This finding leads us to hypothesise that much of the AOD-TCC relationship seen in the satellite data is also carried by such a process, rather than the direct effects of the aerosols on the cloud fields themselves.

  12. Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data

    Science.gov (United States)

    Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.

    2017-05-01

    Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.

  13. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    Science.gov (United States)

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081

  14. Satellite retrieved aerosol properties for battlespace characterization and sensor performance

    NARCIS (Netherlands)

    Schoemaker, R.M.

    2007-01-01

    Sea basing operations in coastal environments require a rapid and accurate description of the physical conditions in the region. Battlespace characterization and sensor performance assist in optimizing the efficiency and safety of operations, of which the detection of targets at low level above the

  15. Satellite retrieved aerosol properties for battlespace characterization and sensor performance

    NARCIS (Netherlands)

    Schoemaker, R.M.

    2007-01-01

    Sea basing operations in coastal environments require a rapid and accurate description of the physical conditions in the region. Battlespace characterization and sensor performance assist in optimizing the efficiency and safety of operations, of which the detection of targets at low level above the

  16. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences

    Science.gov (United States)

    Lynch, Peng; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Hogan, Timothy F.; Hyer, Edward J.; Curtis, Cynthia A.; Hegg, Dean A.; Shi, Yingxi; Campbell, James R.; Rubin, Juli I.; Sessions, Walter R.; Turk, F. Joseph; Walker, Annette L.

    2016-04-01

    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1 × 1° and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how

  17. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    Science.gov (United States)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  18. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    Science.gov (United States)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  19. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trappe...

  20. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Denjean

    2015-08-01

    Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of tranport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1–3 km than at elevated altitude (> 3 km, resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations

  1. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Science.gov (United States)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  2. Optical closure experiments for biomass smoke aerosols

    Directory of Open Access Journals (Sweden)

    L. E. Mack

    2010-03-01

    Full Text Available The FLAME experiments were a series of laboratory studies of the chemical, physical, and optical properties of fresh smokes from the combustion of wildland fuels that are burned annually in the western and southeastern US. The burns were conducted in the combustion chamber of the USFS Fire Sciences Laboratory in Missoula, Montana. Here we discuss the retrieval of optical properties for a variety of fuels burned in FLAME 2, using nephelometer-measured scattering coefficients, photoacoustically-measured aerosol absorption coefficients, and size distribution measurements. Uncertainties are estimated from the various instrument characteristics and from instrument calibration studies. Our estimates of single scattering albedo for different dry smokes varied from 0.43–0.99, indicative of the wide variations in smoke aerosol chemical composition that were observed. In selected case studies, we retrieved the complex refractive index from the measurements, but show that these are highly sensitive to the uncertainties in measured size distributions.

  3. Optical closure experiments for biomass smoke aerosols

    Directory of Open Access Journals (Sweden)

    L. A. Mack

    2010-09-01

    Full Text Available A series of laboratory experiments at the Fire Laboratory at Missoula (FLAME investigated chemical, physical, and optical properties of fresh smoke samples from combustion of wildland fuels that are burned annually in the western and southeastern US The burns were conducted in the combustion chamber of the US Forest Service Fire Sciences Laboratory in Missoula, Montana. Here we discuss retrieval of optical properties for a variety of fuels burned in FLAME 2, using nephelometer-measured scattering coefficients, photoacoustically-measured aerosol absorption coefficients, and size distribution measurements. Uncertainties are estimated from various instrument characteristics and instrument calibration studies. Our estimates of single scattering albedo for different dry smoke samples varied from 0.428 to 0.990, indicative of observed wide variations in smoke aerosol chemical composition. In selected case studies, we retrieved the complex refractive index from measurements but show that these are highly sensitive to uncertainties in measured size distributions.

  4. The potential of clear-sky carbon dioxide satellite retrievals

    Directory of Open Access Journals (Sweden)

    R. R. Nelson

    2015-12-01

    Full Text Available Since the launch of the Greenhouse Gases Observing Satellite (GOSAT in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2 from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only retrievals, which neglected these effects, often incurred unacceptably large errors, even for scenes with optically thin cloud or aerosol layers. However, these "full-physics" retrievals tend to be computationally expensive and may incur biases from trying to deduce the properties of clouds and aerosols when there are none present. Additionally, algorithms are now available that can quickly and effectively identify and remove most scenes in which cloud or aerosol scattering plays a significant role. In this work, we test the hypothesis that non-scattering, or "clear-sky", retrievals may perform as well as full-physics retrievals for sufficiently clear scenes. Clear-sky retrievals could potentially avoid errors and biases brought about by trying to infer properties of clouds and aerosols when none are present. Clear-sky retrievals are also desirable because they are orders of magnitude faster than full-physics retrievals. Here we use a simplified version of the Atmospheric Carbon Observations from Space (ACOS XCO2 retrieval algorithm that does not include the scattering and absorption effects of clouds or aerosols. It was found that for simulated Orbiting Carbon Observatory-2 (OCO-2 measurements, the clear-sky retrieval had errors comparable to those of the full-physics retrieval. For real GOSAT data, the clear-sky retrieval had nearly indistinguishable error characteristics over land, but roughly 30–60 % larger errors over ocean, depending on filtration level, compared to the full-physics retrieval. In general, the clear-sky retrieval had XCO2 root

  5. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    Science.gov (United States)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  6. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe

    Directory of Open Access Journals (Sweden)

    P. Glantz

    2012-07-01

    Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained from MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground with the SAER (Satellite AErosol Retrieval algorithm and with MODIS Collection 5 (c005 standard product retrievals (10 km horizontal resolution, against AERONET (AErosol RObotic NETwork sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (ΔAOT = ± 0.05 ± 0.15 · AOT. The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is

  7. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  8. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  9. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  10. Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements

    Science.gov (United States)

    Goto, Daisuke; Sato, Yousuke; Yashiro, Hisashi; Suzuki, Kentaroh; Nakajima, Teruyuki

    2017-02-01

    A high-performance computing resource allows us to conduct numerical simulations with a horizontal grid spacing that is sufficiently high to resolve cloud systems. The cutting-edge computational capability, which was provided by the K computer at RIKEN in Japan, enabled the authors to perform long-term, global simulations of air pollutions and clouds with unprecedentedly high horizontal resolutions. In this study, a next generation model capable of simulating global air pollutions with O(10 km) grid spacing by coupling an atmospheric chemistry model to the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) was performed. Using the newly developed model, month-long simulations for July were conducted with 14 km grid spacing on the K computer. Regarding the global distributions of aerosol optical thickness (AOT), it was found that the correlation coefficient (CC) between the simulation and AERONET measurements was approximately 0.7, and the normalized mean bias was -10%. The simulated AOT was also compared with satellite-retrieved values; the CC was approximately 0.6. The radiative effects due to each chemical species (dust, sea salt, organics, and sulfate) were also calculated and compared with multiple measurements. As a result, the simulated fluxes of upward shortwave radiation at the top of atmosphere and the surface compared well with the observed values, whereas those of downward shortwave radiation at the surface were underestimated, even if all aerosol components were considered. However, the aerosol radiative effects on the downward shortwave flux at the surface were found to be as high as 10 W/m2 in a global scale; thus, simulated aerosol distributions can strongly affect the simulated air temperature and dynamic circulation.

  11. Aerosol Optical Properties over Northwestern European Seas

    Science.gov (United States)

    Avgousta Floutsi, Athina; Korras Carraca, Marios Bruno; Matsoukas, Christos; Riva, Riccardo; Biskos, George

    2017-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In order to quantify these effects it is necessary to determine the aerosol load. An effective way to do this is by measuring the aerosol optical depth (AOD). Besides AOD, the Fine mode Fraction (AOD of particles smaller than 1 μm / total AOD, FF) is a useful parameter for the characterization of the aerosol and provides a good proxy for particle size. In this study, we investigate the spatial and temporal variability of the AOD and FF over the Western and Northwestern European Seas (43° N - 67° N, 10° W - 31° E), where significant sources of both natural and anthropogenic particles are located. Anthropogenic particles (mostly fine mode) originate from ship activity, or from urban-industrial and biomass-burning processes in the European countries. The natural, coarse mode particles are primarily sea salt. The study is performed using Collection 006 Level-3 mean daily aerosol data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board Aqua satellite, available in 1° × 1° resolution (ca. 100 km × 100 km) over the period 2002- 2014. Our results indicate significant spatial variability of the aerosol load over the study region. The highest AOD values (up to 0.32 on annual level) are observed over the English Channel and the coasts of the Netherlands and Germany. In these regions the highest FF values are also observed (up to 0.77), indicating a relatively large contribution of anthropogenic particles to the aerosol load. Offshore, both AOD and FF are lower compared to coastal regions, indicating the predominance of maritime aerosols (sea salt). The data also show a clear seasonal cycle, with larger aerosol load during spring and summer (AOD up to 0.60), and lower during autumn and winter (AOD up to 0.30). A similar

  12. Multiwavelength multistatic optical scattering for aerosol characterization

    Science.gov (United States)

    Brown, Andrea M.

    The main focus of this research is the development of a technique to remotely characterize aerosol properties, such as particle size distribution, concentration, and refractive index as a function of wavelength, through the analysis of optical scattering measurements. The proposed technique is an extension of the multistatic polarization ratio technique that has been developed by prior students at the Penn State Lidar Lab to include multiple wavelengths. This approach uses the ratio of polarized components of the scattering phase functions at multiple wavelengths across the visible region of the electromagnetic spectrum to extract the microphysical and optical properties of aerosols. The scattering intensities at each wavelength are vertically separated across the face of the imager using a transmission diffraction grating, so that scattering intensities for multiple wavelengths at many angles are available for analysis in a single image. The ratio of the scattering phase function intensities collected using parallel and perpendicular polarized light are formed for each wavelength and analysis of the ratio is used to determine the microphysical properties of the aerosols. One contribution of the present work is the development of an inversion technique based on a genetic algorithm that retrieves lognormal size distributions from scattering measurements by minimizing the squared error between measured polarization ratios and polarization ratios calculated using the Mie solution to Maxwell's equations. The opportunities and limitations of using the polarization ratio are explored, and a genetic algorithm is developed to retrieve single mode and trimodal lognormal size distributions from multiwavelength, angular scattering data. The algorithm is designed to evaluate particles in the diameter size range of 2 nm to 60 im, and uses 1,000 linear spaced diameters within this range to compute the modeled polarization ratio. The algorithm returns geometric mean radii and

  13. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  14. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  15. Optical closure study on light-absorbing aerosols

    Science.gov (United States)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  16. An investigation of aerosol optical properties: Atmospheric implications and influences

    Science.gov (United States)

    Penaloza-Murillo, Marcos A.

    An experimental, observational, and theoretical investigation of aerosol optical properties has been made in this work to study their implications and influences on the atmosphere. In the laboratory the scientific and instrumental methodology consisted of three parts, namely, aerosol generation, optical and mass concentration measurements, and computational calculations. In particular the optical properties of ammonium sulfate and caffeine aerosol were derived from measurements made with a transmissometer cell-reciprocal- integrating nephelometer (TCRIN), equipped with a laser beam at 632.8 nm, and by applying a Mie theory computer code The aerosol generators, optical equipment and calibration procedures were reviewed. The aerosol shape and size distribution were studied by means of scanning electron microscopy and the Gumprecht- Sliepcevich/Lipofsky-Green extinction-sedimentation method. In particular the spherical and cylindrical shape were considered. During this investigation, an alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer, which is based on a linearisation of the Lambert-Beer law, was found. In addition, adapting the TCRIN to electrooptical aerosol studies, the optical properties of a circular-cylindrical aerosol of caffeine were undertaken under the condition of random orientation in relation with the laser beam, and perpendicular orientation to it. A theoretical study was conducted to assess the sensitivity of aerosol to a change of shape under different polarisation modes. The aerosol optical properties, obtained previously in the laboratory, were then used to simulate the direct radiative forcing. The calculations and results were obtained by applying a one- dimensional energy-balance box model. The influence of atmospheric aerosol on the sky brightness due to a total solar eclipse was studied using the photometric and meteorological observations made during the

  17. Hyperspectral aerosol optical depths from TCAP flights

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, Yohei [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bay Area Environmental REsearch Institute; Johnson, Roy R [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Flynn, Connor J [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Philip B [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), a hyperspectral airborne sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean-square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3- km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong

  18. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  19. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG; ManSing; NICHOL; Janet; LEE; Kwon; Ho

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolution images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the determination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflectance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r = 0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  20. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG ManSing; NICHOL Janet; LEE Kwon Ho; LI ZhanQing

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolu-tion images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta re-gion. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the deter-mination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflec-tance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r=0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  1. Estimate of the Impact of Absorbing Aerosol Over Cloud on the MODIS Retrievals of Cloud Optical Thickness and Effective Radius Using Two Independent Retrievals of Liquid Water Path

    Science.gov (United States)

    Wilcox, Eric M.; Harshvardhan; Platnick, Steven

    2009-01-01

    Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the

  2. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    Science.gov (United States)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  3. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model

    Directory of Open Access Journals (Sweden)

    N. Huneeus

    2012-01-01

    Full Text Available This study estimates the emission fluxes of a range of aerosol species and aerosol precursor at the global scale. These fluxes are estimated by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS into a global aerosol model of intermediate complexity. Monthly emissions are fitted homogenously for each species over a set of predefined regions. The performance of the assimilation is evaluated by comparing the AOD after assimilation against the MODIS observations and against independent observations. The system is effective in forcing the model towards the observations, for both total and fine mode AOD. Significant improvements for the root mean square error and correlation coefficient against both the assimilated and independent datasets are observed as well as a significant decrease in the mean bias against the assimilated observations. The assimilation is more efficient over land than over ocean. The impact of the assimilation of fine mode AOD over ocean demonstrates potential for further improvement by including fine mode AOD observations over continents. The Angström exponent is also improved in African, European and dusty stations. The estimated emission flux for black carbon is 14.5 Tg yr−1, 119 Tg yr−1 for organic matter, 17 Pg yr−1 for sea salt, 82.7 TgS yr−1 for SO2 and 1383 Tg yr−1 for desert dust. They represent a difference of +45%, +40%, +26%, +13% and −39% respectively, with respect to the a priori values. The initial errors attributed to the emission fluxes are reduced for all estimated species.

  4. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model

    Directory of Open Access Journals (Sweden)

    N. Huneeus

    2012-05-01

    Full Text Available This study estimates the emission fluxes of a range of aerosol species and one aerosol precursor at the global scale. These fluxes are estimated by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS into a global aerosol model of intermediate complexity. Monthly emissions are fitted homogenously for each species over a set of predefined regions. The performance of the assimilation is evaluated by comparing the AOD after assimilation against the MODIS observations and against independent observations. The system is effective in forcing the model towards the observations, for both total and fine mode AOD. Significant improvements for the root mean square error and correlation coefficient against both the assimilated and independent datasets are observed as well as a significant decrease in the mean bias against the assimilated observations. These improvements are larger over land than over ocean. The impact of the assimilation of fine mode AOD over ocean demonstrates potential for further improvement by including fine mode AOD observations over continents. The Angström exponent is also improved in African, European and dusty stations. The estimated emission flux for black carbon is 15 Tg yr−1, 119 Tg yr−1 for particulate organic matter, 17 Pg yr−1 for sea salt, 83 TgS yr−1 for SO2 and 1383 Tg yr−1 for desert dust. They represent a difference of +45 %, +40 %, +26 %, +13 % and −39 % respectively, with respect to the a priori values. The initial errors attributed to the emission fluxes are reduced for all estimated species.

  5. Aerosol Optical Depth Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  6. Aerosol optical depths and their contributing sources in Taiwan

    Science.gov (United States)

    Chan, K. L.; Chan, K. L.

    2017-01-01

    In this paper, we present a quantitative investigation of the contributions of different aerosols to the aerosol optical depths (AODs) in Taiwan using a global chemical transport model (GEOS-Chem) and remote sensing measurements. The study focus is on the period from June 2012 to October 2013. Five different types of aerosols are investigated: sea salt, dust, sulfate, organic carbon and black carbon. Three of these aerosols, namely sulfate, organic carbon and black carbon, have significant anthropogenic sources. Model simulation results were compared with both ground based sun photometer measurements and MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations. The model data shows good agreement with satellite observations (R = 0.72) and moderate correlation with sun photometer measurements (R = 0.52). Simulation results show the anthropogenic aerosols contribute ∼65% to the total AOD in Taipei, while natural originated aerosols only show a minor impact (∼35%). Among all the aerosols, sulfate is the dominating species, contributing 62.4% to the annual average total AOD. Organic carbon and black carbons respectively contribute 7.3% and 1.5% to the annual averaged total AOD. The annual average contributions of sea salt and dust aerosols to the total AOD are 26.4% and 2.4%, respectively. A sensitivity study was performed to identify the contributions of anthropogenic aerosol sources in each region to the AODs in Taipei. North-East Asia was identified as the major contributing source region of anthropogenic aerosols to Taipei, accounting for more than 50% of total sulfate, 32% of total organic carbon and 51% of total black carbon aerosols. South-East Asia is the second largest contributing source region, contributing 35%, 24% and 34% of total sulfate, organic carbon and black carbon aerosols, respectively. The aerosols from continents other than Asia only show minor impacts to the aerosol load in Taipei. In addition, a case study of a biomass

  7. Observations of Three-Dimensional Radiative Effects that Influence Satellite Retrievals of Cloud Properties

    Science.gov (United States)

    Varnai, Tamas; Marshak, Alexander; Lau, William K. M. (Technical Monitor)

    2001-01-01

    This paper examines three-dimensional (3D) radiative effects, which arise from horizontal radiative interactions between areas that have different cloud properties. Earlier studies have argued that these effects can cause significant uncertainties in current satellite retrievals of cloud properties, because the retrievals rely on one-dimensional (1D) theory and do not consider the effects of horizontal changes in cloud properties. This study addresses two questions: which retrieved cloud properties are influenced by 3D radiative effects, and where 3D effects tend to occur? The influence of 3D effects is detected from the wayside illumination and shadowing make clouds appear asymmetric: Areas appear brighter if the cloud top surface is tilted toward, rather than away from, the Sun. The analysis of 30 images by the Moderate Resolution Imaging Spectroradiometer (MODIS) reveals that retrievals of cloud optical thickness and cloud water content are most influenced by 3D effects, whereas retrievals of cloud particle size are much less affected. The results also indicate that while 3D effects are strongest at cloud edges, cloud top variability in cloud interiors, even in overcast regions, also produces considerable 3D effects. Finally, significant 3D effects are found in a wide variety of situations, ranging from thin clouds to thick ones and from low clouds to high ones.

  8. Evaluation of the representativeness of ground-based visibility for analysing the spatial and temporal variability of aerosol optical thickness in China

    Science.gov (United States)

    Zhang, Zhao Yang; Wong, Man Sing; Lee, Kwon Ho

    2016-12-01

    Although visibility is a widely-used indicator to quantify the aerosol loadings, only a few studies have been analyzed the representativeness of visibility in deriving Aerosol Optical Thickness (AOT). In this paper, ground-based visibility, MODerate-resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) monthly AOT products between July 2002 and December 2014 were analyzed in order to extract the dominant modes of variability using the Singular Value Decomposition (SVD) method. The method has significant merit to reduce data dimension and examine both spatial and temporal variability simultaneously. Results indicated that the satellite retrieved AOTs agreed well with ground-based visibility in terms of inter-annual variability. The correlation coefficients in the first deseasonalized mode are greater than 0.65 between visibility and satellite AOT products. However, large differences were observed in the seasonal variability between ground-based visibility and AOT. In addition, Aerosol vertical distribution from LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) and cloud data from ground-based meteorological station were used to investigate the seasonal variability disagreement. The AOT values derived from LIVAS extinction coefficients between 0 and 500 m above surface have a stronger relationship with visibility, than total column AOT with visibility. It also indicates that seasonal variation of aerosol vertical distribution is the main cause of the disagreement between two parameters, and the uncertainties of satellite products also contribute to the disagreement. Results in this study highlighted that the visibility observation could only be used to depict the inter-annual AOT and more ancillary information could be used for studying seasonal AOT variation.

  9. Path radiance technique for retrieving aerosol optical thickness over land

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Guoyong [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States); Tsay, Si-Chee [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Cahalan, Robert F. [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States); NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Oreopoulos, Lazaros [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States)

    1999-12-27

    The key issue in retrieving aerosol optical thickness over land from shortwave satellite radiances is to identify and separate the signal due to scattering by a largely transparent aerosol layer from the noise due to reflection by the background surface, where the signal is relatively uniform compared to the highly inhomogeneous surface contribution. Sensitivity studies in aerosol optical thickness retrievals reveal that the apparent reflectance at the top of the atmosphere is very susceptible to the surface reflectance, especially when aerosol optical thickness is small. Uncertainties associated with surface reflectance estimation can greatly amplify the error of the aerosol optical thickness retrieval. To reduce these uncertainties, we have developed a ''path radiance'' method to retrieve aerosol optical thickness over land by extending the traditional technique that uses the ''dark object'' approach to extract the aerosol signal. This method uses the signature of the correlation of visible and middle-IR reflectance at the surface and couples the correlation with the atmospheric effect. We have applied this method to a Landsat TM (Thematic Mapper) image acquired over the Oklahoma southern Great Plains site of the Department of Energy Atmospheric Radiation Measurement (ARM) program on September 27, 1997, a very clear day (aerosol optical thickness of 0.07 at 0.5 {mu}m) during the first Landsat Intensive Observation Period. The retrieved mean aerosol optical thickness for TM band 1 at 0.49 {mu}m and band 3 at 0.66 {mu}m agree very well with the ground-based Sun photometer measurements at the ARM site. The ability to retrieve small aerosol optical thickness makes this path radiance technique promising. More importantly, the path radiance is relatively insensitive to surface inhomogeneity. The retrieved mean path radiances in reflectance units have very small standard deviations for both TM blue and red bands. This small

  10. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  11. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    Science.gov (United States)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  12. [Effects of aerosol optical thickness on the optical remote sensing imaging quality].

    Science.gov (United States)

    Hu, Xin-Li; Gu, Xing-Fa; Yu, Tao; Zhang, Zhou-Wei; Li, Juan; Luan, Hai-Jun

    2014-03-01

    In recent years, due to changes in atmospheric environment, atmospheric aerosol affection on optical sensor imaging quality is increasingly considered by the load developed departments. Space-based remote sensing system imaging process, atmospheric aerosol makes optical sensor imaging quality deterioration. Atmospheric medium causing image degradation is mainly forward light scattering effect caused by the aerosol turbid medium. Based on the turbid medium radiation transfer equation, the point spread function models were derived contained aerosol optical properties of atmosphere in order to analyze and evaluate the atmospheric blurring effect on optical sensor imaging system. It was found that atmospheric aerosol medium have effect on not only energy decay of atmospheric transmittance, but also the degradation of image quality due to the scattering effect. Increase of atmospheric aerosol optical thickness makes aerosol scattering intensity enhanced, variation of aerosol optical thickness is also strongly influences the point spread function of the spatial distribution. it is because the degradation of aerosol in spatial domain, which reduces the quality of remote sensing image, in particularly reduction of the sharpness of image. Meanwhile, it would provide a method to optimize and improve simulation of atmospheric chain.

  13. Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering

    Science.gov (United States)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slutsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Mikhail

    2012-12-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, ∼99.53%. Only ∼0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  14. Spatial Correlations of Aerosol Optical Depth Over Land

    Science.gov (United States)

    Radkevich, A. V.; Trishchenko, A. P.

    2009-05-01

    The accurate atmospheric correction of historical satellite long-term data is required to make them suitable for climate change application. This is essential to properly identify the impacts caused by changing surface properties, such as vegetation, soil and snow cover, rather than atmospheric effects, cloud contamination and artefacts. The correction of satellite data over land for aerosol effect constitutes the most challenging part of the processing. While a good progress in aerosol retrievals has been achieved in recent years using the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), the aerosol properties and their associated impact on atmospheric correction for historical data over land from the Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA satellites for pre-MODIS period is still not adequately addressed. It seems promising to develop the AVHRR atmospheric correction algorithm based on the synthesis of aerosol retrievals over dark targets and optimum interpolation technique based on aerosol spatio-temporal statistics. The implementation of this approach requires the knowledge of aerosol spatial correlation function. The estimates of aerosol optical depth (AOD) spatial correlation function were obtained in this study using different data sources: MODIS level 2 and level 3 aerosol products, daily averages of ground sun photometer aerosol retrievals from Aerosol Robotic Network (AERONET) and the global chemistry and aerosol atmospheric transport model results from NASA's GOCART. The AOD correlation properties obtained from different types of MODIS aerosol products were found in reasonably good agreement with each other. The AOD correlation radius for different types of MODIS data varied from 418 km to 900 km. The AOD correlation radius obtained from AERONET data was found to be close to 500km. Substantial differences were detected between AOD spatial correlation function derived from

  15. Sources of optically active aerosol particles over the Amazon forest

    Science.gov (United States)

    Guyon, Pascal; Graham, Bim; Roberts, Gregory C.; Mayol-Bracero, Olga L.; Maenhaut, Willy; Artaxo, Paulo; Andreae, Meinrat O.

    taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin.

  16. Estimation of aerosol optical properties from all-sky imagers

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  17. Validation of aerosol optical depth uncertainties within the ESA Climate Change Initiative

    Science.gov (United States)

    Stebel, Kerstin; Povey, Adam; Popp, Thomas; Capelle, Virginie; Clarisse, Lieven; Heckel, Andreas; Kinne, Stefan; Klueser, Lars; Kolmonen, Pekka; de Leeuw, Gerrit; North, Peter R. J.; Pinnock, Simon; Sogacheva, Larisa; Thomas, Gareth; Vandenbussche, Sophie

    2017-04-01

    Uncertainty is a vital component of any climate data record as it provides the context with which to understand the quality of the data and compare it to other measurements. Therefore, pixel-level uncertainties are provided for all aerosol products that have been developed in the framework of the Aerosol_cci project within ESA's Climate Change Initiative (CCI). Validation of these estimated uncertainties is necessary to demonstrate that they provide a useful representation of the distribution of error. We propose a technique for the statistical validation of AOD (aerosol optical depth) uncertainty by comparison to high-quality ground-based observations and present results for ATSR (Along Track Scanning Radiometer) and IASI (Infrared Atmospheric Sounding Interferometer) data records. AOD at 0.55 µm and its uncertainty was calculated with three AOD retrieval algorithms using data from the ATSR instruments (ATSR-2 (1995-2002) and AATSR (2002-2012)). Pixel-level uncertainties were calculated through error propagation (ADV/ASV, ORAC algorithms) or parameterization of the error's dependence on the geophysical retrieval conditions (SU algorithm). Level 2 data are given as super-pixels of 10 km x 10 km. As validation data, we use direct-sun observations of AOD from the AERONET (AErosol RObotic NETwork) and MAN (Maritime Aerosol Network) sun-photometer networks, which are substantially more accurate than satellite retrievals. Neglecting the uncertainty in AERONET observations and possible issues with their ability to represent a satellite pixel area, the error in the retrieval can be approximated by the difference between the satellite and AERONET retrievals (herein referred to as "error"). To evaluate how well the pixel-level uncertainty represents the observed distribution of error, we look at the distribution of the ratio D between the "error" and the ATSR uncertainty. If uncertainties are well represented, D should be normally distributed and 68.3% of values should

  18. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    Directory of Open Access Journals (Sweden)

    S. Itahashi

    2012-03-01

    Full Text Available Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr−1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr−1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron aerosol optical depth (AOD over the oceans adjacent to East Asia increased by 3–8% yr−1 to a peak around 2005–2006 and subsequently decreased by 2–7% yr−1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD

  19. Retrieval of aerosol aspect ratio from optical measurements in Vienna

    Science.gov (United States)

    Kocifaj, M.; Horvath, H.; Gangl, M.

    The phase function and extinction coefficient measured simultaneously are interpreted in terms of surface distribution function and mean effective aspect ratio of aerosol particles. All optical data were collected in the atmosphere of Vienna during field campaign in June 2005. It is shown that behavior of aspect ratio of Viennese aerosols has relation to relative humidity in such a way, that nearly spherical particles (with aspect ratio ɛ≈1) might became aspherical with ɛ≈1.3-1.6 under low relative humidity conditions. Typically, >80% of all Viennese aerosols have the aspect ratio Vienna.

  20. Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals

    Science.gov (United States)

    Lorente, Alba; Folkert Boersma, K.; Yu, Huan; Dörner, Steffen; Hilboll, Andreas; Richter, Andreas; Liu, Mengyao; Lamsal, Lok N.; Barkley, Michael; De Smedt, Isabelle; Van Roozendael, Michel; Wang, Yang; Wagner, Thomas; Beirle, Steffen; Lin, Jin-Tai; Krotkov, Nickolay; Stammes, Piet; Wang, Ping; Eskes, Henk J.; Krol, Maarten

    2017-03-01

    Air mass factor (AMF) calculation is the largest source of uncertainty in NO2 and HCHO satellite retrievals in situations with enhanced trace gas concentrations in the lower troposphere. Structural uncertainty arises when different retrieval methodologies are applied within the scientific community to the same satellite observations. Here, we address the issue of AMF structural uncertainty via a detailed comparison of AMF calculation methods that are structurally different between seven retrieval groups for measurements from the Ozone Monitoring Instrument (OMI). We estimate the escalation of structural uncertainty in every sub-step of the AMF calculation process. This goes beyond the algorithm uncertainty estimates provided in state-of-the-art retrievals, which address the theoretical propagation of uncertainties for one particular retrieval algorithm only. We find that top-of-atmosphere reflectances simulated by four radiative transfer models (RTMs) (DAK, McArtim, SCIATRAN and VLIDORT) agree within 1.5 %. We find that different retrieval groups agree well in the calculations of altitude resolved AMFs from different RTMs (to within 3 %), and in the tropospheric AMFs (to within 6 %) as long as identical ancillary data (surface albedo, terrain height, cloud parameters and trace gas profile) and cloud and aerosol correction procedures are being used. Structural uncertainty increases sharply when retrieval groups use their preference for ancillary data, cloud and aerosol correction. On average, we estimate the AMF structural uncertainty to be 42 % over polluted regions and 31 % over unpolluted regions, mostly driven by substantial differences in the a priori trace gas profiles, surface albedo and cloud parameters. Sensitivity studies for one particular algorithm indicate that different cloud correction approaches result in substantial AMF differences in polluted conditions (5 to 40 % depending on cloud fraction and cloud pressure, and 11 % on average) even for low

  1. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  2. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  3. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    Science.gov (United States)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  4. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  5. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    Science.gov (United States)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  6. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    Science.gov (United States)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  7. View of a pallet configured to support 51-A satellite-retrieval mission

    Science.gov (United States)

    1984-01-01

    A high angle view of a Spacelab type pallet configured to support NASA's 51-A satellite-retrieval mission. At left are two capture devices called 'stingers' used to enter the communications satellites at the nozzle of the spent engine. Center are circular areas for clamping down and securing the satellites for the remainder of the trip.

  8. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  9. Model of optical response of marine aerosols to Forbush decreases

    Directory of Open Access Journals (Sweden)

    T. Bondo

    2009-10-01

    Full Text Available In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases – abrupt decreases in galactic cosmic rays – by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation and condensation model, according to changes in ionization by the Forbush decrease. From the resulting size distribution we then calculate the aerosol optical thickness and Angstrom exponent, for the wavelength pairs 350, 450 nm and 550, 900 nm. For the shorter wavelength pair we observe a change in Angstrom exponent, following the Forbush Decrease, of −6 to +3% in the cases with atmospherically realistic output parameters. For some parameters we also observe a delay in the change of Angstrom exponent, compared to the maximum of the Forbush decrease, which is caused by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates. Furthermore we compare the model output with observations of 5 of the largest Forbush decreases after year 2000. For the 350, 450 nm pair we use AERONET data and find a comparable change in signal while the Angstrom Exponent is lower in the model than in the data, due to AERONET being mainly sampled over land. For 550, 900 nm we compare with both AERONET and MODIS and find little to no response in both model and observations. In summary our study shows that the optical properties of aerosols show a distinct response to Forbush Decreases, assuming that the nucleation of fresh aerosols is driven by ions. Shorter wavelengths seem more favorable for observing these effects and great care should be taken when analyzing observations, in order to avoid the signal being drowned out by noise.

  10. Model of optical response of marine aerosols to Forbush decreases

    Directory of Open Access Journals (Sweden)

    T. Bondo

    2010-03-01

    Full Text Available In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases – abrupt decreases in galactic cosmic rays – by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation and condensation model, according to changes in ionization by the Forbush decrease. From the resulting size distribution we then calculate the aerosol optical thickness and Angstrom exponent, for the wavelength pairs 350, 450 nm and 550, 900 nm. In the cases where the output parameters from the model seem to compare best with atmospheric observations we observe, for the shorter wavelength pair, a change in Angstrom exponent, following the Forbush Decrease, of −6 to +3%. In some cases we also observe a delay in the change of Angstrom exponent, compared to the maximum of the Forbush decrease, which is caused by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates. Furthermore we compare the model output with observations of 5 of the largest Forbush decreases after year 2000. For the 350, 450 nm pair we use AERONET data and find a comparable change in signal while the Angstrom Exponent is lower in the model than in the data, due to AERONET being mainly sampled over land. For 550, 900 nm we compare with both AERONET and MODIS and find little to no response in both model and observations. In summary our study shows that the optical properties of aerosols show a distinct response to Forbush Decreases, assuming that the nucleation of fresh aerosols is driven by ions. Shorter wavelengths seem more favorable for observing these effects and great care should be taken when analyzing observations, in order to avoid

  11. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  12. Optical response of marine aerosols to Forbush Decreases

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    A tempting approach to investigate the link between cosmic rays and climate is to explore Forbush decreases - sudden drops in the amount of galactic cosmic rays reaching Earth, caused by large Coronal Mass Ejections from the sun. Due to the sudden nature of these events effects from other solar...... parameters, such as total irradiance or UV can be ruled out. There has previously been several papers using observations to gauge the impact of Forbush decreases on cloud cover, but with no definitive conclusion. In this study we model the response of the optical parameters of marine aerosols – precursors...... for cloud drops. We are specifically looking at the Angstrom exponent and the optical thickness. The goal is to elucidate the sensitivity of the type and magnitude of response in these parameters during a Forbush decrease, to changes in aerosol production, condensable gases, and primary aerosols....

  13. Global CALIPSO Observations of Aerosol Changes Near Clouds

    Science.gov (United States)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  14. Electro-Optical Aerosol Phase Function Database PFNDAT2005

    Science.gov (United States)

    2005-11-01

    Pollack, J.B.; Khare, B.N. Optical Constants of Several Atmospheric Aerosol Species, Ammonium Sulphate , Aluminum Oxide and Sodium Chloride. J. of...16 Table 12. Precipitation rates, number...rain at three precipitation rates (drizzle, moderate, and heavy); and two classes of snow, “dry” and “wet”. Dusts are treated under four categories

  15. Aerosol optical depth retrieval in the Arctic region using MODIS based on prior knowledge

    Directory of Open Access Journals (Sweden)

    L. Mei

    2011-12-01

    Full Text Available The Arctic is especially vulnerable to the long-term transport of aerosols and other pollutants because aerosols can affect the albedo of the surface by deposition on snow and ice. However, aerosol observations for this area are sparse and hence there is considerable uncertainty in the knowledge on the properties of the Arctic aerosol. Arctic aerosol observations are needed to fill this gap because these are among the basic and most important parameters for researching the Arctic environment. Atmospheric remote sensing using satellites offers us an opportunity to describe the aerosol distribution in terms of both local, regional and global coverage. However, AOD retrieval over a bright surface remains a difficult task because it is hard to separate and explicitly describe the contribution of the observed signal reflected by the variable surface and back scattering by the semi-transparent aerosols, especially with a large solar or sensor zenith angle. In this paper, an approach using a synergetic approach with Moderate Resolution Imaging Spectroradiometer (MODIS data based on prior knowledge is presented. The detailed analysis of the model demonstrates that it is suitable for Arctic region AOD retrieval. Six AERONET stations at high latitude (Andenes, Barrow, Ittoqqortoormiit, OPAL, Thule, and Tiksi were used for validation, and the correlation coefficient between retrieved AODs and AERONET AODs was 0.75 and the retrieval absolute error is approximately 0.1, while the relative error is 20% (at some stations with clear skies as low as 10% was found. Furthermore, the Russian wildfires that occurred in late July of 2010 and their effect on the Arctic environment is presented; Satellite retrieved AODs in the Arctic increased to 1.0 during 1 August and 15 August 2010, even 2.0, during the burning phase, and subsequently returned to normal values (lower than 0.1, which was fully in line with the AERONET observations. This indicates that the fire plumes

  16. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2008-07-01

    Full Text Available We present a sensitivity study on the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. Using the same aerosol fields simulated in the Global Modeling Initiative (GMI model, we find that, on a global average, the calculated AOT from RH in 1° latitude by 1.25° longitude spatial resolution is 11% higher than that in 2° by 2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% higher for total aerosols and 15% higher for only anthropogenic aerosols in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60°N (16–21%, where AOT is also relatively larger. A similar increase is also found when the time resolution of RH is increased. This increase of AOT and DRE with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study suggests that caution should be taken in a multi-model comparison (e.g. AeroCom since the comparison usually deals with results coming from different spatial/temporal resolutions.

  17. Aerosol Optical Depth over Africa retrieved from AATSR

    Science.gov (United States)

    Sogacheva, Larisa; de Leeuw, Gerrit; Kolmonen, Pekka; Sundström, Anu-Maija; Rodriques, Edith

    2010-05-01

    Aerosols produced over the African continent have important consequences for climate. In particular, large amounts of desert dust are produced over the Sahara and transported across the North Atlantic where desert dust deposition influences the eco system by iron fertilization, and further North over Europe with outbreaks as far as Scandinavia. Biomass burning occurs in most of the African continent south of the Sahara and causes a net positive radiating forcing resulting in local warming of the atmosphere layers. These effects have been studied during large field campaigns. Satellites can systematically provide information on aerosols over a large area such as Africa and beyond. To this end, we retrieved the Aerosol Optical Depth (AOD) at three wavelengths (555nm, 670nm, and 1600nm) over Africa from the reflectance measured at the top of the atmosphere by the AATSR (Advances Along Track Scanning Radiometer) flying on ENVISAT, for one year (1 May 2008 to 30 April 2009) to obtain information on the seasonal and spatial behaviour of the AOD, episodes of high AOD events and connect the retrieved AOD with the ground-based aerosol measurements. The AOD retrieval algorithm, which is applied to cloud-free pixels over land, is based on the comparison of the measured and modeled reflectance at the top of the atmosphere (TOA). The algorithm uses look-up-tables (LUTs) to compute the modeled TOA reflectance. For AOD retrieval, an aerosol in the atmosphere is assumed to be an external mixture of fine and coarse mode particles. The two aerosol types are mixed such that the spectral behavior of the reflectance due to aerosol best fits the measurements. Comparison with AERONET (Aerosol Roboric NETwork), which is a network of ground-based sun photometers which measure atmospheric aerosol properties, shows good agreement but with some overestimation of the AATSR retrieved AOD. Different aerosol models have been used to improve the comparison. The lack of AERONET stations in Africa

  18. The Climatology of Australian Aerosol

    Science.gov (United States)

    Mitchell, Ross M.; Forgan, Bruce W.; Campbell, Susan K.

    2017-04-01

    Airborne particles or aerosols have long been recognised for their major contribution to uncertainty in climate change. In addition, aerosol amounts must be known for accurate atmospheric correction of remotely sensed images, and are required to accurately gauge the available solar resource. However, despite great advances in surface networks and satellite retrievals over recent years, long-term continental-scale aerosol data sets are lacking. Here we present an aerosol assessment over Australia based on combined sun photometer measurements from the Bureau of Meteorology Radiation Network and CSIRO/AeroSpan. The measurements are continental in coverage, comprising 22 stations, and generally decadal in timescale, totalling 207 station-years. Monthly climatologies are given at all stations. Spectral decomposition shows that the time series can be represented as a weighted sum of sinusoids with periods of 12, 6 and 4 months, corresponding to the annual cycle and its second and third harmonics. Their relative amplitudes and phase relationships lead to sawtooth-like waveforms sharply rising to an austral spring peak, with a slower decline often including a secondary peak during the summer. The amplitude and phase of these periodic components show significant regional change across the continent. Fits based on this harmonic analysis are used to separate the periodic and episodic components of the aerosol time series. An exploratory classification of the aerosol types is undertaken based on (a) the relative periodic amplitudes of the Ångström exponent and aerosol optical depth, (b) the relative amplitudes of the 6- and 4-month harmonic components of the aerosol optical depth, and (c) the ratio of episodic to periodic variation in aerosol optical depth. It is shown that Australian aerosol can be broadly grouped into three classes: tropical, arid and temperate. Statistically significant decadal trends are found at 4 of the 22 stations. Despite the apparently small

  19. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010

    Science.gov (United States)

    Hsu, N. C.; Gautam, R.; Sayer, A. M.; Bettenhausen, C.; Li, C.; Jeong, M. J.; Tsay, S.-C.; Holben, B. N.

    2012-09-01

    Both sensor calibration and satellite retrieval algorithm play an important role in the ability to determine accurately long-term trends from satellite data. Owing to the unprecedented accuracy and long-term stability of its radiometric calibration, SeaWiFS measurements exhibit minimal uncertainty with respect to sensor calibration. In this study, we take advantage of this well-calibrated set of measurements by applying a newly-developed aerosol optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of AOD, and to identify emerging patterns and trends in global and regional aerosol loading during its 13-yr mission. Our correlation analysis between climatic indices (such as ENSO) and AOD suggests strong relationships for Saharan dust export as well as biomass-burning activity in the tropics, associated with large-scale feedbacks. The results also indicate that the averaged AOD trend over global ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but opposite in sign to that observed by AVHRR during overlapping years. On regional scales, distinct tendencies are found for different regions associated with natural and anthropogenic aerosol emission and transport. For example, large upward trends are found over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission and transport processes over the whole region as well as over downwind oceanic regions. In contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well as in the associated dust outflow over the north Atlantic. Additionally, we found decreasing trends over the eastern US and Europe, and increasing trends over countries such as China and India that are experiencing rapid economic development. In general, these results are consistent with those derived from ground-based AERONET measurements.

  20. Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations

    Science.gov (United States)

    Bridhikitti, Arika

    2013-06-01

    Previous studies suggested that aerosol optical depth (AOD) from the Earth Observing System satellite retrievals could be used for inference of ground-level air quality in various locations. This application may be appropriate if pollution in elevated atmospheric layers is insignificant. This study investigated the significance of elevated air pollution layers over the Bangkok Metropolitan Region (BMR) from all available aerosol layer scenes taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for years 2007 to 2011. The results show that biomass burning smoke layers alone were the most frequently observed. The smoke layers accounted for high AOD variations and increased AOD levels. In the dry seasons, the smoke layers alone with high AOD levels were likely brought to the BMR via northeasterly to easterly prevailing winds and found at altitudes above the typical BMR mixing heights of approximately 0.7 to 1.5 km. The smoke should be attributed to biomass burning emissions outside the BMR.

  1. Variability of aerosol optical properties in the Western Mediterranean Basin

    Science.gov (United States)

    Pandolfi, M.; Cusack, M.; Alastuey, A.; Querol, X.

    2011-08-01

    Aerosol light scattering, absorption and particulate matter (PM) concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB) which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR). Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm) were 26.6±23.2 Mm-1 and 4.3±2.7 Mm-1, respectively and the mean aerosol absorption coefficient (@ 637 nm) was 2.8±2.2 Mm-1. Mean values of Single Scattering Albedo (SSA) and Ångström exponent (å) (calculated from 450 nm to 635 nm) at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC) for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g-1 and 11.8±2.2 m2 g-1, respectively, while the mean aerosol absorption cross section (MAC) was 10.4±2.0 m2 g-1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1) while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly dominated by coarser particles (å = 1.0±0.4). The sea breeze played an important role in transporting pollutants from the developed WMB coastlines towards inland rural areas

  2. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  3. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2009-04-01

    Full Text Available We present a sensitivity study of the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. We carry out different modeling experiments using the same aerosol fields simulated in the Global Modeling Initiative (GMI model at a resolution of 2° latitude by 2.5° longitude, using time-averaged fields archived every three hours by the Goddard Earth Observation System Version 4 (GEOS-4, but we change the horizontal and temporal resolution of the relative humidity fields. We find that, on a global average, the AOT calculated using RH at a 1°×1.25° horizontal resolution is 11% higher than that using RH at a 2°×2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% and 15% more negative (i.e., more cooling for total aerosols and anthropogenic aerosol alone, respectively, in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60° N (16–21%, where AOT is also relatively larger. A similar impact is also found when the time resolution of RH is increased. This increase of AOT and aerosol cooling with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study is a specific example of the uncertainty in model results highlighted by multi-model comparisons such as AeroCom, and points out one of the many inter-model differences that can contribute to the overall spread among models.

  4. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    Science.gov (United States)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  5. SPATIAL INTERPOLATION OF AEROSOL OPTICAL DEPTH POLLUTION: COMPARISON OF METHODS FOR THE DEVELOPMENT OF AEROSOL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    S. Safarpour

    2017-09-01

    Full Text Available Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD. The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor onboard NASA’s Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  6. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    Science.gov (United States)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  7. Vertically Resolved Aerosol Optical Properties over the ARM SGP Site

    Science.gov (United States)

    Schmid, B.; Jonsson, H.; Strawa, A.; Provencal, B.; Covert, D.; Arnott, P.; Bucholtz, A.; Pilewskie, P.; Pommier, J.; Rissman, T.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. To this end, the ARM program will conduct an Aerosol Intensive Operational Period (IOP) in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma. The IOP involves airborne measurements from two airplanes over the heavily instrumented SGP site. We will give an overview of early airborne results obtained aboard Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The aircraft will carry instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size including such novel techniques as the photoacoustic and cavity ring-down methods. Aerosol optical depth and extinction will be measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore up- and downwelling solar (broadband and spectral) and infrared radiation will be measured using three different instruments. The up-looking radiation instruments will be mounted on a newly developed stabilized platform, which will keep the instruments level up to aircraft pitch and roll angles of 10 degrees. Additional effort will be directed toward measurement of cloud condensation nucleus concentration as a function of supersaturation and relating CCN concentration to aerosol composition and size distribution. This relation is central to description of the aerosol indirect effect.

  8. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    Science.gov (United States)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  9. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    Science.gov (United States)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp

  10. Seasonal variability of aerosol optical depth over Indian subcontinent

    Science.gov (United States)

    Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.

    2005-01-01

    Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.

  11. Characterisation of coated aerosols using optical tweezers and neutron reflectometry

    Science.gov (United States)

    Jones, S. H.; Ward, A.; King, M. D.

    2013-12-01

    Thin organic films are believed to form naturally on the surface of aerosols [1,2] and influence aerosol properties. Cloud condensation nuclei formation and chemical reactions such as aerosol oxidation are effected by the presence of thin films [3]. There is a requirement to characterise the physical properties of both the core aerosol and its organic film in order to fully understand the contribution of coated aerosols to the indirect effect. Two complementary techniques have been used to study the oxidation of thin organic films on the surface of aerosols; laser optical tweezers and neutron reflectometry. Micron sized polystyrene beads coated in oleic acid have been trapped in air using two counter propagating laser beams. Polystyrene beads are used as a proxy for solid aerosol. The trapped aerosol is illuminated with a white LED over a broadband wavelength range and the scattered light collected to produce a Mie spectrum [4]. Analysis of the Mie spectrum results in determination of the core polystyrene bead radius, the oleic acid film thickness and refractive index dispersion of the core and shell [5]. A flow of ozone gas can then be introduced into the aerosol environment to oxidise the thin film of oleic acid and the reaction followed by monitoring the changes in the Mie spectrum. The results demonstrate complete removal of the oleic acid film. We conclude that the use of a counter propagating optical trap combined with white light Mie spectroscopy can be used to study a range of organic films on different types of aerosols and their oxidation reactions. Neutron reflectometry has been used as a complementary technique to study the oxidation of monolayer films at the air-water interface in order to gain information on reaction kinetics. The oxidation of an oleic acid film at the air-water interface by the common tropospheric oxidant ozone has been studied using a Langmuir trough. Results indicate complete removal of the oleic acid film with ozone in agreement

  12. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  13. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  14. Columnar Aerosol Optical Properties during "El Arenosillo 2004 Summer Campaign"

    Energy Technology Data Exchange (ETDEWEB)

    Prats, N.; Cachorro, V. E.; Sorribas, M.; Mogo, S.; Berjon, A.; Toledano, C.; de Frutos, A. M.; de la Rosa, J.; Laulainen, Nels S.; de la Morena, B. A.

    2008-04-14

    A detailed analysis of the microphysical and radiative columnar aerosol parameters has been carried out for data collected during the “El Arenosillo 2004” summer campaign. These data are derived from a Cimel sun-photometer, as part of the PHOTONS-AERONET network at the El Arenosillo site in south-western Spain, over the period 1 June to 31 October 2004. The aim of this campaign was to obtain a more complete set of data on aerosol microphysical, optical/radiative, and chemical properties for use in closure studies. Previous papers addressed the climatology of the AOD-alpha parameters at this site. In this paper, we focus on the characterization of the particle size distribution and associated microphysical parameters, such as volume concentration, effective radius, etc., in order to define the features and ranges of these physical parameters associated with both fine and coarse particle modes. The requirement of high AOD values for using the optical inversion technique puts significant constraints on the estimation of these parameters and, thus, necessitates great care in the analysis. As a result, only the characterizations for desert dust events are considered reliable. Moreover, summer 2004 had the most frequent desert dust intrusions, including the most intense event, ever recorded at the El Arensillo site. We summarize the results for the intensive summer campaign in terms of the range of values of the physical and optical parameters of the mixed aerosol types present in this area of Spain.

  15. Evaluating UVA aerosol optical depth using a smartphone camera.

    Science.gov (United States)

    Igoe, Damien P; Parisi, Alfio V; Carter, Brad

    2013-01-01

    This research evaluates a smartphone complementary metal oxide semiconductor (CMOS) image sensor's ability to detect and quantify incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies revealed that the consumer grade CMOS sensor has inherent UVA sensitivities, despite attenuating effects of the lens. Narrow bandpass and neutral density filters were used to protect the image sensor and to not allow saturation of the solar images produced. Observations were made on clear days, free from clouds. The results of this research demonstrate that there is a definable response to changing solar irradiance and aerosol optical depth can be measured within 5% and 10% error margins at 380 and 340 nm respectively. The greater relative error occurs at lower wavelengths (340 nm) due to increased atmospheric scattering effects, particularly at higher air masses and due to lower signal to noise ratio in the image sensor. The relative error for solar irradiance was under 1% for observations made at 380 nm. The results indicate that the smartphone image sensor, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate solar UVA irradiance and aerosol optical depth. © 2013 The American Society of Photobiology.

  16. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    Science.gov (United States)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  17. Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-04-01

    Full Text Available Aerosol optical depth (AOD has been widely used in climate research, atmospheric environmental observations, and other applications. However, high AOD retrieval remains challenging over heavily polluted regions, such as the North China Plain (NCP. The Visible Infrared Imaging Radiometer Suite (VIIRS, which was designed as a successor to the Moderate Resolution Imaging Spectroradiometer (MODIS, will undertake the aerosol observations mission in the coming years. Using the VIIRS AOD retrieval algorithm as an example, we analyzed the influence of heavy aerosol loading through the 6SV radiative transfer model (RTM with a focus on three aspects: cloud masking, ephemeral water body tests, and data quality estimation. First, certain pixels were mistakenly screened out as clouds and ephemeral water bodies because of heavy aerosols, resulting in the loss of AOD retrievals. Second, the greenness of the surface could not be accurately identified by the top of atmosphere (TOA index, and the quality of the aggregation data may be artificially high. Thus, the AOD retrieval algorithm did not perform satisfactorily, indicated by the low availability of data coverage (at least 37.97% of all data records were missing according to ground-based observations and overestimation of the data quality (high-quality data increased from 63.42% to 80.97% according to radiative simulations. To resolve these problems, the implementation of a spatial variability cloud mask method and surficial index are suggested in order to improve the algorithm.

  18. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water

    Science.gov (United States)

    Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.

    2016-11-01

    Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements.

  19. Optical and Hygroscopic Studies of Aerosols In Simulated Planetary Atmospheres

    Science.gov (United States)

    Hasenkopf, Christa A.

    2011-08-01

    Basic characteristics of the early Earth climate, the only known environment in the Universe in which life has been known to emerge and thrive, remain a mystery. In particular, little is understood about the Earth's atmosphere 2.8 billion years ago. From climate models and laboratory studies, it is postulated that an organic haze, much like that found on Saturn's largest moon Titan, covered the early Earth. This haze, generated from photolysis of carbon dioxide (CO2) and methane (CH4), may have had profound climatic consequences. Climate models of the early Earth that include this haze have had to rely upon optical properties of a Titan laboratory analog. Titan haze, though thought to be similar, is formed from a different combination of precursor gases and by different energy sources than early Earth haze. This thesis examines the direct and indirect radiative effects of aerosol on early Earth climate by studying the optical and hygroscopic properties of a laboratory analog. A Titan analog is studied for comparison and to better understand spacecraft-retrieved haze chemical and optical properties from Titan. The properties of the laboratory analogs, generated in a flowing reactor cell with a continuum ultraviolet (UV) light source, were primarily measured using cavity ringdown aerosol extinction spectroscopy and UV-visible (UV-Vis) transmission spectroscopy. We find that the optical properties of our early Earth analog are significantly different than those of the Titan analog from Khare et al. (1984). In both the UV and visible, when modeled as fractals, particles with the optical properties of the early Earth analog have approximately 30% larger extinction efficiencies than particles with Khare et al. (1984) values. This result implies our early Earth haze analog would provide a more efficient UV shield and have a stronger antigreenhouse effect than the Khare et al. (1984) Titan analog. Our Titan analog has significantly smaller imaginary refractive index values

  20. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia

    Science.gov (United States)

    Masmoudi, M.; Chaabane, M.; Medhioub, K.; Elleuch, F.

    The aerosol optical thickness (AOT) τa computed from the spectral sun photometer in Thala (Tunisia) exhibited variability ranging from approximately 0.03 to greater than 2.0 at 870 nm for March-October 2001. These measurements are compared to the aerosol optical thickness computed in Ouagadougou (Burkina-Faso), Banizoumbou (Niger), IMC Oristano (Sardinia) and Rome Tor Vergata (Italy). Analysis of τa data from this observation network suggests that there is a high temporal and spatial variability of τa in the different sites. The Angström wavelength exponent α was found to vary with the magnitude of the aerosol optical thickness, with values as high as 1.5 for very low τa, and values of -0.1 for high τa situations. The relationship between the two parameters τa and α is investigated. Values of the turbidity coefficient β have been determined in Thala (Tunisia) for 8 months in 2001 based on a direct fitting method of the Angström power law expression using sun photometer data. The monthly averaged values of the turbidity coefficient β vary between 0.15 and 0.33. The months of July and October experienced the highest turbidity, while April experienced the lowest aerosol loading on average. The turbidity shows a maximum and minimum values for the Southwest and the Northwest wind directions, respectively. The single scattering albedo ωo for the 870 nm wavelength obtained from solar aureole data in Thala is analysed according to the particles' origin.

  1. A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS

    Directory of Open Access Journals (Sweden)

    M. Christensen

    2014-12-01

    Full Text Available Submerged oceanic bubbles, which could have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine if such bubbles are of sufficient magnitude to impact satellite Aerosol Optical Depth (AOD retrievals through perturbation of the lower boundary conditions. Indeed, there has been significant discussion in the community regarding the high positive biases in retrieved AODs in many remote ocean regions. In this study, for the first time, the effects of oceanic bubbles on satellite retrievals of AOD are studied by using a linked Second Simulation of a Satellite Signal in the Solar Spectrum (6S atmospheric and HydroLight oceanic radiative transfer models. The results suggest an insignificant impact on AOD retrievals in regions with near-surface wind speeds of less than 12 m s−1. However, the impact of bubbles on aerosol retrievals could be on the order of 0.02–0.04 for higher wind conditions within the scope of our simulations (e.g., winds −1. This bias is propagated to global scales using one year of Moderate Resolution Imaging Spectroradiometer (MODIS and Advanced Microwave Scanning Radiometer – Earth (AMSR-E data to investigate the possible impacts of oceanic bubbles on an enhanced AOD belt observed over the high latitude southern oceans (also called Enhanced Southern Oceans Anomaly, or ESOA by some passive satellite sensors. Ultimately, this study is supportive of the null hypothesis: submerged bubbles are not the major contributor to the ESOA feature. This said, as retrievals progress to higher and higher resolutions, such as from airborne platforms, in clean marine conditions the uniform bubble correction should probably be separately accounted for against individual bright whitecaps and bubble rafts.

  2. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  3. Satellite observations of cloud regime development: the role of aerosol processes

    OpenAIRE

    E. Gryspeerdt; Stier, P.; D. G. Partridge

    2013-01-01

    Many different interactions between aerosols and clouds have been postulated based on correlations between satellite retrieved aerosol and cloud properties. Previous studies highlighted the importance of meteorological covariability to the observed correlations. In this work, we make use of multiple temporally-spaced satellite retrievals to observe the development of cloud regimes. The observation of cloud regime development allows us to account for the influences of cloud fraction (C...

  4. Satellite observations of cloud regime development: the role of aerosol processes

    OpenAIRE

    E. Gryspeerdt; Stier, P.; D. G. Partridge

    2014-01-01

    Many different interactions between aerosols and clouds have been postulated, based on correlations between satellite retrieved aerosol and cloud properties. Previous studies highlighted the importance of meteorological covariations to the observed correlations. In this work, we make use of multiple temporally-spaced satellite retrievals to observe the development of cloud regimes. The observation of cloud regime development allows us to account for the influences of clo...

  5. Aerosol Optical Properties During The SAMUM-2 Experiment

    Science.gov (United States)

    Toledano, C.; Freudenthaler, V.; Gross, S.; Seefeldner, M.; Gasteiger, J.; Garhammer, M.; Esselborn, M.; Wiegner, M.; Koepke, P.

    2009-03-01

    A field campaign of the Saharan Mineral Dust Experiment (SAMUM-2) took place in the Cape Verde islands in January-February 2008, to investigate the properties of long-range transported dust over the Atlantic. The Meteorological Institute of the University of Munich deployed a set of active and passive remote sensing instruments: one sun photometer, for the measurement of the direct sun irradiance and sky radiances; a broad-band UV radiometer; and 2 tropospheric lidar systems. The measurements were made in close cooperation with the other participating groups. During the measurement period the aerosol scenario over Cape Verde mostly consisted of a dust layer below 2 km and a smoke layer above 2 km height. The Saharan dust arrived in the site from the NE, whereas the smoke originated in the African equatorial region is transported from the SE. The aerosol load was also very variable over this area, with AOD (500 nm) ranging from 0.04 to 0.74. The optical properties of the layers are shown: extinction and particle depolarization ratio profiles at 3 wavelengths, as well as aerosol optical depth (in the range 340-1550 nm), Ångström exponent, size distribution and single scattering albedo.

  6. Climatology of aerosol optical properties in Northern Norway and Svalbard

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2012-10-01

    Full Text Available We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET stations at Andenes (69° N, 16° E, 379 m altitude and Hornsund (77° N, 15° E, 10 m altitude for the period 2008–2010. The three-year annual mean values for the aerosol optical thickness at 500 nm τ(500 at Andenes and Hornsund were 0.11 and 0.10, respectively. At Hornsund, there was less variation of the monthly mean value of τ(500 than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.18 and 1.37, respectively. At Andenes and Hornsund α was found to be larger than 1.0 in 68% and 93% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar seasonal variation of the aerosol size distribution although one site is in an Arctic area while the other site is in a sub-arctic area.

  7. Optical and microphysical properties of atmospheric aerosols in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 =0.25 Range of Ångström parameter : 0.14 (440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban-industrial and mixed' in accordance with the classification of aerosol type models systematized and developed by AERONET team (O.Dubovik et al., 2002, J. Atmosph. Sci., 59, 590-608) on the basis of datasets acquired from worldwide observations at the

  8. Variability of aerosol optical properties in the Western Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    M. Pandolfi

    2011-08-01

    Full Text Available Aerosol light scattering, absorption and particulate matter (PM concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR. Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm were 26.6±23.2 Mm−1 and 4.3±2.7 Mm−1, respectively and the mean aerosol absorption coefficient (@ 637 nm was 2.8±2.2 Mm−1. Mean values of Single Scattering Albedo (SSA and Ångström exponent (å (calculated from 450 nm to 635 nm at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g−1 and 11.8±2.2 m2 g−1, respectively, while the mean aerosol absorption cross section (MAC was 10.4±2.0 m2 g−1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1 while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly

  9. Modeling of optical binding of submicron aerosol particles in counterpropagating Bessel beams

    Science.gov (United States)

    Thanopulos, I.; Luckhaus, D.; Signorell, R.

    2017-06-01

    We theoretically investigate the interparticle force between a pair of spherical aerosol nanoparticles in a dual counterpropagating Bessel beam configuration. We study the dependence of optical binding in the aerosol phase on the wavelength of the electromagnetic radiation, the particle radius, and the refractive index, including the cases of weak, moderate, and strong light absorption by the particles. We also investigate the relation between optical binding and the time-averaged intensity of the incident and scattered light. Our results show that optical binding in the aerosol phase depends strongly on the specific values of these parameters. This explains some of the difficulties associated with optical binding experiments with aerosol nanoparticles.

  10. Sensitivity test of GOCI dust aerosol index with aerosol absorptivity by using radiative transfer simulation and comparison with AERONET aerosol optical properties

    Science.gov (United States)

    Choi, M.; Kim, J.; Lee, J.; Park, Y. J.

    2016-12-01

    For the monitoring of aerosol properties in East Asia using the Geostationary Ocean Color Imager (GOCI), the GOCI Yonsei aerosol retrieval (YAER) algorithm was developed and has been improved continuously since 2011. GOCI YAER algorithm contains several aerosol models consisted of various optical properties such as aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA) for assuming every possible aerosol status. Then, AOD at 550 nm is retrieved from selected aerosol models which show least difference between observed top-of-atmosphere (TOA) reflectance and simulated TOA reflectance in terms of spectral AODs. Current inversion method is optimized for spectral AODs, especially AOD at 550 nm. Therefore, GOCI YAER AOD, FMF, and Angstrom exponent show reliable accuracy with ground-based AERONET and satellite-based MODIS and VIIRS products. However, SSA shows least accuracy (R = 0.2) with AERONET SSA, which is different from AOD, FMF, and AE. To improve accuracy of SSA retrieval, the inversion method should reflect a characteristic of aerosol absorptivity well, not only in the aerosol model construction as forward modeling. UV aerosol index from TOMS and OMI measurements, calculated by using 354 and 388 nm, provides the extent of aerosol absorptivity, which can be used for the improvement of aerosol model quality between absorbing and non-absorbing aerosol model. Instead of UV index, a dust aerosol index (DAI) can be calculated using two visible channels such as 412 and 443 (or 490) nm. Heavy dust plume, which is coarse and absorbing aerosol, in 47 April 2012 show DAI of 5, but heavy haze plume, which is fine and non-absorbing aerosol, in 6 May 2012 shows DAI close to 0. To find relationship between DAI and aerosol absorptivity properties, sensitivity is tested by using radiative transfer model (RTM), and retrieved GOCI DAI from observed TOA reflectance is compared with ground-based AERONET SSA and other optical properties. Both of

  11. Aerosol Properties over the Indo-Gangetic Plain: A Mesoscale Perspective from the TIGERZ Experiment

    Science.gov (United States)

    Giles, David M.; Holben, Brent N.; Tripathi, Sachchida; Eck, Thomas F.; Newcomb, W. Wayne; Slutsker, Ilya; Dickerson, Russell R.; Thompson, Anne M.; Mattoo, Shana; Wang, Sheng-Hsiang; hide

    2011-01-01

    High aerosol loading over the northern Indian subcontinent can result in poor air quality leading to human health consequences and climate perturbations. The international 2008 TIGERZ experiment intensive operational period (IOP) was conducted in the Indo \\Gangetic Plain (IGP) around the industrial city of Kanpur (26.51degN, 80.23deg E), India, during the premonsoon (April-June). Aerosol Robotic Network (AERONET) Sun photometers performed frequent measurements of aerosol properties at temporary sites distributed within an area covering 50 sq km around Kanpur to characterize pollution and dust in a region where complex aerosol mixtures and semi \\bright surface effects complicate satellite retrieval algorithms. TIGERZ IOP Sun photometers quantified aerosol optical depth (AOD) increases up to 0.10 within and downwind of the city, with urban emissions accounting for 10 C20% of the IGP aerosol loading on deployment days. TIGERZ IOP area \\averaged volume size distribution and single scattering albedo retrievals indicated spatially homogeneous, uniformly sized, spectrally absorbing pollution and dust particles. Aerosol absorption and size relationships were used to categorize black carbon and dust as dominant absorbers and to identify a third category in which both black carbon and dust dominate absorption.Moderate Resolution Imaging Spectroradiometer (MODIS) AOD retrievals with the lowest quality assurance (QA > or = 0) flags were biased high with respect to TIGERZ IOP area \\averaged measurements. MODIS AOD retrievals with QA 0 had moderate correlation (R(sup 2) = 0.52-69) with the Kanpur AERONET site, whereas retrievals with QA > 0 were limited in number. Mesoscale \\distributed Sun photometers quantified temporal and spatial variability of aerosol properties, and these results were used to validate satellite retrievals.

  12. Where do we need additional in situ aerosol and sun photometer data?: a critical examination of spatial biases between MODIS and MISR aerosol products

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2011-07-01

    Full Text Available AErosol RObotic NETwork (AERONET data are the primary benchmark for evaluating satellite retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the aerosol optical depth (AOD products of operational MODIS Collection 5.1 Dark Target (DT and operational MODIS Collection 5.1 Deep Blue (DB with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while sidestepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.3 or below 0.75. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes Mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in greater South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground-based remote sensing measurements. Supplement include GeoTIFF and kml files.

  13. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    Science.gov (United States)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  14. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean

    Science.gov (United States)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-11-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ˜ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ˜ 51, ˜ 34 and ˜ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ˜ 40, ˜ 34 and ˜ 26 % of the total AOD550 over the sea, based on

  15. Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide

    Science.gov (United States)

    Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.; Formenti, Paola; Andreae, Meinrat O.

    2017-04-01

    Carbonaceous aerosol released into the atmosphere from open biomass burning (BB) is known to undergo considerable chemical and physical transformations (aging). However, there is substantial controversy about the nature and observable effects of these transformations. A shortage of consistent observational evidence on BB aerosol aging processes under different environmental conditions and at various temporal scales hinders development of their adequate representations in chemistry transport models (CTMs). In this study, we obtain insights into the BB aerosol dynamics by using available satellite measurements of aerosol optical depth (AOD) and carbon monoxide (CO). The basic concept of our method is to consider AOD as a function of the BB aerosol photochemical age (that is, the time period characterizing the exposure of BB aerosol emissions to atmospheric oxidation reactions) predicted by means of model tracers. We evaluate the AOD enhancement ratio (ER) defined as the ratio of optical depth of actual BB aerosol with respect to that of a modeled aerosol tracer that is assumed to originate from the same fires as the real BB aerosol but that is not affected by any aging processes. To limit possible effects of model transport errors, the AOD measurements are normalized to CO column amounts that are also retrieved from satellite measurements. The method is applied to the analysis of the meso- and synoptic-scale evolution of aerosol in smoke plumes from major wildfires that occurred in Siberia in summer 2012. AOD and CO retrievals from MODIS and IASI measurements, respectively, are used in combination with simulations performed with the CHIMERE CTM. The analysis indicates that aging processes strongly affected the evolution of BB aerosol in the situation considered, especially in dense plumes (with spatial average PM2. 5 concentration exceeding 100 µg m-3). For such plumes, the ER is found to increase almost 2-fold on the scale of ˜ 10 h of daytime aerosol evolution

  16. Retrieving Aerosol Optical Depth over Turbid Coastal Water

    Science.gov (United States)

    Wang, Y.; Wang, J.; Xu, X.; Levy, R. C.

    2016-12-01

    We present an approach to retrieve Aerosol Optical Depth (AOD) over turbid coastal water where operational MODerate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) aerosol retrieval algorithm is not applied due to high water leaving radiance. Filling the coastal water AOD gap is significant because 60% of human population lives in the coastal zone. In this study, the Top of Atmosphere (TOA) reflectance at 2.1 μm observed from MODIS is used to retrieve AOD over turbid coastal water through look up table method as water leaving radiance is negligible at the band. During the retrieval process, aerosol model is substituted by the counterpart of the closest pixel retrieved through MODIS ocean DT algorithm. AOD retrievals over turbid coastal water are validated against observations from six AERONET sites at coastal region in one month. The monthly mean AERONET 440-870 nm Ångström exponent ranges from 0.597 to 1.842 for the six sites, thus they can represent from coarse-mode dominated to fine-mode dominated scenes. AOD retrievals in this study are more in agreement with AERONET observations than operational MODIS AOD (over land or clean coastal water) in terms of bias, and root-mean-square error.

  17. War Induced Aerosol Optical, Microphysical and Radiative Effects

    Science.gov (United States)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  18. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma

    Directory of Open Access Journals (Sweden)

    E. Andrews

    2011-04-01

    Full Text Available A small airplane made more than 450 aerosol optical property (light absorption and light scattering vertical profile measurements (up to 4 km over a rural Oklahoma site between March 2000 and July 2005. These profiles suggest significant seasonal differences in aerosol properties. The highest amounts of scattering and absorbing aerosol are observed during the summer, while the relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter. Aerosol absorption generally decreased with altitude below ∼1.5 km and then was relatively constant above that. Aerosol scattering decreased sharply with altitude below ∼1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. The seasonal variability observed for aerosol loading is consistent with other aerosol measurements in the region including AERONET aerosol optical depth (AOD, CALIPSO vertical profiles, and IMPROVE aerosol mass. The column averaged single scattering albedo derived from in situ airplane measurements shows a similar seasonal cycle as the AERONET single scattering albedo inversion product, but a comparison of aerosol asymmetry parameter from airplane and AERONET platforms suggests differences in seasonal variability. The observed seasonal cycle of aerosol loading corresponds with changes in air mass back trajectories: the aerosol scattering was higher when transport was from polluted areas (e.g., the Gulf Coast and lower when the air came from cleaner regions and/or the upper atmosphere.

  19. Characteristics of spectral aerosol optical depths over India during ICARB

    Indian Academy of Sciences (India)

    S Naseema Beegum; K Krishna Moorthy; Vijayakumar S Nair; S Suresh Babu; S K Satheesh; V Vinoj; R Ramakrishna Reddy; K Rama Gopal; K V S Badarinath; K Niranjan; Santosh Kumar Pandey; M Behera; A Jeyaram; P K Bhuyan; M M Gogoi; Sacchidanand Singh; P Pant; U C Dumka; Yogesh Kant; J C Kuniyal; Darshan Singh

    2008-07-01

    Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from the adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent () remained significantly lower (∼1) over the Arabian Sea compared to Bay of Bengal (BoB) (∼1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of

  20. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  1. Optical characteristics of the aerosol in Spain and Austria and its effect on radiative forcing

    Science.gov (United States)

    Horvath, H.; Alados Arboledas, L.; Olmo, F. J.; Jovanović, O.; Gangl, M.; Kaller, W.; SáNchez, C.; Sauerzopf, H.; Seidl, S.

    2002-10-01

    The horizontal and vertical attenuation of the aerosol, the sky radiance, and the light absorption coefficient of the aerosol have been determined at wavelengths in the visible. From this set of data the following optical characteristics of the atmospheric aerosol could be derived: vertical optical depth, horizontal extinction and absorption coefficient, scattering phase function, asymmetry parameter, and single scattering albedo. Campaigns have been performed in Almería, Spain, and Vienna, Austria. The aerosol undergoes a considerable variation, as experienced by many other studies. Sometimes the vertical and the horizontal measurements gave similar data; on other days the aerosol at the surface and the aerosol aloft were completely different. The "clearest" aerosol always had the smallest single scattering albedo and thus relatively the highest light absorption. The optical characteristics of the aerosol in the two very different locations were very similar. Using the measured optical data, a radiative transfer calculation was performed, and the radiation reaching the ground was calculated. Comparing the values for the clear aerosol and the days with higher aerosol load, the radiative forcing due to the additional aerosol particles could be determined. The forcing of the aerosol at the ground is always negative, and at the top of the atmosphere it is close to zero or slightly negative. Its dependence on wavelength and zenith angle is presented. The preindustrial aerosol in Europe was estimated, and the forcing due to the present-day aerosol was determined. At the surface it is negative, but at the top of the atmosphere it is close to zero or positive. This is caused by the light absorption of the European aerosol, which is higher than in most other locations.

  2. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    Science.gov (United States)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  3. Comparison of near surface and column-integrated atmospheric aerosol optical properties

    Science.gov (United States)

    Aryal, Rudra Prasad

    Optical and chemical properties of size-resolved aerosols in near-surface air at Tudor Hill, Bermuda were measured between July 2006 and June 2009. Vertical distributions of aerosol backscattering and column-averaged aerosol optical properties were characterized with a Micro-pulse lidar (MPL) and a CIMEL automated sun-sky radiometer. The chemical species in size-segregated aerosols in marine air were compared with the surface level aerosol optical properties. The aerosol concentration, along with chemical components, was compared with the surface level wind speed and showed a significant correlation with the sea salt components. The non-sea salt components such as non-sea salt sulfate and ammonium did not show a correlation with the surface level wind speed. A comparison between scattering data at surface level with the extinction coefficient at the lowest altitude bin (75m) from the lidar inversion shows a consistent correlation but is quantitatively different. This quantitative discrepancy was explained based on the hygroscopic growth due to differences in relative humidity in measurement conditions. Aerosol optical properties measured near the surface were often significantly correlated with those averaged over the column. These include scattering by near-surface bulk aerosol at 530 nm versus column aerosol optical depth (AOD), near-surface sub-microm scattering fraction versus column averaged sub-microm scattering fraction, and the average angstrom exponent over column and lidar ratio derived using column integrated size distribution and complex refractive index. We also found that the single scattering albedo (ω o) measured at the surface by combining daily averages of the aerosol absorption and aerosol light scattering were in the same range as the instantaneous ω o retrieved for the column. The relative contribution of submicron aerosol light scattering to total aerosol light scattering is slightly higher in the column relative to the surface. Surface

  4. Estimates of the aerosol optical depth over Pretoria using the CSIR mobile lidar

    CSIR Research Space (South Africa)

    Shikwambana, L

    2013-09-01

    Full Text Available This study shows the estimates of aerosol optical depth measured over Pretoria, South Africa, using the CSIR-NLC mobile LIDAR. The measurements are also compared with observations from the Level-3 MODIS aerosol optical depth (AOD) data...

  5. Applying satellite retrievals to identify urban emissions of GHG's over East Asia

    Science.gov (United States)

    Shim, C.; Henze, D. K.

    2016-12-01

    Here we have used satellite retrievals to identify GHG's emissions over East Asia. With multi-year GOSAT CO2/CH4 products (2009 - 2014) and recent OCO-2 retrievals (2014 - 2015), better availability of the data enabled to show the regional/local scale (less than 1° x 1° spatial resolution) urban GHG's emissions. We identified the urban emissions from the enhanced values of xCO2/xCH4 and estimated the correlation of those signals with available GHG's emissions inventory over East Asia. Also, some of those retrievals were compared with ground/aircraft measurements to verify those remotely sensed data. Those efforts are useful to identify regional/local anthropogenic GHG's emissions over East Asia where the GHG's emissions inventories are still uncertain, which can support government policy to mitigate air pollution. In addition, we introduce our efforts to constrain the emissions of CO2 from GOSAT/OCO-2 data using 4-Dvar inverse modeling framework and we show some preliminary results. This study represents the current progress to understand sub-continental scale atmospheric CO2 variabilities and its emissions with recent satellite retrievals and advanced modeling.

  6. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    Science.gov (United States)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  7. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing

    Science.gov (United States)

    Ma, Xiaoyan; Yu, Fangqun

    2016-04-01

    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  8. Calibrated sky imager for aerosol optical properties determination

    Directory of Open Access Journals (Sweden)

    A. Cazorla

    2008-11-01

    Full Text Available The calibrated ground-based sky imager developed in the Marine Physical Laboratory, the Whole Sky Imager (WSI, has been tested to determine optical properties of the atmospheric aerosol. Different neural network-based models calculate the aerosol optical depth (AOD for three wavelengths using the radiance extracted from the principal plane of sky images from the WSI as input parameters. The models use data from a CIMEL CE318 photometer for training and validation and the wavelengths used correspond to the closest wavelengths in both instruments. The spectral dependency of the AOD, characterized by the Ångström exponent α in the interval 440–870, is also derived using the standard AERONET procedure and also with a neural network-based model using the values obtained with a CIMEL CE318. The deviations between the WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncertainty assigned to the AERONET AOD calculation (±0.01, in 80% of the cases. The explanation of data variance by the model is over 92% in all cases. In the case of α, the deviation is within the uncertainty assigned to the AERONET α (±0.1 in 50% for the standard method and 84% for the neural network-based model. The explanation of data variance by the model is 63% for the standard method and 77% for the neural network-based model.

  9. Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect

    Directory of Open Access Journals (Sweden)

    A. Arola

    2013-08-01

    Full Text Available The diurnal variability of aerosol optical depth (AOD can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF or aerosol direct radiative effect (ADRE. The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on

  10. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    Science.gov (United States)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  11. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  12. Radiative forcing of the direct aerosol effect using a multi-observation approach

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2008-07-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  13. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  14. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    Science.gov (United States)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  15. An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2011-01-01

    Full Text Available As an update to our previous use of the collection 4 Moderate Resolution Imaging Spectroradiometer (MODIS over-ocean aerosol optical depth (AOD data, we examined ten years of Terra and eight years of Aqua collection 5 data for its potential usage in aerosol assimilation. Uncertainties in the over-ocean MODIS AOD were studied as functions of observing conditions, such as surface characteristics, aerosol optical properties, and cloud artifacts. Empirical corrections and quality assurance procedures were developed and compared to collection 4 data. After applying these procedures, the Root-Mean-Square-Error (RMSE in the MODIS Terra and Aqua AOD are reduced by 30% and 10–20%, respectively, with respect to AERONET data. Ten years of Terra and eight years of Aqua quality-assured level 3 MODIS over-ocean aerosol products were produced. The newly developed MODIS over-ocean aerosol products will be used in operational aerosol assimilation and aerosol climatology studies, as well as other research based on MODIS products.

  16. Validation of MODIS aerosol optical depth over the Mediterranean Coast

    Science.gov (United States)

    Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial

  17. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  18. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2014-09-01

    Full Text Available The TwO-Moment Aerosol Sectional microphysics model (TOMAS has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic, mixed elemental carbon (hydrophilic, hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2 differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found

  19. Parameterization of the Optical Properties of Sulfate Aerosols.

    Science.gov (United States)

    Li, J.; Wong, J. G. D.; Dobbie, J. S.; Chýlek, P.

    2001-01-01

    Parameterizations of the shortwave optical properties of ammonium sulfate [(NH4)2SO4], ammonium bisulfate (NH4HSO4), and sulfuric acid (H2SO4) are provided as functions of relative humidity for high and low spectral resolution band models. The optical property parameterization is simple in form and in its dependence on relative humidity. The growth of the aerosol particles is based on equilibrium saturation theory, and the optical properties are computed from Mie theory. The optical properties necessary for the most commonly used radiative transfer methods are provided.Results show that when relative humidity effects are included in the backscatter fraction the radiative forcing is found to be a more sensitive function of near infrared wavelengths compared to visible wavelengths. For increasing relative humidity, sulfuric acid is found to have a larger effect on radiative forcing compared to the forcing by ammonium sulfate or ammonium bisulfate. Also, as relative humidity increases, forcing increases to higher values for smaller mode size distributions compared to forcing by larger mode distributions. These parameterizations will enable climate forcing studies to be performed with radiative transfer schemes that more accurately represent sulfate influences on the radiation balance.

  20. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  1. Climatology of aerosol optical properties near the New England coast: preparation for the Two Column Aerosol Program (TCAP) field campaign

    Science.gov (United States)

    Berkowitz, C. M.; Chand, D.; Berg, L.; Kassianov, E.; Chapman, E.

    2011-12-01

    A key objective of the U.S. Department of Energy's Two Column Aerosol Project (TCAP) is to provide observations with which to evaluate the uncertainty in model simulations of aerosol optical depth (AOD) and their relation to estimates of aerosol radiative forcing and hence, to climate. To meet this objective, detailed ground-based aerosol measurements will be made via deployment of the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) at Cape Cod, Massachusetts for a 12-month period starting in the summer of 2012. These measurements will be supported by two scheduled aircraft campaigns using the ARM Aerial Facility's (AAF) G-1 aircraft and the NASA B-200 aircraft in July 2012 and again in February 2013. Each campaign will include sampling within two atmospheric columns using the aircrafts; one column will be located directly over, or very close to, Cape Cod, while the second will be over a relatively remote maritime location. This preliminary study presented here is designed to select the optimum location of the second, remote maritime atmospheric column using the mean and standard deviation of previously observed AODs from surface and space. An area with the large variability in AOD will be considered as a potential location for evaluation of the outputs from atmospheric models. In this study, we present regional climatological values of (1) AOD from the Moderate Resolution Imaging Spectrometer (MODIS) on Terra and Aqua satellite platforms; (2) single scattering albedo from the Multi-angle Imaging SpectroRadiometer (MISR) satellite; (3) the vertical distribution of aerosol layers from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite; and (4) the long term aerosol optical properties from the Aerosol Robotic Network (AERONET) surface sunphotometer at Martha's Vineyard, MA. Seasonal and geographical variations in these quantities will be analyzed and possible explanations will be presented based on

  2. Aerosol optical depth trend over the Middle East

    KAUST Repository

    Klingmüller, Klaus

    2016-04-22

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  3. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  4. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Science.gov (United States)

    Liu, J.; Lin, P.; Laskin, A.; Laskin, J.; Kathmann, S. M.; Wise, M.; Caylor, R.; Imholt, F.; Selimovic, V.; Shilling, J.

    2016-12-01

    The light-absorbing organic aerosol (OA), commonly referred to as "brown carbon (BrC)", has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. The inherent changes in chemical compositions and the relationship with the light absorption will be discussed in detail.

  5. A critical examination of spatial biases between MODIS and MISR aerosol products – application for potential AERONET deployment

    Directory of Open Access Journals (Sweden)

    T. F. Eck

    2011-12-01

    Full Text Available AErosol RObotic NETwork (AERONET data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD products of operational MODIS Collection 5.1 Dark Target (DT and operational MODIS Collection 5.1 Deep Blue (DB with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while sidestepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a kml file.

  6. A Critical Examination of Spatial Biases Between MODIS and MISR Aerosol Products - Application for Potential AERONET Deployment

    Science.gov (United States)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; Eck, T. F.; Holben, B. N.; Kahn, R. A.

    2011-01-01

    AErosol RObotic NETwork (AERONET) data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD) products of operational MODIS Collection 5.1 Dark Target (DT) and operational MODIS Collection 5.1 Deep Blue (DB) with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while side-stepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a km1 file.

  7. Simulation of land surface temperatures: comparison of two climate models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. M. Edwards

    2009-03-01

    Full Text Available Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.

  8. Classification of Aerosol over Central Europe by Cluster Analysis of Aerosol Columnar Optical Properties and Backward Trajectory Statistics

    Science.gov (United States)

    Szkop, Artur; Pietruczuk, Aleksander; Posyniak, Michał

    2016-12-01

    A cluster analysis is applied to the Aerosol Robotic Network (AERONET) data obtained at Belsk, Poland, as well as three nearby Central European stations (Leipzig, Minsk and Moldova) for estimation of atmospheric aerosol types. Absorption Ångstrom exponent (AAE), aerosol optical thickness (AOT) and extinction Ångstrom exponent (EAE) parameters are used. Clustering in both 2D (AOT, EAE) and 3D (AOT, EAE, AAE) is investigated. A method of air mass backward trajectory analysis is then proposed, with the receptor site at Belsk, to determine possible source regions for each cluster. Four dominant aerosol source regions are identified. The biomass burning aerosol source is localized in the vicinity of Belarusian-Ukrainian border. Slovakia and northern Hungary are found to be the source of urban/industrial pollutants. Western Poland and eastern Germany are the main sources of polluted continental aerosols. The most differentiated source region of Scandinavia, Baltic Sea and Northern Atlantic, associated with lowest values of AOT, corresponds to clean continental and possibly maritime type aerosols.

  9. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  10. Morphology and Optical Properties of Mixed Aerosol Particles

    Science.gov (United States)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  11. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers

    OpenAIRE

    Cai, Chen; Stewart, David J.; Reid, Jonathan P; Zhang, Yun Hong; Ohm, Peter; Dutcher, Cari S.; Clegg, Simon L.

    2015-01-01

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate re...

  12. Assessing the Role of Brewer Spectrophotometer in Determining Aerosol Optical Properties in the UK and Tropics.

    OpenAIRE

    Kumharn, Wilawan

    2010-01-01

    Aerosol effects are one of the major uncertainties in assessing global climate change, ecosystem processes and human health. This is because they critically change the balance between the radiation entering and leaving the atmosphere, as well as influencing cloud formation and having direct effects on biological systems e.g. through the respiratory system. It is the direct radiative effects of aerosol that are the focus of this work. The Aerosol Optical Depth (AOD) is a measure of the extinc...

  13. Identification and recovery of discontinuous synoptic features in satellite-retrieved brightness temperatures using a radiative transfer model

    Science.gov (United States)

    White, G. A., III; Mcguirk, J. P.; Thompson, A. H.

    1988-01-01

    An attempt is made to recover and identify discontinuous synoptic features from satellite-retrieved brightness temperatures, with attention to near-discontinuities in temperature and moisture that are typically found in fronts and inversions. Efforts are made to ascertain whether the vectors of satellite channel brightness temperatures can be classified according to synoptic source, and whether those sources are amenable to quantification.

  14. Global error maps of aerosol optical properties: an error propagation analysis

    Directory of Open Access Journals (Sweden)

    K. Tsigaridis

    2008-08-01

    Full Text Available Among the numerous atmospheric constituents, aerosols play a unique role on climate, due to their scattering and absorbing capabilities, visibility degradation and their effect on incoming and outgoing radiation. The most important optical properties are the aerosol optical depth (AOD, the asymmetry parameter (g and the single scattering albedo (SSA. Uncertainties in aerosol microphysics in global models, which in turn affect their optical properties, propagate to uncertainties on the effect of aerosols on climate. This study aims to estimate the uncertainty of AOD, g and SSA attributable to the aerosol representation in models, namely mixing state, aerosol size and aerosol associated water. As a reference, the monthly mean output of the general circulation model LMDz-INCA from the international comparison exercise AEROCOM B was used. For the optical properties calculations, aerosols were considered either externally mixed, homogeneously internally mixed or coated spheres. The radius was allowed to vary by ±20% (with 2% intervals and the aerosol water content by ±50% (with 5% intervals with respect to the reference model output. All of these possible combinations were assumed to be equally likely and the optical properties were calculated for each one of them. A probability density function (PDF was constructed at each model grid point for AOD, g and SSA. From this PDF, the 1σ and 2σ uncertainties of the AOD, g and SSA were calculated and are available as global maps for each month. For the range of the cases studied, we derive a maximum 2σ uncertainty range in AOD of 70%, while for g and SSA the maxima reach 18% and 28% respectively. The mixing state was calculated to be important, with the aerosol absorption and SSA being the most affected properties when absorbing aerosols are present.

  15. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India); Ram, K. [Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi (India); Singh, Sachchidanand, E-mail: ssingh@nplindia.org [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Kumar, Sanjeev [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India)

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm{sup −2}) and high values of corresponding heating rate (0.80 ± 0.14 Kday{sup −1}) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm{sup −2} and from − 3 to − 50 Wm{sup −2} at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm{sup −2} resulting in a heating rate of 0.1–1.8 Kday{sup −1}. - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed

  16. A merged aerosol dataset based on MODIS and MISR Aerosol Optical Depth products

    Science.gov (United States)

    Singh, Manoj K.; Gautam, Ritesh; Venkatachalam, Parvatham

    2016-05-01

    Aerosol Optical Depth (AOD) products available from MODIS and MISR observations are widely used for aerosol characterization, and global/environmental change studies. These products are based on different retrieval-algorithms, resolutions, sampling, and cloud-screening schemes, which have led to global/regional biases. Thus a merged product is desirable which bridges this gap by utilizing strengths from each of the sensors. In view of this, we have developed a "merged" AOD product based on MODIS and MISR AOD datasets, using Bayesian principles which takes error distributions from ground-based AOD measurements (from AERONET). Our methodology and resulting dataset are especially relevant in the scenario of combining multi-sensor retrievals for satellite-based climate data records; particularly for long-term studies involving AOD. Specifically for MISR AOD product, we also developed a methodology to produce a gap-filled dataset, using geostatistical methods (e.g. Kriging), taking advantage of available MODIS data. Merged and spatially-complete AOD datasets are inter-compared with other satellite products and with AERONET data at three stations- Kanpur, Jaipur and Gandhi College, in the Indo-Gangetic Plains. The RMSE of merged AOD (0.08-0.09) is lower than MISR (0.11-0.20) and MODIS (0.15-0.27). It is found that merged AOD has higher correlation with AERONET data (r within 0.92-0.95), compared to MISR (0.74-0.86) and MODIS (0.69-0.84) data. In terms of Expected Error, the accuracy of valid merged AOD is found to be superior as percent of merged AOD within error envelope are larger (71-92%), compared to MISR (43-61%) and MODIS (50-70%).

  17. Aerosol Composition, Size Distribution and Optical Properties during SEAC4RS Simulated by a Sectional Aerosol Model

    Science.gov (United States)

    Yu, P.; Toon, O. B.; Bardeen, C.; Wiedinmyer, C.; Jimenez, J. L.; Campuzano Jost, P.; Froyd, K. D.; Ziemba, L. D.; Schwarz, J. P.; Perring, A. E.; Wagner, N.; Neely, R. R., III

    2014-12-01

    Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission in August and September 2013 provided large aerosol/gas datasets over the Southeastern U.S. We use a sectional microphysics model (CARMA) coupled with CAM-Chem to study the aerosol composition, size distribution, vertical distribution and optical properties during the SEAC4RS campaign. Our simulations are within the observational error bars for the mass of organics, sulfate and black carbon from the boundary layer to upper-troposphere. CARMA, as a sectional model, provides detailed aerosol size distributions from nano-meters to tens of microns, which is important to determine optical properties. We investigate how the aerosol size distribution varies with altitude. Modeled spatial gradients of [O]:[C] and [OC]:[SO4-2] ratios are compared with the AMS and PALMS data collected over forests, fires and cities. These ratios are important to constrain the budget of secondary organic aerosols. We will discuss the values of these ratios over the U.S. and the rest of the world.

  18. Analysis of intensive aerosol optical properties measured at the Jungfraujoch station

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Nyeki, S.; Baltensperger, U.; Weingartner, E.; Lugauer, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Characterisation of atmospheric aerosol optical properties at the Jungfraujoch has been conducted to deliver basic data for comparison with those from NOAA baseline atmospheric monitoring stations. (author) 2 figs., 2 refs.

  19. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign.

    Science.gov (United States)

    Kuzmanoski, Maja; Box, Michael A; Schmid, Beat; Russell, Philip B; Redemann, Jens

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2,000 (SAFARI 2,000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3-1.5 microm wavelength range to assumptions regarding the mixing scenario. We considered two models for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell-Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (approximately 0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81-0.91 at lambda=0.50 microm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

  20. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    Science.gov (United States)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  1. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  2. Employing satellite retrieved soil moisture for parameter estimation of the hydrologic model mHM

    Science.gov (United States)

    Zink, Matthias; Mai, Juliane; Rakovec, Oldrich; Schrön, Martin; Kumar, Rohini; Schäfer, David; Samaniego, Luis

    2016-04-01

    function is based on the parameter distance (3). Thus, the temporal correlation and the sum of squared distances from soil moisture anomalies of reference and estimated soil moisture revealed best performances. Employing satellite retrieved SM for calibrating the hydrological model leads to model parameters which are able to catch soil moisture dynamics but deteriorates the skill on streamflow prediction. Discharge estimates are ranging between 0.1-0.3 Nash-Sutcliffe Efficiency, whereas the coefficient of correlation between modeled and satellite retrieved soil moisture exceeds 0.7.

  3. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals

    Science.gov (United States)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel

    2017-02-01

    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not

  4. Combined Use of Polar and Geostationary Satellite Sensors For Aerosol Characterization Over The Ocean

    Science.gov (United States)

    Costa, M. J.; Cervino, M.; Levizzani, V.; Silva, A. M.

    Aerosol particles play an important role in the Earth's climate due to their direct and indirect interaction with the atmosphere. Monitoring of the optical properties of atmospheric aerosol is thus crucial for a radiative forcing quantification at the lo- cal, regional and global scales. Ground-based measurements provide accurate aerosol properties. However, given the strong spatial and temporal variability of tropospheric aerosols ground measurements cannot cover the global scale. On the other hand, satellite-based algorithms for aerosol retrievals presently do not match the accuracy of ground-based results. Most satellite algorithms are based on a single sensor, thus often suffering from specific limitations (poor spatial or spectral resolution, long re- visitation time, poor cloud mask). A method to exploit the synergy between the polar orbiting Global Ozone Monitoring Experiment (GOME) onboard ERS-2 and the METEOSAT geostationary system was proposed (Costa et al., 2001), aiming at increasing the accuracy of the aerosol charac- terization and monitoring of the optical thickness. A validation of the algorithm is done by comparing satellite retrievals with results obtained via independent space-time co- located ground-based measurements from AERONET (Aerosol Robotic NETwork) and from other state of the art algorithms that make use of satellite measurements such as the MODIS official aerosol product. Results of the ongoing validation are pre- sented for relevant transport events of desert dust and biomass burning aerosol over the Atlantic and Indian Oceans during year 2000. References: Costa,M.J., M.Cervino, E.Cattani, F.Torricella, V.Levizzani, and A.M.Silva, 2001: "Aerosol characterization and optical thickness retrievals using GOME and METEOSAT satellite data". Meteor. Atmos. Phys., (in press). Acknowledgements: METEOSAT imagery was kindly made available by EUMET- SAT. We thank the AERONET investigators and their staff for establishing and main- taining the

  5. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    Science.gov (United States)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  6. Analysis of aerosol optical and microphysical properties observed during the DC3 field study

    Science.gov (United States)

    Chen, G.; Schuster, G. L.; Anderson, B. E.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Scheuer, E. M.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Moore, R.; Winstead, E.; Markovic, M. Z.

    2013-12-01

    The Deep Convective Clouds and Chemistry Experiment (DC3) consisted of 18 research flights from Salina, KS. During cloud inflow and outflow surveys, various aged aerosol layers and plumes, including biomass burning, were sampled by the NASA DC-8 aircraft which was equipped with a broad suite of instruments for aerosol optical, microphysical, and chemical properties. As a result, the DC3 dataset includes detailed aerosol number size distribution, bulk aerosol mass concentration, black carbon mass concentration, and mass size distribution for sulfate, nitrate, ammonium and organics, together with scattering and absorption coefficients. We use this comprehensive dataset to perform a detailed closure analysis to examine the consistency between the observed aerosol properties and the literature reported aerosol refractive index values. In this context, we report aerosol observations, and comparisons between the aerosol mass and number size distribution for various aerosol layers. Closure tests will also be presented in terms of the impact of the aerosol composition and size distribution on the scattering and absorption.

  7. The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China

    Science.gov (United States)

    Zhuang, Bingliang; Wang, Tijian; Liu, Jane; Li, Shu; Xie, Min; Han, Yong; Chen, Pulong; Hu, Qiduo; Yang, Xiu-qun; Fu, Congbin; Zhu, Jialei

    2017-01-01

    Observational studies of aerosol optical properties are useful for reducing uncertainties in estimations of aerosol radiative forcing and forecasting visibility. In this study, the observed near-surface aerosol optical properties in urban Nanjing are analysed from March 2014 to February 2016. Results show that near-surface urban aerosols in Nanjing are mainly from local emissions and the surrounding regions. They have lower loadings but are more scattering than aerosols in most cities in China. The annual mean aerosol extinction coefficient (EC), single-scattering albedo (SSA) and asymmetry parameter (ASP) at 550 nm are 381.96 Mm-1, 0.9 and 0.57, respectively. The aerosol absorption coefficient (AAC) is about 1 order of magnitude smaller than its scattering coefficient (SC). However, the absorbing aerosol has a larger Ångström exponent (AAE) value, 1.58 at 470/660 nm, about 0.2 larger than the scattering aerosols (SAE). All the aerosol optical properties follow a near-unimodal pattern, and their values are mostly concentrated around their averages, accounting for more than 60 % of the total samplings. Additionally, they have substantial seasonality and diurnal variations. High levels of SC and AAC all appear in winter due to higher aerosol and trace gas emissions. AAE (ASP) is the smallest (largest) in summer, possibly because of high relative humidity (RH) which also causes considerably larger SC and smaller SAE, although intensive gas-to-particle transformation could produce a large number of finer scattering aerosols in this season. Seasonality of EC is different from the columnar aerosol optical depth. Larger AACs appear during the rush hours of the day while SC and back-scattering coefficient (Bsp) only peak in the early morning. Aerosols are fresher in the daytime than at night-time, leading to their larger Ångström exponent and smaller ASP. Different temporal variations between AAC and SC cause the aerosols to be more absorbing (smaller SSA) in autumn

  8. Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes

    Science.gov (United States)

    Smith, Michael D.; Zorzano, María-Paz; Lemmon, Mark; Martín-Torres, Javier; Mendaza de Cal, Teresa

    2016-12-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.

  9. Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes

    Science.gov (United States)

    Smith, M. D.; Zorzano, M.-P.; Lemmon, M.; Martin-Torres, J.; Mendaza de Cal, T.

    2017-01-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270deg, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time. A full description of these observations, the retrieval algorithm, and the results can be found in Smith et al. (2016).

  10. Model Analysis of Influences of Aerosol Mixing State upon Its Optical Properties in East Asia

    Institute of Scientific and Technical Information of China (English)

    HAN Xiao; ZHANG Meigen; ZHU Lingyun; XU Liren

    2013-01-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e.,externally mixed,half externally and half internally mixed,and internally mixed) on radiative forcing in East Asia.The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed,while the single scattering albedo (SSA) decreased.Therefore,the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states.Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed.Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex.Generally,the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China,Korean peninsula,and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process,and the variation range can reach ±5 W m-2.The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens.Conversely,the internal mixture of anthropogenic aerosols,including sulfate,nitrate,ammonium,black carbon,and organic carbon,could obviously weaken the cooling effect.

  11. Influence of aerosol vertical profile variability on retrievals of aerosol optical thickness from NOAA AVHRR measurements in the Baltic region

    Directory of Open Access Journals (Sweden)

    Anna Rozwadowska

    2007-06-01

    Full Text Available The expected influence of variability in atmospheric aerosolprofiles on retrievals of aerosol optical thickness (AOTfrom NOAA AVHRR measurements is analysed. In particular, thebias in the AOT retrieval due to the assumption of a climatologicalaerosol profile in the retrieval algorithm is studied. The biasis defined as the difference between AOT retrieved with analgorithm using a climatological aerosol profile, and the actual AOTemployed in the calculations of radiances at the top of the atmosphere(TOA. The TOA radiances are simulated by means of the MODTRANcode for different aerosol profiles. Atmospheric conditions andsolar and satellite angles used in the bias simulations are typicalof the Baltic region. In the simulations, the maximum absolutevalue of the bias amounts to nearly 40% in channel 2 and 14%in channel 1 of AVHRR.

  12. Aerosol optical depth trend over the Middle East

    Science.gov (United States)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  13. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China

    Science.gov (United States)

    Guo, Hao; Chen, Sheng; Bao, Anming; Behrangi, Ali; Hong, Yang; Ndayisaba, Felix; Hu, Junjun; Stepanian, Phillip M.

    2016-07-01

    Two post-real time precipitation products from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) are systematically evaluated over China with China daily Precipitation Analysis Product (CPAP) as reference. The IMERG products include the gauge-corrected IMERG product (IMERG_Cal) and the version of IMERG without direct gauge correction (IMERG_Uncal). The post-research TRMM Multisatellite Precipitation Analysis version 7 (TMPA-3B42V7) is also evaluated concurrently with IMERG for better perspective. In order to be consistent with CPAP, the evaluation and comparison of selected products are performed at 0.25° and daily resolutions from 12 March 2014 through 28 February 2015. The results show that: Both IMERG and 3B42V7 show similar performances. Compared to IMERG_Uncal, IMERG_Cal shows significant improvement in overall and conditional bias and in the correlation coefficient. Both IMERG_Cal and IMERG_Uncal perform relatively poor in winter and over-detect slight precipitation events in northwestern China. As an early validation of the GPM-era IMERG products that inherit the TRMM-era global satellite precipitation products, these findings will provide useful feedbacks and insights for algorithm developers and data users over China and beyond.

  14. On the variation of aerosol properties over Finland based on the optical columnar measurements

    Science.gov (United States)

    Aaltonen, V.; Rodriguez, E.; Kazadzis, S.; Arola, A.; Amiridis, V.; Lihavainen, H.; de Leeuw, G.

    2012-10-01

    Long-range aerosol transport over Finland has been studied using ground-based sunphotometer measurements of aerosol optical properties. Cimel sunphotometers were used at an urban site (Helsinki), a rural site (Hyytiälä) and a semiurban site (Kuopio) and PFR sunphotometer measurements were made at two rural sites, Jokioinen and Sodankylä. The CIMEL measurements are part of the AERONET (Aerosol robotic network) network and Jokioinen and Sodankylä are GAW-PFR (Global Atmosphere Watch-Precision Filter Radiometer) Associate Stations. Sunphotometers provide information on local columnar aerosol properties such as aerosol optical depth (AOD) and Ångström exponent (ÅE) that were used to investigate the aerosol content and aerosol type in this region. A set of representative event days, i.e. days with high turbidity, covering the time period between March 2006 and June 2010 has been selected for further analysis. For these days the AOD results were combined with air mass back trajectories to provide information about the air mass origin, especially for cases with moderate turbidity produced by long-range transported aerosols from mid latitudes to Finland. As expected, episodes with high AOD are connected with the transport of polluted air masses originating from the east or southeast or from industrial areas in Central Europe. We distinguished events with long range transported air pollution from cases where pollution was accumulated in the area due to the local meteorological factors.

  15. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    Science.gov (United States)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  16. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest china

    Science.gov (United States)

    Ma, Yongjing; Xin, Jinyuan; Ma, Yining; Kong, Lingbin; Zhang, Kequan; Zhang, Wenyu; Wang, Yuesi; Wang, Xiuqin; Zhu, Yongfeng

    2017-08-01

    Aerosol observational data for 2012 obtained from Dunhuang Station of CARE-China (Campaign on Atmospheric Aerosol Research Network of China) were analyzed to achieve in-depth knowledge of aerosol optical properties over Dunhuang region. The results showed that the annual average aerosol optical depth (AOD) at 500 nm was 0.32±0.06, and the Ångström exponent ( α) was 0.73 ± 0.27. Aerosol optical properties revealed significant seasonal characteristics. Frequent sandstorms in MAM (March-April-May) resulted in the seasonal maximum AOD, 0.41 ± 0.04, and a relatively smaller α value, 0.44±0.04. The tourism seasons, JJA (June-July-August) and SON (September-October-November) coincide with serious emissions of small anthropogenic aerosols. While in DJF (December-January-February), the composition of the atmosphere was a mixture of dust particles and polluted aerosols released by domestic heating; the average AOD and α were 0.29 ± 0.02 and 0.66 ± 0.17, respectively. Different air masses exhibited different degrees of influence on the aerosol concentration over Dunhuang in different seasons. During MAM, ranges of AOD (0.11-1.18) and α (0.06-0.82) were the largest under the dust influence of northwest-short-distance air mass in the four trajectories. Urban aerosols transported by northwest-short-distance air mass accounted for a very large proportion in JJA and the mixed aerosols observed in SON were mainly conveyed by air masses from the west. In DJF, the similar ranges of AOD and α under the three air mass demonstrated the analogous diffusion effects on regional pollutants over Dunhuang.

  17. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    Science.gov (United States)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and ship emissions. As a result, the aerosol direct forcing efficiency, more dependent to absorption than the absolute

  18. Model of optical response of marine aerosols to Forbush decreases

    DEFF Research Database (Denmark)

    Bondo, Torsten; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    2010-01-01

    by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates...

  19. Impact of Three-Dimensional Radiative Effects on Satellite Retrievals of Cloud Droplet Sizes

    Science.gov (United States)

    Marshak, Alexander; Platnick, Steven; Varnai, Tamas; Wen, Guoyong; Cahalan, Robert F.

    2006-01-01

    There are several dozen papers that study the effects of cloud horizontal inhomogeneity on the retrievals of cloud optical thickness, but only a few of them deal with cloud droplet sizes. This paper is one of the first comprehensive attempts to fill this gap: It takes a close theoretical look at the radiative effects of cloud 3-D structure in retrievals of droplet effective radii. Under some general assumptions, it was found that ignoring subpixel (unresolved) variability produces a negative bias in the retrieved effective radius, while ignoring cloud inhomogeneity at scales larger than a pixel scale (resolved variability), on the contrary, leads to overestimation of the domain average droplet size. The theoretical results are illustrated with examples from Large Eddy Simulations (LES) of cumulus (Cu) and stratocumulus (Sc) cloud fields. The analysis of cloud drop size distributions retrieved from both LES fields confirms that ignoring shadowing in 1-D retrievals results in substantial overestimation of effective radii which is more pronounced for broken Cu than for Sc clouds. Collocated measurements of broken Cu clouds by Moderate Resolution Imaging Spectrometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) are used to check simulations and theory with observations. The analysis of ASTER and MODIS data and associated derived products recommends against blindly using retrieved effective radii for broken cloud fields, especially if one wants to relate aerosol amounts to cloud droplet sizes.

  20. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  1. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro

    2017-01-01

    The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated, which

  2. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Bluvshtein, Nir [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Lin, Peng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Flores, J. Michel [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Segev, Lior [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Mazar, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Tas, Eran [The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel; Snider, Graydon [Department of Physics and Atmospheric Science, Dalhousie University, Halifax Nova Scotia Canada; Weagle, Crystal [Department of Chemistry, Dalhousie University, Halifax Nova Scotia Canada; Brown, Steven S. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Laskin, Alexander [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Rudich, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2017-05-23

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.

  3. Laboratory measurements of the optical properties of sea salt aerosol

    Directory of Open Access Journals (Sweden)

    R. Irshad

    2009-01-01

    Full Text Available The extinction spectra of laboratory generated sea salt aerosols have been measured from 1 μm to 20 μm using a Bruker 66v/S FTIR spectrometer. Concomitant measurements include temperature, pressure, relative humidity and the aerosol size distribution. The refractive indices of the sea salt aerosol have been determined using a simple harmonic oscillator band model (Thomas et al., 2004 for aerosol with relative humidities at eight different values between 0.4% to 86%. The resulting refractive index spectra show significant discrepancies when compared to existing sea salt refractive indices calculated using volume mixing rules (Shettle and Fenn, 1979. Specifically, an additional band is found in the refractive indices of dry sea salt aerosol and the new data shows increased values of refractive index at almost all wavelengths. This implies that the volume mixing rules, currently used to calculate the refractive indices of wet sea salt aerosols, are inadequate. Furthermore, the existing data for the real and imaginary parts of the refractive indices of dry sea salt aerosol are found not to display the Kramers-Kronig relationship. This implies that the original data used for the volume mixing calculations is also inaccurate.

  4. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    Science.gov (United States)

    Albayrak, A.; Wei, J. C.; Petrenko, M.; Lary, D. J.; Leptoukh, G. G.

    2011-12-01

    Over the past decade, global aerosol observations have been conducted by space-borne sensors, airborne instruments, and ground-base network measurements. Unfortunately, quite often we encounter the differences of aerosol measurements by different well-calibrated instruments, even with a careful collocation in time and space. The differences might be rather substantial, and need to be better understood and accounted for when merging data from many sensors. The possible causes for these differences come from instrumental bias, different satellite viewing geometries, calibration issues, dynamically changing atmospheric and the surface conditions, and other "regressors", resulting in random and systematic errors in the final aerosol products. In this study, we will concentrate on the subject of removing biases and the systematic errors from MODIS (both Terra and Aqua) aerosol product, using Machine Learning algorithms. While we are assessing our regressors in our system when comparing global aerosol products, the Aerosol Robotic Network of sun-photometers (AERONET) will be used as a baseline for evaluating the MODIS aerosol products (Dark Target for land and ocean, and Deep Blue retrieval algorithms). The results of bias adjustment for MODIS Terra and Aqua are planned to be incorporated into the AeroStat Giovanni as part of the NASA ACCESS funded AeroStat project.

  5. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    Directory of Open Access Journals (Sweden)

    A. R. Naeger

    2015-10-01

    Full Text Available The primary goal of this study was to generate a near-real time (NRT aerosol optical depth (AOD product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS and Suomi National Polar-orbiting Partnership (NPP Visible Infrared Imaging Radiometer Suite (VIIRS satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15 and Japan Meteorological Agency (JMA Multi-functional Transport Satellite (MTSAT-2 to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  6. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  7. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  8. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  9. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E. [Michigan Univ., Ann Arbor, MI (United States)

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  10. An Evaluation of Satellite Retrievals of Snowfall in Regions of Complex Terrain

    Science.gov (United States)

    Reed, K. A.; Nesbitt, S. W.; Kulie, M.; L'Ecuyer, T. S.; Wood, N.

    2013-12-01

    Snowfall in regions of complex terrain plays an important role in the global hydrologic cycle, and can have major physical and social implications ranging from water resource management, to flash flooding, to climate change impacts. Due to the diversity of impacts that can result from snowfall, the ability to directly observe and measure snowfall in real-time is of great importance. However, the physical limitations of ground-based radars particularly in complex terrain and the lack of spatially complete measurement networks in mountainous regions make high-resolution ground-based snowfall observations a challenging task. Spaceborne satellite retrievals of snowfall such as those that will be made possible by the Global Precipitation Measurement (GPM) mission offer the ability to make high spatial and temporal resolution measurements that are otherwise not possible using traditional ground-based methods. This study seeks to investigate the skill level of current spaceborne snowfall products over the complex terrain of the Rocky Mountains in the western United States. Satellite derived snowfall products from measurements obtained via instruments including the CloudSat Cloud Profiling Radar (CPR), EOS Aqua Advanced Microwave Scanning Radiometer for EOS (AMSR-E), and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) are evaluated using ground-based observations such as the Natural Resources Conservation Service Snow Telemetry (SNOTEL) data and the NCEP Stage IV data. Satellite derived snowfall variables including snowfall rate and snow water equivalent are compared to ground-based observations to determine the overall accuracy and skill level of current satellite derived snowfall products in the region of interest. An analysis is also done to determine how the accuracy and skill level change based on varying snowfall regimes such as light, moderate, and heavy snowfall events. The knowledge gained will be used to determine how satellite derived snowfall

  11. High resolution modeling of CO2 over Europe: implications for representation errors of satellite retrievals

    Directory of Open Access Journals (Sweden)

    T. Koch

    2010-01-01

    Full Text Available Satellite retrievals for column CO2 with better spatial and temporal sampling are expected to improve the current surface flux estimates of CO2 via inverse techniques. However, the spatial scale mismatch between remotely sensed CO2 and current generation inverse models can induce representation errors, which can cause systematic biases in flux estimates. This study is focused on estimating these representation errors associated with utilization of satellite measurements in global models with a horizontal resolution of about 1 degree or less. For this we used simulated CO2 from the high resolution modeling framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model to a weather forecasting model at 10×10 km2 horizontal resolution. Sub-grid variability of column averaged CO2, i.e. the variability not resolved by global models, reached up to 1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the simulation results indicate that orography plays an important role. Using sub-grid variability of orography and CO2 fluxes as well as resolved mixing ratio of CO2, a linear model can be formulated that could explain about 50% of the spatial patterns in the systematic (bias or correlated error component of representation error in column and near-surface CO2 during day- and night-times. These findings give hints for a parameterization of representation error which would allow for the representation error to taken into account in inverse models or data assimilation systems.

  12. Columnar aerosol optical properties at AERONET sites in northern, central and southern Mexico

    Science.gov (United States)

    Carabali, Giovanni; Estévez, Hector; Florean-Cruz, Claudia; Navarro-Medina, Abigail; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor; Vázquez-Gálvez, Felipe

    2017-04-01

    The column-integrated optical properties of aerosol in the north, central and southern Mexico were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites. Characterization of aerosol properties in these Mexico regions is important due to natural and anthropogenic significant events that occurred: dust storms from Sonora desert, biomass burning from south forest areas and urban/industrial from Mexico City due to the increases in fossil fuel combustion. Some cities in northern Mexico located near desert areas are affected by the dust from Sonora and Chihuahua deserts. These particles are suspended in the atmosphere due to strong wind activity that creates dust storms. In the central part of the Mexican territory, urban air pollution is one of the biggest problems. Mexico City is the most important urban area that face seriously environmental problem generated by daily anthropogenic emissions from activities of some 21 million people and the vast amount of industry. On the other hand, biomass burning in the Yucatan Peninsula, Southern Mexico, and Guatemala is an important source of anthropogenic aerosol in the troposphere (Crutzen and Andrade, 1990). The pollution from these fires affects air quality locally and is transported over the Gulf of Mexico to the United States (Wang et al., 2006). The aim of this work is to study the optical properties of different types of aerosols by analyzing a 5-year (2005-2010) data set from AErosol RObotic NETwork (AERONET). Time series of Angstrom exponent (α) and aerosol optical depth (τ) in 7 wavelengths from 340 to 1020 nm are shown. Additionally, a graphical framework to classify aerosol properties using direct sun-photometer observations in the different regions of Mexico is presented. That aerosol classification was made by applying the method described by Gobbi et al (2007), which relies on the combined analysis of α and its spectral curvature δα.

  13. Aerosol Optical Properties and Its Radiative Forcing over Yulin, China in 2001 and 2002

    Institute of Scientific and Technical Information of China (English)

    CHE Huizheng; ZHANG Xiaoye; Stephane ALFRARO; Bernadette CHATENET; Laurent GOMES; ZHAO Jianqi

    2009-01-01

    The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-bascd Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.

  14. Urban Aerosol Optical Properties Measurement by Elastic Counter-Look Lidar

    OpenAIRE

    Wang X.; Boselli A.; He Y; Sannino A.; Song C.; Spinelli N.

    2016-01-01

    The new developed elastic lidar system utilizes two identical elastic lidars, in counter-look configuration, to measure aerosol backscattering and extinction coefficients without any hypotheses. Compared to elastic-Raman lidar and high spectral resolution lidar, the proposed counter-look elastic lidar can use low power eyesafe laser and all available wavelengths. With this prototype lidar system, urban aerosol optical properties and their spatial distribution have been directly measured, incl...

  15. Simultaneous retrieval of aerosol optical thickness and chlorophyll concentration from multiwavelength measurement over East China Sea

    Science.gov (United States)

    Shi, Chong; Nakajima, Teruyuki; Hashimoto, Makiko

    2016-12-01

    A flexible inversion algorithm is proposed for simultaneously retrieving aerosol optical thickness (AOT) and surface chlorophyll a (Chl) concentration from multiwavelength observation over the ocean. In this algorithm, forward radiation calculation is performed by an accurate coupled atmosphere-ocean model with a comprehensive bio-optical ocean module. Then, a full-physical nonlinear optimization approximation approach is used to retrieve AOT and Chl. For AOT retrieval, a global three-dimensional spectral radiation-transport aerosol model is used as the a priori constraint to increase the retrieval accuracy of aerosol. To investigate the algorithm's availability, the retrieval experiment is conducted using simulated radiance data to demonstrate that the relative errors in simultaneously determining AOT and Chl can be mostly controlled to within 10% using multiwavelength and angle covering in and out of sunglint. Furthermore, the inversion results are assessed using the actual satellite observation data obtained from Cloud and Aerosol Imager (CAI)/Greenhouse gas Observation SATellite GOSAT and MODerate resolution Imaging Spectroradiometer (MODIS)/Aqua instruments through comparison to Aerosol Robotic Network (AERONET) aerosol and ocean color (OC) products over East China Sea. Both the retrieved AOT and Chl compare favorably to the reported AERONET values, particularly when using the CASE 2 ocean module in turbid water, even when the retrieval is performed in the presence of high aerosol loading and sunglint. Finally, the CAI and MODIS images are used to jointly retrieve the spatial distribution of AOT and Chl in comparison to the MODIS AOT and OC products.

  16. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  17. Biogenic Aerosols Over the Amazon Basin: Optical Properties and Relationship With Elemental and Ionic Composition

    Science.gov (United States)

    Artaxo, P.; Martin, S. T.; Andreae, M. O.; Godoy, J. M.; Godoy, M. L.; Rizzo, L. V.; Paixao, M.

    2008-12-01

    We investigated the optical properties of natural biogenic aerosol particles over the central Amazon Basin near Manaus during the wet season in February and March 2008. The measurements were conducted as part of the AMAZE-08 (Amazonian Aerosol Characterization Experiment) sampling campaign. Light absorption was determined with the use of an Aethalometer and an MAAP (Multi Angle Absorption Photometer). Light scattering was measured with a 3 wavelength TSI nephelometer and an Ecotech nephelometer. The elemental composition was measured trough PIXE and IC. Single scattering albedo shows relatively low values varying from 0.86 to 0.95. Very low fine mode aerosol mass was measured, and coarse mode particles are responsible for a significant fraction of scattering and absorption. Sulfur was observed in very low concentrations, and most of the aerosol mass was organic. Long range transport of soil dust from Sahara were observed and reflected in the light scattering coefficient. Wavelength dependence of absorption indicates the strong influence of coarse mode aerosol. Aerosol optical thickness shows low values, but with significant single scattering albedo values, showing strong absorption properties of these biogenic aerosols. Size distribution measurements shows consistence with the scattering coefficients measured, if the coarse mode particles are taken into account.

  18. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    Science.gov (United States)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  19. Relationship between wind speed and aerosol optical depth over remote ocean

    Directory of Open Access Journals (Sweden)

    R. G. Grainger

    2009-11-01

    Full Text Available The effect of wind speed on aerosol optical depth (AOD at 550 nm over remote ocean regions is investigated. Remote ocean regions are defined by the combination of AOD from satellite observation and wind direction from ECMWF. According to our definition, many oceanic regions cannot be taken as remote ocean regions due to long-range transportation of aerosols from continents. Highly correlated linear relationships are found in remote ocean regions with a wind speed range of 4–20 ms−1. The enhancement of AOD at high wind speed is explained as the increase of sea salt aerosol production.

  20. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2014-09-01

    Full Text Available A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405–980 nm for monitoring spectral reflectance (R and transmittance (T of filter samples allows "thermal spectral analysis (TSA" and wavelength (λ-dependent organic carbon (OC-elemental carbon (EC measurements. Optical sensing is calibrated with transfer standards traceable to absolute R and T measurements and adjusted for loading effects to determine spectral light absorption (as absorption optical depth [τa, λ] using diesel exhaust samples as a reference. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~635 nm for pyrolysis adjustment. TSA provides additional information that evaluates black carbon (BC and brown carbon (BrC contributions and their optical properties in the near-IR to the near-UV parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  1. Aerosol optical properties retrieved from Sun photometer measurements over Shanghai, China

    Science.gov (United States)

    He, Qianshan; Li, Chengcai; Geng, Fuhai; Yang, Hequn; Li, Peiren; Li, Tingting; Liu, Dongwei; Pei, Zhen

    2012-08-01

    Using a CIMEL Sun photometer, we conducted continuous observations over the urban area of Shanghai (31°14'N, 121°32'E) from 18 April 2007 to 31 January 2009. The aerosol optical depth (AOD), Angstrom wavelength exponent, single scattering albedo (ω0), and aerosol particle size distribution were derived from the observational data. The monthly mean AOD reached a maximum value of 1.20 in June and a minimum value of 0.43 in January. The monthly averaged Angstrom wavelength exponent reached a minimum value of 1.15 in April and a maximum value of 1.41 in October. The frequencies of the AOD and Angstrom wavelength exponent presented lognormal distributions. The averaged ω0 at 550 nm was 0.94 throughout the observation period, indicating that the aerosols over Shanghai are composed mainly of scattering particles. The concentrations of coarse mode and accumulation mode aerosols over Shanghai were highest in spring compared with other seasons, especially for those particles with radii between 1.0 and 2.0 μm. The median radius of monthly averaged accumulation mode aerosols increased with increasing AOD, and fine particles accounted for the majority of the aerosol volume concentration. The ratios of the monthly averaged volume concentration of accumulation mode and coarse mode aerosols (Vf/Vc) were over 0.6 for all months studied and reached up to 1.94 in August. The volumes of the two modes changed with AOD, but their correlations presented different sensitivities, that is, the volume concentration of accumulation mode aerosols was more sensitive to variations in AOD than that of coarse mode aerosols. The aerosol volume concentration decreased with increasing ω0, indicating that the higher the volume concentration of aerosols, the higher the absorption in particle extinction properties. The increase in absorption was caused primarily by secondary species coated on black carbon (BC) and primary organic carbon (POC) particles.

  2. Weekly periodicities of aerosol optical thickness over Central Europe – evidence of an anthropogenic direct aerosol effect

    Directory of Open Access Journals (Sweden)

    B. Vogel

    2007-08-01

    Full Text Available Statistical analyses of data from 14 ground-based sun photometer stations all over Central Europe are presented. All stations are part of the Aerosol Robotic Network (AERONET, and only data of the highest data quality level 2.0 had been applied. The averages by weekday of aerosol optical thickness (AOT at a wavelength of 440 nm of 12 of the 14 stations show a weekly periodicity with lowest values on Sunday and Monday, but greatest values from Wednesday until Saturday, that is significant at least on a 90% level. The stations in Germany and in Greater Paris show weekly cycles with ranges of about 20% on average. In Northern Italy and Switzerland this range is about 10% on average. The corresponding weekly cycle of anthropogenic gaseous and particulate emissions leads us to the conclusion of the anthropogenic origin of the weekly AOT cycle. Since these AOT patterns are derived from the reduction of the direct sun radiation by the columnar atmospheric aerosol, this result represents strong evidence for an anthropogenic direct aerosol effect on shortwave radiation. Furthermore, this study makes a first contribution to the understanding and explanation of recently observed weekly periodicities in meteorological variables as temperature in Germany.

  3. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    Science.gov (United States)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  4. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    Science.gov (United States)

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  5. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  6. Studies of aerosol optical depth with use of Microtops sun photometers and MODIS detectors

    Science.gov (United States)

    Makuch, Przemyslaw; Zawadzka, Olga; Markowicz, Krzystof M.; Zielinski, Tymon; Petelski, Tomasz; Strzalkowska, Agata; Rozwadowska, Anna; Gutowska, Dorota

    2013-04-01

    We would like to describe the results of a research campaign aimed at the studies of aerosol optical properties in the regions of the open Baltic Sea as well as coastal areas. During the campaign we carried out simultaneous measurements of aerosol optical depth at 4 stations with use of the hand-held Microtops II sunphotometers. The studies were complemented with the MODIS aerosol data. In order to obtain the full picture of the aerosol situation over the study area we added air mass back-trajectories at various altitudes and wind fields. Such complex information facilitated the proper conclusions regarding aerosol optical depth and Angstroem exponent for the four locations and discussion of the changes of aerosol properties with distance and meteorological factors. We show that Microtops II sunphotometers are reliable instruments for field campaigns. They are easy to operate and provide good quality results. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

  7. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  8. Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations

    Science.gov (United States)

    Hu, Zhiyuan; Zhao, Chun; Huang, Jianping; Leung, L. Ruby; Qian, Yun; Yu, Hongbin; Huang, Lei; Kalashnikova, Olga V.

    2016-05-01

    A fully coupled meteorology-chemistry model (WRF-Chem, the Weather Research and Forecasting model coupled with chemistry) has been configured to conduct quasi-global simulation for 5 years (2010-2014) and evaluated with multiple observation data sets for the first time. The evaluation focuses on the simulation over the trans-Pacific transport region using various reanalysis and observational data sets for meteorological fields and aerosol properties. The simulation generally captures the overall spatial and seasonal variability of satellite retrieved aerosol optical depth (AOD) and absorbing AOD (AAOD) over the Pacific that is determined by the outflow of pollutants and dust and the emissions of marine aerosols. The assessment of simulated extinction Ångström exponent (EAE) indicates that the model generally reproduces the variability of aerosol size distributions as seen by satellites. In addition, the vertical profile of aerosol extinction and its seasonality over the Pacific are also well simulated. The difference between the simulation and satellite retrievals can be mainly attributed to model biases in estimating marine aerosol emissions as well as the satellite sampling and retrieval uncertainties. Compared with the surface measurements over the western USA, the model reasonably simulates the observed magnitude and seasonality of dust, sulfate, and nitrate surface concentrations, but significantly underestimates the peak surface concentrations of carbonaceous aerosol likely due to model biases in the spatial and temporal variability of biomass burning emissions and secondary organic aerosol (SOA) production. A sensitivity simulation shows that the trans-Pacific transported dust, sulfate, and nitrate can make significant contribution to surface concentrations over the rural areas of the western USA, while the peaks of carbonaceous aerosol surface concentrations are dominated by the North American emissions. Both the retrievals and simulation show small

  9. [Aerosol optical properties during different air-pollution episodes over Beijing].

    Science.gov (United States)

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  10. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma

    Directory of Open Access Journals (Sweden)

    E. Andrews

    2011-10-01

    Full Text Available A small airplane made 597 aerosol optical property (light absorption and light scattering vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption. The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter, particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and

  11. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    Science.gov (United States)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  12. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    Directory of Open Access Journals (Sweden)

    F. Tan

    2014-07-01

    Full Text Available In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon based on data from the AErosol RObotic NETwork (AERONET from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  13. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    Science.gov (United States)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  14. Modelling the optical properties of aerosols in a chemical transport model

    Science.gov (United States)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  15. Uncertainties in Carbonaceous Aerosol Emissions, Scavenging Parameterizations, and Optical Properties

    Science.gov (United States)

    Koch, D.; Bond, T.; Kinne, S.; Klimont, Z.; Sun, H.; van Aardenne, J.; van der Werf, G.

    2006-12-01

    Estimates of human influence on climate are especially hindered by poor constraint on the amount of anthropogenic carbonaceous aerosol absorption in the atmosphere. Coordination of observation and model analyses attempt to constrain particle absorption amount, however these are limited by uncertainties in aerosol emission estimates, model scavenging parameterization, aerosol size assumption, contributions from organic aerosol absorption, air concentration observational techniques and by sparsity of data coverage. We perform multiple simulations using GISS modelE and six present-day emission estimates for black carbon (BC) and organic carbon (OC) (Bond et al 2004 middle and upper estimates, IIASA, EDGAR, GFED v1 and v2); for one of these emissions we apply 4 different BC/OC scavenging parameterizations. The resulting concentrations will be compared with a new compilation of observed BC/OC concentrations. We then use these model concentrations, together with effective radius assumptions and estimates of OC absorption to calculate a range of carbonaceous aerosol absorption. We constrain the wavelength-dependent model τ- absorption with AERONET sun-photometer observations. We will discuss regions, seasons and emission sectors with greatest uncertainty, including those where observational constraint is lacking. We calculate the range of model radiative forcing from our simulations and discuss the degree to which it is constrained by observations.

  16. Optical properties of urban aerosols in the region Bratislava-Vienna—II: Comparisons and results

    Science.gov (United States)

    Kocifaj, M.; Horvath, H.; Hrvoľ, J.

    The optical and microphysical properties of aerosols in highly urbanized region Bratislava-Vienna were determined by means of ground-based optical methods during campaign in August and September 2004. Although both cities are close to each other forming a common metropolitan region, the features of their aerosol systems are distinct. While urban and suburban zones around Vienna have mostly a clean air without major influences of emissions from industry, Bratislava itself need to be classified as polluted area—the optical data collected in the measuring site are influenced mainly by Technické Sklo factory (NW positioned), Matador (SSE), Istrochem (ENE) and Slovnaft (ESE). In contrary to an observed smooth evolution of the aerosol system in Vienna, the aerosol environment is quite unstable in Bratislava and usually follows the day changes of the wind directions (as they correspond to the position of individual sources of pollution). The particle sizes in Bratislava are predominately larger compared to Vienna. A subsidiary mode within surface size distribution frequently occurs at radius about 0.7 μm in Bratislava but not in Vienna. The size distribution of airborne particles in Vienna is more dependent on relative humidity than in Bratislava. It suggests the particles in Bratislava are larger whenever, or non-deliquescent to a great extent. The spectral attenuation of solar radiation by aerosol particles shows a typical mode at λ≈0.4μm in Bratislava, which is not observed in the spectral aerosol extinction coefficient in Vienna. In Bratislava, the average aerosol optical thickness grows from morning hours to the evening, while an opposite effect can be observed in Vienna in the same time.

  17. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP

    KAUST Repository

    Houborg, Rasmus

    2013-08-01

    This study investigates the utility of in situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (V-max) represents a key control on leaf photosynthesis within the widely employed C-3 and C-4 photosynthesis models proposed by Farquhar et al. (1980) and Collatz et al. (1992), respectively. A semi-mechanistic relationship between V-max(5) (V-max normalized to 25 degrees C) and Chl is derived based on interlinkages between V-max(25), Rubisco enzyme kinetics, leaf nitrogen, and Chl reported in the experimental literature. The resulting linear V-max(25) - Chl relationship is embedded within the photosynthesis scheme of the Community Land Model (CLM), thereby bypassing the use of fixed plant functional type (PFT) specific V-max(25) values. The effect of the updated parameterization on simulated carbon fluxes is tested over a corn field growing season using: (1) a detailed Chl time-series established on the basis of intensive field measurements and (2) Chl estimates derived from Landsat imagery using the REGularized canopy reFLECtance (REGFLEC) tool. Validations against flux tower observations demonstrate benefit of using Chl to parameterize V-max(25) to account for variations in nitrogen availability imposed by severe environmental conditions. The use of V-max(25) that varied seasonally as a function of satellite-based Chl, rather than a fixed PFT-specific value, significantly improved the agreement with observed tower fluxes with Pearson\\'s correlation coefficient (r) increasing from 0.88 to 0.93 and the root-mean-square-deviation decreasing from 4.77 to 3.48 mu mol m(-2) s(-1). The results support the use of Chl as a proxy for photosynthetic capacity using generalized relationships between V-max(25) and Chl, and advocate the potential of satellite retrieved Chl for

  18. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    Science.gov (United States)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  19. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yin, Yan, E-mail: yinyan@nuist.edu.cn [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xiao, Hui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yu, Xingna [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Hao, Jian; Chen, Kui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); and others

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  20. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    Science.gov (United States)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  1. CALIOP and AERONET Aerosol Optical Depth Comparisons: One Size Fits None

    Science.gov (United States)

    Omar, A. H.; Winker, D. M.; Tackett, J. L.; Giles, D. M.; Kar, J.; Liu, Z.; Vaughan, M. A.; Powell, K. A.; Trepte, C. R.

    2013-01-01

    We compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite with coincident Aerosol Robotic Network (AERONET) measurements. Overpass coincidence criteria of +/- 2 h and within a 40 km radius are satisfied at least once at 149 globally distributed AERONET sites from 2006 to 2010. Most data pairs (>80%) use AERONET measurements acquired +/- 30 min of the overpass. We examine the differences in AOD estimates between CALIOP and AERONET for various aerosol, environmental, and geographic conditions. Results show CALIOP AOD are lower than AERONET AOD especially at low optical depths as measured by AERONET (500 nm AOD0.1. Differences in AOD between CALIOP and AERONET are possibly due to cloud contamination, scene inhomogeneity, instrument view angle differences, CALIOP retrieval errors, and detection limits. Comparison of daytime to nighttime number of 5 km 60m (60m in the vertical) features detected by CALIOP show that there are 20% more aerosol features at night. We find that CALIPSO and AERONET do not agree on the cloudiness of scenes. Of the scenes that meet the above coincidence criteria, CALIPSO finds clouds in more than 45% of the coincident atmospheric columns AERONET classifies as clear.

  2. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    Science.gov (United States)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  3. In-canopy gradients, composition, and sources of optically active aerosols over the Amazon forest

    Science.gov (United States)

    Guyon, P.; Graham, B.; Roberts, G. C.; Mayol-Bracero, O. L.; Andreae, M. O.; Artaxo, P.; Maenhaut, W.

    2003-04-01

    As part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH), size-fractionated aerosol samples were collected at a primary rainforest site in the Brazilian Amazon during the wet and dry seasons. Daytime-nighttime segregated sampling was carried out at three different heights (above, within and below canopy level) on a 54 m meteorological tower. The samples were analyzed for up to 19 trace elements, equivalent black carbon (BCe) and mass concentrations. Additionally, measurements of scattering and absorption coefficients were performed. Absolute principal component analysis revealed that the wet and dry season aerosols contained the same three main aerosol components, namely a natural biogenic, a pyrogenic, and a soil dust component, but that these were present in different (absolute and relative) amounts. The elements related to biomass burning and soil dust generally exhibited highest concentrations above the canopy and during daytime, whilst forest-derived aerosol was more concentrated underneath the canopy and during nighttime. These variations can be largely attributed to daytime convective mixing and the formation of a shallow nocturnal boundary layer, along with the possibility of enhanced nighttime release of biogenic aerosol particles. All three components contributed significantly to light extinction, suggesting that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin.

  4. The Deconvolution of Aerosol Backscattered Optical Pulses to Obtain System-Independent Aerosol Signatures.

    Science.gov (United States)

    1981-06-01

    S. CONTRACT OR GRANT NUMBERI.) Dennis Mc~uire Michael/~Conner 2. PERFOMN ORGANIZATION NAME AND AOORESS I0. PROGRAM ELEMENT. PROJECT. TASKC Harry...tech- niques has shown that exellent results can be obtained in simple cases (where the aerosol is known to be uniformly distributed and to completely

  5. Physical and optical properties of aerosols over an urban location in Spain: seasonal and diurnal variability

    Directory of Open Access Journals (Sweden)

    H. Lyamani

    2010-01-01

    Full Text Available Measurements of aerosol optical properties and aerosol number size distribution obtained during the period from December 2005 to November 2007 at Granada, an urban site in south-eastern Spain, are analyzed. Large variations of the measured variables have been found, and related to variations in emissions sources and meteorological conditions. High values of aerosol absorption and scattering coefficients are obtained during winter and low values are measured during summer. This seasonal pattern in the surface aerosol optical properties is opposite to the seasonal cycle showed by columnar aerosol optical depth. The differences in the seasonal features of the surface and column-integrated data are related to seasonal variations in the aerosol vertical distribution, aerosol sources and boundary layer height. In winter the number density of "fine" particles (0.5s, presents an evident seasonal cycle with values of 1.8±0.2, 1.6±0.3, 1.3±0.3 and 1.4±0.3 in winter, spring, summer and autumn, respectively. This suggests the presence of a large fraction of submicron particles at the site, especially during winter. The aerosols measured in this study contain a large fraction of absorbing material as indicated by the average single-scattering albedo that has values of 0.65±0.07, 0.66±0.06, 0.70±0.06 and 0.73±0.06 in autumn, winter, spring and summer, respectively. The aerosol scattering albedo obtained in the surface boundary layer of Granada is below the critical value of 0.86 that determines the shift from cooling to warming. These results put in evidence the need of efforts to reduce absorbing particles (black carbon emissions to avoid the possible warming that would result from the

  6. Physical and optical properties of aerosols over an urban location in Spain: seasonal and diurnal variability

    Directory of Open Access Journals (Sweden)

    H. Lyamani

    2009-09-01

    Full Text Available Measurements of aerosol optical properties and aerosol number size distribution obtained during the period from December 2005 to November 2007 at Granada, an urban site in south-eastern Spain, are analyzed. Large variations of the measured variables have been found, and related to variations in emissions sources and meteorological conditions. High values of aerosol absorption and scattering coefficients are obtained during winter and low values are measured during summer. This seasonal pattern in the surface aerosol optical properties is opposite to the seasonal cycle showed by columnar aerosol optical depth. The differences in the seasonal features of the surface and column-integrated data are related to seasonal variations in the aerosol vertical distribution, aerosol sources and boundary layer height. In winter the number density of fine particles (0.5s, presents an evident seasonal cycle with values of 1.8±0.2, 1.6±0.3, 1.3±0.3 and 1.4±0.3 in winter, spring, summer and autumn, respectively. This suggests the presence of a large fraction of submicron particles at the site, especially during winter. Urban aerosols in Granada contain a large fraction of absorbing material as indicated by the average single-scattering albedo that has values of 0.65±0.07, 0.66±0.06, 0.70±0.06 and 0.73±0.06 in autumn, winter, spring and summer, respectively. The aerosol scattering albedo obtained in the surface boundary layer of Granada is below the critical value of 0.86 that determines the shift from cooling to warming. These results put in evidence the need of efforts to reduce absorbing particles (black carbon emissions to avoid the possible warming that would result from the reductions of

  7. Empirical estimates of CCN from aerosol optical properties at four remote sites

    Directory of Open Access Journals (Sweden)

    A. Jefferson

    2010-07-01

    Full Text Available This study presents an empirical method to estimate the CCN concentration as a function of percent supersaturation. The aerosol optical properties, backscatter fraction and single scatter albedo, function as proxies for the aerosol size and composition in a power law relationship to CCN. This method is tested at four sites with aged aerosol: SGP (Oklahoma, USA, FKB (Black Forest, Germany, HFE (Hefei, China and GRW (Graciosa, Azores. Each site represents a different aerosol type and thus demonstrates the method robustness and limitations. Good agreement was found between the calculated and measured CCN with slopes between 0.81 and 1.03 and correlation coefficients (r2 values between 0.59 and 0.67. The fit quality declined at low CCN concentrations.

  8. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    Science.gov (United States)

    Esparza, Angel Eduardo

    2011-12-01

    The assessment and characterization of atmospheric aerosols and their optical properties are of great significance for several applications such as air pollution studies, atmospheric visibility, remote sensing of the atmosphere, and impacts on climate change. Decades ago, the interest in atmospheric aerosols was primarily for visibility impairment problems; however, recently interest has intensified with efforts to quantify the optical properties of aerosols, especially because of the uncertainties surrounding the role of aerosols in climate change. The main objective of the optical characterization of aerosols is to understand their properties. These properties are determined by the aerosols' chemical composition, size, shape and concentration. The general purpose of this research was to contribute to a better characterization of the aerosols present in the Paso del Norte Basin. This study permits an alternative approach in the understanding of air pollution for this zone by analyzing the predominant components and their contributions to the local environment. This dissertation work had three primary objectives, in which all three are intertwined by the general purpose of the aerosol characterization in the Paso del Norte region. The first objective was to retrieve the columnar aerosol size distribution for two different cases (clean and polluted scenarios) at each season (spring, summer, fall and winter) of the year 2009. In this project, instruments placed in buildings within the University of Texas at El Paso (UTEP) as well as a monitoring site (CAMS 12) from the Texas Commission on Environmental Quality (TCEQ) provided the measurements that delimited the aerosol size distribution calculated by our model, the Environmental Physics Inverse Reconstruction (EPIRM) model. The purpose of this objective was to provide an alternate method of quantifying and size-allocating aerosols in situ, by using the optical properties of the aerosols and inversely reconstruct and

  9. Comparison between volcanic ash satellite retrievals and FALL3D transport model

    Science.gov (United States)

    Corradini, Stefano; Merucci, Luca; Folch, Arnau

    2010-05-01

    Volcanic eruptions represent one of the most important sources of natural pollution because of the large emission of gas and solid particles into the atmosphere. Volcanic clouds can contain different gas species (mainly H2O, CO2, SO2 and HCl) and a mix of silicate-bearing ash particles in the size range from 0.1 μm to few mm. Determining the properties, movement and extent of volcanic ash clouds is an important scientific, economic, and public safety issue because of the harmful effects on environment, public health and aviation. In particular, real-time tracking and forecasting of volcanic clouds is key for aviation safety. Several encounters of en-route aircrafts with volcanic ash clouds have demonstrated the harming effects of fine ash particles on modern aircrafts. Alongside these considerations, the economical consequences caused by disruption of airports must be also taken into account. Both security and economical issues require robust and affordable ash cloud detection and trajectory forecasting, ideally combining remote sensing and modeling. We perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands from Visible (VIS) to Thermal InfraRed (TIR) and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 mm have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. We consider the Mt. Etna volcano 2002 eruptive event as a test case. Results show a good agreement between the mean AOT retrieved and the spatial ash dispersion in the

  10. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    Science.gov (United States)

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  11. Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region

    Directory of Open Access Journals (Sweden)

    V. E. Cachorro

    Full Text Available We report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company covering the range from 300–1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of Cádiz (southwest Spain of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Ångström turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behaviour of these estimations in each area of study.

    Key words. Atmospheric composition and structure (aerosols and particles; transmission and scattering of radiation; troposphere – composition and chemistry

  12. Aerosol optical properties determined from sky-radiometer over Loess Plateau of Northwest China

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2011-08-01

    Full Text Available The aerosol optical properties and their associated radiative forcing are retrieved from sky-radiometer and surface solar radiation data collected over the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL for the period of March to May (MAM 2009. The result shows that the seasonal mean aerosol optical depth (AOD at 500 nm in MAM is 0.4. The single scattering albedo (SSA at 500 nm in MAM at SACOL fluctuates significantly ranging from 0.82 to 0.97. The averaged value of SSA there for background aerosol is 0.92 in MAM, while it is smaller (0.89 during the dust event outbreak period. The smaller SSA can be interpreted as the result of larger particles during dust events. The averaged asymmetry factor (ASY at 500 nm during dust event period is 0.81, which is much larger than 0.68 of background aerosols. The averaged shortwave radiative effect of the aerosols during dust event period in MAM is −6.25, −86.33 and 80.08 wm−2, respectively, at the top of the atmosphere (TOA, surface and in the atmosphere. The aerosols heat the atmosphere during dust event period by up to 2 K day−1 (daily averaged, which is 67 % larger than the heating (1.2 K day−1 of background aerosols. The significant heating effect in the atmosphere of the aerosols during dust event is determined by larger AOD and smaller SSA.

  13. Evaluation of aerosol simulation in a global model using multiple-platform observations

    Science.gov (United States)

    Ma, X.

    2015-12-01

    Large diversity in the magnitude of aerosol optical depth (AOD) and their spatial distributions is one of key factors contributing to the large uncertainty of the model predicted aerosol radiative forcing (global mean ranging from -0.02 to -0.58W m-2) and its climatic effect. Therefore, evaluation of model performances with respect to AOD is a critical step to improve the model simulations and, thus, reduce the diversities. In this study, multi-year AOD data (2004-2012) from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals are used to evaluate the performance of a global model, GEOS-Chem-APM, one of global models involved in AeroCom phase II aerosol module inter-comparison project. Comparisons of the modeled AOD with satellite data on spatial distribution, seasonal and inter-annual variations are quantitatively analyzed. In addition, several regions representative of various aerosol dominant species are chose for the detailed evaluations of AOD between the simulation and AERONET observations. The capability and weakness of the model to capture seasonal variation and chemical species is also discussed for further improvement in the future.

  14. Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia

    Science.gov (United States)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2015-04-01

    Obtaining continuous aerosol-optical-depth (AOD) measurements is a difficult task due to the cloud-cover problem. With the main motivation of overcoming this problem, an AOD-predicting model is proposed. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the Ångström exponent against the AOD. A new empirical algorithm was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET due to frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The calibrated model coefficients have a coefficient of determination, R2, of 0.72. The predicted AOD of the model was generated based on these calibrated coefficients and compared against the measured data through standard statistical tests, yielding a R2 of 0.68 as validation accuracy. The error in weighted mean absolute percentage error (wMAPE) was less than 0.40% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Performance of our model was compared against selected LIDAR data to yield good correspondence. The predicted AOD can enhance measured short- and long-term AOD and provide supplementary information for climatological studies and monitoring aerosol variation.

  15. An Assessment of Uncertainties in the NASA GISS ModelE GCM due to Variations in the Representation of Aerosol/Cloud Interactions

    Science.gov (United States)

    Persad, G. G.; Menon, S.; Sednev, I.

    2008-12-01

    Aerosol indirect effects are known to have a significant impact on the evolution of the climate system. However, their representation via cloud/aerosol microphysics remains a major source of uncertainty in climate models. This study assesses uncertainties in the NASA Goddard Institute for Space Studies (GISS) ModelE global climate model produced by different representations of the cloud/aerosol interaction scheme. By varying the complexity of the cloud microphysics scheme included in the model and analyzing the range of results against cloud properties obtained from satellite retrievals, we evaluate the effect of the different schemes on climate. We examine four sets of simulations with the GISS ModelE: (1) using a new aerosol/cloud microphysics package implemented in ModelE (based on the two-moment cloud microphysics scheme recently implemented in CCSM), (2) using a version of the microphysics scheme previously included in ModelE, (3) using prescribed aerosol concentrations and fixed cloud droplet number (the main link between aerosols and the cloud microphysics scheme), and (4) varying the environment conditions with which the new aerosol/cloud microphysics package is run. The global mean cloud properties are analyzed and compared to global mean ranges as obtained from satellite retrievals. Results show that important climate parameters, such as total cloud cover, can be underestimated by 8-15% using the new aerosol/cloud microphysics scheme. Liquid water path (LWP) is particularly affected by variations to the aerosol/cloud microphysics representation, exhibiting both global mean variations of ~20% and strong regional differences. Significant variability in LWP between the various simulations may be attributed to differences in the autoconversion scheme used in the differing representations of aerosol/cloud interactions. These LWP differences significantly affect radiative parameters, such as cloud optical depth and net cloud forcing (used to evaluate the

  16. Effects of data assimilation on the global aerosol key optical properties simulations

    Science.gov (United States)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  17. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.

  18. Optical properties of urban aerosols in the region Bratislava-Vienna I. Methods and tests

    Science.gov (United States)

    Kocifaj, M.; Horvath, H.; Jovanović, O.; Gangl, M.

    Aerosol optical data obtained by means of ground-based methods are applied to determine microphysical properties of aerosols in the atmosphere of Vienna-city. The measured aerosol extinction coefficient σA serves as a source of information on the ambient aerosols. A large database of extinction efficiency factors for a set of irregularly shaped as well as the spherical particles of various sizes is pre-calculated and employed in the inversion procedure. The assumed particle models differ in chemical composition and are representative for most typical aerosol systems in the urban atmospheres. All database records are taken into a regularization scheme to solve the inverse problem for aerosol size distribution using measured extinction data. In addition, subsidiary data on spectral sky radiance are successfully incorporated into the mathematical model to retrieve the information on aerosol effective refractive index in the visible. As for Vienna, the aerosol extinction is a decreasing function of wavelength in visible spectrum—it indicates the predominance of sub-micrometer-sized particles in the atmosphere. The surface distribution function s( r)=d S/d r of aerosol particles customarily peaks at radii r≈0.2-0.3 μm, while the volume distribution function v( r)=d V/d r˜ rs( r) has a mode at radii about 0.3-0.4 μm. Analysing size distributions d V/d log( r) for irregularly shaped particles it is shown that the daily profile of this function is smoothly evolving and almost typically accounts for a first mode at radii between 0.8 and 0.9 μm.

  19. Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Arola, A.; Ferrare, R. A.; Hostetler, C. A.; Crumeyrolle, S. N.; Berkoff, T. A.; Welton, E. J.; Lolli, S.; Lyapustin, A.; Wang, Y.; Schafer, J. S.; Giles, D. M.; Anderson, B. E.; Thornhill, K. L.; Minnis, P.; Pickering, K. E.; Loughner, C. P.; Smirnov, A.; Sinyuk, A.

    2014-11-01

    During the July 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field experiment in Maryland, significant enhancements in Aerosol Robotic Network (AERONET) sun-sky radiometer measured aerosol optical depth (AOD) were observed in the immediate vicinity of non-precipitating cumulus clouds on some days. Both measured Ångström exponents and aerosol size distribution retrievals made before, during and after cumulus development often suggest little change in fine mode particle size; therefore, implying possible new particle formation in addition to cloud processing and humidification of existing particles. In addition to sun-sky radiometer measurements of large enhancements of fine mode AOD, lidar measurements made from both ground-based and aircraft-based instruments during the experiment also measured large increases in aerosol signal at altitudes associated with the presence of fair weather cumulus clouds. These data show modifications of the aerosol vertical profile as a result of the aerosol enhancements at and below cloud altitudes. The airborne lidar data were utilized to estimate the spatial extent of these aerosol enhancements, finding increased AOD, backscatter and extinction out to 2.5 km distance from the cloud edge. Furthermore, in situ measurements made from aircraft vertical profiles over an AERONET site during the experiment also showed large increases in aerosol scattering and aerosol volume after cloud formation as compared to before. The 15-year AERONET database of AOD measurements at the Goddard Space Flight Center (GSFC), Maryland site, was investigated in order to obtain a climatological perspective of this phenomenon of AOD enhancement. Analysis of the diurnal cycle of AOD in summer showed significant increases in AOD from morning to late afternoon, corresponding to the diurnal cycle of cumulus development.

  20. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    Science.gov (United States)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  1. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    Science.gov (United States)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  2. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    Science.gov (United States)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used

  3. Atmospheric aerosol optical parameters, deep convective clouds and hail occurence - a correlation study

    Science.gov (United States)

    Talianu, Camelia; Andrei, Simona; Toanca, Florica; Stefan, Sabina

    2016-04-01

    Among the severe weather phenomena, whose frequency has increased during the past two decades, hail represents a major threat not only for agriculture but also for other economical fields. Generally, hail are produced in deep convective clouds, developed in an unstable environment. Recent studies have emphasized that besides the state of the atmosphere, the atmospheric composition is also very important. The presence of fine aerosols in atmosphere could have a high impact on nucleation processes, initiating the occurrence of cloud droplets, ice crystals and possibly the occurrence of graupel and/or hail. The presence of aerosols in the atmosphere, correlated with specific atmospheric conditions, could be predictors of the occurrence of hail events. The atmospheric investigation using multiwavelength Lidar systems can offer relevant information regarding the presence of aerosols, identified using their optical properties, and can distinguish between spherical and non-spherical shape, and liquid and solid phase of these aerosols. The aim of this study is to analyse the correlations between the presence and the properties of aerosols in atmosphere, and the production of hail events in a convective environment, using extensive and intensive optical parameters computed from lidar and ceilometer aerosols measurements. From these correlations, we try to evaluate if these aerosols can be taken into consideration as predictors for hail formation. The study has been carried out in Magurele - Romania (44.35N, 26.03E, 93m ASL) using two collocated remote sensing systems: a Raman Lidar (RALI) placed at the Romanian Atmospheric 3D Observatory and a ceilometer CL31 placed at the nearby Faculty of Physics, University of Bucharest. To evaluate the atmospheric conditions, radio sounding and satellite images were used. The period analysed was May 1st - July 15th, 2015, as the May - July period is climatologically favorable for deep convection events. Two hail events have been

  4. Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing

    Science.gov (United States)

    Fiebig, Markus; Petzold, Andreas; Wandinger, Ulla; Wendisch, Manfred; Kiemle, Christoph; Stifter, Armin; Ebert, Martin; Rother, Tom; Leiterer, Ulrich

    2002-11-01

    During the Lindenberg Aerosol Characterization Experiment (LACE 98), airborne measurements of aerosol size distribution, fine-particle concentration, particle absorption coefficient, backscatter coefficient, depolarization, and chemical composition as well as ground-based measurements of spectral particle optical depth and of spectral backscatter and extinction coefficients were performed in the aerosol column above Lindenberg, Germany. We compare the measured optical parameters with calculations from the size distributions, which assume the aerosol to consist of sulfuric acid near the tropopause and mixtures of ammonium sulfate and soot in the remaining column. We obtain closure to within 25% for the optical depth of a column, which includes a biomass-burning aerosol of North American origin, and infer a soot volume fraction of 35% for this aerosol. Assuming spheroidal particles of prolate shape and the average aspect ratio of the particles to be 1.3 in the biomass-burning aerosol layer, the calculated depolarization agrees with the lidar measurement, whereas comparing the spectral backscatter coefficient shows the soot to be externally mixed with the nonabsorbing particles. With the two-stream approximation, we estimate the local, instantaneous, cloud-free radiative forcing of the biomass-burning aerosol at the tropopause to -5.8 W/m2 with a corresponding optical depth of 0.09 at 710 nm wavelength and solar zenith angle of 56°. The radiative forcing for the biomass-burning aerosol is as sensitive to a change in state of mixture, either external or internal, as to a change in surface albedo, ocean to coniferous forest.

  5. Evaluation of methods to determine the spectral variations of aerosol optical thickness

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Rodrigues, A.; Desa, E.; Chauhan, P.

    The methods used to derive spectral variations of aerosol optical thickness, AOT are evaluated. For our analysis we have used the AOT measured using a hand held sunphotometer at the coastal station on the west coast of India, Dona-Paula, Goa...

  6. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    Science.gov (United States)

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  7. Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX

    NARCIS (Netherlands)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Kooi, S.; Clayton, M.; Hobbs, P.V.; Hartley, S.; Veefkind, J.P.; Russell, P.; Livingston, J.; Tanré, D.; Hignett, P.

    2000-01-01

    We examine aerosol extinction and optical thickness from the Lidar Atmospheric Sensing Experiment (LASE), the in situ nephelometer and absorption photometer on the University of Washington C-131A aircraft, and the NASA Ames Airborne Tracking Sun Photometer (AATS-6) on the C-131A measured during the

  8. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm : Application to Western Europe

    NARCIS (Netherlands)

    Curier, R.L.; Veefkind, J.P.; Braak, R.; Veihelmann, B.; Torres, O.; Leeuw, G. de

    2008-01-01

    The Ozone Monitoring Instrument (OMI) multiwavelength algorithm has been developed to retrieve aerosol optical depth using OMI-measured reflectance at the top of the atmosphere. This algorithm was further developed by using surface reflectance data from a field campaign in Cabauw (The Netherlands),

  9. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    Science.gov (United States)

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  10. Latitudinal variations of aerosol optical parameters over South Africa based on MISR satellite data

    CSIR Research Space (South Africa)

    Tesfaye M

    2010-09-01

    Full Text Available The latitudunal variation of the relative weight size distribution and optical properties of aerosols over South Africa is presented here. The study uses 10-years of Multi-angle Imaging SpectroRadiometer (MISR) satellite data, collected over South...

  11. Aerosol optical thickness retrieval over land and water using SCIAMACHY/GOME data

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.; Leeuw, G. de

    2005-01-01

    An algorithm for the retrieval of the aerosol optical thickness over land and over water from SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY) is presented. Because calibrated data are not yet available for the SCIAMACHY channels used by the algorithm, the concepts w

  12. Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX

    NARCIS (Netherlands)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Kooi, S.; Clayton, M.; Hobbs, P.V.; Hartley, S.; Veefkind, J.P.; Russell, P.; Livingston, J.; Tanré, D.; Hignett, P.

    2000-01-01

    We examine aerosol extinction and optical thickness from the Lidar Atmospheric Sensing Experiment (LASE), the in situ nephelometer and absorption photometer on the University of Washington C-131A aircraft, and the NASA Ames Airborne Tracking Sun Photometer (AATS-6) on the C-131A measured during the

  13. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements

    Directory of Open Access Journals (Sweden)

    V. Amiridis

    2008-10-01

    Full Text Available The influence of smoke on the aerosol loading in the free troposphere over Thessaloniki, Greece is examined in this paper. Ten cases during 2001–2005 were identified when very high aerosol optical depth values in the free troposphere were observed with a UV-Raman lidar. Particle dispersion modeling (FLEXPART and satellite hot spot fire detection (ATSR showed that these high free tropospheric aerosol optical depths are mainly attributed to the advection of smoke plumes from biomass burning regions over Thessaloniki. The biomass burning regions were found to extend across Russia in the latitudinal belt between 45° N–55° N, as well as in Eastern Europe (Baltic countries, Western Russia, Belarus, and the Ukraine. The highest frequency of agricultural fires occurred during the summer season (mainly in August. The data collected allowed the optical characterization of the smoke aerosols that arrived over Greece, where limited information has so far been available. Two-wavelength backscatter lidar measurements showed that the backscatter-related Ångström exponent ranged between 0.5 and 2.4 indicating a variety of particle sizes. UV-Raman lidar measurements showed that for smoke particles the extinction to backscatter ratios varied between 40 sr for small particles to 100 sr for large particles. Dispersion model estimations of the carbon monoxide tracer concentration profiles for smoke particles indicate that the variability of the optical parameters is a function of the age of the smoke plumes.

  14. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    Science.gov (United States)

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  15. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  16. Optical characteristics of aerosol trioxide dialuminum at the IR wavelength range

    Science.gov (United States)

    Voitsekhovskaya, O. K.; Shefer, O. V.; Kashirskii, D. E.

    2015-11-01

    In this work, a numerical study of the transmission function, extinction coefficient, scattering coefficient, and absorption coefficient of the aerosol generated by the jet engine emissions was performed. Analyzing the calculation results of the IR optical characteristics of anthropogenic emissions containing the dialuminum trioxide was carried out. The spectral features of the optical characteristics of the medium caused by the average size, concentration and complex refractive index of the particles were illustrated.

  17. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  18. The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation

    Science.gov (United States)

    Williams, Jason E.; Folkert Boersma, K.; Le Sager, Phillipe; Verstraeten, Willem W.

    2017-02-01

    We provide a comprehensive description of the high-resolution version of the TM5-MP global chemistry transport model, which is to be employed for deriving highly resolved vertical profiles of nitrogen dioxide (NO2), formaldehyde (CH2O), and sulfur dioxide (SO2) for use in satellite retrievals from platforms such as the Ozone Monitoring Instrument (OMI) and the Sentinel-5 Precursor, and the TROPOspheric Monitoring Instrument (tropOMI). Comparing simulations conducted at horizontal resolutions of 3° × 2° and 1° × 1° reveals differences of ±20 % exist in the global seasonal distribution of 222Rn, being larger near specific coastal locations and tropical oceans. For tropospheric ozone (O3), analysis of the chemical budget terms shows that the impact on globally integrated photolysis rates is rather low, in spite of the higher spatial variability of meteorological data fields from ERA-Interim at 1° × 1°. Surface concentrations of O3 in high-NOx regions decrease between 5 and 10 % at 1° × 1° due to a reduction in NOx recycling terms and an increase in the associated titration term of O3 by NO. At 1° × 1°, the net global stratosphere-troposphere exchange of O3 decreases by ˜ 7 %, with an associated shift in the hemispheric gradient. By comparing NO, NO2, HNO3 and peroxy-acetyl-nitrate (PAN) profiles against measurement composites, we show that TM5-MP captures the vertical distribution of NOx and long-lived NOx reservoirs at background locations, again with modest changes at 1° × 1°. Comparing monthly mean distributions in lightning NOx and applying ERA-Interim convective mass fluxes, we show that the vertical re-distribution of lightning NOx changes with enhanced release of NOx in the upper troposphere. We show that surface mixing ratios in both NO and NO2 are generally underestimated in both low- and high-NOx scenarios. For Europe, a negative bias exists for [NO] at the surface across the whole domain, with lower biases at 1° × 1° at only ˜ 20

  19. Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    E. Giannakaki

    2010-05-01

    Full Text Available We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001–2007. The largest optical depths are observed for Saharan dust and smoke aerosol particles. For local and continental polluted aerosols the measurements indicate high aerosol loads. However, measurements associated with the local path indicate enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for continental aerosols, from West directions with less free tropospheric contribution. The largest lidar ratios, of the order of 70 sr, are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values were estimated for different aerosol categories. Scatter plot between lidar ratio values and Ångström exponent values for local and continental polluted aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for continental aerosols with west and northwest directions that follow downward movement when arriving at our site constantly low lidar ratios almost independent of size are found.

  20. Partitioning aerosol optical depth between the boundary layer and the free troposphere

    Science.gov (United States)

    Bourgeois, Quentin; Ekman, Annica; Krejci, Radovan; Devasthale, Abhay; Renard, Jean-Baptiste

    2017-04-01

    Aerosols are short-lived (about a week) compounds in the atmosphere due to the efficient removal by dry and wet deposition in the boundary layer (BL) where a majority of the emission sources are located. As a consequence, most of the aerosol mass should be found in the BL and the aerosol optical depth (AOD) integrated over the atmospheric column should be dominated by the BL contribution. As a consequence, BL aerosols would most likely have the largest climate effect. However, aerosols advected to the free troposphere (FT) have a much longer residence time (typically a few weeks) than those in the BL, potentially inducing a more long-term effect on climate. Light-absorbing aerosols may in addition have an enhanced absorption, and thereby climate warming effect, if they are located above low-level reflective clouds. Light-absorbing aerosols above clouds may also modify below cloud formation and transformation. In this study, the global AOD has been retrieved using satellite observations from CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) over a nine-year period (2007-2015) and partitioned between the BL and FT using BL heights obtained from the ERA-Interim re-analysis data. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the role of a residual layer during night. The BL and FT contribute 71% and 29%, respectively, to the global AOD during daytime. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols, and the FT AOD contribution over oceans is governed by neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT - and thus potentially located above low-level clouds - is substantial and should

  1. Optical properties and cross-sections of biological aerosols

    Science.gov (United States)

    Thrush, E.; Brown, D. M.; Salciccioli, N.; Gomes, J.; Brown, A.; Siegrist, K.; Thomas, M. E.; Boggs, N. T.; Carter, C. C.

    2010-04-01

    There is an urgent need to develop standoff sensing of biological agents in aerosolized clouds. In support of the Joint Biological Standoff Detection System (JBSDS) program, lidar systems have been a dominant technology and have shown significant capability in field tests conducted in the Joint Ambient Breeze Tunnel (JABT) at Dugway Proving Ground (DPG). The release of biological agents in the open air is forbidden. Therefore, indirect methods must be developed to determine agent cross-sections in order to validate sensor against biological agents. A method has been developed that begins with laboratory measurements of thin films and liquid suspensions of biological material to obtain the complex index of refraction from the ultraviolet (UV) to the long wave infrared (LWIR). Using that result and the aerosols' particle size distribution as inputs to Mie calculations yields the backscatter and extinction cross-sections as a function of wavelength. Recent efforts to model field measurements from the UV to the IR have been successful. Measurements with aerodynamic and geometric particle sizers show evidence of particle clustering. Backscatter simulations of these aerosols show these clustered particles dominate the aerosol backscatter and depolarization signals. In addition, these large particles create spectral signatures in the backscatter signal due to material absorption. Spectral signatures from the UV to the IR have been observed in simulations of field releases. This method has been demonstrated for a variety of biological simulant materials such as Ovalbumin (OV), Erwinia (EH), Bacillus atrophaeus (BG) and male specific bacteriophage (MS2). These spectral signatures may offer new methods for biological discrimination for both stand-off sensing and point detection systems.

  2. Aerosols optical properties in Titan's Detached Haze Layer

    Science.gov (United States)

    Seignovert, Benoit; Rannou, Pascal; Lavvas, Panayotis; West, Robert

    2016-10-01

    Titan's Detached Haze Layer (DHL) was first observed in 1983 by Rages and Pollack during the Voyager 2 is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 (West et al. 2011). Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere (Rannou et al. 2000, Lavvas et al. 2009, Cours et al. 2011).In this talk we will present the UV photometric analyses based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer radius and local density) performed on ISS observations taken from 2005 to 2007.References:- Rages and Pollach, Icarus 55 (1983)- West, et al., Icarus 38 (2011)- Rannou, et al., Icarus 147 (2000)- Lavvas, et al., Icarus 201 (2009)- Cours, et al., ApJ Lett. 741 (2015)

  3. Comparison between CARIBIC aerosol samples analysed by accelerator-based methods and optical particle counter measurements

    Directory of Open Access Journals (Sweden)

    B. G. Martinsson

    2014-04-01

    Full Text Available Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container passenger aircraft based observatory, operating during intercontinental flights at 9–12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS, the extra-tropical upper troposphere (UT and the tropical mid troposphere (MT were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with accelerator-based methods particle-induced X-ray emission (PIXE and particle elastic scattering analysis (PESA. Data from 48 flights during one year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  4. Aerosol Characteristics at a High Altitude Location in Central Himalayas: Optical Properties and Radiative Forcing

    CERN Document Server

    Pant, P; Dumka, U C; Sagar, R; Satheesh, S K; Moorthy, K K; Sagar, Ram

    2006-01-01

    Collocated measurements of the mass concentrations of aerosol black carbon (BC) and composite aerosols near the surface were carried out along with spectral aerosol optical depths (AODs) from a high altitude station, Manora Peak in Central Himalayas, during a comprehensive aerosol field campaign in December 2004. Despite being a pristine location in the Shivalik Ranges of Central Himalayas, and having a monthly mean AOD (at 500 nm) of 0.059 $\\pm$ 0.033 (typical to this site), total suspended particulate (TSP) concentration was in the range 15 - 40 micro g m^(-3) (mean value 27.1 $\\pm$ 8.3 micro g m^(-3)). Interestingly, aerosol BC had a mean concentration of 1.36 $\\pm$ 0.99 micro g m^(-3), contributed to ~5.0 $\\pm$ 1.3 % to the composite aerosol mass. This large abundance of BC is found to have linkages to the human activities in the adjoining valley and to the boundary layer dynamics. Consequently, the inferred single scattering albedo lies in the range of 0.87 to 0.94 (mean value 0.90 $\\pm$ 0.03), indicatin...

  5. Long-term observations of aerosol optical properties at Wuhan, an urban site in Central China

    Science.gov (United States)

    Wang, Lunche; Gong, Wei; Xia, Xiangao; Zhu, Jun; Li, Jun; Zhu, Zhongmin

    2015-01-01

    Aerosol optical properties including aerosol optical depth (AOD), Ångström exponent (α), single scattering albedo (SSA), aerosol size distribution and refractive index at urban Wuhan in Central China are investigated based on the measurements from a CIMEL sun-photometer during 2007-2013. AOD500 nm is found to be relatively high all year round and the highest value 1.52 occurs in June 2012 and the lowest (0.57) in November 2012. α shows a significant monthly variation, with the highest value in June 2010 (1.71) and the lowest value (0.78) in April 2012. Analysis of AOD and α frequencies indicate that this region is populated with fine-mode particles. Monthly variations of SSA for total, fine and coarse-mode particles are closely related to the aerosol hygroscopic growth, fossil fuel and biomass burning. The aerosol volume size distributions (bi-modal pattern) show distinct differences in particle radius for different seasons, the radius for fine-mode particles generally increase from spring to summer month, for example, the highest peak is around radius 0.15 μm in March, while the peak radius is around 0.25 μm in June. Finally, monthly statistics of real and imaginary parts of the complex refractive index are analyzed, the highest averages of real (1.50) and imaginary parts (0.0395) are found in spring and autumn, respectively at wavelength 440-1020 nm.

  6. The aerosol optical properties measurement by ground remote sensing in Zhejiang, China

    Science.gov (United States)

    Wang, Bin; Jiang, Hong; Chen, Jian; Jiang, Zishan; Yu, Shuquan; Ma, Yuandan

    2009-10-01

    The aerosol optical depth was affected by the chemical composition, the particle size and the shape of aerosol as well as the water vapor in the atmosphere; it is an important indicator for air pollution. The special and temporal characteristics of aerosol optical depth (AOD) was measured by CE318 sun-photometer, Angstrom wavelength exponent (Alpha) and the aerosol turbidity coefficient (β) were calculated in Ningbo, Lin'an and Qiandaohu of Zhejiang province from 2007 to 2008. We also analyzed the relationship between AOD and Angstrom wavelength exponent (Alpha) in these stations. The results show that there are different pattern of AOD in this gradient of urban and suburban region. Lin'an station had two peaks of AOD, but Ningbo and Qiandaohu stations had single peak of AOD in measurement year. The difference of AOD seasonal pattern exists in three sites. The Angstrom wavelength exponent (Alpha) analysis suggests that the aerosol sizes in three stations various from fine particle in autumn to coarse particle in spring. The seasonal patterns show that spring air pollution is serious, summer is relatively clean, and autumn and winter are relative serious in three stations.

  7. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints

    Science.gov (United States)

    Lin, J.-T.; Liu, M.-Y.; Xin, J.-Y.; Boersma, K. F.; Spurr, R.; Martin, R.; Zhang, Q.

    2015-10-01

    Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the POMINO algorithm, based on measurements from the Ozone Monitoring Instrument (OMI), and we test the importance of a number of aerosol and surface reflectance treatments in this algorithm. POMINO uses a parallelized LIDORT-driven AMFv6 package to derive tropospheric air mass factors via pixel-specific radiative transfer calculations with no look-up tables, taking slant column densities from DOMINO v2. Prerequisite cloud optical properties are derived from a dedicated cloud retrieval process that is fully consistent with the main NO2 retrieval. Aerosol optical properties are taken from GEOS-Chem simulations constrained by MODIS aerosol optical depth (AOD) data. MODIS bi-directional reflectance distribution function (BRDF) data are used for surface reflectance over land. For the present analysis, POMINO level-2 data for 2012 are aggregated into monthly means on a 0.25° long. × 0.25° lat. grid. POMINO-retrieved annual mean NO2 VCDs vary from 15-25 × 1015 cm-2 over the polluted North China Plain (NCP) to below 1015 cm-2 over much of western China. Using POMINO to infer Chinese emissions of nitrogen oxides leads to annual anthropogenic emissions of 9.05 TgN yr-1, an increase from 2006 (Lin, 2012) by about 19 %. Replacing the MODIS BRDF data with the OMLER v1 monthly climatological albedo data affects NO2 VCDs by up to 40 % for certain locations and seasons. The effect on constrained NOx emissions is small. Excluding aerosol information from the retrieval process (this is the traditional "implicit" treatment) enhances annual mean NO2 VCDs by 15-40 % over much of eastern China. Seasonally, NO2 VCDs are reduced by 10-20 % over parts of the NCP in spring and over northern China

  8. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    Science.gov (United States)

    Xu, Chao; Ma, Yaoming; You, Chao; Zhu, Zhikun

    2016-04-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is may be partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35°N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  9. Optical, physical and chemical characteristics of Australian Desert dust aerosols: results from a field experiment

    Directory of Open Access Journals (Sweden)

    M. D. Keywood

    2009-11-01

    Full Text Available Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the northern hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol. Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – both ion beam analysis and ion chromatography.

    The aerosol optical depth data showed a weak seasonal cycle with an annual mean of 0.06±0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. Size distribution inversions showed a bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of biomass burning and marine biogenic material. Ion Beam Analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated, with the Fe/Si ratio higher than the crustal average, as expected. Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. Ion Chromatography was used to quantify water soluble ions for 2 of our sample sets, showing the importance of marine influences on both fine (biogenic and

  10. The aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    P. Stier

    2005-01-01

    Full Text Available The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU, black carbon (BC, particulate organic matter (POM, sea salt (SS, and mineral dust (DU are included. The simulated global annual mean aerosol burdens (lifetimes for the year 2000 are for SU: 0.80 Tg(S (3.9 days, for BC: 0.11 Tg (5.4 days, for POM: 0.99 Tg (5.4 days, for SS: 10.5 Tg (0.8 days, and for DU: 8.28 Tg (4.6 days. An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14 and a composite derived from MODIS-MISR satellite retrievals (0.16. Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced.

  11. Aerosol climatology over the Mexico City basin: Characterization of optical properties

    Science.gov (United States)

    Carabali, Giovanni; Estévez, Héctor Raúl; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor Manuel; Vázquez-Gálvez, Felipe Adrián

    2017-09-01

    Climatology of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), and aerosol particle-size distribution were analyzed using a 15-year (1999-2014) dataset from AErosol RObotic NETwork (AERONET) observations over the Mexico City (MC) basin. The atmosphere over this site is dominated by two main aerosol types, represented by urban/industrial pollution and biomass-burning particles. Due to the specific meteorological conditions within the basin, seasons are usually classified into three as follows: Dry Winter (DW) (November-February); Dry Spring (DS) (March-April), and the RAiny season (RA) (May-October), which are mentioned throughout this article. Using a CIMEL sun photometer, we conducted continuous observations over the MC urban area from January 1999 to December 2014. Aerosol Optical Depth (AOD), Ångström exponent (α440-870), Single Scattering Albedo (SSA), and aerosol particle-size distribution were derived from the observational data. The overall mean AOD500 during the 1999-2014 period was 0.34 ± 0.07. The monthly mean AOD reached a maximal value of 0.49 in May and a minimal value of 0.27 in February and March. The average α440-870 value for the period studied was 1.50 ± 0.16. The monthly average of α440-870 reached a minimal value of 1.32 in August and a maximal value of 1.61 in May. Average SSA at 440 nm was 0.89 throughout the observation period, indicating that aerosols over Mexico City are composed mainly of absorptive particles. Concentrations of fine- and coarse-mode aerosols over MC were highest in DS season compared with other seasons, especially for particles with radii measuring between 0.1 and 0.2 μm. Results from the Spectral De-convolution Algorithm (SDA) show that fine-mode aerosols dominated AOD variability in MC. In the final part of this article, we present a classification of aerosols in MC by using the graphical method proposed by Gobbi et al. (2007), which is based on the combined analysis of α and its spectral curvature

  12. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment.

    Science.gov (United States)

    Verma, S; Bhanja, S N; Pani, S K; Misra, A

    2014-04-01

    We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in

  13. Long term measurements of aerosol optical properties at a primary forest site in Amazonia

    Directory of Open Access Journals (Sweden)

    L. V. Rizzo

    2013-03-01

    Full Text Available A long term experiment was conducted in a primary forest area in Amazonia, with continuous in-situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in the Amazon Basin. Two major classes of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January–June, naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July–December, transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm−1 to 22 Mm−1, whereas absorption at 637 nm increased from 0.5 Mm−1 to 2.8 Mm−1 from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode (PM2 particles (40–80% of PM10 mass, while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA did not show a significant seasonal variability, in average 0.86 ± 0.08 at 637 nm for dry aerosols. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this primary forest site the radiative balance was dominated by the cloud cover, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency absolute values were below −3.5 W m−2 in 70% of the wet season days and in 46% of the dry season days. Besides the seasonal variation, the influence of out-of-Basin aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected, characterized by a consistent increase on particle scattering (factor 2.5 and absorption coefficients (factor 5. Episodes of

  14. Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Cachorro, V.E.; Vergaz, R.; Martin, M.J.; Frutos, A.M. de [Grupo de Optica Atmosferica, Univ. de Valladolid (GOA-UVA), Valladolid (Spain); Vilaplana, J.M.; Morena, B. de la [Estacion de Sondeos Atmosfericos ESAT ' ' El Arenosillo' ' , INTA, Huelva (Spain)

    2002-04-01

    We report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company) covering the range from 300-1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of Cadiz (southwest Spain) of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Aangstroem turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behavior of these estimations in each area of study. (orig.)

  15. Development and experimental evaluation of an optical sensor for aerosol particle characterization

    Energy Technology Data Exchange (ETDEWEB)

    Somesfalean, G.

    1998-03-01

    A sensor for individual aerosol particle characterization, based on a single-mode semiconductor laser coupled to an external cavity is presented. The light emitting semiconductor laser acts as a sensitive optical detector itself, and the whole system has the advantage of using conventional optical components and providing a compact set-up. Aerosol particles moving through the sensing volume, which is located in the external cavity of a semiconductor laser, scatter and absorb light. Thereby they act as small disturbances on the electromagnetic field inside the dynamic multi-cavity laser system. From the temporal variation of the output light intensity, information about the number, velocity, size, and refractive index of the aerosol particles can be derived. The diffracted light in the near-forward scattering direction is collected and Fourier-transformed by a lens, and subsequently imaged on a CCD camera. The recorded Fraunhofer diffraction pattern provides information about the projected area of the scattering particle, and can thus be used to determine the size and the shape of aerosol particles. The sensor has been tested on fibers which are of interest in the field of working environment monitoring. The recorded output intensity variation has been analysed, and the relationship between the shape and the size of each fibre, and the resulting scattering profiles has been investigated. A simple one-dimensional model for the optical feedback variation due to the light-particle interaction in the external cavity is also discussed 34 refs, 26 figs, 6 tabs

  16. Smartphone-Based Android app for Determining UVA Aerosol Optical Depth and Direct Solar Irradiances.

    Science.gov (United States)

    Igoe, Damien P; Parisi, Alfio; Carter, Brad

    2014-01-01

    This research describes the development and evaluation of the accuracy and precision of an Android app specifically designed, written and installed on a smartphone for detecting and quantifying incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies demonstrated that a smartphone image sensor can detect UVA radiation and the responsivity can be calibrated to measured direct solar irradiance. This current research provides the data collection, calibration, processing, calculations and display all on a smartphone. A very strong coefficient of determination of 0.98 was achieved when the digital response was recalibrated and compared to the Microtops sun photometer direct UVA irradiance observations. The mean percentage discrepancy for derived direct solar irradiance was only 4% and 6% for observations at 380 and 340 nm, respectively, lessening with decreasing solar zenith angle. An 8% mean percent difference discrepancy was observed when comparing aerosol optical depth, also decreasing as solar zenith angle decreases. The results indicate that a specifically designed Android app linking and using a smartphone image sensor, calendar and clock, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate both direct solar UVA irradiance and low aerosol optical depths for areas with low aerosol loads. © 2013 The American Society of Photobiology.

  17. Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011

    Directory of Open Access Journals (Sweden)

    P. Sawamura

    2014-03-01

    Full Text Available Retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations and aerosol optical properties (e.g. complex index of refraction and single scattering albedo were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.

  18. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  19. Developing and diagnosing climate change indictors of regional aerosol optical properties

    Science.gov (United States)

    Sullivan, Ryan C.; Levy, Robert C.; da Silva, Arlindo M.; Pryor, Sara C.

    2017-04-01

    The US Global Change Research Program has developed climate indicators (CIs) to track changes in the physical, chemical, biological, and societal components of the climate system. Given the importance of atmospheric aerosol particles to clouds and radiative forcing, human mortality and morbidity, and biogeochemical cycles, we propose new aerosol particle CIs applicable to the US National Climate Assessment (NCA). Here we define these aerosol CIs and use them to quantify temporal trends in each NCA region. Furthermore, we use a synoptic classification (e.g., meteorological variables), and gas and particle emissions inventories to diagnose and attribute causes of observed changes. Our CIs are derived using output from the satellite-constrained Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) reanalysis. MERRA-2 provides estimates of column-integrated aerosol optical properties at 0.625° by 0.5° resolution, including aerosol optical depth (AOD), Ångström exponent (AE), and single scattering albedo (SSA), which are related to aerosol loading, relative particle size, and chemical composition, respectively. For each NCA region, and for each aerosol variable, we derive statistics that describe mean and extreme values, as well as two metrics (spatial autocorrelation and coherence) that describe the spatial scales of aerosol variability. Consistent with previous analyses of aerosol precursor emissions and near-surface fine aerosol mass concentrations in the US, analyses of our aerosol CIs show that since 2000, both mean and extreme AOD have decreased over most NCA regions. There are significant (α = 0.05, using the non-parametric Kendall's tau) decreases in AOD for the Northeast (NE), Southeast (SE), Midwest (MW), and lower Great Plains (GPl) regions, and notable but not significant decreases in the Southwest (SW). AOD has increased for the Northwest (NW; significant) and upper Great Plains (GPu; not significant). Over all regions

  20. Continuous measurements of Arctic boundary layer aerosol physical and optical properties

    Science.gov (United States)

    Asmi, E.; Kondratyev, V.; Brus, D.; Lihavainen, H.; Laurila, T. J.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Reshetnikov, A.; Ivakhov, V.; Uttal, T.; Makshtas, A. P.

    2013-12-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded on the shore of the Arctic Ocean, in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71_360N; 128_530E) has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol particle physical and optical properties. Measurements were initiated in summer 2010 and further extended in summer 2013. Together with the FMI measurements in Pallas GAW station in northern Finland since 1999

  1. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    Science.gov (United States)

    Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory

    2011-01-01

    To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.

  2. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  3. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  4. Reconstruction of long-term aerosol optical depth series with sunshine duration records

    Science.gov (United States)

    Sanchez-Romero, A.; Sanchez-Lorenzo, A.; González, J. A.; Calbó, J.

    2016-02-01

    We report the suitability of sunshine duration (SD) records as a proxy for the reconstruction of atmospheric aerosol content, for which little information exists, especially prior to the 1980s. Specifically, we have treated cloudless summer days in 16 stations throughout Spain. For almost all sites we find statistically significant relationships between aerosol optical depth (AOD) and daily SD. The correlation coefficient presents a mean value of -0.72, and slope values of the linear regressions are within the range [-0.11, -0.36]. The relationships are used to generate AOD series back to the 1960s (to the 1920s for Madrid). These reconstructed series show an increase in AOD from the mid-1960s to the 1980s, followed by a decrease until the present, in agreement with changes in anthropogenic aerosol emissions and with opposite trends of solar irradiance. The method can be used to reconstruct AOD from the late nineteenth century at many stations worldwide.

  5. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS day/night band

    Directory of Open Access Journals (Sweden)

    R. S. Johnson

    2013-01-01

    Full Text Available A great need exists for reliable nighttime aerosol products at high spatial and temporal resolution. In this concept demonstration study, using Visible/Infrared Imager/Radiometer Suite (VIIRS Day/Night Band (DNB observations on the Suomi National Polar-orbiting Partnership (NPP satellite, a new method is proposed for retrieving nighttime aerosol optical depth (τ using the contrast between regions with and without artificial surface lights. Evaluation of the retrieved τ values against daytime AERONET data from before and after the overpass of the VIIRS satellite over the Cape Verde, Grand Forks, and Alta Floresta AERONET stations yields a coefficient of determination (r2 of 0.71. This study suggests that the VIIRS DNB has the potential to provide useful nighttime aerosol detection and property retrievals.

  6. Automated Solar Tracking Spectrophotometer for Remote Sensing of Column Aerosol Optical Depth

    Science.gov (United States)

    Rainwater, B.; Arnott, W. P.; Moosmuller, H.; Karr, D.

    2012-12-01

    Aerosols in the atmosphere are poorly understood in terms of how they affect weather and climate. In an effort to advance this knowledge, an automated solar tracking spectrophotometer has been constructed to measure direct solar radiation from the ultraviolet to infrared. This instrument facilitates determination of solar irradiance, precipitable water, aerosol optical depth (AOD), and the Ångström turbidity exponent related to aerosol size distribution. Measurements with a CIMEL CE-318 sun photometer (part of the global NASA AERONET network) and a manual solar spectrophotometer are being used to evaluate the accuracy of our instrument. Upon successful evaluation, this instrument will provide a basis for research into spectral information that will supplement CIMEL measurements. Presented is the design of this instrument and measurement comparisons with the aforementioned instruments for the air above Reno, Nevada, USA.

  7. Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics

    Science.gov (United States)

    Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth

    2012-01-01

    We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.

  8. Comparison of aerosol optical thickness retrieval from spectroradiometer measurements and from two radiative transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Utrillas, M.P.; Martinez-Lozano, J.A.; Tena, F. [Universitat de Valencia, Dept. de Termodinamica, Valencia (Spain); Cachorro, V.E. [Universidad de Valladolid, Dept. de Fisica Aplicada 1, Valladolid (Spain); Hernandez, S. [Universidad de Valladolid, Dept. de Ingenieria Agricola y Forestal, Valladolid (Spain)

    2000-07-01

    The spectral values of the aerosol optical thickness {tau}{sub a{lambda}} in the 400-670 nm band have been determined from 500 solar direct irradiance spectra at normal incidence registered at Valencia (Spain) in the period from July 1993 to March 1997. The {tau}{sub a{lambda}} values obtained from experimental measurements have been compared with the boundary layer aerosol models implemented in the radiative transfer codes ZD-LOA and LOWTRAN 7. For the ZD-LOA code, the continental and maritime models have been considered and for the LOWTRAN 7 code the rural, maritime, urban and tropospheric models have been used. The obtained results show that the aerosol model that best represents the average turbidity of the boundary layer for the urban area of Valencia (Spain) is the continental model when the ZD-LOA code is used and the urban model when the LOWTRAN 7 code is used. (Author)

  9. Four dimensional variational assimilation of in-situ and remote-sensing aerosol data

    Science.gov (United States)

    Nieradzik, L. P.; Elbern, H.

    2012-04-01

    Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents contribute to PMx, like e.g. mineral dust derived from desert storms or sea salt, it is necessary to make aerosol forecasts not only of load, but also type resolved. The method of four dimensional variational data assimilation (4Dvar) is a widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements. The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT (Boundary Layer Aerosol Optical Thickness) and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability. In this study both in-situ measured PMx as well as satellite retrieved aerosol optical thicknesses have been assimilated and the effect on forecast performance has been investigated. The source of BLAOT is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves AOT by making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot

  10. Observations of Aerosol Optical Properties over 15 AERONET Sites in Southeast Asia

    Science.gov (United States)

    Chan, J. D.; Lagrosas, N.; Uy, S. N.; Holben, B. N.; Dorado, S.; Tobias, V., Jr.; Anh, N. X.; Po-Hsiung, L.; Janjai, S.; Salinas Cortijo, S. V.; Liew, S. C.; Lim, H. S.; Lestari, P.

    2014-12-01

    Mean column-integrated optical properties from ground sun photometers of the Aerosol Robotic Network (AERONET) are studied to provide an overview of the characteristics of aerosols over the region as part of the 7 Southeast Asian Studies (7-SEAS) mission. The 15 AERONET sites with the most available level 2 data products are selected from Thailand (Chiang Mai, Mukdahan, Songkhla and Silpakorn University), Malaysia (University Sains Malaysia), Laos (Vientiane), Vietnam (Bac Giang, Bac Lieu and Nha Trang), Taiwan (National Cheng Kung University and Central Weather Bureau Taipei), Singapore, Indonesia (Bandung) and the Philippines (Manila Observatory and Notre Dame of Marbel University). For all 15 sites, high angstrom exponent values (α>1) have been observed. Chiang Mai and USM have the highest mean Angstrom exponent indicating the dominance of fine particles that can be ascribed to biomass burning and urbanization. Sites with the lowest Angstrom exponent values include Bac Lieu (α=1.047) and Manila Observatory (α=1.021). From the average lognormal size distribution curves, Songkhla and NDMU show the smallest annual variation in the fine mode region, indicating the observed fine aerosols are local to the sites. The rest of the sites show high variation which could be due to large scale forcings (e.g., monsoons and biomass burnings) that affect aerosol properties in these sites. Both high and low single scattering albedo at 440 nm (ω0440) values are found in sites located in major urban areas. Silpakorn University, Manila Observatory and Vientiane have all mean ω0440 0.94. The discrepancy in ω0 suggests different types of major emission sources present in urban areas. The absorptivity of urban aerosols can vary depending on the strength of traffic emissions, types of fuel combusted and automobile engines used, and the effect of biomass burning aerosols during the dry season. High aerosol optical depth values (τa550 > 0.4) are mainly found over inland sites

  11. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

    Science.gov (United States)

    Beegum, S. Naseema; Romdhane, Haifa Ben; Ali, Mohammed Tauha; Armstrong, Peter; Ghedira, Hosni

    2016-12-01

    The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012-July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March-May) and summer (June-September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October-November) and winter (December-February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from -13.2 Wm-2 (˜-0.96 Wm-2) in November to -39.4 Wm-2 (-11.4 Wm-2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm-2 (November) to 28.2 Wm-2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (-85.0 ± 4.1 W m-2 τ -1) followed closely by winter (-79.2 ± 7.1 W m-2 τ -1) and the lowest values during autumn season (-54 ± 4.3 W m-2 τ -1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day -1) and the lowest in November (0.17 K day -1) and the temporal

  12. Inference of Spatiotemporal Distribution of Black Carbon Aerosols over Northern Pacific from Satellite Observations (2005-2012)

    Science.gov (United States)

    Liu, J.; Li, Z.; Mauzerall, D. L.; Fan, S.; Horowitz, L. W.; He, C.; Yi, K.; Tao, S.

    2015-12-01

    Knowledge on the spatiotemporal distribution of black carbon aerosol over the Northern Pacific is limited by a deficiency of observations. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 is the most comprehensive data source available and it reveals a 2 to 10 times overestimates of BC by current global models. Incorporation and assimilation of more data sources is needed to increase our understanding of the spatiotemporal distribution of black carbon aerosol and its corresponding climate effects. Based on measurements from aircraft campaigns and satellites, a robust association is observed between BC concentrations and satellite retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.7). Such robust relationships indicate that BC aerosols share a similar emission sources, evolution processes and transport characteristics with other pollutants measured by satellite observations. It also establishes a basis to derive a satellite-based proxy (BC*) over remote oceans. The inferred satellite-based BC* shows that Asian export events in spring bring much more BC aerosols to the mid-Pacific than occurs in other seasons. In addition, inter-annual variability of BC* is seen over the Northern Pacific, with abundances correlated to the springtime Pacific/North American (PNA) index. The inferred BC* dataset also indicates a widespread overestimation of BC loadings by models over most remote oceans beyond the Pacific. Our method presents a novel approach to infer BC concentrations by combining satellite and aircraft observations.

  13. Analysis of marine aerosol optical depth retrieved from IRS-P4 OCM sensor and comparison with the aerosol derived from SeaWiFS and MODIS sensor

    Indian Academy of Sciences (India)

    A K Mishra; V K Dadhwal; C B S Dutt

    2008-07-01

    Aerosol optical depth is regularly derived from SeaWiFS and MODIS sensor and used by the scientific community in various climatic studies. In the present study an attempt has been made to retrieve the aerosol optical depth using the IRS-P4 OCM sensor data and a comparison has been carried out using few representative datasets. The results show that the IRS-P4 OCM retrieved aerosol optical depth is in good agreement with the aerosols retrieved from SeaWiFS as well as MODIS. The RMSE are found to be ± 0.0522 between OCM and SeaWIFS and ± 0.0638 between OCM and MODIS respectively. However, IRS-P4 OCM sensor retrieved aerosol optical depth is closer to SeaWiFS (correlation = 0.88, slope = 0.96 and intercept = −0.013) compared to MODIS (correlation = 0.75, slope = 0.91 and intercept = 0.0198). The mean percentage difference indicates that OCM retrieved AOD is +12% higher compared to SeaWiFS and +8% higher compared to MODIS. The mean absolute percentage between OCM derived AOD and SeaWiFS is found to be less (16%) compared to OCM and MODIS (20%).

  14. New Approaches to Derive Aerosol-Cloud Sensitivity from Global Observations

    Science.gov (United States)

    Andersen, Hendrik; Cermak, Jan; Fuchs, Julia

    2017-04-01

    This contribution presents novel satellite-based approaches to analyze interactions between aerosols and marine liquid water clouds (ACI) on a global scale. Clouds play a central role in the Earth's radiative budget by increasing the albedo but also by interacting with outgoing thermal radiation, leading to a net cooling effect. Cloud properties are determined by environmental conditions, as cloud formation requires sufficiently saturated conditions as well as condensation nuclei on which the water vapor can condense. The ways in which aerosols influence the optical, micro- and macrophysical properties of clouds as condensation nuclei are among the largest remaining uncertainties in climate research. In particular, cloud droplet size is believed to be impacted, and subsequently cloud reflectivity, lifetime, and precipitation susceptibility may be modified. Advances in the understanding of the processes that govern liquid-water cloud properties are of great importance in order to increase accuracy of climate model predictions of a changing climate. Two methods that illustrate how global satellite retrievals may be combined with reanalysis data sets to enhance knowledge on global patterns of ACI are presented: 1. A novel change-point analysis is presented to detect aerosol loadings at which cloud droplet size shows the greatest sensitivity to changes in aerosol loading. The method is applied to Terra MODIS L3 data sets; patterns of the maximum aerosol-cloud sensitivity are analyzed. Results point towards the importance of water-vapor availability as the framework in which ACI take place. 2. In a multivariate approach to analyzing ACI on a system scale, global monthly aerosol, cloud and meteorology data sets are applied in artificial neural networks (ANN). The ability of ANNs to predict global cloud patterns is demonstrated and sensitivities are subsequently derived. On this basis, the magnitude of aerosol indirect effects is compared to other determinants, pointing

  15. Role of aerosols in modulating cloud properties during active-break cycle of Indian summer monsoon

    Science.gov (United States)

    Bhattacharya, A.; Chakraborty, A.; Venugopal, V.

    2016-11-01

    In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol-cloud interaction during the active-break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration (ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation (VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model.

  16. Role of aerosols in modulating cloud properties during active-break cycle of Indian summer monsoon

    Science.gov (United States)

    Bhattacharya, A.; Chakraborty, A.; Venugopal, V.

    2017-09-01

    In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol-cloud interaction during the active-break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration ( ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation ( VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model.

  17. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma

    Science.gov (United States)

    Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y.

    2016-03-01

    Seasonal variation of aerosol optical properties and dominant aerosol types at Kunming (KM), an urban site in southwest China, is characterized. Substantial influences of the hygroscopic growth and long-range transport of biomass burning (BB) aerosols on aerosol optical properties at KM are revealed. These results are derived from a detailed analysis of (a) aerosol optical properties (e.g. aerosol optical depth (AOD), columnar water vapor (CWV), single scattering albedo (SSA) and size distribution) retrieved from sunphotometer measurements during March 2012-August 2013, (b) satellite AOD and active fire products, (c) the attenuated backscatter profiles from the space-born lidar, and (d) the back-trajectories. The mean AOD440nm and extinction Angstrom exponent (EAE440 - 870) at KM are 0.42 ± 0.32 and 1.25 ± 0.35, respectively. Seasonally, high AOD440nm (0.51 ± 0.34), low EAE440 - 870 (1.06 ± 0.34) and high CWV (4.25 ± 0.97 cm) during the wet season (May - October) contrast with their counterparts 0.17 ± 0.11, 1.40 ± 0.31 and 1.91 ± 0.37 cm during the major dry season (November-February) and 0.53 ± 0.29, 1.39 ± 0.19, and 2.66 ± 0.44 cm in the late dry season (March-April). These contrasts between wet and major dry season, together with the finding that the fine mode radius increases significantly with AOD during the wet season, suggest the importance of the aerosol hygroscopic growth in regulating the seasonal variation of aerosol properties. BB and Urban/Industrial (UI) aerosols are two major aerosol types. Back trajectory analysis shows that airflows on clean days during the major dry season are often from west of KM where the AOD is low. In contrast, air masses on polluted days are from west (in late dry season) and east (in wet season) of KM where the AOD is often large. BB air mass is found mostly originated from North Burma where BB aerosols are lifted upward to 5 km and then subsequently transported to southwest China via prevailing westerly winds.

  18. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS

    Directory of Open Access Journals (Sweden)

    D. Toledo

    2015-09-01

    Full Text Available A small and sophisticated optical depth sensor (ODS has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds. In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.

  19. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    Science.gov (United States)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2016-02-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.

  20. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China

    Science.gov (United States)

    Tan, Haobo; Liu, Li; Fan, Shaojia; Li, Fei; Yin, Yan; Cai, Mingfu; Chan, P. W.

    2016-04-01

    Aerosols contribute the largest uncertainty to the total radiative forcing estimate, and black carbon (BC) that absorbs solar radiation plays an important role in the Earth's energy budget. This study analysed the aerosol optical properties from 22 February to 18 March 2014 at the China Meteorological Administration Atmospheric Watch Network (CAWNET) station in the Pearl River Delta (PRD), China. The representative values of dry-state particle scattering coefficient (σsp), hemispheric backscattering coefficient (σhbsp), absorption coefficient (σabsp), extinction coefficient (σep), hemispheric backscattering fraction (HBF), single scattering albedo (SSA), as well as scattering Ångström exponent (α) were presented. A comparison between a polluted day and a clean day shows that the aerosol optical properties depend on particle number size distribution, weather conditions and evolution of the mixing layer. To investigate the mixing state of BC at the surface, an optical closure study of HBF between measurements and calculations based on a modified Mie model was employed for dry particles. The result shows that the mixing state of BC might be between the external mixture and the core-shell mixture. The average retrieved ratio of the externally mixed BC to the total BC mass concentration (rext-BC) was 0.58 ± 0.12, and the diurnal pattern of rext-BC can be found. Furthermore, considering that non-light-absorbing particles measured by a Volatility-Tandem Differential Mobility Analyser (V-TDMA) exist independently with core-shell and homogenously internally mixed BC particles, the calculated optical properties were just slightly different from those based on the assumption that BC exist in each particle. This would help understand the influence of the BC mixing state on aerosol optical properties and radiation budget in the PRD.

  1. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    Science.gov (United States)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  2. Estimation of Aerosol Optical Depth at Different Wavelengths by Multiple Regression Method

    Science.gov (United States)

    Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin; Holben, Brent

    2015-01-01

    This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time.

  3. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  4. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    Science.gov (United States)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; Ritter, C.; Sakai, T.; Santer, B. D.; Sato, M.; Schmidt, A.; Uchino, O.; Vernier, J. P.

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  5. Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments

    Science.gov (United States)

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2017-04-01

    Surface remote sensing of aerosol properties provides "ground truth" for satellite and model validation and is an important component of aerosol observation system. Due to the different characteristics of background aerosol variability, information obtained at different locations usually has different spatial representativeness, implying that the location should be carefully chosen so that its measurement could be extended to a greater area. In this study, we present an objective observation array design technique that automatically determines the optimal locations with the highest spatial representativeness based on the Ensemble Kalman Filter (EnKF) theory. The ensemble is constructed using aerosol optical depth (AOD) products from five satellite sensors. The optimal locations are solved sequentially by minimizing the total analysis error variance, which means that observations at these locations will reduce the background error variance to the largest extent. The location determined by the algorithm is further verified to have larger spatial representativeness than some other arbitrary location. In addition to the existing active Aerosol Robotic Network (AERONET) sites, the 40 selected optimal locations are mostly concentrated on regions with both high AOD inhomogeneity and its spatial representativeness, namely, the Sahel, South Africa, East Asia, and North Pacific Islands. These places should be the focuses of establishing future AERONET sites in order to further reduce the uncertainty in the monthly mean AOD. Observations at these locations contribute to approximately 50% of the total background uncertainty reduction.

  6. Long term measurements of the elemental composition and optical properties of aerosols in Amazonia

    Directory of Open Access Journals (Sweden)

    Arana A. A.

    2013-04-01

    Full Text Available Aerosols are being collected and analyzed for trace elements in two sites in Amazonia since January 2008. On eof the site, Manaus is located in a very pristine area in Central Amazonia. The site is nt affected directly by any urban plume for thousands of kilometers. A second site is located in Porto Velho, in a region with heavy land use change and deforestation. Optical properties (light scattering ad absorption are also being measured in order to study the climatic impact of aerosols. It was observed a clear seasonal pattern for both sites, with higher concentrations in the dry season. But the difference in seasonal concentrations observed for Porto Velho is much larger due to stronger anthropogenic influences. In Manaus during the wet season, very low concentrations of heavy metals, maybe the smallest measured in continental regions are reported. Positive Matrix Factorization (PMF was used to separate the different aerosol components. In general, for fine and coarse mode and wet and dry season, 3 aerosol components could be observed: 1 Natural biogenic aerosol; 2 biomass burning component; 3 Soil dust both locally and long range transported Sahara dust

  7. Estimation of aerosol optical depth at different wavelengths by multiple regression method.

    Science.gov (United States)

    Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin; Holben, Brent

    2016-02-01

    This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time.

  8. Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa

    Science.gov (United States)

    Fawole, Olusegun G.; Cai, Xiaoming; Levine, James G.; Pinker, Rachel T.; MacKenzie, A. R.

    2016-12-01

    The West African region, with its peculiar climate and atmospheric dynamics, is a prominent source of aerosols. Reliable and long-term in situ measurements of aerosol properties are not readily available across the region. In this study, Version 2 Level 1.5 Aerosol Robotic Network (AERONET) data were used to study the absorption and size distribution properties of aerosols from dominant sources identified by trajectory analysis. The trajectory analysis was used to define four sources of aerosols over a 10 year period. Sorting the AERONET aerosol retrievals by these putative sources, the hypothesis that there exists an optically distinct gas flaring signal was tested. Dominance of each source cluster varies with season: desert-dust (DD) and biomass burning (BB) aerosols are dominant in months prior to the West African Monsoon (WAM); urban (UB) and gas flaring (GF) aerosol are dominant during the WAM months. BB aerosol, with single scattering albedo (SSA) at 675 nm value of 0.86 ± 0.03 and GF aerosol with SSA (675 nm) value of 0.9 ± 0.07, is the most absorbing of the aerosol categories. The range of Absorption Angstr&öm Exponent (AAE) for DD, BB, UB and GF classes are 1.99 ± 0.35, 1.45 ± 0.26, 1.21 ± 0.38 and 0.98 ± 0.25, respectively, indicating different aerosol composition for each source. The AAE (440-870 nm) and Angstr&öm Exponent (AE) (440-870 nm) relationships further show the spread and overlap of the variation of these optical and microphysical properties, presumably due in part to similarity in the sources of aerosols and in part, due to mixing of air parcels from different sources en route to the measurement site.

  9. Aerosol Optical Thickness Derived From Atmospheric Transmittance Using Spectroradiometer Measurements

    Science.gov (United States)

    Hwee San, Hslim; Matjafri, M. Z.; Abdullah, Abdul K.; Chow Jeng, C. J.

    section The objective of this study was to test the feasibility of hand held spectroradiometer measurements for the retrieval AOT values Twenty-six stations were chosen randomly around Penang Island and the atmospheric transmittance measurements were collected using a handheld spectroradiometer The corresponding PM10 concentrations were measured using a portable DustTrak Aerosol Monitor 8520 simultaneously with the measurements of the transmittance data The AOT values were calculated using the Beer-Lambert-Bouguer law Linear relationship was found between AOT and PM10 values in this study Finally a PM10 map was created using Kriging interpolation technique The result of the study showed the potential of a spectroradiometer data for the retrieval of AOT and PM10 to provide the air pollution information

  10. Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China.

    Science.gov (United States)

    Che, Huizheng; Xia, Xiangao; Zhu, Jun; Wang, Hong; Wang, Yaqiang; Sun, Junying; Zhang, Xiaoye; Shi, Guangyu

    2015-01-01

    In January 2013, several serious haze pollution events happened in North China. Cimel sunphotometer measurements at an urban site of Beijing (Chinese Academy of Meteorological Sciences-CAMS) from 1 to 30 January 2013 were used to investigate the detailed variation of aerosol optical properties. It was found that Angstrom exponents were mostly larger than 0.80 when aerosol optical depth values are higher than 0.60 at the urban region of Beijing during January 2013. The aerosol optical depth (AOD) at the urban region of Beijing can remain steady at approximately 0.40 before haze happening and then increased sharply to more than 1.50 at 500 nm with the onset of haze, which suggests that the fine-mode AOD is a factor of 20 of the coarse-mode AOD during a serious haze pollution event. The single scattering albedo was approximately 0.90 ± 0.03 at 440, 675, 870 and 1,020 nm during the haze pollution period. The single scattering albedo at 440 nm as a function of the fine-mode fraction was relatively consistent, but it was highly variable at 675, 870 and 1,020 nm. Except on January 12 and 18, all the fine-mode particle volumes were larger than those of coarse particles, which suggests that fine particles from anthropogenic activities made up most of the haze. Aerosol type classification analysis showed that the dominant aerosol types can be classified as both "mixed" and "urban/industrial (U/I) and biomass burning (BB)" categories during the heavy haze period of Beijing in January of 2013. The mixed category occurrence was about 31 %, while the U/I and BB was about 69 %.

  11. Direct effect of aerosol optical properties on global dimming and brightening

    Science.gov (United States)

    Kudo, R.; Uchiyama, A.

    2011-12-01

    Surface solar radiation observed at numerous locations has decreased from the 1960s to the 1980s (Global dimming), thereafter increased (Global brightening). The dimming and brightening is considered to be due to the changes in both clouds and aerosols. Aerosols have a direct impact on the surface solar radiation by scattering and absorption. The impact is determined by three parameters: optical depth (AOD), single scattering albedo (SSA), and asymmetry factor, but the effect of asymmetry factor is rather smaller than the others. Therefore, the long-term changes in AOD and SSA are necessary to evaluate the aerosol impact on the global dimming and brightening. We have developed the method to estimate AOD and SSA from the hourly accumulated direct and diffuse irradiances measured by the ground-based broadband radiometers. In the estimation, the real part of the refractive index is fixed, and the size distribution is defined by the Junge distribution with a fixed shaping constant. Using the developed method, the measurements from 1975 to 2008 at 14 sites in Japan were analyzed. Consequently, a decrease of AOD by 0.02 and an increase of SSA by 0.2 during the period were seen. The surface solar radiation under the clear sky conditions, which was calculated from the estimated aerosol optical properties, was increased by 5% due to the changes in AOD and SSA; the influence of SSA was dominant. We also investigate the cloud impact on the surface solar radiation which was simply defined as the difference between the surface solar radiation under the cloudy sky conditions and under the clear sky conditions; the cloud impact had no statistically significant trends. The brightening in Japan may be due to the changes in aerosol optical properties, especially SSA. Our developed method can be applied to measurements at other sites around the world and would be helpful to understand the causes of the global dimming and brightening.

  12. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    Directory of Open Access Journals (Sweden)

    Boris B. Chen

    2013-01-01

    Full Text Available The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regional sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51 and the fine particle mass fraction (64%. Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.

  13. Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2015-09-01

    Full Text Available Aircraft observations of meteorological, trace gas, and aerosol properties were made during May–September 2013 in the southeastern United States (US under fair-weather, afternoon conditions with well-defined planetary boundary layer structure. Optical extinction at 532 nm was directly measured at three relative humidities and compared with extinction calculated from measurements of aerosol composition and size distribution using the κ-Köhler approximation for hygroscopic growth. Using this approach, the hygroscopicity parameter κ for the organic fraction of the aerosol must have been We present a new parameterization of the change in aerosol extinction as a function of relative humidity that better describes the observations than does the widely used power-law (gamma, γ parameterization. This new single-parameter κext formulation is based upon κ-Köhler and Mie theories and relies upon the well-known approximately linear relationship between particle volume (or mass and optical extinction (Charlson et al., 1967. The fitted parameter, κext, is nonlinearly related to the chemically derived κ parameter used in κ-Köhler theory. The values of κext we determined from airborne measurements are consistent with independent observations at a nearby ground site.

  14. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    Science.gov (United States)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    According to the IPCC report, atmospheric aerosols due to their properties -extinction of Sun and Earth radiation and participation in processes of creation of clouds, are among basic "unknowns" in climate studies. Aerosols have large effect on the radiation balance of the Earth which has a significant impact on climate changes. They are also a key issue in the case of remote sensing measurements. The optical properties of atmospheric aerosols depend not only on their type but also on physical parameters such as pressure, humidity, wind speed and direction. The wide range of properties in which atmospheric aerosols affect Earth's climate is the reason of high unrelenting interest of scientists from different disciplines such as physics, chemistry and biology. Numerous studies have dealt with aerosol optical properties, e.g. Dubovik et al. (2002), but only in a few have regarded the influence of meteorological parameters on the optical properties of aerosols in the Baltic Sea area. Studies of aerosol properties over the Baltic were conducted already in the last forty years, e.g. Zielinski T. et. al. (1999) or Zielinski T. & A. Zielinski (2002). The experiments carried out at that time involved only one measuring instrument -e.g. LIDAR (range of 1 km) measurements and they were conducted only in selected areas of the Polish coastal zone. Moreover in those publications authors did not use measurements performed on board of research vessel (R/V Oceania), which belongs to Institute of Oceanology Polish Academy of Science (IO PAN) or data received from satellite measurements. In 2011 Zdun and Rozwadowska performed an analysis of all data derived from the AERONET station on the Gotland Island. The data were divided into seasons and supplemented by meteorological factors. However, so far no comprehensive study has been carried out for the entire Baltic Sea area. This was the reason to conduct further research of SEasonal Variations of Aerosol optical depth over the Baltic

  15. Influence of low spatial resolution a priori data on tropospheric NO2 satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2011-09-01

    Full Text Available The retrieval of tropospheric columns of NO2 and other trace gases from satellite observations of backscattered solar radiation relies on the use of accurate a priori information. The spatial resolution of current space sensors is often significantly higher than that of the a priori datasets used, introducing uncertainties from spatial misrepresentation. In this study, the effect of spatial under-sampling of a priori data on the retrieval of NO2 columns was studied for a typical coastal area (around San Francisco. High-resolution (15 × 15 km2 NO2 a priori data from the WRF-Chem model in combination with high-resolution MODIS surface reflectance and aerosol data were used to investigate the uncertainty introduced by applying a priori data at typical global chemical transport model resolution. The results show that the relative uncertainties can be large (more than a factor of 2 if all a priori data used is at the coarsest resolution for individual measurements, mainly due to spatial variations in NO2 profile and surface albedo, with smaller contributions from aerosols and surface height changes. Similar sensitivities are expected for other coastal regions and localised sources such as power plants, highlighting the need for high-resolution a priori data in quantitative analysis of the spatial patterns retrieved from satellite observations of tropospheric pollution.

  16. Influence of under-sampled a priori data on tropospheric NO2 satellite retrievals

    Directory of Open Access Journals (Sweden)

    M. Trainer

    2011-03-01

    Full Text Available The retrieval of tropospheric columns of NO2 and other trace gases from satellite observations of backscattered solar radiation relies on the use of accurate a priori information. The spatial resolution of current space sensors is often significantly higher than that of the a priori datasets used, introducing uncertainties from spatial misrepresentation. In this study, the effect of spatial under-sampling of a priori data on the retrieval of NO2 columns was studied for a typical coastal area (around San Francisco. High-resolution (15 × 15 km2 NO2 a priori data from the WRF-Chem model in combination with high-resolution MODIS surface reflectance and aerosol data were used to investigate the uncertainty introduced by applying a priori data at typical global chemical transport model resolution. The results show that the relative uncertainties can be large (more than a factor of 2 for individual measurements, mainly due to spatial variations in NO2 profile and surface albedo, with smaller contributions from aerosols and surface height changes. Similar sensitivities are expected for other coastal regions and localised sources such as power plants, highlighting the need for high-resolution a priori data in quantitative analysis of the spatial patterns retrieved from satellite observations of tropospheric pollution.

  17. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  18. Gradient Correlation Method for the Stabilization of Inversion Results of Aerosol Microphysical Properties Retrieved from Profiles of Optical Data

    Directory of Open Access Journals (Sweden)

    Kolgotin Alexei

    2016-01-01

    Full Text Available Correlation relationships between aerosol microphysical parameters and optical data are investigated. The results show that surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99 for arbitrary particle size distribution. The correlation relationships that we obtained can be used as constraints in our inversion of optical lidar data. Simulation studies demonstrate a significant stabilization of aerosol microphysical data products if we apply the gradient correlation method in our traditional regularization technique.

  19. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    Science.gov (United States)

    Das, S. K.; Jayaraman, A.; Misra, A.

    2008-06-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radiuscompute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  20. Rigorous bounds on aerosol optical properties from measurement and/or model constraints

    Science.gov (United States)

    McGraw, Robert; Fierce, Laura

    2016-04-01

    Sparse-particle aerosol models are an attractive alternative to sectional and modal methods for representation of complex, generally mixed particle populations. In the quadrature method of moments (QMOM) a small set of abscissas and weights, determined from distributional moments, provides the sparse set. Linear programming (LP) yields a generalization of the QMOM that is especially convenient for sparse particle selection. In this paper we use LP to obtain rigorous, nested upper and lower bounds to aerosol optical properties in terms of a prescribed Bayesian-like sequence of model or simulated measurement constraints. Examples of such constraints include remotely-sensed light extinction at different wavelengths, modeled particulate mass, etc. Successive reduction in bound separation with each added constraint provides a quantitative measure of its contextual information content. The present study is focused on univariate populations as a first step towards development of new simulation algorithms for tracking the physical and optical properties of multivariate particle populations.

  1. Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols

    Directory of Open Access Journals (Sweden)

    C. E. Lund Myhre

    2004-06-01

    Full Text Available Refractive and absorption indices in the UV and visible region of selected aqueous organic acids relevant to tropospheric aerosols are reported. The acids investigated are the aliphatic dicarboxylic acids oxalic, malonic, tartronic, succinic and glutaric acid. In addition we report data for pyruvic, pinonic, benzoic and phthalic acid. To cover a wide range of conditions we have investigated the aqueous organic acids at different concentrations spanning from highly diluted samples to concentrations close to saturation. The density of the investigated samples is reported and a parameterisation of the absorption and refractive index that allows the calculation of the optical constants of mixed aqueous organic acids at different concentrations is presented. The single scattering albedo is calculated for two size distributions using measured and a synthetic set of optical constants. The results show that tropospheric aerosols consisting of only these organic acids and water have a pure scattering effect.

  2. Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols

    Directory of Open Access Journals (Sweden)

    C. E. Lund Myhre

    2004-01-01

    Full Text Available Refractive and absorption indices in the UV and visible region of selected aqueous organic acids relevant to tropospheric aerosols are reported. The acids investigated are the aliphatic dicarboxylic acids oxalic, malonic, tartronic, succinic and glutaric acid. In addition we report data for pyruvic, pinonic, benzoic and phthalic acid. To cover a wide range of conditions we have investigated the aqueous organic acids at different concentrations spanning from highly diluted samples to concentrations close to saturation. The density of the investigated samples is reported and a parameterisation of the absorption and refractive index that allows the calculation of the optical constants of mixed aqueous organic acids at different concentrations is presented. The single scattering albedo is calculated for two size distributions using measured and a synthetic set of optical constants. The results show that tropospheric aerosols consisting of only these organic acids and water have a pure scattering effect.

  3. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

    Indian Academy of Sciences (India)

    S Naseema Beegum; Haifa Ben Romdhane; Mohammed Tauha Ali; Peter Armstrong; Hosni Ghedira

    2016-12-01

    The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42°N, 54.61°E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012–July 2015), at Abu Dhabi located at the southwest coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurementsite indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March–May) and summer (June–September), to the abundance of fine/accumulation modeaerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October–November) and winter(December–February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from −13.2Wm⁻² (∼ −0.96 Wm⁻²) in November to −39.4 Wm⁻² (−11.4 Wm⁻²) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from +12.2 Wm⁻² (November) to 28.2 Wm⁻² (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surfaceare observed in spring (−85.0± 4.1Wm⁻²τ⁻¹) followed closely by winter (−79.2±7.1 W m⁻²τ⁻¹) and the lowest values during autumn season (−54±4.3W m⁻²τ⁻¹). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day⁻¹) and the lowest in November

  4. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    Directory of Open Access Journals (Sweden)

    Q. Yang

    2011-12-01

    Full Text Available This study assesses the ability of the recent chemistry version (v3.3 of the Weather Research and Forecasting (WRF-Chem model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS, Clouds and Earth's Radiant Energy System (CERES, and GOES-10 are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October–16 November 2008 WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter is also compared to a simulation (MET hereafter with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties, and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with

  5. Aerosol optical properties in pristine and biomass burning areas in the Amazon Basin

    Science.gov (United States)

    Artaxo, P.; Rizzo, L.; Lucca, S.; Paixao, M.; Sena, E. T.; Cirino, G.; Arana, A.

    2011-12-01

    Aerosol physical and chemical properties were measured in two sites in Amazonia. The clean site is at Central Amazonia, close to Manaus. A second sampling site is located in Porto Velho, Rondonia, an area strongly affected by biomass burning emissions. Long term measurements, from February 2008 are being carried out in these two sites. In the pristine central Amazonia, measurements were taken at the Cuieiras forest site, tower TT34, 55 Km North of Manaus under dry conditions (RHMAAP 5012 absorption photometer in series with a nephelometer (TSI 3563) was used to measure aerosol absorption and scattering, respectively. Aerosol size distributions were measure using a TSI SMPS system. Aerosol composition, and several trace gases that helps to characterize aerosol sources were also measured. In Rondonia, a sampling station was installed close to the city of Porto Velho. Similar instrumentation as in Manaus was used in Rondonia. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the dry season (Jul-Nov) as compared to the wet season (Dec-Jun). During the wet season in Manaus, aerosol scattering (450 nm) and absorption (637 nm) coefficients averaged, respectively, 14±22 and 0.9±0.8 Mm-1. Both optical coefficients were greatly increased during the dry season, averaging 58±35 Mm-1 and 4.1±3.8 Mm-1, correspondingly. Angstrom exponents for scattering were lower during the wet season (1.6±0.4) in comparison to the dry season (1.9±0.2), which is consistent with the shift from biomass burning aerosols. Single scattering albedo, calculated at 637 nm, did not show a significant seasonal variation, averaging 0.86 ± 0.06 and 0.86 ± 0.04, respectively for wet and dry season. In Rondonia, even in the wet season it was possible to observe a strong impact from anthropogenic sources

  6. Optical Properties of Boreal Region Biomass Burning Aerosols in Central Alaska and Seasonal Variation of Aerosol Optical Depth at an Arctic Coastal Site

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Sinyuk, A.; Hyer, E. J.; O'Neill, N. T.; Shaw, G. E.; VandeCastle, J. R.; Chapin, F. S.; Dubovik, O.; hide

    2010-01-01

    Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter). Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels (burning regions. Single scattering albedo (omega (sub 0); 440 nm) at the boreal forest site ranged from approximately 0.91 to 0.99 with an average of approximately 0.96 for observations in 2004 and 2005. This suggests a significant amount of smoldering combustion of woody fuels and peat/soil layers that would result in relatively low black carbon mass fractions for smoke particles. The fine mode particle volume median radius during the heavy burning years was quite large, averaging approximately 0.17 micron at AOD(440 nm) = 0.1 and increasing to approximately 0.25 micron at AOD(440 nm) = 3.0. This large particle size for biomass burning aerosols results in a greater relative scattering component of extinction and, therefore, also contributes to higher omega (sub 0). Additionally, monitoring at an Arctic Ocean coastal site (Barrow, Alaska) suggested transport of smoke to the Arctic in summer resulting in individual events with much higher AOD than that occurring during typical spring Arctic haze. However, the springtime mean AOD(500 nm) is higher during late March through late May (approximately 0.150) than during summer months (approximately 0.085) at Barrow partly due to very few days with low background AOD levels in spring compared with many days with clean background conditions in summer.

  7. Analysis of aerosol optical depth evaluation in polar regions and associated uncertainties

    Directory of Open Access Journals (Sweden)

    P. Ortiz de Galisteo

    2008-04-01

    Full Text Available Some available processing algorithms used to calculate the aerosol optical depth from radiometric measurements were tested. The aim was to evaluate the associated uncertainties in polar regions due to the data processing, in order to adjust the methodology of the calculation and illustrate the importance of these error sources. The measurements were obtained during a sun photometer campaign in Ny-Ålesund within the framework of the POLAR-AOD project.

  8. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    Science.gov (United States)

    2016-08-30

    benefits from the stable ringdown baseline stability of this pulsed UV -CRDS system that offers a laser beam in a wide wavelength range from visible to...measure wavelength-dependent single particle extinction for different types of particles and in different wavelength regions ( Visible - UV ). We found: (1...SECURITY CLASSIFICATION OF: We report a new single-aerosol particle scope using an optical trapping-cavity ringdown spectroscopy (OT-CRDS) technique

  9. Size stabilization of surface-supported liquid aerosols using tapered optical fiber coupling

    OpenAIRE

    Karadağ, Yasin; Jonas, Alexandr; Küçükkara, İbrahim; Kiraz, Alper

    2013-01-01

    We demonstrate long-term size stabilization of surface-supported liquid aerosols of salt-water. Single tapered optical fibers were used to couple the light from independent heating and probe lasers into individual microdroplets that were kept on a superhydrophobic surface in a high-humidity chamber. Size stabilization of microdroplets resulted from competition between resonant absorption of the infrared heating laser by a microdroplet whispering gallery mode and water condensation in the samp...

  10. Mixing State and Optical Properties of Biomass Burning Aerosol during the SAMBBA 2012 Campaign

    Science.gov (United States)

    Brooke, Jennifer; Brooks, Barbara; McQuaid, Jim; Osborne, Simon

    2013-04-01

    Emissions of black carbon are a global phenomenon associated with combustion activities with an estimated 40 % of global emissions from biomass burning. These emissions are typically dominated in regional hotspots, such as along the edges of the Amazon Basin, and contribute to the regional air quality and have associated health impacts as well as the global climatic impacts of this major source of black carbon as well as other radiatively active species. New airborne measurements will be presented of biomass burning emissions across the Amazon region from the South AMerican Biomass Burning Analysis (SAMBBA) campaign based at Porto Vehlo, Rondônia, Brazil in September 2012. This airborne campaign aboard the FAAM BAe-146 coincided with the seasonal peak in South American biomass burning emissions, which make up the most dominant source of atmospheric pollutants in the region at this time. SAMBBA included dedicated flights involving in-situ measurements and remote sensing of single plume studies through to multi-plume sampling of smouldering and flaming vegetation fires, regional haze sampling, and measurements of biogenic aerosol and gases across Amazonas. This presentation summarises early findings from the SAMBBA aircraft observations focusing on the relationship between biomass burning aerosol properties; size distributions, aerosol mixing state and optical properties from a suite of instruments onboard the FAAM BAe-146. The interplay of these properties influences the regional radiative balance impacting on weather and climate. The Leeds airborne VACC (Volatile Aerosol Concentration and Composition) instrument is designed to investigate the volatility properties of different aerosol species in order to determine aerosol composition; furthermore it can be used to infer the mixing state of the aerosol. Size distributions measured with the volatility system will be compared with ambient size distribution measurements this allows information on organic coating

  11. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    Directory of Open Access Journals (Sweden)

    J. Michel Flores

    2012-06-01

    Full Text Available One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS and a tandem hygroscopic DMA (differential mobility analyzer are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements.

    We found a weak linear dependence or no dependence of fRH(%RH, Dry with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1

  12. Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study

    Directory of Open Access Journals (Sweden)

    N. Ma

    2011-03-01

    Full Text Available The largest uncertainty in the estimation of radiative forcings on climate stems from atmospheric aerosols. In winter and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP. Aerosol optical properties including scattering coefficient (σsp, hemispheric back scattering coefficient (σbsp, absorption coefficient (σap, as well as single scattering albedo (ω are presented. The characteristics of diurnal and seasonal variations are analyzed together with the meteorological and satellite data. The mean values of σsp, 550 nm of the dry aerosol in winter and summer are 280 ± 253 and 379 ± 251 Mm−1, respectively. The average σap for the two periods are respectively 47 ± 38 and 43 ± 27 Mm−1. The mean values of ω are 0.83 ± 0.05 and 0.87 ± 0.05 for winter and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional polluted aerosol of the North China Plain. Pronounced diurnal cycle of σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and accumulation of local emissions during night-time. Regional transport of pollutants from southwest in the NCP is significant both in winter and summer, while high values of σsp and σap correlate with calm winds in winter, which indicating the significant contribution of local emissions. An optical closure experiment is conducted to better understand uncertainties of the measurements. Good correlations (R>0.98 are found between values measured by nephelometer and values calculated with a modified Mie model. Monte Carlo simulations show an uncertainty of about 30% for the calculations. Considering all possible uncertainties of

  13. Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study

    Directory of Open Access Journals (Sweden)

    N. Ma

    2011-06-01

    Full Text Available The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP. Aerosol optical properties, including the scattering coefficient (σsp, the hemispheric back scattering coefficient (σbsp, the absorption coefficient (σap, as well as the single scattering albedo (ω, are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm−1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm−1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of $σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R>0.98 are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well

  14. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements

    Directory of Open Access Journals (Sweden)

    F. Waquet

    2013-04-01

    Full Text Available Most of the current aerosol retrievals from passive sensors are restricted to cloud-free scenes, which strongly reduces our ability to monitor the aerosol properties at a global scale and to estimate their radiative forcing. The presence of aerosol above clouds (AAC affects the polarized light reflected by the cloud layer, as shown by the spaceborne measurements provided by the POlarization and Directionality of Earth Reflectances (POLDER instrument on the PARASOL satellite. In a previous work, a first retrieval method was developed for AAC scenes and evaluated for biomass-burning aerosols transported over stratocumulus clouds. The method was restricted to the use of observations acquired at forward scattering angles (90–120° where polarized measurements are highly sensitive to fine-mode particle scattering. Non-spherical particles in the coarse mode, such as mineral dust particles, do not much polarize light and cannot be handled with this method. In this paper, we present new developments that allow retrieving also the properties of mineral dust particles above clouds. These particles do not much polarize light but strongly reduce the polarized cloud bow generated by the liquid cloud layer beneath and observed for scattering angles around 140°. The spectral attenuation can be used to qualitatively identify the nature of the particles (i.e. accumulation mode versus coarse mode, i.e. mineral dust particles versus biomass-burning aerosols, whereas the magnitude of the attenuation is related to the optical thickness of the aerosol layer. We also use the polarized measurements acquired in the cloud bow to improve the retrieval of both the biomass-burning aerosol properties and the cloud microphysical properties. We provide accurate polarized radiance calculations for AAC scenes and evaluate the contribution of the POLDER polarization measurements for the simultaneous retrieval of the aerosol and cloud properties. We investigate various scenes

  15. Interaction of aerosol particles with a standing wave optical field

    Science.gov (United States)

    Curry, John J.

    2016-09-01

    Trajectories of spherical dielectric particles carried across an optical standing wave by a flowing medium are investigated. Trajectories are determined by a three-dimensional Monte Carlo calculation that includes drag forces, Brownian motion, and optical gradient forces. We analyze the case of polystyrene particles with radii of order 100 nm carried across a Gaussian-mode standing wave by slowly flowing air. Particles are injected into the flowing air from a small source area such as the end of a capillary tube. Different sizes are dispersed continuously in space on the opposite side of the standing wave, demonstrating a practical way to sort particles. Certain discrete values of particle size show no interaction with the optical field, independent of intensity. These particles can be sorted with exceptionally high resolution. For example, particles with radii of 275 nm can be sorted with 1 nm resolution. This sorting scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. The Monte Carlo results are in agreement with those obtained by a much simpler, and faster, fluid calculation based on effective velocities and effective diffusion coefficients, both obtained by averaging trajectories over multiple fringes of the optical field.

  16. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    Science.gov (United States)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  17. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    Science.gov (United States)

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB.

  18. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    Science.gov (United States)

    Kuang, Ye; Zhao, Chunsheng

    2016-04-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity is the dominant factor which determines the diurnal patterns of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage datasets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARF at TOA.

  19. Aerosol decadal trends – Part 1: In-situ optical measurements at GAW and IMPROVE stations

    Directory of Open Access Journals (Sweden)

    B. A. Schichtel

    2012-08-01

    Full Text Available Currently many ground-based atmospheric stations include in-situ measurements of aerosol physical and optical properties, resulting in more than 20 long-term (>10 yr aerosol measurement sites in the Northern Hemisphere and Antarctica. Most of these sites are located at remote locations and monitor the aerosol particle number concentration, wavelength-dependent light scattering, backscattering, and absorption coefficients. The existence of these multi-year datasets enables the analysis of long-term trends of these aerosol parameters of the derived light scattering Ångström exponent and backscatter fraction. Since the aerosol variables are not normally distributed, three different methods (the seasonal Mann-Kendall test associated with the Sen's slope, the generalized least squares fit associated with an autoregressive bootstrap algorithm for confidence intervals, and the least-mean square fit applied to logarithms of the data were applied to detect the long-term trends and their magnitudes for each month. To allow a comparison among measurement sites with varying length of data records, trends on the most recent 10 and 15 yr periods were calculated. No significant trends were found for the three continental European sites. Statistically significant trends were found for the two European marine sites but the signs of the trends varied with aerosol property and location. Statistically significant decreasing trends for both scattering and absorption coefficient were found for most North American stations, although positive trends were found for a few desert and high-altitude sites. No significant trends in scattering coefficient were found for the Arctic or Antarctic stations, whereas the Arctic station had a negative trend in absorption coefficient.

  20. Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Joseph; Denn, Frederick; Flynn, Connor; Hodges, Gary; Kiedron, Piotr; Koontz, Annette; Schlemmer, James; Schwartz, Stephen E.

    2010-04-13

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun’s elevation is greater than 9.25°. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  1. Climatology of aerosol optical depth in North-Central Oklahoma: 1992-2008

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Schwartz, S.; Denn, F.; Flynn, C.; Hodges, G.; Kiedron, P.; Koontz, A.; Schlemmer, J., and Schwartz, S. E

    2010-04-01

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloud-screening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun's elevation is greater than 9.25{sup o}. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  2. Assimilation of Polder aerosol optical thickness into LMD2-Inca model in order to study aerosol-climate interactions; Etude des interactions entre aerosols et climat: assimilation des observations spatiales de Polder dans LMDz-Inca

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, S.

    2004-12-15

    Aerosols influence the Earth radiative budget both through their direct (scattering and absorption of solar radiation) and indirect (impacts on cloud microphysics) effects. The anthropogenic perturbation due to aerosol emissions is of the same order of magnitude than the one due to greenhouse gases, but less well known. To improve our knowledge, we need to better know aerosol spatial and temporal distributions. Indeed, aerosol modeling still suffers from large uncertainties in sources and transport, while satellite observations are incomplete (no detection in the presence of clouds, no information on the vertical distribution or on the chemical nature). Moreover, field campaigns are localized in space and time. This study aims to reduce uncertainties in aerosol distributions, developing assimilation of satellite data into a chemical transport model. The basic idea is to combine information obtained from spatial observation (optical thickness) and modeling studies (aerosol types, vertical distribution). In this study, we assimilate data from the POLDER space-borne instrument into the LMDz-INCA model. The results show the advantage of merging information from different sources. In many regions, the method reduces uncertainties on aerosol distribution (reduction of RMS error). An application of the method to the study of aerosol impact on cloud microphysics is shown. (author)

  3. The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; SHI Guangyu; LI Shuyan; LI Wei; WANG Biao; HUANG Yanbin

    2006-01-01

    There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering albedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.

  4. Aerosol decadal trends – Part 1: In-situ optical measurements at GAW and IMPROVE stations

    Directory of Open Access Journals (Sweden)

    M. Collaud Coen

    2013-01-01

    Full Text Available Currently many ground-based atmospheric stations include in-situ measurements of aerosol physical and optical properties, resulting in more than 20 long-term (> 10 yr aerosol measurement sites in the Northern Hemisphere and Antarctica. Most of these sites are located at remote locations and monitor the aerosol particle number concentration, wavelength-dependent light scattering, backscattering, and absorption coefficients. The existence of these multi-year datasets enables the analysis of long-term trends of these aerosol parameters, and of the derived light scattering Ångström exponent and backscatter fraction. Since the aerosol variables are not normally distributed, three different methods (the seasonal Mann-Kendall test associated with the Sen's slope, the generalized least squares fit associated with an autoregressive bootstrap algorithm for confidence intervals, and the least-mean square fit applied to logarithms of the data were applied to detect the long-term trends and their magnitudes. To allow a comparison among measurement sites, trends on the most recent 10 and 15 yr periods were calculated. No significant trends were found for the three continental European sites. Statistically significant trends were found for the two European marine sites but the signs of the trends varied with aerosol property and location. Statistically significant decreasing trends for both scattering and absorption coefficients (mean slope of −2.0% yr−1 were found for most North American stations, although positive trends were found for a few desert and high-altitude sites. The difference in the timing of emission reduction policy for the Europe and US continents is a likely explanation for the decreasing trends in aerosol optical parameters found for most American sites compared to the lack of trends observed in Europe. No significant trends in scattering coefficient were found for the Arctic or Antarctic stations, whereas the Arctic station

  5. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    Science.gov (United States)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  6. Modeling nitrate aerosol distributions and its direct radiative forcing in East Asia with RAMS-CMAQ

    Institute of Scientific and Technical Information of China (English)

    Xiao Han; Meigen Zhang; Baorong Zhou

    2013-01-01

    The geographical and seasonal characteristics in nitrate aerosol and its direct radiative forcing over East Asia are analyzed by using the air quality modeling system RAMS-CMAQ coupled with an aerosol optical properties/radiative transfer module.For evaluating the model performance,nitrate ion concentration in precipitation,and mixing ratios of PM1o,and some gas precursors of aerosol during the whole year of 2007 are compared against surface observations at 17 stations located in Japan,Korea,and China,and the satellite retrieved NO2 columns.The comparison shows that the simulated values are generally in good agreement with the observed ones.Simulated monthly averaged values are mostly within a factor of 2 of the measurements at the observation stations.The distribution patterns of NO2 from simulation and satellite measurement are also similar with each other.Analysis of the distribution features of monthly and yearly averaged mass concentration and direct radiative forcing (DRF) of nitrate indicates that the nitrate aerosol could reach about 25-30% of the total aerosol mass concentration and DRF in Sichuan Basin,Southeast China,and East China where the high mass burden of all major aerosols concentrated.The high-est mass concentration and strongest DRF of nitrate could exceed 40 μg/m3 and-5 W/m2,respectively.It also indicates that other aerosol species,such as carbonaceous and mineral particles,could obviously influence the nitrate DRF for they are often internally mixed with each other.

  7. Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties

    Directory of Open Access Journals (Sweden)

    X. Ma

    2012-06-01

    Full Text Available Aerosol direct radiative forcing (DRF plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.. The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 0.05° (5600 m resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC and primary organic carbon (POC, the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2, depending on assumptions regarding the mixing state, size and density of particles.

  8. Satellite-based estimate of aerosol direct radiative effect over the South-East Atlantic

    Directory of Open Access Journals (Sweden)

    L. Costantino

    2013-09-01

    Full Text Available The net effect of aerosol Direct Radiative Forcing (DRF is the balance between the scattering effect that reflects solar radiation back to space (cooling, and the absorption that decreases the reflected sunlight (warming. The amplitude of these two effects and their balance depends on the aerosol load, its absorptivity, the cloud fraction and the respective position of aerosol and cloud layers. In this study, we use the information provided by CALIOP (CALIPSO satellite and MODIS (AQUA satellite instruments as input data to a Rapid Radiative Transfer Model (RRTM and quantify the shortwave (SW aerosol direct atmospheric forcing, over the South-East Atlantic. The combination of the passive and active measurements allows estimates of the horizontal and vertical distributions of the aerosol and cloud parameters. We use a parametrization of the Single Scattering Albedo (SSA based on the satellite-derived Angstrom coefficient. The South East Atlantic is a particular region, where bright stratocumulus clouds are often topped by absorbing smoke particles. Results from radiative transfer simulations confirm the similar amplitude of the cooling effect, due to light scattering by the aerosols, and the warming effect, due to the absorption by the same particles. Over six years of satellite retrievals, from 2005 to 2010, the South-East Atlantic all-sky SW DRF is −0.03 W m−2, with a spatial standard deviation of 8.03 W m−2. In good agreement with previous estimates, statistics show that a cloud fraction larger than 0.5 is generally associated with positive all-sky DRF. In case of cloudy-sky and aerosol located only above the cloud top, a SSA larger than 0.91 and cloud optical thickness larger than 4 can be considered as threshold values, beyond which the resulting radiative forcing becomes positive.

  9. Large differences in aerosol optical properties over the north-west Atlantic Ocean during the TCAP field campaign

    Science.gov (United States)

    Chand, D.; Berg, L. K.; Comstock, J. M.; Fast, J. D.; Flynn, C. J.; Hubbe, J. M.; Kassianov, E.; Mei, F.; Pekour, M. S.; Schmid, B.; Sedlacek, A. J., III; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2014-12-01

    Aerosol radiative forcing is an important parameter in the Earth's radiation budget and can be an important driver of atmospheric circulation and the hydrological cycle. Accurate estimation of aerosol radiative forcing requires measurement of both the extensive and intensive optical properties of aerosols. While the intensive optical properties are independent of aerosol mass or number, they are critical inputs when calculating radiative forcing with applications to climate research, satellite remote sensing and model validations. The key aerosol intensive properties that need to be evaluated include single scattering albedo (SSA), the angstrom exponent, the asymmetry parameter, the radiative forcing efficiency, and the hygroscopic scattering factor. We report here on values of these variables over the Cape Cod and nearby northwest Atlantic Ocean during the Two Column Aerosol Project (TCAP). The average SSA shows a distinct profile having higher SSA values below the top of well-mixed residual layer (RL) and lower SSA above it. Aerosol in the free troposphere (FT) were found to have less spectral dependence in their optical properties, lower back scatter fraction and higher hygroscopic growth relative to aerosols found in the RL. Analysis of individual particle composition suggests that that ratio of aged to fresh aerosol numbers in the FT is 70% higher compared to aerosols measured in the RL, and that smoke from biomass burning contributed ~10% to this number. Single particle analysis also reveals that the fraction and variability of coated black carbon (BC) aerosol is higher in the FT relative to that measured in the residual layer. The daily radiative forcing efficiency of these aerosols in the FT is factor 2 higher than below RL. Seven years (2007-2013) of CALIPSO satellite observations show that the mean altitude of the top of smoke layers (~3.3 km) consistent with these in situ observations from TCAP. Overall, the long term CALIPSO observations characterizes

  10. Spatio-temporal variability of aerosols over East China inferred by merged visibility-GEOS-Chem aerosol optical depth

    Science.gov (United States)

    Lin, Jintai; Li, Jing

    2016-05-01

    Long-term visibility measurements offer useful information for aerosol and climate change studies. Recently, a new technique to converting visibility measurements to aerosol optical depth (AOD) has been developed on a station-to-station basis (Lin et al., 2014). However, factors such as human observation differences and local meteorological conditions often impair the spatial consistency of the visibility converted AOD dataset. Here we further adopt AOD spatial information from a chemical transport model GEOS-Chem, and merge visibility inferred and modeled early-afternoon AOD over East China on a 0.667° long. × 0.5° lat. grid for 2005-2012. Comparisons with MODIS/Aqua retrieved AOD and subsequent spectral decomposition analyses show that the merged dataset successfully corrects the low bias in the model while preserving its spatial pattern, resulting in very good agreement with MODIS in both magnitude and spatio-temporal variability. The low bias is reduced from 0.10 in GEOS-Chem AOD to 0.04 in the merged data averaged over East China, and the correlation in the seasonal and interannual variability between MODIS and merged AOD is well above 0.75 for most regions. Comparisons between the merged and AERONET data also show an overall small bias and high correlation. The merged dataset reveals four major pollution hot spots in China, including the North China Plain, the Yangtze River Delta, the Pearl River Delta and the Sichuan Basin, consistent with previous works. AOD peaks in spring-summer over the North China Plain and Yangtze River Delta and in spring over the Pearl River Delta, with no distinct seasonal cycle over the Sichuan Basin. The merged AOD has the largest difference from MODIS over the Sichuan Basin. We also discuss possible benefits of visibility based AOD data that correct the sampling bias in MODIS retrievals related to cloud-free sampling and misclassified heavy haze conditions.

  11. Aerosol optical properties in ultraviolet ranges and respiratory diseases in Thailand

    Science.gov (United States)

    Kumharn, Wilawan; Hanprasert, Kasarin

    2016-10-01

    This study investigated the values of Angstrom parameters (α,β) in ultraviolet (UV) ranges by using AERONET Aerosol Optical Depth (AOD) data. A second-order polynomial was applied to the AERONET data in order to extrapolate to 320 nm from 2003 to 2013 at seven sites in Thailand. The α,β were derived by applying the Volz Method (VM) and Linear Method (LM) at 320-380 nm at seven monitoring sites in Thailand. Aerosol particles were categorized in both coarse and fine modes, depending on regions. Aerosol loadings were related to dry weather, forest fires, sea salt and most importantly, biomass burning in the North, and South of Thailand. Aerosol particles in the Central region contain coarse and fine modes, mainly emitted from vehicles. The β values obtained were associated with turbid and very turbid skies in Northern and Central regions except Bangkok, while β results are associated with clean skies in South. Higher values of the β at all sites were found in the winter and summer compared with the rainy season, in contrast to South where the highest AOD was observed in June. The β values were likely to increase during 2003-2013. These values correlate with worsening health situations as evident from increasing respiratory diseases reported.

  12. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    Science.gov (United States)

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  13. Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties

    Directory of Open Access Journals (Sweden)

    Tymon Zielinski

    2016-01-01

    Full Text Available In this paper the authors discuss the changes of aerosol optical depth (AOD in the region of eastern Europe and the Baltic Sea due to wild fire episodes which occurred in the area of Belarus and Ukraine in 2002. The authors discuss how the biomass burning aerosols were advected over the Baltic area and changed the composition of aerosol ensemble for a period of several summer weeks. The air pressure situation and slow wind speeds also facilitated the development of such conditions. As a consequence very high AOD levels were recorded, by an order of 3–4 higher versus normal conditions and they significantly increased the annual averages. On particular days of August 2002 the AOD values reached a level of over 0.7. On these days fine particles fully dominated the entire ensemble of aerosol particles. They were either sulfates or smoke particles. Such situation was unique over a period of many years and it had its serious consequences for the region and especially for the Baltic Sea.

  14. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.

    Science.gov (United States)

    He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut

    2016-12-26

    There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

  15. Where does the optically detectable aerosol in the European Arctic come from?

    Directory of Open Access Journals (Sweden)

    Maria Stock

    2014-03-01

    Full Text Available In this paper, we pose the question where the source regions of the aerosol, which occurs in the European Arctic, are located. Long-term aerosol optical depth (AOD data from Ny-Ålesund and Sodankylä as well as short-term data from a campaign on a Russian drifting station were analysed by air backtrajectories, analysis of the general circulation pattern and a correlation to chemical composition from in-situ measurements. Surprisingly, our data clearly shows that direct transport of pollutants from Europe does not play an important role. Instead, Arctic haze in Ny-Ålesund has been found for air masses from the Eastern Arctic, while events with increased AOD but chemically more diverse composition have been found for air from Siberia or the central Arctic. Moreover, the AOD in Ny-Ålesund does not depend on the North Atlantic Oscillation (NAO. Hence, either the pollution pathways of aerosol are more complex or aerosol is significantly altered by clouds.

  16. Multiple regression method to determine aerosol optical depth in atmospheric column in Penang, Malaysia

    Science.gov (United States)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Zubir Matjafri, M.; Holben, B.

    2014-02-01

    Aerosol optical depth (AOD) from AERONET data has a very fine resolution but air pollution index (API), visibility and relative humidity from the ground truth measurements are coarse. To obtain the local AOD in the atmosphere, the relationship between these three parameters was determined using multiple regression analysis. The data of southwest monsoon period (August to September, 2012) taken in Penang, Malaysia, was used to establish a quantitative relationship in which the AOD is modeled as a function of API, relative humidity, and visibility. The highest correlated model was used to predict AOD values during southwest monsoon period. When aerosol is not uniformly distributed in the atmosphere then the predicted AOD can be highly deviated from the measured values. Therefore these deviated data can be removed by comparing between the predicted AOD values and the actual AERONET data which help to investigate whether the non uniform source of the aerosol is from the ground surface or from higher altitude level. This model can accurately predict AOD if only the aerosol is uniformly distributed in the atmosphere. However, further study is needed to determine this model is suitable to use for AOD predicting not only in Penang, but also other state in Malaysia or even global.

  17. Retrieval of aerosol optical depth for Chongqing using the HJ-1 satellite data

    Science.gov (United States)

    Wang, Zengwu; Yang, Shiqi; Zeng, Qiaolin; Wang, Yongqian

    2017-06-01

    Aerosol optical depth (AOD) is a common indicator applied in monitoring aerosols in the atmosphere. The hilly landscape and rapid economic growth of the megacity Chongqing have facilitated increased aerosol concentration, and it is meaningful to accurately retrieve AOD over Chongqing. The HJ-1A/B satellite of China carries a sensor/camera called the Charge Coupled Device (CCD), the spatial resolution of which meets the requirement for retrieving high resolution AOD. In this paper, analysis of the AOD retrievals from different methods using the HJ-1 satellite data revealed the most suitable algorithm. Through comparison with the AOD product of Moderate Resolution Imaging Spectroradiometer (MODIS), the AOD retrieval results using enhanced vegetation index (EVI) to estimate dark pixels showed the highest correlation. The continental aerosol model was used to build a lookup table that was able to facilitate a good AOD retrieval for both city and rural areas. Finally, the algorithm that combined dark pixels, buffer areas, and the deep blue algorithm was found to be most suitable for AOD retrieval. The AOD retrieval results based on the HJ-1 data were consistent with MODIS products, and our algorithm yields reasonable results in most cases. The results were also compared with ground-based PM10 measurements synchronized with the overpass time of the HJ-1 satellite, and high correlation was found. The findings are relevant to other Chinese satellite data used for retrieving AOD on the same channels.

  18. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    Science.gov (United States)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are

  19. Modeling South America regional smoke plume: aerosol optical depth variability and shortwave surface forcing

    Science.gov (United States)

    Rosário, N. E.; Longo, K. M.; Freitas, S. R.; Yamasoe, M. A.; Fonseca, R. M.

    2012-07-01

    Intra-seasonal variability of smoke aerosol optical depth (AOD) and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS). Measurements of AOD from the AErosol RObotic NETwork (AERONET) and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET) were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon Basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon Basin the model systematically underestimated AOD. This is likely due to the cloudy nature of the region, preventing accurate detection of the fire spots used in the emission model. Moreover, measured AOD were very often close to background conditions and emissions other than smoke were not considered in the simulation. Therefore, under the background scenario, one would expect the model to underestimate AOD. The issue of high aerosol loading events in the southern part of the Amazon and cerrado is also discussed in the context of emission shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable. Thus, lower quality data were used. Root-mean-square-error (RMSE) between the model and observations decreased from 0.48 to 0.17 when extreme AOD events (AOD550 nm ≥ 1.0) and Cuiabá were excluded from analysis. Downward surface solar irradiance comparisons also followed similar trends when extremes AOD were excluded. This highlights the need to improve the modelling of the regional smoke plume in order to enhance the accuracy of the radiative energy budget. Aerosol optical model based on the mean intensive properties of smoke from the southern part of the

  20. Aerosol optical depth in a western Mediterranean site: An assessment of different methods

    Science.gov (United States)

    Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.; Michalsky, J.

    2016-06-01

    Column aerosol optical properties were derived from multifilter rotating shadowing radiometer (MFRSR) observations carried out at Girona (northeast Spain) from June 2012 to June 2014. We used a technique that allows estimating simultaneously aerosol optical depth (AOD) and Ångström exponent (AE) at high time-resolution. For the period studied, mean AOD at 500 nm was 0.14, with a noticeable seasonal pattern, i.e. maximum in summer and minimum in winter. Mean AE from 500 to 870 nm was 1.2 with a strong day-to-day variation and slightly higher values in summer. So, the summer increase in AOD seems to be linked with an enhancement in the number of fine particles. A radiative closure experiment, using the SMARTS2 model, was performed to confirm that the MFRSR-retrieved aerosol optical properties appropriately represent the continuously varying atmospheric conditions in Girona. Thus, the calculated broadband values of the direct flux show a mean absolute difference of less than 5.9 W m- 2 (0.77%) and R = 0.99 when compared to the observed fluxes. The sensitivity of the achieved closure to uncertainties in AOD and AE was also examined. We use this MFRSR-based dataset as a reference for other ground-based and satellite measurements that might be used to assess the aerosol properties at this site. First, we used observations obtained from a 100 km away AERONET station; despite a general similar behavior when compared with the in-situ MFRSR observations, certain discrepancies for AOD estimates in the different channels (R < 0.84 and slope < 1) appear. Second, AOD products from MISR and MODIS satellite observations were compared with our ground-based retrievals. Reasonable agreements are found for the MISR product (R = 0.92), with somewhat poorer agreement for the MODIS product (R = 0.70). Finally, we apply all these methods to study in detail the aerosol properties during two singular aerosol events related to a forest fire and a desert dust intrusion.

  1. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  2. Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Directory of Open Access Journals (Sweden)

    R. Adam de Villiers

    2009-12-01

    Full Text Available Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm including depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions. Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient, depolarisation and color ratio in aerosol layers along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Above Asia, CALIPSO data indicate more depolarisation (up to 15% and largest color ratio (>0.5 for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust, while low depolarisation together with smaller and quasi constant color ratio (≈0.3 are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarisation ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European plume has shown aerosol optical properties intermediate between the two Asian sources with color ratio never exceeding 0.4 and moderate depolarisation ratio being always less than 8%, i.e. less aerosol from the accumulation mode.

  3. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie-Raman lidar system

    Science.gov (United States)

    Hara, Yukari; Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Pan, Xiaole; Kobayashi, Hiroshi; Osada, Kazuo; Uno, Itsushi

    2017-02-01

    Mixing state of aerosols and optical properties including lidar ratio, particle depolarization ratio, and Ångström exponent were investigated at Fukuoka in western Japan using a multi-wavelength Mie-Raman lidar (MMRL), various aerosol mass-concentration measurements, and a polarization optical particle counter during Winter-Spring 2015. Aerosol extinction coefficient, backscatter coefficient, and depolarization at 355 and 532 nm and attenuated backscatter coefficient at 1064 nm are obtained from the MMRL measurements. Ten aerosol episodes were classified into three categories (air pollution, mineral dust, and marine aerosol) based on aerosol mass-concentration measurements in the fine-mode (particle diameter Dplidar ratio for air pollution was 57±4 sr at 355 nm and 53±8 sr at 532 nm with Ångström exponent of 1.4±0.5. For mineral dust, a slightly high averaged lidar ratio (50±7 sr at 355 nm and 54±9 sr at 532 nm) was obtained with relatively high Ångström exponent of 0.8±0.3 owing to contributions from fine-mode particles (PMf). The mean particle depolarization ratios of 13±8% at 355 nm and 16±6% at 532 nm also suggest mixing of mineral dust and anthropogenic fine-mode aerosols. The lowest lidar ratio was obtained for marine case. Classification of aerosol types using the lidar ratio and particle depolarization ratio was conducted based on the results obtained in this study. The classified aerosol types almost corresponded to aerosol category obtained by previous studies. We found no remarkable correlation between the fraction of black carbon and the lidar ratio: this might be due to the complexity of the mixing state among various aerosols. The obtained lidar ratio was rather correlated with the ratio of PMf to PM10, representing the mixing state of fine- and coarse-mode particles.

  4. Optical and microphysical properties of column-integrated aerosols at a SKYNET site downwind of Seoul, Korea

    Science.gov (United States)

    Choi, Y.; Park, J. S.; Ghim, Y. S.

    2014-12-01

    A skyradiometer (POM-02, Prede Co. Ltd.) has been operated to investigate aerosol properties at a SKYNET (SKYradiometer NETwork) site, YGN (Yongin) for six years starting from November 2008. The site is at the rooftop of a five-story building on the hill, about 35 km southeast of downtown Seoul (37.34 °N, 127.27 °E and 167 m above sea level). POM-02 measures the diffuse radiation at six minute intervals at 11 wavelengths. Using version 5 of the skyrad.pack, aerosol optical (aerosol optical depth and single scattering albedo) and microphysical (volume size distribution) properties were retrieved from the measurements at five wavelengths such as 400, 500, 675, 870 and 1020 nm. In comparison with CIMEL sun photometers used in AERONET (AErosol RObotic NETwork), another worldwide ground-based network, skyradiometers have an advantage that they can provide larger number of aerosol property data at shorter time intervals. However, standard procedures for instrument operation and data retrieval have not been established. In this study, we first showed how we calibrated the instrument and how we obtained cloud screened and quality assured data. Next, we presented variations in aerosol optical and microphysical properties, depending on air masses and/or meteorological conditions, and examined the characteristic of high aerosol loading episodes including Asian dust storm and smog.

  5. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    Science.gov (United States)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  6. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  7. A new operational EUMETSAT product for the retrieval of aerosol optical properties over land (PMAp v2)

    Science.gov (United States)

    Grzegorski, Michael; Munro, Rosemary; Poli, Gabriele; Holdak, Andriy; Lang, Ruediger

    2016-04-01

    The retrieval of aerosol optical properties is an important task to provide data for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolution for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) has been delivered as an operational GOME product to our customers. The algorithm retrieves aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The product is now extended to pixels over land using a new release of the operational PMAp processor (PMAp v2). The pre-operational data dissemination of the new PMAp v2 data to our users is scheduled for March 2016. This presentation gives an overview on the new operational product PMAp v2 with a focus on the validation of the PMAp aerosol optical depth over land. The impact of different error sources on the results (e.g. surface contribution to the TOA reflectance) is discussed. We also show first results of upcoming extensions of our PMAp processor, in particular the improvement of the cloud/aerosol discrimination of thick aerosol events (e.g. volcanic ash plumes, desert dust outbreaks).

  8. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  9. Single Particle Extinction and Scattering allows novel optical characterization of aerosols

    Science.gov (United States)

    Mariani, Federico; Bernardoni, Vera; Riccobono, Francesco; Vecchi, Roberta; Valli, Gianluigi; Sanvito, Tiziano; Paroli, Bruno; Pullia, Alberto; Potenza, Marco A. C.

    2017-08-01

    We apply to aerosols the optical method of Single Particle Extinction and Scattering recently proposed for characterizing liquid suspensions and specifically adapted to the aim. It provides simultaneous measurements of the real and imaginary parts of the field scattered in the forward direction by single airborne particles passing through a tightly focused laser beam. The intensity of transmitted light is collected in the forward direction, thus realizing a self-reference interferometric scheme relying on the fundamentals of the optical theorem. A high frequency (20 MS/s), extended dynamics (12 bits) sampling is performed by a cheap segmented photodiode, and a specific pulse shape analysis is exploited to validate the signals against a precise mathematical model. We show that accessing two independent physical quantities allows to exploit physical models to recover the aerosol size distribution from the measurement of the refractive index, either real or even complex. Laboratory measurements have been performed with polydisperse aerosols made of water droplets and NaCl in the submicron range, and the system has been accurately characterized. Examples of measurements of graphite nanoparticles and Pyrethrum smoke are shown. Limitations are discussed.

  10. Estimation of Optical Properties for HULIS Aerosols at Anmyeon Island, Korea

    Directory of Open Access Journals (Sweden)

    Ji Yi Lee

    2017-07-01

    Full Text Available In this study, the sensitivity of the optical properties of carbonaceous aerosols, especially humic-like substances (HULIS, are investigated based on a one-year measurement of ambient fine atmospheric particulate matter (PM2.5 at a Global Atmospheric Watch (GAW station in South Korea. The extinction, absorption coefficient, and radiative forcing (RF are calculated from the analysis data of water soluble (WSOC and insoluble (WISOC organic aerosols, elemental carbon (EC, and HULIS. The sensitivity of the optical properties on the variations of refractive index, hygroscopicity, and light absorption properties of HULIS as well as the polydispersity of organic aerosols are studied. The results showed that the seasonal absorption coefficient of HULIS varied from 0.09 to 11.64 Mm−1 and EC varied from 0.11 to 3.04 Mm−1 if the geometric mean diameter varied from 0.1 to 1.0 µm and the geometric standard deviation varied from 1.1 to 2.0, with the imaginary refractive index (IRI of HULIS varying from 0.006 to 0.3. Subsequently, this study shows that the RF of HULIS was larger than other constituents, which suggested that HULIS contributed significantly to radiative forcing.

  11. Influence of 3D Radiative Effects on Satellite Retrievals of Cloud Properties

    Science.gov (United States)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    When cloud properties are retrieved from satellite observations, the calculations apply 1D theory to the 3D world: they only consider vertical structures and ignore horizontal cloud variability. This presentation discusses how big the resulting errors can be in the operational retrievals of cloud optical thickness. A new technique was developed to estimate the magnitude of potential errors by analyzing the spatial patterns of visible and infrared images. The proposed technique was used to set error bars for optical depths retrieved from new MODIS measurements. Initial results indicate that the 1 km resolution retrievals are subject to abundant uncertainties. Averaging over 50 by 50 km areas reduces the errors, but does not remove them completely; even in the relatively simple case of high sun (30 degree zenith angle), about a fifth of the examined areas had biases larger than ten percent. As expected, errors increase substantially for more oblique illumination.

  12. Data assimilation of satellite retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS

    Directory of Open Access Journals (Sweden)

    A. Inness

    2015-02-01

    Full Text Available Daily global analyses and 5 day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC project using an extended version of the Integrated Forecasting System (IFS of the European Centre for Medium-Range Weather Forecasts (ECMWF. IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS with respect to reactive gases and validates analysis fields of ozone (O3, carbon monoxide (CO, and nitrogen dioxide (NO2 for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of MOPITT CO columns is seen in the lower troposphere of the Northern Hemisphere (NH Extratropics during winter, and during the South African biomass burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of OMI tropospheric NO2 columns is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to the previous "coupled" model system of MACC.

  13. Combining data from lidar and in situ instruments to characterize the vertical structure of aerosol optical properties

    Science.gov (United States)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Browell, E. V.; Grant, W. B.

    1998-01-01

    Over the last decade, the quantification of tropospheric aerosol abundance, composition and radiative impacts has become an important research endeavor. For the most part, the interest in tropospheric aerosols is derived from questions related to the global and local (instantaneous) radiative forcing of climate due to these aerosols. One approach is to study local forcing under well-defined conditions, and to extrapolate such results to global scales. To estimate local aerosol forcing, appropriate radiative transfer models can be employed (e.g., the Fu-Liou radiative transfer code, [Fu and Liou, 1993]). In general, such models require information on derived aerosol properties [Toon, 1994]; namely the aerosol optical depth, single-scattering albedo, and asymmetry factor (phase function), all of which appear in the equations of radiative transfer. In this paper, we report on a method that utilizes lidar data and in situ aerosol size distribution measurements to deduce the vertical structure of the aerosol complex index of refraction in the near IR, thus identifying the aerosol type. Together with aerosol size distributions obtained in situ, the aerosol refractive index can be used to calculate the necessary derived aerosol properties. The data analyzed here were collected during NASA's PEM West-B (Pacific Exploratory Mission) experiment, which took place in February/March 1994. The platform for the measurements was the NASA DC-8 aircraft. The primary goal of the PEM West missions [Browell et al., 1996] was the assessment of potential anthropogenic perturbations of the chemistry in the Pacific Basin troposphere. For this purpose the timing of PEM West-B corresponded to the seasonal peak in transport from the Asian continent into the Pacific basin [Merrill et al., in press]. This period normally occurs during Northern Hemisphere spring, when the Japan jet is well developed.

  14. Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB)

    Science.gov (United States)

    Mishra, Amit Kumar; Shibata, Takashi

    2012-09-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). The present study deals with the spatial variability including the vertical structure of optical and microphysical properties of aerosols, during the crop residue burning season (October and November) of 2009 over the IGB. Increased number of fire counts observed by MODIS (MODerate resolution Imaging Spectroradiometer) that is associated with high aerosol optical depth (MODIS-AOD > 0.7) and enhanced tropospheric columnar NO2 concentrations observed by OMI (Ozone Monitoring Instrument), suggests agriculture crop residue burning as a main source of aerosol loading over the IGB during October and November. PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) observations show an increase in fine mode AOD (at 865 nm) from October (0.1-0.2) to November (0.2-0.3) over the IGB, which is well corroborated with MODIS observations. CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) data shows the elevated aerosol plume (4.0-4.5 km) over the north-west IGB (associated with burning activities) that could have been caused by positive buoyancy through pyro-convection. However, large concentrations of aerosol were found below 1.0 km altitude. The averaged vertical structure of crop residue burning aerosols shows an exponential decrease with altitude (mean scale height ˜1.44 ± 0.20 km). Aerosol optical and microphysical properties coupled with backward air trajectories analyses at Kanpur indicated regional transport of biomass burning aerosols in a downwind direction from north-west IGB to south-east IGB. Aerosol classification, using AERONET (AErosol RObotic NETwork)-derived absorption properties coupled with size parameter (2006-2010) showed clear seasonal dependency of aerosol types which revealed the presence of biomass burning aerosols only during the crop

  15. Contribution of long-range transported aerosols to aerosol optical and physical properties: 3-year measurements at Gosan, Korea

    Science.gov (United States)

    Heo, J.; Kim, S. W.; Kim, J. H.; Ogren, J. A.; Yoon, S. C.

    2015-12-01

    Recently, more attentions have been paid to air quality in East Asia due to the enhanced loading of atmospheric pollutants related to rapid industrialization. Gosan Climate Observatory (GCO), Korea is regarded as an ideal site to study the transport of atmospheric pollutants because it is frequently influenced by various airmasses from China, Korea, Japan and Pacific Ocean. In order to understand aerosol optical and physical properties according to airmass transport routes, three-year (2012-2014) continuous measurements of aerosol scattering/absorption coefficient and number size distribution were analyzed, together with 48-hour backward trajectory calculations. The averaged aerosol absorption (σa) and scattering coefficient (σs) for airmasses transported from North China (NC; 36% of all trajectories) were 6.65 Mm-1 and 94.72 Mm-1 at 550 nm wavelength, respectively, which were similar to those for stagnant airmasses (ST; 22% of all trajectories; σa: 6.26 Mm-1, σs: 93.99 Mm-1). The highest values of σa (7.03 Mm-1) and σs (108.34 Mm-1) were observed when airmasses were traveled from South China (SC; 11% of all trajectories). σa and σs for airmasses from Korean Peninsula (KP; 7% of all trajectories) and Pacific Ocean (PO; 14% of all trajectories; in parenthesis) were 5.63 (2.76) Mm-1 and 73.63 (50.93) Mm-1, respectively. Compared to other airmasses, the higher values of Scattering Angstrom Exponent (SAE) for ST (1.65) is thought to be the build-up of anthropogenic fine particulate pollutants. The Absorption Angstrom Exponent (AAE) was estimated to be 1.32 for NC airmass and 1.02 for SC airmass. Over the study period, 130 days of total 557 days were identified as new particle formation and growth event (NPF) from Scanning Mobility Particle Sizer (SMPS) measurements by Cyclostationary Empirical Orthogonal Function (CSEOF) approach. Especially, 55.4% (72 days) of total 130 NPF days were found when a cold and dry airmass comes from NC after passing the frontal

  16. Identification of columnar aerosol types under high aerosol optical depth conditions for a single AERONET site in Korea

    Science.gov (United States)

    Choi, Yongjoo; Ghim, Young Sung; Holben, B. N.

    2016-02-01

    Dominant aerosol types were classified using level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET) site in Korea for the period 1999-2007. The aerosol types were mineral dust (MD), MD mixed with carbon, and black carbon mixed coarse particles (BCCP) for coarse mode aerosols, black carbon (BC), organic carbon (OC), and secondary inorganic ions (SII) for fine mode aerosols, and mixed particles between. The classification was carried out using a clustering method based on parameters, including single scattering albedo (SSA), absorption Angstrom exponent (AAE), and fine mode volume fraction (FMVF). Among the seven aerosol types, MD was distinct, with the highest AAE and a very low FMVF and SII with the highest SSA and FMVF. BCCP was introduced to designate coarse particles mixed with BC, of which the AAE was lower than 1, despite a low FMVF. In addition to a large difference in AAE between BC and OC, the SSA of OC was larger than that of BC, indicating the effects of the white smoke produced from the smoldering phase of biomass burning. Monthly variations of the aerosol types were well interpreted by meteorology and emissions and coincided with those in the previous studies. Applying our results to well-characterized global AERONET sites, we confirmed that the aerosol types at Anmyon were valid at other sites. However, the results also showed that the mean properties for aerosol types were influenced by the specific aerosols prevalent at the study sites.

  17. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012

    Science.gov (United States)

    Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans

    2016-11-01

    Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and

  18. Comparing mesoscale chemistry-transport model and remote-sensed Aerosol Optical Depth

    CERN Document Server

    Carnevale, C; Pisoni, E; Volta, M

    2010-01-01

    A comparison of modeled and observed Aerosol Optical Depth (AOD) is presented. 3D Eulerian multiphase chemistry-transport model TCAM is employed for simulating AOD at mesoscale. MODIS satellite sensor and AERONET photometer AOD are used for comparing spatial patterns and temporal timeseries. TCAM simulations for year 2004 over a domain containing Po-Valley and nearly whole Northern Italy are employed. For the computation of AOD, a configuration of external mixing of the chemical species is considered. Furthermore, a parametrization of the effect of moisture affecting both aerosol size and composition is used. An analysis of the contributions of the granulometric classes to the extinction coefficient reveals the dominant role of the inorganic compounds of submicron size. For the analysis of spatial patterns, summer and winter case study are considered. TCAM AOD reproduces spatial patterns similar to those retrieved from space, but AOD values are generally smaller by an order of magnitude. However, accounting a...

  19. Significant overestimation of global aerosol optical thickness by MODIS over land

    Institute of Scientific and Technical Information of China (English)

    XIA Xiang'ao

    2006-01-01

    Global aerosol optical thickness (AOT)data over land obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) are evaluated through comparisons with AOT data retrieved by Aerosol Robotic Network (AERONET). In general,MODIS overestimates AOT except at a few AERONET sites in Africa and eastern Asia. MODIS/AOTs are, on average, larger than AERONET/AOTs by 0.041 and 0.090 at 470 nm and 660 nm, respectively. The AOT bias at 660 nm is significantly correlated to the surface reflectance at 2130 nm. Both facts suggest that the underestimation of the surface reflectance is the principal reason for this bias at 660 nm. To use the MODIS/AOT at 470 nm is strongly recommended because it is much more reliable than the AOT at 660 nm.

  20. Retrieval of the aerosol optical thickness from UV global irradiance measurements

    Science.gov (United States)

    Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.

    2015-12-01

    The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.

  1. Impact of wet scavenging of natural and anthropogenic aerosol components on the columnar aerosol optical depth over a tropical rural atmosphere

    Science.gov (United States)

    Chatterjee, Abhijit; Jayaraman, Achuthan

    A typical feature of Indian monsoon is that, several dry days are observed even between the rain events. Atmospheric aerosol shows significant variations in their concentration between "before" and "after" the rain because of their efficient scavenging during the rain. The below cloud scavenging of several aerosol components during the rain has a direct impact on the columnar aerosol optical depth (AOD) between "before" and "after" the rain. In order to investigate the impact of the scavenging of several natural and anthropogenic aerosol components on spectral properties of aerosol, simultaneous studies on the characterization of aerosol, rainwater and AOD were done during July-December 2009 over a tropical rural atmosphere at Gadanki (13.5 0N, 79.2 0E) in southern peninsular India. Aerosols were collected and analyzed before, during and after the rain along with the collection and analysis of rainwater in several rain events during the entire study period. AOD data (at wavelengths of 400, 500, 675, 870, 1020 nm) was retrieved by processing the data obtained from an automatic sunphotomer (PREDE, PM 01) using the standard SKYRAD pack. Aerosols and rainwater samples were analyzed for water soluble ionic species using an Ion Chromatograph (Metrohm, 861). We observed that aerosols were highly loaded in the atmosphere just before the rain, efficiently scavenged during the rain and built-up slowly after the rain. Interestingly, the loading of sulphate aerosol after the rain was remarkably high whereas that of calcium and magnesium were remarkably low. The poor resuspension of soil dust from the wet soils after the rain could not allow calcium and magnesium to be loaded in the atmosphere whereas the high relative humidity favored the gas-to-particle conversion of SO2 to SO42-which allowed the high loading of sulphate aerosol in the atmosphere. Significant reductions in AOD both at lower (400 nm) and higher wavelength (1020 nm) were observed after the rain events. Two

  2. Remote Marine Aerosol: A Characterization of Physical, Chemical and Optical Properties and their Relation to Radiative Transfer in the Troposphere

    Science.gov (United States)

    Clarke, Antony D.; Porter, John N.

    1997-01-01

    Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).

  3. Comparative Assessment of Satellite-Retrieved Surface Net Radiation: An Examination on CERES and SRB Datasets in China

    Directory of Open Access Journals (Sweden)

    Xin Pan

    2015-04-01

    Full Text Available Surface net radiation plays an important role in land–atmosphere interactions. The net radiation can be retrieved from satellite radiative products, yet its accuracy needs comprehensive assessment. This study evaluates monthly surface net radiation generated from the Clouds and the Earth’s Radiant Energy System (CERES and the Surface Radiation Budget project (SRB products, respectively, with quality-controlled radiation data from 50 meteorological stations in China for the period from March 2000 to December 2007. Our results show that surface net radiation is generally overestimated for CERES (SRB, with a bias of 26.52 W/m2 (18.57 W/m2 and a root mean square error of 34.58 W/m2 (29.49 W/m2. Spatially, the satellite-retrieved monthly mean of surface net radiation has relatively small errors for both CERES and SRB at inland sites in south China. Substantial errors are found at northeastern sites for two datasets, in addition to coastal sites for CERES. Temporally, multi-year averaged monthly mean errors are large at sites in western China in spring and summer, and in northeastern China in spring and winter. The annual mean error fluctuates for SRB, but decreases for CERES between 2000 and 2007. For CERES, 56% of net radiation errors come from net shortwave (NSW radiation and 44% from net longwave (NLW radiation. The errors are attributable to environmental parameters including surface albedo, surface water vapor pressure, land surface temperature, normalized difference vegetation index (NDVI of land surface proxy, and visibility for CERES. For SRB, 65% of the errors come from NSW and 35% from NLW radiation. The major influencing factors in a descending order are surface water vapor pressure, surface albedo, land surface temperature, NDVI, and visibility. Our findings offer an insight into error patterns in satellite-retrieved surface net radiation and should be valuable to improving retrieval accuracy of surface net radiation. Moreover, our