WorldWideScience

Sample records for satellite-based rainfall algorithms

  1. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge data.

  2. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa

    Science.gov (United States)

    Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe

    2017-05-01

    Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.

  3. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  4. Heavy rainfall prediction applying satellite-based cloud data assimilation over land

    Science.gov (United States)

    Seto, Rie; Koike, Toshio; Rasmy, Mohamed

    2016-08-01

    To optimize flood management, it is crucial to determine whether rain will fall within a river basin. This requires very fine precision in prediction of rainfall areas. Cloud data assimilation has great potential to improve the prediction of precipitation area because it can directly obtain information on locations of rain systems. Clouds can be observed globally by satellite-based microwave remote sensing. Microwave observation also includes information of latent heat and water vapor associated with cloud amount, which enables the assimilation of not only cloud itself but also the cloud-affected atmosphere. However, it is difficult to observe clouds over land using satellite microwave remote sensing, because their emissivity is much lower than that of the land surface. To overcome this challenge, we need appropriate representation of heterogeneous land emissivity. We developed a coupled atmosphere and land data assimilation system with the Weather Research and Forecasting Model (CALDAS-WRF), which can assimilate soil moisture, vertically integrated cloud water content over land, and heat and moisture within clouds simultaneously. We applied this system to heavy rain events in Japan. Results show that the system effectively assimilated cloud signals and produced very accurate cloud and precipitation distributions. The system also accurately formed a consistent atmospheric field around the cloud. Precipitation intensity was also substantially improved by appropriately representing the local atmospheric field. Furthermore, combination of the method and operationally analyzed dynamical and moisture fields improved prediction of precipitation duration. The results demonstrate the method's promise in dramatically improving predictions of heavy rain and consequent flooding.

  5. Using long-term daily satellite based rainfall data (1983-2015) to analyze spatio-temporal changes in the sahelian rainfall regime

    Science.gov (United States)

    Zhang, Wenmin; Brandt, Martin; Guichard, Francoise; Tian, Qingjiu; Fensholt, Rasmus

    2017-07-01

    The sahelian rainfall regime is characterized by a strong spatial as well as intra- and inter-annual variability. The satellite based African Rainfall Climatology Version 2 (ARC2) daily gridded rainfall estimates with a 0.1° × 0.1° spatial resolution provides the possibility for in-depth studies of seasonal changes over a 33-year period (1983-2015). Here we analyze rainfall regime variables that require daily observations: onset, cessation, and length of the wet season; seasonal rainfall amount; number of rainy days; intensity and frequency of rainfall events; number, length, and cumulative duration of dry spells. Rain gauge stations and MSWEP (Multi-Source Weighted-Ensemble Precipitation) data were used to evaluate the agreement of rainfall variables in both space and time, and trends were analyzed. Overall, ARC2 rainfall variables reliably show the spatio-temporal dynamics of seasonal rainfall over 33 years when compared to gauge and MSWEP data. However, a higher frequency of low rainfall events (spell characteristics). Most rainfall variables (both ARC2 and gauge data) show negative anomalies (except for onset of rainy season) from 1983 until the end of the 1990s, from which anomalies become mostly positive and inter-annual variability is higher. ARC2 data show a strong increase in seasonal rainfall, wet season length (caused by both earlier onset and a late end), number of rainy days, and high rainfall events (>20 mm day-1) for the western/central Sahel over the period of analysis, whereas the opposite trend characterizes the eastern part of the Sahel.

  6. A new algorithm for agile satellite-based acquisition operations

    Science.gov (United States)

    Bunkheila, Federico; Ortore, Emiliano; Circi, Christian

    2016-06-01

    Taking advantage of the high manoeuvrability and the accurate pointing of the so-called agile satellites, an algorithm which allows efficient management of the operations concerning optical acquisitions is described. Fundamentally, this algorithm can be subdivided into two parts: in the first one the algorithm operates a geometric classification of the areas of interest and a partitioning of these areas into stripes which develop along the optimal scan directions; in the second one it computes the succession of the time windows in which the acquisition operations of the areas of interest are feasible, taking into consideration the potential restrictions associated with these operations and with the geometric and stereoscopic constraints. The results and the performances of the proposed algorithm have been determined and discussed considering the case of the Periodic Sun-Synchronous Orbits.

  7. Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data

    Science.gov (United States)

    López, Oliver; Houborg, Rasmus; McCabe, Matthew Francis

    2017-01-01

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this consistency-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2-3 months

  8. Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms

    Science.gov (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Zhao, Shaohua; Lin, Yi; Jia, Kun; Zhang, Xiaotong; Cheng, Jie; Xie, Xianhong; Sun, Liang; Wang, Xuanyu; Zhang, Lilin

    2017-04-01

    Accurate estimates of terrestrial latent heat of evaporation (LE) for different biomes are essential to assess energy, water and carbon cycles. Different satellite- based Priestley-Taylor (PT) algorithms have been developed to estimate LE in different biomes. However, there are still large uncertainties in LE estimates for different PT algorithms. In this study, we evaluated differences in estimating terrestrial water flux in different biomes from three satellite-based PT algorithms using ground-observed data from eight eddy covariance (EC) flux towers of China. The results reveal that large differences in daily LE estimates exist based on EC measurements using three PT algorithms among eight ecosystem types. At the forest (CBS) site, all algorithms demonstrate high performance with low root mean square error (RMSE) (less than 16 W/m2) and high squared correlation coefficient (R2) (more than 0.9). At the village (HHV) site, the ATI-PT algorithm has the lowest RMSE (13.9 W/m2), with bias of 2.7 W/m2 and R2 of 0.66. At the irrigated crop (HHM) site, almost all models algorithms underestimate LE, indicating these algorithms may not capture wet soil evaporation by parameterization of the soil moisture. In contrast, the SM-PT algorithm shows high values of R2 (comparable to those of ATI-PT and VPD-PT) at most other (grass, wetland, desert and Gobi) biomes. There are no obvious differences in seasonal LE estimation using MODIS NDVI and LAI at most sites. However, all meteorological or satellite-based water-related parameters used in the PT algorithm have uncertainties for optimizing water constraints. This analysis highlights the need to improve PT algorithms with regard to water constraints.

  9. Systematic Evaluation of Satellite-Based Rainfall Products over the Brahmaputra Basin for Hydrological Applications

    Directory of Open Access Journals (Sweden)

    Sagar Ratna Bajracharya

    2015-01-01

    Full Text Available Estimation of the flow generated in the Brahmaputra river basin is important for establishing an effective flood prediction and warning services as well as for water resources assessment and management. But this is a data scarce region with few and unevenly distributed hydrometeorological stations. Five high-resolution satellite rainfall products (CPC RFE2.0, RFE2.0-Modified, CMORPH, GSMaP, and TRMM 3B42 were evaluated at different spatial and temporal resolutions (daily, dekadal, monthly, and seasonal with observed rain gauge data from 2004 to 2006 to determine their ability to fill the data gap and suitability for use in hydrological and water resources management applications. Grid-to-grid (G-G and catchment-to-catchment (C-C comparisons were performed using the verification methods developed by the International Precipitation Working Group (IPWG. Comparing different products, RFE2.0-Modified, TRMM 3B42, and CMORPH performed best; they all detected heavy, moderate, and low rainfall but still significantly underestimated magnitude of rainfall, particularly in orographically influenced areas. Overall, RFE2.0-Modified performed best showing a high correlation coefficient with observed data and low mean absolute error, root mean square error, and multiple bias and is reasonably good at detecting the occurrence of rainfall. TRMM 3B42 showed the second best performance. The study demonstrates that there is a potential use of satellite rainfall in a data scarce region.

  10. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  11. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  12. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products

    Science.gov (United States)

    Nanda, Trushnamayee; Sahoo, Bhabagrahi; Beria, Harsh; Chatterjee, Chandranath

    2016-08-01

    Although flood forecasting and warning system is a very important non-structural measure in flood-prone river basins, poor raingauge network as well as unavailability of rainfall data in real-time could hinder its accuracy at different lead times. Conversely, since the real-time satellite-based rainfall products are now becoming available for the data-scarce regions, their integration with the data-driven models could be effectively used for real-time flood forecasting. To address these issues in operational streamflow forecasting, a new data-driven model, namely, the wavelet-based non-linear autoregressive with exogenous inputs (WNARX) is proposed and evaluated in comparison with four other data-driven models, viz., the linear autoregressive moving average with exogenous inputs (ARMAX), static artificial neural network (ANN), wavelet-based ANN (WANN), and dynamic nonlinear autoregressive with exogenous inputs (NARX) models. First, the quality of input rainfall products of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA), viz., TRMM and TRMM-real-time (RT) rainfall products is assessed through statistical evaluation. The results reveal that the satellite rainfall products moderately correlate with the observed rainfall, with the gauge-adjusted TRMM product outperforming the real-time TRMM-RT product. The TRMM rainfall product better captures the ground observations up to 95 percentile range (30.11 mm/day), although the hit rate decreases for high rainfall intensity. The effect of antecedent rainfall (AR) and climate forecast system reanalysis (CFSR) temperature product on the catchment response is tested in all the developed models. The results reveal that, during real-time flow simulation, the satellite-based rainfall products generally perform worse than the gauge-based rainfall. Moreover, as compared to the existing models, the flow forecasting by the WNARX model is way better than the other four models studied herein with the

  13. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    Science.gov (United States)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  14. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio; Nauditt, Alexandra; Birkel, Christian; Verbist, Koen; Ribbe, Lars

    2017-03-01

    Accurate representation of the real spatio-temporal variability of catchment rainfall inputs is currently severely limited. Moreover, spatially interpolated catchment precipitation is subject to large uncertainties, particularly in developing countries and regions which are difficult to access. Recently, satellite-based rainfall estimates (SREs) provide an unprecedented opportunity for a wide range of hydrological applications, from water resources modelling to monitoring of extreme events such as droughts and floods.This study attempts to exhaustively evaluate - for the first time - the suitability of seven state-of-the-art SRE products (TMPA 3B42v7, CHIRPSv2, CMORPH, PERSIANN-CDR, PERSIAN-CCS-Adj, MSWEPv1.1, and PGFv3) over the complex topography and diverse climatic gradients of Chile. Different temporal scales (daily, monthly, seasonal, annual) are used in a point-to-pixel comparison between precipitation time series measured at 366 stations (from sea level to 4600 m a.s.l. in the Andean Plateau) and the corresponding grid cell of each SRE (rescaled to a 0.25° grid if necessary). The modified Kling-Gupta efficiency was used to identify possible sources of systematic errors in each SRE. In addition, five categorical indices (PC, POD, FAR, ETS, fBIAS) were used to assess the ability of each SRE to correctly identify different precipitation intensities.Results revealed that most SRE products performed better for the humid South (36.4-43.7° S) and Central Chile (32.18-36.4° S), in particular at low- and mid-elevation zones (0-1000 m a.s.l.) compared to the arid northern regions and the Far South. Seasonally, all products performed best during the wet seasons (autumn and winter; MAM-JJA) compared to summer (DJF) and spring (SON). In addition, all SREs were able to correctly identify the occurrence of no-rain events, but they presented a low skill in classifying precipitation intensities during rainy days. Overall, PGFv3 exhibited the best performance everywhere

  15. A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

    Directory of Open Access Journals (Sweden)

    Wenlong Jing

    2016-10-01

    Full Text Available Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface characteristics. Daytime land surface temperature, nighttime land surface temperature, and day–night land surface temperature differences were introduced as variables in addition to the Normalized Difference Vegetation Index (NDVI, the Digital Elevation Model (DEM, and geolocation (longitude, latitude. Four machine learning regression algorithms, the classification and regression tree (CART, the k-nearest neighbors (k-NN, the support vector machine (SVM, and random forests (RF, were implemented to downscale monthly TRMM 3B43 V7 precipitation data from 25 km to 1 km over North China for the purpose of comparison of algorithm performance. The downscaled results were validated based on observations from meteorological stations and were also compared to a previous downscaling algorithm. According to the validation results, the RF-based model produced the results with the highest accuracy. It was followed by SVM, CART, and k-NN, but the accuracy of the downscaled results using SVM relied greatly on residual correction. The downscaled results were well correlated with the observations during the year, but the accuracies were relatively lower in July to September. Downscaling errors increase as monthly total precipitation increases, but the RF model was less affected by this proportional effect between errors and observation compared with the other algorithms. The variable importances of the land surface temperature (LST feature variables were higher than those of NDVI, which indicates the significance of considering the precipitation–land surface temperature

  16. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    Science.gov (United States)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  17. Cross-validation Methodology between Ground and GPM Satellite-based Radar Rainfall Product over Dallas-Fort Worth (DFW) Metroplex

    Science.gov (United States)

    Chen, H.; Chandrasekar, V.; Biswas, S.

    2015-12-01

    Over the past two decades, a large number of rainfall products have been developed based on satellite, radar, and/or rain gauge observations. However, to produce optimal rainfall estimation for a given region is still challenging due to the space time variability of rainfall at many scales and the spatial and temporal sampling difference of different rainfall instruments. In order to produce high-resolution rainfall products for urban flash flood applications and improve the weather sensing capability in urban environment, the center for Collaborative Adaptive Sensing of the Atmosphere (CASA), in collaboration with National Weather Service (NWS) and North Central Texas Council of Governments (NCTCOG), has developed an urban radar remote sensing network in DFW Metroplex. DFW is the largest inland metropolitan area in the U.S., that experiences a wide range of natural weather hazards such as flash flood and hailstorms. The DFW urban remote sensing network, centered by the deployment of eight dual-polarization X-band radars and a NWS WSR-88DP radar, is expected to provide impacts-based warning and forecasts for benefit of the public safety and economy. High-resolution quantitative precipitation estimation (QPE) is one of the major goals of the development of this urban test bed. In addition to ground radar-based rainfall estimation, satellite-based rainfall products for this area are also of interest for this study. Typical example is the rainfall rate product produced by the Dual-frequency Precipitation Radar (DPR) onboard Global Precipitation Measurement (GPM) Core Observatory satellite. Therefore, cross-comparison between ground and space-based rainfall estimation is critical to building an optimal regional rainfall system, which can take advantages of the sampling differences of different sensors. This paper presents the real-time high-resolution QPE system developed for DFW urban radar network, which is based upon the combination of S-band WSR-88DP and X

  18. Evaluation of three satellite-based latent heat flux algorithms over forest ecosystems using eddy covariance data.

    Science.gov (United States)

    Yao, Yunjun; Zhang, Yuhu; Zhao, Shaohua; Li, Xianglan; Jia, Kun

    2015-06-01

    We have evaluated the performance of three satellite-based latent heat flux (LE) algorithms over forest ecosystems using observed data from 40 flux towers distributed across the world on all continents. These are the revised remote sensing-based Penman-Monteith LE (RRS-PM) algorithm, the modified satellite-based Priestley-Taylor LE (MS-PT) algorithm, and the semi-empirical Penman LE (UMD-SEMI) algorithm. Sensitivity analysis illustrates that both energy and vegetation terms has the highest sensitivity compared with other input variables. The validation results show that three algorithms demonstrate substantial differences in algorithm performance for estimating daily LE variations among five forest ecosystem biomes. Based on the average Nash-Sutcliffe efficiency and root-mean-squared error (RMSE), the MS-PT algorithm has high performance over both deciduous broadleaf forest (DBF) (0.81, 25.4 W/m(2)) and mixed forest (MF) (0.62, 25.3 W/m(2)) sites, the RRS-PM algorithm has high performance over evergreen broadleaf forest (EBF) (0.4, 28.1 W/m(2)) sites, and the UMD-SEMI algorithm has high performance over both deciduous needleleaf forest (DNF) (0.78, 17.1 W/m(2)) and evergreen needleleaf forest (ENF) (0.51, 28.1 W/m(2)) sites. Perhaps the lower uncertainties in the required forcing data for the MS-PT algorithm, the complicated algorithm structure for the RRS-PM algorithm, and the calibrated coefficients of the UMD-SEMI algorithm based on ground-measured data may explain these differences.

  19. Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall-runoff model

    Science.gov (United States)

    Roy, Tirthankar; Gupta, Hoshin V.; Serrat-Capdevila, Aleix; Valdes, Juan B.

    2017-02-01

    Daily, quasi-global (50° N-S and 180° W-E), satellite-based estimates of actual evapotranspiration at 0.25° spatial resolution have recently become available, generated by the Global Land Evaporation Amsterdam Model (GLEAM). We investigate the use of these data to improve the performance of a simple lumped catchment-scale hydrologic model driven by satellite-based precipitation estimates to generate streamflow simulations for a poorly gauged basin in Africa. In one approach, we use GLEAM to constrain the evapotranspiration estimates generated by the model, thereby modifying daily water balance and improving model performance. In an alternative approach, we instead change the structure of the model to improve its ability to simulate actual evapotranspiration (as estimated by GLEAM). Finally, we test whether the GLEAM product is able to further improve the performance of the structurally modified model. Results indicate that while both approaches can provide improved simulations of streamflow, the second approach also improves the simulation of actual evapotranspiration significantly, which substantiates the importance of making diagnostic structural improvements to hydrologic models whenever possible.

  20. Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping Terrestrial Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Yunjun Yao

    2014-01-01

    Full Text Available Satellite-based vegetation indices (VIs and Apparent Thermal Inertia (ATI derived from temperature change provide valuable information for estimating evapotranspiration (LE and detecting the onset and severity of drought. The modified satellite-based Priestley-Taylor (MS-PT algorithm that we developed earlier, coupling both VI and ATI, is validated based on observed data from 40 flux towers distributed across the world on all continents. The validation results illustrate that the daily LE can be estimated with the Root Mean Square Error (RMSE varying from 10.7 W/m2 to 87.6 W/m2, and with the square of correlation coefficient (R2 from 0.41 to 0.89 (p < 0.01. Compared with the Priestley-Taylor-based LE (PT-JPL algorithm, the MS-PT algorithm improves the LE estimates at most flux tower sites. Importantly, the MS-PT algorithm is also satisfactory in reproducing the inter-annual variability at flux tower sites with at least five years of data. The R2 between measured and predicted annual LE anomalies is 0.42 (p = 0.02. The MS-PT algorithm is then applied to detect the variations of long-term terrestrial LE over Three-North Shelter Forest Region of China and to monitor global land surface drought. The MS-PT algorithm described here demonstrates the ability to map regional terrestrial LE and identify global soil moisture stress, without requiring precipitation information.

  1. Rainfall estimation from soil moisture data: crash test for SM2RAIN algorithm

    Science.gov (United States)

    Brocca, Luca; Albergel, Clement; Massari, Christian; Ciabatta, Luca; Moramarco, Tommaso; de Rosnay, Patricia

    2015-04-01

    mean square differences and categorical scores were used to evaluate the goodness of the results. This analysis wants to draw global picture of the performance of SM2RAIN algorithm in absence of errors in soil moisture and rainfall data. First preliminary results over Europe have shown that SM2RAIN performs particularly well over southern Europe (e.g., Spain, Italy and Greece) while its performances diminish by moving towards Northern latitudes (Scandinavia) and over Alps. The results on a global scale will be shown and discussed at the conference session. REFERENCES Brocca, L., Melone, F., Moramarco, T., Wagner, W. (2013). A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40(5), 853-858. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, 119(9), 5128-5141. Chen F, Crow WT, Ryu D. (2014) Dual forcing and state correction via soil moisture assimilation for improved rainfall-runoff modeling. J Hydrometeor, 15, 1832-1848. Crow, W.T., van den Berg, M.J., Huffman, G.J., Pellarin, T. (2011). Correcting rainfall using satellite-based surface soil moisture retrievals: the soil moisture analysis rainfall tool (SMART). Water Resour Res, 47, W08521. Dee, D. P.,et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc., 137, 553-597 Massari, C., Brocca, L., Moramarco, T., Tramblay, Y., Didon Lescot, J.-F. (2014). Potential of soil moisture observations in flood modelling: estimating initial conditions and correcting rainfall. Advances in Water Resources, 74, 44-53.

  2. A Regenerative Prediction Algorithm for Indian Rainfall Prediction

    Directory of Open Access Journals (Sweden)

    SEEMA MAHAJAN

    2013-11-01

    Full Text Available Rainfall forecasting is critical for the crop planning and water management strategies. Proposed study presents a novel approach for modelling time series precipitation data. The 51 years of Indian rainfall data is used for the development of the model. We use nonlinear predictive code based on 11th order with 240 coefficients. Coefficients are optimized using gradient descendent algorithm. Algorithm is tested using 40 years of rainfall training data. Prediction error tested outside training period is found less than1% for few months. Prediction period is extended to one year by including progressive predicted values in input samples using regenerative feedback algorithm. This model is applied for different training and testing periods with average error of 2% to 10%.

  3. Code Tracking Algorithms for Mitigating Multipath Effects in Fading Channels for Satellite-Based Positioning

    Directory of Open Access Journals (Sweden)

    Markku Renfors

    2007-12-01

    Full Text Available The ever-increasing public interest in location and positioning services has originated a demand for higher performance global navigation satellite systems (GNSSs. In order to achieve this incremental performance, the estimation of line-of-sight (LOS delay with high accuracy is a prerequisite for all GNSSs. The delay lock loops (DLLs and their enhanced variants (i.e., feedback code tracking loops are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the binary offset carrier (BOC modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this paper analyzes feedback as well as feedforward code tracking algorithms and proposes the peak tracking (PT methods, which are combinations of both feedback and feedforward structures and utilize the inherent advantages of both structures. We propose and analyze here two variants of PT algorithm: PT with second-order differentiation (Diff2, and PT with Teager Kaiser (TK operator, which will be denoted herein as PT(Diff2 and PT(TK, respectively. In addition to the proposal of the PT methods, the authors propose also an improved early-late-slope (IELS multipath elimination technique which is shown to provide very good mean-time-to-lose-lock (MTLL performance. An implementation of a noncoherent multipath estimating delay locked loop (MEDLL structure is also presented. We also incorporate here an extensive review of the existing feedback and feedforward delay estimation algorithms for direct sequence code division multiple access (DS-CDMA signals in satellite fading channels, by taking into account the impact of binary phase shift keying (BPSK as well as the newly proposed BOC modulation

  4. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    Science.gov (United States)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  5. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    Science.gov (United States)

    Dashora, Nirvikar

    2012-07-01

    Equatorial plasma bubble (EPB) and associated plasma irregularities are known to cause severe scintillation for the satellite signals and produce range errors, which eventually result either in loss of lock of the signal or in random fluctuation in TEC, respectively, affecting precise positioning and navigation solutions. The EPBs manifest as sudden reduction in line of sight TEC, which are more often called TEC depletions, and are spread over thousands of km in meridional direction and a few hundred km in zonal direction. They change shape and size while drifting from one longitude to another in nighttime ionosphere. For a satellite based navigation system, like GAGAN in India that depends upon (i) multiple satellites (i.e. GPS) (ii) multiple ground reference stations and (iii) a near real time data processing, such EPBs are of grave concern. A TEC model generally provides a near real-time grid based ionospheric vertical errors (GIVEs) over hypothetically spread 5x5 degree latitude-longitude grid points. But, on night when a TEC depletion occurs in a given longitude sector, it is almost impossible for any system to give a forecast of GIVEs. If loss-of-lock events occur due to scintillation, there is no way to improve the situation. But, when large and random depletions in TEC occur with scintillations and without loss-of-lock, it affects low latitude TEC in two ways. (a) Multiple satellites show depleted TEC which may be very different from model-TEC values and hence the GIVE would be incorrect over various grid points (ii) the user may be affected by depletions which are not sampled by reference stations and hence interpolated GIVE within one square would be grossly erroneous. The most general solution (and the far most difficult as well) is having advance knowledge of spatio-temporal occurrence and precise magnitude of such depletions. While forecasting TEC depletions in spatio-temporal domain are a scientific challenge (as we show below), operational systems

  6. A New Temperature-Vegetation Triangle Algorithm with Variable Edges (TAVE for Satellite-Based Actual Evapotranspiration Estimation

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2016-09-01

    Full Text Available The estimation of spatially-variable actual evapotranspiration (AET is a critical challenge to regional water resources management. We propose a new remote sensing method, the Triangle Algorithm with Variable Edges (TAVE, to generate daily AET estimates based on satellite-derived land surface temperature and the vegetation index NDVI. The TAVE captures heterogeneity in AET across elevation zones and permits variability in determining local values of wet and dry end-member classes (known as edges. Compared to traditional triangle methods, TAVE introduces three unique features: (i the discretization of the domain as overlapping elevation zones; (ii a variable wet edge that is a function of elevation zone; and (iii variable values of a combined-effect parameter (that accounts for aerodynamic and surface resistance, vapor pressure gradient, and soil moisture availability along both wet and dry edges. With these features, TAVE effectively addresses the combined influence of terrain and water stress on semi-arid environment AET estimates. We demonstrate the effectiveness of this method in one of the driest countries in the world—Jordan, and compare it to a traditional triangle method (TA and a global AET product (MOD16 over different land use types. In irrigated agricultural lands, TAVE matched the results of the single crop coefficient model (−3%, in contrast to substantial overestimation by TA (+234% and underestimation by MOD16 (−50%. In forested (non-irrigated, water consuming regions, TA and MOD16 produced AET average deviations 15.5 times and −3.5 times of those based on TAVE. As TAVE has a simple structure and low data requirements, it provides an efficient means to satisfy the increasing need for evapotranspiration estimation in data-scarce semi-arid regions. This study constitutes a much needed step towards the satellite-based quantification of agricultural water consumption in Jordan.

  7. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    Science.gov (United States)

    Overeem, Aart; Uijlenhoet, Remko; Leijnse, Hidde

    2016-04-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide rainfall maps can be derived from the signal attenuations of microwave links in such a network. We present a rainfall retrieval algorithm, which is employed to obtain rainfall maps from microwave links in a cellular communication network. We compare these rainfall maps to gauge-adjusted radar rainfall maps. The microwave link data set, as well as the developed code, a package in the open source scripting language "R", are freely available at GitHub (https://github.com/overeem11/RAINLINK). The purpose of this presentation is to promote rainfall mapping utilizing microwave links from cellular communication networks as an alternative or complementary means for continental-scale rainfall monitoring.

  8. Rainfall estimation over-land using SMOS soil moisture observations: SM2RAIN, LMAA and SMART algorithms

    Science.gov (United States)

    Massari, Christian; Brocca, Luca; Pellarin, Thierry; Kerr, Yann; Crow, Wade; Cascon, Carlos; Ciabatta, Luca

    2016-04-01

    , contribution of surface runoff and evapotranspiration, vegetation coverage, temporal sampling, and the assimilation/modelling approach. The 9 selected sites gather such potential problems which are shown and discussed at the conference. REFERENCES Ebert, E. E.; Janowiak, J. E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47-64. Tian, Y.; Peters-Lidard, C. D.; Choudhury, B. J.; Garcia, M. Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications. J. Hydrometeorol. 2007, 8, 1165-1183. Stampoulis, D.; Anagnostou, E. N. Evaluation of Global Satellite Rainfall Products over Continental Europe. J. Hydrometeorol. 2012, 13, 588-603. Serrat-Capdevila, A.; Valdes, J. B.; Stakhiv, E. Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 509-525. Crow, W. T.; van den Berg, M. J.; Huffman, G. J.; Pellarin, T. Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res. 2011, 47, W08521. Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28-36. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128-5141.

  9. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  10. Optimizing Satellite-Based Precipitation Estimation for Nowcasting of Rainfall and Flash Flood Events over the South African Domain

    OpenAIRE

    Estelle de Coning

    2013-01-01

    The South African Weather Service is mandated to issue warnings of hazardous weather events, including those related to heavy precipitation, in order to safeguard life and property. Flooding and flash flood events are common in South Africa. Frequent updates and real-time availability of precipitation data are crucial to support hydrometeorological warning services. Satellite rainfall estimation provides a very important data source for flash flood guidance systems as well as nowcasting of pr...

  11. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    Science.gov (United States)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2015-08-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide rainfall maps can be derived from the signal attenuations of microwave links in such a network. Here we give a detailed description of the employed rainfall retrieval algorithm and provide the corresponding code. Moreover, the code (in the scripting language "R") is made available including a data set of commercial microwave links. The purpose of this paper is to promote rainfall monitoring utilizing microwave links from cellular communication networks as an alternative or complementary means for global, continental-scale rainfall monitoring.

  12. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall

    Science.gov (United States)

    Yucel, I.; Onen, A.; Yilmaz, K. K.; Gochis, D. J.

    2015-04-01

    A fully-distributed, multi-physics, multi-scale hydrologic and hydraulic modeling system, WRF-Hydro, is used to assess the potential for skillful flood forecasting based on precipitation inputs derived from the Weather Research and Forecasting (WRF) model and the EUMETSAT Multi-sensor Precipitation Estimates (MPEs). Similar to past studies it was found that WRF model precipitation forecast errors related to model initial conditions are reduced when the three dimensional atmospheric data assimilation (3DVAR) scheme in the WRF model simulations is used. A comparative evaluation of the impact of MPE versus WRF precipitation estimates, both with and without data assimilation, in driving WRF-Hydro simulated streamflow is then made. The ten rainfall-runoff events that occurred in the Black Sea Region were used for testing and evaluation. With the availability of streamflow data across rainfall-runoff events, the calibration is only performed on the Bartin sub-basin using two events and the calibrated parameters are then transferred to other neighboring three ungauged sub-basins in the study area. The rest of the events from all sub-basins are then used to evaluate the performance of the WRF-Hydro system with the calibrated parameters. Following model calibration, the WRF-Hydro system was capable of skillfully reproducing observed flood hydrographs in terms of the volume of the runoff produced and the overall shape of the hydrograph. Streamflow simulation skill was significantly improved for those WRF model simulations where storm precipitation was accurately depicted with respect to timing, location and amount. Accurate streamflow simulations were more evident in WRF model simulations where the 3DVAR scheme was used compared to when it was not used. Because of substantial dry bias feature of MPE, as compared with surface rain gauges, streamflow derived using this precipitation product is in general very poor. Overall, root mean squared errors for runoff were reduced by

  13. An Enhanced Satellite-Based Algorithm for Detecting and Tracking Dust Outbreaks by Means of SEVIRI Data

    Directory of Open Access Journals (Sweden)

    Francesco Marchese

    2017-05-01

    Full Text Available Dust outbreaks are meteorological phenomena of great interest for scientists and authorities (because of their impact on the climate, environment, and human activities, which may be detected, monitored, and characterized from space using different methods and procedures. Among the recent dust detection algorithms, the RSTDUST multi-temporal technique has provided good results in different geographic areas (e.g., Mediterranean basin; Arabian Peninsula, exhibiting a better performance than traditional split window methods, in spite of some limitations. In this study, we present an optimized configuration of this technique, which better exploits data provided by Spinning Enhanced Visible and Infrared Imager (SEVIRI aboard Meteosat Second Generation (MSG satellites to address those issues (e.g., sensitivity reduction over arid and semi-arid regions; dependence on some meteorological clouds. Three massive dust events affecting Europe and the Mediterranean basin in May 2008/2010 are analysed in this work, using information provided by some independent and well-established aerosol products to assess the achieved results. The study shows that the proposed algorithm, christened eRSTDUST (i.e., enhanced RSTDUST, which provides qualitative information about dust outbreaks, is capable of increasing the trade-off between reliability and sensitivity. The results encourage further experimentations of this method in other periods of the year, also exploiting data provided by different satellite sensors, for better evaluating the advantages arising from the use of this dust detection technique in operational scenarios.

  14. A Distributed Cooperative Dynamic Task Planning Algorithm for Multiple Satellites Based on Multi-agent Hybrid Learning

    Institute of Scientific and Technical Information of China (English)

    WANG Chong; LI Jun; JING Ning; WANG Jun; CHEN Hao

    2011-01-01

    Traditionally,heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites.However,the traditional heuristic strategies depend on the concrete tasks,which often affect the result's optimality.Noticing that the historical information of cooperative task planning will impact the latter planning results,we propose a hybrid learning algorithrn for dynamic multi-satellite task planning,which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning.The reinforcement learning strategy of each satellite is described with neural networks.The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively.To avoid the failure of the historical learning caused by the randomly occurring observation requests,a novel approach is proposed to balance the quality and efficiency of the task planning,which converts the historical leaming strategy to the current initial learning strategy by applying the transfer learning algorithm.The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests.

  15. Single-source surface energy balance algorithms to estimate evapotranspiration from satellite-based remotely sensed data

    Science.gov (United States)

    Bhattarai, Nishan

    The flow of water and energy fluxes at the Earth's surface and within the climate system is difficult to quantify. Recent advances in remote sensing technologies have provided scientists with a useful means to improve characterization of these complex processes. However, many challenges remain that limit our ability to optimize remote sensing data in determining evapotranspiration (ET) and energy fluxes. For example, periodic cloud cover limits the operational use of remotely sensed data from passive sensors in monitoring seasonal fluxes. Additionally, there are many remote sensing-based single-source surface energy balance (SEB) models, but no clear guidance on which one to use in a particular application. Two widely used models---surface energy balance algorithm for land (SEBAL) and mapping ET at high resolution with internalized calibration (METRIC)---need substantial human-intervention that limits their applicability in broad-scale studies. This dissertation addressed some of these challenges by proposing novel ways to optimize available resources within the SEB-based ET modeling framework. A simple regression-based Landsat-Moderate Resolution Imaging Spectroradiometer (MODIS) fusion model was developed to integrate Landsat spatial and MODIS temporal characteristics in calculating ET. The fusion model produced reliable estimates of seasonal ET at moderate spatial resolution while mitigating the impact that cloud cover can have on image availability. The dissertation also evaluated five commonly used remote sensing-based single-source SEB models and found the surface energy balance system (SEBS) may be the best overall model for use in humid subtropical climates. The study also determined that model accuracy varies with land cover type, for example, all models worked well for wet marsh conditions, but the SEBAL and simplified surface energy balance index (S-SEBI) models worked better than the alternatives for grass cover. A new automated approach based on

  16. Improved radar data processing algorithms for quantitative rainfall estimation in real time.

    Science.gov (United States)

    Krämer, S; Verworn, H R

    2009-01-01

    This paper describes a new methodology to process C-band radar data for direct use as rainfall input to hydrologic and hydrodynamic models and in real time control of urban drainage systems. In contrast to the adjustment of radar data with the help of rain gauges, the new approach accounts for the microphysical properties of current rainfall. In a first step radar data are corrected for attenuation. This phenomenon has been identified as the main cause for the general underestimation of radar rainfall. Systematic variation of the attenuation coefficients within predefined bounds allows robust reflectivity profiling. Secondly, event specific R-Z relations are applied to the corrected radar reflectivity data in order to generate quantitative reliable radar rainfall estimates. The results of the methodology are validated by a network of 37 rain gauges located in the Emscher and Lippe river basins. Finally, the relevance of the correction methodology for radar rainfall forecasts is demonstrated. It has become clearly obvious, that the new methodology significantly improves the radar rainfall estimation and rainfall forecasts. The algorithms are applicable in real time.

  17. Genetic algorithm optimized rainfall-runoff fuzzy inference system for row crop watersheds with claypan soils

    Science.gov (United States)

    The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...

  18. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    station, and NOAA ESRL high-resolution Optimum Interpolation SST (OISST). Precise understanding of the influence these auxiliary inputs have on final satellite-based Ts retrievals may help guide refinement in ɛs characterization and NWP development, e.g., future Goddard Earth Observing System Data Assimilation System versions.

  19. Technical Report Series on Global Modeling and Data Assimilation. Volume 12; Comparison of Satellite Global Rainfall Algorithms

    Science.gov (United States)

    Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.

    1997-01-01

    Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.

  20. Seeking an optimal algorithm for a new satellite-based Sea Ice Drift Climate Data Record : Motivations, plans and initial results from the ESA CCI Sea Ice project

    DEFF Research Database (Denmark)

    Lavergne, T.; Dybkjær, Gorm; Girard-Ardhuin, Fanny

    relevant satellite and “ground-truth” data, building the Round-Robin Data Package for testing the algorithms, and finally selection of the most promising algorithm(s) for processing of a new sea ice drift climate dataset. Specific efforts are dedicated to the definition of per-grid-cell uncertainties...

  1. Seeking an optimal algorithm for a new satellite-based Sea Ice Drift Climate Data Record : Motivations, plans and initial results from the ESA CCI Sea Ice project

    DEFF Research Database (Denmark)

    Lavergne, T.; Dybkjær, Gorm; Girard-Ardhuin, Fanny

    relevant satellite and “ground-truth” data, building the Round-Robin Data Package for testing the algorithms, and finally selection of the most promising algorithm(s) for processing of a new sea ice drift climate dataset. Specific efforts are dedicated to the definition of per-grid-cell uncertainties...

  2. A dual-polarisation radar rainfall estimation method using a multi-parameter fuzzy logic algorithm

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel Angel

    2017-04-01

    The emergence of dual-polarisation radar has resulted in a significant enhancement of quantitative precipitation estimation (QPE). It has enabled the measurement of rain drop size and shapes within a volume, the classification of hydrometeors, and the ability to more accurately account for attenuation of the radar beam. Previous methods for QPE have used only the radar reflectivity (Zh) to estimate rainfall, but more recent methods can use a combination of ZH, differential reflectivity (Zdr), specific differential phase (Kdp), and specific attenuation (Ah). The radar variables perform differently depending on rain rate, attenuation, and bright band presence. This has led to the use of fixed threshold values within which the different estimators are used, or the variables are weighted based on performance. This new method to be presented will use fuzzy logic to try to form a more robust algorithm using combinations of the rainfall estimators R(Zh), R(Kdp), and R(Ah). For this a C-band dual-polarised radar based in Hameldon Hill, near Burnley, UK, will be used, alongside a rain gauge network for calibration adn validation.

  3. New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping

    Science.gov (United States)

    Liberman, Y.; Samuels, R.; Alpert, P.; Messer, H.

    2014-10-01

    One of the main challenges for meteorological and hydrological modelling is accurate rainfall measurement and mapping across time and space. To date, the most effective methods for large-scale rainfall estimates are radar, satellites, and, more recently, received signal level (RSL) measurements derived from commercial microwave networks (CMNs). While these methods provide improved spatial resolution over traditional rain gauges, they have their limitations as well. For example, wireless CMNs, which are comprised of microwave links (ML), are dependant upon existing infrastructure and the ML' arbitrary distribution in space. Radar, on the other hand, is known in its limitation for accurately estimating rainfall in urban regions, clutter areas and distant locations. In this paper the pros and cons of the radar and ML methods are considered in order to develop a new algorithm for improving rainfall measurement and mapping, which is based on data fusion of the different sources. The integration is based on an optimal weighted average of the two data sets, taking into account location, number of links, rainfall intensity and time step. Our results indicate that, by using the proposed new method, we not only generate more accurate 2-D rainfall reconstructions, compared with actual rain intensities in space, but also the reconstructed maps are extended to the maximum coverage area. By inspecting three significant rain events, we show that our method outperforms CMNs or the radar alone in rain rate estimation, almost uniformly, both for instantaneous spatial measurements, as well as in calculating total accumulated rainfall. These new improved 2-D rainfall maps, as well as the accurate rainfall measurements over large areas at sub-hourly timescales, will allow for improved understanding, initialization, and calibration of hydrological and meteorological models mainly necessary for water resource management and planning.

  4. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    NARCIS (Netherlands)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2016-01-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide (≈ 35 500 km2) 15 min rainfall maps can

  5. New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping

    Directory of Open Access Journals (Sweden)

    Y. Liberman

    2014-05-01

    Full Text Available One of the main challenges for meteorological and hydrological modelling is accurate rainfall measurement and mapping across time and space. To date the most effective methods for large scale rainfall estimates are radar, satellites, and more recently, received signal level (RSL measurements received from commercial microwave networks (CMN. While these methods provide improved spatial resolution over traditional rain gauges, these have their limitations as well. For example, the wireless CMN, which are comprised of microwave links (ML, are dependant upon existing infrastructure, and the ML arbitrary distribution in space. Radar, on the other hand, is known in its limitation in accurately estimating rainfall in urban regions, clutter areas and distant locations. In this paper the pros and cons of the radar and ML methods are considered in order to develop a new algorithm for improving rain fall measurement and mapping, which is based on data fusion of the different sources. The integration is based on an optimal weighted average of the two data sets, taking into account location, number of links, rainfall intensity and time step. Our results indicate that by using the proposed new method we not only generate a more accurate 2-D rainfall reconstructions, compared with actual rain intensities in space, but also the reconstructed maps are extended to the maximum coverage area. By inspecting three significant rain events, we show an improvement of rain rate estimation over CMN or radar alone, almost uniformly, both for instantaneous spatial measurements, as well as in calculating total accumulated rainfall. These new improved 2-D rainfall maps, and the accurate rainfall measurements over large areas at sub-hourly time scales, will allow for improved understanding, initialization and calibration of hydrological and meteorological models necessary, mainly, for water resource management and planning.

  6. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  7. Assessment of Satellite-based Precipitation Products (TRMM) in Hydrologic Modeling: Case Studies from Northern Morocco

    Science.gov (United States)

    EL kadiri, R.; Milewski, A.; Durham, M.

    2012-12-01

    Precipitation is the most important forcing parameter in hydrological modeling, yet it is largely unknown in the arid Middle East. We assessed the magnitude, probability of detection, and false alarm rates of various rainfall satellite products (e.g., TRMM, RFE2.0) compared to in situ gauge data (~79 stations) across the Our Er Rbia, Sebou, and Melouya Watersheds in Northern Morocco. Precipitation over the area is relatively high with an average of ~400mm/year according to TRMM (1998-2008). The existing gauges indicate that the average annual precipitation across the Tadla and Coastal Plains region is 260mm/year and 390mm/year across the Atlas Mountains. Following the assessment of satellite products against in situ gauge data, we evaluated the effects (e.g., runoff and recharge amounts) of using satellite driven hydrologic models using SWAT. Specifically, we performed a four-fold exercise: (1) The first stage focused on the analysis of the rainfall products; (2) the second stage involved the construction of a rainfall-runoff model using gauge data; (3) the third stage entailed the calibration of the model against flow gauges and/or dams storage variability, and (4) model simulation using satellite based rainfall products using the calibrated parameters from the initial simulation. Results suggest the TRMM V7 has a much better correlation with the field data over the Oum Er Rbia watershed. The Correlation E (Nash-Suncliffe coefficient) has a positive value of 0.5, while the correlation coefficient of TRMM V6 vs. gauges data is a negative value of -0.25. This first order evaluation of the TRMM V7 shows the new algorithm has partially overcame the underestimation effect in the semi-arid environments. However, more research needs to be done to increase the usability of TRMM V7 in hydrologic models. Low correlations are most likely a result of the following: (1) snow at the high elevations in the Oum Er Rbia watershed, (2) the ocean effect on TRMM measurements along

  8. Evaluation of satellite-based precipitation estimates in winter season using an object-based approach

    Science.gov (United States)

    Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S.

    2012-12-01

    Verification has become an integral component of satellite precipitation algorithms and products. A number of object-based verification methods have been proposed to provide diagnostic information regarding the precipitation products' ability to capture the spatial pattern, intensity, and placement of precipitation. However, most object-based methods are not capable of investigating precipitation objects at the storm-scale. In this study, an image processing approach known as watershed segmentation was adopted to detect the storm-scale rainfall objects. Then, a fuzzy logic-based technique was utilized to diagnose and analyze storm-scale object attributes, including centroid distance, area ratio, intersection area ratio and orientation angle difference. Three verification metrics (i.e., false alarm ratio, missing ratio and overall membership score) were generated for validation and verification. Three satellite-based precipitation products, including PERSIANN, CMORPH, 3B42RT, were evaluated against NOAA stage IV MPE multi-sensor composite rain analysis at 0.25° by 0.25° on a daily scale in the winter season of 2010 over the contiguous United States. Winter season is dominated by frontal systems which usually have larger area coverage. All three products and the stage IV observation tend to find large size storm objects. With respect to the evaluation attributes, PERSIANN tends to obtain larger area ratio and consequently has larger centroid distance to the stage IV observations, while 3B42RT are found to be closer to the stage IV for the object size. All evaluation products give small orientation angle differences but vary significantly for the missing ratio and false alarm ratio. This implies that satellite estimates can fail to detect storms in winter. The overall membership scores are close for all three different products which indicate that all three satellite-based precipitation products perform well for capturing the spatial and geometric characteristics of

  9. Satellite-Based Quantum Communications

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; McCabe, Kevin P [Los Alamos National Laboratory; Newell, Raymond T [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  10. Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Michala Jakubcová

    2015-01-01

    Full Text Available The presented paper provides the analysis of selected versions of the particle swarm optimization (PSO algorithm. The tested versions of the PSO were combined with the shuffling mechanism, which splits the model population into complexes and performs distributed PSO optimization. One of them is a new proposed PSO modification, APartW, which enhances the global exploration and local exploitation in the parametric space during the optimization process through the new updating mechanism applied on the PSO inertia weight. The performances of four selected PSO methods were tested on 11 benchmark optimization problems, which were prepared for the special session on single-objective real-parameter optimization CEC 2005. The results confirm that the tested new APartW PSO variant is comparable with other existing distributed PSO versions, AdaptW and LinTimeVarW. The distributed PSO versions were developed for finding the solution of inverse problems related to the estimation of parameters of hydrological model Bilan. The results of the case study, made on the selected set of 30 catchments obtained from MOPEX database, show that tested distributed PSO versions provide suitable estimates of Bilan model parameters and thus can be used for solving related inverse problems during the calibration process of studied water balance hydrological model.

  11. Rainfall estimation from in situ soil moisture observations at several sites in Europe: an evaluation of the SM2RAIN algorithm

    Directory of Open Access Journals (Sweden)

    Brocca Luca

    2015-09-01

    Full Text Available Rain gauges, weather radars, satellite sensors and modelled data from weather centres are used operationally for estimating the spatial-temporal variability of rainfall. However, the associated uncertainties can be very high, especially in poorly equipped regions of the world. Very recently, an innovative method, named SM2RAIN, that uses soil moisture observations to infer rainfall, has been proposed by Brocca et al. (2013 with very promising results when applied with in situ and satellite-derived data. However, a thorough analysis of the physical consistency of the SM2RAIN algorithm has not been carried out yet. In this study, synthetic soil moisture data generated from a physically-based soil water balance model are employed to check the reliability of the assumptions made in the SM2RAIN algorithm. Next, high quality and multiyear in situ soil moisture observations, at different depths (5-30 cm, and rainfall for ten sites across Europe are used for testing the performance of the algorithm, its limitations and applicability range.

  12. Satellite-based terrestrial production efficiency modeling

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2009-09-01

    Full Text Available Abstract Production efficiency models (PEMs are based on the theory of light use efficiency (LUE which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP monitoring. The objectives of this review are as follows: 1 to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS identified in the literature; 2 to review each model to determine potential improvements to the general PEM methodology; 3 to review the related literature on satellite-based gross primary productivity (GPP and NPP modeling for additional possibilities for improvement; and 4 based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra; there is an urgent need for

  13. Satellite-Based actual evapotranspiration over drying semiarid terrain in West-Africa

    NARCIS (Netherlands)

    Schuttemeyer, D.; Schillings, Ch.; Moene, A.F.; Bruin, de H.A.R.

    2007-01-01

    A simple satellite-based algorithm for estimating actual evaporation based on Makkink¿s equation is applied to a seasonal cycle in 2002 at three test sites in Ghana, West Africa: at a location in the humid tropical southern region and two in the drier northern region. The required input for the algo

  14. Correcting satellite-based precipitation products from SMOS soil moisture data assimilation using two models of different complexity

    Science.gov (United States)

    Román-Cascón, Carlos; Pellarin, Thierry; Gibon, François

    2017-04-01

    Real-time precipitation information at the global scale is quite useful information for many applications. However, satellite-based precipitation products in real time are known to be biased from real values observed in situ. On the other hand, the information about precipitation contained in soil moisture data can be very useful to improve precipitation estimation, since the evolution of this variable is highly influenced by the amount of rainfall at a certain area after a rain event. In this context, the soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite is used to correct the precipitation provided by real-time satellite-based products such as CMORPH, TRMM-3B42RT or PERSIANN. In this work, we test an assimilation algorithm based on the data assimilation of SMOS measurements in two models of different complexity: a simple hydrological model (Antecedent Precipitation Index (API)) and a state-of-the-art complex land-surface model (Surface Externalisée (SURFEX)). We show how the assimilation technique, based on a particle filter method, leads to the improvement of correlation and root mean squared error (RMSE) of precipitation estimates, with slightly better results for the simpler (and less expensive computationally) API model. This methodology has been evaluated for six years in ten sites around the world with different features, showing the limitations of the methodology in regions affected by mountainous terrain or by high radio-frequency interferences (RFI), which notably affect the quality of the soil moisture retrievals from brightness temperatures by SMOS. The presented results are promising for a potential near-real time application at the global scale.

  15. Adequacy of satellite derived rainfall data for stream flow modeling

    Science.gov (United States)

    Artan, G.; Gadain, Hussein; Smith, Jody L.; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  16. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  17. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    Science.gov (United States)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  18. Sensitivity Analysis and Calibration of a Rainfall-runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Del Giudice Giuseppe

    2016-10-01

    Full Text Available An integrated Visual Basic Application interface is described that allows for sensitivity analysis, calibration and routing of hydraulichydrological models. The routine consists in the combination of three freeware tools performing hydrological modelling, hydraulic modelling and calibration. With such an approach, calibration is made possible even if information about sewers geometrical features is incomplete. Model parameters involve storage coefficient, time of concentration, runoff coefficient, initial abstraction and Manning coefficient; literature formulas are considered and manipulated to obtain novel expressions and variation ranges. A sensitivity analysis with a local method is performed to obtain information about collinearity among parameters and a ranking of influence. The least important parameters are given a fixed value, and for the remaining ones calibration is performed by means of a genetic algorithm implemented in GANetXL. Single-event calibration is performed with a selection of six rainfall events, which are chosen so to avoid non-uniform rainfall distribution; results are then successfully validated with a sequence of four events.

  19. Sensitivity Analysis and Calibration of a Rainfall-Runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm

    Science.gov (United States)

    Del Giudice, Giuseppe; Padulano, Roberta

    2016-10-01

    An integrated Visual Basic Application interface is described that allows for sensitivity analysis, calibration and routing of hydraulichydrological models. The routine consists in the combination of three freeware tools performing hydrological modelling, hydraulic modelling and calibration. With such an approach, calibration is made possible even if information about sewers geometrical features is incomplete. Model parameters involve storage coefficient, time of concentration, runoff coefficient, initial abstraction and Manning coefficient; literature formulas are considered and manipulated to obtain novel expressions and variation ranges. A sensitivity analysis with a local method is performed to obtain information about collinearity among parameters and a ranking of influence. The least important parameters are given a fixed value, and for the remaining ones calibration is performed by means of a genetic algorithm implemented in GANetXL. Single-event calibration is performed with a selection of six rainfall events, which are chosen so to avoid non-uniform rainfall distribution; results are then successfully validated with a sequence of four events.

  20. Validation of the Global NASA Satellite-based Flood Detection System in Bangladesh

    Science.gov (United States)

    Moffitt, C. B.

    2009-12-01

    Floods are one of the most destructive natural forces on earth, affecting millions of people annually. Nations lying in the downstream end of an international river basin often suffer the most damage during flooding and could benefit from the real-time communication of rainfall and stream flow data from countries upstream. This is less likely to happen among developing nations due to a lack of freshwater treaties (Balthrop and Hossain, Water Policy, 2009). A more viable option is for flood-prone developing nations to utilize the global satellite rainfall and modeled runoff data that is independently and freely available from the NASA Satellite-based Global Flood Detection System. Although the NASA Global Flood Detection System has been in operation in real-time since 2006, the ‘detection’ capability of flooding has only been validated against qualitative reports in news papers and other types of media. In this study, a more quantitative validation against in-situ measurements of the flood detection system over Bangladesh is presented. Using ground-measured stream flow data as well as satellite-based flood potential and rainfall data, the study looks into the relationship between rainfall and flood potential, rainfall and stream flow, and stream flow and flood potential for three very distinct river systems in Bangladesh - 1) Ganges- a snow-fed river regulated by upstream India 2) Brahmaputra - a snow-fed river that is also braided 3) Meghna - a rain-fed river. The quantitative assessment will show the effectiveness of the NASA Global Flood Detection System for a very humid and flood prone region like Bangladesh that is also faced with tremendous transboundary hurdles that can only be resolved from the vantage of space.

  1. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver M.

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  2. Assimilation of Satellite Based Soil Moisture Data in the National Weather Service's Flash Flood Guidance System

    Science.gov (United States)

    Seo, D.; Lakhankar, T.; Cosgrove, B.; Khanbilvardi, R.

    2012-12-01

    potential sources of remotely sensed soil moisture data. SMOS measures the microwave radiation emitted from the Earth's surface operating at L-band (1.20-1.41 GHz) to measure surface soil moisture directly. Microwave radiation at this wavelength offers relatively deeper penetration and has lower sensitivity to vegetation impacts. The main objective of this research is to evaluate the contribution of remote sensing technology to quantifiable improvements in flash flood applications as well as adding a remote sensing component to the NWS FFG Algorithm. The challenge of this study is employing the direct soil moisture data from SMOS to replace the model-calculated soil moisture state which is based on the soil water balance in 4 km x 4 km Hydrologic Rainfall Analysis Project (HRAP) grid cells. In order to determine the value of the satellite data to NWS operations, the streamflow generated by HL-RDHM with and without soil moisture assimilation will be compared to USGS gauge data. Furthermore, we will apply the satellite-based soil moisture data with the FFG algorithm to evaluate how many hits, misses and false alarms are generated. This study will evaluate the value of remote sensing data in constraining the state of the system for main-stem and flash flood forecasting.

  3. Rainfall generation

    Science.gov (United States)

    Sharma, Ashish; Mehrotra, Raj

    This chapter presents an overview of methods for stochastic generation of rainfall at annual to subdaily time scales, at single- to multiple-point locations, and in a changing climatic regime. Stochastic rainfall generators are used to provide inputs for risk assessment of natural or engineering systems that can undergo failure under sustained (high or low) extremes. As a result, generation of rainfall has evolved to provide options that adequately represent such conditions, leading to sequences that exhibit low-frequency variability of a nature similar to the observed rainfall. The chapter consists of three key sections: the first two outlining approaches for rainfall generation using endogenous predictor variables and the third highlighting approaches for generation using exogenous predictors often simulated to represent future climatic conditions. The first section presents approaches for generation of annual and seasonal rainfall and daily rainfall, both at single-point locations and multiple sites, with an emphasis on alternatives that ensure appropriate representation of low-frequency variability in the generated rainfall sequences. The second section highlights advancements in the subdaily rainfall generation procedures including commonly used approaches for daily to subdaily rainfall generation. The final section (generation using exogenous predictors) presents a range of alternatives for stochastic downscaling of rainfall for climate change impact assessments of natural and engineering systems. We conclude the chapter by outlining some of the key challenges that remain to be addressed, especially in generation under climate change conditions, with an emphasis on the importance of incorporating uncertainty present in both measurements and models, in the rainfall sequences that are generated.

  4. Interoperability of satellite-based augmentation systems for aircraft navigation

    Science.gov (United States)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  5. Eliminating Obliquity Error from the Estimation of Ionospheric Delay in a Satellite-Based Augmentation System

    Science.gov (United States)

    Sparks, Lawrence

    2013-01-01

    Current satellite-based augmentation systems estimate ionospheric delay using algorithms that assume the electron density of the ionosphere is non-negligible only in a thin shell located near the peak of the actual profile. In its initial operating capability, for example, the Wide Area Augmentation System incorporated the thin shell model into an estimation algorithm that calculates vertical delay using a planar fit. Under disturbed conditions or at low latitude where ionospheric structure is complex, however, the thin shell approximation can serve as a significant source of estimation error. A recent upgrade of the system replaced the planar fit algorithm with an algorithm based upon kriging. The upgrade owes its success, in part, to the ability of kriging to mitigate the error due to this approximation. Previously, alternative delay estimation algorithms have been proposed that eliminate the need for invoking the thin shell model altogether. Prior analyses have compared the accuracy achieved by these methods to the accuracy achieved by the planar fit algorithm. This paper extends these analyses to include a comparison with the accuracy achieved by kriging. It concludes by examining how a satellite-based augmentation system might be implemented without recourse to the thin shell approximation.

  6. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  7. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Science.gov (United States)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  8. The satellite-based remote sensing of particulate matter (PM) in support to urban air quality: PM variability and hot spots within the Cordoba city (Argentina) as revealed by the high-resolution MAIAC-algorithm retrievals applied to a ten-years dataset (2

    Science.gov (United States)

    Della Ceca, Lara Sofia; Carreras, Hebe A.; Lyapustin, Alexei I.; Barnaba, Francesca

    2016-04-01

    Particulate matter (PM) is one of the major harmful pollutants to public health and the environment [1]. In developed countries, specific air-quality legislation establishes limit values for PM metrics (e.g., PM10, PM2.5) to protect the citizens health (e.g., European Commission Directive 2008/50, US Clean Air Act). Extensive PM measuring networks therefore exist in these countries to comply with the legislation. In less developed countries air quality monitoring networks are still lacking and satellite-based datasets could represent a valid alternative to fill observational gaps. The main PM (or aerosol) parameter retrieved from satellite is the 'aerosol optical depth' (AOD), an optical parameter quantifying the aerosol load in the whole atmospheric column. Datasets from the MODIS sensors on board of the NASA spacecrafts TERRA and AQUA are among the longest records of AOD from space. However, although extremely useful in regional and global studies, the standard 10 km-resolution MODIS AOD product is not suitable to be employed at the urban scale. Recently, a new algorithm called Multi-Angle Implementation of Atmospheric Correction (MAIAC) was developed for MODIS, providing AOD at 1 km resolution [2]. In this work, the MAIAC AOD retrievals over the decade 2003-2013 were employed to investigate the spatiotemporal variation of atmospheric aerosols over the Argentinean city of Cordoba and its surroundings, an area where a very scarce dataset of in situ PM data is available. The MAIAC retrievals over the city were firstly validated using a 'ground truth' AOD dataset from the Cordoba sunphotometer operating within the global AERONET network [3]. This validation showed the good performances of the MAIAC algorithm in the area. The satellite MAIAC AOD dataset was therefore employed to investigate the 10-years trend as well as seasonal and monthly patterns of particulate matter in the Cordoba city. The first showed a marked increase of AOD over time, particularly evident in

  9. Co-Channel Interference Mitigation Using Satellite Based Receivers

    Science.gov (United States)

    2014-12-01

    While there is some phase noise present in the continuous time-shifted signal, it is important to recognize that this signal is plotted over the [−π...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS by John E. Patterson...07-02-2012 to 12-19-2014 4. TITLE AND SUBTITLE CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RE- CEIVERS 5. FUNDING NUMBERS 6. AUTHOR(S

  10. Assessing the performance of satellite-based precipitation products over the Mediterranean region

    Science.gov (United States)

    Xaver, Angelika; Dorigo, Wouter; Brocca, Luca; Ciabatta, Luca

    2017-04-01

    Detailed knowledge about the spatial and temporal patterns and quantities of precipitation is of high importance. This applies especially in the Mediterranean region, where water demand for agricultural, industrial and touristic needs is growing and climate projections foresee a decrease of precipitation amounts and an increase in variability. In this region, ground-based rain gauges are available only limited in number, particularly in northern Africa and the Middle East and lack to capture the high spatio-temporal character of precipitation over large areas. This has motivated the development of a large number of remote sensing products for monitoring rainfall. Satellite-based precipitation products are based on various observation principles and retrieval approaches, i.e. from thermal infra-red and microwaves. Although, many individual validation studies on the performance of these precipitation datasets exist, they mostly examine only one or a few of these rainfall products at the same time and are not targeted at the Mediterranean basin as a whole. Here, we present an extensive comparative study of seven different satellite-based precipitation products, namely CMORPH 30-minutes, CMORPH 3-hourly, GPCP, PERSIANN, SM2Rain CCI, TRMM TMPA 3B42, and TRMM TMPA 3B42RT, focusing on the whole Mediterranean region and on individual Mediterranean catchments. The time frame of investigation is restricted by the common availability of all precipitation products and covers the period 2000-2013. We assess the skill of the satellite products against gridded gauge-based data provided by GPCC and E-OBS. Apart from common characteristics like biases and temporal correlations we evaluate several sophisticated dataset properties that are of particular interest for Mediterranean hydrology, including the capability of the remotely sensed products to capture extreme events and trends. A clear seasonal dependency of the correlation results can be observed for the whole Mediterranean

  11. TRMM Satellite Algorithm Estimates to Represent the Spatial Distribution of Rainstorms

    Directory of Open Access Journals (Sweden)

    Patrick Marina

    2017-01-01

    Full Text Available On-site measurements from rain gauge provide important information for the design, construction, and operation of water resources engineering projects, groundwater potentials, and the water supply and irrigation systems. A dense gauging network is needed to accurately characterize the variation of rainfall over a region, unfitting for conditions with limited networks, such as in Sarawak, Malaysia. Hence, satellite-based algorithm estimates are introduced as an innovative solution to these challenges. With accessibility to dataset retrievals from public domain websites, it has become a useful source to measure rainfall for a wider coverage area at finer temporal resolution. This paper aims to investigate the rainfall estimates prepared by Tropical Rainfall Measuring Mission (TRMM to explain whether it is suitable to represent the distribution of extreme rainfall in Sungai Sarawak Basin. Based on the findings, more uniform correlations for the investigated storms can be observed for low to medium altitude (>40 MASL. It is found for the investigated events of Jan 05-11, 2009: the normalized root mean square error (NRMSE = 36.7 %; and good correlation (CC = 0.9. These findings suggest that satellite algorithm estimations from TRMM are suitable to represent the spatial distribution of extreme rainfall.

  12. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    OpenAIRE

    Singaiah Chintalapudi; Hatim O. Sharif; Hongjie Xie

    2014-01-01

    In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were signif...

  13. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    OpenAIRE

    Singaiah Chintalapudi; Hatim O. Sharif; Hongjie Xie

    2014-01-01

    In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were signif...

  14. Development of satellite-based drought monitoring and warning system in Asian Pacific countries

    Science.gov (United States)

    Takeuchi, W.; Oyoshi, K.; Muraki, Y.

    2013-12-01

    This research focuses on a development of satellite-based drought monitoring warning system in Asian Pacific countries. Drought condition of cropland is evaluated by using Keeth-Byram Drought Index (KBDI) computed from rainfall measurements with GSMaP product, land surface temperature by MTSAT product and vegetation phenology by MODIS NDVI product at daily basis. The derived information is disseminated as a system for an application of space based technology (SBT) in the implementation of the Core Agriculture Support Program. The benefit of this system are to develop satellite-based drought monitoring and early warning system (DMEWS) for Asian Pacific counties using freely available data, and to develop capacity of policy makers in those countries to apply the developed system in policy making. A series of training program has been carried out in 2013 to officers and researchers of ministry of agriculture and relevant agencies in Greater Mekong Subregion countries including Cambodia, China, Myanmar, Laos, Thailand and Vietnam. This system is running as fully operational and can be accessed at http://webgms.iis.u-tokyo.ac.jp/DMEWS/.

  15. Multi-spectral band selection for satellite-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-09-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  16. Bias reduction for Satellite Based Precipitation Estimates using statistical transformations in Guiana Shield

    Science.gov (United States)

    Ringard, Justine; Becker, Melanie; Seyler, Frederique; Linguet, Laurent

    2016-04-01

    Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. In Guiana Shield all products exhibited better performances during the dry season (August- December). All products greatly overestimate very low intensities (50 mm). Moreover the responses of each product are different according to hydro climatic regimes. The aim of this study is to correct spatially the bias of precipitation, and compare various correction methods to define the best methods depending on the rainfall characteristic correcting (intensity, frequency). Four satellites products are used: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (3B42V7) and real time product (3B42RT), the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN) and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH), for six hydro climatic regimes between 2001 and 2012. Several statistical transformations are used to correct the bias. Statistical transformations attempt to find a function h that maps a simulated variable Ps such that its new distribution equals the distribution of the observed variable Po. The first is the use of a distribution derived transformations which is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distribution is used to model the probability of precipitation occurrence and the Gamma distribution used to model precipitation intensities. The second a quantile-quantile relation using parametric transformation, and the last one is a common approach using the empirical CDF of observed and modelled values instead of assuming parametric distributions. For each correction 30% of both, simulated and observed data sets, are used to calibrate and the other part used to validate. The validation are test with statistical

  17. A multiplier-based method of generating stochastic areal rainfall from point rainfalls

    Science.gov (United States)

    Ndiritu, J. G.

    Catchment modelling for water resources assessment is still mainly based on rain gauge measurements as these are more easily available and cover longer periods than radar and satellite-based measurements. Rain gauges however measure the rain falling on an extremely small proportion of the catchment and the areal rainfall obtained from these point measurements are consequently substantially uncertain. These uncertainties in areal rainfall estimation are generally ignored and the need to assess their impact on catchment modelling and water resources assessment is therefore imperative. A method that stochastically generates daily areal rainfall from point rainfall using multiplicative perturbations as a means of dealing with these uncertainties is developed and tested on the Berg catchment in the Western Cape of South Africa. The differences in areal rainfall obtained by alternately omitting some of the rain gauges are used to obtain a population of plausible multiplicative perturbations. Upper bounds on the applicable perturbations are set to prevent the generation of unrealistically large rainfall and to obtain unbiased stochastic rainfall. The perturbations within the set bounds are then fitted into probability density functions to stochastically generate the perturbations to impose on areal rainfall. By using 100 randomly-initialized calibrations of the AWBM catchment model and Sequent Peak Analysis, the effects of incorporating areal rainfall uncertainties on storage-yield-reliability analysis are assessed. Incorporating rainfall uncertainty is found to reduce the required storage by up to 20%. Rainfall uncertainty also increases flow-duration variability considerably and reduces the median flow-duration values by an average of about 20%.

  18. 最大熵算法在气象雨量预测中的应用分析%Application of Maximum Entropy Algorithm Meteorological Rainfall Prediction

    Institute of Scientific and Technical Information of China (English)

    王海燕

    2014-01-01

    将最大熵原理的计算方法应用到气象雨量预测中,通过有效的仿真实验能够证明最大熵方法在气象雨量预测中的可行性。%The calculation of the maximum entropy principle is applied to the weather forecast rainfall through effective simulation experiment to prove the feasibility of the maximum entropy method of meteorological rainfall prediction.

  19. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  20. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  1. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  2. Satellite-rainfall estimation for identification of rainfall thresholds used for landslide/debris flow prediction

    Science.gov (United States)

    Maggioni, Viviana; Nikolopoulos, Efthymios I.; Marra, Francesco; Destro, Elisa; Borga, Marco

    2016-04-01

    Rainfall-induced landslides and debris flows pose a significant and widespread hazard, resulting in a large number of casualties and enormous economic damages worldwide. Rainfall thresholds are often used to identify the local or regional rainfall conditions that, when reached or exceeded, are likely to result in landslides or debris flows. Rain gauge data are the typical source of information for the definition of these rainfall thresholds. However, in-situ observations over mountainous areas, where these hazards mainly occur, are very sparse or inexistent. Therefore identification and use of gauge-based rainfall thresholds is impossible in many landslide prone areas over the globe. The vast advancements in satellite-based precipitation estimation over the last couple of decades have lead to the creation of a number of global precipitation datasets at various spatiotemporal resolutions. Although several investigations have shown that these datasets can be associated with considerable uncertainty, they provide the only source of precipitation information over many areas around the globe. Therefore it is important to assess their performance in the context of landslide/debris flow prediction and investigate how we can potentially benefit from the information they provide. In this work, we evaluate the performance of three widely used quasi-global satellite precipitation products (3B42v7, PERSIANN and CMORPH) for the identification of rainfall threshold for landslide/debris flow triggering. Products are available at 0.25deg/3h resolution. The study region is focused over the Upper Adige river basin, northern Italy where a detailed database of more than 400 identified debris flows (during period 2000-2015) and a raingauge network of 95 stations, is available. Rain-gauge based rainfall thresholds are compared against satellite-based thresholds to evaluate strengths and limitations in using satellite precipitation estimates for defining rainfall thresholds. Analysis of

  3. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  4. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling

    DEFF Research Database (Denmark)

    Stisen, Simon; Sandholt, Inge

    2010-01-01

    The emergence of regional and global satellite-based rainfall products with high spatial and temporal resolution has opened up new large-scale hydrological applications in data-sparse or ungauged catchments. Particularly, distributed hydrological models can benefit from the good spatial coverage...... and distributed nature of satellite-based rainfall estimates (SRFE). In this study, five SRFEs with temporal resolution of 24 h and spatial resolution between 8 and 27 km have been evaluated through their predictive capability in a distributed hydrological model of the Senegal River basin in West Africa. The main...

  5. Long-term change analysis of satellite-based evapotranspiration over Indian vegetated surface

    Science.gov (United States)

    Gupta, Shweta; Bhattacharya, Bimal K.; Krishna, Akhouri P.

    2016-05-01

    In the present study, trend of satellite based annual evapotranspiration (ET) and natural forcing factors responsible for this were analyzed. Thirty years (1981-2010) of ET data at 0.08° grid resolution, generated over Indian region from opticalthermal observations from NOAA PAL and MODIS AQUA satellites, were used. Long-term data on gridded (0.5° x 0.5°) annual rainfall (RF), annual mean surface soil moisture (SSM) ERS scatterometer at 25 km resolution and annual mean incoming shortwave radiation from MERRA-2D reanalysis were also analyzed. Mann-Kendall tests were performed with time series data for trend analysis. Mean annual ET loss from Indian ago-ecosystem was found to be almost double (1100 Cubic Km) than Indian forest ecosystem (550 Cubic Km). Rainfed vegetation systems such as forest, rainfed cropland, grassland showed declining ET trend @ - 4.8, -0.6 &-0.4 Cubic Kmyr-1, respectively during 30 years. Irrigated cropland initially showed ET decline upto 1995 @ -0.8 cubic Kmyr-1 which could possibly be due to solar dimming followed by increasing ET @ 0.9 cubic Kmyr-1 after 1995. A cross-over point was detected between forest ET decline and ET increase in irrigated cropland during 2008. During 2001-2010, the four agriculturally important Indian states eastern, central, western and southern showed significantly increasing ET trend with S-score of 15-25 and Z-score of 1.09-2.9. Increasing ET in western and southern states was found to be coupled with increase in annual rainfall and SSM. But in eastern and central states no significant trend in rainfall was observed though significant increase in ET was noticed. The study recommended to investigate the influence of anthropogenic factors such as increase in area under irrigation, increased use of water for irrigation through ground water pumping, change in cropping pattern and cultivars on increasing ET.

  6. South African Weather Service operational satellite based precipitation estimation technique: applications and improvements

    Directory of Open Access Journals (Sweden)

    E. de Coning

    2010-11-01

    Full Text Available Extreme weather related to heavy or more frequent precipitation events seem to be a likely possibility for the future of our planet. While precipitation measurements can be done by means of rain gauges, the obvious disadvantages of point measurements are driving meteorologists towards remotely sensed precipitation methods. In South Africa more sophisticated and expensive nowcasting technology such as radar and lightning networks are available, supported by a fairly dense rain gauge network of about 1500 gauges. In the rest of southern Africa rainfall measurements are more difficult to obtain. The availability of the local version of the Unified Model and the Meteosat Second Generation satellite data make these products ideal components of precipitation measurement in data sparse regions such as Africa. In this article the local version of the Hydroestimator (originally from NOAA/NESDIS is discussed as well as its applications for precipitation measurement in this region. Hourly accumulations of the Hydroestimator are currently used as a satellite based precipitation estimator for the South African Flash Flood Guidance system. However, the Hydroestimator is by no means a perfect representation of the real rainfall. In this study the Hydroestimator and the stratiform rainfall field from the Unified Model are both bias corrected and then combined into a new precipitation field which can feed into the South African Flash Flood Guidance system. This new product should provide a more accurate and comprehensive input to the Flash Flood Guidance systems in South Africa as well as southern Africa. In this way the southern African region where data is sparse and very few radars are available can have access to more accurate flash flood guidance.

  7. Improving Quantitative Precipitation Estimation via Data Fusion of High-Resolution Ground-based Radar Network and CMORPH Satellite-based Product

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.

    2015-12-01

    A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each

  8. Rainfall variability modelling in Rwanda

    Science.gov (United States)

    Nduwayezu, E.; Kanevski, M.; Jaboyedoff, M.

    2012-04-01

    Support to climate change adaptation is a priority in many International Organisations meetings. But is the international approach for adaptation appropriate with field reality in developing countries? In Rwanda, the main problems will be heavy rain and/or long dry season. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). The spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front » mechanism. The torrential rainfall that occurs every year in Rwanda disturbs the circulation for many days, damages the houses and, more seriously, causes heavy losses of people. All districts are affected by bad weather (heavy rain) but the costs of such events are the highest in mountains districts. The objective of the current research is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. The research will include rainfalls variability mapping and probabilistic analyses of extreme events.

  9. Global trends in satellite-based emergency mapping.

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  10. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  11. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  12. Trellis-coded CPM for satellite-based mobile communications

    Science.gov (United States)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  13. A satellite based telemetry link for a UAV application

    Science.gov (United States)

    Bloise, Anthony

    1995-01-01

    The requirements for a satellite based communication facility to service the needs of the Geographical Information System (GIS) data collection community are addressed in this paper. GIS data is supplied in the form of video imagery at sub-television rates in one or more spectral bands / polarizations laced with a position correlated data stream. The limitations and vicissitudes of using a terrestrial based telecommunications link to collect GIS data are illustrated from actual mission scenarios. The expectations from a satellite based communications link by the geophysical data collection community concerning satellite architecture, operating bands, bandwidth, footprint agility, up link and down link hardware configurations on the UAV, the Mobile Control Vehicle and at the Central Command and Data Collection Facility comprise the principle issues discussed in the first section of this paper. The final section of the paper discusses satellite based communication links would have an increased volume and scope of services the GIS data collection community could make available to the GIS user community, and the price the data collection community could afford to pay for access to the communication satellite described in the paper.

  14. Humidity Profiles' Effect On The Relationship Between Ice Scattering And Rainfall In Microwave Rainfall Retrievals

    Science.gov (United States)

    Petkovic, V.; Kummerow, C. D.

    2013-12-01

    Currently, satellite microwave rainfall retrievals base their algorithm on an observed global average of the relationship between high frequency brightness temperature (Tb) depression and rainfall rate. This makes them very sensitive to differences in the ratio of ice to liquid in the cloud, resulting in regional biases of rainfall estimates. To address this problem we investigate how the environmental conditions that precede raining systems influence the ice to rainfall relationship. The vertical profile of humidity was found to be a key variable in predicting this ratio. We found that dry over moist air conditions are favorable for developing intense, well organized systems such as MCSs in West Africa and the Sahel, characterized by strong Tb depressions and amounts of ice aloft significantly above the globally observed average value. As a consequence, microwave retrieval algorithms misinterpret these systems assigning them unrealistically high rainfall rates. The opposite is true in the Amazon region, where observed raining systems exhibit very little ice while producing high rainfall rates. These regional differences correspond well with a map of radar to radiometer biases of rainfall. Deeper understanding of the influence of environmental conditions on this ice to rain ratio provides a foundation for mapping a global ice-scattering to rainfall rate relationship that will improve satellite microwave rainfall retrievals and our understanding of cloud microphysics globally.

  15. Assessing the utility of satellite-based whitecap fraction to estimate sea spray production and CO2 transfer velocity

    Science.gov (United States)

    Anguelova, M. D.

    2016-05-01

    The utility of a satellite-based whitecap database for estimates of surface sea spray production and bubble-mediated gas transfer on a global scale is presented. Existing formulations of sea spray production and bubble-mediated CO2 transfer velocity involve whitecap fraction parametrization as a function of wind speed at 10 m reference height W(U 10) based on photographic measurements of whitecaps. Microwave radiometric measurements of whitecaps from satellites provide whitecap fraction data over the world oceans for all seasons. Parametrizations W(U 10) based on such radiometric data are thus applicable for a wide range of conditions and can account for influences secondary to the primary forcing factor, the wind speed. Radiometric satellite-based W(U 10) relationship was used as input to: (i) the Coupled Ocean-Atmosphere Response Experiment Gas transfer (COAREG) algorithm to obtain CO2 transfer velocity and total CO2 flux; and (ii) the sea spray source function (SSSF) recommended by Andreas in 2002 to obtain fluxes of sea spray number and mass. The outputs of COAREG and SSSF obtained with satellite-based W(U 10) are compared with respective outputs obtained with the nominal W(U 10) relationship based on photographic data. Good comparisons of the gas and sea spray fluxes with direct measurements and previous estimates imply that the satellite- based whitecap database can be useful to obtain surface fluxes of particles and gases in regions and conditions difficult to access and sample in situ. Satellite and in situ estimates of surface sea spray production and bubble-mediated gas transfer thus complement each other: accurate in situ observations can constrain radiometric whitecap fraction and mass flux estimates, while satellite observations can provide global coverage of whitecap fraction and mass flux estimates.

  16. Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework

    Science.gov (United States)

    Hasan, Mohammad Mahadi; Sharma, Ashish; Mariethoz, Gregoire; Johnson, Fiona; Seed, Alan

    2016-11-01

    While the value of correcting raw radar rainfall estimates using simultaneous ground rainfall observations is well known, approaches that use the complete record of both gauge and radar measurements to provide improved rainfall estimates are much less common. We present here two new approaches for estimating radar rainfall that are designed to address known limitations in radar rainfall products by using a relatively long history of radar reflectivity and ground rainfall observations. The first of these two approaches is a radar rainfall estimation algorithm that is nonparametric by construction. Compared to the traditional gauge adjusted parametric relationship between reflectivity (Z) and ground rainfall (R), the suggested new approach is based on a nonparametric radar rainfall estimation method (NPR) derived using the conditional probability distribution of reflectivity and gauge rainfall. The NPR method is applied to the densely gauged Sydney Terrey Hills radar network, where it reduces the RMSE in rainfall estimates by 10%, with improvements observed at 90% of the gauges. The second of the two approaches is a method to merge radar and spatially interpolated gauge measurements. The two sources of information are combined using a dynamic combinatorial algorithm with weights that vary in both space and time. The weight for any specific period is calculated based on the error covariance matrix that is formulated from the radar and spatially interpolated rainfall errors of similar reflectivity periods in a cross-validation setting. The combination method reduces the RMSE by about 20% compared to the traditional Z-R relationship method, and improves estimates compared to spatially interpolated point measurements in sparsely gauged areas.

  17. Global detection and analysis of coastline associated rainfall using objective pattern recognition techniques

    CERN Document Server

    Bergemann, Martin; Lane, Todd P

    2015-01-01

    Coastally induced rainfall is a common feature especially in tropical and subtropical regions. However, it has been difficult to quantify the contribution of coastal rainfall features to the overall local rainfall. We develop a novel technique to objectively identify precipitation associated with land-sea interaction and apply it to satellite based rainfall estimates. The Maritime Continent, the Bight of Panama, Madagascar and the Mediterranean are found to be regions where land-sea interactions plays a crucial role in the formation of precipitation. In these regions $\\approx$ 40\\% to 60\\% of the total rainfall can be related to coastline effects. Due to its importance for the climate system, the Maritime Continent is a particular region of interest with high overall amounts of rainfall and large fractions resulting from land-sea interactions throughout the year. To demonstrate the utility of our identification method we investigate the influence of several modes of variability, such as the Madden-Julian-Osci...

  18. Satellite-Based EMI Detection, Identification, and Mitigation

    Science.gov (United States)

    Stottler, R.; Bowman, C.

    2016-09-01

    Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.

  19. Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region

    Directory of Open Access Journals (Sweden)

    Rômulo Oliveira

    2016-06-01

    Full Text Available Studies that investigate and evaluate the quality, limitations and uncertainties of satellite rainfall estimates are fundamental to assure the correct and successful use of these products in applications, such as climate studies, hydrological modeling and natural hazard monitoring. Over regions of the globe that lack in situ observations, such studies are only possible through intensive field measurement campaigns, which provide a range of high quality ground measurements, e.g., CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GlobAl Precipitation Measurement and GoAmazon (Observations and Modeling of the Green Ocean Amazon over the Brazilian Amazon during 2014/2015. This study aims to assess the characteristics of Global Precipitation Measurement (GPM satellite-based precipitation estimates in representing the diurnal cycle over the Brazilian Amazon. The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG and the Goddard Profiling Algorithm—Version 2014 (GPROF2014 algorithms are evaluated against ground-based radar observations. Specifically, the S-band weather radar from the Amazon Protection National System (SIPAM, is first validated against the X-band CHUVA radar and then used as a reference to evaluate GPM precipitation. Results showed satisfactory agreement between S-band SIPAM radar and both IMERG and GPROF2014 algorithms. However, during the wet season, IMERG, which uses the GPROF2014 rainfall retrieval from the GPM Microwave Imager (GMI sensor, significantly overestimates the frequency of heavy rainfall volumes around 00:00–04:00 UTC and 15:00–18:00 UTC. This overestimation is particularly evident over the Negro, Solimões and Amazon rivers due to the poorly-calibrated algorithm over water surfaces. On the other hand, during the dry season, the IMERG product underestimates mean precipitation in comparison to the S-band SIPAM

  20. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  1. Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment

    Science.gov (United States)

    Jewett, Christopher P.; Mecikalski, John R.

    2013-11-01

    The Time-Space Exchangeability (TSE) concept states that similar characteristics of a given property are closely related statistically for objects or features within close proximity. In this exercise, the objects considered are growing cumulus clouds, and the data sets to be considered in a statistical sense are geostationary satellite infrared (IR) fields that help describe cloud growth rates, cloud top heights, and whether cloud tops contain significant amounts of frozen hydrometeors. In this exercise, the TSE concept is applied to alter otherwise static thresholds of IR fields of interest used within a satellite-based convective initiation (CI) nowcasting algorithm. The convective environment in which the clouds develop dictate growth rate and precipitation processes, and cumuli growing within similar mesoscale environments should have similar growth characteristics. Using environmental information provided by regional statistics of the interest fields, the thresholds are examined for adjustment toward improving the accuracy of 0-1 h CI nowcasts. Growing cumulus clouds are observed within a CI algorithm through IR fields for many 1000 s of cumulus cloud objects, from which statistics are generated on mesoscales. Initial results show a reduction in the number of false alarms of ~50%, yet at the cost of eliminating approximately ~20% of the correct CI forecasts. For comparison, static thresholds (i.e., with the same threshold values applied across the entire satellite domain) within the CI algorithm often produce a relatively high probability of detection, with false alarms being a significant problem. In addition to increased algorithm performance, a benefit of using a method like TSE is that a variety of unknown variables that influence cumulus cloud growth can be accounted for without need for explicit near-cloud observations that can be difficult to obtain.

  2. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  3. Incorporation of an evolutionary algorithm to estimate transfer-functions for a parameter regionalization scheme of a rainfall-runoff model

    Science.gov (United States)

    Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2016-04-01

    This contribution presents a framework, which enables the use of an Evolutionary Algorithm (EA) for the calibration and regionalization of the hydrological model COSEROreg. COSEROreg uses an updated version of the HBV-type model COSERO (Kling et al. 2014) for the modelling of hydrological processes and is embedded in a parameter regionalization scheme based on Samaniego et al. (2010). The latter uses subscale-information to estimate model via a-priori chosen transfer functions (often derived from pedotransfer functions). However, the transferability of the regionalization scheme to different model-concepts and the integration of new forms of subscale information is not straightforward. (i) The usefulness of (new) single sub-scale information layers is unknown beforehand. (ii) Additionally, the establishment of functional relationships between these (possibly meaningless) sub-scale information layers and the distributed model parameters remain a central challenge in the implementation of a regionalization procedure. The proposed method theoretically provides a framework to overcome this challenge. The implementation of the EA encompasses the following procedure: First, a formal grammar is specified (Ryan et al., 1998). The construction of the grammar thereby defines the set of possible transfer functions and also allows to incorporate hydrological domain knowledge into the search itself. The EA iterates over the given space by combining parameterized basic functions (e.g. linear- or exponential functions) and sub-scale information layers into transfer functions, which are then used in COSEROreg. However, a pre-selection model is applied beforehand to sort out unfeasible proposals by the EA and to reduce the necessary model runs. A second optimization routine is used to optimize the parameters of the transfer functions proposed by the EA. This concept, namely using two nested optimization loops, is inspired by the idea of Lamarckian Evolution and Baldwin Effect

  4. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  5. PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Ng, L.C.

    2002-06-30

    This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.

  6. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

    CERN Document Server

    Noureldin, Aboelmagd; Georgy, Jacques

    2013-01-01

    Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration is an introduction to the field of Integrated Navigation Systems. It serves as an excellent reference for working engineers as well as textbook for beginners and students new to the area. The book is easy to read and understand with minimum background knowledge. The authors explain the derivations in great detail. The intermediate steps are thoroughly explained so that a beginner can easily follow the material. The book shows a step-by-step implementation of navigation algorithms and provides all the necessary details. It provides detailed illustrations for an easy comprehension. The book also demonstrates real field experiments and in-vehicle road test results with professional discussions and analysis. This work is unique in discussing the different INS/GPS integration schemes in an easy to understand and straightforward way. Those schemes include loosely vs tightly coupled, open loop vs closed loop, and many more.

  7. Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool

    Science.gov (United States)

    Forman, Bart; Kumar, Sujay; Le Moigne, Jacqueline; Nag, Sreeja

    2017-01-01

    A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASAs Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical orbital configuration.One objective the proposed observing system simulation experiment (OSSE) is to assess the complementary or perhaps contradictory information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include:1. What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?2. How might observations be coordinated (in space and time) to maximize utility? 3. What is the additional utility associated with an additional observation?4. How can future mission costs being minimized while ensuring Science requirements are fulfilled?

  8. Bayesian spatiotemporal interpolation of rainfall in the Central Chilean Andes

    Science.gov (United States)

    Ossa-Moreno, Juan; Keir, Greg; McIntyre, Neil

    2016-04-01

    Water availability in the populous and economically significant Central Chilean region is governed by complex interactions between precipitation, temperature, snow and glacier melt, and streamflow. Streamflow prediction at daily time scales depends strongly on accurate estimations of precipitation in this predominantly dry region, particularly during the winter period. This can be difficult as gauged rainfall records are scarce, especially in the higher elevation regions of the Chilean Andes, and topographic influences on rainfall are not well understood. Remotely sensed precipitation and topographic products can be used to construct spatiotemporal multivariate regression models to estimate rainfall at ungauged locations. However, classical estimation methods such as kriging cannot easily accommodate the complicated statistical features of the data, including many 'no rainfall' observations, as well as non-normality, non-stationarity, and temporal autocorrelation. We use a separable space-time model to predict rainfall using the R-INLA package for computationally efficient Bayesian inference, using the gridded CHIRPS satellite-based rainfall dataset and digital elevation models as covariates. We jointly model both the probability of rainfall occurrence on a given day (using a binomial likelihood) as well as amount (using a gamma likelihood or similar). Correlation in space and time is modelled using a Gaussian Markov Random Field (GMRF) with a Matérn spatial covariance function which can evolve over time according to an autoregressive model if desired. It is possible to evaluate the GMRF at relatively coarse temporal resolution to speed up computations, but still produce daily rainfall predictions. We describe the process of model selection and inference using an information criterion approach, which we use to objectively select from competing models with various combinations of temporal smoothing, likelihoods, and autoregressive model orders.

  9. On the relationship of coastal tropical rainfall and the large-scale atmosphere

    CERN Document Server

    Bergemann, Martin; Lane, Todd P

    2015-01-01

    Rainfall in coastal areas of the tropics is often shaped by the presence of circulations directly associated with the topography, such as land-sea and/or mountain-valley breezes. In many regions the coastally-affected rainfall consitutes more than half of the overall rainfall received. Weather and climate models with parametrized convection produce large errors in rainfall in tropical coastal regions, most commonly underestimating rainfall over land and overestimating it over the ocean. Building on an algorithm to objectively identify rainfall that is associated with land-sea interaction we investigate whether the relationship between rainfall in coastal regions and the large-scale atmosphere differs from that over the open ocean or over inland areas. We combine 3-hourly satellite estimates of rainfall with estimates of the large-scale atmospheric state from reanalyses. We find that when grouped by rainfall intensity, medium-intensity coastal rainfall in the tropics occurs in more stable conditions and drier ...

  10. Country-wide rainfall maps from cellular communication networks

    Science.gov (United States)

    Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko

    2013-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. Here we show how one cellular telecommunication network can be used to retrieve the space-time dynamics of rainfall for an entire country. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (2400) covering the land surface of the Netherlands (35500 km2). This dataset consists of 24 days with substantial rainfall in June - September 2011. A rainfall retrieval algorithm is presented to derive rainfall intensities from the microwave link data, which have a temporal resolution of 15 min. Rainfall maps (1 km spatial resolution) are generated from these rainfall intensities using Kriging. This algorithm is suited for real-time application, and is calibrated on a subset (12 days) of the dataset. The other 12 days in the dataset are used to validate the algorithm. Both

  11. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    strongest in coastal areas up to 50 km away from coast. Extent of ML inland in SDF and E service area was the largest in May and receded towards coast gradually through summer and fall. The ML probability correlated well with accuracy of solar radiation and PV forecasting in the region. Coastal sites appeared the most challenging for accurate forecast while PV forecasts in inland areas were performing consistently well. Improvement of automated cloud classification algorithms through integration of infrared satellite channels as well as better understanding of meteorological drivers of ML events is the key for improvement of satellite-based PV generation forecasting in coastal areas. (orig.)

  12. Satellite Based Extrusion Rates for the 2006 Augustine Eruption

    Science.gov (United States)

    Dehn, J.; Bailey, J. E.; Dean, K. G.; Skoog, R.; Valcic, L.

    2006-12-01

    include pyroclastic deposits or ashfall, which are included in the DEM subtraction approach. However the pyroclastics should only account for a small amount of the extruded volume. In spite of its limitations, satellite based extrusion modeling provides a reasonable and safe method to monitor volcanoes and detect change in eruption style in near real time.

  13. Hydrological Evaluation of TRMM Rainfall over the Upper Senegal River Basin

    Directory of Open Access Journals (Sweden)

    Ansoumana Bodian

    2016-04-01

    Full Text Available The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to conduct hydrological studies over some watersheds. In this context, our study aimed to evaluate the capacity of Tropical Rainfall Measuring Mission (TRMM satellite data to simulate the observed runoffs over the Bafing (the main important tributary of the Senegal River before their potential integration in hydrological studies. The conceptual hydrological model GR4J (modèle du Génie Rural (Agricultural Engineering Model à 4 paramètres Journalier (4 parameters Daily has been used, calibrated and validated over the 1961–1997 period with rainfall and Potential Evapotranspiration (PET as inputs. Then, the parameters that best reflect the rainfall-runoff relation, obtained during the cross-calibration-validation phase, were used to simulate runoff over the 1998–2004 period using observed and TRMM rainfalls. The findings of this study show that there is a high consistency between satellite-based estimates and ground-based observations of rainfall. Over the 1998–2004 simulation period, the two rainfall data series show quite satisfactorily results. The output hydrographs from satellite-based estimates and ground-based observations of rainfall coincide quite well with the shape of observed hydrographs with Nash-Sutcliffe Efficiency coefficient (NSE of 0.88 and 0.80 for observed rainfalls and TRMM rainfalls, respectively.

  14. Passive microwave rainfall retrieval: A mathematical approach via sparse learning

    Science.gov (United States)

    Ebtehaj, M.; Lerman, G.; Foufoula-Georgiou, E.

    2013-12-01

    Detection and estimation of surface rainfall from spaceborne radiometric imaging is a challenging problem. The main challenges arise due to the nonlinear relationship of surface rainfall with its microwave multispectral signatures, the presence of noise, insufficient spatial resolution in observations, and the mixture of the earth surface and atmospheric radiations. A mathematical approach is presented for the detection and retrieval of surface rainfall from radiometric observations via supervised learning. In other words, we use a priori known libraries of high-resolution rainfall observations (e.g., obtained by an active radar) and their coincident spectral signatures (i.e., obtained by a radiometer) to design a mathematical model for rainfall retrieval. This model views the rainfall retrieval as a nonlinear inverse problem and relies on sparsity-promoting Bayesian inversion techniques. In this approach, we assume that small neighborhoods of the rainfall fields and their spectral signatures live on manifolds with similar local geometry and encode those neighborhoods in two joint libraries, the so-called rainfall and spectral dictionaries. We model rainfall passive microwave images by sparse linear combinations of the atoms of the spectral dictionary and then use the same representation coefficients to retrieve surface rain rates from the corresponding rainfall dictionary. The proposed methodology is examined by the use of spectral and rainfall dictionaries provided by the microwave imager (TMI) and precipitation radar (PR), aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. Pros and cons of the presented approach are studied by extensive comparisons with the current operational rainfall algorithm of the TRMM satellite. Future extensions are also highlighted for potential application in the era of the Global Precipitation Measurement (GPM) mission. Comparing the retrieved rain rates for Hurricane Danielle 08/29/2010 (UTC 09:48:00). (Top panel) PR-2A

  15. Towards a satellite-based sea ice climate data record

    Science.gov (United States)

    Meier, W. N.; Fetterer, F.; Stroeve, J.; Cavalieri, D.; Parkinson, C.; Comiso, J.; Weaver, R.

    2005-12-01

    Sea ice plays an important role in the Earth's climate through its influence on the surface albedo, heat and moisture transfer between the ocean and the atmosphere, and the thermohaline circulation. Satellite data reveal that since 1979, summer Arctic sea ice has, overall, been declining at a rate of almost 8%/decade, with recent summers (beginning in 2002) being particularly low. The receding sea ice is having an effect on wildlife and indigenous peoples in the Arctic, and concern exists that these effects may become increasingly severe. Thus, a long-term, ongoing climate data record of sea ice is crucial for tracking the changes in sea ice and for assessing the significance of long-term trends. Since the advent of passive microwave satellite instruments in the early 1970s, sea ice has been one of the most consistently monitored climate parameters. There is now a 27+ year record of sea ice extent and concentration from multi-channel passive microwave radiometers that has undergone inter-sensor calibration and other quality controls to ensure consistency throughout the record. Several algorithms have been developed over the years to retrieve sea ice extent and concentration and two of the most commonly used algorithms, the NASA Team and Bootstrap, have been applied to the entire SMMR-SSM/I record to obtain a consistent time series. These algorithms were developed at NASA Goddard Space Flight Center and are archived at the National Snow and Ice Data Center. However, the complex surface properties of sea ice affect the microwave signature, and algorithms can yield ambiguous results; no single algorithm has been found to work uniformly well under all sea ice conditions. Thus there are ongoing efforts to further refine the algorithms and the time series. One approach is to develop data fusion methods to optimally combine sea ice fields from two or more algorithms. Another approach is to take advantage of the improved capabilities of JAXA's AMSR-E sensor on NASA's Aqua

  16. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  17. Operational Testing of Satellite based Hydrological Model (SHM)

    Science.gov (United States)

    Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2017-04-01

    Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow

  18. Using R for analysing spatio-temporal datasets: a satellite-based precipitation case study

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio

    2017-04-01

    Increasing computer power and the availability of remote-sensing data measuring different environmental variables has led to unprecedented opportunities for Earth sciences in recent decades. However, dealing with hundred or thousands of files, usually in different vectorial and raster formats and measured with different temporal frequencies, impose high computation challenges to take full advantage of all the available data. R is a language and environment for statistical computing and graphics which includes several functions for data manipulation, calculation and graphical display, which are particularly well suited for Earth sciences. In this work I describe how R was used to exhaustively evaluate seven state-of-the-art satellite-based rainfall estimates (SRE) products (TMPA 3B42v7, CHIRPSv2, CMORPH, PERSIANN-CDR, PERSIAN-CCS-adj, MSWEPv1.1 and PGFv3) over the complex topography and diverse climatic gradients of Chile. First, built-in functions were used to automatically download the satellite-images in different raster formats and spatial resolutions and to clip them into the Chilean spatial extent if necessary. Second, the raster package was used to read, plot, and conduct an exploratory data analysis in selected files of each SRE product, in order to detect unexpected problems (rotated spatial domains, order or variables in NetCDF files, etc). Third, raster was used along with the hydroTSM package to aggregate SRE files into different temporal scales (daily, monthly, seasonal, annual). Finally, the hydroTSM and hydroGOF packages were used to carry out a point-to-pixel comparison between precipitation time series measured at 366 stations and the corresponding grid cell of each SRE. The modified Kling-Gupta index of model performance was used to identify possible sources of systematic errors in each SRE, while five categorical indices (PC, POD, FAR, ETS, fBIAS) were used to assess the ability of each SRE to correctly identify different precipitation intensities

  19. The Satellite Based Hydrological Model (SHM): Routing Scheme and its Evaluation

    Science.gov (United States)

    kumari, Nikul; Paul, Pranesh Kumar; Singh, Rajendra; Panigrahy, Niranjan; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2016-04-01

    The collection of spatially extensive data by using the traditional methods of data acquisition is a challenging task for a large territory like India. To overcome such problems, the Satellite based Hydrological Model (SHM), a large scale conceptual hydrological model for the Indian Territory, is being developed under the PRACRITI-2 program of the Space Applications Centre (SAC), Ahmedabad. The model aims at preparing sustainable water management scenarios using remote sensing data from Indian satellites to handle the fresh water crisis in India. There are five modules namely, Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU) in the SHM. The SW, F and S modules convert rainfall into surface runoff and generate input (infiltration and percolation) for the GW module, and GW generates baseflow using that input. In this study, a cell-to-cell routing (ROU) module has been developed for SHM. It is based on the principle of Time Variant Spatially Distributed Direct Hydrograph (SDDH) to route the generated runoff and baseflow generated by various modules upto the outlet. The entire India is divided into 5km x 5km grid cells and properties at the center of the cell are assumed to represent the property of the cell. In the routing scheme, for each cell a single downstream cell is defined in the direction of steepest descent, to create the flow network. These grid cells are classified into overland cells and channel cells based on the threshold value taken into consideration. The overland flow travel time of each overland cell is estimated by combining a steady state kinematic wave approximation with Manning's equation and the channel flow travel time of each channel cell is estimated using Manning's equation and the steady state continuity equation. The travel time for each cell is computed by dividing the travel distance through that cell with cell velocity. The cumulative travel time from each grid cell to the watershed outlet is the sum of

  20. A rainfall-based warning model for shallow landslides

    Science.gov (United States)

    Zeng, Yi-Chao; Wang, Ji-Shang; Jan, Chyan-Deng; Yin, Hsiao-Yuan; Lo, Wen-Chun

    2016-04-01

    According to the statistical data of past rainfall events, the climate has changed in recent decades. Rainfall patterns have presented a more concentrated, high-intensity and long-duration trend in Taiwan. The most representative event is Typhoon Morakot which induced a total of 67 enormous landslides by the extreme amount of rain during August 7 to 10 in 2009 and resulted in the heaviest casualties in southern Taiwan. In addition, the nature of vulnerability such as steep mountains and rushing rivers, fragile geology and loose surface soil results in more severe sediment-relative disasters, in which shallow landslides are widespread hazards in mountainous regions. This research aims to develop and evaluate a model for predicting shallow landslides triggered by rainfall in mountainous area. Considering the feasibility of large-scale application and practical operation, the statistical techniques is adopted to form the landslide model based on abundant historical rainfall data and landslide events. The 16 landslide inventory maps and 15 variation results by comparing satellite images taken before and after the rainfall event were interpreted and delineated since 2004 to 2011. Logit model is utilized for interpreting the relationship between rainfall characteristics and landslide events delineated from satellite. Based on the analysis results of logistic regression, the rainfall factors that are highly related to shallow landslide occurrence are selected which are 3 hours rainfall intensity I3 (mm/hr) and the effective cumulative precipitation Rt (mm) including accumulated rainfall at time t and antecedent rainfall. A landslide rainfall triggering index (LRTI) proposed for assessing the occurrence potential of shallow landslides is defined as the product of I3 and Rt. A form of probability of shallow landslide triggered threshold is proposed to offer a measure of the likelihood of landslide occurrence. Two major critical lines which represent the lower and upper

  1. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  2. How important is tropospheric humidity for coastal rainfall in the tropics?

    Science.gov (United States)

    Bergemann, Martin; Jakob, Christian

    2016-06-01

    Climate models show considerable rainfall biases in coastal tropical areas, where approximately 33% of the overall rainfall received is associated with coastal land-sea interaction. Building on an algorithm to objectively identify rainfall that is associated with land-sea interaction we investigate whether the relationship between rainfall in coastal regions and atmospheric humidity differs from that over the open ocean or over inland areas. We combine 3-hourly satellite estimates of rainfall with humidity estimates from reanalyses and investigate if coastal rainfall reveals the well-known relationship between area-averaged precipitation and column-integrated moisture. We find that rainfall that is associated with coastal land-sea effects occurs under much drier midtropospheric conditions than that over the ocean and does not exhibit a pronounced critical value of humidity. In addition, the dependence of the amount of rainfall on midtropospheric moisture is significantly weaker when the rainfall is coastally influenced.

  3. Countrywide rainfall maps from a commercial cellular telecommunication network

    Science.gov (United States)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2012-12-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information. Many countries do not have continuously operating weather radars, and have no or few rain gauges. A new development is rainfall estimation from microwave links of commercial cellular telecommunication networks. Such networks cover large parts of the land surface of the earth and have a high density, especially in urban areas. The estimation of rainfall using commercial microwave links could therefore become a valuable source of information. The data produced by microwave links is essentially a by-product of the communication between mobile telephones. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (1500) covering the land surface of the Netherlands (35500 km2). This dataset consists of 24 days with substantial rainfall in June - September 2011. A rainfall retrieval algorithm is presented to derive rainfall intensities from the microwave link data, which have a temporal resolution of 15 min. Rainfall maps (1 km spatial resolution) are generated from these rainfall intensities using Kriging. This algorithm is suited for real-time application, and is calibrated on a subset (12 days) of the dataset. The other 12 days in the dataset are used to validate the algorithm. Both calibration and validation are done using gauge-adjusted radar data

  4. Recent Developments for Satellite-Based Fire Monitoring in Canada

    Science.gov (United States)

    Abuelgasim, A.; Fraser, R.

    2002-05-01

    Wildfires in Canadian forests are a major source of natural disturbance. These fires have a tremendous impact on the local environment, humans and wildlife, ecosystem function, weather, and climate. Approximately 9000 fires burn 3 million hectares per year in Canada (based on a 10-year average). While only 2 to 3 percent of these wildfires grow larger than 200 hectares in size, they account for almost 97 percent of the annual area burned. This provides an excellent opportunity to monitor active fires using a combination of low and high resolution sensors for the purpose of determining fire location and burned areas. Given the size of Canada, the use of remote sensing data is a cost-effective way to achieve a synoptic overview of large forest fire activity in near-real time. In 1998 the Canada Centre for Remote Sensing (CCRS) and the Canadian Forest Service (CFS) developed a system for Fire Monitoring, Mapping and Modelling (Fire M3;http://fms.nofc.cfs.nrcan.gc.ca/FireM3/). Fire M3 automatically identifies, monitors, and maps large forest fires on a daily basis using NOAA AVHRR data. These data are processed daily using the GEOCOMP-N satellite image processing system. This presentation will describe recent developments to Fire M3, included the addition of a set of algorithms tailored for NOAA-16 (N-16) data. The two fire detection algorithms are developed for N-16 day and night-time daily data collection. The algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. The set of N-16 day and night algorithms was used to generate daily active fire maps across North America for the 2001 fire season. Such a combined approach for fire detection leads to an improved detection rate, although day-time detection based on the new 1.6 um channel was much less effective (note - given the low detection rate with day time imagery, I don't think we can make the statement about capturing the diurnal cycle). Selected validation sites in western

  5. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    Science.gov (United States)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  6. Satellite-based technique for nowcasting of thunderstorms over Indian region

    Indian Academy of Sciences (India)

    Suman Goyal; Ashish Kumar; M Mohapatra; L S Rathore; S K Dube; Rahul Saxena; R K Giri

    2017-08-01

    India experiences severe thunderstorms during the months, March–June. But these systems are not predicted well, mainly due to the absence of mesoscale observational network over Indian region and the expert system. As these are short lived systems, the nowcast is attempted worldwide based on satellite and radar observations. Due to inadequate radar network, satellite plays the dominant role for nowcast of these thunderstorms. In this study, a nowcast based algorithm ForTracc developed by Vila et al. (Weather Forecast 23:233–245, 2008) has been examined over the Indian region using Infrared Channel (10.8 μm) of INSAT-3D for prediction of Mesoscale Convective Systems (MCS). In this technique, the current location and intensity in terms of Cloud Top Brightness Temperature (CTBT) of the MCS are extrapolated. The purpose of this study is to validate this satellite-based nowcasting technique for Convective Cloud Clusters that helps in optimum utilization of satellite data and improve the nowcasting. The model could predict reasonably the minimum CTBT of the convective cell with average absolute error (AAE) of <7 K for different lead periods (30–180 min). However, it was underestimated for all the lead periods of forecasts. The AAE in the forecasts of size of the cluster varies from about 3×104 km2 for 30-min forecast to 7×104 km2 for 120-min forecast. The mean absolute error in prediction of size is above 31–38% of actual size for different lead periods of forecasts from 30 to 180 min. There is over estimation in prediction of size for 30 and 60 min forecasts (17% and 2.6% of actual size of the cluster, respectively) and underestimation in 90 to 180-min forecasts (–2.4% to –28%). The direct position error (DPE) based on the location of minimum CTBT ranges from 70 to 144 km for 30–180-min forecast respectively.

  7. Toward a Global Map of Raindrop Size Distributions. Part 1; Rain-Type Classification and Its Implications for Validating Global Rainfall Products

    Science.gov (United States)

    L'Ecuyer, Tristan S.; Kummerow, Christian; Berg,Wesley

    2004-01-01

    Variability in the global distribution of precipitation is recognized as a key element in assessing the impact of climate change for life on earth. The response of precipitation to climate forcings is, however, poorly understood because of discrepancies in the magnitude and sign of climatic trends in satellite-based rainfall estimates. Quantifying and ultimately removing these biases is critical for studying the response of the hydrologic cycle to climate change. In addition, estimates of random errors owing to variability in algorithm assumptions on local spatial and temporal scales are critical for establishing how strongly their products should be weighted in data assimilation or model validation applications and for assigning a level of confidence to climate trends diagnosed from the data. This paper explores the potential for refining assumed drop size distributions (DSDs) in global radar rainfall algorithms by establishing a link between satellite observables and information gleaned from regional validation experiments where polarimetric radar, Doppler radar, and disdrometer measurements can be used to infer raindrop size distributions. By virtue of the limited information available in the satellite retrieval framework, the current method deviates from approaches adopted in the ground-based radar community that attempt to relate microphysical processes and resultant DSDs to local meteorological conditions. Instead, the technique exploits the fact that different microphysical pathways for rainfall production are likely to lead to differences in both the DSD of the resulting raindrops and the three-dimensional structure of associated radar reflectivity profiles. Objective rain-type classification based on the complete three-dimensional structure of observed reflectivity profiles is found to partially mitigate random and systematic errors in DSDs implied by differential reflectivity measurements. In particular, it is shown that vertical and horizontal

  8. Multiple data fusion for rainfall estimation using a NARX-based recurrent neural network - the development of the REIINN model

    Science.gov (United States)

    Ang, M. R. C. O.; Gonzalez, R. M.; Castro, P. P. M.

    2014-03-01

    Rainfall, one of the important elements of the hydrologic cycle, is also the most difficult to model. Thus, accurate rainfall estimation is necessary especially in localized catchment areas where variability of rainfall is extremely high. Moreover, early warning of severe rainfall through timely and accurate estimation and forecasting could help prevent disasters from flooding. This paper presents the development of two rainfall estimation models that utilize a NARX-based neural network architecture namely: REIINN 1 and REIINN 2. These REIINN models, or Rainfall Estimation by Information Integration using Neural Networks, were trained using MTSAT cloud-top temperature (CTT) images and rainfall rates from the combined rain gauge and TMPA 3B40RT datasets. Model performance was assessed using two metrics - root mean square error (RMSE) and correlation coefficient (R). REIINN 1 yielded an RMSE of 8.1423 mm/3h and an overall R of 0.74652 while REIINN 2 yielded an RMSE of 5.2303 and an overall R of 0.90373. The results, especially that of REIINN 2, are very promising for satellite-based rainfall estimation in a catchment scale. It is believed that model performance and accuracy will greatly improve with a denser and more spatially distributed in-situ rainfall measurements to calibrate the model with. The models proved the viability of using remote sensing images, with their good spatial coverage, near real time availability, and relatively inexpensive to acquire, as an alternative source for rainfall estimation to complement existing ground-based measurements.

  9. A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations

    Science.gov (United States)

    Tan, H.; Chandra, C. V.; Chen, H.

    2016-12-01

    Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge

  10. Spatial Variability of Rainfall

    DEFF Research Database (Denmark)

    Jensen, N.E.; Pedersen, Lisbeth

    2005-01-01

    As a part of a Local Area Weather Radar (LAWR) calibration exercise 15 km south of Århus, Denmark, the variability in accumulated rainfall within a single radar pixel (500 by 500 m) was measured using nine high-resolution rain gauges. The measured values indicate up to a 100% variation between...

  11. The Wageningen Rainfall Simulator

    NARCIS (Netherlands)

    Lassu, Tamas; Seeger, K.M.; Peters, P.D.; Keesstra, S.D.

    2015-01-01

    The set-up and characterisation of an indoor nozzle-type rainfall simulator (RS) at Wageningen University, the Netherlands, are presented. It is equipped with four Lechler nozzles (two nr. 460·788 and two nr. 461·008). The tilting irrigation plot is 6 m long and 2·5 m wide. An electrical pump

  12. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    Science.gov (United States)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2016-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  13. Validation of PV performance models using satellite-based irradiance measurements : a case study.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

    2010-05-01

    Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

  14. Efficient enhancing scheme for TCP performance over satellite-based internet

    Institute of Scientific and Technical Information of China (English)

    Wang Lina; Gu Xuemai

    2007-01-01

    Satellite link characteristics drastically degrade transport control protocol (TCP) performance. An efficient performance enhancing scheme is proposed. The improvement of TCP performance over satellite-based Intemet is accomplished by protocol transition gateways at each end ora satellite link. The protocol which runs over a satellite link executes the receiver-driven flow control and acknowledgements- and timeouts-based error control strategies. The validity of this TCP performance enhancing scheme is verified by a series of simulation experiments. Results show that the proposed scheme can efficiently enhance the TCP performance over satellite-based Intemet and ensure that the available bandwidth resources of the satellite link are fully utilized.

  15. How important is tropospheric humidity for coastal rainfall in the tropics?

    CERN Document Server

    Bergemann, Martin

    2016-01-01

    Recent research has community have shown that tropical convection and rainfall is sensitive to mid-tropospheric humidity. Therefore it has been suggested to improve the representation of moist convection by making cumulus parameterizations more sensitive to mid-tropospheric moisture. Climate models show considerable rainfall biases in coastal tropical areas, where approx. 33 % of the overall rainfall received is associated with coastal land-sea interaction. Building on an algorithm to objectively identify rainfall that is associated with land-sea interaction we investigate whether the relationship between rainfall in coastal regions and atmospheric humidity differs from that over the open ocean or over inland areas. We combine 3-hourly satellite estimates of rainfall with humidity estimates from reanalyses and investigate if coastal rainfall reveals the well known relationship between area-averaged precipitation and column integrated moisture. We find that rainfall that is associated with coastal land-sea eff...

  16. A Satellite Based Method for Wetland Inundation Mapping

    Science.gov (United States)

    Di Vittorio, C.; Georgakakos, A. P.

    2016-12-01

    Hydrologic models of wetlands enable hydrologists and water resources managers to appreciate the environmental and societal roles of wetlands and manage them in ways that preserve their integrity and sustain their valuable services. However, wetland model reliability and accuracy are often unsatisfactory due to the complexity of the underlying processes and the lack of adequate in-situ data. In this research, we demonstrate how MODIS satellite imagery can be used to characterize wetland flooding over time and to support the development of more reliable wetland models. We apply this method to the Sudd, a seasonal wetland in South Sudan that is part of the Nile River Basin. The database consists of 16 years of 8-day composite ground surface reflectance data with a 500 m spatial resolution downloaded from Earth Explorer. After masking poor quality pixels, monthly mean NDWI and NDVI values were extracted. Based on literature and personal accounts describing the Sudd as well as Google Earth imagery, a set of ground truth locations were identified for each land class and monthly distributions of the indices were derived. The indices were then combined in a unique way and statistics of the new distributions were used to classify land types present in the full area of interest. Subsequently, annual statistics were derived from the same indices and used to identify pixels that undergo flooding as well as the timing and duration of flooding for each year (2000-2015). An independent set of ground truth locations were selected for method validation. The combined indices demonstrate high land classification accuracy and outperform the individual indices as well as other existing land classification algorithms. The derived monthly inundation series agrees well with literature and anecdotal observations. This information is currently being used to develop wetland models as part of a comprehensive modeling system for the Nile River Basin. The new method is general and can be used

  17. Near-real-time global rainfall map using multi-satellite data by JAXA and its validation

    Science.gov (United States)

    Kubota, T.; Kachi, M.; Oki, R.; Ushio, T.; Shige, S.; Aonashi, K.; Okamoto, K.

    2010-12-01

    merger of PMW sounders over the ocean was verified by radar validation, in addition to the best results of the PMW imagers. In the GSMaP_MVK algorithm, rainfall features are propagated via IR data both forward and backward, while they are only propagated forward in GSMaP_NRT, the merit of which is a faster processing time. Daily product of the GSMaP is utilized for the International Precipitation Working Group (IPWG) satellite precipitation validation/intercomparison studies. Currently GSMaP_NRT, as well as other satellite-based rainfall products, are compared to regional ground rain gauge and radar network data in near-real-time basis over United States (University of Maryland), South America (University of Maryland), Australia (Bureau of Meteorology), and Japan (Kyoto University).

  18. Determinants of southeast Ethiopia seasonal rainfall

    Science.gov (United States)

    Jury, Mark R.

    2016-12-01

    The bi-modal climate of SE Ethiopia shares attributes with East Africa, notably that El Niño enhances rainfall, particularly in Sep-Nov season. In this study SE Ethiopia's continuous and seasonal rainfall relationships to global climate are studied to extend our knowledge of its determinants and predictability. A statistical forecast algorithm for the Sep-Nov short rains accounts for 54% of variance in 1980-2010. The Apr-Jun predictors include South Atlantic sea surface temperature, east Indian Ocean sea level air pressure and China upper zonal wind. Cooling in the South Atlantic coincides with a strengthened sub-tropical anticyclone, and later to changes in low level winds that bring orographic convection to SE Ethiopia. The slower El Niño-Southern Oscillation (ENSO) interacts with the faster Indian Ocean Dipole (IOD), but both signals mature too late for direct use in statistical prediction of Sep-Nov rainfall. Composite differences of the upper divergent circulation exhibit a global wave-2 pattern consistent with satellite-observed convection. One key feature is a zonal gradient in upper velocity potential over the Indian Ocean corresponding with a zonal atmospheric circulation. One outcome of this research is useful forecasts of SE Ethiopia Sep-Nov rainfall that will assist in agricultural planning.

  19. The Winter Rainfall of Malaysia

    National Research Council Canada - National Science Library

    Chen, Tsing-Chang; Tsay, Jenq-Dar; Yen, Ming-Cheng; Matsumoto, Jun

    2013-01-01

    .... The major cause of the rainfall maximum of Peninsular Malaysia is cold surge vortices (CSVs) and heavy rainfall/flood (HRF) events propagating from the Philippine area and Borneo. In contrast, the major cause of the rainfall maximum of Borneo is these rain-producing disturbances trapped in Borneo. Disturbances of the former group are formed by the cold sur...

  20. The onset and cessation of seasonal rainfall over Africa

    Science.gov (United States)

    Dunning, Caroline M.; Black, Emily C. L.; Allan, Richard P.

    2016-10-01

    Variation in the seasonal cycle of African rainfall is of key importance for agriculture. Here an objective method of determining the timing of onset and cessation is, for the first time, extended to the whole of Africa. The method is applied to five observational data sets and the ERA-Interim reanalysis. Compatibility with known physical drivers of African rainfall, consistency with indigenous methods, and generally strong agreement between satellite-based rainfall data sets confirm that the method is capturing the correct seasonal progression of African rainfall. The biannual rainfall regime is correctly identified over the coastal region of Ghana and the Ivory Coast. However, the ERA-Interim reanalysis exhibits timing biases over areas with two rainy seasons, and both ERA-Interim and the ARCv2 observational data set exhibit some inconsistent deviations over West Africa. The method can be used to analyze both seasonal-interannual variability and long-term change. Over East Africa, we find that failure of the rains and subsequent humanitarian disaster is associated with shorter as well as weaker rainy seasons, e.g., on average the long rains were 11 days shorter in 2011. Cessation of the short rains over this region is 7 days later in El Niño and 5 days earlier in La Niña years with only a small change in onset date. The methodology described in this paper is applicable to multiple data sets and to large regions, including those that experience multiple rainy seasons. As such, it provides a means for investigating variability and change in the seasonal cycle over the whole of Africa.

  1. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    Science.gov (United States)

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  2. The asymmetry of rainfall process

    Institute of Scientific and Technical Information of China (English)

    YU RuCong; YUAN WeiHua; LI Jian

    2013-01-01

    Using hourly station rain gauge data in the warm season (May-October) during 1961-2006,the climatological features of the evolution of the rainfall process are analyzed by compositing rainfall events centered on the maximum hourly rainfall amount of each event.The results reveal that the rainfall process is asymmetric,which means rainfall events usually reach the maximum in a short period and then experience a relatively longer retreat to the end of the event.The effects of rainfall intensity,duration and peak time,as well as topography,are also considered.It is found that the asymmetry is more obvious in rainfall events with strong intensity and over areas with complex terrain,such as the eastern margin of the Tibetan Plateau,the Hengduan Mountains,and the Yungui Plateau.The asymmetry in short-duration rainfall is more obvious than that in long-duration rainfall,but the regional differences are weaker.The rainfall events that reach the maximum during 14:00-02:00 LST exhibit the strongest asymmetry and those during 08:00-14:00 LST show the weakest asymmetry.The rainfall intensity at the peak time stands out,which means that the rainfall intensity increases and decreases quickly both before and after the peak.These results can improve understanding of the rainfall process and provide metrics for the evaluation of climate models.Moreover,the strong asymmetry of the rainfall process should be highly noted when taking measures to defending against geological hazards,such as collapses,landslides and debris flows throughout southwestern China.

  3. Evaluation of global rainfall Measurement for Hydrological Applications in West Africa : sensitivity tests in Benin

    Science.gov (United States)

    Viarre, J.; Gosset, M.; Peugeot, C.

    2011-12-01

    We carried out an evaluation of currently available -real time or post-calibrated- rainfall products in West Africa. The work is oriented towards highlighting their skills and relevance from the view point of a hydrological end-user. The study is based on the densily instrumented meso-scale basins from the AMMA-CATCH hydrometeorological observing system. On these sites long term observations of the various term of the continental water budget and hydrological processes studies have been carried out for more than a decade. We focus here on the upper Oueme basin site in Benin (Sudanese climate - 1200 mm annual rainfall). A distributed hydrological model, developed in this framework is used to illustrate the effects of satellite based rainfall errors or uncertainty on the simulated outflow. Non linearities cause the rainfall bias to be enhanced through propagation in the model, leading to strong biases in the outflow. In addition to the biases the model response is very sensitive to the distortion in the rainfall intensities probability distribution, that some rainfall products exhibit. The AMMA-CATCH densified gages networks and hydrometeorological measurements will be integrated in the MeghaTropiques ground validation plan and used to asses the quality of MT products at the one degree one daily scale and below.

  4. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    Science.gov (United States)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  5. Evaluation of short-period rainfall estimates from Kalpana-1 satellite using MET software

    Indian Academy of Sciences (India)

    Soma Sen Roy; Subhendu Brata Saha; Hashmi Fatima; S K Roy Bhowmik; P K Kundu

    2012-10-01

    The INSAT Multispectral Rainfall Algorithm (IMSRA) technique for rainfall estimation, has recently been developed to meet the shortcomings of the Global Precipitation Index (GPI) technique of rainfall estimation from the data of geostationary satellites; especially for accurate short period rainfall estimates. This study evaluates the 3-hourly precipitation estimates by this technique as well as the rainfall estimates by the GPI technique using data of the Kalpana-1 satellite, over the Indian region for the south-west monsoon season of 2010 to understand their relative strengths and weaknesses in estimating short period rainfall. The gridded 3 hourly accumulated TRMM satellite (3B42 V6 product or TMPA product) and surface raingauge data for stations over the Indian region for the same period is used as the standard measure of rainfall estimates. The Method for Object-based Diagnostic Evaluation (MODE) utility of the METv3.0 software, has been used for the evaluation purpose. The results show that the new IMSRA technique is closer to the TMPA rainfall estimate, in terms of areal spread, geometric shape and location of rainfall areas, as compared to the GPI technique. The overlap of matching rainfall areas with respect to TMPA rainfall patches is also higher for the IMSRA estimates as compared to the GPI values. However, both satellite rainfall estimates are observed to be generally higher compared to the TMPA measurements. However, the values for the highest 10% of the rainfall rates in any rainfall patch, is generally higher for rainfall measured by the IMSRA technique, as compared to the estimates by the GPI technique. This may partly be due to the capping maximum limit of 3 mm/hr for rainfall measured by the GPI technique limits the total 3-hour accumulation to 9 mm even during heavy rainfall episodes. This is not so with IMSRA technique, which has no such limiting value. However, this general overestimation of the rainfall amount, measured by both techniques

  6. An alternative approach to characterize time series data: Case study on Malaysian rainfall data

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, P. [Faculty of Information Science and Technology, Multimedia University, Melaka 75450 (Malaysia)] e-mail: radha.krishnan@mmu.edu.my; Dinesh, S. [Faculty of Engineering and Technology, Multimedia University, Melaka 75450 (Malaysia)

    2006-01-01

    This paper focuses on the characterization of time series rainfall data to understand the behavior in the Malaysian rainfall data. An analysis of the rainfall behavior of different time periods is also conducted. The rainfall data is rounded. A bar with a width of 12 pixels is drawn for each day in the data. The length of the bars drawn is equal to the corresponding rainfall value. Each bar is separated by a space of 2 pixels. Bars for data from different year are stored in different rows. Morphological opening is performed on the barcode image obtained, using line kernels of increasing length. Connected component-labeling algorithm is implemented on the resulting images to identify the individual bar codes and to compute the number of bars remaining after the opening process. A daily rainfall record for the duration of 30 years, obtained from the Melaka Meteorological Station, is analyzed. The results provide characterization of behavior in daily rainfall data.

  7. Estimation of Real-Time Flood Risk on Roads Based on Rainfall Calculated by the Revised Method of Missing Rainfall

    Directory of Open Access Journals (Sweden)

    Eunmi Kim

    2014-09-01

    Full Text Available Recently, flood damage by frequent localized downpours in cities is on the increase on account of abnormal climate phenomena and the growth of impermeable areas due to urbanization. This study suggests a method to estimate real-time flood risk on roads for drivers based on the accumulated rainfall. The amount of rainfall of a road link, which is an intensive type, is calculated by using the revised method of missing rainfall in meteorology, because the rainfall is not measured on roads directly. To process in real time with a computer, we use the inverse distance weighting (IDW method, which is a suitable method in the computing system and is commonly used in relation to precipitation due to its simplicity. With real-time accumulated rainfall, the flooding history, rainfall range causing flooding from previous rainfall information and frequency probability of precipitation are used to determine the flood risk on roads. The result of simulation using the suggested algorithms shows the high concordance rate between actual flooded areas in the past and flooded areas derived from the simulation for the research region in Busan, Korea.

  8. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.;

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders...... for effective land surface representation in water resource modeling” (2009- 2012). The purpose of the new research project is to develop remote sensing based model tools capable of quantifying the relative effects of site-specific land use change and climate variability at different spatial scales....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  9. Satellite-based assessment of climate controls on US burned area

    OpenAIRE

    D. C. Morton; G. J. Collatz; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2013-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate–fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burne...

  10. Probabilistic forecasts based on radar rainfall uncertainty

    Science.gov (United States)

    Liguori, S.; Rico-Ramirez, M. A.

    2012-04-01

    The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at

  11. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates

    Science.gov (United States)

    Schlitzer, Reiner

    fluxes are systematically higher than the satellite-based values by factors between 2 and 5. This discrepancy is significant, and an attempt to reconcile the low satellite-derived productivity values with ocean-interior nutrient budgets failed. Too low productivity estimates from satellite chlorophyll observations in the polar and sub-polar Southern Ocean could arise because of the inability of the satellite sensors to detect frequently occurring sub-surface chlorophyll patches, and to a poor calibration of the conversion algorithms in the Southern Ocean because of the very limited amount of direct measurements.

  12. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    Science.gov (United States)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  13. Rainfall statistics changes in Sicily

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2013-02-01

    Full Text Available Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood prone areas.

    In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends while for longer durations the trends are mainly negative.

    Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the non parametric Mann–Kendall test.

    Particularly, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration while daily rainfall properties have been analyzed in term of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations

  14. Rainfall statistics changes in Sicily

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2013-07-01

    Full Text Available Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann–Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall

  15. On the sensitivity of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager channels to overland rainfall

    Science.gov (United States)

    You, Yalei; Liu, Guosheng; Wang, Yu; Cao, Jie

    2011-06-01

    , and the V37 or V21 channel becomes the top responder to surface rain as the amount of hydrometeors in the atmospheric column reaches very high values. Additionally, it is found that land surface type and 2 m air temperature have significant skills in characterizing rain cloud types, so that the V19-V37 channel is more sensitive to surface rainfall for more vegetated warm surface, while the V85 channel is more sensitive to cold bare land. This finding implies that the above two parameters may be used to prioritize satellite observations at different channels, so that the channel that has the best rainfall sensitivity under a given condition receives the highest weight in retrieval algorithms.

  16. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  17. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2013-11-01

    Full Text Available Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM rainfall data for monitoring the temporal and spatial variation of dry/wet conditions in Poyang Lake basin during 1998–2010, and validated its reliability with rain gauges data from 14 national meteorological stations in the basin. The results show that: (1 the daily TRMM rainfall data does not describe the occurrence and contribution rates of precipitation accurately, but monthly TRMM data have a good linear relationship with rain gauges rainfall data; (2 both the Z index and Standardized Precipitation Index (SPI based on monthly TRMM rainfall data oscillate around zero and show a consistent interannual variability as compared with rain gauges data; (3 the spatial pattern of moisture status, either in dry months or wet months, based on both the Z index and SPI using TRMM data, agree with the observed rainfall. In conclusion, the monthly TRMM rainfall data can be used for monitoring the variation and spatial distribution of dry/wet conditions in Poyang Lake basin.

  18. On Rainfall Modification by Major Urban Areas. Part 1; Observations from Space-borne Rain Radar on TRMM

    Science.gov (United States)

    Shepherd, J. Marshall; Pierce, Harold; Starr, David OC. (Technical Monitor)

    2001-01-01

    This study represents one of the first published attempts to identify rainfall modification by urban areas using satellite-based rainfall measurements. Data from the first space-based rain-radar, the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of the data enables identification of rainfall patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage chances are relative to an upwind CONTROL area. It was also found that maximum rainfall rates in the downwind impact area can exceed the mean value in the upwind CONTROL area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are consistent with METROMEX studies of St. Louis almost two decades ago and more recent studies near Atlanta. Future work will investi(yate hypothesized factors causing rainfall modification by urban areas. Additional work is also needed to provide more robust validation of space-based rain estimates near major urban areas. Such research has implications for urban planning, water resource management, and understanding human impact on the environment.

  19. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  20. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  1. Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models

    Directory of Open Access Journals (Sweden)

    Sungwon Kim

    2015-06-01

    Full Text Available The objective of this study is to develop artificial neural network (ANN models, including multilayer perceptron (MLP and Kohonen self-organizing feature map (KSOFM, for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive to the number of hidden nodes than were the conjugate gradient and quickprop training algorithms using the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient and quickprop and 11-3-1 (Levenberg-Marquardt were the best for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop and 1-3-11 (Levenberg–Marquardt, which are the inverse networks for estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into individual point rainfall with spatial concepts.

  2. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model

    Science.gov (United States)

    Bitew, Menberu M.; Gebremichael, Mekonnen

    2011-06-01

    The goal of this study is to evaluate the accuracy of four global high-resolution satellite rainfall products (CMORPH, TMPA 3B42RT, TMPA 3B42, and PERSIANN) through the hydrologic simulation of a 1656 km2 mountainous watershed in the fully distributed MIKE SHE hydrologic model. This study shows that there are significant biases in the satellite rainfall estimates and large variations in rainfall amounts, leading to large variations in hydrologic simulations. The rainfall algorithms that use primarily microwave data (CMORPH and TMPA 3B42RT) show consistent and better performance in streamflow simulation (bias in the order of -53% to -3%, Nash-Sutcliffe efficiency (NSE) from 0.34 to 0.65); the rainfall algorithm that uses primarily infrared data (PERSIANN) shows lower performance (bias from -82% to -3%, Nash-Sutcliffe efficiency from -0.39 to 0.43); and the rainfall algorithm that merges the satellite data with rain gage data (TMPA 3B42) shows inconsistencies and the lowest performance (bias from -86% to 0.43%, Nash-Sutcliffe efficiency from -0.50 to 0.27). A dilemma between calibrating the hydrologic model with rain gage data and calibrating it with the corresponding satellite rainfall data is presented. Calibrating the model with corresponding satellite rainfall data increases the performance of satellite streamflow simulation compared to the model calibrated with rain gage data, but decreases the performance of satellite evapotranspiration simulation.

  3. Rainfall Characterization In An Arid Area

    OpenAIRE

    Bazaraa, A. S.; Ahmed, Shamim

    1991-01-01

    The objective of this work is to characterize the rainfall in Doha which lies in an arid region. The rainfall data included daily rainfall depth since 1962 and the hyetographs of the individual storms since 1976. The rainfall is characterized by high variability and severe thunderstorms which are of limited geographical extent. Four probability distributions were used to fit the maximum rainfall in 24 hours and the annual rainfall depth. The extreme value distribution was found to have the be...

  4. Modelling Ecuador's rainfall distribution according to geographical characteristics.

    Science.gov (United States)

    Tobar, Vladimiro; Wyseure, Guido

    2017-04-01

    It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting

  5. Characterization of satellite based proxies for estimating nucleation mode particles over South Africa

    Directory of Open Access Journals (Sweden)

    A.-M. Sundström

    2014-10-01

    Full Text Available In this work satellite observations from the NASA's A-Train constellation were used to derive the values of primary emission and regional nucleation proxies over South Africa to estimate the potential for new particle formation. As derived in Kulmala et al. (2011, the satellite based proxies consist of source terms (NO2, SO2 and UV-B radiation, and a sink term describing the pre-existing aerosols. The first goal of this work was to study in detail the use of satellite aerosol optical depth (AOD as a substitute to the in situ based condensation sink (CS. One of the major factors affecting the agreement of CS and AOD was the elevated aerosol layers that increased the value of column integrated AOD but not affected the in situ CS. However, when the AOD in the proxy sink was replaced by an estimate from linear bivariate fit between AOD and CS, the agreement with the actual nucleation mode number concentration improved somewhat. The second goal of the work was to estimate how well the satellite based proxies can predict the potential for new particle formation. For each proxy the highest potential for new particle formation were observed over the Highveld industrial area, where the emissions were high but the sink due to pre-existing aerosols was relatively low. Best agreement between the satellite and in situ based proxies were obtained for NO2/AOD and UV-B/AOD2, whereas proxies including SO2 in the source term had lower correlation. Even though the OMI SO2 boundary layer product showed reasonable spatial pattern and detected the major sources over the study area, some of the known minor point sources were not detected. When defining the satellite proxies only for days when new particle formation event was observed, it was seen that for all the satellite based proxies the event day medians were higher than the entire measurement period median.

  6. How Good Are Satellite Rainfall Products For Hydrologic Simulations Of A Small Watershed?

    Science.gov (United States)

    Zeweldi, D. A.; Gebremichael, M.; Downer, C. W.

    2009-12-01

    Despite recent advances in satellite rainfall technology, the use of satellite rainfall products for hydrological applications is very limited. Assessing the potential and utility of satellite rainfall products is crucially important to advance their utility. In this work, first we quantify the errors in satellite rainfall products. We considered different satellite rainfall algorithms; namely, CMORPH (~8km, 30-minute), PERSIANN-CCS (4km, hourly) and HydroEstimator (10 km, hourly). Second, we assess how these errors propagate to hydrologic model streamflow simulations. We used the fully-distributed hydrologic model known as GSSHA. Our study region is the Goodwin Creek experimental watershed (21 sq. km) in Mississippi, USA. Our results provide information on how good different satellite rainfall products are for hydrologic simulations of a small watershed.

  7. On Rainfall Modification by Major Urban Areas. Part 1; Observations from Space-borne Rain Radar Aboard TRMM

    Science.gov (United States)

    Shepherd, J. Marshell; Starr, David OC. (Technical Monitor)

    2001-01-01

    A novel approach is introduced to correlating urbanization and rainfall modification. This study represents one of the first published attempts (possibly the first) to identify and quantify rainfall modification by urban areas using satellite-based rainfall measurements. Previous investigations successfully used rain gauge networks and around-based radar to investigate this phenomenon but still encountered difficulties due to limited, specialized measurements and separation of topographic and other influences. Three years of mean monthly rainfall rates derived from the first space-based rainfall radar, Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of data at half-degree latitude resolution enables identification of rainfall patterns around major metropolitan areas of Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Preliminary results reveal an average increase of 5.6% in monthly rainfall rates (relative to a mean upwind CONTROL area) over the metropolis but an average increase of approx. 28%, in monthly rainfall rates within 30-60 kilometers downwind of the metropolis. Some portions of the downwind area exhibit increases as high as 51%. It was also found that maximum rainfall rates found in the downwind impact area exceeded the mean value in the upwind CONTROL area by 48%-116% and were generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are quite consistent studies of St. Louis (e.g' METROMEX) and Chicago almost two decades ago and more recent studies in the Atlanta and Mexico City areas.

  8. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  9. Rainfall and surface kinematic conditions over central amazonia during ABLE 2B

    Science.gov (United States)

    Greco, Steven; Swap, Robert; Garstang, Michael; Ulanski, Stanley; Shipham, Mark

    1990-01-01

    Rainfall, rainfall systems, and surface kinematics of the central Amazon basin wet season are investigated using meteorological and chemical data collected during the wet season Amazon Boundary Layer Experiment (ABLE) near Manaus, Brazil. Through analysis of (GOES-West) imagery, it is determined that, based on location of the initial development, there are three main types of convective systems which influence a mesoscale network near Manaus, namely the Coastal Occurring Systems (COS), the Basin Occurring Systems (BOS), and the Locally Occurring Systems (LOS). Chemical analysis of rainwater delivered by these systems shows significant differences in concentrations of formate, acetate, pyruvate, sulfate, and hydrogen ion, and measurements of aerosol concentrations near Manaus show large influxes of aerosols into central Amazonia after passage of BOS and COS. Results of satellite based classification of the rain-producing systems are discussed.

  10. Rainfall erosivity in New Zealand

    Science.gov (United States)

    Klik, Andreas; Haas, Kathrin; Dvorackova, Anna; Fuller, Ian

    2014-05-01

    Rainfall and its kinetic energy expressed by the rainfall erosivity is the main driver of soil erosion processes by water. The Rainfall-Runoff Erosivity Factor (R) of the Revised Universal Soil Loss Equation is one oft he most widely used parameters describing rainfall erosivity. This factor includes the cumulative effects of the many moderate-sized storms as well as the effects oft he occasional severe ones: R quantifies the effect of raindrop impact and reflects the amopunt and rate of runoff associated with the rain. New Zealand is geologically young and not comparable with any other country in the world. Inordinately high rainfall and strong prevailing winds are New Zealand's dominant climatic features. Annual rainfall up to 15000 mm, steep slopes, small catchments and earthquakes are the perfect basis for a high rate of natural and accelerated erosion. Due to the multifacted landscape of New Zealand its location as island between the Pacific and the Tasmanian Sea there is a high gradient in precipitation between North and South Island as well as between West and East Coast. The objective of this study was to determine the R-factor for the different climatic regions in New Zealand, in order to create a rainfall erosivity map. We used rainfall data (breakpoint data in 10-min intervals) from 34 gauging stations for the calcuation of the rainfall erosivity. 15 stations were located on the North Island and 19 stations on the South Island. From these stations, a total of 397 station years with 12710 rainstorms were analyzed. The kinetic energy for each rainfall event was calculated based on the equation by Brown and Foster (1987), using the breakpoint precipitation data for each storm. On average, a mean annual precipitation of 1357 mm was obtained from the 15 observed stations on the North Island. Rainfall distribution throughout the year is relatively even with 22-24% of annual rainfall occurring in spring , fall and winter and 31% in summer. On the South Island

  11. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  12. Satellite-based assessment of yield variation and its determinants in smallholder African systems

    Science.gov (United States)

    Lobell, David B.

    2017-01-01

    The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest (R2 up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods. PMID:28202728

  13. 使用物理方法反演中国陆地雨强和水凝物垂直结构%The retrieval of the rainfall intensity and the vertical structure of hydrometers over land in China using the physical algorithm

    Institute of Scientific and Technical Information of China (English)

    王小兰; 程明虎; 马启明; 张乐坚

    2011-01-01

    使用MM5模式模拟了11个降水个例,获得中国陆地的降水廓线,由蒙特卡罗辐射传输模式计算其上行辐射亮温,构成初始云一辐射数据库.采用对照表方法从中获得Db_ml和Db_m2两个数据集,作为GPROF反演算法的先验数据集.对2007年7月的3次强降水过程的地面雨强进行反演,与微波成像仪(TMI)及NESDIS、GSCAT、PCT-SI 3种经验算法反演的雨强比较,发现Db_m2参与反演的地面雨强和TMI的反演结果比较接近,效果明显优于Dbee_ml获得的反演结果,甚至优于3种经验算法的反演结果.使用测雨雷达、地面S波段雷达反演的雨强分别检验上述各算法反演雨强的综合效果,表明Db_m2和TMI反演的结果综合效果较好,经验算法中以PCT-SI综合指数法效果比较好.数据集Db_m2参与反演的可降水在垂直分布和含量上与TMI反演的结果非常一致,与地面雷达反演的液态水含量也较接近;而云水、云冰和可降冰与TMI反演结果在垂直高度分布上较接近,含量上高于TMI的结果.使用数据集Db_m1反演的4种水凝物垂直结构与使用Db_m2的结果在垂直分布上基本一致,可降水含量略低一些,云水含量有时偏低.综上,研究使用数据集Db_m1和Db_m2对地面雨强的反演具有一定的准确性,反演的水凝物结构与TMI反演的结果有相近之处,可作为发展适用于中国的由微波亮温反演地面雨强和水凝物廓线的一种物理方法.%In order to construct the cloud-radiation database , 11 precipitating systems were simulated by the MM5 to obtain the rainfall profiles whose upwelling radiative brightness temperatures were computed by the Monte-Carlo radiative transfer model. Then as the priori databases, the Db_ml and Db_m2 were extracted from the cloud-radiation database by using check list. The rain rates of three precipitation systems during July 2007 were retrieved by importing Db_ml and Db_m2 to the GPROF algorithm respectively

  14. From runoff to rainfall: inverse rainfall–runoff modelling in a high temporal resolution

    Directory of Open Access Journals (Sweden)

    M. Herrnegger

    2014-12-01

    Full Text Available This paper presents a novel technique to calculate mean areal rainfall in a high temporal resolution of 60 min on the basis of an inverse conceptual rainfall–runoff model and runoff observations. Rainfall exhibits a large spatio-temporal variability, especially in complex alpine terrain. Additionally, the density of the monitoring network in mountainous regions is low and measurements are subjected to major errors, which lead to significant uncertainties in areal rainfall estimates. The most reliable hydrological information available refers to runoff, which in the presented work is used as input for a rainfall–runoff model. Thereby a conceptual, HBV-type model is embedded in an iteration algorithm. For every time step a rainfall value is determined, which results in a simulated runoff value that corresponds to the observation. To verify the existence, uniqueness and stability of the inverse rainfall, numerical experiments with synthetic hydrographs as inputs into the inverse model are carried out successfully. The application of the inverse model with runoff observations as driving input is performed for the Krems catchment (38.4 km2, situated in the northern Austrian Alpine foothills. Compared to station observations in the proximity of the catchment, the inverse rainfall sums and time series have a similar goodness of fit, as the independent INCA rainfall analysis of Austrian Central Institute for Meteorology and Geodynamics (ZAMG. Compared to observations, the inverse rainfall estimates show larger rainfall intensities. Numerical experiments show, that cold state conditions in the inverse model do not influence the inverse rainfall estimates, when considering an adequate spin-up time. The application of the inverse model is a feasible approach to obtain improved estimates of mean areal rainfall. These can be used to enhance interpolated rainfall fields, e.g. for the estimation of rainfall correction factors, the parameterisation of

  15. Radar rainfall estimation for the identification of debris-flow precipitation thresholds

    Science.gov (United States)

    Marra, Francesco; Nikolopoulos, Efthymios I.; Creutin, Jean-Dominique; Borga, Marco

    2014-05-01

    Identification of rainfall thresholds for the prediction of debris-flow occurrence is a common approach for warning procedures. Traditionally the debris-flow triggering rainfall is derived from the closest available raingauge. However, the spatial and temporal variability of intense rainfall on mountainous areas, where debris flows take place, may lead to large uncertainty in point-based estimates. Nikolopoulos et al. (2014) have shown that this uncertainty translates into a systematic underestimation of the rainfall thresholds, leading to a step degradation of the performances of the rainfall threshold for identification of debris flows occurrence under operational conditions. A potential solution to this limitation lies on use of rainfall estimates from weather radar. Thanks to their high spatial and temporal resolutions, these estimates offer the advantage of providing rainfall information over the actual debris flow location. The aim of this study is to analyze the value of radar precipitation estimations for the identification of debris flow precipitation thresholds. Seven rainfall events that triggered debris flows in the Adige river basin (Eastern Italian Alps) are analyzed using data from a dense raingauge network and a C-Band weather radar. Radar data are elaborated by using a set of correction algorithms specifically developed for weather radar rainfall application in mountainous areas. Rainfall thresholds for the triggering of debris flows are identified in the form of average intensity-duration power law curves using a frequentist approach by using both radar rainfall estimates and raingauge data. Sampling uncertainty associated to the derivation of the thresholds is assessed by using a bootstrap technique (Peruccacci et al. 2012). Results show that radar-based rainfall thresholds are largely exceeding those obtained by using raingauge data. Moreover, the differences between the two thresholds may be related to the spatial characteristics (i.e., spatial

  16. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP)

    National Research Council Canada - National Science Library

    Bo Liu; Xiaolei Wang; Lihua Shi; Xichuan Liu; Zhaojing Kang; Zhentao Chen

    2017-01-01

    ... and the rainfall uniformity was evaluated using the Christiansen Uniformity Coefficient (CU). Simultaneously, factors influencing the spatial uniformity of natural rainfall, including the average rainfall accumulation (RA...

  17. A regression-kriging model for estimation of rainfall in the Laohahe basin

    Science.gov (United States)

    Wang, Hong; Ren, Li L.; Liu, Gao H.

    2009-10-01

    This paper presents a multivariate geostatistical algorithm called regression-kriging (RK) for predicting the spatial distribution of rainfall by incorporating five topographic/geographic factors of latitude, longitude, altitude, slope and aspect. The technique is illustrated using rainfall data collected at 52 rain gauges from the Laohahe basis in northeast China during 1986-2005 . Rainfall data from 44 stations were selected for modeling and the remaining 8 stations were used for model validation. To eliminate multicollinearity, the five explanatory factors were first transformed using factor analysis with three Principal Components (PCs) extracted. The rainfall data were then fitted using step-wise regression and residuals interpolated using SK. The regression coefficients were estimated by generalized least squares (GLS), which takes the spatial heteroskedasticity between rainfall and PCs into account. Finally, the rainfall prediction based on RK was compared with that predicted from ordinary kriging (OK) and ordinary least squares (OLS) multiple regression (MR). For correlated topographic factors are taken into account, RK improves the efficiency of predictions. RK achieved a lower relative root mean square error (RMSE) (44.67%) than MR (49.23%) and OK (73.60%) and a lower bias than MR and OK (23.82 versus 30.89 and 32.15 mm) for annual rainfall. It is much more effective for the wet season than for the dry season. RK is suitable for estimation of rainfall in areas where there are no stations nearby and where topography has a major influence on rainfall.

  18. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  19. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  20. Estimating crop yield using a satellite-based light use efficiency model

    DEFF Research Database (Denmark)

    Yuan, Wenping; Chen, Yang; Xia, Jiangzhou

    2016-01-01

    for simulating crops’ GPP. At both irrigated and rainfed sites, the EC-LUE model exhibits a similar level of performance. However, large errors are found when simulating yield based on crop harvest index. This analysis highlights the need to improve the representation of the harvest index and carbon allocation...... primary production (GPP) and yield of crops. The EC-LUE model can explain on average approximately 90% of the variability in GPP for 36 FLUXNET sites globally. The results indicate that a universal set of parameters, independent of crop species (except for C4 crops), can be adopted in the EC-LUE model...... for improving crop yield estimations from satellite-based methods....

  1. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Science.gov (United States)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  2. Stochastic generation of daily rainfall events based on rainfall pattern classification and Copula-based rainfall characteristics simulation

    Science.gov (United States)

    Xu, Y. P.; Gao, C.

    2016-12-01

    To deal with the problem of having no or insufficiently long rainfall record, developing a stochastic rainfall model is very essential. This study first proposed a stochastic model of daily rainfall events based on classification and simulation of different rainfall patterns, and copula-based joint simulation of rainfall characteristics. Compared with current stochastic rainfall models, this new model not only keeps the dependence structure of rainfall characteristics by using copula functions, but also takes various rainfall patterns that may cause different hydrological responses to watershed into consideration. In order to determine the appropriate number of representative rainfall patterns in an objective way, we also introduced clustering validation measures to the stochastic model. Afterwards, the developed stochastic rainfall model is applied to 39 gauged meteorological stations in Zhejiang province, East China, and is then extended to ungauged stations for validation by applying the self-organizing map (SOM) method. The final results show that the 39 stations can be classified into seven regions that further fall into three categories based on rainfall generation mechanisms, i.e., plum-rain control region, typhoon-rain control region and typhoon-plum-rain compatible region. Rainfall patterns of each station can be classified into five or six types based on clustering validation measures. This study shows that the stochastic rainfall model is robust and can be applied to both gauged and ungauged stations for generating long rainfall record.

  3. Satellite Based Assessment of the NSRDB Site Irradiances and Time Series from NASA and SUNY/Albany Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Stackhouse, P. W., Jr.; Zhang, T.; Chandler, W. S.; Whitlock, C. H.; Hoell, J. M.; Westberg, D. J.; Perez, R.; Wilcox, S.

    2008-01-01

    In April, 2007, the National Solar Radiation Database (NSRDB) of the National Renewable Energy Laboratory was updated for the period from 1991 to 2005. NSRDB includes monthly averaged summary statistics from 221 Class I sites spanning the entire time period with least uncertainty. In 2008, the NASA GEWEX Surface Radiation Budget (SRB) project updated its satellite-derived solar surface irradiance to Release 3.0. This dataset spans July 1983 to June 2006 at a 1ox1o resolution. In this paper, we compare the NSRDB data monthly average summary statistics to NASA SRB data that has been validated favorably against the BSRN, SURFRAD, WRDC and GEBA datasets. The SRB-NSRDB comparison reveals reasonably good agreement of the two datasets.

  4. DIGITAL VIDEO BROADCAST RETURN CHANNEL VIA SATELLITE (DVB-RCS HUB FOR SATELLITE BASED E-LEARNING

    Directory of Open Access Journals (Sweden)

    N.G.Vasantha Kumar

    2011-02-01

    Full Text Available This paper discusses in-house designed and developed scale-down DVB-RCS hub along with the performance of the realized hub. This development is intended to support the Satellite Based e-Learning initiative in India. The scale-down DVB-RCS HUB is implemented around a single PC with other subsystems making it very cost effective and unique of its kind. This realization will drastically reduce the total cost of Satellite based Education Networks as very low cost commercially available Satellite Interactive Terminals (SITs complying to open standard could be used at remote locations. The system is successfully tested to work with a commercial SIT using a GEO satellite EDUSAT which is especially dedicated for satellite based e-Learning. The internal detail of the DVB-RCS Forward and Return Link Organization and how it manages the Satellite Interactive Terminals access to the satellite channel using MF-TDMA approach has been described.

  5. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2011-02-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3 from AMSR-E and degree of saturation (% from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 ("transitional regions", merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  6. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  7. Measuring rainfall with low-cost cameras

    Science.gov (United States)

    Allamano, Paola; Cavagnero, Paolo; Croci, Alberto; Laio, Francesco

    2016-04-01

    In Allamano et al. (2015), we propose to retrieve quantitative measures of rainfall intensity by relying on the acquisition and analysis of images captured from professional cameras (SmartRAIN technique in the following). SmartRAIN is based on the fundamentals of camera optics and exploits the intensity changes due to drop passages in a picture. The main steps of the method include: i) drop detection, ii) blur effect removal, iii) estimation of drop velocities, iv) drop positioning in the control volume, and v) rain rate estimation. The method has been applied to real rain events with errors of the order of ±20%. This work aims to bridge the gap between the need of acquiring images via professional cameras and the possibility of exporting the technique to low-cost webcams. We apply the image processing algorithm to frames registered with low-cost cameras both in the lab (i.e., controlled rain intensity) and field conditions. The resulting images are characterized by lower resolutions and significant distortions with respect to professional camera pictures, and are acquired with fixed aperture and a rolling shutter. All these hardware limitations indeed exert relevant effects on the readability of the resulting images, and may affect the quality of the rainfall estimate. We demonstrate that a proper knowledge of the image acquisition hardware allows one to fully explain the artefacts and distortions due to the hardware. We demonstrate that, by correcting these effects before applying the image processing algorithm, quantitative rain intensity measures are obtainable with a good accuracy also with low-cost modules.

  8. Rainfall Characteristics and Regionalization in Peninsular Malaysia Based on a High Resolution Gridded Data Set

    Directory of Open Access Journals (Sweden)

    Chee Loong Wong

    2016-11-01

    Full Text Available Daily gridded rainfall data over Peninsular Malaysia are delineated using an objective clustering algorithm, with the objective of classifying rainfall grids into groups of homogeneous regions based on the similarity of the rainfall annual cycles. It has been demonstrated that Peninsular Malaysia can be statistically delineated into eight distinct rainfall regions. This delineation is closely associated with the topographic and geographic characteristics. The variation of rainfall over the Peninsula is generally characterized by bimodal variations with two peaks, i.e., a primary peak occurring during the autumn transitional period and a secondary peak during the spring transitional period. The east coast zones, however, showed a single peak during the northeast monsoon (NEM. The influence of NEM is stronger compared to the southwest monsoon (SWM. Significantly increasing rainfall trends at 95% confidence level are not observed in all regions during the NEM, with exception of northwest zone (R1 and coastal band of west coast interior region (R3. During SWM, most areas have become drier over the last three decades. The study identifies higher variation of mean monthly rainfall over the east coast regions, but spatially, the rainfall is uniformly distributed. For the southwestern coast and west coast regions, a larger range of coefficients of variation is mostly obtained during the NEM, and to a smaller extent during the SWM. The inland region received least rainfall in February, but showed the largest spatial variation. The relationship between rainfall and the El Niño Southern Oscillation (ENSO was examined based on the Multivariate ENSO Index (MEI. Although the concurrent relationships between rainfall in the different regions and ENSO are generally weak with negative correlations, the rainfall shows stronger positive correlation with preceding ENSO signals with a time lag of four to eight months.

  9. Three Years of Country-Wide Rainfall Maps from Cellular Communication Networks

    Science.gov (United States)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.

    2014-12-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular communication networks may be used for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. This is particularly interesting for those countries where few surface rainfall observations are available. A data set from a commercial microwave link network over the Netherlands is analyzed. The data set runs from January 2011 - January 2014 and consists of roughly 2000 links covering the land surface of the Netherlands (35,500 square kilometers). From this 3-year data set country-wide rainfall maps are retrieved, which are compared to a gauge-adjusted radar data set. The ability of cellular communication networks to estimate rainfall is studied for different temporal and spatial scales, as well as for several air temperature classes. Case studies are presented to investigate the performance of the algorithm during snow and sleet and to show the influence of dew formation on the antennas on the received signal levels. To summarize, the results further confirm the potential of these networks for rainfall monitoring.

  10. Long term country-wide rainfall monitoring employing cellular communication networks

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. This is particularly interesting for those countries where few surface rainfall observations are available. Here we present preliminary results of long term country-wide rainfall monitoring employing cellular communication networks. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (~ 2000) covering the land surface of the Netherlands (35500 square kilometres). This dataset spans from January 2011 through October 2012. Daily rainfall maps (1 km spatial resolution) are derived from the microwave link data and compared to maps from a gauge-adjusted radar dataset. The performance of the rainfall retrieval algorithm will be investigated, particularly a possible seasonal dependence.

  11. Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi)

    Science.gov (United States)

    Kneis, D.; Chatterjee, C.; Singh, R.

    2014-07-01

    The paper examines the quality of satellite-based precipitation estimates for the lower Mahanadi River basin (eastern India). The considered data sets known as 3B42 and 3B42-RT (version 7/7A) are routinely produced by the tropical rainfall measuring mission (TRMM) from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gauge-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gauge data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analysing their performance in the context of rainfall-runoff simulation. At sub-basin level (4000 to 16 000 km2) the satellite-based areal precipitation estimates were found to be moderately correlated with the gauge-based counterparts (R2 of 0.64-0.74 for 3B42 and 0.59-0.72 for 3B42-RT). Significant discrepancies between TRMM data and ground observations were identified at high-intensity levels. The rainfall depth derived from rain gauge data is often not reflected by the TRMM estimates (hit rate 80 mm day-1). At the same time, the remotely sensed rainfall rates frequently exceed the gauge-based equivalents (false alarm ratios of 0.2-0.6). In addition, the real-time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalisation of rain gauge data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall-runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gauge data were used as model input (Nash-Sutcliffe index of 0.76-0.88 at gauges not affected by

  12. Chapman Conference on Rainfall Fields

    Science.gov (United States)

    Gupta, V. K.

    The Chapman Conference on Rainfall Fields, sponsored by AGU, was the first of its kind; it was devoted to strengthening scientific interaction between the North American and Latin American geophysics communities. It was hosted by Universidad Simon Bolivar and Instituto Internacional de Estudios Avanzados, in Caracas, Venezuela, during March 24-27, 1986. A total of 36 scientists from Latin America, the United States, Canada, and Europe participated. The conference, which was convened by I. Rodriguez-Iturbe (Universidad Simon Bolivar) and V. K. Gupta (University of Mississippi, University), brought together hydrologists, meteorologists, and mathematicians/statisticians in the name of enhancing an interdisciplinary focus on rainfall research.

  13. Rainfall simulation for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D.S.; Abner, C.H.; Mann, L.K.

    1977-08-01

    Rain simulation systems have been designed for field and greenhouse studies which have the capability of reproducing the physical and chemical characteristics of natural rainfall. The systems permit the simulation of variations in rainfall and droplet size similar to that of natural precipitation. The systems are completely automatic and programmable, allowing unattended operation for periods of up to one week, and have been used to expose not only vegetation but also soils and engineering materials, making them versatile tools for studies involving simulated precipitation.

  14. Seasonal prediction of summer monsoon rainfall over cluster regions of India

    Indian Academy of Sciences (India)

    S B Kakade; Ashwini Kulkarni

    2017-04-01

    Shared nearest neighbour (SNN) cluster algorithm has been applied to seasonal (June–September) rainfall departures over 30 sub-divisions of India to identify the contiguous homogeneous cluster regions over India. Five cluster regions are identified. Rainfall departure series for these cluster regions are prepared by area weighted average rainfall departures over respective sub-divisions in each cluster. The interannual and decadal variability in rainfall departures over five cluster regions is discussed. In order to consider the combined effect of North Atlantic Oscillation (NAO) and Southern Oscillation (SO), an index called effective strength index (ESI) has been defined. It has been observed that the circulation is drastically different in positive and negative phases of ESI-tendency from January to April. Hence, for each phaseof ESI-tendency (positive and negative), separate prediction models have been developed for predicting summer monsoon rainfall over identified clusters. The performance of these models have been tested and found to be encouraging.

  15. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP)

    OpenAIRE

    Bo Liu; Xiaolei Wang; Lihua Shi; Xichuan Liu; Zhaojing Kang; Zhentao Chen

    2017-01-01

    Abstract: The accurate production of a rainfall environment similar to natural rainfall by a rainfall simulator (RS) is a crucial and challenging task in rainfall instrument testing or calibration. Although the spatial uniformity of rainfall accumulation is a key parameter of an RS, the spatial uniformity comparison between simulated rainfall and natural rainfall, and the spatial uniformity improvements for an RS are scant in the literature. In this study, a fine-scale natural rainfall experi...

  16. Improvements of Satellite-Derived Cyclonic Rainfall over the North Atlantic.

    Science.gov (United States)

    Klepp, Christian-Philipp; Bakan, Stephan; Graßl, Hartmut

    2003-02-01

    Case studies of rainfall, derived from Special Sensor Microwave Imager (SSM/I) satellite data during the passage of individual cyclones over the North Atlantic, are presented to enhance the knowledge of rainfall processes associated with frontal systems. A multisatellite method is applied for complete coverage of the North Atlantic twice a day. Different SSM/I precipitation algorithms have been tested for individual cyclones and compared to the Global Precipitation Climatology Project (GPCP) datasets. An independent rainfall pattern and intensity validation method is presented using voluntary observing ship (VOS) datasets and Advanced Very High Resolution Radiometer (AVHRR) images.Intense cyclones occur frequently in the wintertime period, with cold fronts propagating far south over the North Atlantic. Following upstream, large cloud clusters are frequently embedded in the cellular structured cold air of the backside regions, which produce heavy convective rainfall events, especially in the region off Newfoundland around 50°N. These storms can be easily identified on AVHRR images. It transpired that only the SSM/I rainfall algorithm of Bauer and Schlüssel is sensitive enough to detect the rainfall patterns and intensities observed by VOS for those cyclone types over the North Atlantic. In contrast, the GPCP products do not recognize this backside rainfall, whereas the frontal rainfall conditions are well represented in all tested datasets. This is suggested from the results of an intensive intercomparison study with ship reports from the time period of the Fronts and Atlantic Storm Track Experiment (FASTEX) field campaign. For this purpose, a new technique has been developed to transfer ship report codes into rain-rate estimates. From the analysis of a complete life cycle of a cyclone, it follows that these mesoscale backside rainfall events contribute up to 25% to the total amount of rainfall in North Atlantic cyclones.

  17. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled...... conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. Copyright...

  18. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    Science.gov (United States)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  19. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  20. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    Science.gov (United States)

    Reed, Patrick M.; Chaney, Nathaniel W.; Herman, Jonathan D.; Ferringer, Matthew P.; Wood, Eric F.

    2015-02-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks.

  1. Two years of country-wide rainfall maps employing cellular communication networks

    Science.gov (United States)

    Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Rios Gaona, Manuel Felipe

    2014-05-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. This is particularly interesting for those countries where few surface rainfall observations are available. Here we present almost two years of country-wide rainfall maps employing cellular communication networks. A data set from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (~ 2000) covering the land surface of the Netherlands (35500 square kilometers). This data set almost completely covers the years 2011 and 2012. Fifteen-minute and daily rainfall maps (1 km spatial resolution) are derived from the microwave link data and compared to maps from a gauge-adjusted radar data set. The performance of the rainfall retrieval algorithm will be studied, particularly differences in time and space. Time series of air temperature and snow from automatic weather stations, operated by the

  2. GIO-EMS and International Collaboration in Satellite based Emergency Mapping

    Science.gov (United States)

    Kucera, Jan; Lemoine, Guido; Broglia, Marco

    2013-04-01

    During the last decade, satellite based emergency mapping has developed into a mature operational stage. The European Union's GMES Initial Operations - Emergency Management Service (GIO-EMS), is operational since April 2012. It's set up differs from other mechanisms (for example from the International Charter "Space and Major Disasters"), as it extends fast satellite tasking and delivery with the value adding map production as a single service, which is available, free of charge, to the authorized users of the service. Maps and vector datasets with standard characteristics and formats ranging from post-disaster damage assessment to recovery and disaster prevention are covered by this initiative. Main users of the service are European civil protection authorities and international organizations active in humanitarian aid. All non-sensitive outputs of the service are accessible to the public. The European Commission's in-house science service Joint Research Centre (JRC) is the technical and administrative supervisor of the GIO-EMS. The EC's DG ECHO Monitoring and Information Centre acts as the service's focal point and DG ENTR is responsible for overall service governance. GIO-EMS also aims to contribute to the synergy with similar existing mechanisms at national and international level. The usage of satellite data for emergency mapping has increased during the last years and this trend is expected to continue because of easier accessibility to suitable satellite and other relevant data in the near future. Furthermore, the data and analyses coming from volunteer emergency mapping communities are expected to further enrich the content of such cartographic products. In the case of major disasters the parallel activity of more providers is likely to generate non-optimal use of resources, e.g. unnecessary duplication; whereas coordination may lead to reduced time needed to cover the disaster area. Furthermore the abundant number of geospatial products of different

  3. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  4. Providing satellite-based early warnings of fires to reduce fire flashovers on South Africa’s transmission lines

    CSIR Research Space (South Africa)

    Frost, PE

    2007-07-01

    Full Text Available The Advanced Fire Information System (AFIS) is the first near real time operational satellite-based fire monitoring system of its kind in Africa. The main aim of AFIS is to provide information regarding the prediction, detection and assessment...

  5. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration

    NARCIS (Netherlands)

    Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.A.

    2013-01-01

    In this study, streamflow (Qs) and satellite-based actual evapotranspiration (ETa) are used in a multi-variable calibration framework to reproduce the catchment water balance. The application is for the HBV rainfall–runoff model at daily time-step for the Karkheh River Basin (51,000 km2) in Iran. Mo

  6. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  7. Propagation of Rainfall Products uncertainties in hydrological applications : Studies in the framework of the Megha-Tropiques Satellite Mission

    Science.gov (United States)

    Gosset, M.; Roca, R.

    2012-04-01

    The use of satellite based rainfall in research or operational Hydrological application is becoming more and more frequent. This is specially true in the Tropics where ground based gages (or radar) network are generally scarce and generally degrading. The new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere will contribute to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of MT rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them in the end user models ? Another important question is how to chose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This talk will present on going investigations and perspectives on this subject, with examples from the Megha_tropiques Ground validation sites. Several sensitivity studies have been carried out in the Oueme Basin in Benin, West Africa, one the instrumented basin that will be used for MT products direct and hydrological validation.

  8. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique improve the simulation accuracy of mean seasonal (October throughout May snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the

  9. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Science.gov (United States)

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  10. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2015-07-01

    Full Text Available As convective clouds in Northeast Asia are accompanied by various hazards related with heavy rainfall and thunderstorms, it is very important to detect convective initiation (CI in the region in order to mitigate damage by such hazards. In this study, a novel approach for CI detection using images from Meteorological Imager (MI, a payload of the Communication, Ocean, and Meteorological Satellite (COMS, was developed by improving the criteria of the interest fields of Rapidly Developing Cumulus Areas (RDCA derivation algorithm, an official CI detection algorithm for Multi-functional Transport SATellite-2 (MTSAT-2, based on three machine learning approaches—decision trees (DT, random forest (RF, and support vector machines (SVM. CI was defined as clouds within a 16 × 16 km window with the first detection of lightning occurrence at the center. A total of nine interest fields derived from visible, water vapor, and two thermal infrared images of MI obtained 15–75 min before the lightning occurrence were used as input variables for CI detection. RF produced slightly higher performance (probability of detection (POD of 75.5% and false alarm rate (FAR of 46.2% than DT (POD of 70.7% and FAR of 46.6% for detection of CI caused by migrating frontal cyclones and unstable atmosphere. SVM resulted in relatively poor performance with very high FAR ~83.3%. The averaged lead times of CI detection based on the DT and RF models were 36.8 and 37.7 min, respectively. This implies that CI over Northeast Asia can be forecasted ~30–45 min in advance using COMS MI data.

  11. Spatiotemporal monthly rainfall forecasts for south-eastern and eastern Australia using climatic indices

    Science.gov (United States)

    Montazerolghaem, Maryam; Vervoort, Willem; Minasny, Budiman; McBratney, Alex

    2016-05-01

    Knowledge about future rainfall is important for agriculture management and planning in arid and semi-arid regions. Australia has complex variations in rainfall patterns in time and space, arising from the combination of the geographic structure and the dual effects of Indian and Pacific Ocean. This study aims to develop a forecasting model of spatiotemporal monthly rainfall totals using lagged climate indices and historical rainfall data from 1950-2011 for south-eastern and eastern Australia. Data were obtained from the Australian Bureau of Meteorology (BoM) from 136 high-quality weather stations. To reduce spatial complexity, climate regionalization was used to divide the stations in homogenous sub-regions based on similarity of rainfall patterns and intensity using principal component analysis (PCA) and K-means clustering. Subsequently, a fuzzy ranking algorithm (FRA) was applied to the lagged climatic predictors and monthly rainfall in each sub-region to identify the best predictors. Selected predictors by FRA were found to vary by sub-region. After these two stages of pre-processing, an artificial neural network (ANN) model was developed and optimized separately for each sub-region and the entire area. The results indicate that climate regionalization can improve a monthly spatiotemporal rainfall forecast model. The location and number of sub-regions were important for ranking predictors and modeling. This further suggests that the impact of climate variables on Australian rainfall is more variable in both time and space than indicated thus far.

  12. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    Institute of Scientific and Technical Information of China (English)

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  13. A Satellite-Based Assessment of the Distribution and Biomass of Submerged Aquatic Vegetation in the Optically Shallow Basin of Lake Biwa

    Directory of Open Access Journals (Sweden)

    Shweta Yadav

    2017-09-01

    Full Text Available Assessing the abundance of submerged aquatic vegetation (SAV, particularly in shallow lakes, is essential for effective lake management activities. In the present study we applied satellite remote sensing (a Landsat-8 image in order to evaluate the SAV coverage area and its biomass for the peak growth period, which is mainly in September or October (2013 to 2016, in the eutrophic and shallow south basin of Lake Biwa. We developed and validated a satellite-based water transparency retrieval algorithm based on the linear regression approach (R2 = 0.77 to determine the water clarity (2013–2016, which was later used for SAV classification and biomass estimation. For SAV classification, we used Spectral Mixture Analysis (SMA, a Spectral Angle Mapper (SAM, and a binary decision tree, giving an overall classification accuracy of 86.5% and SAV classification accuracy of 76.5% (SAV kappa coefficient 0.74, based on in situ measurements. For biomass estimation, a new Spectral Decomposition Algorithm was developed. The satellite-derived biomass (R2 = 0.79 for the SAV classified area gives an overall root-mean-square error (RMSE of 0.26 kg Dry Weight (DW m-2. The mapped SAV coverage area was 20% and 40% in 2013 and 2016, respectively. Estimated SAV biomass for the mapped area shows an increase in recent years, with values of 3390 t (tons, dry weight in 2013 as compared to 4550 t in 2016. The maximum biomass density (4.89 kg DW m-2 was obtained for a year with high water transparency (September 2014. With the change in water clarity, a slow change in SAV growth was noted from 2013 to 2016. The study shows that water clarity is important for the SAV detection and biomass estimation using satellite remote sensing in shallow eutrophic lakes. The present study also demonstrates the successful application of the developed satellite-based approach for SAV biomass estimation in the shallow eutrophic lake, which can be tested in other lakes.

  14. Stochastic modelling of daily rainfall sequences

    NARCIS (Netherlands)

    Buishand, T.A.

    1977-01-01

    Rainfall series of different climatic regions were analysed with the aim of generating daily rainfall sequences. A survey of the data is given in I, 1. When analysing daily rainfall sequences one must be aware of the following points:
    a. Seasonality. Because of seasonal variation

  15. Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi

    Directory of Open Access Journals (Sweden)

    D. Kneis

    2014-01-01

    Full Text Available The paper examines the quality of satellite-based precipitation estimates for the Lower Mahanadi River Basin (Eastern India. The considered data sets known as 3B42 and 3B42-RT (version 7/7A are routinely produced by the tropical rainfall measuring mission (TRMM from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gage-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gage data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analyzing their performance in the context of rainfall-runoff simulation. At sub-basin level (4000 to 16 000 km2 the satellite-based areal precipitation estimates were found to be moderately correlated with the gage-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT. Significant discrepancies between TRMM data and ground observations were identified at high intensity levels. The rainfall depth derived from rain gage data is often not reflected by the TRMM estimates (hit rate 80 mm day−1. At the same time, the remotely sensed rainfall rates frequently exceed the gage-based equivalents (false alarm ratios of 0.2–0.6. In addition, the real time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalization of rain gage data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gage data were used as model input (Nash–Sutcliffe Index of 0.76–0.88 at gages not

  16. Performance tests of a satellite-based asymmetric communication network for the 'hyper hospital'.

    Science.gov (United States)

    Yamaguchi, T

    1997-01-01

    The Hyper Hospital is a prototype networked telemedicine system which uses virtual reality. We measured the performance of a novel multimedia network based on satellite communications. The network was a hybrid system consisting of a satellite channel in one direction and a terrestrial channel in the other. Each user was equipped with a standard satellite communication receiver and a telephone connection. Requests from the users were sent by modern and telephone line and responses were received by satellite. The user requests were initiated by clicking buttons on a World Wide Web browser screen. The transmission rates of satellite and normal telephone-line communications were compared for standardized text data. Satellite communication was three to five times faster. The transmission rate was also measured for standardized graphical data (GIF format). With a file size of about 400 kByte, satellite-mediated communication was 10 times faster than telephone lines. The effect of simultaneous access on performance was also explored. For simultaneous access of nine users to a single graphics file, 78% of the transmission speed was obtained in comparison with that of a single user. The satellite-based system showed excellent high-speed communication performance, particularly for multimedia data.

  17. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  18. Hydrological Modelling using Satellite-Based Crop Coefficients: A Comparison of Methods at the Basin Scale

    Directory of Open Access Journals (Sweden)

    Johannes E. Hunink

    2017-02-01

    Full Text Available The parameterization of crop coefficients (kc is critical for determining a water balance. We used satellite-based and literature-based methods to derive kc values for a distributed hydrologic model. We evaluated the impact of different kc parametrization methods on the water balance and simulated hydrologic response at the basin and sub-basin scale. The hydrological model SPHY was calibrated and validated for a period of 15 years for the upper Segura basin (~2500 km2 in Spain, which is characterized by a wide range of terrain, soil, and ecosystem conditions. The model was then applied, using six kc parameterization methods, to determine their spatial and temporal impacts on actual evapotranspiration, streamflow, and soil moisture. The parameterization methods used include: (i Normalized Difference Vegetation Index (NDVI observations from MODIS; (ii seasonally-averaged NDVI patterns, cell-based and landuse-based; and (iii literature-based tabular values per land use type. The analysis shows that the influence of different kc parametrization methods on basin-level streamflow is relatively small and constant throughout the year, but it has a bigger effect on seasonal evapotranspiration and soil moisture. In the autumn especially, deviations can go up to about 15% of monthly streamflow. At smaller, sub-basin scale, deviations from the NDVI-based reference run can be more than 30%. Overall, the study shows that modeling of future hydrological changes can be improved by using remote sensing information for the parameterization of crop coefficients.

  19. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  20. Satellite-based detection of global urban heat-island temperature influence

    Science.gov (United States)

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  1. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    Energy Technology Data Exchange (ETDEWEB)

    Mangin, A.; Morel, M.; Fanton d' Andon, O

    2000-07-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  2. Satellite-based Studies on Large-Scale Vegetation Changes in China

    Institute of Scientific and Technical Information of China (English)

    Xia Zhao; Daojing Zhou; Jingyun Fang

    2012-01-01

    Remotely-sensed vegetation indices,which indicate the density and photosynthetic capacity of vegetation,have been widely used to monitor vegetation dynamics over broad areas.In this paper,we reviewed satellite-based studies on vegetation cover changes,biomass and productivity variations,phenological dynamics,desertification,and grassland degradation in China that occurred over the past 2-3 decades.Our review shows that the satellite-derived index (Normalized Difference Vegetation Index,NDVI) during growing season and the vegetation net primary productivity in major terrestrial ecosystems (for example forests,grasslands,shrubs,and croplands) have significantly increased,while the number of fresh lakes and vegetation coverage in urban regions have experienced a substantial decline.The start of the growing season continually advanced in China's temperate regions until the 1990s,with a large spatial heterogeneity.We also found that the coverage of sparsely-vegetated areas declined,and the NDVI per unit in vegetated areas increased in arid and semi-arid regions because of increased vegetation activity in grassland and oasis areas.However,these results depend strongly not only on the periods chosen for investigation,but also on factors such as data sources,changes in detection methods,and geospatial heterogeneity.Therefore,we should be cautious when applying remote sensing techniques to monitor vegetation structures,functions,and changes.

  3. The satellite based augmentation system – EGNOS for non-precision approach global navigation satellite system

    Directory of Open Access Journals (Sweden)

    Andrzej FELLNER

    2012-01-01

    Full Text Available First in the Poland tests of the EGNOS SIS (Signal in Space were conducted on 5th October 2007 on the flight inspection with SPAN (The Synchronized Position Attitude Navigation technology at the Mielec airfield. This was an introduction to a test campaign of the EGNOS-based satellite navigation system for air traffic. The advanced studies will be performed within the framework of the EGNOS-APV project in 2011. The implementation of the EGNOS system to APV-I precision approach operations, is conducted according to ICAO requirements in Annex 10. Definition of usefulness and certification of EGNOS as SBAS (Satellite Based Augmentation System in aviation requires thorough analyses of accuracy, integrity, continuity and availability of SIS. Also, the project will try to exploit the excellent accuracy performance of EGNOS to analyze the implementation of GLS (GNSS Landing System approaches (Cat I-like approached using SBAS, with a decision height of 200 ft. Location of the EGNOS monitoring station Rzeszów, located near Polish-Ukrainian border, being also at the east border of planned EGNOS coverage for ECAC states is very useful for SIS tests in this area. According to current EGNOS programmed schedule, the project activities will be carried out with EGNOS system v2.2, which is the version released for civil aviation certification. Therefore, the project will allow demonstrating the feasibility of the EGNOS certifiable version for civil applications.

  4. Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies

    Directory of Open Access Journals (Sweden)

    Ana Maria Gracia Amillo

    2015-04-01

    Full Text Available In recent years, satellite-based solar radiation data resolved in spectral bands have become available. This has for the first time made it possible to produce maps of the geographical variation in the solar spectrum. It also makes it possible to estimate the influence of these variations on the performance of photovoltaic (PV modules. Here, we present a study showing the magnitude of the spectral influence on PV performance over Europe and Africa. The method has been validated using measurements of a CdTe module in Ispra, Italy, showing that the method predicts the spectral influence to within ±2% on a monthly basis and 0.1% over a 19-month period. Application of the method to measured spectral responses of crystalline silicon, CdTe and single-junction amorphous silicon (a-Si modules shows that the spectral effect is smallest over desert areas for all module types, higher in temperate Europe and highest in tropical Africa, where CdTe modules would be expected to yield +6% and single- junction a-Si modules up to +10% more energy due to spectral effects. In contrast, the effect for crystalline silicon modules is less than ±1% in nearly all of Africa and Southern Europe, rising to +1% or +2% in Northern Europe.

  5. Prediction model for peninsular Indian summer monsoon rainfall using data mining and statistical approaches

    Science.gov (United States)

    Vathsala, H.; Koolagudi, Shashidhar G.

    2017-01-01

    In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.

  6. Estimating probabilistic rainfall and food security outcomes for eastern and southern Africa

    Science.gov (United States)

    Verdin, J.; Funk, C.; Dettinger, M.; Brown, M.

    2009-05-01

    Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains high, and declining per-capita agricultural capacity retards development. In September of 2008, Ethiopia, Kenya, Djibouti, and Somalia faced high or extreme conditions of food insecurity caused by repeated droughts and rapid food price inflation. In this talk we present research, performed for the US Agency for International Development on probabilistic projections of rainfall and food security trends for eastern and southern Africa. Analyses of station data and satellite-based estimates of precipitation have identified another problematic trend: main growing- season rainfall has diminished by ~15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines constitute a long term danger to subsistence agricultural and pastoral livelihoods. Tracing moisture deficits upstream to an anthropogenically-induced warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th century Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling millions of undernourished people as a function of rainfall, population, cultivated area, and seed and fertilizer use. Persistence of current trends may result in a 50% increase in undernourished people. On the other hand, modest increases in per-capita agricultural productivity could more than offset the

  7. A satellite rainfall retrieval technique over northern Algeria based on the probability of rainfall intensities classification from MSG-SEVIRI

    Science.gov (United States)

    Lazri, Mourad; Ameur, Soltane

    2016-09-01

    In this paper, an algorithm based on the probability of rainfall intensities classification for rainfall estimation from Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) has been developed. The classification scheme uses various spectral parameters of SEVIRI that provide information about cloud top temperature and optical and microphysical cloud properties. The presented method is developed and trained for the north of Algeria. The calibration of the method is carried out using as a reference rain classification fields derived from radar for rainy season from November 2006 to March 2007. Rainfall rates are assigned to rain areas previously identified and classified according to the precipitation formation processes. The comparisons between satellite-derived precipitation estimates and validation data show that the developed scheme performs reasonably well. Indeed, the correlation coefficient presents a significant level (r:0.87). The values of POD, POFD and FAR are 80%, 13% and 25%, respectively. Also, for a rainfall estimation of about 614 mm, the RMSD, Bias, MAD and PD indicate 102.06(mm), 2.18(mm), 68.07(mm) and 12.58, respectively.

  8. Spatiotemporal monthly rainfall forecasting for south-eastern and eastern Australia using climatic indices

    Science.gov (United States)

    Montazerolghaem, Maryam; Vervoort, Willem; Minasny, Budiman; McBratney, Alex

    2014-05-01

    Knowledge about future rainfall would significantly benefit land, water resources and agriculture management, as this assists with planning and management decisions. Forecasting spatiotemporal monthly rainfall is difficult, especially in Australia where there is a complex interaction between topography and the effect of Indian and Pacific Ocean. This study describes a method for spatiotemporal monthly rainfall forecasting in south-eastern and eastern part of Australia using climatic and non-climatic variables. Rainfall data were obtained from Bureau of Meteorology (BoM) from 136 high quality weather stations from the south-eastern and eastern part of Australia with monthly rainfall records from 1879 to 2012. To reduce spatial complexity of the area and improve model accuracy, spatial classification (regionalization) was considered as first step. Significant predictors for each sub-region among lagged climatic input variables were selected using Fuzzy Ranking Algorithm (FRA). Climate classification: 1) discovered homogenous sub-regions with a similar rainfall patterns and investigated spatiotemporal rainfall variations in the area, 2) allowed selection of significant predictors with a fine resolution for each area, 3) improved the prediction model and increased model accuracy. PCA was used to reduce the dimensions of the dataset and to remove the rainfall time series correlation. K-means clustering was used on the loadings of PCs describing 93% of long-term monthly rainfall variations. The analysis was repeated for different numbers of sub-regions (3 - 8) to identify the best number of clusters to improve the forecast model performance. Subsequently, a Fuzzy Ranking Algorithm (FRA) was applied to the lagged climatic predictors and monthly rainfall in each sub-region to identify the best predictors. After these two stages of pre-processing, a Neural Network model was developed and optimized for each of the sub-regions as well as for the entire area. It is concluded

  9. Spatial variability and rainfall characteristics of Kerala

    Indian Academy of Sciences (India)

    Anu Simon; K Mohankumar

    2004-06-01

    Geographical regions of covariability in precipitation over the Kerala state are exposed using factor analysis. The results suggest that Kerala can be divided into three unique rainfall regions, each region having a similar covariance structure of annual rainfall. Stations north of 10°N (north Kerala) fall into one group and they receive more rainfall than stations south of 10°N (south Kerala). Group I stations receive more than 65% of the annual rainfall during the south-west monsoon period, whereas stations falling in Group II receive 25-30% of annual rainfall during the pre-monsoon and the north-east monsoon periods. The meteorology of Kerala is profoundly influenced by its orographical features, however it is difficult to make out a direct relationship between elevation and rainfall. Local features of the state as reflected in the rainfall distribution are also clearly brought out by the study.

  10. Long-range prediction of Indian summer monsoon rainfall using data mining and statistical approaches

    Science.gov (United States)

    H, Vathsala; Koolagudi, Shashidhar G.

    2016-07-01

    This paper presents a hybrid model to better predict Indian summer monsoon rainfall. The algorithm considers suitable techniques for processing dense datasets. The proposed three-step algorithm comprises closed itemset generation-based association rule mining for feature selection, cluster membership for dimensionality reduction, and simple logistic function for prediction. The application of predicting rainfall into flood, excess, normal, deficit, and drought based on 36 predictors consisting of land and ocean variables is presented. Results show good accuracy in the considered study period of 37years (1969-2005).

  11. Estimation of rainfall-runoff using curve number: a GIS based development of Sathanur reservoir catchment.

    Science.gov (United States)

    Vijay, Ritesh; Pareek, Ashutosh; Gupta, Apurba

    2006-10-01

    A GIS based algorithm has been developed to estimate the rainfall-runoff relationship of Sathanur reservoir catchment based on Soil Conservation Service (SCS) model. The landuse and soil maps were prepared in Arc/Info 9.0 and an arc macro language (AML) programme was developed to assign curve number based on landuse and soil classification including hydrological condition of the area. The algorithm was executed successfully by rainfall data for computation of runoff depth in all the sub watersheds. The study is important for a watershed, which does not have runoff records and can be used for planning of various water conservation measures.

  12. Patching rainfall data using regression methods. 3. Grouping, patching and outlier detection

    Science.gov (United States)

    Pegram, Geoffrey

    1997-11-01

    Rainfall data are used, amongst other things, for augmenting or repairing streamflow records in a water resources analysis environment. Gaps in rainfall records cause problems in the construction of water-balance models using monthly time-steps, when it becomes necessary to estimate missing values. Modest extensions are sometimes also desirable. It is also important to identify outliers as possible erroneous data and to group data which are hydrologically similar in order to accomplish good patching. Algorithms are described which accomplish these tasks using the covariance biplot, multiple linear regression, singular value decomposition and the pseudo-Expectation-Maximization algorithm.

  13. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Directory of Open Access Journals (Sweden)

    S. W. Myint

    2008-07-01

    Full Text Available Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services and hazards (e.g., downed power lines, gas lines, etc., the need for rapid mobilization (particularly for remote locations, and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale. Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  14. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S. W.; Yuan, M.; Cerveny, R. S.; Giri, C.

    2008-07-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  15. Magnetic resonance imaging research in sub-Saharan Africa: challenges and satellite-based networking implementation.

    Science.gov (United States)

    Latourette, Matthew T; Siebert, James E; Barto, Robert J; Marable, Kenneth L; Muyepa, Anthony; Hammond, Colleen A; Potchen, Michael J; Kampondeni, Samuel D; Taylor, Terrie E

    2011-08-01

    As part of an NIH-funded study of malaria pathogenesis, a magnetic resonance (MR) imaging research facility was established in Blantyre, Malaŵi to enhance the clinical characterization of pediatric patients with cerebral malaria through application of neurological MR methods. The research program requires daily transmission of MR studies to Michigan State University (MSU) for clinical research interpretation and quantitative post-processing. An intercontinental satellite-based network was implemented for transmission of MR image data in Digital Imaging and Communications in Medicine (DICOM) format, research data collection, project communications, and remote systems administration. Satellite Internet service costs limited the bandwidth to symmetrical 384 kbit/s. DICOM routers deployed at both the Malaŵi MRI facility and MSU manage the end-to-end encrypted compressed data transmission. Network performance between DICOM routers was measured while transmitting both mixed clinical MR studies and synthetic studies. Effective network latency averaged 715 ms. Within a mix of clinical MR studies, the average transmission time for a 256 × 256 image was ~2.25 and ~6.25 s for a 512 × 512 image. Using synthetic studies of 1,000 duplicate images, the interquartile range for 256 × 256 images was [2.30, 2.36] s and [5.94, 6.05] s for 512 × 512 images. Transmission of clinical MRI studies between the DICOM routers averaged 9.35 images per minute, representing an effective channel utilization of ~137% of the 384-kbit/s satellite service as computed using uncompressed image file sizes (including the effects of image compression, protocol overhead, channel latency, etc.). Power unreliability was the primary cause of interrupted operations in the first year, including an outage exceeding 10 days.

  16. On the value of satellite-based river discharge and river flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  17. Satellite Based Analysis of Carbon Monoxide Levels Over Alberta Oil Sand

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J. C.

    2014-12-01

    The rapid expansion of oil sands activities and massive energy requirements to extract and upgrade the bitumen require a comprehensive understanding of their potential environmental impacts, particularly on air quality. In this study, satellite-based analysis of carbon monoxide (CO) levels was used to assess the magnitude and distribution of this pollutant throughout Alberta oil sands region. Measurements of Pollution in the Troposphere (MOPITT) V5 multispectral product that uses both near-infrared and the thermal-infrared radiances for CO retrieval were used. MOPITT-based climatology and inter-annual variations were examined for 12 years (2002-2013) on spatial and temporal scales. Seasonal climatological maps for CO total columns indicated conspicuous spatial variations in all seasons except in winter where the CO spatial variations are less prominent. High CO loadings are observed to extend from the North East to North West regions of Alberta, with highest values in spring. The CO mixing ratios at the surface level in winter and spring seasons exhibited dissimilar spatial distribution pattern where the enhancements are detected in south eastern rather than northern Alberta. Analyzing spatial distributions of Omega at 850 mb pressure level for four seasons implied that, conditions in northeastern Alberta are more favorable for up lofting while in southern Alberta, subsidence of CO emissions are more likely. Time altitude CO profile climatology as well as the inter-annual variability were investigated for the oil sands and main urban regions in Alberta to assess the impact of various sources on CO loading. Monthly variations over urban regions are consistent with the general seasonal cycle of CO in Northern Hemisphere which exhibits significant enhancement in winter and spring, and minimum mixing ratios in summer. The typical seasonal CO variations over the oil sands region are less prominent. This study has demonstrated the potential use of multispectral CO

  18. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2010-09-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved retrievals of surface soil moisture variations at global scales. Here we propose a technique to take advantage of retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates over sparse-to-moderately vegetated areas to obtain an improved soil moisture product. To do this, absolute soil moisture values from AMSR-E and relative soil moisture derived from ASCAT are rescaled against a reference land surface model date set using a cumulative distribution function (CDF matching approach. While this technique imposes the bias of the reference to the rescaled satellite products, it adjusts both satellite products to the same range and almost preserves the correlation between satellite products and in situ measurements. Comparisons with in situ data demonstrated that over the regions where the correlation coefficient between rescaled AMSR-E and ASCAT is above 0.65 (hereafter referred to as transitional regions, merging the different satellite products together increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT are respectively used in the merged product. Thus the merged product carries the advantages of better spatial coverage overall and increased number of observations particularly for the transitional regions. The combination approach developed in this study has the potential to be applied to existing microwave satellites as well as to new microwave missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  19. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  20. Rainfall disaggregation for urban hydrology: Effects of spatial consistence

    Science.gov (United States)

    Müller, Hannes; Haberlandt, Uwe

    2015-04-01

    For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.

  1. A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

    CERN Document Server

    Lazzarotto, Francesco; Costa, Enrico; Del Monte, Ettore; Di Persio, Giuseppe; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Pacciani, Luigi; Rubini, Alda; Soffitta, Paolo

    2011-01-01

    Modern satellite based experiments are often very complex real-time systems, composed by flight and ground segments, that have challenging resource related constraints, in terms of size, weight, power, requirements for real-time response, fault tolerance, and specialized input/output hardware-software, and they must be certified to high levels of assurance. Hardware-software data processing systems have to be responsive to system degradation and to changes in the data acquisition modes, and actions have to be taken to change the organization of the mission operations. A big research & develop effort in a team composed by scientists and technologists can lead to produce software systems able to optimize the hardware to reach very high levels of performance or to pull degraded hardware to maintain satisfactory features. We'll show real-life examples describing a system, processing the data of a X-Ray detector on satellite-based mission in spinning mode.

  2. Application of satellite estimates of rainfall distribution to simulate the potential for malaria transmission in Africa

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2009-12-01

    The Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS) is a mechanistic model developed to assess malaria risk in areas where the disease is water-limited. This model relies on precipitation inputs as its primary forcing. Until now, applications of the model have used ground-based precipitation observations. However, rain gauge networks in the areas most affected by malaria are often sparse. The increasing availability of satellite based rainfall estimates could greatly extend the range of the model. The minimum temporal resolution of precipitation data needed was determined to be one hour. The CPC Morphing technique (CMORPH ) distributed by NOAA fits this criteria, as it provides 30-minute estimates at 8km resolution. CMORPH data were compared to ground observations in four West African villages, and calibrated to reduce overestimation and false alarm biases. The calibrated CMORPH data were used to force HYDREMATS, resulting in outputs for mosquito populations, vectorial capacity and malaria transmission.

  3. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    Science.gov (United States)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  4. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  5. Dual-polarization radar rainfall estimation in Korea according to raindrop shapes obtained by using a 2-D video disdrometer

    Science.gov (United States)

    Kim, Hae-Lim; Suk, Mi-Kyung; Park, Hye-Sook; Lee, Gyu-Won; Ko, Jeong-Seok

    2016-08-01

    Polarimetric measurements are sensitive to the sizes, concentrations, orientations, and shapes of raindrops. Thus, rainfall rates calculated from polarimetric radar are influenced by the raindrop shapes and canting. The mean raindrop shape can be obtained from long-term raindrop size distribution (DSD) observations, and the shapes of raindrops can play an important role in polarimetric rainfall algorithms based on differential reflectivity (ZDR) and specific differential phase (KDP). However, the mean raindrop shape is associated with the variation of the DSD, which can change depending on precipitation types and climatic regimes. Furthermore, these relationships have not been studied extensively on the Korean Peninsula. In this study, we present a method to find optimal polarimetric rainfall algorithms for the Korean Peninsula by using data provided by both a two-dimensional video disdrometer (2DVD) and the Bislsan S-band dual-polarization radar. First, a new axis-ratio relation was developed to improve radar rainfall estimations. Second, polarimetric rainfall algorithms were derived by using different axis-ratio relations. The rain gauge data were used to represent the ground truth situation, and the estimated radar-point hourly mean rain rates obtained from the different polarimetric rainfall algorithms were compared with the hourly rain rates measured by a rain gauge. The daily calibration biases of horizontal reflectivity (ZH) and differential reflectivity (ZDR) were calculated by comparing ZH and ZDR radar measurements with the same parameters simulated by the 2DVD. Overall, the derived new axis ratio was similar to the existing axis ratio except for both small particles (≤ 2 mm) and large particles (≥ 5.5 mm). The shapes of raindrops obtained by the new axis-ratio relation carried out with the 2DVD were more oblate than the shapes obtained by the existing relations. The combined polarimetric rainfall relations using ZDR and KDP were more efficient than

  6. Homogeneous clusters over India using probability density function of daily rainfall

    Science.gov (United States)

    Kulkarni, Ashwini

    2017-07-01

    The Indian landmass has been divided into homogeneous clusters by applying the cluster analysis to the probability density function of a century-long time series of daily summer monsoon (June through September) rainfall at 357 grids over India, each of approximately 100 km × 100 km. The analysis gives five clusters over Indian landmass; only cluster 5 happened to be the contiguous region and all other clusters are dispersed away which confirms the erratic behavior of daily rainfall over India. The area averaged seasonal rainfall over cluster 5 has a very strong relationship with Indian summer monsoon rainfall; also, the rainfall variability over this region is modulated by the most important mode of climate system, i.e., El Nino Southern Oscillation (ENSO). This cluster could be considered as the representative of the entire Indian landmass to examine monsoon variability. The two-sample Kolmogorov-Smirnov test supports that the cumulative distribution functions of daily rainfall over cluster 5 and India as a whole do not differ significantly. The clustering algorithm is also applied to two time epochs 1901-1975 and 1976-2010 to examine the possible changes in clusters in a recent warming period. The clusters are drastically different in two time periods. They are more dispersed in recent period implying the more erroneous distribution of daily rainfall in recent period.

  7. An evaluation and regional error modeling methodology for near-real-time satellite rainfall data over Australia

    Science.gov (United States)

    Pipunic, Robert C.; Ryu, Dongryeol; Costelloe, Justin F.; Su, Chun-Hsu

    2015-10-01

    In providing uniform spatial coverage, satellite-based rainfall estimates can potentially benefit hydrological modeling, particularly for flood prediction. Maximizing the value of information from such data requires knowledge of its error. The most recent Tropical Rainfall Measuring Mission (TRMM) 3B42RT (TRMM-RT) satellite product version 7 (v7) was used for examining evaluation procedures against in situ gauge data across mainland Australia at a daily time step, over a 9 year period. This provides insights into estimating uncertainty and informing quantitative error model development, with methodologies relevant to the recently operational Global Precipitation Measurement mission that builds upon the TRMM legacy. Important error characteristics highlighted for daily aggregated TRMM-RT v7 include increasing (negative) bias and error variance with increasing daily gauge totals and more reliability at detecting larger gauge totals with a probability of detection of data have increasing (positive) bias and error variance with increasing TRMM-RT estimates. Difference errors binned within 10 mm/d increments of TRMM-RT v7 estimates highlighted negatively skewed error distributions for all bins, suitably approximated by the generalized extreme value distribution. An error model based on this distribution enables bias correction and definition of quantitative uncertainty bounds, which are expected to be valuable for hydrological modeling and/or merging with other rainfall products. These error characteristics are also an important benchmark for assessing if/how future satellite rainfall products have improved.

  8. Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi

    Directory of Open Access Journals (Sweden)

    D. Kneis

    2014-07-01

    Full Text Available The paper examines the quality of satellite-based precipitation estimates for the lower Mahanadi River basin (eastern India. The considered data sets known as 3B42 and 3B42-RT (version 7/7A are routinely produced by the tropical rainfall measuring mission (TRMM from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gauge-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gauge data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analysing their performance in the context of rainfall–runoff simulation. At sub-basin level (4000 to 16 000 km2 the satellite-based areal precipitation estimates were found to be moderately correlated with the gauge-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT. Significant discrepancies between TRMM data and ground observations were identified at high-intensity levels. The rainfall depth derived from rain gauge data is often not reflected by the TRMM estimates (hit rate 80 mm day-1. At the same time, the remotely sensed rainfall rates frequently exceed the gauge-based equivalents (false alarm ratios of 0.2–0.6. In addition, the real-time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalisation of rain gauge data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gauge data were used as model input (Nash–Sutcliffe index of 0.76–0.88 at

  9. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    Science.gov (United States)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression

  10. A Newly Distributed Satellite-based Global Air-sea Surface Turbulent Fluxes Data Set -- GSSTF2b

    Science.gov (United States)

    Shie, C.; Nelkin, E.; Ardizzone, J.; Savtchenko, A.; Chiu, L. S.; Adler, R. F.; Lin, I.; Gao, S.

    2010-12-01

    Accurate sea surface turbulent flux measurements are crucial to understanding the global water and energy cycle changes. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The recently revived and produced daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2008) is currently under processing for an official distribution by NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) due by the end of this month (September, 2010). Like its predecessor product GSSTF2, GSSTF2b is expected to provide the scientific community a longer-period and useful turbulent surface flux dataset for global energy and water cycle research, as well as regional and short period data analyses. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b dataset has lately been produced using upgraded and improved input datasets such as the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for producing the GSSTF2 product were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. The newly produced GSSTF2b was found to generally agree better with available ship measurements obtained from several field experiments in 1999 than its counterpart

  11. Satellite-based monitoring of particulate matter pollution at very high resolution: the HOTBAR method

    Science.gov (United States)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Particulate matter air pollution is a major health risk, and is responsible for millions of premature deaths each year. Concentrations tend to be highest in urban areas - particularly in the mega-cities of rapidly industrialising countries, where there are limited ground monitoring networks. Satellite-based monitoring has been used for many years to assess regional-scale trends in air quality, but currently available satellite products produce data at 1-10km resolution: too coarse to discern the small-scale patterns of sources and sinks seen in urban areas. Higher-resolution satellite products are required to provide accurate assessments of particulate matter concentrations in these areas, and to allow analysis of localised air quality effects on health. The Haze Optimized Transform-based Aerosol Retrieval (HOTBAR) method is a novel method which provides estimates of PM2.5 concentrations from high-resolution (approximately 30m) satellite imagery. This method is designed to work over a wide range of land covers and performs well over the complex land-cover mosaic found in urban areas. It requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT), which was originally designed for assessing areas of thick haze in satellite imagery. This was done by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to estimate Aerosol Optical Thickness (a measure of the column-integrated haziness of the atmosphere) instead, from which PM2.5 concentrations can then be estimated. Significant extensions to the original HOT method include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values

  12. Utility and Value of Satellite-Based Frost Forecasting for Kenya's Tea Farming Sector

    Science.gov (United States)

    Morrison, I.

    2016-12-01

    Frost damage regularly inflicts millions of dollars of crop losses in the tea-growing highlands of western Kenya, a problem that the USAID/NASA Regional Visualization and Monitoring System (SERVIR) program is working to mitigate through a frost monitoring and forecasting product that uses satellite-based temperature and soil moisture data to generate up to three days of advanced warning before frost events. This paper presents the findings of a value of information (VOI) study assessing the value of this product based on Kenyan tea farmers' experiences with frost and frost-damage mitigation. Value was calculated based on historic trends of frost frequency, severity, and extent; likelihood of warning receipt and response; and subsequent frost-related crop-loss aversion. Quantification of these factors was derived through inferential analysis of survey data from 400 tea-farming households across the tea-growing regions of Kericho and Nandi, supplemented with key informant interviews with decision-makers at large estate tea plantations, historical frost incident and crop-loss data from estate tea plantations and agricultural insurance companies, and publicly available demographic and economic data. At this time, the product provides a forecasting window of up to three days, and no other frost-prediction methods are used by the large or small-scale farmers of Kenya's tea sector. This represents a significant opportunity for preemptive loss-reduction via Earth observation data. However, the tea-growing community has only two realistic options for frost-damage mitigation: preemptive harvest of available tea leaves to minimize losses, or skiving (light pruning) to facilitate fast recovery from frost damage. Both options are labor-intensive and require a minimum of three days of warning to be viable. As a result, the frost forecasting system has a very narrow margin of usefulness, making its value highly dependent on rapid access to the warning messages and flexible access

  13. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Hilary B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 1011 cmHz 1/2W-1 for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 1010 cmHz1/2W-1 . KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. SixNymembranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO3/Pt/Ti/SixNy/Si and SrRuO3/SixNy/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is ~380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom

  14. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level.

  15. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    Science.gov (United States)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    _adj throughout each monitoring period was lower than cumulative ETb for most crops, indicating that effect of water stress tended to exceed that of soil evaporation relative to basal conditions. We present results from the analysis and discuss implications for operational use of satellite-based Kcb and ETcb estimates for agricultural water resource management.

  16. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  17. Towards a protocol for validating satellite-based Land Surface Temperature: Theoretical considerations

    Science.gov (United States)

    Schneider, Philipp; Ghent, Darren J.; Corlett, Gary C.; Prata, Fred; Remedios, John J.

    2013-04-01

    Land Surface Temperature (LST) and emissivity are important parameters for environmental monitoring and earth system modelling. LST has been observed from space for several decades using a wide variety of satellite instruments with different characteristics, including both platforms in low-earth orbit and in geostationary orbit. This includes for example the series of Advanced Very High Resolution Radiometers (AVHRR) delivering a continuous thermal infrared (TIR) data stream since the early 1980s, the series of Along-Track Scanning Radiometers (ATSR) providing TIR data since 1991, and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard NASA's Terra and Aqua platforms, providing data since the year 2000. In addition, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard of the geostationary Meteosat satellites is now providing LST at unprecedented sub-hour frequency. The data record provided by such instruments is extremely valuable for a wide variety of applications, including climate change, land/atmosphere feedbacks, fire monitoring, modelling, land cover change, geology, crop- and water management. All of these applications, however, require a rigorous validation of the data in order to assess the product quality and the associated uncertainty. Here we report on recent work towards developing a protocol for validation of satellite-based Land Surface Temperature products. Four main validation categories are distinguished within the protocol: A) Comparison with in situ observations, B) Radiance-based validation, C) Inter-comparison with similar LST products, and D) Time-series analysis. Each category is further subdivided into several quality classes, which approximately reflect the validation accuracy that can be achieved by the different approaches, as well as the complexity involved with each method. Advice on best practices is given for methodology common to all categories. For each validation category, recommendations

  18. Satellite-based assessment of climate controls on US burned area

    Directory of Open Access Journals (Sweden)

    D. C. Morton

    2013-01-01

    Full Text Available Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate–fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA, the Global Fire Emissions Database (GFED, 1997–2010 and Monitoring Trends in Burn Severity (MTBS, 1984–2009 BA products. For each US National Climate Assessment (NCA region, we analyzed the relationships between monthly BA and potential evaporation (PE derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation – PE was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6–12 months. Fire season PE increased from the 1980's–2000's, enhancing climate-driven fire risk in the southern and western US where PE–BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's–2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the

  19. Satellite-based assessment of climate controls on US burned area

    Directory of Open Access Journals (Sweden)

    D. C. Morton

    2012-06-01

    Full Text Available Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA, the Global Fire Emissions Database (GFED, 1997–2010 and Monitoring Trends in Burn Severity (MTBS, 1984–2009 BA products. For each US National Climate Assessment (NCA region, we analyzed the relationships between monthly BA and potential evaporation (PE derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE} and fire activity in the Alaska, while water deficit (precipitation – PE was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6–12 months. Fire season PE increased from the 1980s–2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s–2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of

  20. Satellite-based assessment of climate controls on US burned area

    Science.gov (United States)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2013-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997-2010) and Monitoring Trends in Burn Severity (MTBS, 1984-2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation - PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6-12 months). Fire season PE increased from the 1980's-2000's, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's-2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of fire types

  1. Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia

    Science.gov (United States)

    Brocca, Luca; Pellarin, Thierry; Crow, Wade T.; Ciabatta, Luca; Massari, Christian; Ryu, Dongryeol; Su, Chun-Hsu; Rüdiger, Christoph; Kerr, Yann

    2016-10-01

    Remote sensing of soil moisture has reached a level of maturity and accuracy for which the retrieved products can be used to improve hydrological and meteorological applications. In this study, the soil moisture product from the Soil Moisture and Ocean Salinity (SMOS) satellite is used for improving satellite rainfall estimates obtained from the Tropical Rainfall Measuring Mission multisatellite precipitation analysis product (TMPA) using three different "bottom up" techniques: SM2RAIN, Soil Moisture Analysis Rainfall Tool, and Antecedent Precipitation Index Modification. The implementation of these techniques aims at improving the well-known "top down" rainfall estimate derived from TMPA products (version 7) available in near real time. Ground observations provided by the Australian Water Availability Project are considered as a separate validation data set. The three algorithms are calibrated against the gauge-corrected TMPA reanalysis product, 3B42, and used for adjusting the TMPA real-time product, 3B42RT, using SMOS soil moisture data. The study area covers the entire Australian continent, and the analysis period ranges from January 2010 to November 2013. Results show that all the SMOS-based rainfall products improve the performance of 3B42RT, even at daily time scale (differently from previous investigations). The major improvements are obtained in terms of estimation of accumulated rainfall with a reduction of the root-mean-square error of more than 25%. Also, in terms of temporal dynamic (correlation) and rainfall detection (categorical scores) the SMOS-based products provide slightly better results with respect to 3B42RT, even though the relative performance between the methods is not always the same. The strengths and weaknesses of each algorithm and the spatial variability of their performances are identified in order to indicate the ways forward for this promising research activity. Results show that the integration of bottom up and top down approaches

  2. Multiple-Symbol combined differential detection for satellite-based AIS Signals

    Science.gov (United States)

    Hao, Jingsong; Ma, Shexiang; Wang, Junfeng; Meng, Xin

    2015-12-01

    In this paper, a multiple-symbol combined differential Viterbi decoding algorithm which is insensitive to frequency offset is proposed. According to the theories of multiple-symbol differential detection and maximum-likelihood detection, we combine the multiple-order differential information with the Viterbi algorithm. The phase shift caused by the frequency offset is estimated and compensated from the above information in the process of decoding. The simulation results show that the bit error rate (BER) of 2 bits combined differential Viterbi algorithm is below 10-3 when the normalized signal-to-noise ratio (NSNR) is 11 dB, and the decoding performances approach those of the coherent detection as the length of the combined differential symbols increases. The proposed method is simple and its performance remains stable under different frequency offsets.

  3. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  4. Woody Vegetation Die off and Regeneration in Response to Rainfall Variability in the West African Sahel

    Directory of Open Access Journals (Sweden)

    Martin Brandt

    2017-01-01

    Full Text Available The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  5. On the nature of rainfall intermittency as revealed by different metrics and sampling approaches

    Directory of Open Access Journals (Sweden)

    G. Mascaro

    2012-09-01

    observed in the island and, thus, can be associated with the corresponding synoptic circulation patterns. Last but not least, it is demonstrated how the methodology adopted to sample the rainfall signal from the records of the tipping instants can significantly affect the intermittency analysis, especially at smaller scales. The multifractal scale invariance analysis is the only tool that is insensitive to the sampling approach. Results of this work may be useful to improve the calibration of stochastic algorithms used to downscale coarse rainfall predictions of climate and weather forecasting models, as well as the parameterization of intensity-duration-frequency curves, adopted for land planning and design of civil infrastructures.

  6. On the nature of rainfall intermittency as revealed by different metrics and sampling approaches

    Directory of Open Access Journals (Sweden)

    G. Mascaro

    2013-01-01

    island and, thus, can be associated with the corresponding synoptic circulation patterns. Last but not least, we demonstrate how the methodology adopted to sample the rainfall signal from the records of the tipping instants can significantly affect the intermittency analysis, especially at smaller scales. The multifractal scale invariance analysis is the only tool that is insensitive to the sampling approach. Results of this work may be useful to improve the calibration of stochastic algorithms used to downscale coarse rainfall predictions of climate and weather forecasting models, as well as the parameterization of intensity-duration-frequency curves, adopted for land planning and design of civil infrastructures.

  7. Further Evaluation of a Satellite-based Real-time Global Flood Monitoring System

    Science.gov (United States)

    Wu, H.; Adler, R. F.; Tian, Y.; Hong, Y.; Policelli, F.

    2011-12-01

    A real-time global flood monitoring system (GFMS) driven by Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall was further developed with a relatively more physically based hydrological model. The performance in flood detection of this new version of the GFMS was evaluated against available flood event archives (Wu et al, 2011). This new GFMS is quantitatively evaluated in terms of flood event detection during the TRMM era (1998-2010) using a global retrospective simulation (3-hourly and 1/8 degree spatial resolution) with the TMPA 3B42V6 rainfall. Four methods were explored to define flood events from the model results, including three percentile-based statistic methods and a Log Pearson-III flood frequency curve method. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The impact of dams was detected in the validation statistics. The presence of dams tends to result in more false alarms and false alarm duration. The GFMS statistics for flood durations > 3 days and for areas without dams vary across the four identification methods, but center around a POD of ~ 0.70 and a FAR of ~ 0.65. When both flood events-based categorical verification metrics and flood duration metrics are considered, a method using the 95th percentile runoff depth plus two parameters related to variability and basin size (method 3) may be more suitable for application to our routine, real-time flood calculations. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The new GFMS (operationally available at http://trmm.gsfc.nasa.gov/) improved not only the flood detection performance, but also in the presentation of flood evolution (start, development and recession) in the drainage network. The new GFMS is further evaluated with more quantitative flood properties including flood peak timing, peak stage, peak volumes

  8. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  9. Multiobjective training of artificial neural networks for rainfall-runoff modeling

    NARCIS (Netherlands)

    De Vos, N.J.; Rientjes, T.H.M.

    2008-01-01

    This paper presents results on the application of various optimization algorithms for the training of artificial neural network rainfall-runoff models. Multilayered feed-forward networks for forecasting discharge from two mesoscale catchments in different climatic regions have been developed for thi

  10. Multiobjective training of artificial neural networks for rainfall-runoff modeling

    NARCIS (Netherlands)

    De Vos, N.J.; Rientjes, T.H.M.

    2008-01-01

    This paper presents results on the application of various optimization algorithms for the training of artificial neural network rainfall-runoff models. Multilayered feed-forward networks for forecasting discharge from two mesoscale catchments in different climatic regions have been developed for

  11. Combined Radar-Radiometer Rainfall Retrieval for TRMM Using Structure Function-Based Optimization

    Science.gov (United States)

    2011-07-28

    Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Appi . Meteor., 37, 2458-2469. 187 BIOGRAPHICAL SKETCH...rainfall retrieval algorithms,. J. Appi . Meteor., 33, 313-333. Farrar, M.R., and E.A. Smith, 1992: Spatial resolution enhancement of terrestrial features

  12. Recent Improvements in Estimating Convective and Stratiform Rainfall in Amazonia

    Science.gov (United States)

    Negri, Andrew J.

    1999-01-01

    In this paper we present results from the application of a satellite infrared (IR) technique for estimating rainfall over northern South America. Our main objectives are to examine the diurnal variability of rainfall and to investigate the relative contributions from the convective and stratiform components. We apply the technique of Anagnostou et al (1999). In simple functional form, the estimated rain area A(sub rain) may be expressed as: A(sub rain) = f(A(sub mode),T(sub mode)), where T(sub mode) is the mode temperature of a cloud defined by 253 K, and A(sub mode) is the area encompassed by T(sub mode). The technique was trained by a regression between coincident microwave estimates from the Goddard Profiling (GPROF) algorithm (Kummerow et al, 1996) applied to SSM/I data and GOES IR (11 microns) observations. The apportionment of the rainfall into convective and stratiform components is based on the microwave technique described by Anagnostou and Kummerow (1997). The convective area from this technique was regressed against an IR structure parameter (the Convective Index) defined by Anagnostou et al (1999). Finally, rainrates are assigned to the Am.de proportional to (253-temperature), with different rates for the convective and stratiform

  13. An Analysis of Thermally-Related Surface Rainfall Budgets Associated with Convective and Stratiform Rainfall

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yushu; Xiaofan LI

    2011-01-01

    Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.

  14. The all-year rainfall region of South Africa: Satellite rainfall-estimate perspective

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2012-09-01

    Full Text Available Climate predictability and variability studies over South Africa typically focus on the summer rainfall region and to a lesser extent on the winter rainfall region. The all-year rainfall region of South Africa, a narrow strip located along the Cape...

  15. The impacts of the Indian summer rainfall on North China summer rainfall

    Science.gov (United States)

    Wu, Renguang; Jiao, Yang

    2017-05-01

    Previous studies have indicated a connection between interannual variations of the Indian and North China summer rainfall. An atmospheric circulation wave pattern over the mid-latitude Asia plays an important role in the connection. The present study compares the influence of the above-normal and below-normal Indian summer rainfall on the North China summer rainfall variations. Composite analysis shows that the mid-latitude Asian atmospheric circulation and the North China rainfall anomalies during summer tend to be anti-symmetric in above-normal and below-normal Indian rainfall years. Analysis indicates that the Indian-North China summer rainfall relation tends to be stronger when larger Indian rainfall anomaly occurs during a higher mean rainfall period. The observed long-term change in the Indian-North China summer rainfall relationship cannot be explained by the impact of the El Niño-Southern Oscillation (ENSO). The present study evaluates the Indian-North China summer rainfall relationship in climate models. Analysis shows that the Indian-North China summer rainfall relationship differs largely among different climate models and among different simulations of a specific model. The relationship also displays obvious temporal variations in both individual and ensemble mean model simulations. This suggests an important role of the atmospheric internal variability in the change of the Indian-North China summer rainfall relationship.

  16. Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe.

    Directory of Open Access Journals (Sweden)

    Antarpreet Jutla

    Full Text Available Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008.Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began.Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives.

  17. Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe.

    Science.gov (United States)

    Jutla, Antarpreet; Aldaach, Haidar; Billian, Hannah; Akanda, Ali; Huq, Anwar; Colwell, Rita

    2015-01-01

    Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008. Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began. Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives.

  18. Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe

    Science.gov (United States)

    Jutla, Antarpreet; Aldaach, Haidar; Billian, Hannah; Akanda, Ali; Huq, Anwar; Colwell, Rita

    2015-01-01

    Introduction Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008. Principal Findings Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began. Discussion Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives. PMID:26417994

  19. Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations

    Directory of Open Access Journals (Sweden)

    Samuel A. Andam‑Akorful

    2013-07-01

    Full Text Available The measurement of total basin discharge along coastal regions is necessary for understanding the hydrological and oceanographic issues related to the water and energy cycles. However, only the observed streamflow (gauge-based observation is used to estimate the total fluxes from the river basin to the ocean, neglecting the portion of discharge that infiltrates to underground and directly discharges into the ocean. Hence, the aim of this study is to assess the total discharge of the Yangtze River (Chang Jiang basin. In this study, we explore the potential response of total discharge to changes in precipitation (from the Tropical Rainfall Measuring Mission—TRMM, evaporation (from four versions of the Global Land Data Assimilation—GLDAS, namely, CLM, Mosaic, Noah and VIC, and water-storage changes (from the Gravity Recovery and Climate Experiment—GRACE by using the terrestrial water budget method. This method has been validated by comparison with the observed streamflow, and shows an agreement with a root mean square error (RMSE of 14.30 mm/month for GRACE-based discharge and 20.98 mm/month for that derived from precipitation minus evaporation (P − E. This improvement of approximately 32% indicates that monthly terrestrial water-storage changes, as estimated by GRACE, cannot be considered negligible over Yangtze basin. The results for the proposed method are more accurate than the results previously reported in the literature.

  20. Source mass eruption rate retrieved from satellite-based data using statistical modelling

    Science.gov (United States)

    Gouhier, Mathieu; Guillin, Arnaud; Azzaoui, Nourddine; Eychenne, Julia; Valade, Sébastien

    2015-04-01

    Ash clouds emitted during volcanic eruptions have long been recognized as a major hazard likely to have dramatic consequences on aircrafts, environment and people. Thus, the International Civil Aviation Organization (ICAO) established nine Volcanic Ash Advisory Centers (VAACs) around the world, whose mission is to forecast the location and concentration of ash clouds over hours to days, using volcanic ash transport and dispersion models (VATDs). Those models use input parameters such as plume height (PH), particle size distribution (PSD), and mass eruption rate (MER), the latter being a key parameter as it directly controls the amount of ash injected into the atmosphere. The MER can be obtained rather accurately from detailed ground deposit studies, but this method does not match the operational requirements in case of a volcanic crisis. Thus, VAACs use empirical laws to determine the MER from the estimation of the plume height. In some cases, this method can be difficult to apply, either because plume height data are not available or because uncertainties related to this method are too large. We propose here an alternative method based on the utilization of satellite data to assess the MER at the source, during explosive eruptions. Satellite-based techniques allow fine ash cloud loading to be quantitatively retrieved far from the source vent. Those measurements can be carried out in a systematic and real-time fashion using geostationary satellite, in particular. We tested here the relationship likely to exist between the amount of fine ash dispersed in the atmosphere and of coarser tephra deposited on the ground. The sum of both contributions yielding an estimate of the MER. For this purpose we examined 19 eruptions (of known duration) in detail for which both (i) the amount of fine ash dispersed in the atmosphere, and (ii) the mass of tephra deposited on the ground have been estimated and published. We combined these data with contextual information that may

  1. Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of rainfall estimates

    Science.gov (United States)

    Moreau, E.; Testud, J.; Le Bouar, E.

    2009-07-01

    The main objective of this paper is to estimate the error in the rainfall derived from a polarimetric X-band radar, by comparison with the corresponding estimate of a rain gauge network. However the present analysis also considers the errors inherent to rain gauge, in particular instrumental and representativeness errors. A special emphasis is addressed to the spatial variability of the rainfall in order to appreciate the representativeness error of the rain gauge with respect to the 1 km square average, typical of the radar derived estimate. For this purpose the spatial correlation function of the rainfall is analyzed. The data set consists of 1-year radar data collected by the X-band polarimetric radar HYDRIX ®, located in Beauce region (80 km south of Paris). All data were processed in real time using the ZPHI ® algorithm. A dense 25 rain gauge network provided ground comparison data. The various sources of uncertainties (instrumental and representativeness) are then analyzed and quantified for each sensor.

  2. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    Science.gov (United States)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  3. Comments on "Failures in detecting volcanic ash from a satellite-based technique"

    Science.gov (United States)

    Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.

    2001-01-01

    The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.

  4. Satellite-based retrieval of particulate matter concentrations over the United Arab Emirates (UAE)

    Science.gov (United States)

    Zhao, Jun; Temimi, Marouane; Hareb, Fahad; Eibedingil, Iyasu

    2016-04-01

    In this study, an empirical algorithm was established to retrieve particulate matter (PM) concentrations (PM2.5 and PM10) using satellite-derived aerosol optical depth (AOD) over the United Arab Emirates (UAE). Validation of the proposed algorithm using ground truth data demonstrates its good accuracy. Time series of in situ measured PM concentrations between 2014 and 2015 showed high values in summer and low values in winter. Estimated and in situ measured PM concentrations were higher in 2015 than 2014. Remote sensing is an essential tool to reveal and back track the seasonality and inter-annual variations of PM concentrations and provide valuable information on the protection of human health and the response of air quality to anthropogenic activities and climate change.

  5. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A

    2017-01-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and...

  6. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  7. Modelling persistence in annual Australia point rainfall

    Directory of Open Access Journals (Sweden)

    J. P. Whiting

    2003-01-01

    Full Text Available Annual rainfall time series for Sydney from 1859 to 1999 is analysed. Clear evidence of nonstationarity is presented, but substantial evidence for persistence or hidden states is more elusive. A test of the hypothesis that a hidden state Markov model reduces to a mixture distribution is presented. There is strong evidence of a correlation between the annual rainfall and climate indices. Strong evidence of persistence of one of these indices, the Pacific Decadal Oscillation (PDO, is presented together with a demonstration that this is better modelled by fractional differencing than by a hidden state Markov model. It is shown that conditioning the logarithm of rainfall on PDO, the Southern Oscillation index (SOI, and their interaction provides realistic simulation of rainfall that matches observed statistics. Similar simulation models are presented for Brisbane, Melbourne and Perth. Keywords: Hydrological persistence,hidden state Markov models, fractional differencing, PDO, SOI, Australian rainfall

  8. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations

    OpenAIRE

    2012-01-01

    Satellite-based PM2.5 monitoring has the potential to complement ground PM2.5 monitoring networks, especially for regions with sparsely distributed monitors. Satellite remote sensing provides data on aerosol optical depth (AOD), which reflects particle abundance in the atmospheric column. Thus AOD has been used in statistical models to predict ground-level PM2.5 concentrations. However, previous studies have shown that AOD may not be a strong predictor of PM2.5 ground levels. Another shortcom...

  9. Impact of merging methods on radar based nowcasting of rainfall

    Science.gov (United States)

    Shehu, Bora; Haberlandt, Uwe

    2017-04-01

    Radar data with high spatial and temporal resolution are commonly used to track and predict rainfall patterns that serve as input for hydrological applications. To mitigate the high errors associated with the radar, many merging methods employing ground measurements have been developed. However these methods have been investigated mainly for simulation purposes, while for nowcasting they are limited to the application of the mean field bias correction. Therefore this study aims to investigate the impact of different merging methods on the nowcasting of the rainfall volumes regarding urban floods. Radar bias correction based on mean fields and quantile mapping are analyzed individually and also are implemented in conditional merging. Special attention is given to the impact of spatial and temporal filters on the predictive skill of all methods. The relevance of the radar merging techniques is demonstrated by comparing the performance of the forecasted rainfall field from the radar tracking algorithm HyRaTrac for both raw and merged radar data. For this purpose several extreme events are selected and the respective performance is evaluated by cross validation of the continuous criteria (bias and rmse) and categorical criteria (POD, FAR and GSS) for lead times up to 2 hours. The study area is located within the 128 km radius of Hannover radar in Lower Saxony, Germany and the data set constitutes of 80 recording stations in 5 min time steps for the period 2000-2012. The results reveal how the choice of merging method and the implementation of filters impacts the performance of the forecast algorithm.

  10. Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset

    Directory of Open Access Journals (Sweden)

    R. Zubieta

    2017-07-01

    Full Text Available In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM have proven applicable in hydrological studies. The Global Precipitation Measurement (GPM mission, which provides the new generation of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in hydrological applications, however, has not yet been evaluated over the Andean and Amazonian regions. This study uses GPM data provided by the Integrated Multi-satellite Retrievals (IMERG (product/final run as input to a distributed hydrological model for the Amazon Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015 when all datasets are available. TRMM products (TMPA V7 and TMPA RT datasets and a gridded precipitation dataset processed from observed rainfall are used for comparison. The results indicate that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, compared to observed rainfall (by 11.1 and 15.7 %, respectively. In general, GPM-IMERG, TMPA V7 and TMPA RT correlate with observed rainfall, with a similar number of rain events correctly detected ( ∼  20 %. Statistical analysis of modeled streamflows indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in southern regions (Ucayali Basin. GPM-IMERG, TMPA V7 and TMPA RT do not properly simulate streamflows in northern regions (Marañón and Napo basins, probably because of the lack of adequate rainfall estimates in northern Peru and the Ecuadorian Amazon.

  11. Hydrological modeling of the Peruvian-Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset

    Science.gov (United States)

    Zubieta, Ricardo; Getirana, Augusto; Carlo Espinoza, Jhan; Lavado-Casimiro, Waldo; Aragon, Luis

    2017-07-01

    In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM) have proven applicable in hydrological studies. The Global Precipitation Measurement (GPM) mission, which provides the new generation of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in hydrological applications, however, has not yet been evaluated over the Andean and Amazonian regions. This study uses GPM data provided by the Integrated Multi-satellite Retrievals (IMERG) (product/final run) as input to a distributed hydrological model for the Amazon Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015) when all datasets are available. TRMM products (TMPA V7 and TMPA RT datasets) and a gridded precipitation dataset processed from observed rainfall are used for comparison. The results indicate that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, compared to observed rainfall (by 11.1 and 15.7 %, respectively). In general, GPM-IMERG, TMPA V7 and TMPA RT correlate with observed rainfall, with a similar number of rain events correctly detected ( ˜ 20 %). Statistical analysis of modeled streamflows indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in southern regions (Ucayali Basin). GPM-IMERG, TMPA V7 and TMPA RT do not properly simulate streamflows in northern regions (Marañón and Napo basins), probably because of the lack of adequate rainfall estimates in northern Peru and the Ecuadorian Amazon.

  12. A space-time stochastic model of rainfall for satellite remote-sensing studies

    Science.gov (United States)

    Bell, Thomas L.

    1987-01-01

    A model of the spatial and temporal distribution of rainfall is described that produces random spatial rainfall patterns with these characteristics: (1) the model is defined on a grid with each grid point representing the average rain rate over the surrounding grid box, (2) rain occurs at any one grid point, on average, a specified percentage of the time and has a lognormal probability distribution, (3) spatial correlation of the rainfall can be arbitrarily prescribed, and (4) time stepping is carried out so that large-scale features persist longer than small-scale features. Rain is generated in the model from the portion of a correlated Gaussian random field that exceeds a threshold. The portion of the field above the threshold is rescaled to have a lognormal probability distribution. Sample output of the model designed to mimic radar observations of rainfall during the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), is shown. The model is intended for use in evaluating sampling strategies for satellite remote-sensing of rainfall and for development of algorithms for converting radiant intensity received by an instrument from its field of view into rainfall amount.

  13. Radar Rainfall Estimation using a Quadratic Z-R equation

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel Angel; Kramer, Stefan

    2016-04-01

    The aim of this work is to test a method that enables the input of event based drop size distributions to alter a quadratic reflectivity (Z) to rainfall (R) equation that is limited by fixed upper and lower points. Results will be compared to the Marshall-Palmer Z-R relation outputs and validated by a network of gauges and a single polarisation weather radar located close to Essen, Germany. The time window over which the drop size distribution measurements will be collected is varied to note any effect on the generated quadratic Z-R relation. The new quadratic algorithm shows some distinct improvement over the Marshall-Palmer relationship through multiple events. The inclusion of a minimum number of Z-R points helped to decrease the associated error by defaulting back to the Marshall-Palmer equation if the limit was not reached. More research will be done to discover why the quadratic performs poorly in some events as there appears to be little correlation between number of drops or mean rainfall amount and the associated error. In some cases it seems the spatial distribution of the disdrometers has a significant effect as a large percentage of the rain bands pass to the north of two of the three disdrometers, frequently in a slightly north-easterly direction. However during widespread precipitation events the new algorithm works very well with reductions compared to the Marshall-Palmer relation.

  14. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions

    Directory of Open Access Journals (Sweden)

    S. Yin

    2015-05-01

    Full Text Available Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and maximum 30 min intensity of individual events. However, these data are often unavailable in many areas of the world. The purpose of this study was to develop models that relate more commonly available rainfall data resolutions, such as daily or monthly totals, to rainfall erosivity. Eleven stations with one-minute temporal resolution rainfall data collected from 1961 through 2000 in the eastern water-erosion areas of China were used to develop and calibrate 21 models. Seven independent stations, also with one-minute data, were utilized to validate those models, together with 20 previously published equations. Results showed that models in this study performed better or similar to models from previous research to estimate rainfall erosivity for these data. Prediction capabilities, as determined using symmetric mean absolute percentage errors and Nash–Sutcliffe model efficiency coefficients, were demonstrated for the 41 models including those for estimating erosivity at event, daily, monthly, yearly, average monthly and average annual time scales. Prediction capabilities were generally better using higher resolution rainfall data as inputs. For example, models with rainfall amount and maximum 60 min rainfall amount as inputs performed better than models with rainfall amount and maximum daily rainfall amount, which performed better than those with only rainfall amount. Recommendations are made for choosing the appropriate estimation equation, which depend on objectives and data availability.

  15. Heavy daily-rainfall characteristics over the Gauteng Province

    African Journals Online (AJOL)

    2009-02-09

    Feb 9, 2009 ... Department of Geography, Geoinformatics and Meteorology, Geography Building 2-12, University of .... An example of heavy rainfall 'climatology' in the scientific .... rainfall stations in the calculation of the area-average rainfall.

  16. Topographic relationships for design rainfalls over Australia

    Science.gov (United States)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as

  17. A large scale rainfall-runoff-inundation analysis of Thailand Flood 2011

    Science.gov (United States)

    Sayama, T.; Tatebe, Y.; Tanaka, S.

    2012-12-01

    A large amount of rainfall during the 2011 monsoonal season caused an unprecedented flood disaster in the Chao Phraya River basin in Thailand. When a large-scale flood occurs, it is very important to take appropriate emergency measures by holistically understanding the characteristics of the flooding based on available information and by predicting its possible development. This paper proposes quick response-type flood simulation that can be conducted during a severe flooding event. The hydrologic simulation model used in this study is designed to simulate river discharges and flood inundation simultaneously for an entire river basin with satellite based rainfall and topographic information. The model is based on two-dimensional diffusive wave equations for rainfall-runoff and inundation calculations. The model takes into account the effects of lateral subsurface flow and vertical infiltration flow since these two types of flow are also important processes. This paper presents prediction results obtained in mid-October 2011, when the flooding in Thailand was approaching to its peak. Our scientific question is how well we can predict the possible development of a large-scale flooding event with limited information and how much we can improve the prediction with more local information. In comparison with a satellite based flood inundation map, the study found that the quick response-type simulation (Case A) was capable of capturing the peak flood inundation extent reasonably. Our interpretation of the prediction was that the flooding might continue even until the end of November, which was positively confirmed to some extent by the actual flooding status in late November. In the meantime, the Case A simulation generally overestimated the peak water level. To address this overestimation, the input data was updated with additional local information (Case B). Consequently, the simulation accuracy improved in the lower basin by up to about 10 % for discharge and up to

  18. Online Tools for Uncovering Data Quality (DQ) Issues in Satellite-Based Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Heo, Gil

    2015-01-01

    Data quality (DQ) has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.) How to obtain DQ info fast and easily, especially quantified info in ROI Existing parameters (random error), literature, DIY, etc.How to apply the knowledge in research and applications.Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.

  19. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  20. Prediction of rainfall intensity measurement errors using commercial microwave communication links

    Directory of Open Access Journals (Sweden)

    A. Zinevich

    2010-10-01

    Full Text Available Commercial microwave radio links forming cellular communication networks are known to be a valuable instrument for measuring near-surface rainfall. However, operational communication links are more uncertain relatively to the dedicated installations since their geometry and frequencies are optimized for high communication performance rather than observing rainfall. Quantification of the uncertainties for measurements that are non-optimal in the first place is essential to assure usability of the data.

    In this work we address modeling of instrumental impairments, i.e. signal variability due to antenna wetting, baseline attenuation uncertainty and digital quantization, as well as environmental ones, i.e. variability of drop size distribution along a link affecting accuracy of path-averaged rainfall measurement and spatial variability of rainfall in the link's neighborhood affecting the accuracy of rainfall estimation out of the link path. Expressions for root mean squared error (RMSE for estimates of path-averaged and point rainfall have been derived. To verify the RMSE expressions quantitatively, path-averaged measurements from 21 operational communication links in 12 different locations have been compared to records of five nearby rain gauges over three rainstorm events.

    The experiments show that the prediction accuracy is above 90% for temporal accumulation less than 30 min and lowers for longer accumulation intervals. Spatial variability in the vicinity of the link, baseline attenuation uncertainty and, possibly, suboptimality of wet antenna attenuation model are the major sources of link-gauge discrepancies. In addition, the dependence of the optimal coefficients of a conventional wet antenna attenuation model on spatial rainfall variability and, accordingly, link length has been shown.

    The expressions for RMSE of the path-averaged rainfall estimates can be useful for integration of measurements from multiple

  1. Sensitivity of a Floodplain Hydrodynamic Model to Satellite-Based DEM Scale and Accuracy: Case Study—The Atchafalaya Basin

    Directory of Open Access Journals (Sweden)

    Hahn Chul Jung

    2015-06-01

    Full Text Available The hydrodynamics of low-lying riverine floodplains and wetlands play a critical role in hydrology and ecosystem processes. Because small topographic features affect floodplain storage and flow velocity, a hydrodynamic model setup of these regions imposes more stringent requirements on the input Digital Elevation Model (DEM compared to upland regions with comparatively high slopes. This current study provides a systematic approach to evaluate the required relative vertical accuracy and spatial resolution of current and future satellite-based altimeters within the context of DEM requirements for 2-D floodplain hydrodynamic models. A case study is presented for the Atchafalaya Basin with a model domain of 1190 km2. The approach analyzes the sensitivity of modeled floodplain water elevation and velocity to typical satellite-based DEM grid-box scale and vertical error, using a previously calibrated version of the physically-based flood inundation model (LISFLOOD-ACC. Results indicate a trade-off relationship between DEM relative vertical error and grid-box size. Higher resolution models are the most sensitive to vertical accuracy, but the impact diminishes at coarser resolutions because of spatial averaging. The results provide guidance to engineers and scientists when defining the observation scales of future altimetry missions such as the   Surface Water and Ocean Topography (SWOT mission from the perspective of numerical modeling requirements for large floodplains of O[103] km2 and greater.

  2. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM2.5 is a promising way to fill the areas that are not covered by ground PM2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R(2) = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM2.5 estimates.

  3. Rainfall Simulation: methods, research questions and challenges

    Science.gov (United States)

    Ries, J. B.; Iserloh, T.

    2012-04-01

    In erosion research, rainfall simulations are used for the improvement of process knowledge as well as in the field for the assessment of overland flow generation, infiltration, and erosion rates. In all these fields of research, rainfall experiments have become an indispensable part of the research methods. In this context, small portable rainfall simulators with small test-plot sizes of one square-meter or even less, and devices of low weight and water consumption are in demand. Accordingly, devices with manageable technical effort like nozzle-type simulators seem to prevail against larger simulators. The reasons are obvious: lower costs and less time consumption needed for mounting enable a higher repetition rate. Regarding the high number of research questions, of different fields of application, and not least also due to the great technical creativity of our research staff, a large number of different experimental setups is available. Each of the devices produces a different rainfall, leading to different kinetic energy amounts influencing the soil surface and accordingly, producing different erosion results. Hence, important questions contain the definition, the comparability, the measurement and the simulation of natural rainfall and the problem of comparability in general. Another important discussion topic will be the finding of an agreement on an appropriate calibration method for the simulated rainfalls, in order to enable a comparison of the results of different rainfall simulator set-ups. In most of the publications, only the following "nice" sentence can be read: "Our rainfall simulator generates a rainfall spectrum that is similar to natural rainfall!". The most substantial and critical properties of a simulated rainfall are the drop-size distribution, the fall velocities of the drops, and the spatial distribution of the rainfall on the plot-area. In a comparison of the most important methods, the Laser Distrometer turned out to be the most up

  4. Heavy rainfall equations for Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2011-12-01

    Full Text Available Knowledge of intensity-duration-frequency (IDF relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

  5. Validation of the GCOM-W SCA and JAXA soil moisture algorithms

    Science.gov (United States)

    Satellite-based remote sensing of soil moisture has matured over the past decade as a result of the Global Climate Observing Mission-Water (GCOM-W) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  6. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  7. Spatial Coherence of Tropical Rainfall

    Science.gov (United States)

    Ratan, Ram; Venugopal, V.; Sukhatme, Jai; Murtugudde, Raghu

    2014-05-01

    We characterise the spatial coherence of tropical rain and its wet spells from observations (TRMM) and assess if models (CMIP5) are able to reproduce the observed features. Based on 15 years (1998-2012) of TRMM 3B42 (V7) 1-degree, daily rainfall, we estimate the spatial decorrelation scale (e-folding distance) of rain at each location in the tropics. A ratio of zonal to meridional spatial scales clearly illustrates that while rain patterns tend to be anisotropic (ratio of 4) over tropical ocean regions (particularly over Pacific ITCZ); over land regions, rain tends to be mostly isotropic. This contrast between ocean and land appears to be reasonably well captured by CMIP5 models, although the anisotropy (ratio) over ocean is much higher than in observations. A very curious behaviour in observations is the presence of a coherent band of spatial decorrelation lengths straddling the equator, in the East Pacific, reminiscent of a double ITCZ that some models tend to simulate. A similar analysis of wet spells of different durations suggests that the decorrelation scale is largely independent of the duration of wet spell.

  8. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    Indian Academy of Sciences (India)

    Olaniya Olusegun Mayowa; Sahar Hadi Pour; Shamsuddin Shahid; Morteza Mohsenipour; Sobri Bin Harun; Arien Heryansyah; Tarmizi Ismail

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfallrelated extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971–2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann–Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  9. Rainfall Variability, Drought Characterization, and Efficacy of Rainfall Data Reconstruction: Case of Eastern Kenya

    Directory of Open Access Journals (Sweden)

    M. Oscar Kisaka

    2015-01-01

    Full Text Available This study examined the extent of seasonal rainfall variability, drought occurrence, and the efficacy of interpolation techniques in eastern Kenya. Analyses of rainfall variability utilized rainfall anomaly index, coefficients of variance, and probability analyses. Spline, Kriging, and inverse distance weighting interpolation techniques were assessed using daily rainfall data and digital elevation model using ArcGIS. Validation of these interpolation methods was evaluated by comparing the modelled/generated rainfall values and the observed daily rainfall data using root mean square errors and mean absolute errors statistics. Results showed 90% chance of below cropping threshold rainfall (500 mm exceeding 258.1 mm during short rains in Embu for one year return period. Rainfall variability was found to be high in seasonal amounts (CV = 0.56, 0.47, and 0.59 and in number of rainy days (CV = 0.88, 0.49, and 0.53 in Machang’a, Kiritiri, and Kindaruma, respectively. Monthly rainfall variability was found to be equally high during April and November (CV = 0.48, 0.49, and 0.76 with high probabilities (0.67 of droughts exceeding 15 days in Machang’a and Kindaruma. Dry-spell probabilities within growing months were high, (91%, 93%, 81%, and 60% in Kiambere, Kindaruma, Machang’a, and Embu, respectively. Kriging interpolation method emerged as the most appropriate geostatistical interpolation technique suitable for spatial rainfall maps generation for the study region.

  10. A point rainfall model and rainfall intensity-duration-frequency analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Chul-Sang; Jung, Kwang-Sik [Korea University, Jochiwon(Korea); Kim, Nam-Won [Korea Institute of Construction Technology, Koyang(Korea)

    2001-12-31

    This study proposes a theoretical methodology for deriving a rainfall intensity-duration-frequency(I-D-F) curve using a simple rectangular pulses Poisson process model. As the I-D-F curve derived by considering the model structure is dependent on the rainfall model parameters estimated using the observed first and second order statistics, it becomes less sensitive to the unusual rainfall events than that derived using the annual maxima rainfall series. This study has been applied to the rainfall data at Seoul and Incheon stations to check its applicability by comparing the two I-D-F curves from the model and the data. The results obtained are as followed. (1) As the duration becomes longer, the overlap probability increases significantly. However, its contribution to the rainfall intensity decreases a little. (2) When considering the overlap of each rainfall event, especially for large duration and return period, we could see obvious increases of rainfall intensity. This result is normal as the rainfall intensity is calculated by considering both the overlap probability and return period. Also, the overlap effect for Seoul station is found much higher than that for Incheon station, which is mainly due to the different overlap probabilities calculated using different rainfall model parameter sets. (3) As the rectangular pulses Poisson processes model used in this study cannot consider the clustering characteristics of rainfall, the derived I-D-F curves show less rainfall intensities than those from the annual maxima series. However, overall pattern of both I-D-F curves are found very similar, and the difference is believed to be overcome by use of a rainfall model with the clustering consideration. (author). 14 refs., 6 tabs., 2 figs.

  11. Physical simulation of urban rainfall infiltration

    Institute of Scientific and Technical Information of China (English)

    LI Jie; ZENG Bing; WANG Yan-xia; SHEN Lei

    2008-01-01

    To meet the demand of urban rainwater integrated management, we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters. We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system. In a comprehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material, we simulated the major parameters of an experimental area rainfall, soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient, obtained from basic data.

  12. Detecting Rainfall Onset Using Sky Images

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based sky cameras (popularly known as Whole Sky Imagers) are increasingly used now-a-days for continuous monitoring of the atmosphere. These imagers have higher temporal and spatial resolutions compared to conventional satellite images. In this paper, we use ground-based sky cameras to detect the onset of rainfall. These images contain additional information about cloud coverage and movement and are therefore useful for accurate rainfall nowcast. We validate our results using rain gauge measurement recordings and achieve an accuracy of 89% for correct detection of rainfall onset.

  13. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2017-06-01

    Full Text Available Abstract: The accurate production of a rainfall environment similar to natural rainfall by a rainfall simulator (RS is a crucial and challenging task in rainfall instrument testing or calibration. Although the spatial uniformity of rainfall accumulation is a key parameter of an RS, the spatial uniformity comparison between simulated rainfall and natural rainfall, and the spatial uniformity improvements for an RS are scant in the literature. In this study, a fine-scale natural rainfall experiment was studied using the same testing methods of an RS and the rainfall uniformity was evaluated using the Christiansen Uniformity Coefficient (CU. Simultaneously, factors influencing the spatial uniformity of natural rainfall, including the average rainfall accumulation (RA, the deviation of RA, and the area of the test zone, were analyzed. The results successfully reproduced some of the behaviors observed in natural rainfall experiments, showing that CU is dependent on these parameters. Based on these studies, we developed a rainfall simulator with a rotary platform (RSRP and found that although spatial uniformity of the RSRP was greatly improved using an appropriate rotary speed, it was not consistent with the spatial uniformity of natural rainfall. Furthermore, we tested four tipping-bucket rain gauges using this imperfect RSRP, and found that the RSRP might acquire the instrumental errors associated with RA for a tested rainfall instrument.

  14. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    Science.gov (United States)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  15. Multiagent Attitude Control System for Satellites Based in Momentum Wheels and Event-Driven Synchronization

    Science.gov (United States)

    Garcia, Juan L.; Moreno, Jose Sanchez

    2012-12-01

    Attitude control is a requirement always present in spacecraft design. Several kinds of actuators exist to accomplish this control, being momentum wheels one of the most employed. Usually satellites carry redundant momentum wheels to handle any possible single failure, but the controller remains as a single centralized element, posing problems in case of failures. In this work a decentralized agent-based event-driven algorithm for attitude control is presented as a possible solution. Several agents based in momentum wheels will interact among them to accomplish the satellite control. A simulation environment has been developed to analyze the behavior of this architecture. This environment has been made available through the web page http://www.dia.uned.es.

  16. A satellite-based digital data system for low-frequency geophysical data

    Science.gov (United States)

    Silverman, S.; Mortensen, C.; Johnston, M.

    1989-01-01

    A reliable method for collection, display, and analysis of low-frequency geophysical data from isolated sites, which can be throughout North and South America and the Pacific Rim, has been developed for use with the Geostationary Operational Environmental Satellite (GEOS) system. This system provides real-time monitoring of crustal deformation parameters such as tilt, strain, fault displacement, local magnetic field, crustal geochemistry, and water levels, as well as meteorological and other parameters, along faults in California and Alsaka, and in volcanic regions in the western United States, Rabaul, and other locations in the New Britain region of the South pacific. Various mathematical, statistical, and graphical algorithms process the incoming data to detect changes in crustal deformation and fault slip that may indicate the first stages of catastrophic fault failure. -from Authors

  17. Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations

    Science.gov (United States)

    Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.

    2015-12-01

    Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil

  18. Leveraging Machine Learning to Estimate Soil Salinity through Satellite-Based Remote Sensing

    Science.gov (United States)

    Welle, P.; Ravanbakhsh, S.; Póczos, B.; Mauter, M.

    2016-12-01

    Human-induced salinization of agricultural soils is a growing problem which now affects an estimated 76 million hectares and causes billions of dollars of lost agricultural revenues annually. While there are indications that soil salinization is increasing in extent, current assessments of global salinity levels are outdated and rely heavily on expert opinion due to the prohibitive cost of a worldwide sampling campaign. A more practical alternative to field sampling may be earth observation through remote sensing, which takes advantage of the distinct spectral signature of salts in order to estimate soil conductivity. Recent efforts to map salinity using remote sensing have been met with limited success due to tractability issues of managing the computational load associated with large amounts of satellite data. In this study, we use Google Earth Engine to create composite satellite soil datasets, which combine data from multiple sources and sensors. These composite datasets contain pixel-level surface reflectance values for dates in which the algorithm is most confident that the surface contains bare soil. We leverage the detailed soil maps created and updated by the United States Geological Survey as label data and apply machine learning regression techniques such as Gaussian processes to learn a smooth mapping from surface reflection to noisy estimates of salinity. We also explore a semi-supervised approach using deep generative convolutional networks to leverage the abundance of unlabeled satellite images in producing better estimates for salinity values where we have relatively fewer measurements across the globe. The general method results in two significant contributions: (1) an algorithm that can be used to predict levels of soil salinity in regions without detailed soil maps and (2) a general framework that serves as an example for how remote sensing can be paired with extensive label data to generate methods for prediction of physical phenomenon.

  19. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall severity

    Science.gov (United States)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios; Zoccatelli, Davide; Creutin, Jean-Dominique; Borga, Marco

    2016-04-01

    Forecasting the occurrence of landslides and debris flows (collectively termed 'debris flows' hereinafter) is fundamental for issuing hazard warnings, and focuses largely on rainfall as a triggering agent. Debris flow forecasting relies very often on the identification of combinations of depth and duration of rainfall - rainfall thresholds - that trigger widespread debris flows. Rainfall estimation errors related to the sparse nature of raingauge data are enhanced in case of convective rainfall events characterized by limited spatial extent. Such errors have been shown to cause underestimation of the rainfall thresholds and, thus, less efficient forecasts of debris flows occurrence. This work examines the spatial organization of debris flows-triggering rainfall around the debris flow initiation points using high-resolution, carefully corrected radar data for a set of short duration (debris-flow triggering rainfall events that occurred in the study area between 2005 and 2014. The selected events are among the most severe in the region during this period and triggered a total of 99 debris flows that caused significant damage to people and infrastructures. We show that the spatial rainfall organisation depends on the severity (measured via the estimated return time-RT) of the debris flow-triggering rainfall. For more frequent events (RTdebris flow location coincides with a local minimum, whereas for less frequent events (RT>20 yrs) the triggering rainfall presents a local peak corresponding to the debris flow initiation point. Dependence of these features on rainfall duration is quite limited. The characteristics of the spatial rainfall organisation are exploited to understand the performances and results of three different rainfall interpolation techniques: nearest neighbour (NN), inverse distance weighting (IDW) and ordinary kriging (OK). We show that the features of the spatial organization of the debris flow triggering rainfall explain the biases in the

  20. Comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: the Upper Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    A. W. Worqlul

    2015-02-01

    Full Text Available Accurate prediction of hydrological models requires accurate spatial and temporal distribution of rainfall observation network. In developing countries rainfall observation station network are sparse and unevenly distributed. Satellite-based products have the potential to overcome these shortcomings. The objective of this study is to compare the advantages and the limitation of commonly used high-resolution satellite rainfall products as input to hydrological models as compared to sparsely populated network of rain gauges. For this comparison we use two semi-distributed hydrological models Hydrologiska Byråns Vattenbalansavdelning (HBV and Parameter Efficient Distributed (PED that performed well in Ethiopian highlands in two watersheds: the Gilgel Abay with relatively dense network and Main Beles with relatively scarce rain gauge stations. Both are located in the Upper Blue Nile Basin. The two models are calibrated with the observed discharge from 1994 to 2003 and validated from 2004 to 2006. Satellite rainfall estimates used includes Climate Forecast System Reanalysis (CFSR, Tropical Rainfall Measuring Mission (TRMM 3B42 version 7 and ground rainfall measurements. The results indicated that both the gauged and the CFSR precipitation estimates were able to reproduce the stream flow well for both models and both watershed. TRMM 3B42 performed poorly with Nash Sutcliffe values less than 0.1. As expected the HBV model performed slightly better than the PED model, because HBV divides the watershed into sub-basins resulting in a greater number of calibration parameters. The simulated discharge for the Gilgel Abay was better than for the less well endowed (rain gauge wise Main Beles. Finally surprisingly, the ground based gauge performed better for both watersheds (with the exception of extreme events than TRMM and CFSR satellite rainfall estimates. Undoubtedly in the future, when improved satellite products will become available, this will change.

  1. Rainfall mechanisms for the dominant rainfall mode over Zimbabwe relative to ENSO and/or IODZM.

    Science.gov (United States)

    Manatsa, Desmond; Mukwada, Geoffrey

    2012-01-01

    Zimbabwe's homogeneous precipitation regions are investigated by means of principal component analysis (PCA) with regard to the underlying processes related to ENSO and/or Indian Ocean Dipole zonal mode (IODZM). Station standardized precipitation index rather than direct rainfall values represent the data matrix used in the PCA. The results indicate that the country's rainfall is highly homogeneous and is dominantly described by the first principal mode (PC1). This leading PC can be used to represent the major rainfall patterns affecting the country, both spatially and temporarily. The current practice of subdividing the country into the two seasonal rainfall forecast zones becomes irrelevant. Partial correlation analysis shows that PC1 is linked more to the IODZM than to the traditional ENSO which predominantly demonstrates insignificant association with PC1. The pure IODZM composite is linked to the most intense rainfall suppression mechanisms, while the pure El Niño composite is linked to rainfall enhancing mechanisms.

  2. Maximum daily rainfall in South Korea

    Indian Academy of Sciences (India)

    Saralees Nadarajah; Dongseok Choi

    2007-08-01

    Annual maxima of daily rainfall for the years 1961–2001 are modeled for five locations in South Korea (chosen to give a good geographical representation of the country). The generalized extreme value distribution is fitted to data from each location to describe the extremes of rainfall and to predict its future behavior. We find evidence to suggest that the Gumbel distribution provides the most reasonable model for four of the five locations considered. We explore the possibility of trends in the data but find no evidence suggesting trends. We derive estimates of 10, 50, 100, 1000, 5000, 10,000, 50,000 and 100,000 year return levels for daily rainfall and describe how they vary with the locations. This paper provides the first application of extreme value distributions to rainfall data from South Korea.

  3. RAINFALL EROSIVITY IN SOUTHEASTERN NIGERIA *Ezemonye ...

    African Journals Online (AJOL)

    Osondu

    2011-10-13

    Oct 13, 2011 ... annual total amount, and frequency of fall, kinetic energy and ... annual rainfall increases from the northern frontier of the region ... Nigeria Meteorological Agency, Lagos for the ..... Estimation for Australia's Tropics. Aust. J. Soil.

  4. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    As noted by the Bureau of Meteorology, Canada, to examine whether such ... their local climate, a threshold considered extreme in one part of Australia could be ... (extreme frequency); the average intensity of rainfall from extreme events.

  5. Rainfall Fields: Estimation, Analysis, and Prediction

    Science.gov (United States)

    The problem of predicting rainfall and its characteristics has always been one of overriding concern for both hydrologists and meteorologists. Yet, for decades the two disciplines have pursued its solution using radically different techniques and communicating relatively little about recent advances in understanding rainfall processes, new technology, and improvements in predictive skill.Meteorologists tend to publish in journals that deal almost exclusively with atmospheric processes, while hydrologists prefer media which focus on the Earth's surface and below. Meteorologists tend to concentrate on developing and improving numerical hydrodynamical models of the atmospheric processes that generate rainfall. Their approach is essentially to solve an initial value problem where the observed three-dimensional state of the atmosphere is input to the model and the rainfall is one of the output parameters.

  6. Satellite Based Probabilistic Snow Cover Extent Mapping (SCE) at Hydro-Québec

    Science.gov (United States)

    Teasdale, Mylène; De Sève, Danielle; Angers, Jean-François; Perreault, Luc

    2016-04-01

    Over 40% of Canada's water resources are in Quebec and Hydro-Quebec has developed potential to become one of the largest producers of hydroelectricity in the world, with a total installed capacity of 36,643 MW. The Hydro-Québec fleet park includes 27 large reservoirs with a combined storage capacity of 176 TWh, and 668 dams and 98 controls. Thus, over 98% of all electricity used to supply the domestic market comes from water resources and the excess output is sold on the wholesale markets. In this perspective the efficient management of water resources is needed and it is based primarily on a good river flow estimation including appropriate hydrological data. Snow on ground is one of the significant variables representing 30% to 40% of its annual energy reserve. More specifically, information on snow cover extent (SCE) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in northern regions since the snowmelt provides the water that fills the reservoirs and is subsequently used for hydropower generation. For several years Hydro Quebec's research institute ( IREQ) developed several algorithms to map SCE and SWE. So far all the methods were deterministic. However, given the need to maximize the efficient use of all resources while ensuring reliability, the electrical systems must now be managed taking into account all risks. Since snow cover estimation is based on limited spatial information, it is important to quantify and handle its uncertainty in the hydrological forecasting system. This paper presents the first results of a probabilistic algorithm for mapping SCE by combining Bayesian mixture of probability distributions and multiple logistic regression models applied to passive microwave data. This approach allows assigning for each grid point, probabilities to the set of the mutually exclusive discrete outcomes: "snow" and "no snow". Its performance was evaluated using the Brier score since it is particularly appropriate to

  7. Weather radar rainfall data in urban hydrology

    Science.gov (United States)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, Marie-Claire; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-03-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value to the aforementioned emerging fields in current and future applications, but also to the analysis of integrated water systems.

  8. A simple simulation approach to generate complex rainfall fields conditioned by elevation: example of the eastern Mediterranean region

    Science.gov (United States)

    Oriani, Fabio; Ohana-Levi, Noa; Straubhaar, Julien; Renard, Philippe; Karnieli, Arnon; Mariethoz, Grégoire; Morin, Efrat; Marra, Francesco

    2016-04-01

    Stochastically generating realistic rainfall fields is useful to study the uncertainty related to catchment recharge and its propagation to distributed hydrological models. To this end, it is critical to use weather radar images as training data, being the single most informative source for rainfall spatial heterogeneity. Generating realistic simulations is particularly important in regions like the eastern Mediterranean, where the synoptic conditions can lead to rainfall fields presenting various morphology, anisotropy and non-stationarity. The Direct Sampling (DS) technique [Mariethoz2010] is proposed here as a stochastic generator of spatial daily rainfall fields relying on the simulation of radar imagery. The technique is based on resampling of a training data set (in this case, a stack of radar images) and the generation of similar patterns to the ones found in the data. The strong point of DS, which makes it an attractive simulation approach for rainfall, is its capability to preserve the high-order statistical features present in the training image (e.g., rainfall cell shape, spatial non-stationarity) with minimal parameterization. Moreover, factors influencing rainfall, like elevation, can be used as conditioning variables, without the need of a complex statistical dependence model. A DS setup for radar image simulation is presented and tested for the simulation of daily rainfall fields using a 10-year radar-image record from the central region of Israel. Using a synoptic weather classification to train the model, the algorithm can generate realistic spatial fields for different rainfall types, preserving the variability and the covariance structure of the reference reasonably well. Moreover, the simulation is conditioned using the digital elevation model to preserve the complex relation between rainfall intensity and altitude that is characteristic for this region. [Mariethoz2010] G. Mariethoz, P. Renard, and J. Straubhaar. The direct sampling method to

  9. Combining Satellite-Based Precipitation and Vegetation Indices to Achieve a Mid-Summer Agricultural Forecast in Jamaica

    Science.gov (United States)

    Curtis, S.; Allen, T. L.; Gamble, D.

    2009-12-01

    In this study global Earth observations of precipitation and Normalized Difference Vegetation Indices (NDVI) are used to assess the mid-summer dry spell’s (MSD) strength and subsequent impact on agriculture in the St. Elizabeth parish of Jamaica. St. Elizabeth is known as the ‘bread basket’ of Jamaica and has been the top or second highest producer of domestic food crops in the last twenty years. Yet, St. Elizabeth sits in the Jamaican rain shadow and is highly affected by drought. In addition, the summer rainy season is regularly interrupted by an MSD, which often occurs in July, has strong interannual variability, and greatly affects cropping strategies and yields. The steps undertaken to achieve a mid-summer agricultural forecast are: 1) use relationships between Global Precipitation Climatology Project v2.1 data over western Jamaica and predictive climate modes from 1979 to present to develop a forecast of July rainfall 2) downscale the rainfall variability in time to sub-monthly and space to the St. Elizabeth parish using the Tropical Rainfall Measuring Mission 3) link rainfall variability to vegetation vigor with the MODIS NDVI data 4) communicate with St. Elizabeth farmers via the University of West Indies, Mona. An important finding from this study is a decrease in vegetative vigor follows the MSD by two to four weeks in St. Elizabeth and the vegetation in the southern portion of the parish appears to be more sensitive to the MSD than vegetation elsewhere in the country.

  10. NOAA NESDIS global automated satellite-based snow mapping system and products

    Science.gov (United States)

    Romanov, Peter

    2016-05-01

    Accurate, timely and spatially detailed information on the snow cover distribution and on the snow pack properties is needed in various research and practical applications including numerical weather prediction, climate modeling, river runoff estimates and flood forecasts. Owing to the wide area coverage, high spatial resolution and short repeat cycle of observations satellites present one of the key components of the global snow and ice cover monitoring system. The Global Multisensor Automated Snow and Ice Mapping System (GMASI) has been developed at the request of NOAA National Weather Service (NWS) and NOAA National Ice Center (NIC) to facilitate NOAA operational monitoring of snow and ice cover and to provide information on snow and ice for use in NWP models. Since 2006 the system has been routinely generating daily snow and ice cover maps using combined observations in the visible/infrared and in the microwave from operational meteorological satellites. The output product provides continuous (gap free) characterization of the global snow and ice cover distribution at 4 km spatial resolution. The paper presents a basic description of the snow and ice mapping algorithms incorporated in the system as well as of the product generated with GMASI. It explains the approach used to validate the derived snow and ice maps and provides the results of their accuracy assessment.

  11. Satellite-based detection and monitoring of phytoplankton blooms along the Oregon coast

    Science.gov (United States)

    McKibben, S. M.; Strutton, P. G.; Foley, D. G.; Peterson, T. D.; White, A. E.

    2012-12-01

    We have applied a normalized difference algorithm to 8 day composite chlorophyll-a (CHL) and fluorescence line height (FLH) imagery obtained from the Moderate Resolution Imaging Spectroradiometer aboard the Aqua spacecraft in order to detect and monitor phytoplankton blooms in the Oregon coastal region. The resulting bloom products, termed CHLrel and FLHrel, respectively, describe the onset and advection of algal blooms as a function of the percent relative change observed in standard 8 day CHL or FLH imagery over time. Bloom product performance was optimized to consider local time scales of biological variability (days) and cloud cover. Comparison of CHLrel and FLHrelretrievals to in situ mooring data collected off the central Oregon coast from summer 2009 through winter 2010 shows that the products are a robust means to detect bloom events during the summer upwelling season. Evaluation of winter performance was inconclusive due to persistent cloud cover and limited in situ chl-a records. Pairing the products with coincident in situ physical proxies provides a tool to elucidate the conditions that induce bloom onset and identify the physical mechanisms that affect bloom advection, persistence, and decay. These products offer an excellent foundation for remote bloom detection and monitoring in this region, and the methods developed herein are applicable to any region with sufficient CHL and FLH coverage.

  12. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.

    2008-01-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.

  13. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication.

    Science.gov (United States)

    Peng, Cheng-Zhi; Yang, Tao; Bao, Xiao-Hui; Zhang, Jun; Jin, Xian-Min; Feng, Fa-Yong; Yang, Bin; Yang, Jian; Yin, Juan; Zhang, Qiang; Li, Nan; Tian, Bao-Li; Pan, Jian-Wei

    2005-04-22

    We report free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. It is shown that the desired entanglement can still survive after both entangled photons have passed through the noisy ground atmosphere with a distance beyond the effective thickness of the aerosphere. This is confirmed by observing a spacelike separated violation of Bell inequality of 2.45+/-0.09. On this basis, we exploit the distributed entangled photon source to demonstrate the Bennett-Brassard 1984 quantum cryptography scheme. The distribution distance of entangled photon pairs achieved in the experiment is for the first time well beyond the effective thickness of the aerosphere, hence presenting a significant step towards satellite-based global quantum communication.

  14. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  15. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    Science.gov (United States)

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-09-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

  16. Effects of the partitioning of diffuse and direct solar radiation on satellite-based modeling of crop gross primary production

    Science.gov (United States)

    Xin, Qinchuan; Gong, Peng; Suyker, Andrew E.; Si, Yali

    2016-08-01

    Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.

  17. Influence of rainfall observation network on model calibration and application

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-01-01

    Full Text Available The objective in this study is to investigate the influence of the spatial resolution of the rainfall input on the model calibration and application. The analysis is carried out by varying the distribution of the raingauge network. A meso-scale catchment located in southwest Germany has been selected for this study. First, the semi-distributed HBV model is calibrated with the precipitation interpolated from the available observed rainfall of the different raingauge networks. An automatic calibration method based on the combinatorial optimization algorithm simulated annealing is applied. The performance of the hydrological model is analyzed as a function of the raingauge density. Secondly, the calibrated model is validated using interpolated precipitation from the same raingauge density used for the calibration as well as interpolated precipitation based on networks of reduced and increased raingauge density. Lastly, the effect of missing rainfall data is investigated by using a multiple linear regression approach for filling in the missing measurements. The model, calibrated with the complete set of observed data, is then run in the validation period using the above described precipitation field. The simulated hydrographs obtained in the above described three sets of experiments are analyzed through the comparisons of the computed Nash-Sutcliffe coefficient and several goodness-of-fit indexes. The results show that the model using different raingauge networks might need re-calibration of the model parameters, specifically model calibrated on relatively sparse precipitation information might perform well on dense precipitation information while model calibrated on dense precipitation information fails on sparse precipitation information. Also, the model calibrated with the complete set of observed precipitation and run with incomplete observed data associated with the data estimated using multiple linear regressions, at the locations treated as

  18. Remote sensing of rainfall for debris-flow hazard assessment

    Science.gov (United States)

    Wieczorek, G.F.; Coe, J.A.; Godt, J.W.; ,

    2003-01-01

    Recent advances in remote sensing of rainfall provide more detailed temporal and spatial data on rainfall distribution. Four case studies of abundant debris flows over relatively small areas triggered during intense rainstorms are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. Three examples with rainfall estimates from National Weather Service Doppler radar and one example with rainfall estimates from infrared imagery from a National Oceanic and Atmospheric Administration satellite are compared with ground-based measurements of rainfall and with landslide distribution. The advantages and limitations of using remote sensing of rainfall for landslide hazard analysis are discussed. ?? 2003 Millpress,.

  19. Temporal Variation of Rainfall Intensity, Rainfall Partitioning and its Correlation with Meteorological Elements of Eastern India

    Science.gov (United States)

    Tripathi, P.; Chaturvedi, A.

    2007-07-01

    Rainfall plays a vital role in Indian agriculture hence economy of the country, but very crucial and risky due to its erratic/ unpredictable behavior and uneven distribution. Since monsoonal vagaries in eastern India are very frequent hence involve a great risk in Argil. Production and quality of atmosphere at desired level. Though prediction of onset of monsoon with total quantum of rainfall is available through different agencies but still not accurate and not in consonance of observed behavior. Therefore, surface weather data of meteorological elements needs to be critically examined for prediction of onset of monsoon, rainfall rate and its variability with space and time and strategy to cope the uncertainty of risk (drought and flood etc) needs to be evolved. In the present study an analysis of rainfall of Eastern India (Eastern U.P., Bihar and Jharkhand) has been made for rainfall partitioning, rate of rainfall and its variation with space and time. A location specific six parameter model were developed with multiple correlation technique to predict the medium and long range rainfall forecast and found 65% accurate for long range and 79% accurate to medium range. This will not only help to predict the accurate rainfall but also provides a clue for assessment of quality of rainfall under different aerosol levels of atmosphere which ultimately led to link designers with radio wave propagation. In addition, correlation of physical variables of atmosphere like vapor pressure deficit, dew point and relative humidity were also made with quantum of rainfall, rate of rainfall and its quantitative characteristics in the study area as to understand the mechanism behavior of atmosphere for space research.

  20. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    Science.gov (United States)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results

  1. Extreme Rainfall Impacts in Fractured Permeable Catchments

    Science.gov (United States)

    Ireson, A. M.; Butler, A. P.

    2009-12-01

    Serious groundwater flooding events have occurred on Chalk catchments in both the UK and north west Europe in the last decade, causing substantial amounts of disruption and economic damage. These fractured, permeable catchments are characterized by low surface runoff, high baseflow indices and strongly attenuated streamflow hydrographs. They have a general resilience to drought and pluvial/fluvial flooding. The small pore size of the Chalk matrix (~ 1 µm) exerts a high suction, such that dynamic storage is primarily due to the fractures, and amounts to ~ 1% of the total volume. As a result, under sustained rainfall the water table can rise up to exceptional levels leading to surface water emergence from springs and valleys. Floodwater may slowly drain with the topography, or, in localized depressions, it may simply pond until the groundwater levels decline. In winter 2000/1, a sequence of individually unexceptional rainfall events over several months led to large scale flooding in the Pang catchment, Berkshire, UK. By contrast, an extreme rainfall event on 20th July 2007 in the same catchment caused a very rapid response at the water table, but due to the antecedent conditions did not lead to flooding. The objective of this study is to quantify how the water table in a fractured permeable catchment responds to different types of rainfall, and the implications of this for groundwater flooding. We make use of measurements from the Pang catchment, including: rainfall (tipping bucket gauges); actual evaporation (eddy flux correlation); soil water content (profile probes and neutron probes); near surface matric potential (tensiometers and equitensiometers); deep (>10m) matric potential (deep jacking tensiometers); and water table elevation (piezometers). Conventional treatment of recharge in Chalk aquifers considers a fixed bypass component of rainfall, normally 15%, to account for the role of the fractures. However, interpretation of the field data suggest three modes

  2. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    Science.gov (United States)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is

  3. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    Science.gov (United States)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with

  4. Ability of a dual polarized X-band radar to estimate rainfall

    Science.gov (United States)

    Diss, S.; Testud, J.; Lavabre, J.; Ribstein, P.; Moreau, E.; Parent du Chatelet, J.

    2009-07-01

    The aim of this study is to assess rainfall estimates by a dual polarized X-band radar. This study was part of the European project FRAMEA (Flood forecasting using Radar in Alpine and Mediterranean Areas). Two radars were set up near the small town of Collobrières in South Eastern France. The first radar was a dual polarized X-band radar (Hydrix ®) associated with a ZPHI ® algorithm while the second one was an S-band radar (Météo France). We compared radar rainfall data with measurements obtained by two rain gauge networks (Météo France and Cemagref). During the experiments from February 2006 to June 2007, four significant rainfall events occurred. The accuracy of the rain rate obtained with both S-band and X-band radars decreased significantly beyond 60 km, in particular for the X-band radar. At closer ranges, such as 30-60 km from the radars, the X-band and the S-band radar retrievals showed similar performance with Nash criteria around 0.80 for the X-band radar and 0.75 for the S-band radar. Furthermore, the X-band radar did not require calibration on rainfall records, which tends to make it a useful method to assess rainfall in areas without a rain gauge network.

  5. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  6. Changes in rainfall seasonality in the tropics

    Science.gov (United States)

    Feng, X.; Porporato, A. M.; Rodriguez-Iturbe, I.

    2012-12-01

    Climate change has altered not only the overall magnitude of rainfall but also their seasonal distribution and interannual variability across the world. Such changes in the rainfall regimes will be most keenly felt in arid and semiarid regions, where the availability and timing of water are key factors controlling biogeochemical cycles, primary productivity, and phenology, in addition to regulating regional agricultural production and economic output. Nevertheless, due to the inherent complexity of the signals, a comprehensive framework to understand seasonal rainfall profiles across multiple timescales and geographical regions is still lacking. Here, we formulate a global measure of seasonality and investigate changes in the seasonal rainfall regime across the tropics in the past century. The seasonality index, which captures the effects of both the magnitude and concentration of the rainy season, is highest in the northeast region of Brazil, western and central Africa, northern Australia, and parts of the Caribbean and Southeast Asia (the seasonally dry tropics). Further decomposing rainfall seasonality into its magnitude, duration, and timing components using spectral techniques and information theory, we find marked increase in the interannual variability of seasonality over most of the dry tropics, implying increasing uncertainty in the intensity, duration, and arrival of seasonal rainfall over the past century. We also show that such increase in variability has occurred in conjunction with shifts in the seasonal timing and changes in its overall magnitude. Thus, it is importance to place the analysis of rainfall regimes in these regions into a seasonal context that is most relevant to local ecological and social processes. These changes, if sustained into the next century, will portend significant shifts in the timing of plant activities and ecosystem composition and distribution, with consequences for water and carbon cycling and water resource management in

  7. On evaluation of ShARP passive rainfall retrievals over snow-covered land surfaces and coastal zones

    CERN Document Server

    Ebtehaj, Ardeshir M; Foufoula-Georgiou, Efi

    2015-01-01

    For precipitation retrievals over land, using satellite measurements in microwave bands, it is important to properly discriminate the weak rainfall signals from strong and highly variable background surface emission. Traditionally, land rainfall retrieval methods often rely on a weak signal of rainfall scattering on high-frequency channels (85 GHz) and make use of empirical thresholding and regression-based techniques. Due to the increased ground surface signal interference, precipitation retrieval over radiometrically complex land surfaces, especially over snow-covered lands, deserts and coastal areas, is of particular challenge for this class of retrieval techniques. This paper evaluates the results by the recently proposed Shrunken locally linear embedding Algorithm for Retrieval of Precipitation (ShARP), over a radiometrically complex terrain and coastal areas using the data provided by the Tropical Rainfall Measuring Mission (TRMM) satellite. To this end, the ShARP retrieval experiments are performed ove...

  8. A simulation-optimization model for Stone column-supported embankment stability considering rainfall effect

    Energy Technology Data Exchange (ETDEWEB)

    Deb, Kousik, E-mail: kousik@civil.iitkgp.ernet.in [Associate Professor, Department of Civil Engineering, IIT Kharagpur, Kharagpur-721302 (India); Dhar, Anirban, E-mail: anirban@civil.iitkgp.ernet.in [Assistant Professor, Department of Civil Engineering, IIT Kharagpur, Kharagpur-721302 (India); Purohit, Sandip, E-mail: sandip.purohit91@gmail.com [Former B.Tech Student, Department of Civil Engineering, NIT Rourkela, Rourkela (India)

    2016-02-01

    Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliably estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.

  9. A simulation-optimization model for Stone column-supported embankment stability considering rainfall effect

    Science.gov (United States)

    Deb, Kousik; Dhar, Anirban; Purohit, Sandip

    2016-02-01

    Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliably estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.

  10. Modeling the Distribution of Rainfall Intensity using Hourly Data

    OpenAIRE

    Salisu Dan'azumi; Supiah Shamsudin; Azmi Aris

    2010-01-01

    Problem statement: Design of storm water best management practices to control runoff and water pollution can be achieved if a prior knowledge of the distribution of rainfall characteristics is known. Rainfall intensity, particularly in tropical climate, plays a major role in the design of runoff conveyance and erosion control systems. This study is aimed to explore the statistical distribution of rainfall intensity for Peninsular Malaysia using hourly rainfall data. Approach: Hourly rainfall ...

  11. Global, Daily, Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Slayback, D. A.; Policelli, F. S.; Brakenridge, G. R.; Tokay, M. M.; Smith, M. M.; Kettner, A. J.

    2013-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is expected to increase in frequency and damage with climate change and population growth. Some of 2013's major floods have impacted the New York City region, the Midwest, Alberta, Australia, various parts of China, Thailand, Pakistan, and central Europe. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours of events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial daily assessment of flooding extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on many of these issues, and are working to develop higher resolution flood detection using alternate sensors, including Landsat and various radar sensors. Although these

  12. Global Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Smith, M.; Slayback, D. A.; Policelli, F.; Brakenridge, G. R.; Tokay, M.

    2012-12-01

    Flooding is among the most destructive, frequent, and costly natural disasters faced by modern society, with several major events occurring each year. In the past few years, major floods have devastated parts of China, Thailand, Pakistan, Australia, and the Philippines, among others. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we have developed, and are now operating, a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours after flooding events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard. The LANCE system typically processes imagery in less than 3 hours after satellite overpass, and our flood mapping system can output flood products within ½ hour of acquiring the LANCE products. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial assessment of flooding extent by late afternoon, every day, and more robust assessments after accumulating imagery over a longer period; the MODIS sensors are optical, so cloud cover remains an issue, which is partly overcome by using multiple looks over one or more days. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on some of these issues

  13. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  14. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period

    Science.gov (United States)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios I.; Zoccatelli, Davide; Creutin, Jean Dominique; Borga, Marco

    2017-02-01

    Forecasting the occurrence of debris flows is fundamental for issuing hazard warnings, and often focuses on rainfall as a triggering agent and on the use of empirical rainfall thresholds based on rain gauge observations. A recognized component of the uncertainty associated with the use of rainfall thresholds is related to the sampling of strongly varying rainfall variability with sparse rain gauge networks. In this work we examine the spatial distribution of rainfall depth in areas up to 10 km from the debris flow initiation points as a function of return period, and we exploit this information to analyze the errors expected in the estimation of debris flow triggering rainfall when rain gauge data are used. In particular, we investigate the impact of rain gauge density and of the use of different interpolation methods. High-resolution, adjusted radar rainfall estimates, representing the best available spatially-distributed rainfall estimates at the debris flows initiation point and in the surrounding area, are sampled by stochastically generated rain gauge networks characterized by varying densities. Debris flow triggering rainfall is estimated by means of three rainfall interpolation methods: nearest neighbor, inverse distance weighting and ordinary kriging. On average, triggering rainfall shows a local peak corresponding to the debris flow initiation point, with a decay of rainfall with distance which increases with the return period of the triggering rainfall. Interpolation of the stochastically generated rain gauge measurements leads to an underestimation of the triggering rainfall that, irrespective of the interpolation methods, increases with the return period and decreases with the rain gauge density. For small return period events and high rain gauge density, the differences among the methods are minor. With increasing the return period and decreasing the rain gauge density, the nearest neighbor method is less biased, because it makes use only of the

  15. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Mato Grosso do Sul State, Brazil

    Science.gov (United States)

    Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; da Cunha, Elias Rodrigues; Correa, Caio Cezar Guedes; Torres, Francisco Eduardo; Bacani, Vitor Matheus; Gois, Givanildo; Ribeiro, Larissa Pereira

    2016-04-01

    The State of Mato Grosso do Sul (MS) located in Brazil Midwest is devoid of climatological studies, mainly in the characterization of rainfall regime and producers' meteorological systems and rain inhibitors. This state has different soil and climatic characteristics distributed among three biomes: Cerrado, Atlantic Forest and Pantanal. This study aimed to apply the cluster analysis using Ward's algorithm and identify those meteorological systems that affect the rainfall regime in the biomes. The rainfall data of 32 stations (sites) of the MS State were obtained from the Agência Nacional de Águas (ANA) database, collected from 1954 to 2013. In each of the 384 monthly rainfall temporal series was calculated the average and applied the Ward's algorithm to identify spatial and temporal variability of rainfall. Bartlett's test revealed only in January homogeneous variance at all sites. Run test showed that there was no increase or decrease in trend of monthly rainfall. Cluster analysis identified five rainfall homogeneous regions in the MS State, followed by three seasons (rainy, transitional and dry). The rainy season occurs during the months of November, December, January, February and March. The transitional season ranges between the months of April and May, September and October. The dry season occurs in June, July and August. The groups G1, G4 and G5 are influenced by South Atlantic Subtropical Anticyclone (SASA), Chaco's Low (CL), Bolivia's High (BH), Low Levels Jet (LLJ) and South Atlantic Convergence Zone (SACZ) and Maden-Julian Oscillation (MJO). Group G2 is influenced by Upper Tropospheric Cyclonic Vortex (UTCV) and Front Systems (FS). The group G3 is affected by UTCV, FS and SACZ. The meteorological systems' interaction that operates in each biome and the altitude causes the rainfall spatial and temporal diversity in MS State.

  16. Rainfall variability and seasonality in northern Bangladesh

    Science.gov (United States)

    Bari, Sheikh Hefzul; Hussain, Md. Manjurul; Husna, Noor-E.-Ashmaul

    2016-05-01

    This paper aimed at the analysis of rainfall seasonality and variability for the northern part of South-Asian country, Bangladesh. The coefficient of variability was used to determine the variability of rainfall. While rainfall seasonality index (SI ) and mean individual seasonality index ( overline{SI_i} ) were used to identify seasonal contrast. We also applied Mann-Kendall trend test and sequential Mann-Kendall test to determine the trend in seasonality. The lowest variability was found for monsoon among the four seasons whereas winter has the highest variability. Observed variability has a decreasing tendency from the northwest region towards the northeast region. The mean individual seasonality index (0.815378 to 0.977228) indicates that rainfall in Bangladesh is "markedly seasonal with a long dry season." It was found that the length of the dry period is lower at the northeastern part of northern Bangladesh. Trend analysis results show no significant change in the seasonality of rainfall in this region. Regression analysis of overline{SI_i} and SI, and longitude and mean individual seasonality index show a significant linear correlation for this area.

  17. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response

    Directory of Open Access Journals (Sweden)

    D. Zoccatelli

    2011-12-01

    Full Text Available This paper describes a set of spatial rainfall statistics (termed "spatial moments of catchment rainfall" quantifying the dependence existing between spatial rainfall organisation, basin morphology and runoff response. These statistics describe the spatial rainfall organisation in terms of concentration and dispersion statistics as a function of the distance measured along the flow routing coordinate. The introduction of these statistics permits derivation of a simple relationship for the quantification of catchment-scale storm velocity. The concept of the catchment-scale storm velocity takes into account the role of relative catchment orientation and morphology with respect to storm motion and kinematics. The paper illustrates the derivation of the statistics from an analytical framework recently proposed in literature and explains the conceptual meaning of the statistics by applying them to five extreme flash floods occurred in various European regions in the period 2002–2007. High resolution radar rainfall fields and a distributed hydrologic model are employed to examine how effective are these statistics in describing the degree of spatial rainfall organisation which is important for runoff modelling. This is obtained by quantifying the effects of neglecting the spatial rainfall variability on flood modelling, with a focus on runoff timing. The size of the study catchments ranges between 36 to 982 km2. The analysis reported here shows that the spatial moments of catchment rainfall can be effectively employed to isolate and describe the features of rainfall spatial organization which have significant impact on runoff simulation. These statistics provide useful information on what space-time scales rainfall has to be monitored, given certain catchment and flood characteristics, and what are the effects of space-time aggregation on flood response modeling.

  18. Rainfall intensity-duration conditions for mass movements in Taiwan

    Science.gov (United States)

    Chen, Chi-Wen; Saito, Hitoshi; Oguchi, Takashi

    2015-12-01

    Mass movements caused by rainfall events in Taiwan are analyzed during a 7-year period from 2006 to 2012. Data from the Taiwan Soil and Water Conservation Bureau reports were compiled for 263 mass movement events, including 156 landslides, 91 debris flows, and 16 events with both landslides and debris flows. Rainfall totals for each site location were obtained from interpolated rain gauge data. The rainfall intensity-duration ( I-D) relationship was examined to establish a rainfall threshold for mass movements using random sampling: I = 18.10(±2.67) D -0.17(±0.04), where I is mean rainfall intensity (mm/h) and D is the time (h) between the beginning of a rainfall event and the resulting mass movement. Significant differences were found between rainfall intensities and thresholds for landslides and debris flows. For short-duration rainfall events, higher mean rainfall intensities were required to trigger debris flows. In contrast, for long-duration rainfall events, similar mean rainfall intensities triggered both landslides and debris flows. Mean rainfall intensity was rescaled by mean annual precipitation (MAP) to define a new threshold: I MAP = 0.0060(±0.0009) D -0.17(±0.04), where I MAP is rescaled rainfall intensity and MAP is the minimum for mountainous areas in Taiwan (3000 mm). Although the I-D threshold for Taiwan is high, the I MAP -D threshold for Taiwan tends to be low relative to other areas around the world. Our results indicate that Taiwan is highly prone to rainfall-induced mass movements. This study also shows that most mass movements occur in high rainfall-intensity periods, but some events occur before or after the rainfall peak. Both antecedent and peak rainfall play important roles in triggering landslides, whereas debris flow occurrence is more related to peak rainfall than antecedent rainfall.

  19. Spatial interpolation methods for monthly rainfalls and temperatures in Basilicata

    Directory of Open Access Journals (Sweden)

    Ferrara A

    2008-12-01

    Full Text Available Spatial interpolated climatic data on grids are important as input in forest modeling because climate spatial variability has a direct effect on productivity and forest growth. Maps of climatic variables can be obtained by different interpolation methods depending on data quality (number of station, spatial distribution, missed data etc. and topographic and climatic features of study area. In this paper four methods are compared to interpolate monthly rainfall at regional scale: 1 inverse distance weighting (IDW; 2 regularized spline with tension (RST; 3 ordinary kriging (OK; 4 universal kriging (UK. Besides, an approach to generate monthly surfaces of temperatures over regions of complex terrain and with limited number of stations is presented. Daily data were gathered from 1976 to 2006 period and then gaps in the time series were filled in order to obtain monthly mean temperatures and cumulative precipitation. Basic statistics of monthly dataset and analysis of relationship of temperature and precipitation to elevation were performed. A linear relationship was found between temperature and altitude, while no relationship was found between rainfall and elevation. Precipitations were then interpolated without taking into account elevation. Based on root mean squared error for each month the best method was ranked. Results showed that universal kriging (UK is the best method in spatial interpolation of rainfall in study area. Then cross validation was used to compare prediction performance of tree different variogram model (circular, spherical, exponential using UK algorithm in order to produce final maps of monthly precipitations. Before interpolating temperatures were referred to see level using the calculated lapse rate and a digital elevation model (DEM. The result of interpolation with RST was then set to originally elevation with an inverse procedure. To evaluate the quality of interpolated surfaces a comparison between interpolated and

  20. Algorithm design

    CERN Document Server

    Kleinberg, Jon

    2006-01-01

    Algorithm Design introduces algorithms by looking at the real-world problems that motivate them. The book teaches students a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.

  1. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  2. Intermittent rainfall in dynamic multimedia fate modeling.

    Science.gov (United States)

    Hertwich, E G

    2001-03-01

    It has been shown that steady-state multimedia models (level III fugacity models) lead to a substantial underestimate of air concentrations for chemicals with a low Henry's law constant (H multimedia models are used to estimate the spatial range or inhalation exposure. A dynamic model of pollutant fate is developed for conditions of intermittent rainfall to calculate the time profile of pollutant concentrations in different environmental compartments. The model utilizes a new, mathematically efficient approach to dynamic multimedia fate modeling that is based on the convolution of solutions to the initial conditions problem. For the first time, this approach is applied to intermittent conditions. The investigation indicates that the time-averaged pollutant concentrations under intermittent rainfall can be approximated by the appropriately weighted average of steady-state concentrations under conditions with and without rainfall.

  3. Critical Phenomena of Rainfall in Ecuador

    Science.gov (United States)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  4. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  5. Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery

    Science.gov (United States)

    Sehad, Mounir; Lazri, Mourad; Ameur, Soltane

    2017-03-01

    In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.

  6. Monitoring Niger River Floods from satellite Rainfall Estimates : overall skill and rainfall uncertainty propagation.

    Science.gov (United States)

    Gosset, Marielle; Casse, Claire; Peugeot, christophe; boone, aaron; pedinotti, vanessa

    2015-04-01

    Global measurement of rainfall offers new opportunity for hydrological monitoring, especially for some of the largest Tropical river where the rain gauge network is sparse and radar is not available. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of satellite rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them into the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This paper analyses the potential of satellite rainfall products combined with hydrological modeling to monitor the Niger river floods in the city of Niamey, Niger. A dramatic increase of these floods has been observed in the last decades. The study focuses on the 125000 km2 area in the vicinity of Niamey, where local runoff is responsible for the most extreme floods recorded in recent years. Several rainfall products are tested as forcing to the SURFEX-TRIP hydrological simulations. Differences in terms of rainfall amount, number of rainy days, spatial extension of the rainfall events and frequency distribution of the rain rates are found among the products. Their impacts on the simulated outflow is analyzed. The simulations based on the Real time estimates produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some

  7. Weak linkage between the heaviest rainfall and tallest storms.

    Science.gov (United States)

    Hamada, Atsushi; Takayabu, Yukari N; Liu, Chuntao; Zipser, Edward J

    2015-02-24

    Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.

  8. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  9. Entropy of stable seasonal rainfall distribution in Kelantan

    Science.gov (United States)

    Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad

    2017-05-01

    Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.

  10. Highway Capacity Loss Induced by Rainfall

    Directory of Open Access Journals (Sweden)

    Hashim Mohammed Alhassan

    2011-01-01

    Full Text Available The effect of rainfall on capacity reduction on highways has been investigated. Traffic data was generated for both wet and dry conditions. The data analysis showed that the highway section studied was operating in free flow region. A 2.7% capacity loss was obtained for the road. It is argued that no traffic instability could arise from this situation if the state of traffic remains in the free flow regime. However, in the event of the coincidence of fixed bottlenecks and rainfall, instabilities arising from that could lead to further capacity loss.

  11. Relation between Ocean SST Dipoles and Downwind Continental Croplands Assessed for Early Management Using Satellite-based Photosynthesis Models

    Science.gov (United States)

    Kaneko, Daijiro

    2015-04-01

    Crop-monitoring systems with the unit of carbon-dioxide sequestration for environmental issues related to climate adaptation to global warming have been improved using satellite-based photosynthesis and meteorological conditions. Early management of crop status is desirable for grain production, stockbreeding, and bio-energy providing that the seasonal climate forecasting is sufficiently accurate. Incorrect seasonal forecasting of crop production can damage global social activities if the recognized conditions are unsatisfied. One cause of poor forecasting related to the atmospheric dynamics at the Earth surface, which reflect the energy budget through land surface, especially the oceans and atmosphere. Recognition of the relation between SST anomalies (e.g. ENSO, Atlantic Niño, Indian dipoles, and Ningaloo Niño) and crop production, as expressed precisely by photosynthesis or the sequestrated-carbon rate, is necessary to elucidate the mechanisms related to poor production. Solar radiation, surface air temperature, and water stress all directly affect grain vegetation photosynthesis. All affect stomata opening, which is related to the water balance or definition by the ratio of the Penman potential evaporation and actual transpiration. Regarding stomata, present data and reanalysis data give overestimated values of stomata opening because they are extended from wet models in forests rather than semi-arid regions commonly associated with wheat, maize, and soybean. This study applies a complementary model based on energy conservation for semi-arid zones instead of the conventional Penman-Monteith method. Partitioning of the integrated Net PSN enables precise estimation of crop yields by modifying the semi-closed stomata opening. Partitioning predicts production more accurately using the cropland distribution already classified using satellite data. Seasonal crop forecasting should include near-real-time monitoring using satellite-based process crop models to avoid

  12. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  13. Using CHIRPS Rainfall Dataset to detect rainfall trends in West Africa

    Science.gov (United States)

    Blakeley, S. L.; Husak, G. J.

    2016-12-01

    In West Africa, agriculture is often rain-fed, subjecting agricultural productivity and food availability to climate variability. Agricultural conditions will change as warming temperatures increase evaporative demand, and with a growing population dependent on the food supply, farmers will become more reliant on improved adaptation strategies. Development of such adaptation strategies will need to consider West African rainfall trends to remain relevant in a changing climate. Here, using the CHIRPS rainfall product (provided by the Climate Hazards Group at UC Santa Barbara), I examine trends in West African rainfall variability. My analysis will focus on seasonal rainfall totals, the structure of the rainy season, and the distribution of rainfall. I then use farmer-identified drought years to take an in-depth analysis of intra-seasonal rainfall irregularities. I will also examine other datasets such as potential evapotranspiration (PET) data, other remotely sensed rainfall data, rain gauge data in specific locations, and remotely sensed vegetation data. Farmer bad year data will also be used to isolate "bad" year markers in these additional datasets to provide benchmarks for identification in the future of problematic rainy seasons.

  14. Calibrating a Rainfall-Runoff and Routing Model for the Continental United States

    Science.gov (United States)

    Jankowfsky, S.; Li, S.; Assteerawatt, A.; Tillmanns, S.; Hilberts, A.

    2014-12-01

    Catastrophe risk models are widely used in the insurance industry to estimate the cost of risk. The models consist of hazard models linked to vulnerability and financial loss models. In flood risk models, the hazard model generates inundation maps. In order to develop country wide inundation maps for different return periods a rainfall-runoff and routing model is run using stochastic rainfall data. The simulated discharge and runoff is then input to a two dimensional inundation model, which produces the flood maps. In order to get realistic flood maps, the rainfall-runoff and routing models have to be calibrated with observed discharge data. The rainfall-runoff model applied here is a semi-distributed model based on the Topmodel (Beven and Kirkby, 1979) approach which includes additional snowmelt and evapotranspiration models. The routing model is based on the Muskingum-Cunge (Cunge, 1969) approach and includes the simulation of lakes and reservoirs using the linear reservoir approach. Both models were calibrated using the multiobjective NSGA-II (Deb et al., 2002) genetic algorithm with NLDAS forcing data and around 4500 USGS discharge gauges for the period from 1979-2013. Additional gauges having no data after 1979 were calibrated using CPC rainfall data. The model performed well in wetter regions and shows the difficulty of simulating areas with sinks such as karstic areas or dry areas. Beven, K., Kirkby, M., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24 (1), 43-69. Cunge, J.A., 1969. On the subject of a flood propagation computation method (Muskingum method), J. Hydr. Research, 7(2), 205-230. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on evolutionary computation, 6(2), 182-197.

  15. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  16. Constraints from atmospheric CO2 and satellite-based vegetation activity observations on current land carbon cycle trends

    Directory of Open Access Journals (Sweden)

    S. Zaehle

    2012-11-01

    Full Text Available Terrestrial ecosystem models used for Earth system modelling show a significant divergence in future patterns of ecosystem processes, in particular carbon exchanges, despite a seemingly common behaviour for the contemporary period. An in-depth evaluation of these models is hence of high importance to achieve a better understanding of the reasons for this disagreement. Here, we develop an extension for existing benchmarking systems by making use of the complementary information contained in the observational records of atmospheric CO2 and remotely-sensed vegetation activity to provide a firm set of diagnostics of ecosystem responses to climate variability in the last 30 yr at different temporal and spatial scales. The selection of observational characteristics (traits specifically considers the robustness of information given the uncertainties in both data and evaluation analysis. In addition, we provide a baseline benchmark, a minimum test that the model under consideration has to pass, to provide a more objective, quantitative evaluation framework. The benchmarking strategy can be used for any land surface model, either driven by observed meteorology or coupled to a climate model. We apply this framework to evaluate the offline version of the MPI-Earth system model's land surface scheme JSBACH. We demonstrate that the complementary use of atmospheric CO2 and satellite based vegetation activity data allows to pinpoint specific model failures that would not be possible by the sole use of atmospheric CO2 observations.

  17. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    Science.gov (United States)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  18. Assessment of the aerosol optical depths measured by satellite-based passive remote sensors in the Alberta oil sands region

    Science.gov (United States)

    Sioris, Christopher E.; McLinden, Chris A.; Shephard, Mark W.; Fioletov, Vitali E.; Abboud, Ihab

    2017-02-01

    Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the Alberta oil sands region. The instruments consist of MODIS (Moderate Resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer), and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of multiplicative and additive biases determined using local Aerosol Robotic Network (AERONET) (AEROCAN) stations. Correlation with ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and spatial variability. The ability of the satellite AOD products to capture interannual variability is assessed at Albian mine and Shell Muskeg River, two neighbouring sites in the northern mining region where a statistically significant positive trend (2002-2015) in PM2.5 mass density exists. An increasing trend of similar amplitude (˜ 5 % year-1) is observed in this northern mining region using some of the satellite AOD products.

  19. Extreme Rainfall Events Over Southern Africa: Assessment of a Climate Model to Reproduce Daily Extremes

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2007-12-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.

  20. Characterizing rainfall in the Tenerife island

    Science.gov (United States)

    Díez-Sierra, Javier; del Jesus, Manuel; Losada Rodriguez, Inigo

    2017-04-01

    In many locations, rainfall data are collected through networks of meteorological stations. The data collection process is nowadays automated in many places, leading to the development of big databases of rainfall data covering extensive areas of territory. However, managers, decision makers and engineering consultants tend not to extract most of the information contained in these databases due to the lack of specific software tools for their exploitation. Here we present the modeling and development effort put in place in the Tenerife island in order to develop MENSEI-L, a software tool capable of automatically analyzing a complete rainfall database to simplify the extraction of information from observations. MENSEI-L makes use of weather type information derived from atmospheric conditions to separate the complete time series into homogeneous groups where statistical distributions are fitted. Normal and extreme regimes are obtained in this manner. MENSEI-L is also able to complete missing data in the time series and to generate synthetic stations by using Kriging techniques. These techniques also serve to generate the spatial regimes of precipitation, both normal and extreme ones. MENSEI-L makes use of weather type information to also provide a stochastic three-day probability forecast for rainfall.

  1. Rainfall erosivity in Brazil: A Review

    Science.gov (United States)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  2. Water Conservation Education with a Rainfall Simulator.

    Science.gov (United States)

    Kok, Hans; Kessen, Shelly

    1997-01-01

    Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…

  3. Coping with rainfall variability in northern Tanzania

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This chapter explores a potential relationship between rainfall data and household self-reported harvest shocks and local (spatial) variability of harvest shocks and coping strategies based on a survey of 2700 rural households in the Kagera region of northern Tanzania. In addition, correlations...

  4. Preliminary study on mechanics-based rainfall kinetic energy

    Directory of Open Access Journals (Sweden)

    Yuan Jiuqin Ms.

    2014-09-01

    Full Text Available A raindrop impact power observation system was employed to observe the real-time raindrop impact power during a rainfall event and to analyze the corresponding rainfall characteristics. The experiments were conducted at different simulated rainfall intensities. As rainfall intensity increased, the observed impact power increased linearly indicating the power observation system would be satisfactory for characterizing rainfall erosivity. Momentum is the product of mass and velocity (Momentum=MV, which is related to the observed impact power value. Since there is no significant difference between momentum and impact power, observed impact power can represent momentum for different rainfall intensities. The relationship between momentum and the observed impact power provides a convenient way to calculate rainfall kinetic energy. The value of rainfall kinetic energy based on the observed impact power was higher than the classic rainfall kinetic energy. The rainfall impact power based kinetic energy and the classic rainfall kinetic energy showed linear correlation, which indicates that the raindrop impact power observation system can characterize rainfall kinetic energy. The article establishes a preliminary way to calculate rainfall kinetic energy by using the real-time observed momentum, providing a foundation for replacing the traditional methods for estimating kinetic energy of rainstorms.

  5. Deforestation alters rainfall: a myth or reality

    Science.gov (United States)

    Hanif, M. F.; Mustafa, M. R.; Hashim, A. M.; Yusof, K. W.

    2016-06-01

    To cope with the issue of food safety and human shelter, natural landscape has gone through a number of alterations. In the coming future, the expansion of urban land and agricultural farms will likely disrupt the natural environment. Researchers have claimed that land use change may become the most serious issue of the current century. Thus, it is necessary to understand the consequences of land use change on the climatic variables, e.g., rainfall. This study investigated the impact of deforestation on local rainfall. An integrated methodology was adopted to achieve the objectives. Above ground biomass was considered as the indicator of forest areas. Time series data of a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor were obtained for the year of 2000, 2005, and 2010. Rainfall data were collected from the Department of Irrigation and Drainage, Malaysia. The MODIS time series data were classified and four major classes were developed based on the Normalised Difference Vegetation Index (NDVI) ranges. The results of the classification showed that water, and urban and agricultural lands have increased in their area by 2, 3, and 6%, respectively. On the other hand, the area of forest has decreased 10% collectively from 2000 to 2010. The results of NDVI and rainfall data were analysed by using a linear regression analysis. The results showed a significant relationship at a 90% confidence interval between rainfall and deforestation (t = 1.92, p = 0.06). The results of this study may provide information about the consequences of land use on the climate on the local scale.

  6. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  7. Local influence of south-east France topography and land cover on the distribution and characteristics of intense rainfall cells

    Science.gov (United States)

    Renard, Florent

    2017-04-01

    The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.

  8. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  9. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  10. General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity

    Directory of Open Access Journals (Sweden)

    Han Soo Lee

    2015-04-01

    Full Text Available The relationships between observed rainfall, El Niño/Southern Oscillation (ENSO and sea surface temperature (SST variations in the Pacific and Indian Oceans were analyzed using a 1° latitude–longitude grid over Indonesia. The Global Summary of the Day rainfall records provide 26 years of rainfall data (January 1985 to August 2010 for 23 stations throughout the Indonesian islands. The ENSO and SST variations were calculated using the Multivariate ENSO Index (MEI, the Pacific Decadal Oscillation (PDO, NINO1 + 2, NINO3, NINO3.4, NINO4, the Dipole Mode Index (DMI for the Indian Ocean Dipole (IOD, and Indian Ocean Basin-wide (IOBW index. The results show that the rainfall in the southern Sumatra and southern Java Islands, which face the Indian Ocean, was positively correlated with the negative IOD, whereas the rainfall in northwestern Sumatra was positively correlated with the positive IOD. In eastern Indonesia, the rainfall was positively correlated with La Niña. The PDO index was also strongly correlated with the rainfall in this region. In central Indonesia, seasonal variations due to monsoons are predominant, and the rainfall exhibited strong negative and positive correlations with the MEI and NINO.WEST, respectively, indicating that high rainfall occurred during strong La Niña episodes. The highly negative and positive correlations with the MEI and NINO.WEST, respectively, in central Indonesia led us to analyze the impacts of Indonesian seas on the rainfall in the region. Using four synoptic-scale scenarios, we investigated the relative residence time of Indonesian seawater along the pathways associated with the Pacific-Indian hydraulic head difference. The results show that when both the western Pacific and eastern Indian Oceans are warm (positive NINO.WEST and negative DMI, the rainfall intensity over central Indonesia is strongest. This increase is explained by the relationship between the residence time of Indonesian seawater and the

  11. Application of the rainfall infiltration breakthrough (RIB) model for ...

    African Journals Online (AJOL)

    Application of the rainfall infiltration breakthrough (RIB) model for groundwater ... Correlation analysis between rainfall and observed WLF data at daily scale and ... data are more realistic than those for daily data, when using long time series.

  12. Summer monsoon rainfall prediction for India - Some new ideas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Present methods of forecasting of mean Indian rainfall for summer monsoon season are critically examined. Considering the wide variations in mean seasonal rainfalls (more than 5 to less than 400 cm) and crops in various regions of India...

  13. Quantum Algorithms

    Science.gov (United States)

    Abrams, D.; Williams, C.

    1999-01-01

    This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.

  14. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    1993-01-01

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of distri

  15. Scale-wise evolution of rainfall probability density functions fingerprints the rainfall generation mechanism

    Science.gov (United States)

    Molini, Annalisa; Katul, Gabriel; Porporato, Amilcare

    2010-05-01

    Possible linkages between climatic fluctuations in rainfall at low frequencies and local intensity fluctuations within single storms is now receiving significant attention in climate change research. To progress on a narrower scope of this problem, the cross-scale probabilistic structure of rainfall intensity records collected over time scales ranging from hours to decades at sites dominated by either convective or frontal systems is investigated. Across these sites, intermittency buildup from slow to fast time-scales is analyzed in terms of its heavy tailed and asymmetric signatures in the scale-wise evolution of rainfall probability density functions (pdfs). The analysis demonstrates that rainfall records dominated by convective storms develop heavier-tailed power law pdfs across finer scales when compared with their frontal systems counterpart. A concomitant marked asymmetry buildup also emerges across finer time scales necessitating skewed probability laws for quantifying the scale-wise evolution of rainfall pdfs. A scale-dependent probabilistic description of such fat tails, peakedness and asymmetry appearance is proposed and tested by using a modified q-Gaussian model, able to describe the scale wise evolution of rainfall pdfs in terms of the nonextensivity parameter q, a lacunarity (intermittency) correction γ and a tail asymmetry coefficient c, also functions of q.

  16. Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data

    Directory of Open Access Journals (Sweden)

    T. P. Burt

    2014-09-01

    Full Text Available Daily rainfall totals are analyzed for the main agro-climatic zones of Sri Lanka for the period 1976–2006. The emphasis is on daily rainfall rather than on longer-period totals, in particular the number of daily falls exceeding given threshold totals. For one station (Mapalana, where a complete daily series is available from 1950, a longer-term perspective on changes over half a century is provided. The focus here is particularly on rainfall in March and April, given the sensitivity of agricultural decisions to early southwest monsoon rainfall at the beginning of the Yala cultivation season but other seasons are also considered, in particular the northeast monsoon. Rainfall across Sri Lanka over three decades is investigated in relation to the main atmospheric drivers known to affect climate in the region: sea surface temperatures in the Pacific and Indian Oceans, of which the former are shown to be more important. The strong influence of El Niño and La Niña phases on various aspects of the daily rainfall distribution in Sri Lanka is confirmed: positive correlations with Pacific sea-surface temperatures during the north east monsoon and negative correlations at other times. It is emphasized in the discussion that Sri Lanka must be placed in its regional context and it is important to draw on regional-scale research across the Indian subcontinent and the Bay of Bengal.

  17. Rainfall Mechanisms for the Dominant Rainfall Mode over Zimbabwe Relative to ENSO and/or IODZM

    Directory of Open Access Journals (Sweden)

    Desmond Manatsa

    2012-01-01

    Full Text Available Zimbabwe’s homogeneous precipitation regions are investigated by means of principal component analysis (PCA with regard to the underlying processes related to ENSO and/or Indian Ocean Dipole zonal mode (IODZM. Station standardized precipitation index rather than direct rainfall values represent the data matrix used in the PCA. The results indicate that the country’s rainfall is highly homogeneous and is dominantly described by the first principal mode (PC1. This leading PC can be used to represent the major rainfall patterns affecting the country, both spatially and temporarily. The current practice of subdividing the country into the two seasonal rainfall forecast zones becomes irrelevant. Partial correlation analysis shows that PC1 is linked more to the IODZM than to the traditional ENSO which predominantly demonstrates insignificant association with PC1. The pure IODZM composite is linked to the most intense rainfall suppression mechanisms, while the pure El Niño composite is linked to rainfall enhancing mechanisms.

  18. Assessment of C-band Polarimetric Radar Rainfall Measurements During Strong Attenuation.

    Science.gov (United States)

    Paredes-Victoria, P. N.; Rico-Ramirez, M. A.; Pedrozo-Acuña, A.

    2016-12-01

    In the modern hydrological modelling and their applications on flood forecasting systems and climate modelling, reliable spatiotemporal rainfall measurements are the keystone. Raingauges are the foundation in hydrology to collect rainfall data, however they are prone to errors (e.g. systematic, malfunctioning, and instrumental errors). Moreover rainfall data from gauges is often used to calibrate and validate weather radar rainfall, which is distributed in space. Therefore, it is important to apply techniques to control the quality of the raingauge data in order to guarantee a high level of confidence in rainfall measurements for radar calibration and numerical weather modelling. Also, the reliability of radar data is often limited because of the errors in the radar signal (e.g. clutter, variation of the vertical reflectivity profile, beam blockage, attenuation, etc) which need to be corrected in order to increase the accuracy of the radar rainfall estimation. This paper presents a method for raingauge-measurement quality-control correction based on the inverse distance weighted as a function of correlated climatology (i.e. performed by using the reflectivity from weather radar). Also a Clutter Mitigation Decision (CMD) algorithm is applied for clutter filtering process, finally three algorithms based on differential phase measurements are applied for radar signal attenuation correction. The quality-control method proves that correlated climatology is very sensitive in the first 100 kilometres for this area. The results also showed that ground clutter affects slightly the radar measurements due to the low gradient of the terrain in the area. However, strong radar signal attenuation is often found in this data set due to the heavy storms that take place in this region and the differential phase measurements are crucial to correct for attenuation at C-band frequencies. The study area is located in Sabancuy-Campeche, Mexico (Latitude 18.97 N, Longitude 91.17º W) and

  19. Investigating changes over time of annual rainfall in Zimbabwe

    Directory of Open Access Journals (Sweden)

    D. Mazvimavi

    2010-12-01

    Full Text Available There is increasing concern in southern Africa about the possible decline of rainfall as a result of global warming. Some studies concluded that average rainfall in Zimbabwe had declined by 10% or 100 mm during the last 100 years. This paper investigates the validity of the assumption that rainfall is declining in Zimbabwe. Time series of annual rainfall, and total rainfall for (a the early part of the rainy season, October-November-December (OND, and (b the mid to end of the rainy season, January-February-March (JFM are analysed for the presence of trends using the Mann-Kendall test, and for the decline or increase during years with either high or low rainfall using quantile regression analysis. The Pettitt test has also been utilized to examine the possible existence of change or break-points in the rainfall time series. The analysis has been done for 40 rainfall stations with records starting during the 1892–1940 period and ending in 2000, and representative of all the rainfall regions.

    The Mann-Kendal test did not identify a significant trend at all the 40 stations, and therefore there is no proof that the average rainfall at each of these stations has changed. Quantile regression analysis revealed a decline in annual rainfall less than the tenth percentile at only one station, and increasing of rainfall greater than the ninetieth percentile at another station. All the other stations had no changes over time in both the low and high rainfall at the annual interval. Climate change effects are therefore not yet statistically significant within time series of total seasonal and annual rainfall in Zimbabwe. The general perception about declining rainfall is likely due to the presence of multidecadal variability characterized by bunching of years with above (e.g. 1951–1958, 1973–1980 and below (e.g. 1959–1972, 1982–1994 average rainfall.

  20. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  1. Improvements of Satellite Derived Cyclonic Rainfall Over The North Atlantic and Implications Upon The Air-sea Interaction

    Science.gov (United States)

    Klepp, C.; Bakan, S.; Grassl, H.

    Case studies of rainfall, derived from Special Sensor Microwave/Imager (SSM/I) satellite data, during the passage of individual cyclones over the North Atlantic are presented to enhance the knowledge of rainfall processes asso ciated with frontal sys- tems. The Multi-Satellite-Technique (MST) is described to receive a complete cov- erage of the North Atlantic twice a day. Different SSM/I precipitation algorithms (Bauer and Schlüssel, Ferraro, Wentz) have been tested for individual cyclones and were compared to the Global Precipitation Climatology Project (GPCP) data sets and NWP model results (ECMWF, REMO). An independent rainfall pattern and -intensity vali dation method is presented using voluntary observing ship (VOS) data sets and AVHRR images. Intense storms occur very often in the wintertime period with cold fronts propagating far south over the North Atlantic. Large frontal conditions are mostly well represented in all tested data sets. Following upstream numerous showers are usually embedded in the cellular structures of the cold air on the backside of post frontal subsidences. Cold air clusters frequently occur in these backside regions which produce heavy convective rainfall events. Espe cially in the region off Newfoundland at 50o North, where very cold air within arctic cold air outbreaks is advected over the warm waters of the Gulfstream current, these heavily raining clusters often rapidly form into mesoscale storms. These small but intense cyclones up to 1500km in diame- ter are characterized by very heavy precipitation over the entire region and may occur every three days in wintertime. The storms can be easily identified on AVHRR im- ages. Only the SSM/I rainfall algorithm of Bauer and Schlüssel in combination with the presented MST is sensitive enough to detect the correct patterns and intensities of rainfall for those cyclone types over the North Atlantic, whereas the GPCP products fail in recognizing any rainfall at all. A SLP study figures

  2. Forecasting Rainfall Time Series with stochastic output approximated by neural networks Bayesian approach

    Directory of Open Access Journals (Sweden)

    Cristian Rodriguez Rivero

    2014-07-01

    Full Text Available The annual estimate of the availability of the amount of water for the agricultural sector has become a lifetime in places where rainfall is scarce, as is the case of northwestern Argentina. This work proposes to model and simulate monthly rainfall time series from one geographical location of Catamarca, Valle El Viejo Portezuelo. In this sense, the time series prediction is mathematical and computational modelling series provided by monthly cumulative rainfall, which has stochastic output approximated by neural networks Bayesian approach. We propose to use an algorithm based on artificial neural networks (ANNs using the Bayesian inference. The result of the prediction consists of 20% of the provided data consisting of 2000 to 2010. A new analysis for modelling, simulation and computational prediction of cumulative rainfall from one geographical location is well presented. They are used as data information, only the historical time series of daily flows measured in mmH2O. Preliminary results of the annual forecast in mmH2O with a prediction horizon of one year and a half are presented, 18 months, respectively. The methodology employs artificial neural network based tools, statistical analysis and computer to complete the missing information and knowledge of the qualitative and quantitative behavior. They also show some preliminary results with different prediction horizons of the proposed filter and its comparison with the performance Gaussian process filter used in the literature.

  3. Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia

    Science.gov (United States)

    Deo, Anil; Walsh, Kevin J. E.

    2016-11-01

    In this study the rainfall drop size distribution (DSD) during the passage of seven tropical cyclones (TCs) over Darwin is compared and contrasted with that associated with non-tropical cyclone (non-TC) events, using the impact disdrometer data at the Darwin Atmospheric Radiation and Measurement (ARM) site. The disparity of the DSD with respect to rainfall types (between TC and non-TC conditions) and distance from TC centre is also examined. It is shown that TC DSDs are statistically different from the non-TC DSDs, the former encompassing a larger concentration of small to moderate drop sizes. The TC mass-weighted mean diameter (Dm) is lower than the non-TC values at all rain rates and also for the different precipitation types (convective, transition and stratiform). The TC DSD varies with distance from the TC centre, as rainfall near the TC centre (< 60 km) comprises of relatively smaller drops which are strongly evident at small to moderate rain rates (< 30 mm h- 1). Such variations in the DSD have implications for the parameters used in the algorithm that converts radar reflectivity to rainfall rate in TCs, as well as for the analytical expressions used in describing the observed DSD employed in cloud modelling parameterizations.

  4. Evaluation of Satellite-based Global Hydrologic Simulation using the Distributed CREST Model and Global Runoff Data Centre Archives

    Science.gov (United States)

    Xue, X.; Hong, Y.; Gourley, J. J.; Wang, X.

    2011-12-01

    Flooding is one of the most deadly natural hazards around the world. Distributed hydrologic models can provide the spatial and temporal distribution of precipitation, soil moisture, evapotranspiration and runoff. Implementation of a flood prediction and/or forecast system using a distributed hydrologic model can potentially help mitigate flood-induced hazards. In this study, we propose the use of the Coupled Routing and Excess STorage (CREST) distributed hydrological model driven by real-time rainfall forcing from TRMM-based multi-satellite products and/or precipitation forecast data from the Global Forecast System model (GFS), combined with automatic parameter optimization methods, to estimate hydrological fluxes, storages and inundated areas. Evaluations show that: 1) the capability of real-time streamflow prediction and/or forecast at drainage outlets and identification of inundated areas upstream is an achievable goal even for ungauged basins; 2) a-priori, physically-based parameter estimates with CREST reduce the dependence on rainfall-runoff data often required to calibrate distributed hydrologic models; and 3) the validation of CREST simulations of basin discharge are skillful in several basins throughout the world.

  5. RAINFALL AGGRESSIVENESS EVALUATION IN REGHIN HILLS USING FOURNIER INDEX

    Directory of Open Access Journals (Sweden)

    J. SZILAGYI

    2016-03-01

    Full Text Available Aggressiveness erosive force of rainfall is the express of kinetic energy and potential energy of rain water runoff on slopes. In the absence of a database for the analysis of parameters that define the torrencial rainfall, the rainfall erosivity factor was calculated by Fournier Index, Modified Fournier Index based on the monthly and annual precipitation.

  6. A STUDY OF RELATIONSHIP BETWEEN "GUERILLA HEAVY RAINFALL" AND DISASTER

    Science.gov (United States)

    Ushiyama, Motoyuki

    "Guerilla heavy rainfall" is a newly-coined word by mass media of Japan. The four major newspaper publishing companies began to use this word frequently from the beginning of August, 2008. The definition of "Guerilla heavy rainfall" is not clear. It was found from the result of newspaper article analysis from 2008 to 2009 that short-time very heavy rainfall events are called "Guerilla heavy rainfall". In this study, the rainfall event of 80mm or more of rainfalls of 1 hour and 149mm or less of rainfalls was defined as "Guerilla heavy rainfall". 104 events of "Guerilla heavy rainfall" were extracted from AMeDAS precipitation data from 1979 to 2008. There were two victims of these heavy rainfall events in total. They killed at basement or underpass. Although inundation above the floor level occurred in 38% of event, the damage of 100 or more buildings was 9%. We may say that "Guerilla heavy rainfall" does not cause large-scale damage. However, it is necessary to keep in mind that damage caused by "Guerilla heavy rainfall" is generated well in high-risk area of flood, such as basement, underpass, low land and river park.

  7. Models are likely to underestimate increase in heavy rainfall in the extratropical regions with high rainfall intensity

    Science.gov (United States)

    Borodina, Aleksandra; Fischer, Erich M.; Knutti, Reto

    2017-07-01

    Model projections of regional changes in heavy rainfall are uncertain. On timescales of few decades, internal variability plays an important role and therefore poses a challenge to detect robust model response in heavy rainfall to rising temperatures. We use spatial aggregation to reduce the major role of internal variability and evaluate the heavy rainfall response to warming temperatures with observations. We show that in the regions with high rainfall intensity and for which gridded observations exist, most of the models underestimate the historical scaling of heavy rainfall and the land fraction with significant positive heavy rainfall scalings during the historical period. The historical behavior is correlated with the projected heavy rainfall intensification across models allowing to apply an observational constraint, i.e., to calibrate multimodel ensembles with observations in order to narrow the range of projections. The constraint suggests a substantially stronger intensification of future heavy rainfall than the multimodel mean.

  8. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha(-1)h(-1)) compared to winter (87MJmmha(-1)h(-1)). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R(2) values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  9. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    Directory of Open Access Journals (Sweden)

    B. Ford

    2015-09-01

    Full Text Available The negative impacts of fine particulate matter (PM2.5 exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004–2011. We estimate that in the United States, exposure to PM2.5 accounts for approximately 4 % of total deaths compared to 22 % in China (using satellite-based exposure, which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 9 % for the US and 4 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  10. AQA-PM: Extension of the Air-Quality Model For Austria with Satellite based Particulate Matter Estimates

    Science.gov (United States)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Triebnig, Gerhard; Flandorfer, Claudia

    2013-04-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using regression- and assimilation techniques. For the model simulations WRF/Chem is used with a resolution of 3 km over the alpine region. Interfaces have been developed to account for the different measurements as input data. The available local emission inventories provided by the different Austrian regional governments were harmonized and used for the model simulations. An episode in February 2010 is chosen for the model evaluation. During that month exceedances of PM10-thresholds occurred at many measurement stations of the Austrian network. Different model runs (only model/only ground stations assimilated/satellite and ground stations assimilated) are compared to the respective measurements. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.

  11. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model

    Science.gov (United States)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-01-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  12. Satellite-based estimates of light-use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Directory of Open Access Journals (Sweden)

    D. O. Fuller

    2012-11-01

    Full Text Available Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based carbon dioxide eddy covariance (EC systems are installed in only a few mangrove forests worldwide and the longest EC record from the Florida Everglades contains less than 9 yr of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger-scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE and we present the first-ever tower-based estimates of mangrove forest RE derived from night-time CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt increases in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and

  13. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    Science.gov (United States)

    Ford, Bonne; Heald, Colette L.

    2016-03-01

    The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the data sets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and data sets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2 % of total deaths compared to 14 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14 % for the US and 2 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  14. Borneo vortex and mesoscale convective rainfall

    Science.gov (United States)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2014-05-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.

  15. Rainfall Predictions From Global Salinity Anomalies

    Science.gov (United States)

    Schmitt, R. W.; Li, L.; Liu, T.

    2016-12-01

    We have discovered that sea surface salinity (SSS) is a better seasonal predictor of terrestrial rainfall than sea surface temperature (SST) or the usual pressure modes of atmospheric variability. In many regions, a 3-6 month lead of SSS over rainfall on land can be seen. While some lead is guaranteed due to the simple conservation of water and salt, the robust seasonal lead for SSS in some places is truly remarkable, often besting traditional SST and pressure predictors by a very significant margin. One mechanism for the lead has been identified in the recycling of water on land through soil moisture in regional ocean to land moisture transfers. However, a global search has yielded surprising long-range SSS-rainfall teleconnections. It is suggested that these teleconnections indicate a marked sensitivity of the atmosphere to where rain falls on the ocean. That is, the latent heat of evaporation is by far the largest energy transfer from ocean to atmosphere and where the atmosphere cashes in this energy in the form of precipitation is well recorded in SSS. SSS also responds to wind driven advection and mixing. Thus, SSS appears to be a robust indicator of atmospheric energetics and moisture transport and the timing and location of rainfall events is suggested to influence the subsequent evolution of the atmospheric circulation. In a sense, if the fall of a rain drop is at least equivalent to the flap of a butterfly's wings, the influence of a billion butterfly rainstorm allows for systematic predictions beyond the chaotic nature of the turbulent atmosphere. SSS is found to be particularly effective in predicting extreme precipitation or droughts, which makes its continued monitoring very important for building societal resilience against natural disasters.

  16. Artificial Neural Network for Monthly Rainfall Rate Prediction

    Science.gov (United States)

    Purnomo, H. D.; Hartomo, K. D.; Prasetyo, S. Y. J.

    2017-03-01

    Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.

  17. Rainfall-enhanced blooming in typhoon wakes

    Science.gov (United States)

    Lin, Y.-C.; Oey, L.-Y.

    2016-08-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  18. Rainfall regimes of the Green Sahara.

    Science.gov (United States)

    Tierney, Jessica E; Pausata, Francesco S R; deMenocal, Peter B

    2017-01-01

    During the "Green Sahara" period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31°N and likely ended abruptly. We find evidence for a prolonged "pause" in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks.

  19. Statistical distribution of rainfall in Uttarakhand, India

    Science.gov (United States)

    Kumar, Vikram; Shanu; Jahangeer

    2017-07-01

    Understanding of rainfall is an important issue for Uttarakhand, India which having varied topography and due to that extreme rainfall causes quick runoff which warns structural and functional safety of large structures and other natural resources. In this study, an attempt has been made to determine the best-fit distribution of the annual series of rainfall data for the period of 1991-2002 of 13 districts of Uttarakhand. A best-fit distribution such as Chi-squared, Chi-squared (2P), exponential, exponential (2P), gamma, gamma (3P), gen. extreme value (GEV), log-Pearson 3, Weibull, Weibull (3P) distributions was applied. Comparisons of best distributions were based on the use of goodness-of-fit tests such as Kolmogorov-Smirnov, Anderson-Darling, and Chi squared. Results showed that the Weibull distribution performed the best with 46% of the total district, while the second best distribution was Chi squared (2P) and log-Pearson. The results of this study would be useful to the water resource engineers, policy makers and planners for the agricultural development and conservation of natural resources of Uttarakhand.

  20. Cyclical components of local rainfall data

    Science.gov (United States)

    Mentz, R. P.; D'Urso, M. A.; Jarma, N. M.; Mentz, G. B.

    2000-02-01

    This paper reports on the use of a comparatively simple statistical methodology to study local short time series rainfall data. The objective is to help in agricultural planning, by diminishing the risks associated with some uncertainties affecting this business activity.The analysis starts by assuming a model of unobservable components, trend, cycle, seasonal and irregular, that is well known in many areas of application. When series are in the realm of business and economics, the statistical methods popularized by the US Census Bureau US National Bureau of Economic Research are used for seasonal and cyclical estimation, respectively. The flexibility of these methods makes them good candidates to be applied in the meteorological context, and this is done in this paper for a selection of monthly rainfall time series.Use of the results to help in analysing and forecasting cyclical components is emphasized. The results are interesting. An agricultural entrepreneur, or a group of them located in a single geographical region, will profit by systematically collecting information (monthly in our work) about rainfall, and adopting the scheme of analysis described in this paper.

  1. Tropical stratospheric circulation and monsoon rainfall

    Science.gov (United States)

    Sikder, A. B.; Patwardhan, S. K.; Bhalme, H. N.

    1993-09-01

    Interannual variability of both SW monsoon (June September) and NE monsoon (October December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958 1986). Correlations of zonal wind anomalies to SW monsoon rainfall ( r=0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu. Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.

  2. Rainfall regimes of the Green Sahara

    Science.gov (United States)

    Tierney, Jessica E.; Pausata, Francesco S. R.; deMenocal, Peter B.

    2017-01-01

    During the “Green Sahara” period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31°N and likely ended abruptly. We find evidence for a prolonged “pause” in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks. PMID:28116352

  3. Projected changes of rainfall event characteristics for the Czech Republic

    Directory of Open Access Journals (Sweden)

    Svoboda Vojtěch

    2016-12-01

    Full Text Available Projected changes of warm season (May–September rainfall events in an ensemble of 30 regional climate model (RCM simulations are assessed for the Czech Republic. Individual rainfall events are identified using the concept of minimum inter-event time and only heavy events are considered. The changes of rainfall event characteristics are evaluated between the control (1981–2000 and two scenario (2020–2049 and 2070–2099 periods. Despite a consistent decrease in the number of heavy rainfall events, there is a large uncertainty in projected changes in seasonal precipitation total due to heavy events. Most considered characteristics (rainfall event depth, mean rainfall rate, maximum 60-min rainfall intensity and indicators of rainfall event erosivity are projected to increase and larger increases appear for more extreme values. Only rainfall event duration slightly decreases in the more distant scenario period according to the RCM simulations. As a consequence, the number of less extreme heavy rainfall events as well as the number of long events decreases in majority of the RCM simulations. Changes in most event characteristics (and especially in characteristics related to the rainfall intensity depend on changes in radiative forcing and temperature for the future periods. Only changes in the number of events and seasonal total due to heavy events depend significantly on altitude.

  4. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    Science.gov (United States)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally

  5. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  6. Observed daily large-scale rainfall patterns during BOBMEX-1999

    Indian Academy of Sciences (India)

    A K Mitra; M Das Gupta; R K Paliwal; S V Singh

    2003-06-01

    A daily rainfall dataset and the corresponding rainfall maps have been produced by objective analysis of rainfall data. The satellite estimate of rainfall and the raingauge values are merged to form the final analysis. Associated with epochs of monsoon these rainfall maps are able to show the rainfall activities over India and the Bay of Bengal region during the BOBMEX period. The intra-seasonal variations of rainfall during BOBMEX are also seen using these data. This dataset over the oceanic region compares well with other available popular datasets like GPCP and CMAP. Over land this dataset brings out the features of monsoon in more detail due to the availability of more local raingauge stations.

  7. Satellite radiometric remote sensing of rainfall fields: multi-sensor retrieval techniques at geostationary scale

    Directory of Open Access Journals (Sweden)

    F. S. Marzano

    2005-01-01

    Full Text Available The Microwave Infrared Combined Rainfall Algorithm (MICRA consists in a statistical integration method using the satellite microwave-based rain-rate estimates, assumed to be accurate enough, to calibrate spaceborne infrared measurements on limited sub-regions and time windows. Rainfall retrieval is pursued at the space-time scale of typical geostationary observations, that is at a spatial resolution of few kilometers and a repetition period of few tens of minutes. The actual implementation is explained, although the basic concepts of MICRA are very general and the method is easy to be extended for considering innovative statistical techniques or measurements from additional space-borne platforms. In order to demonstrate the potentiality of MICRA, case studies over central Italy are also discussed. Finally, preliminary results of MICRA validation by ground based remote and in situ measurements are shown and a comparison with a Neural Network (NN based technique is briefly illustrated.

  8. Uncertainty of Areal Rainfall Estimation Using Point Measurements

    Science.gov (United States)

    McCarthy, D.; Dotto, C. B. S.; Sun, S.; Bertrand-Krajewski, J. L.; Deletic, A.

    2014-12-01

    The spatial variability of precipitation has a great influence on the quantity and quality of runoff water generated from hydrological processes. In practice, point rainfall measurements (e.g., rain gauges) are often used to represent areal rainfall in catchments. The spatial rainfall variability is difficult to be precisely captured even with many rain gauges. Thus the rainfall uncertainty due to spatial variability should be taken into account in order to provide reliable rainfall-driven process modelling results. This study investigates the uncertainty of areal rainfall estimation due to rainfall spatial variability if point measurements are applied. The areal rainfall is usually estimated as a weighted sum of data from available point measurements. The expected error of areal rainfall estimates is 0 if the estimation is an unbiased one. The variance of the error between the real and estimated areal rainfall is evaluated to indicate the uncertainty of areal rainfall estimates. This error variance can be expressed as a function of variograms, which was originally applied in geostatistics to characterize a spatial variable. The variogram can be evaluated using measurements from a dense rain gauge network. The areal rainfall errors are evaluated in two areas with distinct climate regimes and rainfall patterns: Greater Lyon area in France and Melbourne area in Australia. The variograms of the two areas are derived based on 6-minute rainfall time series data from 2010 to 2013 and are then used to estimate uncertainties of areal rainfall represented by different numbers of point measurements in synthetic catchments of various sizes. The error variance of areal rainfall using one point measurement in the centre of a 1-km2 catchment is 0.22 (mm/h)2 in Lyon. When the point measurement is placed at one corner of the same-size catchment, the error variance becomes 0.82 (mm/h)2 also in Lyon. Results for Melbourne were similar but presented larger uncertainty. Results

  9. Multivariate forecast of winter monsoon rainfall in India using SST anomaly as a predictor: Neurocomputing and statistical approaches

    CERN Document Server

    Chattopadhyay, Goutami; Jain, Rajni

    2009-01-01

    In this paper, the complexities in the relationship between rainfall and sea surface temperature (SST) anomalies during the winter monsoon (November-January) over India were evaluated statistically using scatter plot matrices and autocorrelation functions.Linear as well as polynomial trend equations were obtained and it was observed that the coefficient of determination for the linear trend was very low and it remained low even when polynomial trend of degree six was used. An exponential regression equation and an artificial neural network with extensive variable selection were generated to forecast the average winter monsoon rainfall of a given year using the rainfall amounts and the sea surface temperature anomalies in the winter monsoon months of the previous year as predictors. The regression coefficients for the multiple exponential regression equation were generated using Levenberg-Marquardt algorithm. The artificial neural network was generated in the form of a multiplayer perceptron with sigmoid non-l...

  10. State-space adjustment of radar rainfall and skill score evaluation of stochastic volume forecasts in urban drainage systems

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael Robdrup

    2013-01-01

    Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...... for forecasting outflow from two catchments in the Copenhagen area. Stochastic grey-box models are applied to create the runoff forecasts, providing us with not only a point forecast but also a quantification of the forecast uncertainty. Evaluating the results, we can show that using the adjusted radar data...... improves runoff forecasts compared with using the original radar data and that rain gauge measurements as forecast input are also outperformed. Combining the data merging approach with short-term rainfall forecasting algorithms may result in further improved runoff forecasts that can be used in real time...

  11. Assessing soil surface roughness decay during simulated rainfall by multifractal analysis

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2008-06-01

    Full Text Available Understanding and describing the spatial characteristics of soil surface microrelief are required for modelling overland flow and erosion. We employed the multifractal approach to characterize topographical point elevation data sets acquired by high resolution laser scanning for assessing the effect of simulated rainfall on microrelief decay. Three soil surfaces with different initial states or composition and rather smooth were prepared on microplots and subjected to successive events of simulated rainfall. Soil roughness was measured on a 2×2 mm2 grid, initially, i.e. before rain, and after each simulated storm, yielding a total of thirteen data sets for three rainfall sequences. The vertical microrelief component as described by the statistical index random roughness (RR exhibited minor changes under rainfall in two out of three study cases, which was due to the imposed wet initial state constraining aggregate breakdown. The effect of cumulative rainfall on microrelief decay was also assessed by multifractal analysis performed with the box-count algorithm. Generalized dimension, Dq, spectra allowed characterization of the spatial variation of soil surface microrelief measured at the microplot scale. These Dq spectra were also sensitive to temporal changes in soil surface microrelief, so that in all the three study rain sequences, the initial soil surface and the surfaces disturbed by successive storms displayed great differences in their degree of multifractality. Therefore, Multifractal parameters best discriminate between successive soil stages under a given rain sequence. Decline of RR and multifractal parameters showed little or no association.

  12. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    Directory of Open Access Journals (Sweden)

    C. Z. van de Beek

    2010-02-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m and temporal (16 s resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  13. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    Directory of Open Access Journals (Sweden)

    C. Z. van de Beek

    2009-09-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The high spatial (120 m and temporal (16 s resolution of the radar combined with the extent of the database make this study a climatological analysis of the potential for high-resolution rainfall measurement with non-polarimetric X-band radar over completely flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  14. A Modeling Study of Surface Rainfall Processes Associated with a Torrential Rainfall Event over Hubei, China, during July 2007

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yushu; CUI Chunguang

    2011-01-01

    The surface rainfall processes associated with the torrential rainfall event over Hubei,China,during July 2007 were investigated using a two-dimensional cloud-resolving model.The model integrated the large-scale vertical velocity and zonal wind data from National Centers for Environmental Prediction (NCEP)/Global Data Assimilation System (GDAS) for 5 days.The time and model domain mean surface rain rate was used to identify the onset,mature,and decay periods of rainfall.During the onset period,the descending motion data imposed in the lower troposphere led to a large contribution of stratiform rainfall to the model domain mean surface rainfall.The local atmospheric drying and transport of rain from convective regions mainly contributes to the stratiform rainfall.During the mature periods,the ascending motion data integrated into the model was so strong that water vapor convergence was the dominant process for both convective and stratiform rainfall.Both convective and stratiform rainfalls made important contributions to the model domain mean surface rainfall. During the decay period,descending motion data input into the model prevailed,making stratiform rainfall dominant.Stratiform rainfall was mainly caused by the water vapor convergence over raining stratiform regions.

  15. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products

    Directory of Open Access Journals (Sweden)

    P. López López

    2017-06-01

    Full Text Available A considerable number of river basins around the world lack sufficient ground observations of hydro-meteorological data for effective water resources assessment and management. Several approaches can be developed to increase the quality and availability of data in these poorly gauged or ungauged river basins; among them, the use of Earth observations products has recently become promising. Earth observations of various environmental variables can be used potentially to increase knowledge about the hydrological processes in the basin and to improve streamflow model estimates, via assimilation or calibration. The present study aims to calibrate the large-scale hydrological model PCRaster GLOBal Water Balance (PCR-GLOBWB using satellite-based products of evapotranspiration and soil moisture for the Moroccan Oum er Rbia River basin. Daily simulations at a spatial resolution of 5  ×  5 arcmin are performed with varying parameters values for the 32-year period 1979–2010. Five different calibration scenarios are inter-compared: (i reference scenario using the hydrological model with the standard parameterization, (ii calibration using in situ-observed discharge time series, (iii calibration using the Global Land Evaporation Amsterdam Model (GLEAM actual evapotranspiration time series, (iv calibration using ESA Climate Change Initiative (CCI surface soil moisture time series and (v step-wise calibration using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series. The impact on discharge estimates of precipitation in comparison with model parameters calibration is investigated using three global precipitation products, including ERA-Interim (EI, WATCH Forcing methodology applied to ERA-Interim reanalysis data (WFDEI and Multi-Source Weighted-Ensemble Precipitation data by merging gauge, satellite and reanalysis data (MSWEP. Results show that GLEAM evapotranspiration and ESA CCI soil moisture may be used for model

  16. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products

    Science.gov (United States)

    López López, Patricia; Sutanudjaja, Edwin H.; Schellekens, Jaap; Sterk, Geert; Bierkens, Marc F. P.

    2017-06-01

    A considerable number of river basins around the world lack sufficient ground observations of hydro-meteorological data for effective water resources assessment and management. Several approaches can be developed to increase the quality and availability of data in these poorly gauged or ungauged river basins; among them, the use of Earth observations products has recently become promising. Earth observations of various environmental variables can be used potentially to increase knowledge about the hydrological processes in the basin and to improve streamflow model estimates, via assimilation or calibration. The present study aims to calibrate the large-scale hydrological model PCRaster GLOBal Water Balance (PCR-GLOBWB) using satellite-based products of evapotranspiration and soil moisture for the Moroccan Oum er Rbia River basin. Daily simulations at a spatial resolution of 5 × 5 arcmin are performed with varying parameters values for the 32-year period 1979-2010. Five different calibration scenarios are inter-compared: (i) reference scenario using the hydrological model with the standard parameterization, (ii) calibration using in situ-observed discharge time series, (iii) calibration using the Global Land Evaporation Amsterdam Model (GLEAM) actual evapotranspiration time series, (iv) calibration using ESA Climate Change Initiative (CCI) surface soil moisture time series and (v) step-wise calibration using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series. The impact on discharge estimates of precipitation in comparison with model parameters calibration is investigated using three global precipitation products, including ERA-Interim (EI), WATCH Forcing methodology applied to ERA-Interim reanalysis data (WFDEI) and Multi-Source Weighted-Ensemble Precipitation data by merging gauge, satellite and reanalysis data (MSWEP). Results show that GLEAM evapotranspiration and ESA CCI soil moisture may be used for model calibration resulting in

  17. Clutter and rainfall discrimination by means of doppler-polarimetric measurements and vertical reflectivity profile analysis

    Directory of Open Access Journals (Sweden)

    F. Silvestro

    2005-01-01

    Full Text Available The estimation of rainfall rate and other parameters from radar scattering volume is heavily affected by the presence of intense sea and ground clutter and echoes which appears in anomalous propagation condition. To deal with these non meteorological echoes we present a new clutter removal algorithm which combines the results of previous works. The algorithm fully exploits both the Doppler and polarimetric capabilities of the radar used and the analysis of vertical reflectivity profile in order to achieve the better identification of the meteorological and non-meteorological targets. The algorithm has been applied to the C-band radar of Monte Settepani (Savona, Italy, which runs in a high-topography environment. Preliminary results are presented.

  18. Estimation of Rainfall Associated with Typhoons over the Ocean Using TRMM/TMI and Numerical Models

    Directory of Open Access Journals (Sweden)

    Nan-Ching Yeh

    2015-11-01

    Full Text Available This study quantitatively estimated the precipitation associated with a typhoon in the northwestern Pacific Ocean by using a physical algorithm which included the Weather Research and Forecasting model, Radiative Transfer for TIROS Operational Vertical Sounder model, and data from the Tropical Rainfall Measuring Mission (TRMM/TRMM Microwave Imager (TMI and TRMM/Precipitation Radar (PR. First, a prior probability distribution function (PDF was constructed using over three million rain rate retrievals from the TRMM/PR data for the period 2002–2010 over the northwestern Pacific Ocean. Subsequently, brightness temperatures for 15 typhoons that occurred over the northwestern Pacific Ocean were simulated using a microwave radiative transfer model and a conditional PDF was obtained for these typhoons. The aforementioned physical algorithm involved using a posterior PDF. A posterior PDF was obtained by combining the prior and conditional PDFs. Finally, the rain rate associated with a typhoon was estimated by inputting the observations of the TMI (attenuation indices at 10, 19, 37 GHz into the posterior PDF (lookup table. Results based on rain rate retrievals indicated that rainband locations with the heaviest rainfall showed qualitatively similar horizontal distributions. The correlation coefficient and root-mean-square error of the rain rate estimation were 0.63 and 4.45 mm·h−1, respectively. Furthermore, the correlation coefficient and root-mean-square error for convective rainfall were 0.78 and 7.25 mm·h−1, respectively, and those for stratiform rainfall were 0.58 and 9.60 mm·h−1, respectively. The main contribution of this study is introducing an approach to quickly and accurately estimate the typhoon precipitation, and remove the need for complex calculations.

  19. Flood and Landslide Applications of Near Real-time Satellite Rainfall Products

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Negri, Andrew; Huffman, George J.

    2007-01-01

    Floods and associated landslides are one of the most widespread natural hazards on Earth, responsible for tens of thousands of deaths and billions of dollars in property damage every year. During 1993-2002, over 1000 of the more than 2,900 natural disasters reported were due to floods. These floods and associated landslides claimed over 90,000 lives, affected over 1.4 billion people and cost about $210 billion. The impact of these disasters is often felt most acutely in less developed regions. In many countries around the world, satellite-based precipitation estimation may be the best source of rainfall data due to lack of surface observing networks. Satellite observations can be of essential value in improving our understanding of the occurrence of hazardous events and possibly in lessening their impact on local economies and in reducing injuries, if they can be used to create reliable warning systems in cost-effective ways. This article addressed these opportunities and challenges by describing a combination of satellite-based real-time precipitation estimation with land surface characteristics as input, with empirical and numerical models to map potential of landslides and floods. In this article, a framework to detect floods and landslides related to heavy rain events in near-real-time is proposed. Key components of the framework are: a fine resolution precipitation acquisition system; a comprehensive land surface database; a hydrological modeling component; and landslide and debris flow model components. A key precipitation input dataset for the integrated applications is the NASA TRMM-based multi-satellite precipitation estimates. This dataset provides near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg. By careful integration of remote sensing and in-situ observations, and assimilation of these observations into hydrological and landslide/debris flow models with surface topographic information, prediction of useful

  20. Simulation of radar rainfall errors and their propagation into rainfall-runoff processes

    Science.gov (United States)

    Aghakouchak, A.; Habib, E.

    2008-05-01

    Radar rainfall data compared with rain gauge measurements provide higher spatial and temporal resolution. However, radar data obtained form reflectivity patterns are subject to various errors such as errors in Z-R relationship, vertical profile of reflectivity, spatial and temporal sampling, etc. Characterization of such uncertainties in radar data and their effects on hydrologic simulations (e.g., streamflow estimation) is a challenging issue. This study aims to analyze radar rainfall error characteristics empirically to gain information on prosperities of random error representativeness and its temporal and spatial dependency. To empirically analyze error characteristics, high resolution and accurate rain gauge measurements are required. The Goodwin Creek watershed located in the north part of Mississippi is selected for this study due to availability of a dense rain gauge network. A total of 30 rain gauge measurement stations within Goodwin Creak watershed and the NWS Level II radar reflectivity data obtained from the WSR-88dD Memphis radar station with temporal resolution of 5min and spatial resolution of 1 km2 are used in this study. Radar data and rain gauge measurements comparisons are used to estimate overall bias, and statistical characteristics and spatio-temporal dependency of radar rainfall error fields. This information is then used to simulate realizations of radar error patterns with multiple correlated variables using Monte Calro method and the Cholesky decomposition. The generated error fields are then imposed on radar rainfall fields to obtain statistical realizations of input rainfall fields. Each simulated realization is then fed as input to a distributed physically based hydrological model resulting in an ensemble of predicted runoff hydrographs. The study analyzes the propagation of radar errors on the simulation of different rainfall-runoff processes such as streamflow, soil moisture, infiltration, and over-land flooding.

  1. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method

    Science.gov (United States)

    Chu, Xiaoyu; Zhang, Jingrui; Lu, Shan; Zhang, Yao; Sun, Yue

    2016-11-01

    This paper presents a trajectory planning algorithm to optimise the collision avoidance of a chasing spacecraft operating in an ultra-close proximity to a failed satellite. The complex configuration and the tumbling motion of the failed satellite are considered. The two-spacecraft rendezvous dynamics are formulated based on the target body frame, and the collision avoidance constraints are detailed, particularly concerning the uncertainties. An optimisation solution of the approaching problem is generated using the Gauss pseudospectral method. A closed-loop control is used to track the optimised trajectory. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.

  2. Quantifying uncertainty in observational rainfall datasets

    Science.gov (United States)

    Lennard, Chris; Dosio, Alessandro; Nikulin, Grigory; Pinto, Izidine; Seid, Hussen

    2015-04-01

    The CO-ordinated Regional Downscaling Experiment (CORDEX) has to date seen the publication of at least ten journal papers that examine the African domain during 2012 and 2013. Five of these papers consider Africa generally (Nikulin et al. 2012, Kim et al. 2013, Hernandes-Dias et al. 2013, Laprise et al. 2013, Panitz et al. 2013) and five have regional foci: Tramblay et al. (2013) on Northern Africa, Mariotti et al. (2014) and Gbobaniyi el al. (2013) on West Africa, Endris et al. (2013) on East Africa and Kalagnoumou et al. (2013) on southern Africa. There also are a further three papers that the authors know about under review. These papers all use an observed rainfall and/or temperature data to evaluate/validate the regional model output and often proceed to assess projected changes in these variables due to climate change in the context of these observations. The most popular reference rainfall data used are the CRU, GPCP, GPCC, TRMM and UDEL datasets. However, as Kalagnoumou et al. (2013) point out there are many other rainfall datasets available for consideration, for example, CMORPH, FEWS, TAMSAT & RIANNAA, TAMORA and the WATCH & WATCH-DEI data. They, with others (Nikulin et al. 2012, Sylla et al. 2012) show that the observed datasets can have a very wide spread at a particular space-time coordinate. As more ground, space and reanalysis-based rainfall products become available, all which use different methods to produce precipitation data, the selection of reference data is becoming an important factor in model evaluation. A number of factors can contribute to a uncertainty in terms of the reliability and validity of the datasets such as radiance conversion algorithims, the quantity and quality of available station data, interpolation techniques and blending methods used to combine satellite and guage based products. However, to date no comprehensive study has been performed to evaluate the uncertainty in these observational datasets. We assess 18 gridded

  3. Rainfall thresholds for possible landslide occurrence in Italy

    Science.gov (United States)

    Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto

    2017-08-01

    The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we

  4. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    Science.gov (United States)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will

  5. Investigation of summer monsoon rainfall variability in Pakistan

    Science.gov (United States)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  6. Accuracy of rainfall measurement for scales of hydrological interest

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a 'true value' of rainfall against which the 2 km radar grid and a single 'typical gauge' estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the 'true catchment rainfall' and the accuracy of a radar estimate (an area-weighted average of radar pixel values and a single 'typical gauge' estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000 considers the accuracy of rainfall estimates obtained using raingauge and radar in combination. Keywords: rainfall, accuracy, raingauge, radar

  7. Statistical Analysis of 30 Years Rainfall Data: A Case Study

    Science.gov (United States)

    Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.

    2017-07-01

    Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

  8. Variations of characteristics of consecutive rainfall days over northern Thailand

    Science.gov (United States)

    Klongvessa, P.; Lu, M.; Chotpantarat, S.

    2017-07-01

    The Chao Phraya basin, Thailand, is frequently inundated by flooding during the southwest monsoon period. Most floods coincide with consecutive rainfall days. This study investigated consecutive rainfall days during the southwest monsoon period at 11 stations over northern Thailand, the upstream area of this basin. The Markov chain probability model was used to study the consecutiveness of days with at least 0.1, 10.1, and 35.1 mm of rainfall. The consecutive length of rainfall days from the model showed good agreement with the observed value. A chi-square test of independence was applied to assess the significance of the consecutiveness, and it was found that days with at least 10.1 mm of rainfall tend to be consecutive over the entire area. Moreover, days with at least 35.1 mm of rainfall were found to be consecutive over the joint area where the mountainous region meets the plain area. However, the consecutiveness of days with less than 10.1 mm of rainfall was not obvious. The rainfall amount on days with at least 10.1 mm of rainfall was also calculated and it showed lower values over the mountainous region than over the plain. Hence, this study established the characteristics of consecutive rainfall days over the plain, mountainous region, and joint area.

  9. THE IMPACT OF CLIMATE CHANGE UPON WINTER RAINFALL

    Directory of Open Access Journals (Sweden)

    Numan Shehadeh

    2013-01-01

    Full Text Available Climatic models that project the impact of climate change upon rainfall in the Eastern Mediterranean region predict that the negative impact will be more pronounced upon winter rainfall rather than Fall or Spring rainfall where instability conditions become more pronounced. Those models, also, predict that, due to the great geographical diversity, projected rainfall trends in the above region will show great spatial variability. Therefore, this study aims to analyze the possible impact of climate change upon winter rainfall (December, January and February in Jordan. Data from six meteorological stations that represent well the spatial variation of rainfall in the country is used. Various statistical techniques are applied in this study including, linear regression, t- test, moving averages and CUSUM charts. Results of the analysis reveal a decreasing rainfall trend in all the sample stations. However, the decreasing trends are significant at the 0.05 level in three stations only (Salt, Amman and Irbid. The negative impact of climate change upon winter rainfall totals in the northern and central parts of Jordan, where most of winter rainfall is associated with Mediterranean depressions, is statistically significant at the 0.05 level. However, such impact is not significant in the southern and eastern parts of the country, where a greater portion of winter rainfall is associated with khamasini depressions and instability conditions. Further research analyzing the impact of climate change upon other climatic elements such as temperature, relative humidity and dust storms is needed.

  10. Constraining continuous rainfall simulations for derived design flood estimation

    Science.gov (United States)

    Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.

    2016-11-01

    Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.

  11. Sources of Uncertainty in Rainfall Maps from Cellular Communication Networks

    Science.gov (United States)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    Accurate measurements of rainfall are important in many hydrological applications, for instance, flash-flood early-warning systems, hydraulic structures design, agriculture, weather forecasting, and climate modelling. Rainfall intensities can be retrieved from (commercial) microwave link networks. Whenever possible, link networks measure and store the decrease in power of the electromagnetic signal at regular intervals. The decrease in power is largely due to the attenuation by raindrops along the link paths. Such an alternative technique fulfills the continuous strive for measurements of rainfall in time and space at higher resolutions, especially in places where traditional rain gauge networks are scarce or poorly maintained. Rainfall maps from microwave link networks have recently been introduced at country-wide scales. Despite their potential in rainfall estimation at high spatiotemporal resolutions, the uncertainties present in rainfall maps from link networks are not yet fully comprehended. The aim of this work is to identify and quantify the sources of uncertainty present in interpolated rainfall maps from link rainfall depths. In order to disentangle these sources of uncertainty, we classified them into two categories: (1) those associated with the individual microwave link measurements, i.e., the physics involved in the measurements such as wet antenna attenuation, sampling interval of measurements, wet/dry period classification, drop size distribution (DSD), and multi-path propagation; (2) those associated with mapping, i.e., the combined effect of the interpolation methodology, the spatial density of the network, and the availability of link measurements. We computed ~ 3500 rainfall maps from real and simulated link rainfall depths for 12 days for the land surface of The Netherlands. These rainfall maps were compared against quality-controlled gauge-adjusted radar rainfall fields (assumed to be the ground truth). Thus, we were able to not only identify

  12. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis