WorldWideScience

Sample records for satellite-derived aerosol optical

  1. Deriving the effect of wind speed on clean marine aerosol optical properties using the A-Train satellites

    Directory of Open Access Journals (Sweden)

    V. P. Kiliyanpilakkil

    2011-11-01

    Full Text Available The relationship between "clean marine" aerosol optical properties and ocean surface wind speed is explored using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E on board the AQUA satellite. Detailed data analyses are carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. Based on remotely sensed optical properties the CALIPSO algorithm is capable of discriminating "clean marine" aerosols from other types often present over the ocean (such as urban/industrial pollution, desert dust and biomass burning. The global mean optical depth of "clean marine" aerosol at 532 nm (AOD532 is found to be 0.052 ± 0.038 (mean plus or minus standard deviation. The mean layer integrated particulate depolarization ratio of marine aerosols is 0.02 ± 0.016. Integrated attenuated backscatter and color ratio of marine aerosols at 532 nm were found to be 0.003 ± 0.002 sr−1 and 0.530 ± 0.149, respectively. A logistic regression between AOD532 and 10-m surface wind speed (U10 revealed three distinct regimes. For U10 ≤ 4 m s−1 the mean CALIPSO-derived AOD532 is found to be 0.02 ± 0.003 with little dependency on the surface wind speed. For 4 < U10 ≤ 12 m s−1, representing the dominant fraction of all available data, marine aerosol optical depth is linearly correlated with the surface wind speed values, with a slope of 0.006 s m−1. In this intermediate wind speed region, the AOD532 vs. U10 regression slope derived here is comparable to previously reported values. At very high wind speed values (U10 > 18 m s−1, the AOD532-wind speed relationship

  2. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  3. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    Science.gov (United States)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  4. Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data

    Directory of Open Access Journals (Sweden)

    Y. Lehahn

    2010-07-01

    Full Text Available Six years (2003–2008 of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS and surface wind speeds from Quick Scatterometer (QuikSCAT, the Advanced Microwave Scanning Radiometer (AMSR-E, and the Special Sensor Microwave Imager (SSM/I, are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.

  5. Short Communication Validation of aerosol products derived from ...

    African Journals Online (AJOL)

    The aerosol products derived from the ocean colour missions SeaWiFS and MODIS (Aqua and Terra) were assessed with AERONET field measurements collected at sites in Mozambique (Inhaca) and Kenya (Malindi). The median of absolute relative differences between satellite and AERONET aerosol optical thickness τa ...

  6. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    International Nuclear Information System (INIS)

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  7. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    Science.gov (United States)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  8. Data Filtering and Assimilation of Satellite Derived Aerosol Optical Depth, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite observations of the Earth often contain excessive noise and extensive data voids. Aerosol measurements, for instance, are obscured and contaminated by...

  9. Satellite methods underestimate indirect climate forcing by aerosols

    Science.gov (United States)

    Penner, Joyce E.; Xu, Li; Wang, Minghuai

    2011-01-01

    Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for ln(Nc) versus ln(AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using ln(Nc) versus ln(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using ln(Nc) versus ln(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%. PMID:21808047

  10. Will the aerosol derived from the OCM satellite sensor be representative of the aerosol over Goa?

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Rodrigues, A.; Desa, E.; Chauhan, P.

    Most of the ocean color satellite sensors such as IRS-P4 OCM, SeaWiFS and MODIS are sun synchronous and have pass over the regions during noon. From our measurements of aerosol optical properties using five-channel sunphotometer over the coastal...

  11. Satellite measurements of aerosol mass and transport

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.S.; Kaufman, Y.J.; Mahoney, R.L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wing vectors measured with rawins. 33 references, 7 figures, 1 table.

  12. Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions

    Science.gov (United States)

    Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.

    2017-12-01

    Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.

  13. Citizen-Enabled Aerosol Measurements for Satellites (CEAMS): A Network for High-Resolution Measurements of PM2.5 and Aerosol Optical Depth

    Science.gov (United States)

    Pierce, J. R.; Volckens, J.; Ford, B.; Jathar, S.; Long, M.; Quinn, C.; Van Zyl, L.; Wendt, E.

    2017-12-01

    Atmospheric particulate matter with diameter smaller than 2.5 μm (PM2.5) is a pollutant that contributes to the development of human disease. Satellite-derived estimates of surface-level PM2.5 concentrations have the potential to contribute greatly to our understanding of how particulate matter affects health globally. However, these satellite-derived PM2.5 estimates are often uncertain due to a lack of information about the ratio of surface PM2.5 to aerosol optical depth (AOD), which is the primary aerosol retrieval made by satellite instruments. While modelling and statistical analyses have improved estimates of PM2.5:AOD, large uncertainties remain in situations of high PM2.5 exposure (such as urban areas and in wildfire-smoke plumes) where the health impacts of PM2.5 may be the greatest. Surface monitoring networks for co-incident PM2.5 and AOD measurements are extremely rare, even in the North America. To provide constraints for the PM2.5:AOD relationship, we have developed a relatively low-cost (application (iOS and Android). Sun photometry is performed across 4 discrete wavelengths that match those reported by the Aerosol Robotic Network (AERONET). Aerosol concentration is reported using both time-integrated filter mass (analyzed in an academic laboratory and reported as a 24-48hr average) and a continuous PM sensor within the instrument. Citizen scientists use the device to report daily AOD and PM2.5 measurements made in their backyards to a central server for data display and download. In this presentation, we provide an overview of (1) AOD and PM2.5 measurement calibration; (2) citizen recruiting and training efforts; and (3) results from our pilot citizen-science measurement campaign.

  14. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  15. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  16. Latitudinal variations of aerosol optical parameters over South Africa based on MISR satellite data

    CSIR Research Space (South Africa)

    Tesfaye M

    2010-09-01

    Full Text Available The latitudunal variation of the relative weight size distribution and optical properties of aerosols over South Africa is presented here. The study uses 10-years of Multi-angle Imaging SpectroRadiometer (MISR) satellite data, collected over South...

  17. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    Science.gov (United States)

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.

  18. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  19. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  20. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    Science.gov (United States)

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  1. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  2. XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation

    Science.gov (United States)

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.; Richter, Andreas

    2018-02-01

    study, the recently developed AOT retrieval algorithm eXtensible Bremen AErosol Retrieval (XBAER) has been applied to data from the OLCI instrument for the first time to illustrate the feasibility of applying XBAER to the data from this new instrument. The first global retrieval results show similar patterns of aerosol optical thickness, AOT, to those from MODIS and MISR aerosol products. The AOT retrieved from OLCI is validated by comparison with AERONET observations and a correlation coefficient of 0.819 and bias (root mean square) of 0.115 is obtained. The haze episode is well captured by the OLCI-derived AOT product. XBAER is shown to retrieve AOT well from the observations of MERIS and OLCI.

  3. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  4. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  5. Global validation of two-channel AVHRR aerosol optical thickness retrievals over the oceans

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Geogdzhayev, Igor; Smirnov, Alexander; Sakerin, Sergey M.; Kabanov, Dmitry M.; Ershov, Oleg A.

    2004-01-01

    The paper presents validation results for the aerosol optical thickness derived by applying a two-channel retrieval algorithm to Advanced Very High Resolution Radiometer (AVHRR) radiance data. The satellite retrievals are compared with ship-borne sun-photometer results. The comparison of spatial and temporal statistics of the AVHRR results and the ship measurements shows a strong correlation. The satellite retrieval results obtained with the original algorithm for a wavelength of 0.55μm are systematically higher than the sun-photometer measurements in the cases of low aerosol loads. The ensemble averaged satellite-retrieved optical thickness overestimates the ensemble averaged sun-photometer data by about 11% with a random error of about 0.04. Increasing the diffuse component of the ocean surface reflectance from 0.002 to 0.004 in the AVHRR algorithm produces a better match, with the ensemble-averaged AVHRR-retrieved optical thickness differing by only about 3.6% from the sun-photometer truth and having a small offset of 0.03

  6. Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.

    Science.gov (United States)

    Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen

    2009-01-20

    We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

  7. Deriving Aerosol Characteristics Over the Ocean from MODIS: Are We There Yet?

    Science.gov (United States)

    Remer, L. A.; Tanre, D.

    2006-12-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) has been successfully retrieving aerosol characteristics over the ocean since shortly after the launch of the Terra satellite at the end of 1999. With its wide spectral range (0.47 to 2.13 μm) MODIS is able to derive spectral aerosol optical depth and information on the size of the aerosol particles. The products were quickly validated, the validation confirmed, and the products are now in wide use across the scientific community. The MODIS aerosol products over ocean are an outstanding success story, but are we done? As the years progress and we gain experience in using the products, evaluating them and nudging even greater information from them, we discover new challenges. Firstly, we continue to find issues affecting the integrity of the products we now produce. We need to find methods to reduce the uncertainty introduced by clouds that go beyond the classical concept of cloud masking and cloud contamination. Some of these novel cloud effects on aerosol retrieval include 3D scattering of light from cloud sides. Another issue that needs resolution is the uncertainty introduced by nonspherical particle shapes. Secondly, when MODIS was new we were excited to have spectral optical depth and particle size information. Now we find that aerosol characterization is still incomplete. We need more information. Are we there yet? Well, no, but we can see the future. To meet these new challenges we will need information beyond the spectral radiances that MODIS measures. We can see the future of satellite derivation of aerosol characteristics, and it looks more and more like a multi-sensor future.

  8. Aerosol Optical Properties Derived from the DRAGON-NE Asia Campaign, and Implications for a Single-Channel Algorithm to Retrieve Aerosol Optical Depth in Spring from Meteorological Imager (MI) On-Board the Communication, Ocean, and Meteorological Satellite (COMS)

    Science.gov (United States)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J.; Song, C.; Lee, S.; hide

    2016-01-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show

  9. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  10. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  11. Reducing Multisensor Satellite Monthly Mean Aerosol Optical Depth Uncertainty: 1. Objective Assessment of Current AERONET Locations

    Science.gov (United States)

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2016-01-01

    Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty

  12. Can MODIS detect trends in aerosol optical depth over land?

    Science.gov (United States)

    Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin

    2018-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.

  13. Satellite remote sensing of aerosol and cloud properties over Eurasia

    Science.gov (United States)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    surface properties, the surface reflectance can be independently retrieved using the AOD for atmospheric correction. For the retrieval of cloud properties, the SACURA algorithm has been implemented in the ADV/ASV aerosol retrieval suite. Cloud properties retrieved from AATSR data are cloud fraction, cloud optical thickness, cloud top height, cloud droplet effective radius, liquid water path. Aerosol and cloud properties are applied for different studies over the Eurasia area. Using the simultaneous retrieval of aerosol and cloud properties allows for study of the transition from the aerosol regime to the cloud regime, such as changes in effective radius or AOD (aerosol optical depth) to COT (cloud optical thickness). The column- integrated aerosol extinction, aerosol optical depth or AOD, which is primarily reported from satellite observations, can be used as a proxy for cloud condensation nuclei (CCN) and hence contains information on the ability of aerosol particles to form clouds. Hence, connecting this information with direct observations of cloud properties provides information on aerosol-cloud interactions.

  14. Uncertainties and applications of satellite-derived coastal water quality products

    Science.gov (United States)

    Zheng, Guangming; DiGiacomo, Paul M.

    2017-12-01

    Recent and forthcoming launches of a plethora of ocean color radiometry sensors, coupled with increasingly adopted free and open data policies are expected to boost usage of satellite ocean color data and drive the demand to use these data in a quantitative and routine manner. Here we review factors that introduce uncertainties to various satellite-derived water quality products and recommend approaches to minimize the uncertainty of a specific product. We show that the regression relationships between remote-sensing reflectance and water turbidity (in terms of nephelometric units) established for different regions tend to converge and therefore it is plausible to develop a global satellite water turbidity product derived using a single algorithm. In contrast, solutions to derive suspended particulate matter concentration are much less generalizable; in one case it might be more accurate to estimate this parameter based on satellite-derived particulate backscattering coefficient, whereas in another the nonagal particulate absorption coefficient might be a better proxy. Regarding satellite-derived chlorophyll concentration, known to be subject to large uncertainties in coastal waters, studies summarized here clearly indicate that the accuracy of classical reflectance band-ratio algorithms depends largely on the contribution of phytoplankton to total light absorption coefficient as well as the degree of correlation between phytoplankton and the dominant nonalgal contributions. Our review also indicates that currently available satellite-derived water quality products are restricted to optically significant materials, whereas many users are interested in toxins, nutrients, pollutants, and pathogens. Presently, proxies or indicators for these constituents are inconsistently (and often incorrectly) developed and applied. Progress in this general direction will remain slow unless, (i) optical oceanographers and environmental scientists start collaborating more closely

  15. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    Science.gov (United States)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-10-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength for BB aerosol sources. Our previous work shows that to first order, satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the smoke source strength. We now refine the satellite-snapshot method and investigate where applying simple multiplicative emission adjustment factors alone to the widely used Global Fire Emission Database version 3 emission inventory can achieve regional-scale consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport model. The model and satellite AOD are compared globally, over a set of BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. Regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. We refine our approach to address physically based limitations of our earlier work (1) by expanding the number of fire cases from 124 to almost 900, (2) by using scaled reanalysis-model simulations to fill missing AOD retrievals in the MODIS observations, (3) by distinguishing the BB components of the total aerosol load from background aerosol in the near-source regions, and (4) by including emissions from fires too small to be identified explicitly in the satellite observations. The small-fire emission adjustment shows the complimentary nature of correcting for source strength and adding geographically distinct missing sources. Our analysis indicates that the method works best for fire cases where the BB fraction of total AOD is high, primarily evergreen or deciduous forests. In heavily polluted or agricultural burning regions, where smoke and background AOD values tend to be comparable, this approach

  16. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2013-01-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  17. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI on-board the Communication, Ocean, and Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    M. Kim

    2016-02-01

    Full Text Available An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON-northeast (NE Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD from a Meteorological Imager (MI on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS. This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 ± 0.04 in the assumed single scattering albedo (SSA can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs were categorized by SSAs at 675 nm of 0.92 ± 0.035 for spring (March, April, and May. After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 ± 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 ± 0.40 to 2.14 ± 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT with the new aerosol model

  18. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  19. Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City

    OpenAIRE

    Just, Allan C.; Wright, Robert O.; Schwartz, Joel; Coull, Brent A.; Baccarelli, Andrea A.; Tellez-Rojo, Martha María; Moody, Emily; Wang, Yujie; Lyapustin, Alexei; Kloog, Itai

    2015-01-01

    Recent advances in estimating fine particle (PM2.5) ambient concentrations use daily satellite measurements of aerosol optical depth (AOD) for spatially and temporally resolved exposure estimates. Mexico City is a dense megacity that differs from other previously modeled regions in several ways: it has bright land surfaces, a distinctive climatological cycle, and an elevated semi-enclosed air basin with a unique planetary boundary layer dynamic. We extend our previous satellite methodology to...

  20. Dust Aerosols at the Source Region During ACE-ASIA: A Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  1. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument

    Science.gov (United States)

    Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-11-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.

  2. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    Science.gov (United States)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  3. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    Science.gov (United States)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  4. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  5. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA

    Directory of Open Access Journals (Sweden)

    Allan C. Just

    2018-05-01

    Full Text Available Satellite-derived estimates of aerosol optical depth (AOD are key predictors in particulate air pollution models. The multi-step retrieval algorithms that estimate AOD also produce quality control variables but these have not been systematically used to address the measurement error in AOD. We compare three machine-learning methods: random forests, gradient boosting, and extreme gradient boosting (XGBoost to characterize and correct measurement error in the Multi-Angle Implementation of Atmospheric Correction (MAIAC 1 × 1 km AOD product for Aqua and Terra satellites across the Northeastern/Mid-Atlantic USA versus collocated measures from 79 ground-based AERONET stations over 14 years. Models included 52 quality control, land use, meteorology, and spatially-derived features. Variable importance measures suggest relative azimuth, AOD uncertainty, and the AOD difference in 30–210 km moving windows are among the most important features for predicting measurement error. XGBoost outperformed the other machine-learning approaches, decreasing the root mean squared error in withheld testing data by 43% and 44% for Aqua and Terra. After correction using XGBoost, the correlation of collocated AOD and daily PM2.5 monitors across the region increased by 10 and 9 percentage points for Aqua and Terra. We demonstrate how machine learning with quality control and spatial features substantially improves satellite-derived AOD products for air pollution modeling.

  6. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  7. Adaptation of an aerosol retrieval algorithm using multi-wavelength and multi-pixel information of satellites (MWPM) to GOSAT/TANSO-CAI

    Science.gov (United States)

    Hashimoto, M.; Takenaka, H.; Higurashi, A.; Nakajima, T.

    2017-12-01

    Aerosol in the atmosphere is an important constituent for determining the earth's radiation budget, so the accurate aerosol retrievals from satellite is useful. We have developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using multi-wavelength and multi-pixel information of satellite imagers (MWPM). The method simultaneously derives aerosol optical properties, such as aerosol optical thickness (AOT), single scattering albedo (SSA) and aerosol size information, by using spatial difference of wavelegths (multi-wavelength) and surface reflectances (multi-pixel). The method is useful for aerosol retrieval over spatially heterogeneous surface like an urban region. In this algorithm, the inversion method is a combination of an optimal method and smoothing constraint for the state vector. Furthermore, this method has been combined with the direct radiation transfer calculation (RTM) numerically solved by each iteration step of the non-linear inverse problem, without using look up table (LUT) with several constraints. However, it takes too much computation time. To accelerate the calculation time, we replaced the RTM with an accelerated RTM solver learned by neural network-based method, EXAM (Takenaka et al., 2011), using Rster code. And then, the calculation time was shorternd to about one thouthandth. We applyed MWPM combined with EXAM to GOSAT/TANSO-CAI (Cloud and Aerosol Imager). CAI is a supplement sensor of TANSO-FTS, dedicated to measure cloud and aerosol properties. CAI has four bands, 380, 674, 870 and 1600 nm, and observes in 500 meters resolution for band1, band2 and band3, and 1.5 km for band4. Retrieved parameters are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles at a wavelenth of 500nm, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength by combining a minimum reflectance method and Fukuda et al. (2013). We will show

  8. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    Science.gov (United States)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  9. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Springtime is also the peak season for biomass burning in southeastern Asia. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), TOMS (Total Ozone Mapping Spectrometer) and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. A column satellite-surface perspective of Asian aerosols will be presented

  10. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  11. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    Science.gov (United States)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  12. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    Science.gov (United States)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  13. Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

    Science.gov (United States)

    Safarpour, S.; Abdullah, K.; Lim, H. S.; Dadras, M.

    2017-09-01

    Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  14. SPATIAL INTERPOLATION OF AEROSOL OPTICAL DEPTH POLLUTION: COMPARISON OF METHODS FOR THE DEVELOPMENT OF AEROSOL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    S. Safarpour

    2017-09-01

    Full Text Available Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD. The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor onboard NASA’s Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  15. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  16. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    Science.gov (United States)

    Esparza, Angel Eduardo

    2011-12-01

    retrieve the size distribution of them. This method permits the assessment of aerosols in the ambient in-situ, without physically extracting them from their current state, as the filter technique does. The second objective was an analysis and comparison of the aerosol optical thickness (AOT) data between ground-based instruments and satellite data. In this project, the groundbased instruments are the Multi Filter Rotating Shadowband Radiometers (MFRSR) installed at UTEP and the nearest sun photometer facility, a NASA's Aerosol Robotic Network (AERONET), located at White Sands, New Mexico. The satellite data is provided by the NASA's Multi-angle Imaging Spectro-radiometer (MISR) instrument located in the Terra satellite. Finally, the third objective was to estimate ground particulate matter concentration of particles no greater than 2.5 mum in diameter (PM2.5) by using the MISR's satellite data. This objective was achieved by implementing an empirical mathematical model that includes measured data. In addition, this model addressed the geographic characteristics of the region as well as several factors such as season, relative humidity (RH) and the height of the planetary boundary layer (PBL).

  17. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  18. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  19. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    Science.gov (United States)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  20. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    Science.gov (United States)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  1. Using satellites and global models to investigate aerosol-cloud interactions

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  2. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  3. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Badarinath, K.V.S.; Vermote, Eric

    2011-01-01

    Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1σ) and 0.32 (-1σ). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for 'full accounting of GHG's and aerosols', for addressing the air quality in the study area. - Highlights: → MODIS data could capture rice and wheat residue burning events. → The total FRP was high during the rice burning season than the wheat. → MODIS AOD variations coincided well with rice burning events than wheat. → AOD values exceeding one suggested intense air pollution. - This research work highlights the satellite derived fire products and their potential in characterizing the agricultural residue burning events and air pollution.

  4. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  5. Aerosol optical depth trend over the Middle East

    KAUST Repository

    Klingmü ller, Klaus; Pozzer, Andrea; Metzger, Swen; Stenchikov, Georgiy L.; Lelieveld, Jos

    2016-01-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a

  6. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    Science.gov (United States)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  7. Optical Properties of the Urban Aerosol Particles Obtained from Ground Based Measurements and Satellite-Based Modelling Studies

    Directory of Open Access Journals (Sweden)

    Genrik Mordas

    2015-01-01

    Full Text Available Applications of satellite remote sensing data combined with ground measurements and model simulation were applied to study aerosol optical properties as well as aerosol long-range transport under the impact of large scale circulation in the urban environment in Lithuania (Vilnius. Measurements included the light scattering coefficients at 3 wavelengths (450, 550, and 700 nm measured with an integrating nephelometer and aerosol particle size distribution (0.5–12 μm and number concentration (Dpa > 0.5 μm registered by aerodynamic particle sizer. Particle number concentration and mean light scattering coefficient varied from relatively low values of 6.0 cm−3 and 12.8 Mm−1 associated with air masses passed over Atlantic Ocean to relatively high value of 119 cm−3 and 276 Mm−1 associated with South-Western air masses. Analysis shows such increase in the aerosol light scattering coefficient (276 Mm−1 during the 3rd of July 2012 was attributed to a major Sahara dust storm. Aerosol size distribution with pronounced coarse particles dominance was attributed to the presence of dust particles, while resuspended dust within the urban environment was not observed.

  8. Collocation mismatch uncertainties in satellite aerosol retrieval validation

    Science.gov (United States)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2018-02-01

    Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the

  9. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    Science.gov (United States)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  10. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    A. K. Georgoulias

    2016-11-01

    Full Text Available This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer Terra (March 2000–December 2012 and Aqua (July 2002–December 2012 satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET. The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550 for the entire region is ∼ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ∼ 51, ∼ 34 and ∼ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ∼ 40, ∼ 34

  11. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  12. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  13. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  14. Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China

    Directory of Open Access Journals (Sweden)

    H. Che

    2008-06-01

    Full Text Available This study compares the aerosol optical and physical properties simultaneously measured by a SKYNET PREDE skyradiometer and AERONET/PHOTONS CIMEL sunphotometer at a location in Beijing, China. Aerosol optical properties (AOP including the Aerosol Optical Depth (AOD, Angstrom exponent (α, volume size distribution, single scattering albedo (ω and the complex refractive index were compared. The difference between the two types of instruments was less than 1.3% for the AOD and less than 4% for the single scattering albedo below the wavelength of 670 nm. There is a difference between the volume size distribution patterns derived from two instruments, which is probably due to difference of measurement protocols and inversion algorithms for the respective instruments.

    AOP under three distinct weather conditions (background, haze, and dust days over Beijing were compared by using the retrieved skyradiometer and sunphotometer data combined with MODIS satellite results, pyranometer measurements, PM10 measurements, and backtrajectory analysis. The results show that the significant difference of AOP under background, haze, and dust days over Beijing is probably due to different aerosol components under distinct weather conditions.

  15. Light extinction by aerosols during summer air pollution

    Science.gov (United States)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  16. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    International Nuclear Information System (INIS)

    Lim, H Q; Lau, A M S; Kanniah, K D

    2014-01-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols

  17. Aerosol optical depth in a western Mediterranean site: An assessment of different methods

    Science.gov (United States)

    Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.; Michalsky, J.

    2016-06-01

    Column aerosol optical properties were derived from multifilter rotating shadowing radiometer (MFRSR) observations carried out at Girona (northeast Spain) from June 2012 to June 2014. We used a technique that allows estimating simultaneously aerosol optical depth (AOD) and Ångström exponent (AE) at high time-resolution. For the period studied, mean AOD at 500 nm was 0.14, with a noticeable seasonal pattern, i.e. maximum in summer and minimum in winter. Mean AE from 500 to 870 nm was 1.2 with a strong day-to-day variation and slightly higher values in summer. So, the summer increase in AOD seems to be linked with an enhancement in the number of fine particles. A radiative closure experiment, using the SMARTS2 model, was performed to confirm that the MFRSR-retrieved aerosol optical properties appropriately represent the continuously varying atmospheric conditions in Girona. Thus, the calculated broadband values of the direct flux show a mean absolute difference of less than 5.9 W m- 2 (0.77%) and R = 0.99 when compared to the observed fluxes. The sensitivity of the achieved closure to uncertainties in AOD and AE was also examined. We use this MFRSR-based dataset as a reference for other ground-based and satellite measurements that might be used to assess the aerosol properties at this site. First, we used observations obtained from a 100 km away AERONET station; despite a general similar behavior when compared with the in-situ MFRSR observations, certain discrepancies for AOD estimates in the different channels (R < 0.84 and slope < 1) appear. Second, AOD products from MISR and MODIS satellite observations were compared with our ground-based retrievals. Reasonable agreements are found for the MISR product (R = 0.92), with somewhat poorer agreement for the MODIS product (R = 0.70). Finally, we apply all these methods to study in detail the aerosol properties during two singular aerosol events related to a forest fire and a desert dust intrusion.

  18. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    Science.gov (United States)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  19. Assessment of aerosol models to AOD retrieval from HJ1 Satellites

    International Nuclear Information System (INIS)

    Yuhuan, Zhang; Zhengqiang, Li; Weizhen, Hou; Ying, Zhang; Yan, Ma; Li Donghui

    2014-01-01

    The Chinese environmental satellites HJ1 A and B can play a significant role in the aerosol retrieval due to their high spatial and temporal resolution. The current Aerosol Optical Depth (AOD) retrieval methods from HJ1-CCD are almost based on the LUT (Look-Up Table), by selecting the best fitting result to determine the AOD. However, aerosol model selection has an important impact on the retrieval results when creating the lookup table; inappropriate choice of aerosol model will significantly affect the accuracy and applicability of the method. This paper determined the local aerosol physical properties (such as complex refractive index, and size distribution) based on the observational data, thus we defined the aerosol type and retrieved the AOD of the local aerosol. Furthermore we compared the results retrieved from the measurement aerosol model with those retrieved from the inherent aerosol model in the radiative transfer model and then evaluate its effect on the aerosol type

  20. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    Science.gov (United States)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the

  1. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    Science.gov (United States)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; hide

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  2. Accuracy assessment of Terra-MODIS aerosol optical depth retrievals

    International Nuclear Information System (INIS)

    Safarpour, Sahabeh; Abdullah, Khiruddin; Lim, Hwee San; Dadras, Mohsen

    2014-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used to address environment and climate change subjects with daily global coverage. Aerosol optical depth (AOD) is retrieved by different algorithms based on the pixel surface, determining between land and ocean. MODIS-Terra and Global Aerosol Robotic Network (AERONET) products can be obtained from the Multi-sensor Aerosol Products Sampling System (MAPSS) for coastal regions during 2000-2010. Using data collected from 83 coastal stations worldwide from AERONET from 2000-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard the Terra satellite. AOD retrieved from MODIS at 0.55μm wavelength has been compared With the AERONET derived AOD, because it is reliable with the major wavelength used by many chemistry transport and climate models as well as previous MODIS validation studies. After removing retrievals with quality flags below1 for Ocean algorithm and below 3 for Land algorithm, The accuracy of AOD retrieved from MODIS Dark Target Ocean algorithms (correlation coefficient R 2 is 0.844 and a regression equation of τ M = 0.91·τ A + 0.02 (where subscripts M and A represent MODIS and AERONET respectively), is the greater than the MODIS Dark Target Land algorithms (correlation coefficient R 2 is 0.764 and τ M = 0.95·τ A + 0.03) and the Deep Blue algorithm (correlation coefficient R 2 is 0.652 and τ M = 0.81·τ A + 0.04). The reasons of the retrieval error in AOD are found to be the various underlying surface reflectance. Therefore, the aerosol models and underlying surface reflectance are the dominant factors which influence the accuracy of MODIS retrieval performance. Generally the MODIS Land algorithm implements better than the Ocean algorithm for coastal sites

  3. Global satellite analysis of the relation between aerosols and short-lived trace gases

    NARCIS (Netherlands)

    Veefkind, J.P.; Boersma, K.F.; Wang, J.; Kurosu, T.; Chance, K.; Krotkov, N.A.; Levelt, P.F.

    2011-01-01

    The spatial and temporal correlations between concurrent satellite observations of aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) from the Ozone

  4. Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

    Directory of Open Access Journals (Sweden)

    A. Lana

    2012-09-01

    Full Text Available Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b production fluxes of secondary organic aerosols from biogenic organic volatiles; (c emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN numbers derived from satellite (MODIS. More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (re data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to re were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt showed widespread positive correlations to CCN only at low latitudes. Correlations to re were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud

  5. Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days

    Directory of Open Access Journals (Sweden)

    K. H. Lee

    2010-12-01

    Full Text Available In East Asia, satellite observation is important because aerosols from natural and anthropogenic sources have been recognized as a major source of regional and global air pollution. However, retrieving aerosols properties from satellite observations over land can be difficult because of the surface reflection, complex aerosol composition, and aerosol absorption. In this study, a new aerosol retrieval method called as the Moderate Resolution Imaging Spectroradiometer (MODIS satellite aerosol retrieval (MSTAR was developed and applied to three different aerosol event cases over East Asia. MSTAR uses a separation technique that can distinguish aerosol reflectance from top-of-atmosphere (TOA reflectance. The aerosol optical thickness (AOT was determined by comparing this aerosol reflectance with pre-calculated values. Three case studies show how the methodology identifies discrepancies between measured and calculated values to retrieve more accurate AOT. The comparison between MODIS and the Aerosol Robotic Network (AERONET showed improvement using the suggested methodology with the cluster-based look-up-tables (LUTs (linear slope = 0.94, R = 0.92 than using operational MODIS collection 5 aerosol products (linear slope = 0.78, R = 0.87. In conclusion, the suggested methodology is shown to work well with aerosol models acquired by statistical clustering of the observation data in East Asia.

  6. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  7. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    Directory of Open Access Journals (Sweden)

    W. von Hoyningen-Huene

    2011-02-01

    Full Text Available For the determination of aerosol optical thickness (AOT Bremen AErosol Retrieval (BAER has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite – ENVISAT – of the European Space Agency – ESA and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6 channels (0.412–0.670 μm and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI, taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF is considered by the Raman-Pinty-Verstraete (RPV model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time

  8. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  9. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    Energy Technology Data Exchange (ETDEWEB)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1° x 1°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6m. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4º by 5º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between clean marine aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses were carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. We show that for very low (less than 4 m s-1) and very high (more than 12 m s-1) wind speed conditions the mean CALIPSO-derived aerosol optical depth (AOD) has little dependency on the surface wind speed. For an intermediate (between 4 and 12 m s-1) marine AOD was linearly correlated with the surface wind speed values, with a slope of 0.0062 s m-1. Results of our study suggest that considerable improvements to both optical properties of marine aerosols and their production mechanisms

  10. Climatology of the Aerosol Optical Depth by Components from the Multi-Angle Imaging Spectroradiometer (MISR) and Chemistry Transport Models

    Science.gov (United States)

    Lee, Huikyo; Kalashnikova, Olga V.; Suzuki, Kentaroh; Braverman, Amy; Garay, Michael J.; Kahn, Ralph A.

    2016-01-01

    The Multi-angle Imaging Spectroradiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skew-nesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  11. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    Science.gov (United States)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  12. In situ aerosol characterization at Cape Verde. Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schladitz, Alexander; Muller, Thomas; Nordmann, Stephan; Tesche, Matthias; Wiedensohler, Alfred (Leibniz Institute for Tropospheric Research (IfT), Leipzig (Germany)), e-mail: alexander.schladitz@tropos.de; Gross, Silke; Freudenthaler, Volker; Gasteiger, Josef (Meteorological Institute, Ludwig-Maximilians-Universitaet, Munich (Germany))

    2011-09-15

    An observation-based numerical study of humidity-dependent aerosol optical properties of mixed marine and Saharan mineral dust aerosol is presented. An aerosol model was developed based on measured optical and microphysical properties to describe the marine and Saharan dust aerosol at Cape Verde. A wavelength-dependent optical equivalent imaginary part of the refractive index and a scattering non-sphericity factor for Saharan dust were derived. Simulations of humidity effects on optical properties by the aerosol model were validated with relative measurements of the extinction coefficient at ambient conditions. Parametrizations were derived to describe the humidity dependence of the extinction, scattering, and absorption coefficients as well as the asymmetry parameter and single scattering albedo. For wavelengths (300-950 nm) and dry dust volume fractions (0-1), aerosol optical properties as a function of relative humidity (RH = 0-90%) can be calculated from tabulated parameters. For instance, at a wavelength of 550 nm, a volume fraction of 0.5 of dust on the total particle volume (dry conditions) and a RH of 90%, the enhancements for the scattering, extinction and absorption coefficients are 2.55, 2.46 and 1.04, respectively, while the enhancements for the asymmetry parameter and single scattering albedo are 1.11 and 1.04

  13. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    Science.gov (United States)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  14. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  15. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    Science.gov (United States)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  16. Simultaneous determination of aerosol optical thickness and water-leaving radiance from multispectral measurements in coastal waters

    Science.gov (United States)

    Shi, Chong; Nakajima, Teruyuki

    2018-03-01

    Retrieval of aerosol optical properties and water-leaving radiance over ocean is challenging since the latter mostly accounts for ˜ 10 % of the satellite-observed signal and can be easily influenced by the atmospheric scattering. Such an effort would be more difficult in turbid coastal waters due to the existence of optically complex oceanic substances or high aerosol loading. In an effort to solve such problems, we present an optimization approach for the simultaneous determination of aerosol optical thickness (AOT) and normalized water-leaving radiance (nLw) from multispectral satellite measurements. In this algorithm, a coupled atmosphere-ocean radiative transfer model combined with a comprehensive bio-optical oceanic module is used to jointly simulate the satellite-observed reflectance at the top of atmosphere and water-leaving radiance just above the ocean surface. Then, an optimal estimation method is adopted to retrieve AOT and nLw iteratively. The algorithm is validated using Aerosol Robotic Network - Ocean Color (AERONET-OC) products selected from eight OC sites distributed over different waters, consisting of observations that covered glint and non-glint conditions from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. Results show a good consistency between retrieved and in situ measurements at each site. It is demonstrated that more accurate AOTs are determined based on the simultaneous retrieval method, particularly in shorter wavelengths and sunglint conditions, where the averaged percentage difference (APD) of retrieved AOT is generally reduced by approximate 10 % in visible bands compared with those derived from the standard atmospheric correction (AC) scheme, since all the spectral measurements can be used jointly to increase the information content in the inversion of AOT, and the wind speed is also simultaneously retrieved to compensate the specular reflectance error estimated from the rough ocean surface model. For the

  17. Maritime Aerosol Network optical depth measurements and comparison with satellite retrievals from various different sensors

    Science.gov (United States)

    Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.

    2017-10-01

    The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.

  18. Retrieval of Aerosol Optical Depth Over Land by Inverse Modeling of Multi-Source Satellite Data

    NARCIS (Netherlands)

    Wu, Y.

    2018-01-01

    The Aerosol Optical Depth (AOD), a measure of the scattering and absorption of light by aerosols, has been extensively used for scientific research such as monitoring air quality near the surface due to fine particles aggregated, aerosol radiative forcing (cooling effect against the warming effect

  19. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  20. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    Science.gov (United States)

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. From OLS to VIIRS, an overview of nighttime satellite aerosol retrievals using artificial light sources

    Science.gov (United States)

    Zhang, J.; Miller, S. D.; Reid, J. S.; Hyer, E. J.; McHardy, T. M.

    2015-12-01

    Compared to abundant daytime satellite-based observations of atmospheric aerosol, observations at night are relatively scarce. In particular, conventional satellite passive imaging radiometers, which offer expansive swaths of spatial coverage compared to non-scanning lidar systems, lack sensitivity to most aerosol types via the available thermal infrared bands available at night. In this talk, we make the fundamental case for the importance of nighttime aerosol information in forecast models, and the need to mitigate the existing nocturnal gap. We review early attempts at estimating nighttime aerosol optical properties using the modulation of stable artificial surface lights. Initial algorithm development using DMSP Operational Linescan System (OLS) has graduated to refined techniques based on the Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB). We present examples of these retrievals for selected cases and compare the results to available surface-based point-source validation data.

  2. Aerosol Indices Derived from MODIS Data for Indicating Aerosol-Induced Air Pollution

    Directory of Open Access Journals (Sweden)

    Junliang He

    2014-02-01

    Full Text Available Aerosol optical depth (AOD is a critical variable in estimating aerosol concentration in the atmosphere, evaluating severity of atmospheric pollution, and studying their impact on climate. With the assistance of the 6S radiative transfer model, we simulated apparent reflectancein relation to AOD in each Moderate Resolution Imaging Spectroradiometer (MODIS waveband in this study. The closeness of the relationship was used to identify the most and least sensitive MODIS wavebands. These two bands were then used to construct three aerosol indices (difference, ratio, and normalized difference for estimating AOD quickly and effectively. The three indices were correlated, respectively, with in situ measured AOD at the Aerosol Robotic NETwork (AERONET Lake Taihu, Beijing, and Xianghe stations. It is found that apparent reflectance of the blue waveband (band 3 is the most sensitive to AOD while the mid-infrared wavelength (band 7 is the least sensitive. The difference aerosol index is the most accurate in indicating aerosol-induced atmospheric pollution with a correlation coefficient of 0.585, 0.860, 0.685, and 0.333 at the Lake Taihu station, 0.721, 0.839, 0.795, and 0.629 at the Beijing station, and 0.778, 0.782, 0.837, and 0.643 at the Xianghe station in spring, summer, autumn and winter, respectively. It is concluded that the newly proposed difference aerosol index can be used effectively to study the level of aerosol-induced air pollution from MODIS satellite imagery with relative ease.

  3. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  4. Classifying Aerosols Based on Fuzzy Clustering and Their Optical and Microphysical Properties Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Wenhao Zhang

    2017-01-01

    Full Text Available Classification of Beijing aerosol is carried out based on clustering optical properties obtained from three Aerosol Robotic Network (AERONET sites. The fuzzy c-mean (FCM clustering algorithm is used to classify fourteen-year (2001–2014 observations, totally of 6,732 records, into six aerosol types. They are identified as fine particle nonabsorbing, two kinds of fine particle moderately absorbing (fine-MA1 and fine-MA2, fine particle highly absorbing, polluted dust, and desert dust aerosol. These aerosol types exhibit obvious optical characteristics difference. While five of them show similarities with aerosol types identified elsewhere, the polluted dust aerosol has no comparable prototype. Then the membership degree, a significant parameter provided by fuzzy clustering, is used to analyze internal variation of optical properties of each aerosol type. Finally, temporal variations of aerosol types are investigated. The dominant aerosol types are polluted dust and desert dust in spring, fine particle nonabsorbing aerosol in summer, and fine particle highly absorbing aerosol in winter. The fine particle moderately absorbing aerosol occurs during the whole year. Optical properties of the six types can also be used for radiative forcing estimation and satellite aerosol retrieval. Additionally, methodology of this study can be applied to identify aerosol types on a global scale.

  5. A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chu

    2016-10-01

    Full Text Available This study reviewed the prediction of fine particulate matter (PM2.5 from satellite aerosol optical depth (AOD and summarized the advantages and limitations of these predicting models. A total of 116 articles were included from 1436 records retrieved. The number of such studies has been increasing since 2003. Among these studies, four predicting models were widely used: Multiple Linear Regression (MLR (25 articles, Mixed-Effect Model (MEM (23 articles, Chemical Transport Model (CTM (16 articles and Geographically Weighted Regression (GWR (10 articles. We found that there is no so-called best model among them and each has both advantages and limitations. Regarding the prediction accuracy, MEM performs the best, while MLR performs worst. CTM predicts PM2.5 better on a global scale, while GWR tends to perform well on a regional level. Moreover, prediction performance can be significantly improved by combining meteorological variables with land use factors of each region, instead of only considering meteorological variables. In addition, MEM has advantages in dealing with the AOD data with missing values. We recommend that with the help of higher resolution AOD data, future works could be focused on developing satellite-based predicting models for the prediction of historical PM2.5 and other air pollutants.

  6. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    Science.gov (United States)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  7. Aerosol optical depth trend over the Middle East

    KAUST Repository

    Klingmüller, Klaus

    2016-04-22

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  8. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  9. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective

    Directory of Open Access Journals (Sweden)

    Z. Li

    2009-07-01

    Full Text Available As a result of increasing attention paid to aerosols in climate studies, numerous global satellite aerosol products have been generated. Aerosol parameters and underlining physical processes are now incorporated in many general circulation models (GCMs in order to account for their direct and indirect effects on the earth's climate, through their interactions with the energy and water cycles. There exists, however, an outstanding problem that these satellite products have substantial discrepancies, that must be lowered substantially for narrowing the range of the estimates of aerosol's climate effects. In this paper, numerous key uncertain factors in the retrieval of aerosol optical depth (AOD are articulated for some widely used and relatively long satellite aerosol products including the AVHRR, TOMS, MODIS, MISR, and SeaWiFS. We systematically review the algorithms developed for these sensors in terms of four key elements that influence the quality of passive satellite aerosol retrieval: calibration, cloud screening, classification of aerosol types, and surface effects. To gain further insights into these uncertain factors, the NOAA AVHRR data are employed to conduct various tests, which help estimate the ranges of uncertainties incurred by each of the factors. At the end, recommendations are made to cope with these issues and to produce a consistent and unified aerosol database of high quality for both environment monitoring and climate studies.

  10. Aerosol Optical Depth investigated with satellite remote sensing observations in China

    International Nuclear Information System (INIS)

    Die, Hu; Lei, Zhang; Hongbin, Wang

    2014-01-01

    In this study, Aerosol Optical Depth (AOD) at 550nm from the MODIS sensor on board the Terra/Aqua satellites were compared with sun photometer (CE-318) measurements from 11 AERONET stations in China. The average correlation coefficient (R) value from the AOD product, using the Aqua-MODIS Deep Blue algorithm, in the Hexi Corridor was 0.67. The MODIS Dark Target algorithm AOD product is superior to Deep Blue algorithm AOD products in SACOL of the Semi-arid regions of the Loess Plateau. These two kinds of algorithm are not applicable to sites in Lanzhou city. The average R value of Dark Target algorithm AOD MODIS products is 0.91 for Terra and 0.88 for Aqua in the eastern part of China. According to the analysis of spatial and temporal characteristics of the two MODIS AOD products in China, high value areas are mainly distributed in the southern part of Xinjiang (0.5∼0.8), Sichuan Basin (0.8∼0.9), North China (0.6∼0.8) and the middle and lower reaches of the Changjiang River (0.8∼1.0). The Deep Blue algorithm for Aqua-MODIS is a good supplement for the retrieval of AOD above bright surfaces of deserts in Northwest China

  11. Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-05-01

    Full Text Available Aerosols have great impacts on atmospheric environment, human health, and earth's climate. Therefore, information on their spatial and temporal distribution is of paramount importance. Despite numerous studies have examined the variation and trends of BC and AOD over India, only very few have focused on their spatial distribution or even correlating the observations with model simulations. In the present study, a three-dimensional aerosol transport-radiation model coupled with a general circulation model. SPRINTARS, simulated atmospheric aerosol distributions including BC and aerosol optical properties, i.e., aerosol optical thickness (AOT, Ångström Exponent (AE, and single scattering albedo (SSA. The simulated results are compared with both BC measurements by aethalometer and aerosol optical properties measured by ground-based skyradiometer and by satellite sensor, MODIS/Terra over Hyderabad, which is a tropical urban area of India, for the year 2008. The simulated AOT and AE in Hyderabad are found to be comparable to ground-based measured ones. The simulated SSA tends to be higher than the ground-based measurements. Both these comparisons of aerosol optical properties between the simulations with different emission inventories and the measurements indicate that, firstly the model uncertainties derived from aerosol emission inventory cannot explain the gaps between the simulations and the measurements and secondly the vertical transport of BC and the treatment of BC-containing particles can be the main issue in the global model to solve the gap.

  12. Comparison of aerosol optical depth from satellite (MODIS), sun photometer and broadband pyrheliometer ground-based observations in Cuba

    Science.gov (United States)

    Antuña-Marrero, Juan Carlos; Cachorro Revilla, Victoria; García Parrado, Frank; de Frutos Baraja, Ángel; Rodríguez Vega, Albeth; Mateos, David; Estevan Arredondo, René; Toledano, Carlos

    2018-04-01

    In the present study, we report the first comparison between the aerosol optical depth (AOD) and Ångström exponent (AE) of the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra (AODt) and Aqua (AODa) satellites and those measured using a sun photometer (AODSP) at Camagüey, Cuba, for the period 2008 to 2014. The comparison of Terra and Aqua data includes AOD derived with both deep blue (DB) and dark target (DT) algorithms from MODIS Collection 6. Combined Terra and Aqua (AODta) data were also considered. Assuming an interval of ±30 min around the overpass time and an area of 25 km around the sun photometer site, two coincidence criteria were considered: individual pairs of observations and both spatial and temporal mean values, which we call collocated daily means. The usual statistics (root mean square error, RMSE; mean absolute error, MAE; median bias, BIAS), together with linear regression analysis, are used for this comparison. Results show very similar values for both coincidence criteria: the DT algorithm generally displays better statistics and higher homogeneity than the DB algorithm in the behaviour of AODt, AODa, AODta compared to AODSP. For collocated daily means, (a) RMSEs of 0.060 and 0.062 were obtained for Terra and Aqua with the DT algorithm and 0.084 and 0.065 for the DB algorithm, (b) MAE follows the same patterns, (c) BIAS for both Terra and Aqua presents positive and negative values but its absolute values are lower for the DT algorithm; (d) combined AODta data also give lower values of these three statistical indicators for the DT algorithm; (e) both algorithms present good correlations for comparing AODt, AODa, AODta vs. AODSP, with a slight overestimation of satellite data compared to AODSP, (f). The DT algorithm yields better figures with slopes of 0.96 (Terra), 0.96 (Aqua) and 0.96 (Terra + Aqua) compared to the DB algorithm (1.07, 0.90, 0.99), which displays greater variability. Multi-annual monthly means of

  13. Unveiling aerosol-cloud interactions - Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data

    Science.gov (United States)

    Neubauer, David; Christensen, Matthew W.; Poulsen, Caroline A.; Lohmann, Ulrike

    2017-11-01

    Aerosol-cloud interactions (ACIs) are uncertain and the estimates of the ACI effective radiative forcing (ERFaci) magnitude show a large variability. Within the Aerosol_cci project the susceptibility of cloud properties to changes in aerosol properties is derived from the high-resolution AATSR (Advanced Along-Track Scanning Radiometer) data set using the Cloud-Aerosol Pairing Algorithm (CAPA) (as described in our companion paper) and compared to susceptibilities from the global aerosol climate model ECHAM6-HAM2 and MODIS-CERES (Moderate Resolution Imaging Spectroradiometer - Clouds and the Earth's Radiant Energy System) data. For ECHAM6-HAM2 the dry aerosol is analysed to mimic the effect of CAPA. Furthermore the analysis is done for different environmental regimes. The aerosol-liquid water path relationship in ECHAM6-HAM2 is systematically stronger than in AATSR-CAPA data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM2 the strength of the susceptibilities of liquid water path, cloud droplet number concentration and cloud albedo as well as ERFaci agree much better with those of AATSR-CAPA or MODIS-CERES. When comparing satellite-derived to model-derived susceptibilities, this study finds it more appropriate to use dry aerosol in the computation of model susceptibilities. We further find that the statistical relationships inferred from different satellite sensors (AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always of the same sign for the tested environmental conditions. In particular the susceptibility of the liquid water path is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2. Feedback processes like cloud-top entrainment that are missing or not well represented in the model are therefore not well

  14. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol

    Directory of Open Access Journals (Sweden)

    Iwona S. Stachlewska

    2018-03-01

    Full Text Available During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio were analysed in terms of air mass transport (HYSPLIT model, aerosol load (CAMS data and type (NAAPS model and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks and aboard satellites (SEVIRI, MODIS, CATS sensors. Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.

  15. Comparisons of aerosol optical depth provided by seviri satellite observations and CAMx air quality modelling

    Science.gov (United States)

    Fernandes, A.; Riffler, M.; Ferreira, J.; Wunderle, S.; Borrego, C.; Tchepel, O.

    2015-04-01

    Satellite data provide high spatial coverage and characterization of atmospheric components for vertical column. Additionally, the use of air pollution modelling in combination with satellite data opens the challenging perspective to analyse the contribution of different pollution sources and transport processes. The main objective of this work is to study the AOD over Portugal using satellite observations in combination with air pollution modelling. For this purpose, satellite data provided by Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board the geostationary Meteosat-9 satellite on AOD at 550 nm and modelling results from the Chemical Transport Model (CAMx - Comprehensive Air quality Model) were analysed. The study period was May 2011 and the aim was to analyse the spatial variations of AOD over Portugal. In this study, a multi-temporal technique to retrieve AOD over land from SEVIRI was used. The proposed method takes advantage of SEVIRI's high temporal resolution of 15 minutes and high spatial resolution. CAMx provides the size distribution of each aerosol constituent among a number of fixed size sections. For post processing, CAMx output species per size bin have been grouped into total particulate sulphate (PSO4), total primary and secondary organic aerosols (POA + SOA), total primary elemental carbon (PEC) and primary inert material per size bin (CRST1 to CRST_4) to be used in AOD quantification. The AOD was calculated by integration of aerosol extinction coefficient (Qext) on the vertical column. The results were analysed in terms of temporal and spatial variations. The analysis points out that the implemented methodology provides a good spatial agreement between modelling results and satellite observation for dust outbreak studied (10th -17th of May 2011). A correlation coefficient of r=0.79 was found between the two datasets. This work provides relevant background to start the integration of these two different types of the data in order

  16. Empirical analysis of aerosol and thin cloud optical depth effects on CO2 retrievals from GOSAT

    Science.gov (United States)

    Saha, A.; O'Neill, N. T.; Strong, K.; Nakajima, T.; Uchino, O.; Shiobara, M.

    2014-12-01

    Ground-based sunphotometer observations of aerosol and cloud optical properties at AEROCAN / AERONET sites co-located with TCCON (Total Carbon Column Observing Network) high resolution Fourier Transform Spectrometers (FTS) were used to investigate the aerosol and cloud influence on column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observation - FTS) of GOSAT (Greenhouse gases Observing SATellite). This instrument employs high resolution spectra measured in the Short-Wavelength InfraRed (SWIR) band to retrieve XCO2estimates. GOSAT XCO2 retrievals are nominally corrected for the contaminating backscatter influence of aerosols and thin clouds. However if the satellite-retrieved aerosol and thin cloud optical depths applied to the CO2 correction is biased then the correction and the retrieved CO2 values will be biased. We employed independent ground based estimates of both cloud screened and non cloud screened AOD (aerosol optical depth) in the CO2 SWIR channel and compared this with the GOSAT SWIR-channel OD retrievals to see if that bias was related to variations in the (generally negative) CO2 bias (ΔXCO2= XCO2(GOSAT) - XCO2(TCCON)). Results are presented for a number of TCCON validation sites.

  17. The influence of aerosols and land-use type on NO2 satellite retrieval over China

    Science.gov (United States)

    Liu, Mengyao; Lin, Jintai; Boersma, Folkert; Eskes, Henk; Chimot, Julien

    2017-04-01

    Both aerosols and surface reflectance have a strong influence on the retrieval of NO2 tropospheric vertical column densities (VCDs), especially over China with its heavy aerosol loading and rapid changes in land-use type. However, satellite retrievals of NO2 VCDs usually do not explicitly account for aerosol optical effects and surface reflectance anisotropy (BRDF) that varies in space and time. We develop an improved algorithm to derive tropospheric AMFs and VCDs over China from the OMI instrument - POMINO and DOMINO. This method can also be applied to TropOMI NO2 retrievals in the future. With small pixels of TropOMI and higher probability of encountering clear-sky scenes, the influence of BRDF and aerosol interference becomes more important than for OMI. Daily aerosol information is taken from the GEOS-Chem chemistry transport model and the aerosol optical depth (AOD) is adjusted via MODIS AOD climatology. We take the MODIS MCD43C2 C5 product to account for BRDF effects. The relative altitude of NO2 and aerosols is critical factor influencing the NO2 retrieval. In order to evaluate the aerosol extinction profiles (AEP) of GEOS-Chem improve our algorithm, we compare the GEOS-Chem simulation with CALIOP and develop a CALIOP AEP climatology to regulate the model's AEP. This provides a new way to include aerosol information into the tracer gas retrieval for OMI and TropOMI. Preliminary results indicate that the model performs reasonably well in reproducing the AEP shape. However, it seems to overestimate aerosols under 2km and underestimate above. We find that relative humidity (RH) is an important factor influencing the AEP shape when comparing the model with observations. If we adjust the GEOS-Chem RH to CALIOP's RH, the correlations of their AEPs also improve. Besides, take advantage of our retrieval method, we executed sensitivity tests to analyze their influences on NO2 trend and spatiotemporal variations in retrieval. It' the first time to investigate

  18. Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method

    Science.gov (United States)

    Tang, Qingxin; Bo, Yanchen; Zhu, Yuxin

    2016-04-01

    Merging multisensor aerosol optical depth (AOD) products is an effective way to produce more spatiotemporally complete and accurate AOD products. A spatiotemporal statistical data fusion framework based on a Bayesian maximum entropy (BME) method was developed for merging satellite AOD products in East Asia. The advantages of the presented merging framework are that it not only utilizes the spatiotemporal autocorrelations but also explicitly incorporates the uncertainties of the AOD products being merged. The satellite AOD products used for merging are the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Level-2 AOD products (MOD04_L2) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue Level 2 AOD products (SWDB_L2). The results show that the average completeness of the merged AOD data is 95.2%,which is significantly superior to the completeness of MOD04_L2 (22.9%) and SWDB_L2 (20.2%). By comparing the merged AOD to the Aerosol Robotic Network AOD records, the results show that the correlation coefficient (0.75), root-mean-square error (0.29), and mean bias (0.068) of the merged AOD are close to those (the correlation coefficient (0.82), root-mean-square error (0.19), and mean bias (0.059)) of the MODIS AOD. In the regions where both MODIS and SeaWiFS have valid observations, the accuracy of the merged AOD is higher than those of MODIS and SeaWiFS AODs. Even in regions where both MODIS and SeaWiFS AODs are missing, the accuracy of the merged AOD is also close to the accuracy of the regions where both MODIS and SeaWiFS have valid observations.

  19. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    Science.gov (United States)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; hide

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  20. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters

    Science.gov (United States)

    Snik, Frans; Rietjens, Jeroen H. H.; Apituley, Arnoud; Volten, Hester; Mijling, Bas; Di Noia, Antonio; Heikamp, Stephanie; Heinsbroek, Ritse C.; Hasekamp, Otto P.; Smit, J. Martijn; Vonk, Jan; Stam, Daphne M.; Harten, Gerard; Boer, Jozua; Keller, Christoph U.

    2014-10-01

    To assess the impact of atmospheric aerosols on health, climate, and air traffic, aerosol properties must be measured with fine spatial and temporal sampling. This can be achieved by actively involving citizens and the technology they own to form an atmospheric measurement network. We establish this new measurement strategy by developing and deploying iSPEX, a low-cost, mass-producible optical add-on for smartphones with a corresponding app. The aerosol optical thickness (AOT) maps derived from iSPEX spectropolarimetric measurements of the daytime cloud-free sky by thousands of citizen scientists throughout the Netherlands are in good agreement with the spatial AOT structure derived from satellite imagery and temporal AOT variations derived from ground-based precision photometry. These maps show structures at scales of kilometers that are typical for urban air pollution, indicating the potential of iSPEX to provide information about aerosol properties at locations and at times that are not covered by current monitoring efforts.

  1. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  2. Satellite assisted aerosol correlation in a sequestered CO2 leakage controlled site

    Science.gov (United States)

    Landulfo, Eduardo; da Silva Lopes, Fábio J.; Nakaema, Walter M.; de Medeiros, José A. G.; Moreira, Andrea

    2014-10-01

    Currently one of the main challenges in CO2 storage research is to grant the development, testing and validation of accurate and efficient Measuring, Monitoring and Verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. For such task a mimetic sequestration site has been deployed in Florianopolis, Brazil, in order to verify the performance of monitoring plataforms to detect and quantify leakages of ground injected CO2, namely a Cavity Ring Down System (CRDS) - Los Gatos Research - an Eddy Covariance System (Campbell Scientific and Irgason) and meteorological tower for wind, humidity, precipitation and temperature monitoring onsite. The measurement strategy for detecting CO2 leakages can be very challenging since environmental and phytogenic influence can be very severe and play a role on determining if the values measured are unambiguous or not. One external factor to be considered is the amount of incoming solar radiation which will be the driving force for the whole experimental setup and following this reasoning the amount of aerosols in the atmospheric column can be a determinant factor influencing the experimental results. Thus the investigation of measured fluxes CO2 and its concentration with the aforementioned experimental instruments and their correlation with the aerosol data should be taken into account by means of satellite borne systems dedicated to measure aerosol vertical distribution and its optical properties, in this study we have selected CALIPSO and MODIS instrumentation to help on deriving the aerosol properties and CO2 measurements.

  3. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2018-04-01

    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in

  4. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  5. Retrieval of Aerosol Optical Depth over Land using two-angle view Satellite Radiometry during TARFOX

    NARCIS (Netherlands)

    Veefkind, J.P.; Leeuw, G. de; Durkee, P.H.

    1998-01-01

    A new aerosol optical depth retrieval algorithm is presented that uses the two-angle view capability of the Along Track Scanning Radiometer 2 (ATSR-2). By combining the two-angle view and the spectral information this so-called dual view algorithm separates between aerosol and surface contributions

  6. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the "Deep Blue" Aerosol Project

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.

    2018-01-01

    The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.

  7. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  8. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  9. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    Science.gov (United States)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  10. Application of simple all-sky imagers for the estimation of aerosol optical depth

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Nikitidou, Efterpi; Salamalikis, Vasileios; Wilbert, Stefan; Prahl, Christoph

    2017-06-01

    Aerosol optical depth is a key atmospheric constituent for direct normal irradiance calculations at concentrating solar power plants. However, aerosol optical depth is typically not measured at the solar plants for financial reasons. With the recent introduction of all-sky imagers for the nowcasting of direct normal irradiance at the plants a new instrument is available which can be used for the determination of aerosol optical depth at different wavelengths. In this study, we are based on Red, Green and Blue intensities/radiances and calculations of the saturated area around the Sun, both derived from all-sky images taken with a low-cost surveillance camera at the Plataforma Solar de Almeria, Spain. The aerosol optical depth at 440, 500 and 675nm is calculated. The results are compared with collocated aerosol optical measurements and the mean/median difference and standard deviation are less than 0.01 and 0.03 respectively at all wavelengths.

  11. Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2011-03-01

    Full Text Available The Maritime Aerosol Network (MAN has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  12. Assessment of satellite derived diffuse attenuation coefficients ...

    Science.gov (United States)

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that

  13. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    Science.gov (United States)

    Grandey, B. S.; Stier, P.

    2010-12-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa and font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.

  14. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  15. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    Science.gov (United States)

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  16. Using High-Resolution Satellite Aerosol Optical Depth To Estimate Daily PM2.5 Geographical Distribution in Mexico City.

    Science.gov (United States)

    Just, Allan C; Wright, Robert O; Schwartz, Joel; Coull, Brent A; Baccarelli, Andrea A; Tellez-Rojo, Martha María; Moody, Emily; Wang, Yujie; Lyapustin, Alexei; Kloog, Itai

    2015-07-21

    Recent advances in estimating fine particle (PM2.5) ambient concentrations use daily satellite measurements of aerosol optical depth (AOD) for spatially and temporally resolved exposure estimates. Mexico City is a dense megacity that differs from other previously modeled regions in several ways: it has bright land surfaces, a distinctive climatological cycle, and an elevated semi-enclosed air basin with a unique planetary boundary layer dynamic. We extend our previous satellite methodology to the Mexico City area, a region with higher PM2.5 than most U.S. and European urban areas. Using a novel 1 km resolution AOD product from the MODIS instrument, we constructed daily predictions across the greater Mexico City area for 2004-2014. We calibrated the association of AOD to PM2.5 daily using municipal ground monitors, land use, and meteorological features. Predictions used spatial and temporal smoothing to estimate AOD when satellite data were missing. Our model performed well, resulting in an out-of-sample cross-validation R(2) of 0.724. Cross-validated root-mean-squared prediction error (RMSPE) of the model was 5.55 μg/m(3). This novel model reconstructs long- and short-term spatially resolved exposure to PM2.5 for epidemiological studies in Mexico City.

  17. Statistical examination of the aerosols loading over Kano-Nigeria: the Satellite observation analysis

    Directory of Open Access Journals (Sweden)

    Moses E. Emetere

    2016-07-01

    Full Text Available The problem of underestimating or overestimating the aerosols loading over Kano is readily becoming a global challenge. Recent health outcomes from an extensive effect of aerosols pollution has started manifesting in Kano. The aim of the research is to estimate the aerosols loading and retention over Kano. Thirteen years aerosol optical depth (AOD data was obtained from the Multi-angle imaging spectroradiometer (MISR. Statistical tools, as well as analytically derived model for aerosols loading were used to obtain the aerosols retention and loading over the area. It was discovered that the average aerosols retention over Kano is 4.9%. The atmospheric constants over Kano were documented. Due to the volume of aerosols over Kano, it is necessary to change the ITU model which relates to signal budgeting.

  18. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  19. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  20. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  1. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    Science.gov (United States)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  2. Aerosol Optical Depth Over India

    Science.gov (United States)

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  3. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  4. A study of the effect of non-spherical dust particles on Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals

    Science.gov (United States)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.

    2017-12-01

    Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.

  5. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    Science.gov (United States)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  6. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    Science.gov (United States)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  7. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data : Case study over dust and smoke regions

    NARCIS (Netherlands)

    Wu, Y.; de Graaf, M.; Menenti, M.

    2017-01-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection

  8. Analysis od aerosol optical depth retrieved by MODIS and MERIS and comparison with photometer data

    International Nuclear Information System (INIS)

    Bocci, E.; Bonafoni, S.; Basili, P.; Biondi, R.; Arino, O.

    2009-01-01

    In this work a validation of aerosol optical depth (AOD) value provided by two different satellite sensor (MODIS and MERIS) is proposed. A comparison between satellite and ground-based AERONET data is carried out to verify the reliability of space borne instruments. Finally the behavior of AOD is analyzed monitoring particular events such as desert dust transport occurred on the 9 of October 2004 over the Mediterranean [it

  9. Aerosol contamination survey during dust storm process in Northwestern China using ground, satellite observations and atmospheric modeling data

    Science.gov (United States)

    Filonchyk, Mikalai; Yan, Haowen; Shareef, Tawheed Mohammed Elhessin; Yang, Shuwen

    2018-01-01

    The present survey addresses the comprehensive description of geographic locations, transport ways, size, and vertical aerosol distribution during four large dust events which occurred in the Northwest China. Based on the data from 35 ground-based air quality monitoring stations and the satellite data, emission flows for dust events within the period of 2014 to 2017 have been estimated. The data show that maximum peak daily average PM10 and PM2.5 concentrations exceeded 380 and 150 μg/m3, respectively, and the PM2.5/PM10 ratio was ranging within 0.12-0.66. Both satellite data and simulation data of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) coincide with location and extension of a dust cloud. The Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) found dust at 0 to 10 km altitude which remained at this level during the most part of its trajectory. The vertical aerosol distribution at a wave of 532 nm total attenuated backscatter coefficient range of 0.0025-0.003 km-1 × sr-1. Moderate Resolution Imaging Spectroradiometer (MODIS) (Terra) Collection 6 Level-3 aerosol products data show that aerosol optical depth (AOD) at pollution epicenters exceeds 1. A comprehensive data survey thus demonstrated that the main sources of high aerosol pollutions in the territory were deserted areas of North and Northwest China as well as the most part of the Republic of Mongolia, where one of the largest deserts, Gobi, extends.

  10. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    Science.gov (United States)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  11. Multiscale periodicities in aerosol optical depth over India

    International Nuclear Information System (INIS)

    Ramachandran, S; Ghosh, Sayantan; Verma, Amit; Panigrahi, P K

    2013-01-01

    Aerosols exhibit periodic or cyclic variations depending on natural and anthropogenic sources over a region, which can become modulated by synoptic meteorological parameters such as winds, rainfall and relative humidity, and long-range transport. Information on periodicity and phase in aerosol properties assumes significance in prediction as well as examining the radiative and climate effects of aerosols including their association with changes in cloud properties and rainfall. Periodicity in aerosol optical depth, which is a columnar measure of aerosol distribution, is determined using continuous wavelet transform over 35 locations (capitals of states and union territories) in India. Continuous wavelet transform is used in the study because continuous wavelet transform is better suited to the extraction of the periodic and local modulations present in various frequency ranges when compared to Fourier transform. Monthly mean aerosol optical depths (AODs) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite at 1° × 1° resolution from January 2001 to December 2012 are used. Annual and quasi-biennial oscillations (QBOs) in AOD are evident in addition to the weak semi-annual (5–6 months) and quasi-triennial oscillations (∼40 months). The semi-annual and annual oscillations are consistent with the seasonal and yearly cycle of variations in AODs. The QBO type periodicity in AOD is found to be non-stationary while the annual period is stationary. The 40 month periodicity indicates the presence of long term correlations in AOD. The observed periodicities in MODIS Terra AODs are also evident in the ground-based AOD measurements made over Kanpur in the Indo-Gangetic Plain. The phase of the periodicity in AOD is stable in the mid-frequency range, while local disturbances in the high-frequency range and long term changes in the atmospheric composition give rise to unstable phases in the low-frequency range. The presence of phase

  12. How do the optical properties of Asian aerosols change when they cross the Pacific?

    Science.gov (United States)

    Fischer, E. V.; Jaffe, D. A.

    2009-12-01

    Primary and secondary aerosols from Asia may have important climate implications. These aerosols are emitted locally, but can then be lofted into the free troposphere and advected across the Pacific. In this analysis we used observations from the Mount Bachelor Observatory (MBO) in conjunction with satellite data to identify the dominant aerosol types in specific Asian plumes that crossed the Pacific. In situ data from MBO is used to understand the observed changes in radiative properties. A suite of gas phase and aerosol measurements were made during spring 2008 and spring 2009 at MBO (2763 masl), located in central Oregon. Here we focus on observations of dry sub-μm aerosol scattering (σsp) and absorption (σap), made with an integrating nephelometer and a particle soot absorption photometer (PSAP). Using a combination of backward trajectory calculations and satellite observations, we identified 7 well defined plumes of Asian origin. These plumes included the highest σsp (34.8 Mm-1 hourly average) and σap (4.8 Mm-1 hourly average) observed at MBO over the 2008 and 2009 spring campaigns. Of interest in this analysis is 1) whether the intensive optical properties differ between these 7 Asian events, 2) whether these differences can be linked to differences in composition, and 3) whether the intensive optical properties differ from those observed closer to the Asian source region. Preliminary results show that the plumes clustered in terms of their optical properties; plumes hypothesized to contain a large fraction of mineral dust were the most distinct. We also observed larger variability in the average scattering Ångstrom exponent of the plumes and a higher average single scatter albedo than observations closer to the Asian coast. This work will be extended to compare observations at MBO with the most recent observations from Asia as they become available.

  13. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-02-01

    Full Text Available The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM developed at the University of California, Los Angeles (UCLA. The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP larger than 20 g m−2. The magnitude of the reduction increases with IWP.

    AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the

  14. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Bjorn [Max Planck Inst. for Meteorology, Hamburg (Germany); Fiedler, Stephanie [Max Planck Inst. for Meteorology, Hamburg (Germany); Kinne, Stefan [Max Planck Inst. for Meteorology, Hamburg (Germany); Peters, Karsten [Max Planck Inst. for Meteorology, Hamburg (Germany); Rast, Sebastian [Max Planck Inst. for Meteorology, Hamburg (Germany); Müsse, Jobst [Max Planck Inst. for Meteorology, Hamburg (Germany); Smith, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Joint Global Change Research Inst.; Mauritsen, Thorsten [Max Planck Inst. for Meteorology, Hamburg (Germany)

    2017-02-01

    A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850–2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be -0.6 and -0.5 W m-2, respectively. Forcing from aerosol–cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small

  15. Assimilation of Polder aerosol optical thickness into LMD2-Inca model in order to study aerosol-climate interactions; Etude des interactions entre aerosols et climat: assimilation des observations spatiales de Polder dans LMDz-Inca

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, S.

    2004-12-15

    Aerosols influence the Earth radiative budget both through their direct (scattering and absorption of solar radiation) and indirect (impacts on cloud microphysics) effects. The anthropogenic perturbation due to aerosol emissions is of the same order of magnitude than the one due to greenhouse gases, but less well known. To improve our knowledge, we need to better know aerosol spatial and temporal distributions. Indeed, aerosol modeling still suffers from large uncertainties in sources and transport, while satellite observations are incomplete (no detection in the presence of clouds, no information on the vertical distribution or on the chemical nature). Moreover, field campaigns are localized in space and time. This study aims to reduce uncertainties in aerosol distributions, developing assimilation of satellite data into a chemical transport model. The basic idea is to combine information obtained from spatial observation (optical thickness) and modeling studies (aerosol types, vertical distribution). In this study, we assimilate data from the POLDER space-borne instrument into the LMDz-INCA model. The results show the advantage of merging information from different sources. In many regions, the method reduces uncertainties on aerosol distribution (reduction of RMS error). An application of the method to the study of aerosol impact on cloud microphysics is shown. (author)

  16. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  17. Bio-Optical Data Assimilation With Observational Error Covariance Derived From an Ensemble of Satellite Images

    Science.gov (United States)

    Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter

    2018-03-01

    An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.

  18. Optical extinction of size-controlled aerosols generated from squid chromatophore pigments

    Directory of Open Access Journals (Sweden)

    Sean R. Dinneen

    2017-10-01

    Full Text Available Nanophotonic granules populate the interior of cephalopod chromatophores, contributing to their visible color by selectively absorbing and scattering light. Inspired by the performance of these granules, we fabricated nanostructured aerosols by nebulizing a pigment solution extracted from native squid chromatophores. We determined their optical extinction using cavity ring-down spectroscopy and show how extinction cross section is dependent on both particle concentration and size. This work not only advances the fundamental knowledge of the optical properties of chromatophore pigments but also serves as a proof-of-concept method that can be adapted to develop coatings derived from these pigmentary aerosols.

  19. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEO-CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O 2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  20. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  1. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  2. Detection of marine aerosols with IRS P4-Ocean Colour Monitor

    Indian Academy of Sciences (India)

    The atmospheric correction bands 7 and 8 (765nm and 865nm respectively) of the Indian Remote Sensing Satellite IRS P4-OCM (Ocean Colour Monitor) can be used for deriving aerosol optical depth (AOD) over the oceans. A retrieval algorithm has been developed which computes the AOD using band 7 data by treating ...

  3. Chemistry and Microphysics of Lower Stratospheric Aerosols Determined by Satellite Remote Sensing

    Science.gov (United States)

    Zasetsky, A. Y.; Khalizov, A.; Sloan, J.

    2003-12-01

    Observations of broadband Infrared satellites such as ILAS-II (Ministry of the Environment, Japan, launched 14 December 2002) and SciSat-1 (Canadian Space Agency, launched 12 August 2003) can provide details of the chemical composition and particle size of atmospheric aerosols by direct inversion without recourse to models. During the past decade, we have developed mathematical methods to achieve this inversion by working with FTIR observations of model atmospheric aerosols in cryogenic flowtubes. More recently, we have converted these to operational algorithms for use in the above missions. In this presentation, we will briefly outline these procedures and illustrate their capabilities using laboratory data. These laboratory results show that the chemical compositions, phases and sizes of ensembles of particles can be obtained simultaneously using these procedures. We will also report chemical and microphysical properties of lower stratospheric clouds and aerosols derived by applying these procedures to observations from space.

  4. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    Science.gov (United States)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  5. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    Science.gov (United States)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  6. Spatial and temporal interpolation of satellite-based aerosol optical depth measurements over North America using B-splines

    Science.gov (United States)

    Pfister, Nicolas; O'Neill, Norman T.; Aube, Martin; Nguyen, Minh-Nghia; Bechamp-Laganiere, Xavier; Besnier, Albert; Corriveau, Louis; Gasse, Geremie; Levert, Etienne; Plante, Danick

    2005-08-01

    Satellite-based measurements of aerosol optical depth (AOD) over land are obtained from an inversion procedure applied to dense dark vegetation pixels of remotely sensed images. The limited number of pixels over which the inversion procedure can be applied leaves many areas with little or no AOD data. Moreover, satellite coverage by sensors such as MODIS yields only daily images of a given region with four sequential overpasses required to straddle mid-latitude North America. Ground based AOD data from AERONET sun photometers are available on a more continuous basis but only at approximately fifty locations throughout North America. The object of this work is to produce a complete and coherent mapping of AOD over North America with a spatial resolution of 0.1 degree and a frequency of three hours by interpolating MODIS satellite-based data together with available AERONET ground based measurements. Before being interpolated, the MODIS AOD data extracted from different passes are synchronized to the mapping time using analyzed wind fields from the Global Multiscale Model (Meteorological Service of Canada). This approach amounts to a trajectory type of simplified atmospheric dynamics correction method. The spatial interpolation is performed using a weighted least squares method applied to bicubic B-spline functions defined on a rectangular grid. The least squares method enables one to weight the data accordingly to the measurement errors while the B-splines properties of local support and C2 continuity offer a good approximation of AOD behaviour viewed as a function of time and space.

  7. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Lili Li

    2015-06-01

    Full Text Available Satellite remote sensing offers an effective approach to estimate indicators of air quality on a large scale. It is critically significant for air quality monitoring in areas experiencing rapid urbanization and consequently severe air pollution, like the Pearl River Delta (PRD in China. This paper starts with examining ground observations of particulate matter (PM and the relationship between PM10 (particles smaller than 10 μm and aerosol optical thickness (AOT by analyzing observations on the sampling sites in the PRD. A linear regression (R2 = 0.51 is carried out using MODIS-derived 500 m-resolution AOT and PM10 concentration from monitoring stations. Data of atmospheric boundary layer (ABL height and relative humidity are used to make vertical and humidity corrections on AOT. Results after correction show higher correlations (R2 = 0.55 between extinction coefficient and PM10. However, coarse spatial resolution of meteorological data affects the smoothness of retrieved maps, which suggests high-resolution and accurate meteorological data are critical to increase retrieval accuracy of PM. Finally, the model provides the spatial distribution maps of instantaneous and yearly average PM10 over the PRD. It is proved that observed PM10 is more relevant to yearly mean AOT than instantaneous values.

  8. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data

    Science.gov (United States)

    Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan

    2008-06-01

    The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.

  9. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  10. Classification of Dust Days by Satellite Remotely Sensed Aerosol Products

    Science.gov (United States)

    Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.

    2013-01-01

    Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary

  11. Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-05-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space-based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below-aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol-induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 μm) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS-retrieved cloud optical thickness and effective radius can reach values of 10 and 10 μm, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  12. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  13. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  14. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  15. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis

    NARCIS (Netherlands)

    Leeuw, G. de; Holzer-Popp, T.; Bevan, S.; Davies, W.H.; Descloitres, J.; Grainger, R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Klüser, L.; Kolmonen, P.; Litvinov, P.; Martynenko, D.; North, P.; Ovigneur, B.; Pascal, N.; Poulsen, C.; Ramon, D.; Schulz, M.; Siddans, R.; Sogacheva, L.; Tanré, D.; Thomas, G.E.; Virtanen, T.H.; von Hoyningen Huene, W.; Vountas, M.; Pinnock, S.

    2015-01-01

    Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight

  16. Optimal estimation retrieval of aerosol microphysical properties from SAGE II satellite observations in the volcanically unperturbed lower stratosphere

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2010-05-01

    Full Text Available Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003. An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities, even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal size

  17. Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere

    Science.gov (United States)

    Wurl, D.; Grainger, R. G.; McDonald, A. J.; Deshler, T.

    2010-05-01

    Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally

  18. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    Science.gov (United States)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  19. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  20. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    Science.gov (United States)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  1. Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations

    Science.gov (United States)

    Lurton, Thibaut; Jégou, Fabrice; Berthet, Gwenaël; Renard, Jean-Baptiste; Clarisse, Lieven; Schmidt, Anja; Brogniez, Colette; Roberts, Tjarda J.

    2018-03-01

    Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid aerosol particles that can enhance the stratospheric aerosol optical depth (SAOD). Besides large-magnitude eruptions, moderate-magnitude eruptions such as Kasatochi in 2008 and Sarychev Peak in 2009 can have a significant impact on stratospheric aerosol and hence climate. However, uncertainties remain in quantifying the atmospheric and climatic impacts of the 2009 Sarychev Peak eruption due to limitations in previous model representations of volcanic aerosol microphysics and particle size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, the 2009 Sarychev Peak eruption co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. We present a study of the stratospheric SO2-particle-HCl processing and impacts following Sarychev Peak eruption, using the Community Earth System Model version 1.0 (CESM1) Whole Atmosphere Community Climate Model (WACCM) - Community Aerosol and Radiation Model for Atmospheres (CARMA) sectional aerosol microphysics model (with no a priori assumption on particle size). The Sarychev Peak 2009 eruption injected 0.9 Tg of SO2 into the upper troposphere and lower stratosphere (UTLS), enhancing the aerosol load in the Northern Hemisphere. The post-eruption evolution of the volcanic SO2 in space and time are well reproduced by the model when compared to Infrared Atmospheric Sounding Interferometer (IASI) satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We therefore highlight the need to account for volcanic halogen chemistry when simulating the impact of eruptions such as Sarychev on

  2. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  3. Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland

    Science.gov (United States)

    Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger

    2017-11-01

    In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.

  4. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints

    NARCIS (Netherlands)

    Lin, J.T.; Liu, M.Y.; Xin, J.Y.; Boersma, K.F.; Spurr, R.; Zhang, Q.; Martin, R.

    2015-01-01

    Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the

  5. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  6. Evaluation of methods to determine the spectral variations of aerosol optical thickness

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Rodrigues, A.; Desa, E.; Chauhan, P.

    The methods used to derive spectral variations of aerosol optical thickness, AOT are evaluated. For our analysis we have used the AOT measured using a hand held sunphotometer at the coastal station on the west coast of India, Dona-Paula, Goa...

  7. Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire episode in May 2003: Possible missing emissions

    Science.gov (United States)

    In, Hee-Jin; Kim, Yong Pyo

    2010-11-01

    During the study of the enhancement of aerosol optical thickness (AOT) which was derived by Community Multi-scale Air Quality (CMAQ) model for an active forest fire episode in Northeast Asia for May 2003 (In et al., 2009), it was found that CMAQ underestimated and overestimated AOT sporadically compared to the multiple satellite observations. Based on the AERONET surface AOT observation result, the WMO Global Telecommunications System (GTS) SYNOP system smoke/fire reports, and surface aerosol concentration data in Korea, it was found that these errors were resulted from missing of biomass burning emissions and coarse aerosols originating from soil. An inconsistency between surface observed and CMAQ estimate AOT and MODIS hot spot detects was found, which suggests that accuracy of MODIS fire products needs to be assessed in East Russian, China, and Korea in order to utilize them for national scale fire management in the region. The implement of origin and transport process of wind blown dust in current CMAQ is necessary to extend CMAQ capability in Northeast Asia.

  8. Statistical examination of the aerosols loading over Mubi-Nigeria: The satellite oobservation analysis

    Directory of Open Access Journals (Sweden)

    Emetere Moses Eterigho

    2016-01-01

    Full Text Available The problem of underestimating or overestimating the aerosols loading over Mubi is inevitable because of the absence of ground stations over the region. Aerosols pollution is a global challenge to life forms as it affects human health, agricultural produce, thermal comfort and weather. The modulation between high and low thermal comforts over Mubi is quite disturbing. The aim of the research is to seek a more reliable approach to estimate the aerosols loading and retention over Mubi. Thirteen years aerosol optical depth (AOD data was obtained from the Multi-angle imaging spectroradiometer (MISR. Mubi is located on latitude 10.27oN and longitude 13.27oE. Statistical tools, as well as analytically derived model for aerosols loading were used to obtain the aerosols retention and loading over the area. It was discovered that the highest aerosols retention over Mubi is 12.7%. The atmospheric constants and tuning constants over Mubi were documented as 0.67 and 0.71 respectively. Due to the volume of aerosols over Mubi, it is necessary to change the International Telecommunication Union (ITU model which relates to signal budgeting.

  9. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    Science.gov (United States)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  10. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. an EOF Approach to the Spatial-Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets

    Science.gov (United States)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2013-01-01

    Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.

  11. Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    Science.gov (United States)

    Lee, Huikyo; Jeong, Su-Jong; Kalashnikova, Olga; Tosca, Mika; Kim, Sang-Woo; Kug, Jong-Seong

    2018-03-01

    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.

  12. Satellite Observations of Declining Aerosol Burden in The Twenty-First Century in the Southeast United States

    Science.gov (United States)

    Feng, N.; Tosca, M.; Kalashnikova, O. V.; Campbell, J. R.; Garay, M. J.; Seidel, F. C.

    2017-12-01

    The Southeast US (SEUS) has long been recognized as a region where the climatic effect of atmospheric aerosols can cool the Earth and have thus reduced the effect of greenhouse warming. However, previous studies have assessed that abundant carbonaceous aerosols over SEUS from a combination of anthropogenic and natural sources are systematically underestimated by most atmospheric models, especially during summer when the average carbon concentration in SEUS is the highest in the country. In this study, we utilize an ensemble of surface (AERONET) and satellite (MISR, CALIPSO) observations over the SEUS from 2001 to 2015 to better understand the spatially and vertically-resolved decadal trend of SEUS aerosol burden. Results from CALIOP show significant aerosol loading extending from the surface to 5km year-round. Additionally, these data show aerosol extinction coefficients as large as 0.01 km-1 extending well above 8km during the summertime. CALIOP measurements corroborate seasonal observations from MISR and indicate that much of the aerosol burden in the SEUS is comprised of smoke, polluted continental and polluted dust species. Using boundary layer heights from the ERA Interim dataset, CALIOP data show that while summertime aerosol burden above the boundary layer (elevated) is equal to about half of the AOD in the surface layer (0.17 vs. 0.08), during wintertime, the vast majority of aerosols are below the boundary layer (0.12 vs. 0.03). Despite strong seasonality in overall aerosol burden, decadal trends in AOD did not exhibit similarly large seasonal differences; data show AOD decreasing between 2001 and 2015 during both summer and winter and in both the MISR and CALIOP datasets. Between 2001 and 2015, the average summertime aerosol optical depth (AOD) from MISR fell from 0.23 to 0.15, and the trend was -0.05 decade-1 (23% decade-1). The fit was statistically significant, with an r2=0.53. Measurement campaigns such as SEAC4RC will be extensively leveraged, which

  13. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  14. Optical and radiative properties of aerosols during a severe haze episode over the North China Plain in December 2016

    Science.gov (United States)

    Zheng, Yu; Che, Huizheng; Yang, Leiku; Chen, Jing; Wang, Yaqiang; Xia, Xiangao; Zhao, Hujia; Wang, Hong; Wang, Deying; Gui, Ke; An, Linchang; Sun, Tianze; Yu, Jie; Kuang, Xiang; Li, Xin; Sun, Enwei; Zhao, Dapeng; Yang, Dongsen; Guo, Zengyuan; Zhao, Tianliang; Zhang, Xiaoye

    2017-12-01

    The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was 1.4 as the haze pollution developed. The Ångström exponent was > 0.80 for most of the study period. The daily single-scattering albedo was > 0.85 over all of the North China Plain on the most polluted days and was > 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05-0.21 and 0.01-0.43 μm3, respectively—that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01-0.11 in Beijing, 0.01-0.13 in Shijiazhuang, and 0.01-0.04 in Jiaozuo, and the average absorption Ångström exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from -23 to -227,-34 to -199, and -29 to -191 W m-2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from -4 to -98, -10 to -51, and -21 to -143 W m-2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribution from local emissions and pollutants transport from upstream areas were 190-450 and 100-410 μg m-3, respectively.

  15. How do A-train Sensors Inter-Compare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study based Assessment

    Science.gov (United States)

    Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.

    2013-12-01

    Atmospheric aerosols are known to produce a net cooling effect in the cloud-free conditions. However, when present over the reflective cloud decks, absorbing aerosols such as biomass burning generated smoke and wind-blown dust can potentially exert a large positive forcing through enhanced atmospheric heating resulting from cloud-aerosol radiative interactions. The interest on this aspect of aerosol science has grown significantly in the recent years. Particularly, development of the satellite-based retrieval techniques and unprecedented knowledge on the above-cloud aerosol optical depth (ACAOD) is of great relevance. A direct validation of satellite ACAOD is a difficult task primarily due to lack of ample in situ and/or remote sensing measurements of aerosols above cloud. In these circumstances, a comparative analysis on the inter-satellite ACAOD retrievals can be performed for the sack of consistency check. Here, we inter-compare the ACAOD of biomass burning plumes observed from different A-train sensors, i.e., MODIS [Jethva et al., 2013], CALIOP [Chand et al., 2008], POLDER [Waquet et al., 2009], and OMI [Torres et al., 2012]. These sensors have been shown to acquire sensitivity and independent capabilities to detect and retrieve aerosol loading above marine stratocumulus clouds--a kind of situation often found over the southeastern Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods retrieve comparable ACAOD over homogeneous cloud fields. The high-resolution sensors (MODIS and CALIOP) are able to retrieve aerosols over thin clouds but with larger discrepancies. Given the different types of sensor measurements processed with different algorithms, a reasonable agreement between them is encouraging. A direct validation of satellite-based ACAOD remains an open challenge for which dedicated field measurements over the region of frequent aerosol/cloud overlap are

  16. Validating MODIS Above-Cloud Aerosol Optical Depth Retrieved from Color Ratio Algorithm Using Direct Measurements Made by NASA's Airborne AATS and 4STAR Sensors

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob

    2016-01-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.

  17. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    Science.gov (United States)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  18. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Science.gov (United States)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  19. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    International Nuclear Information System (INIS)

    Emetere, M E; Esisio, F; Oladapo, F

    2017-01-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October. (paper)

  20. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    Science.gov (United States)

    Emetere, M. E.; Esisio, F.; Oladapo, F.

    2017-05-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October.

  1. Climatological aspects of aerosol optical properties in Northern Greece

    Directory of Open Access Journals (Sweden)

    E. Gerasopoulos

    2003-01-01

    Full Text Available Measurements of aerosol optical properties (aerosol optical depth, scattering and backscattering coefficients have been conducted at two ground-based sites in Northern Greece, Ouranoupolis (40° 23' N, 23° 57' E, 170 m a.s.l. and Thessaloniki (40° 38' N, 22° 57' E, 80 m a.s.l., between 1999 and 2002. The frequency distributions of the observed parameters have revealed the presence of individual modes of high and low values, indicating the influence from different sources. At both sites, the mean aerosol optical depth at 500 nm was 0.23. Values increase considerably during summer when they remain persistently between 0.3 and 0.5, going up to 0.7-0.8 during specific cases. The mean value of 65±40 Mm-1 of the particle scattering coefficient at 550 nm reflects the impact of continental pollution in the regional boundary layer. Trajectory analysis has shown that higher values of aerosol optical depth and the scattering coefficient are found in the east sector (former Soviet Union countries, eastern Balkan countries, whereas cleaner conditions are found for the NW direction. The influence of Sahara dust events is clearly reflected in the Ångström exponents. About 45-60% of the observed diurnal variation of the optical properties was attributed to the growth of aerosols with humidity, while the rest of the variability is in phase with the evolution of the sea-breeze cell. The contribution of local pollution is estimated to contribute 35±10% to the average aerosol optical depth at the Thessaloniki site during summer. Finally, the aerosol scale height (aerosol optical depth divided by scattering coefficient was found to be related to the height of the boundary layer with values between 0.5-1 km during winter and up to 2.5-3 km during summer.

  2. Digital optical feeder links system for broadband geostationary satellite

    Science.gov (United States)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  3. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Science.gov (United States)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  4. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    Science.gov (United States)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the

  5. Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Lurton

    2018-03-01

    Full Text Available Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2, which is oxidized to form sulfuric acid aerosol particles that can enhance the stratospheric aerosol optical depth (SAOD. Besides large-magnitude eruptions, moderate-magnitude eruptions such as Kasatochi in 2008 and Sarychev Peak in 2009 can have a significant impact on stratospheric aerosol and hence climate. However, uncertainties remain in quantifying the atmospheric and climatic impacts of the 2009 Sarychev Peak eruption due to limitations in previous model representations of volcanic aerosol microphysics and particle size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, the 2009 Sarychev Peak eruption co-injected hydrogen chloride (HCl alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. We present a study of the stratospheric SO2–particle–HCl processing and impacts following Sarychev Peak eruption, using the Community Earth System Model version 1.0 (CESM1 Whole Atmosphere Community Climate Model (WACCM – Community Aerosol and Radiation Model for Atmospheres (CARMA sectional aerosol microphysics model (with no a priori assumption on particle size. The Sarychev Peak 2009 eruption injected 0.9 Tg of SO2 into the upper troposphere and lower stratosphere (UTLS, enhancing the aerosol load in the Northern Hemisphere. The post-eruption evolution of the volcanic SO2 in space and time are well reproduced by the model when compared to Infrared Atmospheric Sounding Interferometer (IASI satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx compared to the simulation with volcanic SO2 only. We therefore highlight the need to account for volcanic halogen chemistry when simulating the impact of eruptions

  6. Aerosol optical properties and precipitable water vapor column in the atmosphere of Norway.

    Science.gov (United States)

    Muyimbwa, Dennis; Frette, Øyvind; Stamnes, Jakob J; Ssenyonga, Taddeo; Chen, Yi-Chun; Hamre, Børge

    2015-02-20

    Between February 2012 and April 2014, we measured and analyzed direct solar radiances at a ground-based station in Bergen, Norway. We discovered that the spectral aerosol optical thickness (AOT) and precipitable water vapor column (PWVC) retrieved from these measurements have a seasonal variation with highest values in summer and lowest values in winter. The highest value of the monthly median AOT at 440 nm of about 0.16 was measured in July and the lowest of about 0.04 was measured in December. The highest value of the monthly median PWVC of about 2.0 cm was measured in July and the lowest of about 0.4 cm was measured in December. We derived Ångström exponents that were used to deduce aerosol particle size distributions. We found that coarse-mode aerosol particles dominated most of the time during the measurement period, but fine-mode aerosol particles dominated during the winter seasons. The derived Ångström exponent values suggested that aerosols containing sea salt could have been dominating at this station during the measurement period.

  7. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  8. Studies on aerosol properties during ICARB–2006 campaign period ...

    Indian Academy of Sciences (India)

    Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over ...

  9. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-01-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2–5.3 km altitude in the forest fire plumes compared to 2.2–3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources. (letter)

  10. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  11. Classification of aerosol properties derived from AERONET direct sun data

    Directory of Open Access Journals (Sweden)

    G. P. Gobbi

    2007-01-01

    Full Text Available Aerosol spectral measurements by sunphotometers can be characterized by three independent pieces of information: 1 the optical thickness (AOT, a measure of the column aerosol concentration, 2 the optical thickness average spectral dependence, given by the Angstrom exponent (α, and 3 the spectral curvature of α (δα. We propose a simple graphical method to visually convert (α, δα to the contribution of fine aerosol to the AOT and the size of the fine aerosols. This information can be used to track mixtures of pollution aerosol with dust, to distinguish aerosol growth from cloud contamination and to observe aerosol humidification. The graphical method is applied to the analysis of yearly records at 8 sites in 3 continents, characterized by different levels of pollution, biomass burning and mineral dust concentrations. Results depict the dominance of fine mode aerosols in driving the AOT at polluted sites. In stable meteorological conditions, we see an increase in the size of the fine aerosol as the pollution stagnates and increases in optical thickness. Coexistence of coarse and fine particles is evidenced at the polluted sites downwind of arid regions.

  12. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  13. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  14. Operational aerosol and dust storm forecasting

    International Nuclear Information System (INIS)

    Westphal, D L; Curtis, C A; Liu, M; Walker, A L

    2009-01-01

    The U. S. Navy now conducts operational forecasting of aerosols and dust storms on global and regional scales. The Navy Aerosol Analysis and Prediction System (NAAPS) is run four times per day and produces 6-day forecasts of sulfate, smoke, dust and sea salt aerosol concentrations and visibility for the entire globe. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS (registered) ) is run twice daily for Southwest Asia and produces 3-day forecasts of dust, smoke, and visibility. The graphical output from these models is available on the Internet (www.nrlmry.navy.mil/aerosol/). The aerosol optical properties are calculated for each specie for each forecast output time and used for sea surface temperature (SST) retrieval corrections, regional electro-optical (EO) propagation assessments, and the development of satellite algorithms. NAAPS daily aerosol optical depth (AOD) values are compared with the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD values. Visibility forecasts are compared quantitatively with surface synoptic reports.

  15. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations

    Science.gov (United States)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong

    2018-06-01

    Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation

  16. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    Science.gov (United States)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  17. Three-Dimensional Physical and Optical Characteristics of Aerosols over Central China from Long-Term CALIPSO and HYSPLIT Data

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2018-02-01

    Full Text Available Aerosols greatly influence global and regional atmospheric systems, and human life. However, a comprehensive understanding of the source regions and three-dimensional (3D characteristics of aerosol transport over central China is yet to be achieved. Thus, we investigate the 3D macroscopic, optical, physical, and transport properties of the aerosols over central China based on the March 2007 to February 2016 data obtained from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO mission and the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT model. Our results showed that approximately 60% of the aerosols distributed over central China originated from local areas, whereas non-locally produced aerosols constituted approximately 40%. Anthropogenic aerosols constituted the majority of the aerosol pollutants (69% that mainly distributed less than 2.0 km above mean sea level. Natural aerosols, which are mainly composed of dust, accounted for 31% of the total aerosols, and usually existed at an altitude higher than that of anthropogenic aerosols. Aerosol particles distributed in the near surface were smaller and more spherical than those distributed above 2.0 km. Aerosol optical depth (AOD and the particulate depolarization ratio displayed decreasing trends, with a total decrease of 0.11 and 0.016 from March 2007 to February 2016, respectively. These phenomena indicate that during the study period, the extinction properties of aerosols decreased, and the degree of sphericity in aerosol particles increased. Moreover, the annual anthropogenic and natural AOD demonstrated decreasing trends, with a total decrease of 0.07 and 0.04, respectively. This study may benefit the evaluation of the effects of the 3D properties of aerosols on regional climates.

  18. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  19. Determination of tropospheric vertical columns of NO2 and aerosol optical properties in a rural setting using MAX-DOAS

    Directory of Open Access Journals (Sweden)

    M. O. Wenig

    2011-12-01

    Full Text Available Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS measurements were performed in a rural location of southwestern Ontario during the Border Air Quality and Meteorology Study. Slant column densities (SCDs of NO2 and O4 were determined using the standard DOAS technique. Using a radiative transfer model and the O4 SCDs, aerosol optical depths were determined for clear sky conditions and compared to OMI, MODIS, AERONET, and local PM2.5 measurements. This aerosol information was input to a radiative transfer model to calculate NO2 air mass factors, which were fit to the measured NO2 SCDs to determine tropospheric vertical column densities (VCDs of NO2. The method of determining NO2 VCDs in this way was validated for the first time by comparison to composite VCDs derived from aircraft and ground-based measurements of NO2. The new VCDs were compared to VCDs of NO2 determined via retrievals from the satellite instruments SCIAMACHY and OMI, for overlapping time periods. The satellite-derived VCDs were higher, with a mean bias of +0.5–0.9×1015 molec cm−2. This last finding is different from previous studies whereby MAX-DOAS geometric VCDs were higher than satellite determinations, albeit for urban areas with higher VCDs. An effective boundary layer height, BLHeff, is defined as the ratio of the tropospheric VCD and the ground level concentration of NO2. Variations of BLHeff can be linked to time of day, source region, stability of the atmosphere, and the presence or absence of elevated NOx sources. In particular, a case study is shown where a high VCD and BLHeff were observed when an elevated industrial plume of NOx and SO2 was fumigated to the surface as a lake breeze impacted the measurement site. High BLHeff values (~1.9 km were observed during a regional smog event when high winds from the SW and high convection promoted mixing throughout the boundary layer. During this event, the regional line flux of NO2 through the region was

  20. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  1. Monitoring spatial-temporal variability of aerosol over Kenya ...

    African Journals Online (AJOL)

    This study sought to investigate the spatial and temporal variations of aerosols over Kenya based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor Aerosol Optical Depth (AOD) data for the period between 2001 and 2012. A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) ...

  2. Two MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets.

    Science.gov (United States)

    Ignatov, Alexander; Minnis, Patrick; Loeb, Norman; Wielicki, Bruce; Miller, Walter; Sun-Mack, Sunny; Tanré, Didier; Remer, Lorraine; Laszlo, Istvan; Geier, Erika

    2005-04-01

    Understanding the impact of aerosols on the earth's radiation budget and the long-term climate record requires consistent measurements of aerosol properties and radiative fluxes. The Clouds and the Earth's Radiant Energy System (CERES) Science Team combines satellite-based retrievals of aerosols, clouds, and radiative fluxes into Single Scanner Footprint (SSF) datasets from the Terra and Aqua satellites. Over ocean, two aerosol products are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) using different sampling and aerosol algorithms. The primary, or M, product is taken from the standard multispectral aerosol product developed by the MODIS aerosol group while a simpler, secondary [Advanced Very High Resolution Radiometer (AVHRR) like], or A, product is derived by the CERES Science Team using a different cloud clearing method and a single-channel aerosol algorithm. Two aerosol optical depths (AOD), τA1 and τA2, are derived from MODIS bands 1 (0.644 μm) and 6 (1.632 μm) resembling the AVHRR/3 channels 1 and 3A, respectively. On Aqua the retrievals are made in band 7 (2.119 μm) because of poor quality data from band 6. The respective Ångström exponents can be derived from the values of τ. The A product serves as a backup for the M product. More importantly, the overlap of these aerosol products is essential for placing the 20+ year heritage AVHRR aerosol record in the context of more advanced aerosol sensors and algorithms such as that used for the M product.This study documents the M and A products, highlighting their CERES SSF specifics. Based on 2 weeks of global Terra data, coincident M and A AODs are found to be strongly correlated in both bands. However, both domains in which the M and A aerosols are available, and the respective τ/α statistics significantly differ because of discrepancies in sampling due to differences in cloud and sun-glint screening. In both aerosol products, correlation is observed between the retrieved

  3. Estimating marine aerosol particle volume and number from Maritime Aerosol Network data

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2012-09-01

    Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of

  4. Aerosol climatology over the Mexico City basin: Characterization of optical properties

    Science.gov (United States)

    Carabali, Giovanni; Estévez, Héctor Raúl; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor Manuel; Vázquez-Gálvez, Felipe Adrián

    2017-09-01

    Climatology of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), and aerosol particle-size distribution were analyzed using a 15-year (1999-2014) dataset from AErosol RObotic NETwork (AERONET) observations over the Mexico City (MC) basin. The atmosphere over this site is dominated by two main aerosol types, represented by urban/industrial pollution and biomass-burning particles. Due to the specific meteorological conditions within the basin, seasons are usually classified into three as follows: Dry Winter (DW) (November-February); Dry Spring (DS) (March-April), and the RAiny season (RA) (May-October), which are mentioned throughout this article. Using a CIMEL sun photometer, we conducted continuous observations over the MC urban area from January 1999 to December 2014. Aerosol Optical Depth (AOD), Ångström exponent (α440-870), Single Scattering Albedo (SSA), and aerosol particle-size distribution were derived from the observational data. The overall mean AOD500 during the 1999-2014 period was 0.34 ± 0.07. The monthly mean AOD reached a maximal value of 0.49 in May and a minimal value of 0.27 in February and March. The average α440-870 value for the period studied was 1.50 ± 0.16. The monthly average of α440-870 reached a minimal value of 1.32 in August and a maximal value of 1.61 in May. Average SSA at 440 nm was 0.89 throughout the observation period, indicating that aerosols over Mexico City are composed mainly of absorptive particles. Concentrations of fine- and coarse-mode aerosols over MC were highest in DS season compared with other seasons, especially for particles with radii measuring between 0.1 and 0.2 μm. Results from the Spectral De-convolution Algorithm (SDA) show that fine-mode aerosols dominated AOD variability in MC. In the final part of this article, we present a classification of aerosols in MC by using the graphical method proposed by Gobbi et al. (2007), which is based on the combined analysis of α and its spectral curvature

  5. The Effect of Central American Smoke Aerosols on the Air Quality and Climate over the Southeastern United States: First Results from RAMS-AROMA

    Science.gov (United States)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J.; Prins, E. M.; Szykman, J.

    2004-12-01

    Observation shows that smoke aerosols from biomass burning activities in Central America can be transported to the Southeastern United States (SEUS). In this study, the Regional Atmospheric Modeling System - Assimilation and Radiation Online Modeling of Aerosols (RAMS-AROMA) is used to investigate the effect of transported smoke aerosols on climate and air quality over the SEUS. AROMA is an aerosol transport model with capabilities of online integration of aerosol radiation effects and online assimilation of satellite-derived aerosol and emission products. It is assembled within the RAMS, so two-way interactions between aerosol fields and other meteorology fields are achieved simultaneously during each model time step. RAMS-AROMA is a unique tool that can be used to examine the aerosol radiative impacts on the surface energy budget and atmospheric heating rate and to investigate how atmospheric thermal and dynamical processes respond to such impacts and consequently affect the aerosol distribution (so called feedbacks). First results regarding air quality effects and radiative forcing of transported smoke aerosols will be presented from RAMS-AROMA based on assimilation of smoke emission products from the Fire Locating and Modeling of Burning Emissions (FLAMBE) project and aerosol optical thickness data derived from the MODIS instrument on the Terra and Aqua satellites. Comparisons with PM2.5 data collected from the EPA observation network and the aerosol optical thickness data from the DOE Atmosphere Radiation Measurements in the Southern Great Plains (ARM SGP) showed that RAMS-AROMA can predict the timing and spatial distribution of smoke events very well, with an accuracy useful for air quality forecasts. The smoke radiative effects on the surface temperature and atmospheric heating rate as well as their feedbacks will also be discussed.

  6. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  7. Validation of new satellite aerosol optical depth retrieval algorithm using Raman lidar observations at radiative transfer laboratory in Warsaw

    Science.gov (United States)

    Zawadzka, Olga; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Nemuc, Anca; Stebel, Kerstin

    2018-04-01

    During an exceptionally warm September of 2016, the unique, stable weather conditions over Poland allowed for an extensive testing of the new algorithm developed to improve the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth (AOD) retrieval. The development was conducted in the frame of the ESA-ESRIN SAMIRA project. The new AOD algorithm aims at providing the aerosol optical depth maps over the territory of Poland with a high temporal resolution of 15 minutes. It was tested on the data set obtained between 11-16 September 2016, during which a day of relatively clean atmospheric background related to an Arctic airmass inflow was surrounded by a few days with well increased aerosol load of different origin. On the clean reference day, for estimating surface reflectance the AOD forecast available on-line via the Copernicus Atmosphere Monitoring Service (CAMS) was used. The obtained AOD maps were validated against AODs available within the Poland-AOD and AERONET networks, and with AOD values obtained from the PollyXT-UW lidar. of the University of Warsaw (UW).

  8. Development and experimental evaluation of an optical sensor for aerosol particle characterization

    Energy Technology Data Exchange (ETDEWEB)

    Somesfalean, G.

    1998-03-01

    A sensor for individual aerosol particle characterization, based on a single-mode semiconductor laser coupled to an external cavity is presented. The light emitting semiconductor laser acts as a sensitive optical detector itself, and the whole system has the advantage of using conventional optical components and providing a compact set-up. Aerosol particles moving through the sensing volume, which is located in the external cavity of a semiconductor laser, scatter and absorb light. Thereby they act as small disturbances on the electromagnetic field inside the dynamic multi-cavity laser system. From the temporal variation of the output light intensity, information about the number, velocity, size, and refractive index of the aerosol particles can be derived. The diffracted light in the near-forward scattering direction is collected and Fourier-transformed by a lens, and subsequently imaged on a CCD camera. The recorded Fraunhofer diffraction pattern provides information about the projected area of the scattering particle, and can thus be used to determine the size and the shape of aerosol particles. The sensor has been tested on fibers which are of interest in the field of working environment monitoring. The recorded output intensity variation has been analysed, and the relationship between the shape and the size of each fibre, and the resulting scattering profiles has been investigated. A simple one-dimensional model for the optical feedback variation due to the light-particle interaction in the external cavity is also discussed 34 refs, 26 figs, 6 tabs

  9. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  10. RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES BASED ON THE OPTIMAL ESTIMATION METHOD: INFORMATION CONTENT ANALYSIS FOR SATELLITE POLARIMETRIC REMOTE SENSING MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Z. Hou

    2018-04-01

    Full Text Available This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  11. Retrieval of Aerosol Microphysical Properties Based on the Optimal Estimation Method: Information Content Analysis for Satellite Polarimetric Remote Sensing Measurements

    Science.gov (United States)

    Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.

    2018-04-01

    This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  12. Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific

    Science.gov (United States)

    Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.

    2005-12-01

    Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.

  13. Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008

    Directory of Open Access Journals (Sweden)

    J. Jung

    2010-06-01

    Full Text Available As a part of the IGAC (International Global Atmospheric Chemistry Mega-cities program, aerosol physical and optical properties were continuously measured from March 2007 to March 2008 at an urban site (37.57° N, 126.94° E in Seoul, Korea. Spectral optical properties of long-range transported Asian dust and pollution aerosols have been investigated based on the year long measurement data. Optically measured black carbon/thermally measured elemental carbon (BC/EC ratio showed clear monthly variation with high values in summer and low values in winter mainly due to the enhancement of light attenuation by the internal mixing of EC. Novel approach has been suggested to retrieve the spectral light absorption coefficient (babs from Aethalometer raw data by using BC/EC ratio. Mass absorption efficiency, σabs (=babs/EC at 550 nm was determined to be 9.0±1.3, 8.9±1.5, 9.5±2.0, and 10.3±1.7 m2 g−1 in spring, summer, fall, and winter, respectively with an annual mean of 9.4±1.8 m2 g−1. Threshold values to classify severe haze events were suggested in this study. Increasing trend of aerosol single scattering albedo (SSA with wavelength was observed during Asian dust events while little spectral dependence of SSA was observed during long-range transport pollution (LTP events. Satellite aerosol optical thickness (AOT and Hysplit air mass backward trajectory analyses as well as chemical analysis were performed to characterize the dependence of spectral optical properties on aerosol type. Results from this study can provide useful information for studies on regional air quality and aerosol's effects on climate change.

  14. Studies on aerosol optical properties over urban and semi-urban environments of Hyderabad and Anantapur

    International Nuclear Information System (INIS)

    Lata, K.M.; Badarinath, K.V.S.; Rao, T.V. Ramakrishna; Reddy, R.R.; Ahammed, Y. Nazeer; Gopal, K. Rama; Azeem, P. Abdul

    2003-01-01

    Aerosols in the troposphere exert an important influence on global climate and the environment through scattering, transmission and absorption of radiation as well as acting as nuclei for cloud formation. Atmospheric aerosol particles influence the earth's radiation balance directly by scattering of infrared energy and indirectly by modifying the properties of clouds through microphysical processes. The present study addresses visibility, radiative forcing, size distribution and attenuation of aerosols over the period from January to May, 2001 for urban and semi-urban regions of Hyderabad and Anantapur. High aerosol loading has been observed over urban environment compared to semi-urban environment. Aerosol optical depth values increased from January to April and then decreased during May over both urban and semi-urban regions. Over urban region, visibility decreased from January to April and increased during May. Similar trend has been observed over semi-urban region with relatively higher values of visibility. Radiative forcing estimated using aerosol optical depth values increased from January to April and then decreased during the month of May over urban and semi-urban areas. High visibility and low radiative forcing has been noticed over semi-urban area due to less aerosol loading. Wavelength exponent and turbidity coefficient registered high values over urban environment compared to semi-urban environment. Attenuation coefficient showed high values over urban region compared to semi-urban region. It reveals that semi-urban environment receives high solar flux than urban environment. Using 10 channel quartz crystal microbalance, measurements of total mass concentration and mass size distribution of near surface aerosols has been made over semi-urban environment and compared with size distribution derived from inversion methods based on aerosol optical depth variation with wavelength. The sensitivity of constrained linear inversions for inferring columnar

  15. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  16. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  17. Remote sensing for studying atmospheric aerosols in Malaysia

    Science.gov (United States)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  18. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  19. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    Science.gov (United States)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  20. Theoretical algorithms for satellite-derived sea surface temperatures

    Science.gov (United States)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  1. Response to Toward Unified Satellite Climatology of Aerosol Properties. 3; MODIS versus MISR versus AERONET

    Science.gov (United States)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didler

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.

  2. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  3. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of

  4. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Smith, Andrew J.A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  5. UV-Vis-IR spectral complex refractive indices and optical properties of brown carbon aerosol from biomass burning

    Science.gov (United States)

    Sumlin, Benjamin J.; Heinson, Yuli W.; Shetty, Nishit; Pandey, Apoorva; Pattison, Robert S.; Baker, Stephen; Hao, Wei Min; Chakrabarty, Rajan K.

    2018-02-01

    Constraining the complex refractive indices, optical properties and size of brown carbon (BrC) aerosols is a vital endeavor for improving climate models and satellite retrieval algorithms. Smoldering wildfires are the largest source of primary BrC, and fuel parameters such as moisture content, source depth, geographic origin, and fuel packing density could influence the properties of the emitted aerosol. We measured in situ spectral (375-1047 nm) optical properties of BrC aerosols emitted from smoldering combustion of Boreal and Indonesian peatlands across a range of these fuel parameters. Inverse Lorenz-Mie algorithms used these optical measurements along with simultaneously measured particle size distributions to retrieve the aerosol complex refractive indices (m = n + iκ). Our results show that the real part n is constrained between 1.5 and 1.7 with no obvious functionality in wavelength (λ), moisture content, source depth, or geographic origin. With increasing λ from 375 to 532 nm, κ decreased from 0.014 to 0.003, with corresponding increase in single scattering albedo (SSA) from 0.93 to 0.99. The spectral variability of κ follows the Kramers-Kronig dispersion relation for a damped harmonic oscillator. For λ ≥ 532 nm, both κ and SSA showed no spectral dependency. We discuss differences between this study and previous work. The imaginary part κ was sensitive to changes in FPD, and we hypothesize mechanisms that might help explain this observation.

  6. Optical intersatellite links - Application to commercial satellite communications

    Science.gov (United States)

    Paul, D.; Faris, F.; Garlow, R.; Inukai, T.; Pontano, B.; Razdan, R.; Ganz, Aura; Caudill, L.

    1992-01-01

    Application of optical intersatellite links for commercial satellite communications services is addressed in this paper. The feasibility of commercialization centers around basic issues such as the need and derived benefits, implementation complexity and overall cost. In this paper, commercialization of optical ISLs is assessed in terms of the services provided, systems requirements and feasibility of appropriate technology. Both long- and short-range ISLs for GEO-GEO, GEO-LEO and LEO applications are considered. Impact of systems requirements on the payload design and use of advanced technology in reducing its mass, power, and volume requirements are discussed.

  7. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    Science.gov (United States)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  8. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    Science.gov (United States)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate

  9. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  10. Variations of aerosol optical depth and Angstrom parameters at a ...

    Indian Academy of Sciences (India)

    In this paper, aerosol optical properties including aerosol optical depth (AOD), Angstrom exponent () and Angstrom turbidity coefficient () have been investigated during December 2009 to October 2010, in a suburban area of Zanjan (36°N, 43°E, 1700 m), in the north–west of Iran, using meteorological and sun ...

  11. Aerosol optical properties during firework, biomass burning and dust episodes in Beijing

    Science.gov (United States)

    Yu, Xingna; Shi, Chanzhen; Ma, Jia; Zhu, Bin; Li, Mei; Wang, Jing; Yang, Suying; Kang, Na

    2013-12-01

    In order to characterize the aerosol optical properties during different pollution episodes that occurred in Beijing, the aerosol loading, scattering, and size distributions are presented using solar and sky radiance measurements from 2001 to 2010 in this paper. A much higher aerosol loading than the background level was observed during the pollution episodes. The average aerosol optical depth (AOD) is largest during dust episodes coupled with the lowest Ångström exponent (α), while higher AOD and lower α were more correlated with firework and biomass burning days. The total mean AOD at 440, 675, 870 and 1020 nm were 0.24, 0.49, 0.64 and 1.38 in the clean, firework display, biomass burning and dust days, respectively. The mean α for dust days was 0.51 and exceeded 1.1 for the remaining episodes. The size distribution of the dusty periods was dominated by the coarse mode, but the coarse mode was similar magnitude to the fine mode during the firework and biomass burning days. The volume concentration of the coarse mode during the dust days increased by a magnitude of more than 2-8 times that derived in the other three aerosol conditions, suggesting that dust is the major contributor of coarse mode particles in Beijing. The single scattering albedo (SSA) values also increased during the pollution episodes. The overall mean SSA at the four wavelengths were 0.865, 0.911, 0.922 and 0.931 in clean, firework display, biomass burning, and dust days in Beijing, respectively. However, in the blue spectral range, the dust aerosols exhibited pronounced absorption.

  12. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    Science.gov (United States)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  13. Inter-annual variability of aerosol optical depth over the tropical Atlantic Ocean based on MODIS-Aqua observations over the period 2002-2012

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikolaos

    2013-04-01

    The tropical Atlantic Ocean is affected by dust and biomass burning aerosol loads transported from the western parts of the Saharan desert and the sub-Sahel regions, respectively. The spatial and temporal patterns of this transport are determined by the aerosol emission rates, their deposition (wet and dry), by the latitudinal shift of the Intertropical Convergence Zone (ITCZ) and the prevailing wind fields. More specifically, in summer, Saharan dust aerosols are transported towards the Atlantic Ocean, even reaching the Gulf of Mexico, while in winter the Atlantic Ocean transport takes place in more southern latitudes, near the equator, sometimes reaching the northern parts of South America. In the later case, dust is mixed with biomass burning aerosols originating from agricultural activities in the sub-Sahel, associated with prevailing north-easterly airflow (Harmattan winds). Satellite observations are the appropriate tool for describing this African aerosol export, which is important to atmospheric, oceanic and climate processes, offering the advantage of complete spatial coverage. In the present study, we use satellite measurements of aerosol optical depth at 550nm (AOD550nm), on a daily and monthly basis, derived from MODIS-Aqua platform, at 1ox1o spatial resolution (Level 3), for the period 2002-2012. The primary objective is to determine the pixel-level and regional mean anomalies of AOD550nm over the entire study period. The regime of the anomalies of African export is interpreted in relation to the aerosol source areas, precipitation, wind patterns and temporal variability of the North Atlantic Oscillation Index (NAOI). In order to ensure availability of AOD over the Sahara desert, MODIS-Aqua Deep Blue products are also used. As for precipitation, Global Precipitation Climatology Project (GPCP) data at 2.5ox2.5o are used. The wind fields are taken from the National Center for Environmental Prediction (NCEP). Apart from the regime of African aerosol export

  14. Study of total column atmospheric aerosol optical depth, ozone and ...

    Indian Academy of Sciences (India)

    Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using the on-line, multi-band solar radiometers onboard ORV Sagar Kanya (Cruise#SK 147B) over Bay of Bengal during 11th-28th August 1999. Aerosol optical and ...

  15. Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model

    Directory of Open Access Journals (Sweden)

    R. Cherian

    2012-02-01

    Full Text Available In this paper we analyse aerosol loading and its direct radiative effects over the Bay of Bengal (BoB and Arabian Sea (AS regions for the Integrated Campaign on Aerosols, gases and Radiation Budget (ICARB undertaken during 2006, using satellite data from the MODerate Resolution Imaging Spectroradiometer (MODIS on board the Terra and Aqua satellites, the Aerosol Index from the Ozone Monitoring Instrument (OMI on board the Aura satellite, and the European-Community Hamburg (ECHAM5.5 general circulation model extended by Hamburg Aerosol Module (HAM. By statistically comparing with large-scale satellite data sets, we firstly show that the aerosol properties measured during the ship-based ICARB campaign and simulated by the model are representative for the BoB and AS regions and the pre-monsoon season. In a second step, the modelled aerosol distributions were evaluated by a comparison with the measurements from the ship-based sunphotometer, and the satellite retrievals during ICARB. It is found that the model broadly reproduces the observed spatial and temporal variability in aerosol optical depth (AOD over BoB and AS regions. However, AOD was systematically underestimated during high-pollution episodes, especially in the BoB leg. We show that this underprediction of AOD is mostly because of the deficiencies in the coarse mode, where the model shows that dust is the dominant component. The analysis of dust AOD along with the OMI Aerosol Index indicate that missing dust transport that results from too low dust emission fluxes over the Thar Desert region in the model caused this deficiency. Thirdly, we analysed the spatio-temporal variability of AOD comparing the ship-based observations to the large-scale satellite observations and simulations. It was found that most of the variability along the track was from geographical patterns, with a minor influence by single events. Aerosol fields were homogeneous enough to yield a good statistical agreement

  16. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; hide

    2015-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  17. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  18. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  19. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    Science.gov (United States)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  20. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  1. Development of IDEA product for GOES-R aerosol data

    Science.gov (United States)

    Zhang, Hai; Hoff, Raymond M.; Kondragunta, Shobha

    2009-08-01

    The NOAA GOES-R Advanced Baseline Imager (ABI) will have nearly the same capabilities as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) to generate multi-wavelength retrievals of aerosol optical depth (AOD) with high temporal and spatial resolution, which can be used as a surrogate of surface particulate measurements such as PM2.5 (particulate matter with diameter less than 2.5 μm). To prepare for the launch of GOES-R and its application in the air quality forecasting, we have transferred and enhanced the Infusing satellite Data into Environmental Applications (IDEA) product from University of Wisconsin to NOAA NESDIS. IDEA was created through a NASA/EPA/NOAA cooperative effort. The enhanced IDEA product provides near-real-time imagery of AOD derived from multiple satellite sensors including MODIS Terra, MODIS Aqua, GOES EAST and GOES WEST imager. Air quality forecast guidance is produced through a trajectory model initiated at locations with high AOD retrievals and/or high aerosol index (AI) from OMI (Ozone Monitoring Instrument). The product is currently running at http://www.star.nesdis.noaa.gov/smcd/spb/aq/. The IDEA system will be tested using the GOES-R ABI proxy dataset, and will be ready to operate with GOES-R aerosol data when GOES-R is launched.

  2. Fiber optic sensing for telecommunication satellites

    Science.gov (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  3. A hydro-optical model for deriving water quality variables from satellite images (HydroSat): A case study of the Nile River demonstrating the future Sentinel-2 capabilities

    NARCIS (Netherlands)

    Salama, M.; Radwan, M.; van der Velde, R.

    2012-01-01

    This paper describes a hydro-optical model for deriving water quality variables from satellite images, hereafter HydroSat. HydroSat corrects images for atmospheric interferences and simultaneously retrieves water quality variables. An application of HydroSat to Landsat Enhanced Thematic Mapper (ETM)

  4. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.

    2011-10-01

    One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of

  5. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Spaceborne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  6. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  7. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    International Nuclear Information System (INIS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Liu Li; Remer, Lorraine

    2004-01-01

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis

  8. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    Science.gov (United States)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  9. Impacts of Aerosol Direct Effects on the South Asian climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/surface Measurements

    Science.gov (United States)

    Wang, S.; Gautam, R.; Lau, W. K.; Tsay, S.; Sun, W.; Kim, K.; Chern, J.; Colarco, P. R.; Hsu, N. C.; Lin, N.

    2011-12-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation. In addition to modeling study, we will also present the most recent results on aerosol properties, regional aerosol absorption, and radiative forcing estimation based on NASA's operational satellite and ground-based remote sensing. Observational results show spatial gradients in aerosol loading and solar absorption accounting over Indo-Gangetic Plains during the pre-monsoon season. The

  10. Comparative Time Series Analysis of Aerosol Optical Depth over Sites in United States and China Using ARIMA Modeling

    Science.gov (United States)

    Li, X.; Zhang, C.; Li, W.

    2017-12-01

    Long-term spatiotemporal analysis and modeling of aerosol optical depth (AOD) distribution is of paramount importance to study radiative forcing, climate change, and human health. This study is focused on the trends and variations of AOD over six stations located in United States and China during 2003 to 2015, using satellite-retrieved Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 retrievals and ground measurements derived from Aerosol Robotic NETwork (AERONET). An autoregressive integrated moving average (ARIMA) model is applied to simulate and predict AOD values. The R2, adjusted R2, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Bayesian Information Criterion (BIC) are used as indices to select the best fitted model. Results show that there is a persistent decreasing trend in AOD for both MODIS data and AERONET data over three stations. Monthly and seasonal AOD variations reveal consistent aerosol patterns over stations along mid-latitudes. Regional differences impacted by climatology and land cover types are observed for the selected stations. Statistical validation of time series models indicates that the non-seasonal ARIMA model performs better for AERONET AOD data than for MODIS AOD data over most stations, suggesting the method works better for data with higher quality. By contrast, the seasonal ARIMA model reproduces the seasonal variations of MODIS AOD data much more precisely. Overall, the reasonably predicted results indicate the applicability and feasibility of the stochastic ARIMA modeling technique to forecast future and missing AOD values.

  11. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    Science.gov (United States)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; hide

    2013-01-01

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust

  12. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    Directory of Open Access Journals (Sweden)

    J. Michel Flores

    2012-06-01

    Full Text Available One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS and a tandem hygroscopic DMA (differential mobility analyzer are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements.

    We found a weak linear dependence or no dependence of fRH(%RH, Dry with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1

  13. The direct radiative effect of biomass burning aerosols over southern Africa

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2005-01-01

    Full Text Available A multi-column radiative transfer code is used to assess the direct radiative effect of biomass burning aerosols over the southern African region during September. The horizontal distribution of biomass smoke is estimated from two sources; i General Circulation Model (GCM simulations combined with measurements from the Aerosol Robotic Network (AERONET of Sun photometers; ii data from the Moderate resolution Imaging Spectrometer (MODIS satellite. Aircraft and satellite measurements are used to constrain the cloud fields, aerosol optical properties, vertical structure, and land surface albedo included in the model. The net regional direct effect of the biomass smoke is -3.1 to -3.6 Wm-2 at the top of atmosphere, and -14.4 to -17.0 Wm-2 at the surface for the MODIS and GCM distributions of aerosol. The direct radiative effect is shown to be highly sensitive to the prescribed vertical profiles and aerosol optical properties. The diurnal cycle of clouds and the spectral dependency of surface albedo are also shown to play an important role.

  14. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma

    Directory of Open Access Journals (Sweden)

    E. Andrews

    2011-10-01

    Full Text Available A small airplane made 597 aerosol optical property (light absorption and light scattering vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption. The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter, particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and

  15. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  16. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Science.gov (United States)

    Sun, Tianze; Che, Huizheng; Qi, Bing; Wang, Yaqiang; Dong, Yunsheng; Xia, Xiangao; Wang, Hong; Gui, Ke; Zheng, Yu; Zhao, Hujia; Ma, Qianli; Du, Rongguang; Zhang, Xiaoye

    2018-03-01

    The climatological variation of aerosol properties and the planetary boundary layer (PBL) during 2013-2015 over the Yangtze River Delta (YRD) region were investigated by employing ground-based Micro Pulse Lidar (MPL) and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF) model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD) in June and September is higher due to high single scattering albedo (SSA) from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH) is greater (means ranging from 1.23 to 1.84 km) and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by stable weather conditions

  17. Validation of MODIS aerosol optical depth over the Mediterranean Coast

    Science.gov (United States)

    Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial

  18. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans

    Science.gov (United States)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K.

    2018-01-01

    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. The sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.

  19. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    Science.gov (United States)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  20. Optical investigation of high-speed aerosol-microjets

    International Nuclear Information System (INIS)

    Haegele, J.

    1982-01-01

    Aerosol-jets are generated by the expansion of an aerosol-gas mixture from different types of micro-nozzles. The particle velocity is measured by means of a Fabry-Perot laser Doppler anemometer, whereas the geometrical structure of the jet will be investigated by direct optical observation. Comparative measurements show that Laval-nozzles are more suitable for the generation of rapid, intense aerosol-jets than simple orifices, because the internal energy of the carrier gas may be transformed more perfectly into one-directional kinetic energy. Moreover, the particles gain high velocities due to the smooth acceleration process. (author)

  1. Easy Volcanic Aerosol (EVA v1.0: an idealized forcing generator for climate simulations

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2016-11-01

    Full Text Available Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  2. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    Science.gov (United States)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  3. Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool

    Science.gov (United States)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas; hide

    2007-01-01

    Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.

  4. Comparison of Coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer Aerosol Optical Depths over Land and Ocean Scenes Containing Aerosol Robotic Network Sites

    Science.gov (United States)

    Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent

    2005-01-01

    The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.

  5. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China

    Science.gov (United States)

    Che, Huizheng; Qi, Bing; Zhao, Hujia; Xia, Xiangao; Eck, Thomas F.; Goloub, Philippe; Dubovik, Oleg; Estelles, Victor; Cuevas-Agulló, Emilio; Blarel, Luc; Wu, Yunfei; Zhu, Jun; Du, Rongguang; Wang, Yaqiang; Wang, Hong; Gui, Ke; Yu, Jie; Zheng, Yu; Sun, Tianze; Chen, Quanliang; Shi, Guangyu; Zhang, Xiaoye

    2018-01-01

    Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71-0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (˜ 0.40-0.60) than in January and February (0.71-0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ˜ 0.04-0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was -93 ± 44 to -79 ± 39 W m-2 at the Earth's surface and ˜ -40 W m-2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80°) under cloud-free conditions. The fine mode

  6. Regional variation of carbonaceous aerosols from space and simulations

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal

  7. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  8. Lidar-measurement of the atmospheric aerosols' extinction based on the field study SAMUM-1; Lidar-Messung der Extinktion des atmosphaerischen Aerosols am Beispiel der Feldstudie SAMUM-1

    Energy Technology Data Exchange (ETDEWEB)

    Esselborn, Michael

    2008-07-01

    In the frame of this thesis a high-resolution spectral LIDAR (HSRL) was used for the field study SAMUM during May/June 2006 and January/February 2008 on board of the research aircraft Falcon. The intensity of the LIDAR signals are mainly influences by backscattering and extinction of atmospheric particles (aerosols). Using a narrow-band optical filter the HSRL allows the measurement of the molecular backscattering besides the total atmospheric backscattering. During SAMUM-1 the optical properties of the Sahara dust aerosols were measured for the first time, esp. its extinction, the ratio extinction/backscattering and the depolarization close to the source region. The results of the optical density of the aerosols were compared with satellite-based data. South of the Atlas-mountains optical aerosol densities in the range of 0.50 to 0.60 were measured.

  9. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    Science.gov (United States)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  10. Variability of aerosol optical depth and Angstrom wavelength exponent derived from AERONET observations in recent decades

    International Nuclear Information System (INIS)

    Xia Xiangao

    2011-01-01

    Using aerosol loading data from 79 Aerosol Robotic Network (AERONET) stations with observations from more than six years, changes in aerosol optical depth (AOD) and Angstrom wavelength exponent (AWE) were studied. A statistical method was developed to determine whether AOD changes were due to increased background AOD values and/or an increased number of high AOD events. AOD decreased significantly at AERONET sites in northeastern North American and in Western Europe, which was accompanied by decreased AWE. Reduction of AOD there was mainly due to a decreased frequency of high AOD events and an increased frequency of background AOD events. In addition, decreased AOD values for high AOD events also accounted for ∼ 16–32% of the AOD reduction. This is indicative of significant meteorological effects on AOD variability. AOD trends in other regions were marginal and most were not significant; however, AOD increased significantly at one site in the Sahel and another in Saudi Arabia, predominantly due to the increased frequency of high AOD events and their average AOD.

  11. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    Science.gov (United States)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  12. Aerosol Retrieval Sensitivity and Error Analysis for the Cloud and Aerosol Polarimetric Imager on Board TanSat: The Effect of Multi-Angle Measurement

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-02-01

    Full Text Available Aerosol scattering is an important source of error in CO2 retrievals from satellite. This paper presents an analysis of aerosol information content from the Cloud and Aerosol Polarimetric Imager (CAPI onboard the Chinese Carbon Dioxide Observation Satellite (TanSat to be launched in 2016. Based on optimal estimation theory, aerosol information content is quantified from radiance and polarization observed by CAPI in terms of the degrees of freedom for the signal (DFS. A linearized vector radiative transfer model is used with a linearized Mie code to simulate observation and sensitivity (or Jacobians with respect to aerosol parameters. In satellite nadir mode, the DFS for aerosol optical depth is the largest, but for mode radius, it is only 0.55. Observation geometry is found to affect aerosol DFS based on the aerosol scattering phase function from the comparison between different viewing zenith angles or solar zenith angles. When TanSat is operated in target mode, we note that multi-angle retrieval represented by three along-track measurements provides additional 0.31 DFS on average, mainly from mode radius. When adding another two measurements, the a posteriori error decreases by another 2%–6%. The correlation coefficients between retrieved parameters show that aerosol is strongly correlated with surface reflectance, but multi-angle retrieval can weaken this correlation.

  13. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  14. Lidar-measurement of the atmospheric aerosols' extinction based on the field study SAMUM-1; Lidar-Messung der Extinktion des atmosphaerischen Aerosols am Beispiel der Feldstudie SAMUM-1

    Energy Technology Data Exchange (ETDEWEB)

    Esselborn, Michael

    2008-07-01

    In the frame of this thesis a high-resolution spectral LIDAR (HSRL) was used for the field study SAMUM during May/June 2006 and January/February 2008 on board of the research aircraft Falcon. The intensity of the LIDAR signals are mainly influences by backscattering and extinction of atmospheric particles (aerosols). Using a narrow-band optical filter the HSRL allows the measurement of the molecular backscattering besides the total atmospheric backscattering. During SAMUM-1 the optical properties of the Sahara dust aerosols were measured for the first time, esp. its extinction, the ratio extinction/backscattering and the depolarization close to the source region. The results of the optical density of the aerosols were compared with satellite-based data. South of the Atlas-mountains optical aerosol densities in the range of 0.50 to 0.60 were measured.

  15. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  16. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  17. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  18. Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005

    Science.gov (United States)

    Jinyuan Xin; Yuesi Wang; Zhanqing Li; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Shigong Wang; Guangren Lui; Lili Wang; Tianxue Wen; Yang Sun; Bo Hu

    2007-01-01

    To reduce uncertainties in the quantitative assessment of aerosol effects on regional climate and environmental changes, extensive measurements of aerosol optical properties were made with handheld Sun photometers in the Chinese Sun Hazemeter Network (CSHNET) starting in August 2004. Regional characteristics of the aerosol optical depth (AOD) at 500 nm and Angstrom...

  19. The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

    Energy Technology Data Exchange (ETDEWEB)

    Shao, H.; Liu, G.

    2005-03-18

    An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.

  20. Seasonal variations in aerosol optical properties over China

    Science.gov (United States)

    Yuesi Wang; Jinyuan Xin; Zhanqing Li; Shigong Wang; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Hongbin Chen; Lili Wang; Yang Sun

    2012-01-01

    Seasonal variations in background aerosol optical depth (AOD) and aerosol type are investigated over various ecosystems in China based upon three years' worth of meteorological data and data collected by the Chinese Sun Hazemeter Network. In most parts of China, AODs are at a maximum in spring or summer and at a minimum in autumn or winter. Minimum values (0.10~0....

  1. Stratospheric aerosol effects from Soufriere Volcano as measured by the SAGE satellite system

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1982-01-01

    During its April 1979 eruption series, Soufriere Volcano produced two major stratospheric plumes that the SAGE (Stratospheric Aerosol and Gas Experiment) satellite system tracked to West Africa and the North Atlantic Ocean. The total mass of these plumes, whose movement and dispersion are in agreement with those deduced from meteorological data and dispersion theory, was less than 0.5 percent of the global stratospheric aerosol burden; no significant temperature or climate perturbation is therefore expected.

  2. Characterization of Dust Properties Near Source Region During ACE-Asia: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, S. -C.; Ji, Q.; Chu, A.; Hsu, C.; Holben, B.; Campbell, J.; Welton, E. J.; Shu, P. K.

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the ACE-Asia was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  3. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  4. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  5. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  6. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    Directory of Open Access Journals (Sweden)

    Han Zaw

    2016-01-01

    Full Text Available Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff, we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  7. A review of optical measurements at the aerosol and cloud chamber AIDA

    International Nuclear Information System (INIS)

    Wagner, Robert; Linke, Claudia; Naumann, Karl-Heinz; Schnaiter, Martin; Vragel, Marlen; Gangl, Martin; Horvath, Helmuth

    2009-01-01

    This paper provides a survey of recent studies on the optical properties of aerosol and cloud particles that have been conducted at the AIDA facility of Forschungszentrum Karlsruhe (Aerosol Interactions and Dynamics in the Atmosphere). Reflecting the broad accessible temperature range of the AIDA chamber which extends from ambient temperature down to 183 K, the investigations feature a broad diversity of research topics, such as the wavelength-dependence of the specific absorption cross sections of soot and mineral dust aerosols at room temperature, depolarization and infrared extinction measurements of ice crystal clouds generated at temperatures below 235 K, and the optical properties of polar stratospheric cloud constituents whose formation was studied in chamber experiments at temperatures well below 200 K. After reviewing the AIDA research activity of the past decade and introducing the optical instrumentation of the AIDA facility, this paper presents illustrative examples of ongoing and already published work on optical measurements of soot aerosols, mineral dust particles, and ice crystal clouds.

  8. Probing the micro-rheological properties of aerosol particles using optical tweezers

    International Nuclear Information System (INIS)

    Power, Rory M; Reid, Jonathan P

    2014-01-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >10 12

  9. Probing the micro-rheological properties of aerosol particles using optical tweezers

    Science.gov (United States)

    Power, Rory M.; Reid, Jonathan P.

    2014-07-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >1012 Pa s, whilst

  10. Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data

    Science.gov (United States)

    Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.

    2017-12-01

    This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode

  11. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  12. Aerosol and cloud properties derived from hyperspectral transmitted light in the southeast Atlantic sampled during field campaign deployments in 2016 and 2017

    Science.gov (United States)

    LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.

    2017-12-01

    We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).

  13. Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab State, India

    Directory of Open Access Journals (Sweden)

    Darshan Singh

    2010-02-01

    Full Text Available The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD and Ångström exponent (α values exhibited larger day to day variation during crop residue burning period. The monthly mean Ångström exponent "α" and turbidity parameter "β" values during October 2007 were 1.31±0.31 and 0.36±0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI and Nitrogen dioxide (NO2 showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning.

  14. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    Science.gov (United States)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  15. Biomass burning aerosol detection over Buenos Aires City, August 2009

    International Nuclear Information System (INIS)

    Otero, L A; Ristori, P R; Pawelko, E E; Pallotta, J V; D'Elia, R L; Quel, E J

    2011-01-01

    At the end of August 2009, a biomass burning aerosol intrusion event was detected at the Laser and Applications Research Center, CEILAP (CITEFA-CONICET) (34.5 deg. S - 58.5 deg. W) at Villa Martelli, in Buenos Aires, Argentina. This center has a sunphotometer from the AERONET-NASA global network, UV solar radiation sensors, a meteorological station and an aerosol lidar system. The aerosol origin was determined by means of back-trajectories and satellite images. This work studies the aerosol air mass optical characterization and their effect in UV solar radiation.

  16. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET in eastern China

    Directory of Open Access Journals (Sweden)

    H. Che

    2018-01-01

    Full Text Available Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm  >  1.00 at most sites, and annual mean AOD440 nm values of 0.71–0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (∼ 0.40–0.60 than in January and February (0.71–0.89 due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm  ∼  0.04–0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was −93 ± 44 to −79 ± 39 W m−2 at the Earth's surface and ∼ −40 W m−2 at the top of the atmosphere (for

  17. Remote Sensing of Aerosols from Satellites: Why Has It Been Do Difficult to Quantify Aerosol-Cloud Interactions for Climate Assessment, and How Can We Make Progress?

    Science.gov (United States)

    Kahn, Ralph A.

    2015-01-01

    The organizers of the National Academy of Sciences Arthur M. Sackler Colloquia Series on Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System would like to post Ralph Kahn's presentation entitled Remote Sensing of Aerosols from Satellites: Why has it been so difficult to quantify aerosol-cloud interactions for climate assessment, and how can we make progress? to their public website.

  18. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    Science.gov (United States)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  19. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Directory of Open Access Journals (Sweden)

    T. Sun

    2018-03-01

    Full Text Available The climatological variation of aerosol properties and the planetary boundary layer (PBL during 2013–2015 over the Yangtze River Delta (YRD region were investigated by employing ground-based Micro Pulse Lidar (MPL and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD in June and September is higher due to high single scattering albedo (SSA from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH is greater (means ranging from 1.23 to 1.84 km and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by

  20. Retrieval of tropospheric NO2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction

    Directory of Open Access Journals (Sweden)

    P. F. Levelt

    2010-10-01

    Full Text Available Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS is a technique to measure trace gas amounts in the lower troposphere from ground-based scattered sunlight observations. MAX-DOAS observations are especially suitable for validation of tropospheric trace gas observations from satellite, since they have a representative range of several kilometers, both in the horizontal and in the vertical dimension. A two-step retrieval scheme is presented here, to derive aerosol corrected tropospheric NO2 columns from MAX-DOAS observations. In a first step, boundary layer aerosols, characterized in terms of aerosol optical thickness (AOT, are estimated from relative intensity observations, which are defined as the ratio of the sky radiance at elevation α and the sky radiance in the zenith. Relative intensity measurements have the advantage of a strong dependence on boundary layer AOT and almost no dependence on boundary layer height. In a second step, tropospheric NO2 columns are derived from differential slant columns, based on AOT-dependent air mass factors. This two-step retrieval scheme was applied to cloud free periods in a twelve month data set of observations in De Bilt, The Netherlands. In a comparison with AERONET (Cabauw site a mean difference in AOT (AERONET minus MAX-DOAS of −0.01±0.08 was found, and a correlation of 0.85. Tropospheric-NO2 columns were compared with OMI-satellite tropospheric NO2. For ground-based observations restricted to uncertainties below 10%, no significant difference was found, and a correlation of 0.88.

  1. Aerosol Retrievals Over Land and Water using Deep Blue Algorithm from SeaWiFS and MODIS during UAE2 Field Campaign

    Science.gov (United States)

    Hsu, N.

    2005-12-01

    The environment in Southwest Asia exhibits one of the most complex situations for aerosol remote sensing from space. Several air masses with different aerosol characteristics commonly converge in this region. In particular, there are often fine mode pollution particles generated from oil industry activities in the Persian Gulf colliding with coarse mode dust particles lifted from desert sources in the surrounding areas. During the course of the UAE field campaign (August-October, 2004), we provided near-real time information, calculated using the Deep Blue algorithm, of satellite aerosol optical thickness and Angstrom exponent over the Southwest Asia region, including the Arabian Peninsula, Iran, Afghanistan, Pakistan, and part of north Africa. In this paper, we will present results of aerosol characteristics retrieved from SeaWiFS and MODIS over the Arabian Peninsula, Persian Gulf, and the Arabian Sea during the UAE experiment. The spectral surface reflectance data base constructed using satellite reflectance from MODIS and SeaWiFS employed in our algorithm will be discussed. We will also compare the resulting satellite retrieved aerosol optical thickness and Angstrom exponent with those obtained from the ground based sun photometers from AERONET in the region. Finally, we will discuss the changes in shortwave and longwave fluxes at the top of atmosphere in response to changes in aerosol optical thickness (i.e. aerosol forcing).

  2. SMEX03 Atmospheric Aerosol Optical Properties Data: Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  3. Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan

    2012-07-01

    Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7 W m-2 (out of 345 W m-2) and 4 W m-2 (out of 192 W m-2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3 W m-2 (out of 398 W m-2) and 3 W m-2 (out of 23 W m-2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12 W m-2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106 W m-2 and 130 W m-2.

  4. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    Science.gov (United States)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  5. A 4-D climatology (1979–2009 of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Directory of Open Access Journals (Sweden)

    P. Nabat

    2013-05-01

    Full Text Available Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multi-year database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, sea-salt, sulfate, black and organic carbon. We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products, TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth-Probe and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997, the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level-2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer, and sulfate aerosols over continental Europe (summer. The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products. Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between

  6. Estimates of the aerosol optical depth over Pretoria using the CSIR mobile lidar

    CSIR Research Space (South Africa)

    Shikwambana, L

    2013-09-01

    Full Text Available This study shows the estimates of aerosol optical depth measured over Pretoria, South Africa, using the CSIR-NLC mobile LIDAR. The measurements are also compared with observations from the Level-3 MODIS aerosol optical depth (AOD) data...

  7. Aerosol optical properties at rural background area in Western Saudi Arabia

    Science.gov (United States)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-11-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 ± 71 Mm- 1 (mean ± SD, at STP conditions) and 15 ± 17 Mm- 1 (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent, 0.49 ± 0.62. Especially from February to June the Ångström scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm- 1) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m2 g- 1 and 0.4 m2 g- 1, respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m2 g- 1 and 0.8 m2 g- 1, respectively.

  8. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  9. Investigating the relationship between Aerosol Optical Depth and Precipitation over Southeast Asia with Relative Humidity as an influencing factor.

    Science.gov (United States)

    Ng, Daniel Hui Loong; Li, Ruimin; Raghavan, Srivatsan V; Liong, Shie-Yui

    2017-10-17

    Atmospheric aerosols influence precipitation by changing the earth's energy budget and cloud properties. A number of studies have reported correlations between aerosol properties and precipitation data. Despite previous research, it is still hard to quantify the overall effects that aerosols have on precipitation as multiple influencing factors such as relative humidity (RH) can distort the observed relationship between aerosols and precipitation. Thus, in this study, both satellite-retrieved and reanalysis data were used to investigate the relationship between aerosols and precipitation in the Southeast Asia region from 2001 to 2015, with RH considered as a possible influencing factor. Different analyses in the study indicate that a positive correlation was present between Aerosol Optical Depth (AOD) and precipitation over northern Southeast Asia region during the autumn and the winter seasons, while a negative correlation was identified over the Maritime Continent during the autumn season. Subsequently, a partial correlation analysis revealed that while RH influences the long-term negative correlations between AOD and precipitation, it did not significantly affect the positive correlations seen in the winter season. The result of this study provides additional evidence with respect to the critical role of RH as an influencing factor in AOD-precipitation relationship over Southeast Asia.

  10. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  11. Global direct radiative forcing by process-parameterized aerosol optical properties

    Science.gov (United States)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  12. Aerosol climate time series from ESA Aerosol_cci (Invited)

    Science.gov (United States)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  13. An 11-year analysis of satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf

    Science.gov (United States)

    Banks, Jamie; Brindley, Helen; Schepanski, Kerstin; Stenchikov, Georgiy

    2017-04-01

    As enclosed seas bordering two large desert regions, the Saharan and Arabian deserts, the maritime environments of the Red Sea and the Persian Gulf are heavily influenced by the presence of desert dust aerosol. The inter-annual variability of dust presence over the Red Sea is analysed and presented, with respect to the summer-time latitudinal gradient in dust loading, which is at a maximum in the far south of the Red Sea and at a minimum in the far north. Two satellite aerosol optical depth (AOD) products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the MODerate resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify this loading over the region. Over an eleven-year period from 2005-2015 the July mean SEVIRI AODs at 630 nm vary between 0.48 and 1.45 in the southern half of the Sea, while in the north this varies between 0.22 and 0.66. Inter-retrieval offsets are observed to occur at higher dust loadings, with pronounced positive MODIS-SEVIRI AOD offsets at AODs greater than 1, indicating substantial and systematic differences between the retrievals over the Red Sea at high dust loadings. These differences appear to be influenced in part by the differences in scattering angle range of the satellite measurements, implying that assumptions of particle shape introduce more substantial biases at the highest dust loadings.

  14. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Bluvshtein, Nir [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Lin, Peng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Flores, J. Michel [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Segev, Lior [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Mazar, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Tas, Eran [The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel; Snider, Graydon [Department of Physics and Atmospheric Science, Dalhousie University, Halifax Nova Scotia Canada; Weagle, Crystal [Department of Chemistry, Dalhousie University, Halifax Nova Scotia Canada; Brown, Steven S. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Laskin, Alexander [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Rudich, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2017-05-23

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.

  15. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    Science.gov (United States)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  16. Model of optical response of marine aerosols to Forbush decreases

    DEFF Research Database (Denmark)

    Bondo, Torsten; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    2010-01-01

    In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases - abrupt decreases in galactic cosmic rays - by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation...

  17. Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China.

    Science.gov (United States)

    Kang, Na; Kumar, K Raghavendra; Yu, Xingna; Yin, Yan

    2016-09-01

    Aerosol optical properties were measured and analyzed through the ground-based remote sensing Aerosol Robotic Network (AERONET) over an urban-industrial site, Nanjing (32.21° N, 118.72° E, and 62 m above sea level), in the Yangtze River Delta, China, during September 2007-August 2008. The annual averaged values of aerosol optical depth (AOD500) and the Ångström exponent (AE440-870) were measured to be 0.94 ± 0.52 and 1.10 ± 0.21, respectively. The seasonal averaged values of AOD500 (AE440-870) were noticed to be high in summer (autumn) and low in autumn (spring). The characterization of aerosol types showed the dominance of mixed type followed by the biomass burning and urban-industrial type of aerosol at Nanjing. Subsequently, the curvature (a 2) obtained from the second-order polynomial fit and the second derivative of AE (α') were also analyzed to understand the dominant aerosol type. The single scattering albedo at 440 nm (SSA440) varied from 0.88 to 0.93 with relatively lower (higher) values during the summer (spring), suggesting an increase in black carbon and mineral dust (desert dust) aerosols of absorbing (scattering) nature. The averaged monthly and seasonal evolutions of shortwave (0.3-4.0 μm) direct aerosol radiative forcing (DARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and bottom of atmosphere (SUR) during the study period. Further, the aerosol forcing efficiency (AFE) and the corresponding atmospheric heating rates (AHR) were also estimated from the forcing within the atmosphere (ATM). The derived DARF values, therefore, produced a warming effect within the atmosphere due to strong absorption of solar radiation.

  18. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia

    Science.gov (United States)

    Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian

    2011-12-01

    Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.

  19. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    Science.gov (United States)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  20. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    Science.gov (United States)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  1. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2017-02-01

    Full Text Available The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0, we have simulated the outgoing longwave radiation (OLR and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious “warming” effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF increased with the increasing of aerosol optical depth (AOD; and that the atmospheric water vapor content (WVC is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs are 20.4 W/m2 and 24.2 W/m2 for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m2 and 9.6 W/m2, respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m2 and 19.8 W/m2 for Terra and Aqua, respectively, and the biases are 7.8 W/m2 and 10.5 W/m2, respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.

  2. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  3. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.

    2014-03-01

    Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of

  4. Potential modulations of pre-monsoon aerosols during El Niño: impact on Indian summer monsoon

    Science.gov (United States)

    Fadnavis, S.; Roy, Chaitri; Sabin, T. P.; Ayantika, D. C.; Ashok, K.

    2017-10-01

    The potential role of aerosol loading on the Indian summer monsoon rainfall during the El Niño years are examined using satellite-derived observations and a state of the art fully interactive aerosol-chemistry-climate model. The Aerosol Index (AI) from TOMS (1978-2005) and Aerosol Optical Depth (AOD) from MISR spectroradiometer (2000-2010) indicate a higher-than-normal aerosol loading over the Indo-Gangetic plain (IGP) during the pre-monsoon season with a concurrent El Niño. Sensitivity experiments using ECHAM5-HAMMOZ climate model suggests that this enhanced loading of pre-monsoon absorbing aerosols over the Indo-Gangetic plain can reduce the drought during El Niño years by invoking the `Elevated-Heat-Pump' mechanism through an anomalous aerosol-induced warm core in the atmospheric column. This anomalous heating upshot the relative strengthening of the cross-equatorial moisture inflow associated with the monsoon and eventually reduces the severity of drought during El Niño years. The findings are subject to the usual limitations such as the uncertainties in observations, and limited number of El Niño years (during the study period).

  5. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  6. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    Science.gov (United States)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can

  7. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    Science.gov (United States)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  8. [Optical properties of aerosol during haze-fog episodes in Beijing].

    Science.gov (United States)

    Yu, Xing-Na; Li, Xin-Mei; Deng, Zen-Grandeng; De, Qing-Yangzong; Yuan, Shuai

    2012-04-01

    The purpose of this study is to investigate the optical properties of aerosol during haze-fog episodes in Beijing. The aerosol optical depth (AOD), Angstrom exponent (alpha), size distribution and single scattering albedo (omega) during haze-fog episodes were analyzed between 2002 and 2008 using AERONENT data. During haze-fog episodes, the aerosol optical depth showed a decreasing trend with wavelengths, and showed high values with an average 1.34 at 440 nm. The magnitude of Angstrom exponent was relatively high during haze-fog episodes and the mean values reached 1.11. The frequency distribution of alpha was up to 94% when alpha > 0.9, indicating the predominance of fine particles during haze-fog episodes in Beijing. The aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The maxima (peaks) radius of fine mode showed an increasing trend with AOD, however, those of coarse mode showed a decreasing trend with AOD. The size distribution showed a distinct difference in dominant mode for the different AOD. The single scattering albedo showed an increasing trend with AOD during haze-fog episodes in Beijing. The mean value of omega was 0.89 at the four wavelengths and the omega exhibited a low sensitivity to wavelengths.

  9. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  10. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

    Directory of Open Access Journals (Sweden)

    E. Proestakis

    2018-02-01

    Full Text Available We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network. The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015. The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts and during summer over the Indian subcontinent (Thar Desert. Additionally, we decompose the CALIPSO AOD (aerosol optical depth into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer, although significant differences are observed over specific regions.

  11. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2008-06-01

    Full Text Available A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E, a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3 during the initial days, which, however, increased (0.86 as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmaerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  12. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Misra, A. [Physical Research Lab., Ahmedabad (India); Jayaraman, A. [National Atmospheric Research Lab., Gadanki (India)

    2008-07-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13 N, 75.70 E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 {mu}m) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 {mu}maerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours. (orig.)

  13. Thermo-optical properties of residential coals and combustion aerosols

    Science.gov (United States)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  14. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  15. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm

  16. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2006-01-01

    Full Text Available Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA yields a new harmonized estimate for the aerosol direct radiative forcing (RF under all-sky conditions. On a global annual basis RF is −0.22 Wm−2, ranging from +0.04 to −0.41 Wm−2, with a standard deviation of ±0.16 Wm−2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm−2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm−2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth. The clear-sky forcing efficiency (forcing per unit optical depth has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate

  17. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    Science.gov (United States)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-11-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE.The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster‟s spatial domain and used to estimate climatological values of key optical and microphysical parameters.The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  18. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    Science.gov (United States)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  19. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    Science.gov (United States)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  20. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    Science.gov (United States)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets

  1. Validation of MODIS derived aerosol optical depth and an investigation on aerosol transport over the South East Arabian Sea during ARMEX-II

    Directory of Open Access Journals (Sweden)

    M. Aloysius

    2009-06-01

    Full Text Available The influence of wind and humidity on aerosol optical depth (AOD over the Arabian sea is being investigated using MODIS (Moderate Resolution Imaging Spectroradiometer Level 3 (Collection-5 and NCEP (National Centres for Environmental Prediction reanalysis data for the second phase of the Arabian Sea Monsoon Experiment (ARMEX-II over the South East Arabian Sea (SEAS in the pre-monsoon period (14 March–10 April 2003. In order to qualify MODIS data for this study, MODIS aerosol parameters were first compared with ship borne Microtops measurements. This showed correlations 0.96–0.97 in the case of spectral AODs and a correlation 0.72 for the angstrom exponents. The daily AOD data from MODIS and winds from NCEP reveal that the ship observed episodic enhancement and decay of AOD at the TSL (Time Series Location during 23 March–6 April 2003 was caused by the southward drift of an aerosol pocket driven by an intensification and reduction of surface pressure in the North Western Arabian Sea with a low altitude convergence prevailing over SEAS. The AOD increase coincided with a decrease in the Angstrom exponent and the fine mode fraction suggesting the pocket being dominated by coarse mode particles. A partial correlation analysis reveals that the lower altitude wind convergence is the most influential atmospheric variable in modulating AOD over the ARMEX-II domain during the TSL period. However, surface winds at a distant zone in the north/north west upwind direction also had a moderate influence, though with a lag of two days. But this effect was minor since the winds were not strong enough to produce marine aerosols matching with the high AODs over the ARMEX-II domain. These findings and the similarity between MODIS column mass concentration and the ship borne QCM (Quartz Crystal Microbalance measured coarse mode mass concentration, suggest that the aerosol pocket was mostly composed of coarse mode mineral dust in the lower atmospheric altitudes

  2. Assessment of Satellite Ocean Colour Radiometry and Derived Geophysical Products. Chapter 6.1

    Science.gov (United States)

    Melin, Frederic; Franz, Bryan A.

    2014-01-01

    Standardization of methods to assess and assign quality metrics to satellite ocean color radiometry and derived geophysical products has become paramount with the inclusion of the marine reflectance and chlorophyll-a concentration (Chla) as essential climate variables (ECV; [1]) and the recognition that optical remote sensing of the oceans can only contribute to climate research if and when a continuous succession of satellite missions can be shown to collectively provide a consistent, long-term record with known uncertainties. In 20 years, the community has made significant advancements toward that objective, but providing a complete uncertainty budget for all products and for all conditions remains a daunting task. In the retrieval of marine water-leaving radiance from observed top-of-atmosphere radiance, the sources of uncertainties include those associated with propagation of sensor noise and radiometric calibration and characterization errors, as well as a multitude of uncertainties associated with the modeling and removal of effects from the atmosphere and sea surface. This chapter describes some common approaches used to assess quality and consistency of ocean color satellite products and reviews the current status of uncertainty quantification in the field. Its focus is on the primary ocean color product, the spectrum of marine reflectance Rrs, but uncertainties in some derived products such as the Chla or inherent optical properties (IOPs) will also be considered.

  3. Correlation between Satellite-Derived Aerosol Characteristics and Oceanic Dimethylsulfide (DMS)

    Science.gov (United States)

    1988-12-01

    intensity gained by multiple scattering into the beam from all directions and the beam addition term accounting for single scattering events. The physical...the extinction and scattering coefficients are the integracion over radius of the product of the cross sectional area of aerosol particles, the...the same photon more than once is small. Therefore, the multiple interaction term can be neglected and a single scattering approximation is made. The

  4. Analysis of spatial-temporal heterogeneity in remotely sensed aerosol properties observed during 2005-2015 over three countries along the Gulf of Guinea Coast in Southern West Africa

    Science.gov (United States)

    Aklesso, Mangamana; Kumar, K. Raghavendra; Bu, Lingbing; Boiyo, Richard

    2018-06-01

    In the present study, the spatial-temporal distribution and estimation of trends of different aerosol optical properties, and related impact factors were investigated over three countries: Ghana, Togo, and Benin along the Gulf of Guinea Coast in Southern West Africa (SWA). For this purpose, long-term satellite derived aerosol optical properties (aerosol optical depth at 550 nm; AOD550, Ångström exponent at 470-660 nm; AE470-660, and absorption aerosol index; AAI) retrieved from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) during January 2005-December 2015 were utilized. The annual mean spatial distribution of AOD550 was found to be high (>0.55) over the southern coastal area, moderate-to-high (0.35-0.55) over the central, and low (<0.35) over northern parts of the study domain. The seasonal mean variations showed high (low) values of AOD550 and AAI during the Harmattan or dry (wet) season. Whereas, low (high) AE470-660 values were characterized during the Harmattan (wet) season. Linear trend analysis revealed a decreasing trend in AOD550 and AAI, and increasing trend in AE470-660. Further, an investigation on the potential drivers to AOD distribution over the SWA revealed that precipitation, NDVI, and terrain were negatively correlated with AOD. Finally, the HYSPLIT derived back trajectory analyses revealed diverse transport pathways originated from the North Atlantic Ocean, Sahara Desert, and Nigeria along with locally generated aerosols.

  5. Transport of dust and anthropogenic aerosols across Alexandria, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Askary, H. [Chapman Univ., Orange, CA (United States). Dept. of Physics Computational Science and Engineering; Chapman Univ., Orange, CA (United States). Center of Excellence in Earth Observing; Alexandria Univ. (Egypt). Dept. of Environmental Sciences; National Authority for Remote Sensing and Space Science (NARSS), Cairo (Egypt); Farouk, R. [Alexandria Univ. (Egypt). Dept. of Environmental Sciences; Ichoku, C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Climate and Radiation Branch; Kafatos, M. [Chapman Univ., Orange, CA (United States). Dept. of Physics Computational Science and Engineering; Chapman Univ., Orange, CA (United States). Center of Excellence in Earth Observing

    2009-07-01

    The flow of pollutants from Europe and desert dust to Europe from the Sahara desert both affects the air quality of the coastal regions of Egypt. As such, measurements from both ground and satellite observations assume great importance to ascertain the conditions and flow affecting the Nile Delta and the large city of Alexandria. We note that special weather conditions prevailing in the Mediterranean Sea result in a westerly wind flow pattern during spring and from North to South during the summer. Such flow patterns transport dust-loaded and polluted air masses from the Sahara desert and Europe, respectively, through Alexandria, and the Nile Delta in Egypt. We have carried out measurements acquired with a ground- based portable sun photometer (Microtops II) and the satellite-borne TERRA/Moderate Resolution Imaging Spectroradiometer (MODIS) sensor during the periods of October 1999-August 2001 and July 2002-September 2003. These measurements show a seasonal variability in aerosol optical depth (AOD) following these flow patterns. Maximum aerosol loadings accompanied by total precipitable water vapor (W) enhancements are observed during the spring and summer seasons. Pronounced changes have been observed in the Aangstroem exponent ({alpha}) derived from ground-based measurements over Alexandria (31.14 N, 29.59 E) during both dust and pollution periods. We have followed up the observations with a 3-day back-trajectories model to trace the probable sources and pathways of the air masses causing the observed aerosol loadings. We have also used other NASA model outputs to estimate the sea salt, dust, sulfates and black carbon AOD spatial distributions during different seasons. Our results reveal the probable source regions of these aerosol types, showing agreement with the trajectory and Aangstroem exponent analysis results. It is confirmed that Alexandria is subjected to different atmospheric conditions involving dust, pollution, mixed aerosols and clean sky. (orig.)

  6. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    Science.gov (United States)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  7. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    Science.gov (United States)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  8. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  9. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  10. Comparison of Aerosol optical depth (AOD) derived from AERONET sunphotometer and Lidar system

    International Nuclear Information System (INIS)

    Khor, Wei Ying; Hee, Wan Shen; Tan, Fuyi; Lim, Hwee San; Jafri, Mohamad Zubir Mat; Holben, Brent

    2014-01-01

    Aerosol optical depth (AOD) is the measure of aerosols distributed within a column of air from the instrument or Earth's surface to the top of the atmosphere. In this paper, we compared the AOD measured by the Raymetrics Lidar system and AERONET sunphotometer. A total of 6 days data which was collected by both instruments were compiled and compared. Generally, AOD value calculated from Lidar data are higher than that calculated from AERONET data. Differences and similarities in the AOD data trend were observed and the corresponding explanations were done. Level 1.5 data of AERONET is estimated to have an accuracy of ±0.03, thus the Lidar data should follow the trend of the AERONET. But in this regards, this study was conducted less than one month and was very difficult to justify the differences and similarities between AOD measured by the Raymetrics Lidar system and AERONET sunphotometer. So further studies for an extended period will be needed and performed with more comprehensive LIDAR measurements. The slope of the best-fit straight line for the data points between the AOD values retrieved from LIDAR and the AERONET measurements is the closest to unity and the coefficient of determination is high (above 0. 6692). Factors which affect AOD data were discussed. As a conclusion, the trends of the AOD of both systems are similar. Yet due to some external factors, the trend will be slightly different

  11. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  12. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  13. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  14. Orientation-averaged optical properties of natural aerosol aggregates

    International Nuclear Information System (INIS)

    Zhang Xiaolin; Huang Yinbo; Rao Ruizhong

    2012-01-01

    Orientation-averaged optical properties of natural aerosol aggregates were analyzed by using discrete dipole approximation (DDA) for the effective radius in the range of 0.01 to 2 μm with the corresponding size parameter from 0.1 to 23 for the wavelength of 0.55 μm. Effects of the composition and morphology on the optical properties were also investigated. The composition show small influence on the extinction-efficiency factor in Mie scattering region, scattering- and backscattering-efficiency factors. The extinction-efficiency factor with the size parameter from 9 to 23 and asymmetry factor with the size parameter below 2.3 are almost independent of the natural aerosol composition. The extinction-, absorption, scattering-, and backscattering-efficiency factors with the size parameter below 0.7 are irrespective of the aggregate morphology. The intrinsic symmetry and discontinuity of the normal direction of the particle surface have obvious effects on the scattering properties for the size parameter above 4.6. Furthermore, the scattering phase functions of natural aerosol aggregates are enhanced at the backscattering direction (opposition effect) for large size parameters in the range of Mie scattering. (authors)

  15. Wind Speed Influences on Marine Aerosol Optical Depth

    Directory of Open Access Journals (Sweden)

    Colin O'Dowd

    2010-01-01

    Full Text Available The Mulcahy (Mulcahy et al., 2008 power-law parameterization, derived at the coastal Atlantic station Mace Head, between clean marine aerosol optical depth (AOD and wind speed is compared to open ocean MODIS-derived AOD versus wind speed. The reported AOD versus wind speed (U was a function of ∼U2. The open ocean MODIS-derived AOD at 550 nm and 860 nm wavelengths, while in good agreement with the general magnitude of the Mulcahy parameterization, follows a power-law with the exponent ranging from 0.72 to 2.47 for a wind speed range of 2–18 m s−1. For the four cases examined, some MODIS cases underestimated AOD while other cases overestimated AOD relative to the Mulcahy scheme. Overall, the results from MODIS support the general power-law relationship of Mulcahy, although some linear cases were also encountered in the MODIS dataset. Deviations also arise between MODIS and Mulcahy at higher wind speeds (>15 m s−1, where MODIS-derived AOD returns lower values as compared to Mulcahy. The results also support the suggestion than wind generated sea spray, under moderately high winds, can rival anthropogenic pollution plumes advecting out into marine environments with wind driven AOD contributing to AOD values approaching 0.3.

  16. Evaluation of satellite derived spectral diffuse attenuation coefficients

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.

    , 443, 490, 510, 555 and 670 nm derived from the ocean color satellite sensor, SeaWiFS with the in-situ measured values from the Arabian Sea is compared. The satellite derived values are found to be comparable to the measured values in the lower...

  17. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  18. Using satellite-based measurements to explore ...

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), ozone (O3)), aerosol optical properties (aerosol optical depth (AOD), Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI), temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD×AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatia

  19. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India); Ram, K. [Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi (India); Singh, Sachchidanand, E-mail: ssingh@nplindia.org [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Kumar, Sanjeev [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India)

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm{sup −2}) and high values of corresponding heating rate (0.80 ± 0.14 Kday{sup −1}) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm{sup −2} and from − 3 to − 50 Wm{sup −2} at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm{sup −2} resulting in a heating rate of 0.1–1.8 Kday{sup −1}. - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed

  20. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ram, K.; Singh, Sachchidanand; Kumar, Sanjeev; Tiwari, S.

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm −2 ) and high values of corresponding heating rate (0.80 ± 0.14 Kday −1 ) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm −2 and from − 3 to − 50 Wm −2 at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm −2 resulting in a heating rate of 0.1–1.8 Kday −1 . - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed over the station in the

  1. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    Science.gov (United States)

    Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory

    2011-01-01

    To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.

  2. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign

    Directory of Open Access Journals (Sweden)

    G. Li

    2011-06-01

    Full Text Available In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module has been developed with detailed consideration of aerosol size, composition, and mixing. The module has been coupled into the WRF-CHEM model to calculate the aerosol optical properties, including optical depth, single scattering albedo, and asymmetry factor. Calculated aerosol optical properties are in good agreement with the surface observations and aircraft and satellite measurements during daytime. In general, the photolysis rates are reduced due to the absorption by carbonaceous aerosols, particularly in the early morning and late afternoon hours with a long aerosol optical path. However, with the growth of aerosol particles and the decrease of the solar zenith angle around noontime, aerosols can slightly enhance photolysis rates when ultraviolet (UV radiation scattering dominates UV absorption by aerosols at the lower-most model layer. The changes in photolysis rates due to aerosols lead to about 2–17 % surface ozone reduction during daytime in the urban area in Mexico City with generally larger reductions during early morning hours near the city center, resulting in a decrease of OH level by about 9 %, as well as a decrease in the daytime concentrations of nitrate and secondary organic aerosols by 5–6 % on average. In addition, the rapid aging of black carbon aerosols and the enhanced absorption of UV radiation by organic aerosols contribute substantially to the reduction of photolysis rates.

  3. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  4. Real-time aerosol photometer and optical particle counter comparison

    International Nuclear Information System (INIS)

    Santi, E.; Belosi, F.; Santachiara, G.; Prodi, F.; Berico, M.

    2010-01-01

    The paper presents the results of a comparison exercise among real-time aerosol samplers, based on different light scattering techniques. The comparison was carried out near to the ISAC institute in a box positioned inside the CNR research area in Bologna. Two nephelometers (Dust Trak from TSI, and Air Genius from Unitec) and an optical particle counter (ENVIRO-check from Grimm) were used for P M1 and P M10 fraction assessment. In the case of the optical particle counter, the particle number concentration in each size bin was also used. In parallel, two manual sampling lines were employed for reference (gravimetric) measurements. The results highlight different factor scales for the dust monitors, in comparison with gravimetric assessment, underlining the importance of a user calibration of such monitors as a function of the specific aerosol sampled. Moreover, the relative fluctuations of the hourly P M 10 and P M1 concentrations, against daily average concentrations, were studied in order to compare the ability of each sampler to follow changes in the aerosol size distribution. It was found that the photometers and optical particle counter revealed different behaviours. In the latter, a small increase in the particle concentration number in the coarse fraction gave a relatively high increase in the mass concentration that was not measured by the photometers. The explanation could be the relatively slight influence of a small particle number variation on the total scattered light for the photometers, unlike the case of the optical particle counter, where each particle contributes to the mass concentration. This aspect merits future research in order to better understand optical particle counter output used in P Mx monitoring activities.

  5. Information Content of Aerosol Retrievals in the Sunglint Region

    Science.gov (United States)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  6. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  7. Multi-Angle Imager for Aerosols (MAIA) Investigation of Airborne Particle Health Impacts

    Science.gov (United States)

    Diner, D. J.

    2016-12-01

    Airborne particulate matter (PM) is a well-known cause of heart disease, cardiovascular and respiratory illness, low birth weight, and lung cancer. The Global Burden of Disease (GBD) Study ranks PM as a major environmental risk factor worldwide. Global maps of PM2.5concentrations derived from satellite instruments, including MISR and MODIS, have provided key contributions to the GBD and many other health-related investigations. Although it is well established that PM exposure increases the risks of mortality and morbidity, our understanding of the relative toxicity of specific PM types is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. The satellite instrument that is part of the investigation is a multiangle, multispectral, and polarimetric camera system based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA was selected for funding in March 2016. Estimates of the abundances of different aerosol types from the WRF-Chem model will be combined with MAIA instrument data. Geostatistical models derived from collocated surface and MAIA retrievals will then be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents, including sulfate, nitrate, organic carbon, black carbon, and dust. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. MAIA launch is planned for early in the next decade. The MAIA instrument incorporates a pair of cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. Primary Target Areas (PTAs) on five continents are chosen to include major population centers covering a range of PM concentrations and particle types, surface-based aerosol sunphotometers

  8. Aerosol characteristics inversion based on the improved lidar ratio profile with the ground-based rotational Raman-Mie lidar

    Science.gov (United States)

    Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan

    2018-06-01

    An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.

  9. A Simple Semi-Empirical Model for the Estimation of Photosynthetically Active Radiation from Satellite Data in the Tropics

    Directory of Open Access Journals (Sweden)

    S. Janjai

    2013-01-01

    Full Text Available This paper presents a simple semi-empirical model for estimating global photosynthetically active radiation (PAR under all sky conditions. The model expresses PAR as a function of cloud index, aerosol optical depth, total ozone column, solar zenith angle, and air mass. The formulation of the model was based on a four-year period (2008–2011 of PAR data obtained from the measurements at four solar monitoring stations in a tropical environment of Thailand. These are Chiang Mai (18.78°N, 98.98°E, Ubon Ratchathani (15.25°N, 104.87°E, Nakhon Pathom (13.82°N, 100.04°E, and Songkhla (7.20°N, 100.60°E. The cloud index was derived from MTSAT-1R satellite, whereas the aerosol optical depth was obtained from MODIS/Terra satellite. For the total ozone column, it was retrieved from OMI/Aura satellite. The model was validated against independent data set from the four stations. It was found that hourly PAR estimated from the proposed model and that obtained from the measurements were in reasonable agreement, with the root mean square difference (RMSD and mean bias difference (MBD of 14.3% and −5.8%, respectively. In addition, for the case of monthly average hourly PAR, RMSD and MBD were reduced to 11.1% and −5.1%, respectively.

  10. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: Part III. Using Combined PCA to Compare Spatiotemporal Variability of MODIS, MISR and OMI Aerosol Optical Depth

    Science.gov (United States)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  11. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring

    Directory of Open Access Journals (Sweden)

    Pauline Dusseux

    2014-06-01

    Full Text Available The aim of this study was to assess the ability of optical images, SAR (Synthetic Aperture Radar images and the combination of both types of data to discriminate between grasslands and crops in agricultural areas where cloud cover is very high most of the time, which restricts the use of visible and near-infrared satellite data. We compared the performances of variables extracted from four optical and five SAR satellite images with high/very high spatial resolutions acquired during the growing season. A vegetation index, namely the NDVI (Normalized Difference Vegetation Index, and two biophysical variables, the LAI (Leaf Area Index and the fCOVER (fraction of Vegetation Cover were computed using optical time series and polarization (HH, VV, HV, VH. The polarization ratio and polarimetric decomposition (Freeman–Durden and Cloude–Pottier were calculated using SAR time series. Then, variables derived from optical, SAR and both types of remotely-sensed data were successively classified using the Support Vector Machine (SVM technique. The results show that the classification accuracy of SAR variables is higher than those using optical data (0.98 compared to 0.81. They also highlight that the combination of optical and SAR time series data is of prime interest to discriminate grasslands from crops, allowing an improved classification accuracy.

  12. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  13. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    Science.gov (United States)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  14. Physics of aerosols - Second part: nucleation-condensation-ions-electrification-optical properties

    International Nuclear Information System (INIS)

    Bricard, Jean

    1977-01-01

    This report is made of two volumes. Volume 1 includes the general properties of aerosols, the fundamentals of the theory of gases and mechanics are related to particle suspensions, ant the theories of diffusion and coagulation with their applications to atmospheric aerosols. Volume 2 begins with a chapter on nucleation (gas-particle conversion) in the case of one vapor, then two vapors, followed by the theory of aerosol evaporation. The following two chapters are devoted to the study of ions and their attachment to aerosol particles. Finally their optical properties are stated in the last chapter

  15. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  16. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  17. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    Science.gov (United States)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  18. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    Science.gov (United States)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  19. Shortwave Direct Radiative Effects of Above-Cloud Aerosols Over Global Oceans Derived From 8 Years of CALIOP and MODIS Observations

    Science.gov (United States)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oraiopoulos, Lazaros

    2016-01-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asia. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m(exp. -2) [range of -0.03 to 0.06 W m (exp. -2)] at TOA. The DREs at surface and within the atmosphere are -0.015 W m(exp. -2) [range of -0.09 to -0.21 W m(exp. -2)], and 0.17 W m(exp. -2) [range of 0.11 to 0.24 W m(exp. -2)], respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m(exp. -2) [range of 0.2 to 1.2 W m(exp. -2)] at TOA. All our DRE computations are publicly available. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and

  20. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe

    Directory of Open Access Journals (Sweden)

    P. Glantz

    2012-07-01

    Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained from MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground with the SAER (Satellite AErosol Retrieval algorithm and with MODIS Collection 5 (c005 standard product retrievals (10 km horizontal resolution, against AERONET (AErosol RObotic NETwork sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (ΔAOT = ± 0.05 ± 0.15 · AOT. The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is

  1. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    Science.gov (United States)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  2. Photoacoustic absorption spectroscopy of single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul A.; Cremer, Johannes W.; Signorell, Ruth

    2017-08-01

    Photoacoustics have been widely used for the study of aerosol optical properties. To date, these studies have been performed on particle ensembles, with minimal ability to control for particle size. Here, we present our singleparticle photoacoustic spectrometer. The sensitivity and stability of the instrument is discussed, along with results from two experiments that illustrate the unique capabilities of this instrument. In the first experiment, we present a measurement of the particle size-dependence of the photoacoustic response. Our results confirm previous models of aerosol photoacoustics that had yet to be experimentally tested. The second set of results reveals a size-dependence of photochemical processes within aerosols that results from the nanofocusing of light within individual droplets.

  3. Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China

    International Nuclear Information System (INIS)

    Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao

    2014-01-01

    Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD

  4. Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness

    Science.gov (United States)

    Leptoukh, Gregory; Zubko, V.; Gopalan, A.

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.

  5. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Joseph [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Lantz, Kathy [Univ. of Colorado, Boulder, CO (United States)

    2016-05-01

    The National Oceanic and Atmospheric Administration (NOAA) is preparing for the launch of the Geostationary Operational Environmental Satellite R-Series (GOES-R) satellite in 2015. This satellite will feature higher time (5-minute versus 30-minute sampling) and spatial resolution (0.5 km vs 1 km in the visible channel) than current GOES instruments provide. NOAA’s National Environmental Satellite Data and Information Service has funded the Global Monitoring Division at the Earth System Research Laboratory to provide ground-based validation data for many of the new and old products the new GOES instruments will retrieve specifically related to radiation at the surface and aerosol and its extensive and intensive properties in the column. The Two-Column Aerosol Project (TCAP) had an emphasis on aerosol; therefore, we asked to be involved in this campaign to de-bug our new instrumentation and to provide a new capability that the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facilities (AMF) did not possess, namely surface albedo measurement out to 1625 nm. This gave us a chance to test remote operation of our new multi-filter rotating shadowband radiometer/multi-filter radiometer (MFRSR/MFR) combination. We did not deploy standard broadband shortwave and longwave radiation instrumentation because ARM does this as part of every AMF deployment. As it turned out, the ARM standard MFRSR had issues, and we were able to provide the aerosol column data for the first 2 months of the campaign covering the summer flight phase of the deployment. Using these data, we were able to work with personnel at Pacific Northwest National Laboratory (PNNL) to retrieve not only aerosol optical depth (AOD), but single scattering albedo and asymmetry parameter, as well.

  6. A Statistical Review of CALIOP Version 3 and Version 4 Cloud Aerosol Discrimination

    Science.gov (United States)

    Zeng, S.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has now delivered a 10-year record of high-resolution profiles of backscatter at 532 nm and 1064 nm and linear depolarization at 532 nm. These long-term active sensor measurements at global scale have led to significant advances in our understanding of the vertical distribution of clouds and aerosols in the atmosphere. In the fall of 2016, the CALIPSO science team is scheduled to release a new version of their cloud and aerosol data products. The new cloud and aerosol discrimination products are derived using updated probability density functions that account for numerous improvements to the CALIOP calibration and the use of the GMAO MERRA-2 meteorological data. Moreover, the CAD algorithm is now applied to all layers detected, thus greatly improving the identification of such features as overshooting convective clouds, stratospheric aerosol layers, and high intensity dust storms. Post-processing modules are added to the standard CAD algorithm to ensure proper identification of (for example) the tenuous edges of cirrus clouds and water clouds lying beneath optically dense smoke layers. This work presents statistical comparisons between the CALIOP version 3 and version 4 data sets. Areas of improvement are highlighted, sources of continuing uncertainty are discussed and a list of best practices for data users is provided.

  7. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    Science.gov (United States)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  8. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    International Nuclear Information System (INIS)

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui

    2016-01-01

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  9. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yin, Yan, E-mail: yinyan@nuist.edu.cn [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xiao, Hui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yu, Xingna [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Hao, Jian; Chen, Kui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); and others

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  10. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Nina Merkle

    2017-06-01

    Full Text Available Improving the geo-localization of optical satellite images is an important pre-processing step for many remote sensing tasks like monitoring by image time series or scene analysis after sudden events. These tasks require geo-referenced and precisely co-registered multi-sensor data. Images captured by the high resolution synthetic aperture radar (SAR satellite TerraSAR-X exhibit an absolute geo-location accuracy within a few decimeters. These images represent therefore a reliable source to improve the geo-location accuracy of optical images, which is in the order of tens of meters. In this paper, a deep learning-based approach for the geo-localization accuracy improvement of optical satellite images through SAR reference data is investigated. Image registration between SAR and optical images requires few, but accurate and reliable matching points. These are derived from a Siamese neural network. The network is trained using TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe, in order to learn the two-dimensional spatial shifts between optical and SAR image patches. Results confirm that accurate and reliable matching points can be generated with higher matching accuracy and precision with respect to state-of-the-art approaches.

  11. Comparison of Cloud and Aerosol Detection between CERES Edition 3 Cloud Mask and CALIPSO Version 2 Data Products

    Science.gov (United States)

    Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles

    Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.

  12. SCIAMACHY WFM-DOAS XCO2: comparison with CarbonTracker XCO2 focusing on aerosols and thin clouds

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-08-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS (weighting function modified differential optical absorption spectroscopy algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1 using CarbonTracker version 2010. We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%. Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa. Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with

  13. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  14. How thermodynamic environments control stratocumulus microphysics and interactions with aerosols

    International Nuclear Information System (INIS)

    Andersen, Hendrik; Cermak, Jan

    2015-01-01

    Aerosol–cloud interactions are central to climate system changes and depend on meteorological conditions. This study identifies distinct thermodynamic regimes and proposes a conceptual framework for interpreting aerosol effects. In the analysis, ten years (2003–2012) of daily satellite-derived aerosol and cloud products are combined with reanalysis data to identify factors controlling Southeast Atlantic stratocumulus microphysics. Considering the seasonal influence of aerosol input from biomass burning, thermodynamic environments that feature contrasting microphysical cloud properties and aerosol–cloud relations are classified. While aerosol impact is stronger in unstable environments, it is mostly confined to situations with low aerosol loading (aerosol index AI ≲ 0.15), implying a saturation of aerosol effects. Situations with high aerosol loading are associated with weaker, seasonally contrasting aerosol-droplet size relationships, likely caused by thermodynamically induced processes and aerosol swelling. (letter)

  15. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    International Nuclear Information System (INIS)

    Altaratz, O; Bar-Or, R Z; Wollner, U; Koren, I

    2013-01-01

    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols’ physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol concentration using optical parameters, such as the aerosol optical depth (AOD), which can be affected by aerosol humidification. In this study we evaluate the RH background and variance values, in the lower cloudy atmosphere, an additional source of variance in AOD values beside the natural changes in aerosol concentration. In addition, we estimate the bias in RH and AOD, related to cloud thickness. This provides the much needed range of RH-related biases in studies of aerosol–cloud interaction. Twelve years of radiosonde measurements (June–August) in thirteen globally distributed stations are analyzed. The estimated non-biased AOD variance due to day-to-day changes in RH is found to be around 20% and the biases linked to cloud development around 10%. Such an effect is important and should be considered in direct and indirect aerosol effect estimations but it is inadequate to account for most of the AOD trend found in observational studies of aerosol–cloud interactions. (letter)

  16. Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2016-04-01

    Full Text Available Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US. Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015. We use these 0–4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH. For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry–climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of  ∼  25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1–0.5 µm diameter dominates

  17. Sentinel-2: next generation satellites for optical land observation from space

    Science.gov (United States)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  18. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    Science.gov (United States)

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  19. Diagnosing causes of extreme aerosol optical depth events

    Science.gov (United States)

    Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.

    2017-12-01

    Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all

  20. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  1. On the composition and optical extinction of particles in the tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Solomon, S. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.

    1999-06-01

    Liquid aerosol particles and ice crystals in subvisible cirrus clouds in the tropopause region are characterized in terms of size distributions, chemical composition, and optical extinction. These particle properties are studied by means of simple models and are related to satellite extinction measurements, particularly for midlatitudes. Sulfuric acid aerosols can take up nitric acid near the ice frost point, just before ice nucleation. Aerosols in the tropopause region may show a larger spread of extinction and extinction ratios at different wavelengths than background stratospheric aerosols. The high surface areas and low extinction ratios of subvisible cirrus deduced from satellite observations are unlikely to be due purely to aerosols, except for high sulfate loadings. It is shown that mixtures of liquid aerosols and ice particles can more readily explain these data with only small cloud fractions along the line of sight of the optical sensors. The efficiency of heterogeneous chlorine activation in aerosol/cloud mixtures, the availability of water vapor, sulfate, and nitrate, and the effects of temperature, ammonium, ice nuclei and aircraft emissions on the properties of particles in the tropopause region are explored. (orig.)

  2. Lessons learned and way forward from 6 years of Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2017-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve and qualify algorithms for the retrieval of aerosol information from European sensors. Meanwhile, several validated (multi-) decadal time series of different aerosol parameters from complementary sensors are available: Aerosol Optical Depth (AOD), stratospheric extinction profiles, a qualitative Absorbing Aerosol Index (AAI), fine mode AOD, mineral dust AOD; absorption information and aerosol layer height are in an evaluation phase and the multi-pixel GRASP algorithm for the POLDER instrument is used for selected regions. Validation (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account in an iterative evolution cycle. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. The use of an ensemble method was tested, where several algorithms are applied to the same sensor. The presentation will summarize and discuss the lessons learned from the 6 years of intensive collaboration and highlight major achievements (significantly improved AOD quality, fine mode AOD, dust AOD, pixel level uncertainties, ensemble approach); also limitations and remaining deficits shall be discussed. An outlook will discuss the way forward for the continuous algorithm improvement and re-processing together with opportunities for time series extension with successor instruments of the Sentinel family and the complementarity of the different satellite aerosol products.

  3. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    Science.gov (United States)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  4. Estimation of the Cloud condensation nuclei concentration(CCN) and aerosol optical depth(AOD) relation in the Arctic region

    Science.gov (United States)

    Jung, C. H.; Yoon, Y. J.; Ahn, S. H.; Kang, H. J.; Gim, Y. T.; Lee, B. Y.

    2017-12-01

    Information of the spatial and temporal variations of cloud condensation nuclei (CCN) concentrations is important in estimating aerosol indirect effects. Generally, CCN aerosol is difficult to estimate using remote sensing methods. Although there are many CCN measurements data, extensive measurements of CCN are not feasible because of the complex nature of the operation and high cost, especially in the Arctic region. Thus, there have been many attempts to estimate CCN concentrations from more easily obtainable parameters such as aerosol optical depth (AOD) because AOD has the advantage of being readily observed by remote sensing from space by several sensors. For example, some form of correlation was derived between AOD and the number concentration of cloud condensation nuclei (CCN) through the comparison results from AERONET network and CCN measurements (Andreae 2009). In this study, a parameterization of CCN concentration as a function of AOD at 500 nm is given in the Arctic region. CCN data was collected during the period 2007-2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). The AERONET network and MODIS AOD data are compared with ground measured CCN measurement and the relations between AOD and CCN are parameterized. The seasonal characteristics as well as long term trends are also considered. Through the measurement, CCN concentration remains high during spring because of aerosol transportation from the mid-latitudes, known as Arctic Haze. Lowest CCN number densities were observed during Arctic autumn and early winter when aerosol long-range transport into the Arctic is not effective and new particle formation ceases. The results show that the relation between AOD and CCN shows a different parameter depending on the seasonal aerosol and CCN characteristics. This seasonal different CCN-AOD relation can be interpreted as many physico-chemical aerosol properties including aerosol size distribution, composition. ReferenceAndreae, M. O. (2009

  5. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    Full Text Available Within the ESA Climate Change Initiative (CCI project Aerosol_cci (2010–2013, algorithms for the production of long-term total column aerosol optical depth (AOD datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1 a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2 a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome applied to four months of global data to identify mature algorithms, and (3 a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008 of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun

  6. An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data

    Science.gov (United States)

    Hersey, S. P.; Garland, R. M.; Crosbie, E.; Shingler, T.; Sorooshian, A.; Piketh, S.; Burger, R.

    2014-09-01

    We present a comprehensive overview of particulate air quality across the five major metropolitan areas of South Africa (Cape Town, Bloemfontein, Johannesburg and Tshwane (Gauteng Province), the Industrial Highveld Air Quality Priority Area (HVAPA), and Durban), based on a decadal (1 January 2000 to 31 December 2009) aerosol climatology from multiple satellite platforms and a detailed analysis of ground-based data from 19 sites throughout Gauteng. Data include Aerosol Optical Depth (AOD550, 555) from Aqua (550 nm), Terra (550 nm), and MISR (555 nm) platforms, Ängström Exponent (α550/865, 470/660) from Aqua (550/865 nm) and Terra (470/660 nm), Ultraviolet Aerosol Index (UVAI) from TOMS, and model results from the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. Results in Cape Town are distinct, owing to a typically clean, marine airmass origin and infrequent continental influence. At continentally-influenced sites, AOD550, AOD555, α550/865, α470/660 and UVAI reach maxima (0.12-0.20, 1.0-1.8, and 1.0-1.2, respectively) during late winter and early spring (August-October), coinciding with a period of enhanced dust generation and the maximum frequency of close-proximity and subtropical fires identified by MODIS Fire Information for Resource Management System (FIRMS). The adjacent metropolitan and industrial Gauteng and HVAPA areas have been identified as a megacity based on NO2 concentrations, but AOD is a factor of 3-6 lower than other megacities worldwide. GOCART results suggest that the contributions of organics and black carbon to AOD are significantly enhanced during biomass burning season (ASO), but that sulfate is the most significant contributor to AOD (~70-80%) through the rest of the year. Dust appears to be underestimated by GOCART emissions inventories at continentally-influenced metropolitan areas of South Africa. Ground monitoring sites were classified according to site type: (1) township and informal settlement sites with

  7. Retrieval of Aerosol Optical Depth in the Arid or Semiarid Region of Northern Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Xinpeng Tian

    2018-01-01

    Full Text Available Satellite remote sensing has been widely used to retrieve aerosol optical depth (AOD, which is an indicator of air quality as well as radiative forcing. The dark target (DT algorithm is applied to low reflectance areas, such as dense vegetation, and the deep blue (DB algorithm is adopted for bright-reflecting regions. However, both DT and DB algorithms ignore the effect of surface bidirectional reflectance. This paper provides a method for AOD retrieval in arid or semiarid areas, in which the key points are the accurate estimation of surface reflectance and reasonable assumptions of the aerosol model. To reduce the uncertainty in surface reflectance, a minimum land surface reflectance database at the spatial resolution of 500 m for each month was constructed based on the moderate-resolution imaging spectroradiometer (MODIS surface reflectance product. Furthermore, a bidirectional reflectance distribution function (BRDF correction model was adopted to compensate for the effect of surface reflectance anisotropy. The aerosol parameters, including AOD, single scattering albedo, asymmetric factor, Ångström exponent and complex refractive index, are determined based on the observation of two sunphotometers installed in northern Xinjiang from July to August 2014. The AOD retrieved from the MODIS images was validated with ground-based measurements and the Terra-MODIS aerosol product (MOD04. The 500 m AOD retrieved from the MODIS showed high consistency with ground-based AOD measurements, with an average correlation coefficient of ~0.928, root mean square error (RMSE of ~0.042, mean absolute error (MAE of ~0.032, and the percentage falling within the expected error (EE of the collocations is higher than that for the MOD04 DB product. The results demonstrate that the new AOD algorithm is more suitable to represent aerosol conditions over Xinjiang than the DB standard product.

  8. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  9. Fine Resolution Air Quality Monitoring from a Small Satellite: CHRIS/PROBA

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2008-11-01

    Full Text Available Current remote sensing techniques fail to address the task of air quality monitoring over complex regions where multiple pollution sources produce high spatial variability. This is due to a lack of suitable satellite-sensor combinations and appropriate aerosol optical thickness (AOT retrieval algorithms. The new generation of small satellites, with their lower costs and greater flexibility has the potential to address this problem, with customised platform-sensor combinations dedicated to monitoring single complex regions or mega-cities. This paper demonstrates the ability of the European Space Agency’s small satellite sensor CHRIS/PROBA to provide reliable AOT estimates at a spatially detailed level over Hong Kong, using a modified version of the dense dark vegetation (DDV algorithm devised for MODIS. Since CHRIS has no middle-IR band such as the MODIS 2,100 nm band which is transparent to fine aerosols, the longest waveband of CHRIS, the 1,019 nm band was used to approximate surface reflectance, by the subtraction of an offset derived from synchronous field reflectance spectra. Aerosol reflectance in the blue and red bands was then obtained from the strong empirical relationship observed between the CHRIS 1,019 nm, and the blue and red bands respectively. AOT retrievals for three different dates were shown to be reliable, when compared with AERONET and Microtops II sunphotometers, and a Lidar, as well as air quality data at ground stations. The AOT images exhibited considerable spatial variability over the 11 x 11km image area and were able to indicate both local and long distance sources.

  10. Optical properties of humic-like substances (HULIS in biomass-burning aerosols

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2006-01-01

    Full Text Available We present here the optical properties of humic-like substances (HULIS isolated from the fine fraction of biomass-burning aerosol collected in the Amazon basin during the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia – SMOke aerosols, Clouds, rainfall and Climate experiment in September 2002. From the isolated HULIS, aerosol particles were generated and their scattering and absorption coefficients measured. The size distribution and mass of the particles were also recorded. The value of the index of refraction was derived from "closure" calculations based on particle size, scattering and absorption measurements. On average, the complex index of refraction at 532 nm of HULIS collected during day and nighttime was 1.65–0.0019i and 1.69–0.0016i, respectively. In addition, the imaginary part of the complex index of refraction was calculated using the measured absorption coefficient of the bulk HULIS. The mass absorption coefficient of the HULIS at 532 nm was found to be quite low (0.031 and 0.029 m2 g−1 for the day and night samples, respectively. However, due to the high absorption Ångström exponent (6–7 of HULIS, the specific absorption increases substantially towards shorter wavelengths (~2–3 m2 g−1 at 300 nm, causing a relatively high (up to 50% contribution to the light absorption of our Amazonian aerosol at 300 nm. For the relative contribution of HULIS to light absorption in the entire solar spectrum, lower values (6.4–8.6% are obtained, but those are still not negligible.

  11. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES)

    Science.gov (United States)

    Loeb, N. G.; Kato, S.

    2002-01-01

    Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.

  12. Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations

    Science.gov (United States)

    Bridhikitti, Arika

    2013-06-01

    Previous studies suggested that aerosol optical depth (AOD) from the Earth Observing System satellite retrievals could be used for inference of ground-level air quality in various locations. This application may be appropriate if pollution in elevated atmospheric layers is insignificant. This study investigated the significance of elevated air pollution layers over the Bangkok Metropolitan Region (BMR) from all available aerosol layer scenes taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for years 2007 to 2011. The results show that biomass burning smoke layers alone were the most frequently observed. The smoke layers accounted for high AOD variations and increased AOD levels. In the dry seasons, the smoke layers alone with high AOD levels were likely brought to the BMR via northeasterly to easterly prevailing winds and found at altitudes above the typical BMR mixing heights of approximately 0.7 to 1.5 km. The smoke should be attributed to biomass burning emissions outside the BMR.

  13. Variability of aerosol optical properties in the Western Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    M. Pandolfi

    2011-08-01

    Full Text Available Aerosol light scattering, absorption and particulate matter (PM concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR. Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm were 26.6±23.2 Mm−1 and 4.3±2.7 Mm−1, respectively and the mean aerosol absorption coefficient (@ 637 nm was 2.8±2.2 Mm−1. Mean values of Single Scattering Albedo (SSA and Ångström exponent (å (calculated from 450 nm to 635 nm at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g−1 and 11.8±2.2 m2 g−1, respectively, while the mean aerosol absorption cross section (MAC was 10.4±2.0 m2 g−1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1 while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly

  14. Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia

    Science.gov (United States)

    Ma, Yongjing; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    Observation and analysis of the optical properties of atmospheric aerosols in a South Asian tropical rain forest showed that the annual mean aerosol optical depth (AOD) and aerosol Ångström exponent (α) at 500 nm were 0.47 ± 0.30 (± value represents the standard deviation) and 1.35 ± 0.32, respectively, from 2012 to 2014, similar with that of Amazon region. Aerosol optical properties in this region varied significantly between the dry and wet seasons. The mean AOD and α were 0.50 ± 0.32 and 1.41 ± 0.28, respectively, in the dry season and 0.41 ± 0.20 and 1.13 ± 0.41 in the wet season. Because of the combustion of the rich biomass in the dry season, fine modal smoke aerosols increased, which led to a higher AOD and smaller aerosol control mode than in the wet season. The average atmospheric humidity in the wet season was 85.50%, higher than the 79.67% during the dry season. In the very damp conditions of the wet season, the aerosol control mode was relatively larger, while AOD appeared to be lower because of the effect of aerosol hygroscopic growth and wet deposition. The trajectories were similar both in dry and wet, but with different effects on the aerosol concentration. The highest AOD values 0.66 ± 0.34 (in dry) and 0.45 ± 0.21 (in wet) both occurred in continental air masses, while smaller (0.38-0.48 in dry and 0.30-0.35 in wet) in oceanic air masses. The range of AOD values during the wet season was relatively narrow (0.30-0.45), but the dry season range was wider (0.38-0.66). For the Ångström exponent, the range in the wet season (0.74-1.34) was much greater than that in the dry season (1.33-1.54).

  15. Steps Toward an EOS-Era Aerosol Air Mass Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2.

  16. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    International Nuclear Information System (INIS)

    Wahab, A M; Sarker, M L R

    2014-01-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation

  17. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest china

    Science.gov (United States)

    Ma, Yongjing; Xin, Jinyuan; Ma, Yining; Kong, Lingbin; Zhang, Kequan; Zhang, Wenyu; Wang, Yuesi; Wang, Xiuqin; Zhu, Yongfeng

    2017-08-01

    Aerosol observational data for 2012 obtained from Dunhuang Station of CARE-China (Campaign on Atmospheric Aerosol Research Network of China) were analyzed to achieve in-depth knowledge of aerosol optical properties over Dunhuang region. The results showed that the annual average aerosol optical depth (AOD) at 500 nm was 0.32±0.06, and the Ångström exponent ( α) was 0.73 ± 0.27. Aerosol optical properties revealed significant seasonal characteristics. Frequent sandstorms in MAM (March-April-May) resulted in the seasonal maximum AOD, 0.41 ± 0.04, and a relatively smaller α value, 0.44±0.04. The tourism seasons, JJA (June-July-August) and SON (September-October-November) coincide with serious emissions of small anthropogenic aerosols. While in DJF (December-January-February), the composition of the atmosphere was a mixture of dust particles and polluted aerosols released by domestic heating; the average AOD and α were 0.29 ± 0.02 and 0.66 ± 0.17, respectively. Different air masses exhibited different degrees of influence on the aerosol concentration over Dunhuang in different seasons. During MAM, ranges of AOD (0.11-1.18) and α (0.06-0.82) were the largest under the dust influence of northwest-short-distance air mass in the four trajectories. Urban aerosols transported by northwest-short-distance air mass accounted for a very large proportion in JJA and the mixed aerosols observed in SON were mainly conveyed by air masses from the west. In DJF, the similar ranges of AOD and α under the three air mass demonstrated the analogous diffusion effects on regional pollutants over Dunhuang.

  18. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    Science.gov (United States)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  19. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  20. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo1

    2011-12-01

    Full Text Available The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking

  1. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    Science.gov (United States)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  2. Earth cloud, aerosol, and radiation explorer optical payload development status

    Science.gov (United States)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  3. Retrievals of Aerosol Microphysics from Simulations of Spaceborne Multiwavelength Lidar Measurements

    Science.gov (United States)

    Whiteman, David N.; Perez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2017-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 microns is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  4. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    Science.gov (United States)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF

  5. Constraining the instantaneous aerosol influence on cloud albedo.

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-05-09

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration ( N d ), previous studies have used the sensitivity of the N d to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the N d to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between N d and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.

  6. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2004-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  7. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    Science.gov (United States)

    Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang

    2018-01-01

    Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  8. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    Directory of Open Access Journals (Sweden)

    B. N. Holben

    2018-01-01

    Full Text Available Over the past 24 years, the AErosol RObotic NETwork (AERONET program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  9. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data

    Science.gov (United States)

    Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan

    2005-01-01

    Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.

  10. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  11. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  12. Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA in CanAM4-PAM

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2012-08-01

    Full Text Available A new size-resolved dust scheme based on the numerical method of piecewise log-normal approximation (PLA was developed and implemented in the fourth generation of the Canadian Atmospheric Global Climate Model with the PLA Aerosol Model (CanAM4-PAM. The total simulated annual global dust emission is 2500 Tg yr−1, and the dust mass load is 19.3 Tg for year 2000. Both are consistent with estimates from other models. Results from simulations are compared with multiple surface measurements near and away from dust source regions, validating the generation, transport and deposition of dust in the model. Most discrepancies between model results and surface measurements are due to unresolved aerosol processes. Biases in long-range transport are also contributing. Radiative properties of dust aerosol are derived from approximated parameters in two size modes using Mie theory. The simulated aerosol optical depth (AOD is compared with satellite and surface remote sensing measurements and shows general agreement in terms of the dust distribution around sources. The model yields a dust AOD of 0.042 and dust aerosol direct radiative forcing (ADRF of −1.24 W m−2 respectively, which show good consistency with model estimates from other studies.

  13. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    Science.gov (United States)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  14. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    Science.gov (United States)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  15. A Big Data Approach for Situation-Aware estimation, correction and prediction of aerosol effects, based on MODIS Joint Atmosphere product (collection 6) time series data

    Science.gov (United States)

    Singh, A. K.; Toshniwal, D.

    2017-12-01

    The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series

  16. Tropospheric Vertical Profiles of Aerosol Optical, Microphysical and Concentration Properties in the Frame of the Hygra-CD Campaign (Athens, Greece 2014: A Case Study of Long-Range Transport of Mixed Aerosols

    Directory of Open Access Journals (Sweden)

    Papayannis Alexandros

    2016-01-01

    Full Text Available Combined multi-wavelength aerosol Raman lidar and sun photometry measurements were performed during the HYGRA-CD campaign over Athens, Greece during May-June 2014. The retrieved aerosol optical properties (3 aerosol backscatter at 355-532-1064 nm and 2 aerosol extinction profiles at 355-532 nm were used as input to an inversion code to retrieve the aerosol microphysical properties (effective radius reff and number concentration N using regularization techniques. Additionally, the volume concentration profile was derived for fine particles using the LIRIC code. In this paper we selected a complex case study of long-range transport of mixed aerosols (biomass burning particles mixed with dust arriving over Athens between 10-12 June 2014 in the 1.5-4 km height. Between 2-3 km height we measured mean lidar ratios (LR ranging from 45 to 58 sr (at 355 and 532 nm, while the Ångström exponent (AE aerosol extinction-related values (355nm/532nm ranged between 0.8-1.3. The retrieved values of reff and N ranged from 0.19±0.07 to 0.22±0.07 μm and 460±230 to 2200±2800 cm-3, respectively. The aerosol linear depolarization ratio (δ at 532 nm was lower than 5-7% (except for the Saharan dust cases, where δ~10-15%.

  17. Zonal Aerosol Direct and Indirect Radiative Forcing using Combined CALIOP, CERES, CloudSat, and CERES Data

    Science.gov (United States)

    Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.

    2009-12-01

    Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.

  18. Modeling the Optical Properties of Biomass Burning Aerosols: Young Smoke Aerosols From Savanna Fires and Comparisons to Observations from SAFARI 2000

    Science.gov (United States)

    Matichuk, R. I.; Smith, J. A.; Toon, O. B.; Colarso, P. R.

    2006-01-01

    Annually, farmers in southern Africa manage their land resources and prepare their fields for cultivation by burning crop residual debris, with a peak in the burning season occurring during August and September. The emissions from these fires in southern Africa are among the greatest from fires worldwide, and the gases and aerosol particles produced adversely affect air quality large distances from their source regions, and can even be tracked in satellite imagery as they cross the Atlantic and Pacific Ocean basins. During August and September 2000 an international group of researchers participating in the Southern African Regional Science Initiate field experiment (SAFARI 2000) made extensive ground-based, airborne, and satellite measurements of these gases and aerosols in order to quantify their amounts and effects on Earth's atmosphere. In this study we interpreted the measurements of smoke aerosol particles made during SAFARI 2000 in order to better represent these particles in a numerical model simulating their transport and fate. Typically, smoke aerosols emitted from fires are concentrated by mass in particles about 0.3 micrometers in diameter (1,000,000 micrometers = 1 meter, about 3 feet); for comparison, the thickness of a human hair is about 50 micrometers, almost 200 times as great. Because of the size of these particles, at the surface they can be easily inhaled into the lungs, and in high concentrations have deleterious health effects on humans. Additionally, these particles reflect and absorb sunlight, impacting both visibility and the balance of sunlight reaching -Earth's surface, and ultimately play a role in modulating Earth's climate. Because of these important effects, it is important that numerical models used to estimate Earth's climate response to changes in atmospheric composition accurately represent the quantity and evolution of smoke particles. In our model, called the Community Aerosol and Radiation Model for Atmospheres (CARMA) we used

  19. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    Science.gov (United States)

    Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.

    2012-04-01

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this

  20. Seasonal variability of aerosol concentration and size distribution in Cape Verde using a continuous aerosol optical spectrometer

    Directory of Open Access Journals (Sweden)

    Casimiro Adrião Pio

    2014-05-01

    Full Text Available One year of, almost continuous, measurements of aerosol optical properties and chemical composition were performed at the outskirts of Praia, Santiago Island, Cape Verde, within the framework of CV-DUST (Atmospheric aerosol in Cape Verde region: seasonal evaluation of composition, sources and transport research project, during 2011. This article reports the aerosol number and mass concentration measurements using a GRIMM Optical Aerosol Spectrometer that provides number size discrimination into 31 size ranges from 0.25 to 32 µm. Time series of 5 min average PM10 concentrations revealed peak values higher than 1000 µg.m-3 during winter dust storm events originating over Northern Africa. The 24 hours average concentrations exceeded the World Health Organization (WHO guidelines for PM2.5 and PM10 in 20% and 30% of the 2001 days, respectively. Annual average mass concentrations (±standard deviation for PM1, PM2.5 and PM10 were 5±5, 19±21 and 48±64 µg.m-3, respectively. The annual PM2.5 and PM10 values were also above the limits prescribed by the WHO (10 and 20 µg.m-3, respectively. The aerosol mass size distribution revealed two main modes for particles smaller than 10 µm: a fine mode (0.7-0.8 µm, which possibly results of gas to particle conversion processes; and a coarse mode with maxima at 3-4 µm, which is associated with desert dust and sea salt sources. Within the coarse mode two sub-modes with maxima at 5-6 µm and 10-12 µm were frequently present.

  1. Vegetation fires and air pollution in Vietnam.

    Science.gov (United States)

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  3. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    Science.gov (United States)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  4. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    Science.gov (United States)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater

  5. Operational remote sensing of aerosols over land to account for directional effects

    International Nuclear Information System (INIS)

    Ramon, Didier; Santer, Richard

    2001-01-01

    The assumption that the ground is a Lambertian reflector is commonly adopted in operational atmospheric corrections of spaceborne sensors. Through a simple modeling of directional effects in radiative transfer following the second simulation of the satellite signal in the solar spectrum (6S) approach, we propose an operational method to account for the departure from Lambertian behavior of a reflector covered by a scattering medium. This method relies on the computation of coupling terms between the reflecting and the scattering media and is able to deal with a two-layer atmosphere. We focus on the difficult problem of aerosol remote sensing over land. One popular sensing method relies on observations over dense dark vegetation, for which the surface reflectance is low and quite well defined in the blue and in the red. Therefore a study was made for three cases: (1) dark vegetation covered by atmospheric aerosols, (2) atmospheric aerosols covered by molecules, and finally (3) dark vegetation covered by atmospheric aerosols covered by molecules. Comparisons of top-of-the-atmosphere reflectances computed with our modeling and reference computations made with the successive-order-of-scattering code show the robustness of the modeling in the blue and in the red for aerosol optical thicknesses as great as 0.6 and solar zenith angles as large as 60 deg. . The model begins to fail only in the blue for large solar zenith angles. The benefits expected for aerosol remote sensing over land are evaluated with an aerosol retrieval scheme developed for the Medium-Resolution Imaging Spectrometer. The main result is a better constraint on the aerosol model with inclusion of directional effects and a weaker effect on the optical thickness of the retrieval aerosol. The directional scheme is then applied to the aerosol remote-sensing problem in actual Indian Remote Sensing Satellite P3/Modular Optoelectronic Scanner images over land and shows significant improvement compared with a

  6. First Transmitted Hyperspectral Light Measurements and Cloud Properties from Recent Field Campaign Sampling Clouds Under Biomass Burning Aerosol

    Science.gov (United States)

    Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina

    2016-01-01

    We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).

  7. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    Science.gov (United States)

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Aerosol Size Distributions During ACE-Asia: Retrievals From Optical Thickness and Comparisons With In-situ Measurements

    Science.gov (United States)

    Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.

  9. Correlative measurements of the stratospheric aerosols

    Science.gov (United States)

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  10. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    Science.gov (United States)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  11. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005-2015)

    Science.gov (United States)

    Banks, Jamie R.; Brindley, Helen E.; Stenchikov, Georgiy; Schepanski, Kerstin

    2017-03-01

    The inter-annual variability of the dust aerosol presence over the Red Sea and the Persian Gulf is analysed over the period 2005-2015. Particular attention is paid to the variation in loading across the Red Sea, which has previously been shown to have a strong, seasonally dependent latitudinal gradient. Over the 11 years considered, the July mean 630 nm aerosol optical depth (AOD) derived from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) varies between 0.48 and 1.45 in the southern half of the Red Sea. In the north, the equivalent variation is between 0.22 and 0.66. The temporal and spatial pattern of variability captured by SEVIRI is also seen in AOD retrievals from the MODerate Imaging Spectroradiometer (MODIS), but there is a systematic offset between the two records. Comparisons of both sets of retrievals with ship- and land-based AERONET measurements show a high degree of correlation with biases of typically only sample relatively low aerosol loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs ( > 1), with offsets of +0.19 for MODIS and -0.06 for SEVIRI. Similar behaviour is also seen over the Persian Gulf. Analysis of the scattering angles at which retrievals from the SEVIRI and MODIS measurements are typically performed in these regions suggests that assumptions concerning particle sphericity may be responsible for the differences seen.

  12. Spatial and Temporal Variations of Aerosol Optical Properties during KORUS-AQ

    Science.gov (United States)

    Choi, Y.; Ghim, Y. S.; Segal-Rosenhaimer, M.; Redemann, J.

    2017-12-01

    As part of the KORUS-AQ campaign, Aerosol Robotic Networks (AERONET) Cimel sunphotometers were deployed at more than 20 sites over Korea including the Seoul Metropolitan Area (SMA) and rural/background areas. We analyzed hourly mean values of fine and coarse mode aerosol optical depths (AODs), and fine mode fraction (FMF) from spectral deconvolution algorithm retrievals. The AERONET sites over Korea were classified into four groups - those in SMA, southeastern and southwestern parts of Korea, and background sites, which distribute similar results from particulate matter (PM) stations in Korea. Temporal and spatial variations of aerosol optical properties (AOPs) from the four groups were further examined using AODs from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), which can provide denser spatial resolution than AERONET sites and PM stations. AOPs from more than 30 flights over SMA were also investigated to distinguish the characteristics of diurnal variations upwind and downwind of SMA. The spatial and temporal homogeneity and/or heterogeneity of AOPs are discussed in terms of meteorological variables, other pollutants and nearby emission sources.

  13. Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12years (2002-2014) based on Collection 006 MODIS-Aqua data.

    Science.gov (United States)

    Floutsi, A A; Korras-Carraca, M B; Matsoukas, C; Hatzianastassiou, N; Biskos, G

    2016-05-01

    The Mediterranean basin is a region of particular interest for studying atmospheric aerosols due to the large variety of air masses it receives, and its sensitivity to climate change. In this study we use the newest collection (C006) of aerosol optical depth from MODIS-Aqua, from which we also derived the fine-mode fraction and Ångström exponent over the last 12years (i.e., from 2002 to 2014), providing the longest analyzed dataset for this region. The long-term regional optical depth average is 0.20±0.05, with the indicated uncertainty reflecting the inter-annual variability. Overall, the aerosol optical depth exhibits a south-to-north decreasing gradient and an average decreasing trend of 0.0030 per year (19% total decrease over the study period). The correlation between the reported AOD observations with measurements from the ground AERONET stations is high (R=0.76-0.80 depending on the wavelength), with the MODIS-Aqua data being slightly overestimated. Both fine-fraction and Ångström exponent data highlight the dominance of anthropogenic aerosols over the northern, and of desert aerosols over the southern part of the region. Clear intrusions of desert dust over the Eastern Mediterranean are observed principally in spring, and in some cases in winter. Dust intrusions dominate the Western Mediterranean in the summer (and sometimes in autumn), whereas anthropogenic aerosols dominate the sub-region of the Black Sea in all seasons but especially during summer. Fine-mode optical depth is found to decrease over almost all areas of the study region during the 12-year period, marking the decreasing contribution of anthropogenic particulate matter emissions over the study area. Coarse-mode aerosol load also exhibits an overall decreasing trend. However, its decrease is smaller than that of fine aerosols and not as uniformly distributed, underlining that the overall decrease in the region arises mainly from reduced anthropogenic emissions. Copyright © 2016 Elsevier

  14. Analysis of intensive aerosol optical properties measured at the Jungfraujoch station

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Nyeki, S.; Baltensperger, U.; Weingartner, E.; Lugauer, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Characterisation of atmospheric aerosol optical properties at the Jungfraujoch has been conducted to deliver basic data for comparison with those from NOAA baseline atmospheric monitoring stations. (author) 2 figs., 2 refs.

  15. Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012

    Directory of Open Access Journals (Sweden)

    M. Di Pierro

    2013-07-01

    Full Text Available We use retrievals of aerosol extinction from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP onboard the CALIPSO satellite to examine the vertical, horizontal and temporal variability of tropospheric Arctic aerosols during the period 2006–2012. We develop an empirical method that takes into account the difference in sensitivity between daytime and nighttime retrievals over the Arctic. Comparisons of the retrieved aerosol extinction to in situ measurements at Barrow (Alaska and Alert (Canada show that CALIOP reproduces the observed seasonal cycle and magnitude of surface aerosols to within 25 %. In the free troposphere, we find that daytime CALIOP retrievals will only detect the strongest aerosol haze events, as demonstrated by a comparison to aircraft measurements obtained during NASA's ARCTAS mission during April 2008. This leads to a systematic underestimate of the column aerosol optical depth by a factor of 2–10. However, when the CALIOP sensitivity threshold is applied to aircraft observations, we find that CALIOP reproduces in situ observations to within 20% and captures the vertical profile of extinction over the Alaskan Arctic. Comparisons with the ground-based high spectral resolution lidar (HSRL at Eureka, Canada, show that CALIOP and HSRL capture the evolution of the aerosol backscatter vertical distribution from winter to spring, but a quantitative comparison is inconclusive as the retrieved HSRL backscatter appears to overestimate in situ observations by a factor of 2 at all altitudes. In the High Arctic (>70° N near the surface (−1, followed by a sharp decline and a minimum in May–September (1–4 Mm−1, thus providing the first pan-Arctic view of Arctic haze seasonality. The European and Asian Arctic sectors display the highest wintertime extinctions, while the Atlantic sector is the cleanest. Over the Low Arctic (60–70° N near the surface, CALIOP extinctions reach a maximum over land in summer due to

  16. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

    NARCIS (Netherlands)

    Proestakis, Emmanouil; Amiridis, Vassilis; Marinou, Eleni; Georgoulias, Aristeidis K.; Solomos, Stavros; Kazadzis, Stelios; Chimot, J.J.; Che, Huizheng; Alexandri, Georgia; Binietoglou, Ioannis; Daskalopoulou, Vasiliki; Kourtidis, Konstantinos A.; Johannes Van Der A, Ronald

    2018-01-01

    We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET

  17. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests

    Science.gov (United States)

    Slowik, J. G.; Stroud, C.; Bottenheim, J. W.; Brickell, P. C.; Chang, R. Y.-W.; Liggio, J.; Makar, P. A.; Martin, R. V.; Moran, M. D.; Shantz, N. C.; Sjostedt, S. J.; van Donkelaar, A.; Vlasenko, A.; Wiebe, H. A.; Xia, A. G.; Zhang, J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-03-01

    Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.

  18. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    Science.gov (United States)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  19. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    Science.gov (United States)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  20. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  1. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  2. CSIR South Africa mobile LIDAR - First scientific results: comparison with satellite, sun photometer and model simulations

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-11-01

    Full Text Available -borne measurements. The LIDAR results are compared with aerosol extinction measurements from the Stratosphere Aerosol Gas Experiment (SAGE) II, optical depth derived from sun photometers employed under the AErosol RObotic NETwork (AERONET) and backscatter...

  3. Satellite Remote Sensing of Severe Haze Pollution over Eastern China on June, 2012

    Science.gov (United States)

    Christopher, S. A.; Feng, N.; Guo, Y.; Hong, S.

    2012-12-01

    Severe yellow haze hit a vast portion of Eastern China during the second week on June, 2012, as large area in Hubei, Henan, Hunan, Jiangsu, Anhui, Jiangxi, Shandong, Zhejiang provinces and Shanghai city were covered by lingering haze. This massive haze conditions caused considerable inconvenience to people's daily lives. Previous global air quality studies have also shown that Eastern China is one of regions with highest fine particulate matter (PM2.5) concentrations around the world. In this study, we estimate spatial and temporal variations of PM2.5 concentrations using satellite observations of this severe haze pollution on June, 2012. Satellite derived Aerosol Optical Thickness (AOT), sites measured hourly PM2.5 and meteorological fields from surface are statistically correlated based on a multiple regression model. We also explore the utility of higher spatial resolution aerosol retrieval from MODIS. Both satellite-derived and in-situ values have peak daily mean concentrations of approximately 400 μg m-3 on June 12th, 2012 in the City of Wuhan, which is nearly 10 times of the primary standard of PM2.5 concentration of China's "Ambient Air Quality Standards" (35 μg m-3). Cities in the Eastern China, e.g. Nanjing, Hangzhou and Nanchang, have also witnessed similar peak values, along with heavy smog during the same period. Satellite observations in this case study demonstrate that the transport of smoke plumes can be one of the main drivers of regional haze pollution over Eastern China. Comparing to the U.S., current limited ground-based stations is one of the biggest problem to develop the PM2.5 monitoring program over China. Our results may suggest the potential of combining satellite remote sensing with atmospheric model to map the PM2.5 spatial concentration over the nationwide level, which can further accelerate the construction of PM2.5 monitoring network over China.

  4. Aerosol Retrievals from Proposed Satellite Bistatic Lidar Observations: Algorithm and Information Content

    Science.gov (United States)

    Alexandrov, M. D.; Mishchenko, M. I.

    2017-12-01

    Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.

  5. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  6. Impacts of Aerosol Direct Effects on the South Asian Climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/Surface Measurements

    Science.gov (United States)

    Wang, Sheng-Hsiang; Gautam, Ritesh; Lau, William K. M.; Tsay, Si-Chee; Sun, Wen-Yih; Kim, Kyu-Myong; Chern, Jiun-Dar; Hsu, Christina; Lin, Neng-Huei

    2011-01-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation.

  7. Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2.5 levels.

    Science.gov (United States)

    Yu, Chao; Di Girolamo, Larry; Chen, Liangfu; Zhang, Xueying; Liu, Yang

    2015-01-01

    The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter research has been conducted on the association between cloud properties and PM2.5 levels. In this study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000-2010. We found that both satellite-retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.

  8. Accurate beacon positioning method for satellite-to-ground optical communication.

    Science.gov (United States)

    Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing

    2017-12-11

    In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.

  9. Assessment of aerosol optics, microphysics, and transport process of biomass-burning haze over northern SE Asia: 7-SEAS AERONET observations

    Science.gov (United States)

    Wang, S.; Giles, D. M.; Eck, T. F.; Lin, N.; Tsay, S.; Holben, B. N.

    2013-12-01

    Initiated in 2007, the Seven South East Asian Studies (7-SEAS) is aimed to facilitate an interdisciplinary research on the aerosol environment in SE Asia (SEA) as a whole, promote international collaboration, and further enhance scientific understanding of the impact of biomass burning on clouds, atmospheric radiation, hydrological cycle, and region climates. One of the key measurements proposed in the 7-SEAS is the NASA/AERONET (AErosol RObotic NETwork) observation, which provides helpful information on columnar aerosol optical properties and allows us consistently to examine biomass-burning aerosols across northern SEA from ground-based remote-sensing point of view. In this presentation, we will focus on the two 7-SEAS field deployments, i.e. the 2012 Son La Experiment and the 2013 BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment). We analyze the daytime variation of aerosol by using consistent measurements from 15 of AERONET sites over Indochina, the South China Sea, and Taiwan. Spatiotemporal characteristics of aerosol optical properties (e.g., aerosol optical depth (AOD), fine/coarse mode AOD, single-scattering albedo, asymmetry factor) will be discussed. Strong diurnal variation of aerosol optical properties was observed to be attributed to planetary boundary layer (PBL) dynamics. A comparison between aerosol loading (i.e. AOD) and surface PM2.5 concentration will be presented. Our results demonstrate that smoke aerosols emitted from agriculture burning that under certain meteorological conditions can degrade regional air quality 3000 km from the source region, with additional implications for aerosol radiative forcing and regional climate change over northern SE Asia.

  10. Long-term measurements of aerosol optical parameters in Athens, Greece

    Science.gov (United States)

    Paraskevopoulou, Despoina; Liakakou, Eleni; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2015-04-01

    Aerosol chemical composition was studied in conjunction with its optical properties in the area of Athens Greece. For this purpose, sampling of fine aerosol fraction (PM2,5) took place on a daily basis from August 2010 to April 2013 at an urban background location. The samples are subsequently analyzed for their content in organic (OC) and elemental carbon (EC), major ions and trace metals, resulting in the exercise of chemical mass closure. In parallel, the optical properties of aerosols are recorded using a nephelometer and a particle soot absorption photometer (PSAP), leading to the calculation of scattering (σscat) and absorption (σabs) coefficients, respectively; while single scattering albedo (SSA) and mass scattering and absorption efficiencies are thereinafter calculated. Daily σscat values provide an average of 30.1±3.9 Μm-1 while, the average of σabs is 5.2±1.4 Μm-1. The seasonal cycle of σscat presents maximum during summer and in November, due to long-range transport of aerosol from continental Europe and dust transfer from Africa, respectively. The estimated mass absorption efficiency of EC is estimated to be 8.3±0.2 m2 g-1 for the whole studied period, while the corresponding estimated mass scattering efficiency of PM2.5 is 1.7±0.1 m2 g-1 and does not affected by the presence of dust. The average SSA equals to 0.87±0.11 for the three-year period. On a seasonal basis, SSA presents maximum values during summer that is consistent with the reduction of EC - the main absorbing specie. Finally, the reconstruction of scattering coefficients was performed taking into consideration the measured chemistry of fine aerosol.

  11. Constraining the instantaneous aerosol influence on cloud albedo

    Energy Technology Data Exchange (ETDEWEB)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-04-26

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.

  12. Seasonal cycle of desert aerosols in western Africa: analysis of the coastal transition with passive and active sensors

    Directory of Open Access Journals (Sweden)

    H. Senghor

    2017-07-01

    Full Text Available The impact of desert aerosols on climate, atmospheric processes, and the environment is still debated in the scientific community. The extent of their influence remains to be determined and particularly requires a better understanding of the variability of their distribution. In this work, we studied the variability of these aerosols in western Africa using different types of satellite observations. SeaWiFS (Sea-Viewing Wide Field-of-View Sensor and OMI (Ozone Monitoring Instrument data have been used to characterize the spatial distribution of mineral aerosols from their optical and physical properties over the period 2005–2010. In particular, we focused on the variability of the transition between continental western African and the eastern Atlantic Ocean. Data provided by the lidar scrolling CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization onboard the satellite CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations for the period 2007–2013 were then used to assess the seasonal variability of the vertical distribution of desert aerosols. We first obtained a good representation of aerosol optical depth (AOD and single-scattering albedo (SSA from the satellites SeaWiFS and OMI, respectively, in comparison with AERONET estimates, both above the continent and the ocean. Dust occurrence frequency is higher in spring and boreal summer. In spring, the highest occurrences are located between the surface and 3 km above sea level, while in summer the highest occurrences are between 2 and 5 km altitude. The vertical distribution given by CALIOP also highlights an abrupt change at the coast from spring to fall with a layer of desert aerosols confined in an atmospheric layer uplifted from the surface of the ocean. This uplift of the aerosol layer above the ocean contrasts with the winter season during which mineral aerosols are confined in the atmospheric boundary layer. Radiosondes at Dakar Weather Station (17.5

  13. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    Science.gov (United States)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  14. Resolving the Aerosol Piece of the Global Climate Picture

    Science.gov (United States)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  15. Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach. I. Analytic Jacobians from the linearized CAO-DISORT model

    International Nuclear Information System (INIS)

    Spurr, Robert; Stamnes, Knut; Eide, Hans; Li Wei; Zhang Kexin; Stamnes, Jakob

    2007-01-01

    In this paper and the sequel, we investigate the application of classic inverse methods based on iterative least-squares cost-function minimization to the simultaneous retrieval of aerosol and ocean properties from visible and near infrared spectral radiance measurements such as those from the SeaWiFS and MODIS instruments. Radiance measurements at the satellite are simulated directly using an accurate coupled atmosphere-ocean-discrete-ordinate radiative transfer (CAO-DISORT) code as the main component of the forward model. For this kind of cost-function inverse problem, we require the forward model to generate weighting functions (radiance partial derivatives) with respect to the aerosol and marine properties to be retrieved, and to other model parameters which are sources of error in the retrievals. In this paper, we report on the linearization of the CAO-DISORT model. This linearization provides a complete analytic differentiation of the coupled-media radiative transfer theory, and it allows the model to generate analytic weighting functions for any atmospheric or marine parameter. For high solar zenith angles, we give an implementation of the pseudo-spherical (P-S) approach to solar beam attenuation in the atmosphere in the linearized model. We summarize a number of performance enhancements such as the use of an exact single-scattering calculation to improve accuracy. We derive inherent optical property inputs for the linearized CAO-DISORT code for a simple 2-parameter bio-optical model for the marine environment coupled to a 2-parameter bimodal atmospheric aerosol medium

  16. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    Science.gov (United States)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  17. Empirical estimates of CCN from aerosol optical properties at four remote sites

    Directory of Open Access Journals (Sweden)

    A. Jefferson

    2010-07-01

    Full Text Available This study presents an empirical method to estimate the CCN concentration as a function of percent supersaturation. The aerosol optical properties, backscatter fraction and single scatter albedo, function as proxies for the aerosol size and composition in a power law relationship to CCN. This method is tested at four sites with aged aerosol: SGP (Oklahoma, USA, FKB (Black Forest, Germany, HFE (Hefei, China and GRW (Graciosa, Azores. Each site represents a different aerosol type and thus demonstrates the method robustness and limitations. Good agreement was found between the calculated and measured CCN with slopes between 0.81 and 1.03 and correlation coefficients (r2 values between 0.59 and 0.67. The fit quality declined at low CCN concentrations.

  18. The OMI Aerosol Absorption Product: An A-train application

    Science.gov (United States)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2017-12-01

    Because of the uniquely large sensitivity of satellite-measured near-UV radiances to absorption by desert dust, carbonaceous and volcanic ash aerosols, observations by a variety of UV-capable sensors have been routinely used over the last forty years in both qualitative and quantitative applications for estimating the absorption properties of these aerosol types. In this presentation we will discuss a multi-sensor application involving observations from A-train sensors OMI, AIRS and CALIOP for the creation of a 13-year record of aerosol optical depth (AOD) and single scattering albedo (SSA). Determination of aerosol type, in terms of particle size distribution and refractive index, is an important algorithmic step that requires using external information. AIRS CO measurements are used as carbonaceous aerosols tracer to differentiate this aerosol type from desert dust. On the other hand, the height of the absorbing aerosol layer, an important parameter in UV aerosol retrievals, is prescribed using a CALIOP-based climatology. The combined use of these observations in the developments of the OMI long-term AOD/SSA record will be discussed along with an evaluation of retrieval results using independent observations.

  19. From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    Science.gov (United States)

    Tsay, Si-Chee; Hsu, N. Christina; Lau, William K.-M.; Li, Can; Gabriel, Philip M.; Ji, Qiang; Holben, Brent N.; Welton, E. Judd; Nguyen, Anh X.; Janjai, Serm; hide

    2013-01-01

    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships

  20. Overview of 3D-TRACE, a NASA Initiative in Three-Dimensional Tomography of the Aerosol-Cloud Environment

    Science.gov (United States)

    Davis, Anthony; Diner, David; Yanovsky, Igor; Garay, Michael; Xu, Feng; Bal, Guillaume; Schechner, Yoav; Aides, Amit; Qu, Zheng; Emde, Claudia

    2013-04-01

    Remote sensing is a key tool for sorting cloud ensembles by dynamical state, aerosol environments by source region, and establishing causal relationships between aerosol amounts, type, and cloud microphysics-the so-called indirect aerosol climate impacts, and one of the main sources of uncertainty in current climate models. Current satellite imagers use data processing approaches that invariably start with cloud detection/masking to isolate aerosol air-masses from clouds, and then rely on one-dimensional (1D) radiative transfer (RT) to interpret the aerosol and cloud measurements in isolation. Not only does this lead to well-documented biases for the estimates of aerosol radiative forcing and cloud optical depths in current missions, but it is fundamentally inadequate for future missions such as EarthCARE where capturing the complex, three-dimensional (3D) interactions between clouds and aerosols is a primary objective. In order to advance the state of the art, the next generation of satellite information processing systems must incorporate technologies that will enable the treatment of the atmosphere as a fully 3D environment, represented more realistically as a continuum. At one end, there is an optically thin background dominated by aerosols and molecular scattering that is strongly stratified and relatively homogeneous in the horizontal. At the other end, there are optically thick embedded elements, clouds and aerosol plumes, which can be more or less uniform and quasi-planar or else highly 3D with boundaries in all directions; in both cases, strong internal variability may be present. To make this paradigm shift possible, we propose to combine the standard models for satellite signal prediction physically grounded in 1D and 3D RT, both scalar and vector, with technologies adapted from biomedical imaging, digital image processing, and computer vision. This will enable us to demonstrate how the 3D distribution of atmospheric constituents, and their associated